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CHAPTER I
INTRODUCTION

Components of variance has been discussed in many papers and
analysis of variance components has become one of the basic tools of
research in several fields of scientific investigation. In the problem
of estimation, the researcher always tries to ascertain whether an
estimator, best suited to the problem under consideration, possesses
the well known properties of being unbiased, efficient, consistent, suf-
ficient, minimum variance, etc. In practice, an objective of an investi-
gation will be to strive to obtain minimum variance (best) unbiased esti-
mators.

Any estimator, whether biased or unbiased minimum variance,
must be a function of observations. It is known that sufficient statistics
contain all the information in the sample about the parameters of a
density function which describes a given population. It.'would be further
desirable to ascertain whether a set of sufficient statistics can be re=-
duced to a minimal set by employing the scheme given by Lehmann
and Scheffe [8]. Moreover, the Ran-Blackwell theorem says that
minimum variance unbiased estimates of the function of parameters
must be based on a set of minimal sufficient statistics; but it does not
enable ug to determine which estimator is .best if two or more unbiased

estimators exist for the same function and each is based on a set of



minimal sufficient statistics. If the density function from which the
minimal set was obtained has the property of being complete, the
unbiased estimator of the~function based on a set of minimal sufficient
statistics is‘unique, and has minimum variance. Unfortunately, with
regard to the problems under consi&eration in this thesis, the density
functipons are not complete when an Eisenhart Model II is assumed [ 4 ].

D. L. Weeks [9 ] has given a minimal set of sufficient statistics
in case of BIB and GD-PBIB designs when there is no block treatment
interaction. Unfortunately, in practice we do not always have such a
nice situation.

Hence, the problem of this thesis is:

(i) To determine a minimal set of sufficient statistics for the
pérameters of the Balanced Incomplete Block Design when there is
block-treatment interaction.

(ii) To find a minimal set of sufficient statistics for Group Divisible
Partially Balanced Incomplete Block Designs with two associate classes
when there is block~treatment interaction. |

(iii) To find the distribution of each statistic in a minimal set of
sufficient statistics for (i) and (ii).

(iv) To determine pairwise independence in each set.



CHAPTER II
NOTATIONS AND SYMBOLS

We shall introduce here the definitions of symbols which we shall
use often in this thesis. They will be classified in three parts as
follows:

(1) Abbreviations

(2) Scalars

(3) Matrices

(1) Abbreviations

(2) BIB is an abbi'eviation for Balanced Incomplete Block.

(p) PBIB is an abbreviation for Partially Balanced Incomplete
Block.

(c) GD~PBIB is an abbreviation for Gr oui) Divisible, Partially
Balanced Incomplete Block Design. If GD is prefixed by S, SR, or R,
it will denote the Singular, Semi-Regular, or Regular Group Divisible,
Partially Balanced Incomplete Block Design, respectively.

(d) E derotes Mathematical Expectatipn.

(e) MVN is an abbreviation for Multivariate Normal.

(f) £ denotes an operation on a density function which,‘when pro=
perly defined, reduces the dimension of the space of the sufficient sta-
tistics.

(g) Rlpms Bs 7, (B7)] = Reduction due to p, B, T, and (7).



(2)

(k) R[(B'ﬁl s B, 7] = Reduction due to {f 7) adjusted for u, B, 7.

Scalars

{a) b is equal to the number of blocks in a design.

(b} tis equal to the number of treatments in a design.

{c) r is equal to the number of replicates of each treatment.
{d} kis equal to the number of plots per block.

(e} m denotes the number of times any treatment is replicated in

any block, if it appears in that block.

(f) X\ denotes in a BIB, the number of times two different treat-

ments occur together in all blocks.

(g) )\’i’ (i =1, 2), denotes in a PBIB, the number of times two

different treatments which are i-th associates occur together in all

blocks.

(k) )\J? is the non=centrality parameter of the non-central chi-

square distribution.

(3)

(i) g is the number of groups in a GD~PBIB Design.

(i} n is the number of treatments per group in GD~-PBIB Designs."

.=k : =1
(k) v.=k (rk - r + 7\1) =k [)\Zt‘iﬂn.(}\la?\.z)],

Matrices

(a) X is a Design Matrix of a two-way classification model.
{b) Xl is a partition of X corresponding to blocks.
{c) X, is a partition of X corresponding to treatments.

(d) X3 is a partition of X corresponding to interaction.

(e} Y is a vector of observable random variables.



(f) J: is an s x q matrix of all one's. jil will be used to denote

an n x 1 vector of one's.

- 1
(g) N =XIX

— 1
(h) M = x1x3
s = XX
(1) L - 2 3

(j) D is a diagonal matrix

(k) P is an orthogonal matrix. When partitioning a matrix, parti-
tions will be denoted by the addition of a subscript. Further partitions
of a partition will be denoted by an.additional subséript. Thus P =
(P Po) =(Pyp» Prap» Popr Poge Pag):

(1) Z is a covariance matrix

(m) ¢w represents a w x w matrix of all zeros.

() A =[X, - XXX ] XK,

(o) Iw is the identity matrix of dimension w x w.

Additional symbols if needed, will be defined as the discussion de-~
velops.

We shall now prove two lemmas which will be:needed for the proofs
of the theorem in the ensuing chapters.

Lemma l Let X denote the design matrix of two way classification

model Y = XB + e where the rank of X is bk and where X is of the
.bkm

form X = (31 , Xl’ XZ’ X3). Then there exists a set of bk(m - 1)
ofthogonal rows P’ such that XI'P = ¢, X'2 = ¢, XEP = ¢, and

) i .
kam = ¢

Proof:" Consider the matrix product



1
J
bkm
1
b 5 i ¢ i 5, T £ = JORM o sriart g 3 %0 4K X
1 BT EEETY T bkm S e 2 373
2
XI
3

Since XX'is symmetric, there exists an orthogonal matrix Q such
that Q'XX'Q = D where D is a diagonal matrix. The number of non-
zero elements on the diagonal of D is bk since X is of rank bk. Parti~-
tion Q into Q = (C, P) where C and P are of dimensions bkm x bk and

bkm x bk(m = 1) respectively, and such that

c! D* ¢
Q'XX'Q = XxXY{c, P] =
P! ¢

where D is bk x bk. Therefore,

bkm

]
¥ kam

£+ P’X1X'P + P'XZX'ZP + PAX

1 =
: X!P = ¢

33

The matrices kam S ST and X3X‘ are each positive semi~-

Bem® 11 T 22 3

definite, each being the product of a matrix and its transpose. The

bkm 1 1 1 1 1 1
bka, P X1X1P. P XZXZP' and P X3X3P are also

positive semi-definite for the same reason. Since each diagonal ele-

matrices P'J

ment of each of these matrices is the sum of squares of real numbers
and the sum of these sum of squares is zero, the diagonal elements
of each of the four afore mentioned matrices must be equal to zero.
If any off diagonal element is non-zero, there would be at least one
of the principal minors which would be negative, a contradiction of
positive semi-definiteness. We therefore conclude that each of the

matrices must be equal to the null matrix.



It is therefore obvious that

Jl

okmE = & XIP = ¢, i =1, 2, 3.

Lemma 2;: LetNbeat ¥ b matrix of rank m. Let P be an orthogonal
- matrix such that P'NN'P = D where D is diagonal with character~
istic roots of NN' on the diagonal. If s £m of the characteristic

roots are equal to d0 (dO # 0), the‘n the matrix dal/ZP(')N = C! (say)

is a set of s b.rthogonal rows such that CIN'NC = dOIs where P0 is

such that P(')NN'PO = dO |

Proof: Since we are given that s characteristic roots of NN' are equal

I.
s

we can partition P into (PO.; Pl) such that

P ots ¢

¢ D

O =

M NNY(Pg, P)) =D =

Pl

—

1

where D, is diagonal. Hence PJNN'P) = d I, that is (dal/ ZPéN)(N'Pédal/ 3

1 0 ]
7 Is. Consider now (dal/ZP(')N)N'N(N'POdal/Z) = Z (say), then we may

write Z = (dal/ PININYP P! + PlPl‘)N(N’POdal/ 2y, From (1) above,
P(')NN'P1 = ¢. Therefore,

~1/2

- -1/2
Z = dg/ “(PYNN'PQ)(PYNN'Py)dg

_ .=1/2 -1/2
=dy7 (dglgHdglg)dg

Hence the lemma is proved.



CHAPTER III
THE BALANCED INCOMPLETE BLOCK

In this chapter we shall be concerned with finding a set of minimal
sufficient statistics in a balanced incomplete block design when there is
a component of variance corresponding to the block~treatment interac-
tion and an Eisenhart Mc;del II is assumed.

The Balanced Incomplete Block Design is defined as a design Wit‘h
the following properties:

(a) There are b blocks and t treatments.

(b) There are k experimental units per block (k& t).

(c) There is one and only one observation per ce11.‘ |

(d) A treatment cannot appear more than once in a block.

(e) Each treatment is replicated exactly r times.

(f) The number of blocks in which a péir of treatments appear
together is exactly A.

We are going to discuss a case where there is block-treatment inter-
action and so we shall assume m > 1 in order to obtain an estimate of the
error variance. We shall, therefore, replace (c), (d), (e), and (f) by
(cYy (d%), (e), and (£4) respectively as given below, where a cellis a
group of experimental units subjectéd to a particular block-treatment
combination. |

(c') There are exactly m observations per cell.



{(d') A treatment cannot appear more than once in the cells of the
same block but it can appear m times in the same cell as follows from
{c?).

(e') Each treatment appears exactly m times in each of r different
blocks.

(f') The number of blocks in which a pair of treatments appears
together is exactly A. This can also be worded as: the number of times
a pair of treatments appears together in all blocks is m\.

Specifically,
(1) Yijkzuékﬁﬁi%’ Tj+ (B T)ij.%uei,jk

wherei=1, 2,. . ., by J=1, 2, .. ., t; k=n,.,

0 if treatment j does not appear in block i.
1 1, 2, . . ., m, if treatment j appears in block i.

The observations YijO do not exist.

Under model 11 the following assumptions are made:

(1) Bi’ Tj , (B T)ij and e ijk are each distributed normally.

(2) E(e;) =0 foralli, j, k.

@‘Zifi:u,j::v, k = w

E( ) =

&, . €
ijk uvw
0 otherwise

(3) E (‘Bi) = 0 for all i,

2

1 ifi=p

T
E(ﬁlﬁp) =

0 otherwise

(4) E(’T'j) = 0 for all j.
'@‘g ifj=u
E{r.7.) =
J u 0 otherwise



10
(5) E{7B), =0 foralliandj.
1]
2 ... u
o q fi=zwu j=v

Bl(78)y;(7B)y,] =

0 otherwise
(6) E(eijkﬁs) = 0 for all i, j, k, and s.

(7)) E(ei )75y = 0 for aili, j, k, and p.

(8) Ele; (BT,

{(9) E( B Tj) = 0 for all i, and j.

v] =0 for all i, j, k, and u, v.

(10) E[ B.(BT),,] =0 foralliandu, v.
(11) E[‘T‘j( BT)u.v] = 0 for all jand u, v.

(12) pis constant.
The following relationships hold in BIB design when under the assump-
tions given above there is a block-treatment interaction.

(1) ZEn,. =mk

(2) Zn, =mr

(3) Znijmijl:mz‘x G A9
(4) bk =tr

(5) At~ 1) =r(k - 1)

The matrix model which fulfills the conditions set forth above can

be written as

(I1) Y::p.JTfkm-%XlB X7+ X3( BT) + e

where Y is the vector of bkm observations and we shall consider elements

ordered according to blocks, then treatmenis. Xl’ XZ’ and X3 are of
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dimension bkm x b, bkm x t, and bkm x bk, respectively. B, 7, (B7),.

and e are vectors of b, t, bk, and bkm random variables respectively.

The distributional properties can be written in .. matrix form as follows:

(1) e is distributed as the MVN(4¢, (rZI

(2) B is distributed as the MVN(¢, U‘?I

bkm)'

b)'

(3) 7 is distributed as the MVN(¢, crglt),

(4)

(3)

The following relationships hold for the matrices of the model.

(1)
(2)
(3)
(4)
(5)
(6)
(1
(8)

(9)

(T B) is distributed as the MV N(¢, o

E(eBf') = ¢, E(er") = ¢, E[e(B7)'] = ¢y E(B .7} = 0,
E[8.(% BT = ¢ E[T(BT)I] = 4.

‘dl -
X1X1 = mkl

b
X'ZXZ = mrIt
XéX3 = mIbk
S 1, < it
B
PN % = rmgP e
s 5, gk
R, =il
s s

2
31pk)-



(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20) L'TINM = m°kJ

(21)

(22) M'N'{L = m°kJ
(23) L’Jz = mJ
(24) N'JIN = m“kJ
(25) N‘Jt = mkJ?
(26) M'N'J} = m2KJ

(27) L'} = m k"

2 ‘ t
If X4X, = N, NN' = m“[(z = NI, + \J/]

If XiX

1X, = M!, MM' = m%ki

b

If XX

2
-1t 1 —
32-L,LL ..—mr‘It

-1, -1 _ -l
(X4 - m™ kT NX)X, = A'X, = Ak~ m(tL,

-1

-1
(X5 -m "k NX))X; = ¢

ML' = mN!

MNL* = m>[(r - NI, + \J}]

tae _ oyt
JtN--kab
1otar _ 2, bk
LJtNFm k.]'b
te _ .t
JtL-mka

3, .bk
bk

t 2._bk
H -
L.]'tL-m ka

3, bk
bk

bk
t

2, .b
b

t

bk
t

v 'J:

-J

12



1 -1 RS B

(28) If F' = X} - m™ k™ "M'X] m k™l

k(L' kK™ MINY

(X4 - m™kTINK)), then FUD™ <0, FIX, =¢, F'X, = ¢

and m™'F'F is an idempotent matrix of rank bk - b - t + L.

' = m¥X_ X!

(29)XX’X = XXLX XS X1

133

(30)XX'XX = X, XX X! -mXZXé

3773 37322

We shall now define an Operativon, say ¢, which when operated on
the joint distribution of the elements of the vector ¥, gives a set of
sufficient statistics which is minimal. This has been explained in the
latter part of this chapter where we have discussed the minimal set of
sufficient statistics.

Thé vector Y is distributed as the multivariate normal with mean

p and covariance matrix 3 where

- bk
o= E(Y) =pl o
and
Z =E(Y - p){Y - ')'\=(xx*¢ + X,X} Z+X Xtol 4 o‘Z'I)
K K 1171 37373
The joint density of the elements of Y is given by
bkm .
- 2=
-1/2 -1 | -
wn  g¥, o) =(2m) |27V exp [-2hy -ty - )

Consider now the operation # on g(Y, 6) to be of the form

bkm
T gtV

ig(Y, 0) = (2) exp [-27 My -piPP PP Y-0)]

where P is an orthogonal bkm x bkm matrix to be defined.

13
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Let P be partitioned as follows: P = (Rl' Rz, R3, R4, RS) where
the dimensions of Ri (i=1, 2, 3, 4, 5) are bkm x 1, bkm x b=1, bkm x t-1,
bkm x bk = b -~ t + 1, bkm x bk(m =~ 1), respectively. We shall now define
these five partitions of P so that the condition of orthogonality is satisfied.

Let Rl' = (bkm)-]'/z.]'l and R5 be constructed in the same manner

bkm

i 1 = 1 =
as the matrix P of Lemma 1. We then have R]_R1 =1 and RSRS &= Ibk{m-l)'

Consider now the matrix NN! = mz[(r-v— )\)It + U:] We can get the
characteristic roots of NN' by solving the determinantal equation |NN‘ -ﬂl
= 0 for £. The characteristic roots of NN! are then mz(r - \) and mz[ r +
(t=-1)A] = mzrk of multiplicities (t-~1) and 1, respectively. Let Q be an

orthogonal matrix which diagonalizes NN', that is

mzrk ¢

Q'NN'Q =
N

) m '{r )\)It_1

— =

Partition Q into (Pl. P3) where P1 and P3 are of dimension t x 1
and t x (t-1), respectively. Then

p! m?rk ¢
NNY(P,, P,)

=D, (say)
2 1
1) m (r - )\.)It_l

By Lemma 2 the orthogonal set of rows which diagonalizes N'N
and gives the non-zero characteristic roots of N'N is D'il/ZQ'N. Thus

A)a
1

-1/2

(D]

Q'N)N'N(N'QD ) = D,

Since the rank of NN'!is t, the rank of N'N is also t. Since N'N

is b x b, there will be b - t zero characteristic roots of N'N. If by P,
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we denote the matrix which diagonalizes NN, we may write

mzrk ¢ ' ¢
P‘ZN'NP2 =1 ¢ ¢ ¢
2 .
¢ ¢ m(raNI,
I -
We can partition P2 into (PZO’ PZl’ PZZ) and have
p! mzrk
20 ¢ ¢
1 1 - 1 } —
PIN'NP, = P} | N'N(P,;, Py, Py,) = | ¢ ¢ ¢
' 2
P'22 ¢ ¢ m (r--~)x)It__1
We can write P’22 = (r-)\)-l/zm_lPéN.

Since At = (X’2 - m-lkulNXI’), the orthogonal matrix which diagona-

lizes NN*! will also diagonalize A'A, for

1 1 -1

Q'mrl - m k-lNN’)Q =mrl - m~ k~ D1
where
0 ¢
mrl - mnlk".lD1 = -1
¢ mk )‘tIt-l
1 | - 1 -1 -1 1t =1 -1 ~1 1 AL . =1 ' _
Consider now F! = X3 -m 'k M X1 -m "\t k(X3AA ). Since m F'F =

m—lF 'X3 is an idempotent matrix of rank bk = b - t + 1, we can have
P:L as bk - b - t + 1 x bk orthogonal vectors from bk x bk orthogonal
matrix which would diagonalize mﬁlF 'F. This can be done since we can
aIWaYS choose P4 corresponding to non-zero characteristic roots of the
idempotent matrix.

We now define the matrix P of which we spoke when the operation




<+ was discussed. Define P in the following manner.

P!

where

and

It can be verified that P is an orthogonal matrix.

Appendix I.

1

[~ —
-1/2.1
(bkm) T hkm

(km)~

~1
() TP} )

k ,1/2 .
(xgm) ' PiA
m-l/ZP:lF‘

'
P5

(mk)—l/z
2 (mk)-l/z

1]
R

=P

-1/2.1
(bkm) T km
-1/2
(km) P'Zle‘
[ km3(r-—)\)] —l/zPéNXI'

kK 11/20, .,
el Pip

m-l/ZPiF !

1 .
Py

4

P! X}

1 -

P! X!

1

We shall first derive P'YP and from Appendix II it follows that

P'JP assumes the form as given in Table I.

In order to find P'}Z_lp we shall make use of the fact that (P'ZP)

P! Z_IP. We also note that if we have a matrix of the form

For proof, see

16
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o—2+mko‘§+mro‘§+mo—§ é b o ,‘ é b
6 [o%4mko24mel]L, 6 6 6 6

® ® [¢Z+mkfy§+mk*1(r-x)cr§+mcr§]1t_1 [mzk—zxt(f-)\)]l/zo-glt_l ® ¢

é é [m 2k 2x(r-n)] Y Zaglt_l [d—2+>\k-1mto-§+m.o‘§]lt~1 b b

¢ ¢ . ¢ [0_2+m°‘§]tl;bk~b~t+1 ¢
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c.I c,I
c = 1's 3's
3l Czlsd
then
c,I ~c,I
C-l = (cc _CZ)-I 2°s 37s
172 3

wc I c, I
3's 17s

With the help of this result P'Z—lP is shown in Table II.

Let us examine the form PYY ~ B). We then have

-1/2.1 bkm, | /2
(bkm) kam(Y--|.LCf1.~ ) (bkm)™ “(y...=p)
/20, o bkm 1/20, s
(mk) ™7 “PL XY -l ) (km) ™ “PL XY
| Y 2Ry x iy -pr ) (km) Y 2p XY
Pl(Y-lJ.) = =
k125, A bkm k \1/2 0, At
(X)) P3a(Y-edp ) (=) Pt
m~Y 2p1E g - pgPET) m 1/ 2pipry
4 1 4
bkm
tyv. 1
PLY-pd) ) PLY
where y :(bkm)-‘lJl Y T )
pem Y

Letting q = (Y - j)'PP'% "PPYY - ji), we have

q = (0-2' + mko‘% + rnrcrg: + moé)wl(bkm) (y... = |¢)2'

2

+ [km(o‘Z + mkoy

2v1-ly e 1 '
+ mtr3)] Y X, P 21P?_leY
Imto2 + moS] Y X P, ,PL XY

w1 2 -
+[kmdl] [¢” 4+ 2k 1P22P 5%

2
3

1 + o"-ZY"PSP" Y

' 21=lgy 11 =
+ [me; + 0] YFPPF'Ym :



[o-2+m ko'l

1

TABLE II

P “lp

+mro-§+m0’§]_1 ) ¢ $ ¢
2 2 2,=1
[c"+mke [Fmos] T ¢ ¢ ¢
1r 2 1 2 2 2 =2 : 2
- - - - - - 'z s
¢ dfetenk T mte Zmet]r, | ~d [ m Ak (e 0] 2oL, ¢
1
% 13 2 -1 2 2, -1 2, 2
¢ -d; [m™k “At(r-\)] o5l g d1 [o +mko +mk (r—)\)0'2+m0’3]lt_1 ®
5y 24-1
¢ ¢ ¢ lomos] Ty pogel
-2
$ ¢ $ $ o I
- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2.4
d_1 = 0-4 + mke Ty + mro o, + Z2mo o3 + m )‘t°—1°—2 + m k0’10'3 +m ro,0, + m o"3

61
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+ mk“l(r-x)crg + mo'g]di'lY"AP PLAYY

k 2 2
+ _——)\tm[o_ + mko 3P}

1

-1 2, =2 1/2 2
247 [m%k™ “(r-N)] / Y'X,P,,PiA Yo

Define the seven statistics s. i=1, 2, 3, . .. 7) as follows:
S] =Y.

s, = (km)'YIX,P, PLX!Y  not defined if b = t

-]
= ! ! !
3 (km) Y X1P22P22X1Y

klr-nY2yix B _praty

84 7 17 227 3
(IV)
— k 1 t 1
S5 7 Ygm ¢ AP3P3AY
- -1 1 1t
Sg =m YFP4P4FY
— 1 1

These seven statistics are sufficient for the parameters , o-z, o-?,
0'%, o‘g. This follows from [7].

We shall now prove that this set of sufficient statistics is minimal
for g(Y, 6). In order to prove this we shall make use of the scheme
given by Lehmann and Scheffe [8]. This consists of defining a function
K(Y, YO) =% g(Y, 0)/% g(Yps 6) and finding the condition under which
K(Y, YO) is independent of parameters. We shall define ¥ to consist of
operating on the exponent of g(Y, 6) with the matrix P which we have
already defined. A set of sufficient statistics is minimal sufficient when
K(Y, YO) being independent of parameters implies 5. = 8; where the s;

are a proposed set of minimal sufficient statistics and 8, are obtained
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from -Ig(YO, f) in the same manner as s, were obtained from ¥ g(Y, 6).

We can write K(Y, 'YO) = exp -Z—I(q - qo) with q defined above and 9 ’

the same as g except 5 (i=1 ..., 7) to be replaced by 510 (i=1,
2y « . .5 T).
-1 7 .
Let us write K(Y, YO) =exp -2 X v, u, where v, i=1...,717
. i=l
. - . 2
are defined below and u; 78, = 8. (i=2, ..., 7 and up = bkm(sl—p.)

2
= bkm(slo - B
g(Y, 6) may be written in the form
1 k
g(Y, 8) = P(8)Q(Y)exp| - 3 .Zlvi(e )ui(Y)]
i=
A necessary and sufficient condition for the set of sufficient statistics
: ui(Y) to be minimal for g(Y, 0) is that there exist no non-zero con-
stants App @y - - s A,C such that -
QV) ' Z aivi(e) = c.
i=1

Thus it is enough to prove that for the following eight functions,

2 2 2 2,-1
v, S (o™ + m‘ko‘1 + mro, + mo‘3)
2 2 2,-1
v, = (o + mkcrl + mo, )
v, = [o‘2 + mko? + mk"l(r - )\,)0‘2 + mcrz‘]dh1
3 1 2 3771
(VI)
w2 -1 2 21 .-1
Vg = [e7 + Ak mto'2+mo-3]d1
_ 2.~1
Vg = nZ(J'Zd1
. 2 2,~1
Ve = (o + m0'3)



Vo= @
Vg = Vi -

(V) is not true for any ayp By - . .y Bg a.nd ¢ except when all vanish.
In (VI) it is clear that p appears only in Vg since Vir Vor o o oy Vg

are homogeneous functions of o, Tl T and o3 of degrees -2, the con-
stant ¢ can only be zero.

Effect the linear transformation:

0'2 + mko’% + mofz

y = 3

2 2 2. 2
zZ =q +mko'1+mro'2+ma-3
w=mo'2'fl-o'2

3 .

The functions in (6) become:

xyw[ zw + —r)‘—'{(— (z - y)My - w)]D"

<
i

~xzw| zw + —f—{; (z - y)y - w)]Dm1

<
i

- -1
3 xyzw[y = rrkk (z - y)]D

<
I

At ~1
vy = xyzw[w + - (z - y)]D
V. = -ZXYZW[ z_:....y]D-l
5 ' mr
At -1
Ve = xyz[zw + e (z - yWy - w)]D

1

<
!

7 yzw[ zw + -%E— (z - yy = w)]D"~



where D = xyzw|[zw + —:—f—%— (z = v}y - w)].
2 2 . 2 2
Observe that the term xy w appears only in V|s Xz W appears
. 2 2 . 2.2 .
only in Vo Xy z appears only in Vs and yz w  appears only in Vo
This implies Vs Vo v'6, v, are mutually linearly independent of V3
Vgr Vg Now observe that after removing the common factor xyzw in
Vs Vo and o these are also linearly independent, thereby proving

that (V) is not true unless app @y - - -, 2 and ¢ vanish. This con~=

7
dition then implies the set of sufficient statistics defined in (IV) is
minimal.

Summarizing the results of this chapter will be accomplished by

means of the following theorems and corollaries.

Theorem L If an Eisenhart Model II is assumed in a balanced incom-

plete block design with interaction, then there are seven statistics

in a minimal set of sufficient statistics if b > t and there are six

statistics in a minimal set if b = t.

Corpllary 1.1. The explicit form of the statistics in a minimal set

are as follows:

1. 8] T V.-
= I ! 1 : s i —
2. s, = (km) Y X1P21P21X1Y if b » t, not defined if b = t.
= -1 1 1 1
3. S5 = (km) Y X1P22P22X1Y
4. s, = wlr-nYlyx P, piay
’ 4 17227 3
5. 8. = — YIAP,PIA'Y
) 5 Atm 373
6. s, = m"Y'FP,PIF'Y

23
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—_ 1 1
7. 8, = Y P5P5

- 2 ~1
1 I7 - l ' = - 1t -
where PZlN NPZl ¢b-—t' P3NN P3 m (r }\)It_l, m P4F FP4

I keb-t41”

Corollary 1. 2. The expectations of each of the statistics as defined

in Corollary 1.1 are’as follows:

L E(s) =g

2. E(sz) =(b - t)(o‘2 + mko‘l2 + mo‘g)

3. E(sg) =(t - Do’ + mkai + mkHz = Nol + mo?]
4. E(sy) = (t - DK %m(r - Mtes

5. B(sg) = (¢ - (o’ + Ak 'mtc?

2
2+ mcr3) |

6. E(sy) = (bk = b - t + 1)(c” + mo3)

7. E(s,) = bk(m - L)o*

For the proof of the corollary see Appendix III.

Corollary 1. 3. The distribution of each of the statistics of the minimal

set as defined in Corollary 1.1 is as follows:

L s~ N[ s (bkm)—l(o'z + mko'% + mré‘% + mo'g)]

2. sy~ (004 mke? + mo2) x]i-t if b >t; not defined if b = t,
}

3. sy~ [q‘z + mkv? + mk-l(ru)\)o*g + rno'g] ‘X.tz__1

4 sg~ [of 4 mted + mel] X7
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2 2. 2
5. s~ [o"+ mos] Xy p i

6 S, ~ O’Z xz
© 87 bk(m-1)

7. Sy is distributed as a linear combination of independent
chi-square variables that is 547 Epi X(Zl) where p; are the
non-zero characteristic roots of 2"1(A4 + A"L)ZZ where

1 =1

N e t 1Al
A4—k m XlNP3P3A.

The proof of this corollary appears in Appendix III.

Corollary 1. 4. The statistics s, (i=1, 2, . . ., 7), are pairwise

indepe__ndent excgpt for pairs (s3, s.4), (s3, ss), and (s4, SS)'

The proof of this corollary is given in Appendix V.

Corollary 1.5. The seven statistics as defined in Corollary 1.1 may

be computed from the following Analysis of Variance Table

(Table III).

See Appendix V for proof.



Table III

Analysis of Variance, Balanced Incomplete Block

26

Source

Statistic

Mean

Blocks (ignoring treatments)

error component

Block~interaction=error
component

Treatment=interaction Error
Component

Interaction~Error Component

Intra-block Error

. ~1, ~1
withs, =m "k ZT.Q.
4 JQJ

Block~treatment-interaction=

!

bkmy.z. .= b.kms?

(k= (B, - B.)%

[km3(r-X)]-1E(Tj-T.)Z =5,
By subtraction (SZ)
k 2
(Xem)ZQj = %5
bk b
m-l = qi-k‘lz B%- -)%z Q4
n=l" i=1 * J

By subtraction (s 7)

The notation used here is explained in Appendices.IIl and V.



CHAPTER IV

GROUP DIVISIBLE, PARTIALLY BALANCED INCOMPLETE
BLOCK DESIGNS (WITH TWO ASSOCIATE CLASSES)
In this chapter we shall be interested in finding sets of minimal suf«
ficient statistics for each of the three types of group divisible designs
when there is a component of variance corresponding to the block-treat=

ment interaction and an Eisenhart Mcedel II is assumed.

Definitions:

An incomplete block design is said to be partially balanced with two
associate classes if:
(1) there are b blocks and each with k experimental units,
2) there are t » k treatments, each of which satisfies the following:
g
a) A treatrment cannot appear more than once in a block;
pp
k) Each treatment appears exactly r times in all blocks:
9% ¥
¢} Each treatment has exactly n. i=th associates;
B
(dj Two treatments which are i-th associates occur together
in exacily ?\i blocks;
(3} any pair of treatments satisfy the following:
(a) The pair are either first or second assocciates;
(b) Any pair of treatments which are i-th associates, the num-
ber of treatments common to the j-th associate of the first and the k-th

associate of the second is P}k and is independent of the pair of treatments.

27
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From the above definitions, the following relationships hold:

(i) bk =rt

(ii) n1+nz=t-1

(iii) ;117\1 + nz)\2 =rk -« r.
A group divisible, partially balanced incomplete block design is defined
és a design in which the treatments are arranged such that there are g
groups of n treatments each, such that any two treatments of the same
gr.oup occur in exactly )\1 blocks, and any two treatments which are in
different_groups occur together in exactly A blocks.

For the group divisible designs, the fqllo‘wing relationships hold:

(i) t=gn

(ii) n =n - 1

(iii) n, = n(g ~.1)

(iv) 2 X

(v) rk = th >0

(vi) (n = 1)\ +n(g - 1))\2 =r(k~1)

They are classified into three types by Bose, Clatworthy, and
Shrikhande [2] as follows:

(i) Singular if r = >\1
(ii) Semi-Regular if vk - At = 0

(iii) Regular if r > A\, and rk - A,t > O.

1 2
We are going to discuss a case where there is block-treatment
interaction and we shall assume we have more than one observation per

cell. We shall therefore replace (2) in the definition of an incomplete

block design by (2') as follows where a cell is a group of experimental

units subjected to a particular block-treatment combination.
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(a) There are exactly m observations per cell;

(b) A treatment cannot appear more than once in different
cells in the éame block but appears m times in the same cell as
follows from (a)..

(c) Each treatment appears exactly m times in each of r different
blocks.

(d) Each .trea.tment has exactly n, i-th associates.

(e) The number of times a pair of treatments which are i-th
associates a‘.p'pear together in all blocks is m),.

In spite of the above change, all the relationships (i) to (vi) given
above are true.

We shall now discuss some of the general properties of all three
types of designs before we find a set of minimal sufficient statistics
for each.

We shall assume here the same model as in the BIB design with
the same distributional properties of the random variables. The

matrix model will be:

bkm

(1) Y = |J.J1

T XB X, X (BT) H e

bkm

where Y is distributed as the multivariate normal, mean o= pd

and covariance matrix

2 2 2 2
v - 1 1 1 .
pARS X1X10"1 + XZXZO‘Z + X3X30'3 b o'l

All the results (1) to {30) which are true for the BIB Designs will
hold here except (10), (13), (16), and (28). We shall replace (10), {13),

(16), and (28) by (10%, (13", (16'), and (28'), respectively.
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2 t
(10" NN'=m [rBO + )\1B1+ \,B ] where B, = n/ (t =0, 1, 2).
Bt is a t x t symmetric matrix,
¢ 1 if the i~-th and a -th treatments are t associates
n, =
ta 0 otherwise
i,a=1, 2, . . . ,t; t=0,1, 2. Ift =0, B0 =It:' Moreover,
t
B0+B1+ BZ—Jt.
13! <1 -1 -1 ! - -1 -1 1
(139 (Xz-m kNXl)XZ—(mrIt-m k NN
= [mrl_ - mk_l(rBO + B, + \,B))]
- .
= = [r(k - 1)B0 - )\lB1 - )\ZBZ]
2 g ’
(16" BtBs z pSth, where Pt is as defined previously with
£=0 )
o _ 0 ifs#t
Pgt =

ns=qt-1fs=t

In defining pgt we are making use of the convention that a treat-

ment will be considered its own 0=th associate.

(28" If
I ! L -1 15 @ . k k(x-l 2) 1 l
F ::X3-m k™™ X *(—-m)q-—*(x AA) X t(r’k-r’-l-*)\.l [X A][B +B1]
then F‘J]l:’km ¢, F 1 =g, F'X2 = ¢, and mth 'F is an idempotent

matrix of rank bk~b-t+l.
The joint density of the elements of Y is given by

_bkm
g(Y, 0) =(2m) 2 IZI-I/Z exP[f—'Z-l(Y—ﬁ) 'Z—I(Y-ﬁ)]
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Before we define the operationd on g(Y, 0), it may be stated here that
the elements of the vector Y can be ordered in such a way that the
matrix NN' assumes the form as given by {10') and hence we can find

the characteristic roots of NN [1] and they are shown in Table IV.

Table IV

Characteristic Roots of NN! in GD-PBIB Designs

Multiplicities Roots
1 ' erk
2 :
g-1 - m(rk = Xyt)
2 ‘
g(n - 1) m“(r-)))

Imposing the restrictions on the roots for each of the three types

of designs we have the results as given in Table V.

Table V

Characteristic Roots of NN' for S, SR and R-GD-PBIB Designs

Multiplicities Roots Roots -Roots
1 m'Zrk mz’rkz mzrk
2 .\ 2
g=-1 m (rk - A,t) 0 m (rk - th)
g{n - 1) 0 mz(r - )\,1) mz(r ~ N\

. Since NN'!is symmetric there exists an orthogonal matrix Q, such
that QéNN'Q?’ = D3 where D3 is diagonal with the characteristic roots

of NN'! displayed on the main diagonal. Partition Q, into (PSO’ P.,., P

32)

31
where P30, P.31,. and P32 are of dimension t x 1, t x (g-1}, and t x g(n~1)

respectively. We then have,
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m rk o} ¢
o mirkaor ¢ ([8)
¢ ¢ ¢
- - [ 2 -
P:',’0 : m rk ¢ ¢
PL | NN{P,q, Py, Pj,) = ﬁ ¢ ¢ ¢ i(S.R)V
P%Z ' ' ¢ ¢ mz(r-)\l)lg(n_.l)
mzrk $ ¢ |
¢ mz(rk-)\zt)lg_l ¢ (R)
¢ R CRN

v

Since the non=zerp characteristic roots of N'N are equal to the
non-zero characteristic of NN' and ar e of the same multiplicity, there

.exists an orthogonal matrix QZ such that

[ -
mzrk ¢ ¢
Q;N'NQ, = ¢ b et ¢
¢ ¢ D}

-

where

c, = multiplicity of zero characteristic roots of NN

0
C.{:b-t

%k

3

excluding the root mzrk.

D, = Diagonal matrix of the non~zerc characteristic roots of NN!

Partition Q.2 into (PZO’ PZ].’ QZZ) wherz the dimensions of PZO’ PZl’
and Q are bxl, bxc,+ct, and bx Z c., respectively, where c.
22 ' 0 "1 i=] 1 i
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denotes the multiplicity of the i~th non~zero characteristic roots of
NN !'other than rn'z‘rk. We may write,

r ? [~ | 7
Poo | Tk ¢ ®
1 1 =

, ’
Q| | & 9 D}
’ -

= 4 "

Then for,.

(i) S-GD-PBIB designs Q'22 = P’22 will be of dimension {g~l)x b; -

(ii) SR-GD-PBIB designs Qiz = P'23 will be of dimension g(n=1) x b;

(iii) R-GD-PBIB designs sz = (PZZ" P23).
Now we shall exhibit the relations among the partitions of Q3 and Q2
as given in Lemma 2. Then for

() $-GD-PBIB designs P}, = [m®(rk - th)]-l/zpélN.

(ii) SR-GD-PBIB designs P}, = [m?(r - xl)]—l/zpézN’

(iii) R-GD~PBIB designs, the above two realtionships hold.

We shall now consider the matrix A'A. The orthogonal matrix

which diagonalizes NN' also diagonalizes A'A for

QLAIAQ, = QLX) - rn‘lk‘ll\rxll][xZ - m‘lk‘lxlN']Q3

1

= Qé[rml -m~ k-lNN']Q3

1, -1

kD

mrI-m 3

The characteristic roots of A'A are then as given in Table VI.
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Table VI

Characteristic Roots of A'A for GD-PBIB Designs

Multiplicities | Roots
1 . ' 0
-1 mk I\t
g | v 2
-1
g(n - 1) mk [)\Zt +a(\ = 25)]

By making use of restrictions for each of the three types of

GD-PBIB designs we have the characteristic roots of A'A in Table VII.

Table VII

Characteristic Roots of AJA for S, SR, and R-GD-PBIB Designs

Multiplicities Roots (S) Roots (SR) Roots (R)
1 0 0 0
| -1 -1
g -1 mk At mr mk )‘Zt
g'(n - 1) mr - mv mv

Consider now a bkm x bkm orthogonal matrix P! defined in the

following way:

P! =

where Rl’ RZ’ R3, and R, are defined as follows and Pé be constructed

4

in the same manner as the matrix P of Lemma 1.



Rl

[\ SR

w
W~

i

1]

(bkm) Y 25}

e

=1/2
(i)"Y P X

‘1/2 !
(mk) P'szl

g

. =1/2 .
(mk) Pllel

~1/2

{ |(mk) 7P,

g

()™ 2y )

7"'1/2' D'd

(mk) 2251

_y=1/2 '
(mk) P, Xi

3

-

( A, tm 31

2

~1/2 ' 1
(mr) P32A

———i Zpy A

"1/2 t
(mv) PézA

b

( k )1/2
)cztm 31

"‘1//2 ] !
(mv) P32A

.

Y

K_y1/2p, a0

Pl _Al

bkm

-

-

-

-

-

—
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for S-GD-PBIB Designs

for SR-GD-PBIB Designs

for R-GD~PBIB Designs

for 5~GD~PBIB Designs

for SR-GD-PBIB Designs

for R-GD-PBIB Designs
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- m~V/2
R} = P

bk-b-t+l x bk orthogonal vectors from a bk x bk orthogonal matrix

"'LF‘ where F'is as given in (28*) and P:L is a set of

which diagonalizes m*lF 'F. Consider the operation® g(Y, 8) to be

an  ig¥,0)=(2m) 2 [ VZexp[-2"Ny-peRE PRYY-R)]

where P is an orthogonal matrix defined above.
We shall now consider each of the three type of group divisible

designs separately using the results we have derived so far in general.

Singular Group Divisible Partially Balanced Incomplete Block Designs.

In Appendix II P'¥P is shown to be of the form as given in Table
VIII.

Table VIII
ﬂal ¢ ¢ ¢ ¢ ¢ ¢
¢ U,, ¢ ¢ ¢ ¢ ¢
K ¢ Ugy Uy, ¢ $ ¢
¢ ¢ Uys Uy, ¢ ¢ ¢
¢ ¢ ¢ ¢ U, @ ¢
¢ ¢ ¢ ¢ ¢ Ugs ¢
¢ ¢ ¢ ¢ ¢ ¢ U,

o, 2 2 2 2
U11 = (o + mkcr1 + mro, + m_cr3)

2 2
U_Z -,(o‘ +rnko‘1+mur )ICO+C’
_ 1
2 -1 2 ‘
1 ¥ mk (rk“ - xzt)wz + me

2 2
U33=[o' + mko ]Ig,-l

3
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U = U a1

34 43

1

_ - 2 2, 2
Uyy = [mk Notos + mos+ o ']Iig-‘l

U55 = (mrc-g + mo‘é + 0'2')1

g(n-1)
2

2
u (" + mog)ly, e

i

66

2

U7 =9 Tpk(m-1)

We must now determine the form of P"Zle. To evaluate this
we note thatv(P'ZP)m1 = P'Z-IP_. The form of P'EalP is given in
Table IX.

Form of P'Z-lP for Singular GD-PBIB Designs:

Table IX
W, ¢ ¢ ¢ ¢ ¢ ¢
¢ W, ¢ ¢ ¢ ¢ ¢
¢ ¢ W, W, b ¢ ¢
¢ o Wu, W, ¢ ¢ ¢
¢ ¢ ¢ ¢ Wee o ¢ ¢
¢ ¢ ¢ ¢ ¢ W o ¢
¢ ¢ ¢ ¢ ¢ ¢ W,
where

Wu = (o'2 + mkq-i + mro‘i + mag)-l

W, = (o’2 + mko‘? + mtr;)-llco_l_cl,

W, = dl‘l (cr2 + mk"lkzto-g + mtrg) ~11g__1



: = = ed i m%k 1/2.2
W34—W43--—dl[ (k-—)\t)\t] Tyl

W = d;l [o‘z + mko‘? + m_k—l(rk - )\Zt)m‘i + merz

44 311

2 2 2,-1
Wy = (mre, tmogt o ) Ig(n—l)

| 2 2, -1
Wee = (o7 +mag) "Ly 4 o

. 4 2 2 2 2 2 2 2 2 2 2. 22
d1-o~ + mko 0'1+mrcr 0'z+2mo‘ E3+m kt019'2+m ko‘l 3

2 g

2

+ m ro‘zcrz 2.4
, 23

+ m 0'3.

Evaluating PYY - 1) we have

;
(k) Yy .. =)

(k)Y 2p LXIY

(ken) ™Y/ 2p P} X!V

k

PYY - = | (i) R yATY

(rm) /ZPézA‘Y

mﬁl/ZP"LF Yy

PlY

L5 .

Performing the multiplication (Y -~u)'PP 'Z-]’PP'(Y-E) = q {say), we

have



q = (bkm)(cr2 + mko'? + mro‘g + mo‘g)hl(yf. oo - p,)z

+ [km(c® + mke? + me2)] 'YX P, PL XIY

1 1Pafa%
+ [kmd, ] [e? + mkIhted + me?]YX P, _PL_XIY
1 280t mog [ YK PP Xy
+ [m(0‘2+ mo‘z)]—lY'FP P!'F'Y + O‘-ZY'P PLY
+ moy 4"y 5F5

2
1

2

+ mk Tk - A t)es

k 2
+ (-X-zfrn)[O' + mko-.

+ [rm(mro‘2 +tme,+o)] Y AP g, PL,A'Y

o=l 2 -2 /2 2, ¢ oAl 1
- Zdl [m ™k “(rk - th))\zt]» o‘ZY X1P22P31A Y( —'———')\Ztm)
Define the eight statistics Si (i=1 2, . . . 8) as follows:
5] FY---
= =lo e ; ; ; =
s, = (km) Y X1P21P21X1Y if b > g, not defined if b = g.

- = | !
$4 = (km) lY XIPZZP'ZZXIY

— k t 1 1
sy =( "”“’“xztm)Y AP P AY

(rm) Y 'AP, P! _A'Y

8g = 32732
s, =m 'YIFP PIF'Y
6 4™ 4

_ 1 1
s, = Y'PPLY

— -2 1/2 t H 1
sg = [k “(rk - A,0]7 %Y X P,,PyAlY

+ mvg]d;ly'AP P! A'Y

These eight statistics are sufficient for the parameters p, 0‘2, cr?, 0'2,

and o‘g,

This follows from [ 7] and we shall show that these eight
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statistics form a minimal set of sufficient statistics by following the
same procedure as we had for the BIB designs.
g(Y, @) may be written in the form,
1 k
(Y, 0) = P(Q) O(Y) exp [« 5 vy(8)u,(¥))
A necessary and suffiqient condition for the set of sufficient statis=

tics ui(Y)'to be minimal for g(Y, 6) is that there exist no non-zero con=-

stants al, 3’2’ <o 2 such that
k

(Iv) Zav(d) = c.
i=l t1 :

Thus it is enough to prove that for the following nine functions:

= [o'2 + mkcri-lj mrg’ g] -1

2+. mag

2 2 2,1
VZ—[O" + mko ] + ma'3]

2 2 -1 2 2, -1
vy = [¢7 + mko| + mk (rk - xzt)cz +‘mo'3]_d1
2 -1, 2 2. -1
vy = [¢” + mk Npto + mcr3]d1
- 2.-1
(V) vy = -205d]
L2 2.-1
Vg = (o™ + mo‘3)
Vg =
_ 2 2. 2,-1
vg = [mrwz-bmc3+ o]
Vg = Vi -



(IV) is not true for any Ay 2y o+
In (V) it is clear that p appears only in v

are homogeneous functions of o, Tl T and ¢

stant c can only be zero.

Effect the linear transform

2
X=0

v o'2 + mktr? + ma'g

z = o'2 + ka'Z + mrvg + mo'2

1

2 2

-
mr0'2+ mo‘3 + 0o

e
i}

w:o-2+mo-§.

The functions in (V) become:

At

2 =1
vy = xyuw[zw + —z (z - y)y - W) |D

At
v,y = xzuw| zw +
7 (rk - A\, t)
V3 = XYZ'U.WEY" _——ITE—-_(Z
At
v, = xyzuw|w+ 2 (z -]
4 T VEETT R y
- z=-Y1p-!
vg = 2xyzuw( —= 1D

Aot

=]
v = xymlzw+ —— (z - y)ly - w)]D

Aot

T2 =1
vy = yzuwl zw + 5 (z - yNy - w)]D

A Zt'

-1
vg = xyzw| zw + " (z - yNy - w)}]D

ation,

3

£ (z - y)ly - w)]p™

-yp~

\Dul

9"
3

Since Vis V \'%

20 s

of degree -2, the con~

41

. ag, and c except when all vanish.

8
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_ At
where D = xyzuw|zw + —ITZE-(Z - y)iy - w)].

Observe that the term xyzuwz appears only in vy xzzuwz appears
4 2 2 . T :
only in Vo Xy z W appears only in Vg YZ UwW  appears only in Vs and

xyzzwz appears only in Vg This implies Vir Vi Vgo Vo and v, are

8
mutually linearly independent of Vs Vg and Vg Now observe that

after removing the common factor xyzuw in V3s V4 and vg, these are

59
also linearly independent, thereby proving that (IV) is not true unless
Uy 2o and ¢ vanish. This condition then implies the set
of sufficient statistics defined in (IV) are minimal.

Summarizing the results for singular GD-PBIB Designs, we have

the following theorem and coropllaries:

Theorem 2: If an Eisenhart Model Il is assumed in a singular, group

divisible, partially balanced incomplete block design with two

associate classes, then there are ei_ght statistics in a minimal

set of sufficient statistics if b >§ and seven statistics if b = g-

Corollary 2.1. The explicit form of a set of minimal sufficient statistics

for a singular GD-PBIB design are as follows:

8 =Y---

. =1 [} 1 1 $ SR : :
§, = {mk) Y XIPZIPZ,].XIY if b> g and is not defined if b = g.

-l 3 -1
§q = (mk) YIXIP_ZZP'ZZX{Y or [m7k{rk - kzt)] Y‘XlN'PﬂPélNX{Y
B, o ca) WP, Py
4 A tm 33
. -1 1 1 1
Sg = {ra) X AP ,P3,AY
e -l 1 (Rl
5, =m g & FP4P4F >



s7=Y'P

sg = [k'z(‘rk - th)]l/ZY'X P,P'AY or k

43

t
5P5Y

Laly X N'P_ PLA'Y

1" 22" 31 31" 31

Corollary 2. 2. The distributions of eight statistics as given in Corol~

lary 2.1 are as follows:

N[ s (bkm)“l(o‘2 + mko‘? + mrcrZ +<~.u‘2)]

2

[.0‘2 + mka? + mcr_,z)] x,s_g if b > g and is not defined if b = g.

2., .2 2 -1 2. 2
[o +1rnk0'1+1’Jr10'3+1'1f1k ,(rk - )\Zt)ﬂ'z] xg-l

2 -1 2 2
[¢” + mk xzwz] X g-1

2 2, 2
[ + mro‘z] xg(n-—l)

2 2. 2
[¢7 + mo3] Xpppotsr

[d'z] Xﬁk‘m-l)

. 2 ' , ..
Ziai X'(l) where a.i are non=zero characteristic roots of

s-']'[A.7 + A,’Y]Z where A = m" k™

7 X\N'Py/PyAL

For proof of this corollary, see Appendix III.

Corollary 2. 3. The statistics as defined in Corollary 2.1 are pairwise

independent except for the pairs (53, 34), (s3, 38), and (54, 38).

For proof of this corollary, see Appendix IV.

Corollary 2.4. The expectations of the eight statistics as defined in

Corollary 2.1 are as follows:

E(Sl) = p,l



E(s,) = (b - g)[a‘z + mko*? +§-rno‘§']

E(ss) = (g - 1)[0‘2 + mke?

2 -
E(s,) = (g - D[s” + mk
E(sg) = g(n - U[e

E(sg) = (bk -b -t + 1)[0'2+ meo

2

E(s) = bk(m- l)a*

E(SS) =m

For proof of this corollary see Appendix III.

2

K" Hg - 1(rk = A0 0805

1
1 2
XZto‘Z]

2
+ mro‘z]

Semi-Regular GD-PBIB Designs.

2

3

]

+ mo‘§ + mk‘l(rk - Ay t)e

2
21

44

In Appendix II P'YP is shown to be of the form as given in Table X.

where

L2 2 2
U11 = (o + mkcrl + mro

o © L © € ©

Table X

¢ ¢
$ $
Uszs ¢

¢ Uy
Uss ¢
$
$ $

3+ me))

77J
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2. 2 2
8) 2~(u‘ +mk<71+rrm-3)f[C

1
2 0+c1
_r. 2 2 =1 2 2
U,y = [+ mke | + mk (r - xl)cz + m€3]Ig(n-1)
Uap = Up, = mk~ [ (r = n)v] Y %21
35 53 1 2 g(n=1)
- 2 2
U44 = (o + mro, + m0'3)Ig_1
_ 2 2, 2
U55 = (mvo-z + mo + 0 )Ig(n-l)
_ .2 2
Uge = (o7 + mogllpy potat
U 2

77 = % Thk(m-1)

In order to determine P"ﬁulp', we shall use the relation (1?"2P)m1 =

P% 'P. The form of P'E P is given in Table XI.

Table X1
W1 ¢ ¢ ¢ ¢ ¢ ¢
¢ W, ¢ ¢ ¢ ¢ ¢
¢ ¢ W33 ¢ Wog ¢ ¢
¢ ¢ ¢ Waa ¢ ¢ ¢
¢ ¢ W, ¢ Wee ¢ ¢
¢ ¢ ¢ ¢ ¢ Wee ¢
¢ ¢ ¢ ¢ ¢ ¢ Woq
where
Wy, o= [0‘2 + mko‘? + mra‘g *+ m0’§]~1

_r. 2 2 2,~1
W,, = [ + mke) + mo ] Ico+c1‘



= 2 2, 24.~1.
Wag = [mvog megt oildy Lot

W5 = Why = <l - Y el

W44 = [o‘z + mrvryg + mo‘g] -1Ig-1

W55 = [o"Z + mke’? + mk-l(r - xl)oé + mg-g]lg(n-i)d;l

Wee = [o% 4 moll

W7 =0 Ty

dz = 0'4 + mko‘zo’i + rnrcrzcrg + chrzcrg + mz(rk -1+ xl)u—?‘i@;:
‘+ mzko‘?tfg + mzro—go'g + mZO"; .

We shall now ascertain the form PYY - |:). This is equal to:
b

(bkm)"l/z('y. ce =)

"1/2 1 1
(km) P 21X1 Y

"1/2. [ t
{km) P23X1Y

PYY - ) = (mr)“l/nglA'Y

~1/2
{mv) P’sZA vy

m_l/ ’p IFYY

1
P5Y )

Performing the multiplication we h_‘;ave for (Y-p)PP 'Zf"lPP Y ~1) = q,

where



“ - :
3’

2
q= (bkm)(rrz + mk.cr'; + mrcrg + mol (y... = i)

. 2 2 2y1-1 ] 1 t
b [km{s” + mko‘l + ma;r3)] Y X1P21P21X1Y

+ mgg]Y'X P_.P!. X}Y

-1 2 2
+ [kmd,] "[c” + mve 1P23P 53X}

2

2 2y1=154 [} ¥ ""2 ! 1
+ [m{s" + mcy)] Y'FPP,F'Y + ¢ "Y'P.PY

2 2 2,110, .
+ [mr(e” + mro); + meg)] Y'AP,PLAY

Yr - x1)¢§'+ mcg]Y*AP P! A'Y

-1l 2 2 -
+[mvd2] [o + mke | + mk 32PL

Lad L 1
~2a31 K" %x - )]“/Zagy'x P_.PLA'Y

1 1F23F23
Define the eight statistics s, = 1, 2, 3, . . . , 8) as follows:
8] TV
s, = (km) 'Y IX P 2P L XY
s, = (km)"'y X P, Pl XIY
s, = (mr)™y ‘AP, Py AY
(1Y)
s, = {mv)"Y 'AP,,P1,A'Y
s¢ = m-lY'FP4P£'LF vy
54 = Y'PSPéY

5 = [k 2 - xl)l/z]wx P P! _A'Y

17 23" 32

47
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These eight statistics are sufficient for the parameters p, 0‘2,

0'?, o'g, o-g. This follows from [7 ], and we shali show that these eight

statistics form a minimal set of sufficient statistics by following the
same procedure as we had for the BIB designs.
g(Y, #) may be written in the form
1 k
(IV?) g(Y, 0) = P(6)Q(Y) exp[~ > iZ!flvi(e)ui(Y)]
A necessary and sufficient condition for the set of sufficient statis~

tics ui(Y) to be minimal for g(Y, #) is that there exists no non-zero

constants al, a cy s C suchvthatv

2’
k
Z a v(6.)=c
=1 P V7

Thus it is enough to prove that for the following nine functions:

v, = [0-2 + mko*? + mro-g + rncrg]-l
v, = [0-2 + mko-i + mo’g]’l
V4 [0-2 + mvgr; + mu.g]dgl
(V1) vy = =202 45"
Ve = (cr2 + ma-g)"l
Vo = 0'_2
Vg = (9-2 + mrcr; + rng-g)‘l

Vg = ViH
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(IV!) is not true for any app By - - -y Bgy and ¢ except when all vanish.
In (V) it is clear that u appears only in Vg Since Vis Vor -es Vg

are homogeneous functions of o, Tp T and o3 of degree -2, the con-

stant ¢ can only be zero.

Effect the linear transformation,

2 2 2
o + ka'1 + m0'3

<
1l

N
1l

2 2 2 2
o + ka'1 + mr0'2 + mO'3

2

u:mr0‘2+m0‘§+0'

2
T W = 0'Z + mO'Z
3

The functions in (V') become:

v, = (xyuw)[zw + ¥ (5= y)(y = w)]D"L

v, = (xzuw)[ zw + -:_l(z - y)y = w)]D-‘1

(r —')\1) -1
vy = Gyzuw)[y - (2 - Y)]D
-1
vy = xyzuw|w + %(z -y)]D
v, = =2xyzuw| 2l ]D"1
5 y mr

\4 ~1

Vg = xyzul zw + =z =¥y - w)]D

<-
if

7 = yzuw[zw + %(z - y)y - W_]D“1

"

xyzwlzw + ¥ (z « y)y - w)]D™



where
- A\
D " = xyzuw|[zw + E (z - yNy = w)]
By following the process exactly similar to that for S-GD~-PBIB
designs we can conclude the set of sufficient statistics defined in (IV?)
are minimal. Hence from the above discussions we have the following

theorems and corollaries.

Theorem 3. In a semi-regular group divisible, partially balanced in=

complete block design with two associate classes there are eight

statistics in a minimal set of sufficient statistics if b> t = g + 1

and seven statistics in a minimal setif b=t ~ g + 1.

- Corollary 3.1. The explicit form of the statistics in a minimal set of

sufficient statistics in a SR-GD=~PBIB design are as follows:

S TY...

- =l 4 1 3 L . : ; S
5, = (mk) Y X1P21P21X1Y if b> t=g+l; not defined if b = t-g+l
s :(mk)-lY'XP P! . XY or [mzk(r— X)]-IY'XP P! NX}Y

3 17 237 2371 | 17327 32771

- =l ! 1
54 = {mr) Y AP31P31A Y

- -1y t t
Sg ® (mv) 7Y AP3ZP32A Y
s, = (m)"lY'FP P!F'Y

6 4" 4

=Y 1
54 Y P5P5Y

= 2, -2 1/2’ 1 1 v = =Ly 1 t 1
sg = [m™k “(r - xl)] Y'X P, PLANY =k YXN'P,,PLA'Y



Corollary 3. 2. The distribution of each of the statistics as given in

Corollary 3.1 1is as follows:

s, ~ N[u, (bkm)"l(o-2 + mko-i + mro-g + mo-g)]

1

2 2 2 2

5, (™ + mko‘1 + m0’3) X(b-t+g-1)
2 2 -1 2 2 2

55 ~ [¢” + mko | + mk (r - Mo + mo ] X g(n-1)
2 2 2

Sy~ [o” + mo‘z] X (g-1)

2 2 2
S5~ [c” + mve, ] X g(n-1)

S, [o’2+mo—2]x2
6 30 X (bk-b-t+1)

2 2
X [bk(m-1)]

S, v a

S, ~ Zai X(Zl) where the a; are the non=zero characteristic

~1 ! =l 1 1 AT
roots of 27 (A, + A7)2 where A, =k "X N'P,,PL AY,

For proof of this corollary, see Appendix III.

Corollary 3. 3. The eight statistics as given in Corollary 3.1 are

pairwise independent except for the pairs (s3, 55), (s3, 58), and

(553 58)-
For proof of this corollary, see Appendix IV.

Cor'ollary 3.4. The expectations of the eight statistics as given in

Corollary 3.1 are as follows:

(b-t+g- 1)(0’2 + mko—i + mo‘%)k

51



E(S3)_= g{n ~ 1)[0’2 + mko‘1 + mk—l(r - )\1)0—2 + me
E(s,) = (g - D[o® + mro’
E(sg) = g(n - D[ + mve?

E(sg) = (o + mo2][bk = b -t +1]

2

21

2]

E(s,) = o [ bk(m = 1)]

E(sg) = g(n - Dm>(r - \)(rk - r + M)k %o

-2 2
2

For proof of this corollary, see Appendix III.

Regular GD-PBIB Designs,

In order to derive the elements of P'¥P, we shall make use of

the results derived for S and SR-GD-PBIB designs.

the form as given in Table XII.

where

Table XII
¢ ¢ ¢ ¢
S S S

Uss ¢ Uszs @
¢ Uy 0 Uy

Uss ¢ Ugs @
¢ Ugy ¢ Ug
" 6 6 %
¢ ¢ ¢ ¢

2
2]

P'YP will be of

e © © € © ©

S © e e © 9 ©
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2 2 2 2
Ull = (o +mkcr1+mro'2+m0'3)

2
1 31yt

U22 = (0'2 + mko‘2 + mo
2

. 2
Uy, = [o” + mke 'y

-1 2 2
+ mk (rk - \t)o, + n‘w'3]1g_1'
U,.=U__ = mkql[(rk - A t)N t]l/zo'zl
36 © 53 7 ™ 2 2 g-1

+ ch]I

_ 2 -1 2 2
Uyy = [mkur1 + mk (r - \)o; + moy g(n-1)

-

1/2 1/2 2
U46=U64=mk_/ [(r-xl)v]/ I

72 g(n~1)
- -1, . 2 2, 2
Ugg = [mk "Nto, + mog+o ]Ig_1
— 2 2, 2
Ugg = [mycz +mo,to ]Ig(n-l)

2, 2
Ugg = Lo+ mogllyy hotn

2

Ugg =9 Ihk(m - 1)

The form of P'E-IP is given in Table XIII.

Table XIII
- -
L ¢ ¢ ¢ ¢ ¢ ¢
6 W, ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢ W, 0 Wi b ¢ ¢
¢ ¢ & Wy o 6 W, 9 ¢
¢ ¢ Wiy b W o 9 ¢ ¢
¢ ¢ & We, 6 W, 9 ¢
¢ ¢ ¢ ¢ ¢ ¢ Woo b
K ¢ 6 9 ¢ ¢ o W




54

2 2 2 2,1
W11 = (e + mkcr1 + mro—a + mcr3)
.2 2 2,-1
W22 = (¢ + mkcr1 + mo—3) Ib-t

W33 = [mkulxztcrg + mcrg‘ + crz]d'l"]'Ig__1

w35:.= Wy, = -mk-l[v(rk - xzt)xzt]l/zdflqilg_l

W,y = [mvo—g + ‘rncrg + o'z]dg.lllg(n_l)

Wy = Wey == [k 200 - 1Y 26dn

W, = [.0'2 + inkcr;i + mk’l(rk - xzt)wg + mo'g],d'l'llg_l
Wee = [mko—? + mk-]'(r - kl)o'g-i- mo—g + Wz]dzllg(n-l)
Wae = [o%+ m‘rg] —1Ibk-b-t+1

W.. =o21

88 bk({m-1)

c],1 and d2 are the same as those given in Singular and Semi-Régular
GD-PBIB Designs, respectively.

Evaluating PYY - p), we have
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- a——

(bleen) Y 2y =)

"‘1/2 1 et
(km) P21X1Y

"'1/2 1 1
(km) PZZX‘1Y

) (km)"l/ 21:“23}(1'3(
PYY -~ ) = |

1200 4
(xztm) PuA'Y

"‘1/2' 1 1
(mv) P32A Y

m~Y/ 2p LF 'Y

1
P 5Y

e ~

Performing the multiplication (Y -p)'PP 'Z_lPP"(Y-ﬁ) = q (say),

we have

2 2 2,-1 2

q= (bkm)(o‘z + mkcr1 + mro, + m0'3) (yoroo =

+ [km(cr'z' + mkcr2

Lt mcrg)]-lY X, P, . P! XY

17 21" 2171

-1 2, -1 2 2191 ' vt
+ [kmd, ] "[¢” + mk k2t0"2+m0'3]Y X P,,PyXY

-1, =l 2 20 274, Cows
+ d, " (km) [mve, + moy+ 7)Y X P,3P %Y

2 2, . -1 ' -2, .
+ [m(c + mo )] Y'FP4PL'LFY+0' Y'P PLY

k 2 2 -1 N 2 LLya-lgy U Al
+ T\Efr'ﬁ[" + mko | + mk (rk - )\Z_t)0'2+mu3]d1YAP3lP3lA Y

-l 2,2 -1 2 210 -
+ [mvd,] "[¢” + mke| + mk (r = \)o, + meg]YIAP PLANY

-lp 2, -2 /2, 2, v oA 2, \~1/2
- 2d " [m%k "(rk = M0At] "o YK P, 4P A N (m kv)



=l =1/2 /2, 2 -
-2, [ mk / [(r - A)v] / ]GZY'X1P23P'32A'Y(mZL_w) /2

Define the ten statistics as follows:

8] T Ve-.
-1 .
5, = (km) Y'X1P21P51XiY (not defined for b =t)
= -1 1 ! 1
55 = (km) YK P, PLLXIY
- ~1 1 ' 1
sy = (km) YK P, P XY
s. = —= _ YIAP. P! A'Y
55 Xim 31" 31
(I11')
' -1
¢ = (mv) Y'AP32P§2A'Y
- -1 1!
§, =M Y'FP4P4F Y
=Y! !
s8 Y P5P5Y

-2 1/2
g = [k “(rk - )\zt)] / Y'XlPZZP'31A1Y

- -2 1/2 1 ] t
s10 = [k (r - )\1)] Y X1P23P32A Y

1
o—g, o'g. ‘This follows from [ 7], and we shall show that these ten sta~-

These ten statistics are:sufficient for the parameters P 6‘2, G

tistics form a minimal set of sufficient statistics by following the same
procedure as we had for the BIB designs.

g(Y, 6) may be written in the form

k
(v g(Y, 0) = P(6)Q(Y) exp[-2"" 2 v,(6)u,(¥)]
1=

1



A necessary and sufficient condition for the set of sufficient sta=
tistics ui(Y) to be minimal for g(Y, f) is that there exist no non-zero
constants ap az, ey a.k. ¢ such t}fat

k
Z a,v.(6.)=c
i=1 11 1

Thus it is enough to prove that for the following eleven functions,

+ m(rz]-l

L2 2 2
Vi =[o + mke| + mro, 3

2 2 2. -1
5 = [+ mke] + moy]

v

2 -1, 2 2. -1
vy = [o” + mk Nptoy + mogldy

2 2 2, -1
vy=lo +mvo'2+m0'3]d2

2.1
vg = -Zo-Zdl

2 -l
Ve = _-.Z(J'Zdz

2 2,-1

Vo = (™ + mo-3)

= 2
Vg = 0O
2 2, -, .2 2, -1
Vg = [¢” + mkoy + mk ™ \)os + meg]d,

_r.2 2 -1 2 2, -1
vig = [ + mko | + mk™(rk - xzt)wz + mo;]d;
Vi1 T Nt
(IV') is not true for any app @5 - - - s 3y and c except when all vanish.

In (V') it is clear that p appears bnly in vire Since Vis Vo
are homogeneous functions of o, Tir 0o and o, of degree ~2, the con=~

stant ¢ can only be zero.

“ V10



The

Effect the linear transformation,

y = 0'2 + ‘rnkg'2
z = 0'2 + ka‘Z
u s mko-g + mo‘Z

w = 0‘2+ _m0'2

+ ma'z

1 3

2 .. 2
1 + mm'2 + .mo‘3

2
3+0'

3

functions in (V'') become:

& -
v, = xzuw[ zw + X (z - yy - w)]D

vy = xyzuw[ w + <% (z - y)]D{

v

9

vig = xyzuwly = —p— (2 - y)1D;

H

i}

]

. b -1
v = xyuw[ zw + wx (z = y)y - w)]D

1

At

2 1.

xyzuw|[w + v(z - y)]DEl

mr

- 2xyzuw| 1

- 2xyzuw|

zZ =V 111
mr ]DZ

) -
xyzulzw + 3¢ (= = )y = WD

5 , .
yzuw[ zw + = (z = iy - w)]D

(x - ) -l
xyzuwl[y - e (z - y)]DZ

rk - A\, t 1
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where D1 and D, are the same as D defined for singular and semi-
regular GD-PBIB Designs, respectively. D in this section can take
value D, or Dz as & takes the values At or kv, respectively.

Observe that the term xyzuwz appears only in Vis xzzuwz appears

) 2,2 i 2 2 3
only in Vs XY Zu appears only in Vs and yz uw appears only in Vg
This implies Vis Vs Vo and Vg are mutually linearly independent of

Var Vg Ves Vi v9, vio Now observe that after removing the common

factor xyzuw in Vs Vo Vs Vs Voo and v, ., these are also linearly

9

independent, thereby proving that (IV') is not true unless a;y a

10

S
and ¢ vanish. This condition then implies the set of sufficient statistics

defined in (IV'"') are minimal.
Hence from the above discussions we have the following theorem
and corollaries.

Theorem 4: Under the assumption of an Eisenhart Model I in a regular

group divisible, partially balanced incomplete block design with

two associate classes, there are ten statistics in a minimal set

of sufficient statistics if b > t and nine statistics in a minimal set

if b = t.

Corollary 4.1. A set of minimal sufficient statistics for a regular,

group divisible, partially balanced incomplete block design is as

follows:

S T Y-

8, = (mk) -lY 'X1P21P'21X{Y if b> t, not defined if b = t.

s, = (mk) 'YX, P, P} X!

2 . o A \ y
P2oP 5 XY or [m%k(rk = A1) Y'X,N'P 5, Py NXIY

1 31" 31
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9

"

u

il

-
m

(mk)‘-lY'XlP P! XY or [mzk(r - Kl)]—lY'X N'P._ P!

237 2371 1

k‘ t ! 1
g Y!'AP, PLA'Y

(mv) " lyaP, P! A'Y

327 327

lg o prm:
YFP4P4FY

Y'P . P!Y

575

= [K™%(rk - xztc)]l/zY'x P, P! A'Y

o1 227 31

51 = [k~ %r - M) YX P, PLAY

1" 23" 32

327 32

Corollary 4. 2. The distributions of the ten statistics as defined in

Corollary 4.1 are as follows:

N[ (bkm) Ho? + mku'?[ + mro'g + mod)]

(624 mk"i + mo_g] X(Zb.-t) if b >t, not defined if b = ¢
[0_2 + mkcr% + mk-l(rk - }\at)ﬁg + mm‘é] X{‘g_l)

[0 + mko‘i + mk™(r - xl)crg + m0‘§] xfg(n_”]

[c'z + mk-lkzwg] X(Zg_l)

- 2 2 2
Lo 4wz I X [gn-n]

2 2, 2
[e™ + mo3] X [hibats1]

2 2
T Xpk(m-1)

Ea.i X(Zl) where a, are the non~zero charactqristic roots

1
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Iy NP P!

-1 . -
of 2 (A1+A)2whereA1—k 1 31F3

'
1 1A.

10 ~ Ebi X(Zl) where bi are the non-zero characteristic roots

-1 ! -l ! 1 t
of 27 (B, + Bl)Z.‘. where B, =k XN'P, P Al

‘For proof see Appendix IIIL.

Corbllary 4.3. The ten statistics as defined in Corollary 4.1 are

pairwise independent except for the pairs (s3, s5), (s3, s9), (54, 56),

(s4, SlO)’ (s5, 59), and (56, slo).
For proof see Appendix IV.

Corollary 4. 3. The expectations of the ten statistics as defined in

Corollary 4.1 are as follows:

E(Sl) =P
2 2 2, . e
E(SZ) =(b ~ t)(e  + mko + m0'3) if b>» t, not defined if b = ¢.
v E(s3) =(g = 1)[0~2 + mka% + mk—l(rk - kzt)oé + mog]
2 2 -1 2 2
E(s,) = g(n - o™ * mke| + mk (r - )\1)0'2 + m0'3]
_ 2 -1 2
E(s5) =(g = D" + mk )\ZtO'Z]
E(Sé) =g(n - 1)[0*2 + mvo‘%]
2 2
E(s.) = (bk =b -t + Dfec™ + me ]
2
E(SB) = bk(m - l)o¢
2, =2 20 .
E(sg) =m k )\Zt(rk - )\Zt)O' (g = 1)

2

E(s;o) = gln = Dm>(r = \)(rk = ¢ + \))k %02

For proof of this corollary see Appendix IIIL,



(1)

(5)

(6)
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APPENDIX I
To show that P'P =1, let P'P = (p;) i, j=1, . . ., 6,(BIB).

. Diagonal Terms

Py <= (1f>krn)"1/2:r%)k bl‘m(bk ) -2z, (bkm)"l(bkm) =1
— 1/ i 1 /2 — 1
p,; = (km) PL XX, P, (km)” = (km)~ Lemp 5P = Iy
_ “/25, < ~1/2 _ D b
p33—(km) P! X1X Pzz(km) (km)~ ka22 22 It«l
() 2prianap (K20 K prixix - m i INN P
Pyg = 3 A3 NEm Mm "~ 3L 272 » 3
_ k (r=-X\)
=5 [mrlg -]
- k . Atm -
* Nm R a1 T It
-1 ~1/2 _
Pgg = ™ /PiF'FP / I k-beotsl

Off-Diageonal Terms

1/2 1 -1/2

Py, = {bkm) ™ I X P (km) T =0 LR, = 6
_ /z 1 -1/2 _ 1 B

py3 = (Pkm T pkm1F 22(km) = eI Py =0
_ -1/2_1 k .1/2 1,

pyg = (Pkm) 77T APl gm ] = egd Py =
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= (bkm)"Y/2 T e 1?134rn“’1/2
- c 4J11:;km[X3 - m T X, - m TR AL - m T Nm
c4[J]13ka3 ~ Jllakmx3 - JikmA(L - m“lk‘lNM)m"lx"lt“’lk]
-0
Py = (Pkm) )2 Lkmp 5 = ¢
_ -1/2 ! -1/2
Pp3 = (km) 7 "P5 X X Py lkm) = (km)” (km)Pm 22 =9
p,, = (km) 1/2P’21X1'FP4( V2
P = (km) 1/ZP’§1X11P5 =9
g = (km) /2Py AP (g0 P <
P35 = (1) Y 2 22X F P 4(m) )2 <

pag = (km) Y 2Ry xup (m) V2 =

Pas = (Xim) m) /2

k

1, =1 =i
(Xtm

-] o ]l = - i
2 ~/2P¥3[Xé I S ] B I Y S T

= -1 - -
- m X NY(L - m e ‘NM)IP,

1

1 -1 -1 -1 - g0
~m 'k XéXll\‘y

c P‘[X‘X3 m kX

w1, =1 =1
n oo 1
‘ZXlN J=m "\ % k(XZX2

(L - m™ k" INmyP

1 -1 ~1

P1 - -] - ﬂ"='1
1 ml L -m 'k NN'J(L -m "k NM)]P

PL(L -~ m™k"'NM - m™ A (el

t 4
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csP4[L - m LM m'lx'lt‘lk(mrlt . m"lk'lmz(r-x)lt

1}
4

- m kT rm At (L - m L1 NM)]P
= ¢ Py[L -m" elnm - )\fm(xt{m .- m"Jt)(L - m-lkqlNM)]P4
= cgPYL - m™kTINM - L + s, B+ T INM
- 7\% 2 m k" 'NMm) P,
cepy L 1 5L - 1 tL]P
=¢
Pee = (3m Mm 1/2P§AIP5 ¢
Psg = m_l/ZP:LF'PF, = ¢
Hence PP! =1 and therefore P'!is an orthogonal matrix.

bkm
To show P'!is an orthogonal matrix for each of the three types of

GD-PBIB designs, let P! be transferred to the following form after com-

bining the partitions of Q2 and Q3.

-1/2 1
(bkm) / bkm

(mk)"Y %p Lx!

- TAL
P = C3P3A

mhl/ZP:LF !
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where,

(1) P'2 is b~1 x b set of orthogonal vectors from an orthogonal

matrix Q, corresponding to the characteristic roots of N'N other than
m?rk. /

(ii) P -l x t set of orthogonal vecters from an orthogonal matrix

3t

Qs corresponding to the characteristic roots of NN' other than mz":‘r:k,

(iii)
k 1/2 ]
( )\‘zt'm ) Ig-l ¢
/ for S designs
=1/2
| ¢ () Lgna)
-1/2 7
(mr) ™ 1) ¢
c = / for SR designs
3 =1/2
i ¢ (mv) Ig(’n-—l)
»
~ -
k \1/2
( A tm A -1 ¢
2 g for R designs .
~1/2
I
5 ¢ (mv) gln-1)
~
Let P'P = (py )y iy j =1, 2, - - -, 5.
py, = (bkm ‘L/Zcr}ok bkm (41 m) ™! = (bkm) "Lbkm) = 1
=1 Z 1 ~-1/2 1 o
= (bkm) / bkrnXle(mk) / = const J:bPZ = ¢
5 = (bkm m) 25l AP . = const. P, = ¢
bk 373 Tt 3
-1 2. 1 ~1/2
P14 = (bkm) / Tpkm® T 4™ /
- const. J- [X, ~m Ll X{X3 (AAX,
" "bkm"-""3 irk r?)\s
k[ RN

. IA L
HEREFm AL B * Byl 1A X;]



) 1 1 K 1 ,
= const. [Ty, 0 X s = Tpiem X3 - =rrn)m Thkm ™4 X3

K[a =200
XHER=TFA T Tpkm®[Bg + By] 'AX,]
= ¢
P15 = (bkm)—l/ZJ%)kmps =¢
P,y = (mk)-l/ZPéX{XIPZ(mk)_l/Z - (mk)“'l(mk)PéPZ =1,
P,y = (mk)‘l/zplle'AP3c3 = ¢
P,y = (mk)"1/‘213éxlleélm'l/Z = &
a5 = (mk) ™ ZPLxIP, = 6
P33 = C3P3A'AP,Cy =1,

-1/2 .
- I . — . ! =
P3y = C3P§A FP4m = ¢ This follows from the fact XlF g,

XLF = 0
P35 = C3P3A'P5 = ¢
pyg = IPFER P P R, S
Pys :mhl/ZPiF Py = ¢
P55 = PsPs = Lpim-1)
Hence PP! =] . Therefore P'is an orthogonal rr;a,i;rix,

bkm
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APPENDIX II

The derivation of P'JYP: Letting P'¥P = (Aij) i, j=1, 2, ... , 6,

we shall then have for each i and j the following.

() A, = (bkem) -1/2; 1 zszkm(bk -1/2

= (bkm)—lJl (X, X

, 2 +2 4 o2pyPkm
bkm' 1717 1

+ X Xzo‘ +X3X 3 crI)J'1

= (bkm) {bk’m%c>

1 + trzmza‘g + bkmzo-g + bkrﬂD’Z)

2 2 2 2
=(c" + mko-1 + mro, + m0'3)

(2) A, = (km) Y 2(bkm) Y/ ZJ]IkaZXIPal

L xxie? + X X1e% + XX

2
- ) §
=cod X7 H X Kom, + XX oot o

0" bkm

i

1]
©

2 2. 2 2, .1
co(cr + mka‘l_+ mro, + mo'3).]'bP21

(ken) ™Y Z(prem) Y 25 e IX P

(3) A Y

13

2 2 2 1 _
cl(cr + mke| + mro, + mo, )Jb op = ¢

£l

k -1/2; 1

(4 AL = (15 Aibkm)

Z{AP

2 2 2 2, .1 ~
Z(@' + mko-1 + mro, + ma'j) TbkmAPS = ¢

[

2

(5) A =m"Y bkm) ‘1/21

15 ZFP

4

__=l/2 -1/2 1 -1, =1 «1, =1 =1
=m (bkm kamZ[X3-m XM -m At k(X

- m"lk"IXlN')(L - m k"IN
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2.1 2.1 w1 -1-l 1 1 ol el
:c3[m T = ™ k] ~=m "\t ‘k;.[mrJtumrJt][L-m 'k 'NM]
=¢

- y~1/24] -

= (bkm) kamPS =

- -l ?
= (km) P}, XZZX 51

= =l ! 1.2 1 t 2
= (mk) T PL XX Xio| + szzcr2 + X X30'3 + o TIX P,
- (mk)ulPZT[ k%% + NN'o’ + MM'e§ + mke 1P,
_ Wy, 2.2 2 2 2.
= (mk) PZl[m koL + NNa‘ + m ko‘sl + mkeo Lb]P21
= (o'2 + mko‘?_ + mo‘g)lb_.t
_ -1
= (mk) "PLXFXP,,
=l oy 2
= (mk) PZle[Xlxlcr.1 + X, X! ﬂ' + X3X3@‘ + o 1]XP,,
- . =1 7 J 4 ZJ 2 2. 2
= {mk) P21(m 22 i Ib + N'Ng, + m ke L+ mke Ib]PZZ
= ¢
«1/2, k /2 .
= ()™ 2 PRy x P
= P! Xt § X1 Zv 1 2 2y AP
=cy Py [XXG‘ +XZ &LZTX.BXSO“B"!‘@"l] 3
= ¢ ,PL[N™ o2 + MXis5]AP,
= ¢, PLN[rml, - m " k'NNYP, wz+ P! M(L'=m™ kMNP
4" 21 t 4 Zl - "3
= ¢,PLN'NP, o5 + c,PL(ML! - m™ k" 'MM!NY)P 5o
T U5 21 4 21 3
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-1/2__-1/2 2 2., 2.
1 - 1 t 1 N 1 . [ )
(10) A, = (km) m~ P XXX, 0’1 F X Xbe 4 X Xioo + o 1]FP,
wl =1 P S R |
- 1 1 ! - ~ = = 1
= PL XX XX, - m Tk XM - m ATt R(AA X ) [P,
= ¢

1y A, =(km)“1/ PLX/IP, =

1

(12) Ay, = [kmo(x - 0] TRINKIZX NP

33 3

2
' 1 1 1 1 1
1X]-X].N P3 + P3NX1X&X ZXiN P 37

1

[km (r - x)]“l[P?;NX{X

2 2
P! ! Xl i 1 ! X . NP!g
T PINX XXX NP 375 + PN NP 5o

'1[m2k2‘mz(r~x) %+ rn4(r \) °r

= [km3(r - \N] L1771

t12

+ mzkmz(r-)\)l + mkmz(r A 1o ]

t-173
L2 2 -1 2 2
=[ec” + mke ) + mk (r=Ne, + mtr3]It_1

3 -1/2[ k

(13) A Ttm

I

[km>(r-n)] 1Y/ “PINXIZAP,

34

c PNX“[XX’O" + XX stxw + o ]Ap3

H

73

[aV]

2 2 - 2
! b ! 1 1 . ! 1 < .
.inXlu lAPSW'i - P NX1XZX AP3 2 + P3,\1X1X3}x3AP33 3

if

1
CT[PSNX

2
+ PINXIAP o]

,1/2 w21

2, -2
[m™k “At{r=\)] o5l 1

Ti

[km?)(r-}\)]1/Zm—1/2’PéN'XiZFP4

—

®
>
i

2 . 2 2 -l‘ oy
1 J 3 ! - - -
(;8P3NX [X1X1@" + XZX + X3X30‘3 t o ][X3 m "k Xﬁ.M

H

- m KX, - m“lk‘lxlNl)(L - m"lk“lNMHP 4



(15) Ay,

(16) A

44

]

i

71

cgPINXIX,XL[ X, - m k" 1X1M m T (x, - mTR Ny
(L - m™'NM)]P,
cgPINM[mI,, - m “Le- 1M‘M m~ I Ll - m vy
(L - m”lk“l_NM)]P .

-1

c P'[mNM—mNM -m N t k(NML NML)]P

¢

= [km3(r-)\)]1'/2P§NX1‘ZP5 = ¢

— t I
_[Mm]P AIAP,
= k } 1
= )\thA[XXlo'l-I-XX o2 +XX0'3+0' I]AP,
= K [PIAX_X!AP.]ol + [PLA'X. X!AP ]&2: + o1
Ntm T30 2Rt i 3 3Rzt 3i0%3 t-1
_ ok ira2p =2 2 t t 2
1 -1 -1 1 =1 =Ly ringt
+P4L -m "k NM][L'-m 'k MN]P30'3+c-I 1

n

X {p'[xzk‘zmzt(tl -IH1P el + PYLL - m™TlLMN!

- m 7 TINMLY + m ™K ANMM N o 2 3}+0' T 1
-1 2 . -1 -1 P .
k )\mto‘ZIt_1+P [m rl, - KINNY - KTINNT K NN'l1P 33 Xim
2
-l-o'._It__.1

-1 2 2
= [o S¥ k- Amto, + mo ]It-l
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17 A /2=l 2p LATIFP,

45 (tm )\tm

2+ of[X, - mTRTIx M

H

+ X, X Lo

¢ zXzz 37303

2
TAS '
9P3A (X1X10‘1 + X

1 -1 =1

- m W, - m TR N)(L - w7 1P,

cgP4[L - m kT NM] [l - T TIMIM - m T (L

1, -1

N VENUT A

k'lNM) 1P,

-1 -1

c P‘[mL m k LM'M - -1 =1-1 "Ll

ATt R(L'L - m kT CLINM

1 -2

- m k" IMINL + m k"ZM"N'NM) -m!

k-lNM{mIbk

~I, =1

~m k MM = m1

-1, =1

ALt - mTlCIMINY (L - mT k"

K NM:)}] P

-1 -1, =1 -1 1, -1

kMM - mmIke k{ 2L - m " ImeNM

n

c P'[mL m

1, -1

e m T ILMINIL + m™?

k" 2LM'N ’NM} - kTINM -

+ m %"’ NMM'™M + m L Wl hgNML L - m kT NML M

- m ITINMMIN'L + m” %" ENMM N 'NM 1P,

c9P’ [mL - K INM - m“lx“lt'lk(mer - mk™ENM - kKTINN'L

— - L] - - L -l-[
+ m kTPNNINM) - KTINM + KTINM 4 m I kNN L

-1 - '
- k "NN'NM - mNN'L + k 1NN’NM)]P4

-1 -1, -1 - -1

c P'[mL—-k NM -m Nt k(m rL-mk rNM = k- m [(r»)g)lt

FATIL + m ™ Zmz[(r-mt + MI{INM]P,



(18) Agg

(19) Ay

(20) A,

I

]

1

i1

i

1

)

-1
coP4[mL - k

- k'l

cgPy[mL - KTINM - m™h\"

-1

+ m )\-lt-

ch‘3[mL -~ k~INM ~ mL + k~

¢

-1
m PF "ZFP 4

1

m o

2
ST d)
P4F (X1X 1

1
1

m

Ipt 1
P4F X3X3FP

2
(<r2 + me

[P:Lm—l

-1 '
m rP:LF ’ZPS

~1/2 ,
m / P}LF,(X]_X{(T
14 - 1 . 1
Pszzp5 = P(XX{

21
T “bk(m-1)"

4

1 IR
¥ X3X3FP

NM - m~

m%(r=ML + mk™(r-\)NM) | P

+ X Xleo

3)Ibk-b-t+1

4

2
1

2

1

0‘2
3

o

1 3

11:-']'k(m2rL' ~ mk™"rNM

Kt—

4

fhemdr - AL

1 T

kmk™(r -~ Z2)NMIP,

k

INM]

2 2
1
+ X3X3 0‘3+ o I)FP4

2
2772 2

1 2

“lpipn
+ m P4FFP40‘

2, -1 2
37 Py

f
¢
by
b
o
qQ

' -l 2
' ! :
mP4m F X3P40'3

[k}

m 2I ]
T3 kab-t+l

2

2 2
. ! 1y =
+ XZ‘XZO'2 + X3X3u‘3,+ g I)P5 =¢

X3 o2

2 2
1
+ X, X305 + X X4 o5 + o “I)P,
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The derivation of P'JP for S~GD-PBIB Designs: Letting

P'ZP

= (AIJ) i’ J = l,

the following.

(1)

(2) A

A, = (bkm)

12

= (bkm) "3

= (bkm) " bkm e

1/2 1

bkm

1 2 2.
bleml X1¥1 1 3X305+ o 11Ty

2, .

s 1y we shall then havé for each i and j -

Zkam (bkm )-1/2

+XX0' + X, Xlo bkm

+ trzmzo‘g + bkmzoé + bkmo‘»z]

= (0‘2 + mko-i + mrtrZ + mcrg)

1

1

"

=¢

(k)™

1

il

(mk)-l/z

?(bkm)

2 2
cl(cr + mka'1

(bkm)”

2
]
0V bkm!X1%17 1

1/2 1 ZXP

2 2 2 2,1
co(o' +‘mko‘1 + mro, + m0'3).TbP

-1/2 1

2
+ mro, + me

1721
£ X, X107 + X, Xiol # DX P
2X 20 X3Xjoy + o DX,

21

Tokm?X:1P 22

2, -1
2 3)'IbP22

= ¢

. /2 1/2 1

= (%ot _) (blen) 7y FAP

= c It [XXG‘ +XX'0' + X Xl +0'2'I]AP
© 29 bkm 1r 4272 3

. + mke? + mros + me)Jp AP,

= (@* m crl mro, Y

T4
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(5) A= (mr)"l/z(bk )‘1/Z bkmzZAP
- c3[0"2 + mkcr? + mrc'g + mcrg],Illaklrnmv&2
=¢

(6) Ay = (k)Y 2m V25l gEp,

1 2 .
Tkl X% + XZXZG‘Z + X, X3o + o' I]FP

i
(¢]

it

c4[0'2 + mke’

2 251
1 + mro, + m<r3]kamFP

4

(7) A = (bkm )7H/? 1bkmzzp

(8) A,, = (mk)" le ZX,P,,

- -1 . 2 ;2 1 2 2 :
= (mk) P‘ X [X X10’1+ XZXZ 2+ X3X30'3+»0' I]X].P21

_ 1 2,22 2.2 2
= (mk) [m7k o]t m ko5 + mko ]I°0+C1'

2 2 2
= [mks'1+ mo .+ o ]Ico +cf

(9) A, = (mk)"t

1 1
23 Py XX /P,

“lps X‘[X1X‘0r2+ X Xig? + X X'o‘z

= (mk) 171 27272 373

+ chI]XlP

-1 o 2. 2 2 ; 2, . 2. 2
= (mk) Pél[rp k7o Ty + NN'o, + MM'9'3 + mko Ib]PZZ

= ¢

k )1/2

“1/2' 1 )
(mk) P} XZ’AP )\tm

(10) A

"

24

2
1 xetf ! !
COPZ].X'L[X].XIO—]. + XZX o"z + X3X30‘ + 0o I]AP

1}
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2 2
= 1 et 1
cOP21[N Xio, + MX30-3]AP3l

2 2 -
— ! Il ! —
= cOP21[N X20‘2+MX30‘3][X2 m

1 -1

-t i
k XN ]P31

1 2

2

+ e PL ML -m kMNP

.
k 'NN']¢ 1 oF 51

— t t - =
= cPyN'[rml -~ m Py 31

=¢

() A, = (mk)—l/‘ZP'ZIX{ZAPSZ(mr)-'1/2

2 2 2 2
= e 1 1 1
= c]_PZ]_X]_[Xleo-1 + XZXZG‘2 + X3X30‘3 + o I]AP32

= ¢

-1/2 -1/2
(12) A, = (mKk) PlZIXI'ZFP4m

192 4 X _Xlol + X X0l + ¢2I]FP

— 1 vl
= e, Pu X[ X Xjo] + X Xo0, + X X0g

202171 4

-1, =1 k
= ! ! - 1 - L. Nt
CZPZIM[XSX4 m 'k "M!M (rk"r"_')‘l (L m "k "M'NY)

K M- )‘z) -1, -1

T FR=r At (Lf-m

(L -m" K~ INM)

-1 -1
t -
(By + B)YL - m™ kT NM)]P,

-1/2 x‘zcg + XXl O'ZI]P

(13) A, = (mk) JXiog

2
I 1 1
P21X1[X1X.lcr [T X

2 5

(13) A, = (mk)"l/ZP‘ZZX{lePZZ(mk)-l/Z

2
1

2

— ~l5 t t . f 2 t 2
= (mk) PZZXI[XIXIO' T X X5, X Xgoat o I]XIP22
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2.2 2
= (mk)~ lps 2[ ko‘1Ib+NNcr + m ko‘SI +mkcrI] 22

= [mko-? + mcrg + crz]Ig_.1 + P'ZZN‘NPzzag(mk)_l

= [mkq-? + m(rg + o—?‘]Ig_1 + mz(rk - >j\v_21:)(m1<)"11g_1
= [0-2 + mko—?i + mk'l(rk. - xzt)wg + mvillg-l

(14’ Ay, = (mk)'l/ZP‘ZZX{[X Xf?{ + X Xz" + X3X'3‘T3 to I]AP31(T£”rrT)1/2
= (rhk)‘l/z(—é(t_r'r'f )Y/ %P1 N [eml - m i INN 5P

-1/2, k \1/2 2.-1/2 . -1 -1
25,
NN ]cr 31
-1/2, k 1/ 2 -1/2 2, 2, .
= (mk) / (= xztm / Trk - xzt)mz], /Zcrz[rmm (rk - \,t)
-1 -1 _4 2
=m 'k ‘m(rk - \,t) ]Ig-l
= -l[k-xt]l/z [rk - rk 4+ N\, t] 21
= )\Zt r 2 m r Z 0‘2 g-l
= mk™ ! (rk = A,0(n t)]l/'2 21
2 g-1
-1/25
(15) A, = (mk) v P!, lzzA'p32(mr\ -1/2
= (mk)'l/z(rm-)"l/2 [X Xlo 2 X, Xtel + X X1l 4 O'ZI]A’P
2251 T1T A2 37373 32

-1

- "1/2 “1/ 1 -1 1 2
= (mk) (mvr) P'ZZN.[rmI -m k ‘NN ]crzP32

-1

= (k)Y Z(me) Y 2 (rk - )\Zt)mz]"l/ZPélNN‘[rmI - m~kINN



(16) Ay = (ml) ™Y 2PL X IFFP, (m) /2
= ¢ PLXI[X, Xl'o' + X, X5 + X XLr 2+ cl1FP,
= ¢
(17) A, = {(mk) "~ / zzp
= ¢
(18) Agz = Agy
(19) Ay, =<rft-;n~>1/zp' A'ZAP 5 xktm e
= (g P XK + XpX5r) + X3Xiol + o 1] APy,
= (T"“ JPLI (mrl - m'lk-lNN')zo‘g + (L - m’lk“lNM)(L‘ :
- m TIMINY e + (el - m HTINN Y2 P
= x:im ylm “ 2*% ; ;* mzk-1)\2w§ + mkztk-lqz]lg-l
= [mkul)\zﬁvg + rntrg + G’Z]Ig__]L
(20) A = PglA‘ZAPyjz(mr)bl/z
= ¢, PLAYXX/oS + X,X1e2 + X X1% + o’1] AP,
S -1

i

-1 -
an[(mrl - m k NNY T, + m(mrl - m 'k 1NN')@~§

-1 =1 2
+ {mrl - m "k NNYeo ]P3Z
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(21) A

(24) A

(25) A

(26) A

46

56

57

66

—

= (mr)ul/ZPézA 'ZFP4(m)

( x:tm )"/ 21 AFEP (m)Y/2

k- ‘1/2, . 2 ¢ 2, 2 -1/2
( vtz ) P31A[X1X1<r1+xx v5 + X Xioo + o I]JFP,m

) P LAEP

(mr)—l/zPézA ‘2AP32(mr) -1/2

2 2 -1 -1 VL2
éz(mrl - NN¥) o.‘z+ m(mrl - m "k NN‘)O'3

-1, -1

+ (mrl - m "k NN')o ]P

(mr) [erZO'Z + m®ro? + mro ]I

2 3 g(n-1)

2 2 2
(mro‘2 + mo 5 + 0o )Ig(n-l)

-1/2

- "1/2 1 1
= (mr) P32A ZPS

1

1l

11

m"l/ZP;LF '2}3‘1:>4m“1/2

-1/2, ;2 [ 2, 2 -1/2
m P F[X Xlo' t X, Xe, + X Xio s+ o I[FPm

m IPIFIX_XIFP o2 + m 'PIFFP o

2
4 KR F P o 4 49

2 2
(7 +mog)l, bt
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(27) A, m'l/ZP;LF'zzPS - ¢

i

2
— ] —_
(28) Ay = PLEPL = 0 Ty )

The derivation of P'JP for SR-GD~PBIB Designs: Letting

PIP = (Aij)’ i, j=1, 2, . . . , 7 we shall then have for each i and j

the same results as for S*GD-PBIB Designs except the following.

Ayy = (ml)TPLXIFXP,

33

= (mk) P [ m%%e L + N'NoZ + mPkell, + mke?r, |P,,
= [mko'zlﬂ- mo-g + O-Z]Ig(n-l) + (mk)-]’[mz(r—xi)]o'glg(n_l) '
= [mkcr‘i + mk“l(r-xl)crg + mcr‘;‘ + "z]lg(n-n

Ag, = (mk)_l/z(mr)-1/2P'23X{ZAP31
= (mk)'l/z(mr)—l/ZPESN’[ rml - mﬁlk-lNN‘]O‘ZPﬂ
= (mk)‘l/z(mr)-l/z[mz(r—xl)]-1/2P§2NN'[rmI - m-lk-lNN']Palu‘g
=¢

Ay = (m0k) ™Y 2 () "V °P1,XIYAP,,
- m“lk*l/zv‘l/z[mz(r-xl)]“l/zpézNNr[rmI - mTKTININ] P ,0h

= m~ 2"V 20720, L xl]”l/z[rm [mz(rw)\l)] - m‘lk'l[mz(r-kl]zl

. 2
g(n-1)72

= mk—]'/zv-l/z[ 1"')\1] -1/2[ r(r-)\l) - k-‘].(r")‘l)z] 0‘glg(na--l)



= mk"3/2 1/2 = ]]'/2 rk - (r~)\1)]0‘

2 g(n~-1)

122

= mk-'l[(r- rk'r"')“l)] T2lg(n-1)

A, . = (mr) -1

44 p' AlzZAP

31

_ e 222 2 2 2
= (mr) [m"r"0, + m"ro; + mro ]Ig-l

= (mro'g + mo’z + c‘z]I

3 g-1

= ~loy g
Agy = (mv) Py A 2Z'AP32

-1

= (mv)“lPéz[(mrI - m_lkthN‘)o‘g + m(mrl - m kthN')G'g

~1 =1

+ (mrl -m 'k NN‘)G’Z]P32

-l 222, 2 2 2
= (mv) [m"v ¢, + m Vo, + mve ]Ig(n-l)

= [mvcrg + mo.'g + G"Z]I

g(n-1)’

The derivation of P'ZP for R-GD-PBIB Designs: This follows

from the results derived for P'YP in the case of BIB, S-GD-PBIB,

and SR-GD~PBIB designs.
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APPENDIX III

DISTRIBUTIONS AND EXPECTATIONS OF THE s,

~ In this appendix we shall find the distributions and expectations of
each of the statistics in the minimal sets of sufficient statistics that we
have found for the BIB and GD-BIB designs.
We shall first state a well-known theorem which we shall use in

deriving the distribution of each statistic.

Theorem: If Y is distributed as the multivariate normal, mean p and

covariance matrix ¥, then Y'AY is distributed as the non-central

X 2 with degrees of freedom k and non-centrality parameter \ if AX

is idempotent and where k is the rank of A and X\ = Zulﬁ'Aﬁ [3].

1. S, =Y.

Since y... is a linear combination of nprmal variables y... is
2

distributed normally, mean p and variance (bkrn)m‘(c“2 + mko-% + mro;

+ rnoé) or s; ™ N[ (bkm)—l(o"z + mkw? + mra‘i + mo'g').

=1
- <7t ! 1
2. s, (km) 7Y le ZlP lelY

-1 ] 1 -
> X2P21P21X1. Then AZAZ = AZ'

In order to apply the theorem we must show that:

Distribution of s,. Let ‘AZ = (km)

AJAL = AR
or .equivalently AZZ{AZ = A

82



- -2 1 1 t 2 1 2 1 2
A JA, = (mk) X P Py XX KXo + X,Xbo5 + X, Xio%

2 ! !
+ o DXP, P X!

= (mk)~%X.P_ P! (mzkzcr? + N'No'g + m%ke?

L2 -
PxPh 3+ mke“I)P, P X

217 2171

= -1 1 o 2 2 2
= (mk) X1P21P21X1[0'1 + mko | + mo ;]

= (o*2 + mkcr2 + mo‘g)A

1 2

Let B2 = (0‘2 + mkcr? 4+ mo

2

-1
2

2 :
Az. Then Y'BZYN x'! (kZ’)‘Z)’ where

k., = rank B, = rank A2 = tn A2 = (km)-lTr, (X, P, P!'XN) =tr P, P! =b=-t.

2 2 17217 2171 21" 21

23} o X P PL XD el 4 ko)

N =k IpemX P afa

= ¢

Therefore 5, »(0“2 + mkcr? + mcrg) xf}_t; Therefore, E(sz) = (b-—t)(o‘2

2 2
+ mkcr1 + mo'3.

- -l ! 1
3. 53 = (km) Y X1P22P22X1

Let Ag = (km)'lx P,,PLXI. AjA =A

17227 22771 3

- -2 t 1
A3>2‘A3 = (km) “X,P,, P! X [X1X1¢

, 2 2 2
17227 221

8 H
1 + XZXZU"Z + X3X30"3

2 ! 1
+ o I]X, P, Py XS

_ -2 Vo222 g 2, 2 2
= (km) X1P22P22[m k" + N'Ne, + m"ke

3 22" 22

= (km) "X P, P! [mke] + ¢?]P, Pt X!

-1 2 2
tmk (r-Mo, + mo 225221

3

= (km)—lx P__P! [mko‘z + mkul(r-)\)o“g + mo

2
1
1F22F22%1 1

2
3+o‘]
2
1

Let B,y = [mko? + mknl(r-,)\)o‘g + mo‘g + GZ],—lA

3

+ mka‘z]P PLX!

1
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Y'B3Y ~ X '2(k3, X where k3 = rank of B3 =rank of A, =tr A_ =

3

3 3
-1 1 1y - — 2.1 bkm s _
(mk) “tr (X P, PLoXY) =t - 1 Ay = p Ty, X/P,PLT) = 0. There~-
fore
2 -1 2 2 2 2
S5 " [mko-1 + mk (r--)\)o-2 + mo +07] X1
and
E(s,) = [¢° + mke? + mk X r=N)o> + me>](t-1)
=83 1 2 3
k
4 A = —— AP_PI!A!

5 Atm 373

2
k [} ! ! 2 1 2 ! 2
mAP3P3A (X, X0} + X, X0 + X X Loy

>
9]
™
N
Ul
Hi

2‘ ] 1
+ c“I)AP,PJA

2
k - =1
= K AP P (A m) 2 - TN - J)el 4 (mPrl, - KTINNY ol
2.2 2 373 2 t 3
At m
+ Xk“lm(tl - J)o‘Z]P P!A
373
k 2 -1 2 mrt m(r-A); 2
— 1 ] -
= st APSPLIAY o7 4k mto; + [ E 193
_ _K A2 4 ke~ te 2 2
= WAP3P3A [0' +)\.k mtu2+m03]
) o, 2 -1 2 2, -1 . 2
Let B5 = (o~ + Ak mte‘2+ mo-3) A5. Then Y BSY ~ X (k5, )\5),
where k5 = rank of 135 = rank of A5 = tr A5
= K tr AP _P!A!
Atm 373
= k trA'AP P!
Atm 373
= —E—tr[ )\k—lm(tl - J)P, P!] =trP P
Atm 375 373

'=t-l



Therefore

and

— -1 Ry
Let A, =m” FP,P;F. Then
- -2 tt 1t
A¢A, =m "FP,P|F'FP,PF
- -1 1 -1 : It
=m 'FP,Pim FF P,P.IF
= m lFp PIF! [(P'm"lF'F"P =1 ]
4" 4 4 4 ~ "bk-b-ttl
:A6
A A, = m Fp P!F[X Xiol + X X1l + X X’o‘2+crz]FP P!F!?
676 4" 4 17171 27272 3373 474
= m %Fp [PIFIX X!IFP 2 4 PIFIFP O“Z]P‘F'
4l 47 37377473 4 4 4
. byt -1 2 b=t Ll piEt
= m FP4[P4m Em "EP mo; + Pm 'EP o ]P4F _
t —_
(F'X, =
-1 2 2
=m FP4P&F'[mcr3+vcr]
Therefore,

_ 2l | A gpRPRM
Ny = pATL AP PIANT =0
S_ ~o [mz + 2k 'mte? + mcrz] ¢
5 : 2 3l X

E(sg) = (t-l)(cr2 + Ak~

1

2 2
rnto‘2 + mcr3)

1

5. Distribution and expectation of ¢ = m~ Y‘FP4P:EF Y

5¢ " (cr2 + mc‘2

)y 2
30 Xpk-b-t4l

85



86

24 { o bkm
Ny = BT FP,PIF = 0

E(s) = (% + mo'i)(bk -b-t+1)

= 1 (-
Let A7 = PSPS' Then A7A7 = A7.

2 1 2 2 . L2
o, +X X,o‘3+a‘I]P5P5 =oAL

AZA =P_PHX XIeT + X, X 3 Xk

i 7 575

2 1 12;, v e o
Lefi B7 =g A7. Then Y B6Y ~ Y \k?, \7), where k7 = rank of B7
= = L = - 1)
= rank of A7 tr P5P5 tr Ibkm-bk bk{m - 1}.
2.1 { +bkm _
M E b T PPl = O
Therefore
2 2
877 7 Xpkm -bk
2
E(s7) = (bkm - bk} ¢
Now s, = k-l(r-)\)l/ZY'X P, ,PIAY = k'lmle"X NP, PLA'Y. Let
4 : 172273 1 373 ' ’
A4: = k-lm"leN’PBPéA’. Since A4 is not symmetric, we may write
-1 .
1 = t 1y
YA4=Y~=-2 Y[A4+A4]&.
S -1 ! 1Y g vy I B -1 1 S a
Then since 4 (A4: + Aé)ZZ(AA]: + A4:) is not equal to 2 (A4: + A4), 4 is

2

. . 2 . . . . 2 .
not distributed as ¥ variate but as a linear combination of ¥ = variates.

That is,

2
5477 Fa X

c . ~1
where a; are the non-zero characteristic roots of 2 (A.4 + Aéll-)'
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-1 -1
E(sy) = E[kK"m ™ Y'X,NP,PLA'Y]

3

~1

"

E tr[k m 'YX NP,PIA'Y |

1 33

=1 _~l

kK 'm trE[YY'X

i

! 1AL
NP, PLAT]

k"l 1 tr[xxl'v1+x X4 +X Xé

i}

o2 ¥ ci1]x NP, PIA!

k™ er [AK XX NP, PYeS + AKX

H

t lo
NP P! 3]

Klm e p y[mrl - m T INN Y NN 'P3(r§

k-l

1]

1 r-\

' mz(r-)\)[r -~ < Jtrl 2

2

=17

-1 [r(k-—l

It
W

by
E ] trIt_]-O‘

-2 2 2,
k~"m (r-X)XtUZtrIt_l

i

knzmz(r-k))\tcrg(

t~-1)

= =1 =lv 1 1AL
6. s4v—m k YXlNP3P3AY.

Substituting (I - tul.]') for P3P:‘,), we have Sy
1 1

t T T)AY =m~ kle'XlN‘A Y. (P3P:‘5 =1 - til.I because corresponding

-] el
= m kY XN -

to a unique characteristic root mz’rk‘ of NNY, we have a unique vector
(L/7%, L/ft, . . . , 1/T) from the orthogonal t x t matrix which diagona~-
lizes NN?'). Since the j=th element of Y‘XlN' is Tj and the j-th"e].ement

of AYY is Qj’ this statistic may be written as m"'lk-lETij.
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7. In order to determine s, in terms of the block and treatment

totals, consider

- -l -
m1 1 m‘le‘X

k™ X XY = [(P,POXIY )
[P
= m‘lk"lY*Xl(on, P, Py Py XJY
P22
We can write'PZOPfZO = bhl. E This follows from the reason given for
PBP:')’ in 6. above. Since _b"lJtNJNJ‘? = er th_l = mzrk, which is a

characteristic root of NN of multiplicity 1, we therefore write:

-1, =1 v o i S I~ o =L =1, 1 1
m”kTYX XY - (mbk) YK JIX{Y - mT k7YX P, PL XY
=m I lyx PPt xty

1721 2171
or writing this in terms of block and treatment totals we have

b
m Tt £(B, - B.)? - [km (z-N)] " [S(T,- T ) Ll

i=l J

YX. P, P! XY

J=m "k 1FaP 2%y

L

where Bi ig the i=th element of X.i‘Y and B. = b_‘EB;. The statistics

s, may be obtained then by subtracting 84 from the corrected sum of

squares of blocks.

Singular, Group Divisible, PBIB Designs.

In this section we shall find the distributions and expectations of
the statistics in a minimal set of sufficient statistics for singular GD=~

PBIB Designs.



1. Distribution of 81 =Y. ..

Since 8, is a linear combination of normal variables, s

distributed with mean E(y...) = p and variance E{y... - p.z) = (bkm)_l(cr

+ mko-? + mro‘g + mo‘g). That is

s, ~ N[, (bkm)"l‘(cr2 + mk@‘z + mm'Z + mwg)]

1 1 2
2. Distribution of s, = (mk)"lY X, Py P 5 X{Y.
Let
A} = (mk) TP, P 1%
then

—- -2 1 ! 1 1
AA) = (mk) "X PO PO XX P PoaiXy

- -1 1 | I
= (mk) "X PoiPoX] = A

and

'o‘2+ X X'crz+ X X’o‘2

— -2 1 t
AjZA) = (mk) "X P, Py X[ X X oy + X X, + XX io,

17 21" 21

- o1 Lo
+ o L]X1P21P21X1

. -2 2,22
= (mk) X1P21P21[m ko

' 2 2
T N 4 t
1J.-b+NN02 I-MM0‘3

2
. T ' X!
ko I [Py Py X)

o

2
% b

2 2
i
1b+NNﬁ‘2+m ko

_ -2 2.2
= (mk) X1P21P21[m ko

P,.P! X!

2
+ mko 1 ] P, P o Xy

_ -1 . 2 2, 2
= (mk) XlPZIPZ]‘Xl[mko‘1 tmegto ]

2 2 2
= [mko‘1+ mo, + o ]A1

1
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-1
3

2

Let B1 = [mkﬁ':zL + mcrz + crz] A.. Therefore Y'BZY ~t oy ! (kl, Kl),

1

where k, = rank of B, = rank of A, = tr A1 = (mk};“l

1 1 1

2.1
K1‘—|J.J

Hence

1 1
prkm~1F 21F 215171

17 21" 2L

bkmc(g) =0

2 2 2 2
s, 7 [o +mko‘1+mo*3] Xb-g
E(s,) = (b - gile” + mke |+ m0‘3]
]
bt T - 1oy . .
3. Distribution of s, (km) YX1P22P22X1Y
Let
A = (km) X P! P X
2 17227 22771
Then
AZAZ = A2
and
- -2 i ! 1. 2 1 2 t
AZZZAZ = (mk) leazlszzxgl[Xlxley.i + X, KXo + X Xba

H

[@'2+ mka

i

-1
(mk) "X, P,

= [o‘z + mko‘i + rncrz + mk"

3

-1 . 2
{mk) XlPZZPZZ[ {mkeo

1

2
1

2" 3 1
+ o 1] X P,,PLoXI

+ mwé + @Z)Ib

+ m‘lk"lNN*a-g]P P!

227 22

2 -1 2.
+ mo; + mk (rk-A,t)o ]

1 2
(rk=\,t)e5]A,

tr X,P,,P!.X}'=b -

1

1
Xl

i H
PsaX

99

g-



~ .2 2 2 =] 2.+-1
Let B, = (o7 + mke | + mo; + mk (rk~)\2t)o-2] A,. Then Y’BZYN’

{i

I . — —
X (kz, )\2) where kz = rank of B2 rank of AZ. = tr A2

-

- =1 !l = o o
= tr (mk) X1P22P22X1 =g =1
and
_ 2.1 ¢ -pkm -
M TR TS F22P 229 el =0
Hence
2 2 2 ~1 2, 2
S5 [c” + mke| + mey + mk(rk=),t)o;] X ol
_ 2, . .2 2 -1 2
E(s ) = (g=1)[o" + mko'| + moy + mk (rk=\,t)o5]
. « . _ k F 1 ¢
4. Distribution of 54 = ( -):zf_r—f] )YAPL.BlelAY'
Let
A, =(~—5_)AP, P! A",
3 )\Ztm 31" 31
Then
A3A3 = A3
and |
. _ k 2 oAt t 2 { & , 2
AFA, = (TZFE;)' AP Py A X Xio + XX 50, + XXy
+ cYI]AP PLA!
c 317 31
=t h‘i - -
= (—)‘\-kt—m-)ZAPﬂPél[(mrIwm lk NN {mr - m 1k. 1NN‘)@“
2
+ (mrl - m=lTINN YO TP,
k 2 =1 2
= — {~ + mk )\thrZ)A3

)\Ztm
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2 ~1 2, -1 2
Let B3 = (o + mk )\Zts'z) A3. Then Y'B3Y ~ oyt (k3, )\3), where

= = = - _K LA =
k3 = rank of 33 = rank of Ag = tr’A3 = Tgfl’”ﬁ t:rrAP31P31A =g =1, and

= 25t 1A
Ay = kamAP31P31A Clg) = 0

Hence

1 2 2

2 -
s ¢
s {(¢” + mk )\Ztcrz) X -1

4

E(s,) = (g1 (c” + mk-l)\zto-g)

-1
= (rm) "Y'AP_ P! _A'Y.

5. Distribution of s 32F 380

5
Let

- ~1 t 1
A4 = (rm) AP3ZP32A .

Then

and

_ ~2 1 ! 1 2 | 2 t 2
A4§,75A4—(rm) AP, P! AX Xl + X, Xhoo + X Xioy

327 32 117 1

.WZ’ ’ i !
+ s 1JAP,,PL A

= (rm) "?AP_PL,[ (rml - m k" NNYsS + (rmi

327 32

o g
- m K TNN e ] P Pl AT

m'rr_rz 4+ rfz]P'ngl

= (rm)-lAPBZ[ 5

- tmrel 4 o2
= (m-o‘2+ o )A4

2

- (2 2y -1 i ' -
LetB4 = {o +mrc‘2) A4. ThenYB4Y~ X (k4, )\4), where k4~

rank of B4=rank of A, =trA «:tr(mr)'lAP P! A' = :g(n - 1), and

4 4 327 32
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a, Q
[W§]

AP, P! AfJ?km G(0) = 0

2.1
R e VALY

Hence

2

~ 2 3 2
(o -lmroz) xg(n»-l)

S5

- 2 2
E(s5) = g{n - ){o" + mre, )

6. Distribution of 5¢ = 1'1er1

Y’FPALP“LF 'Y and its expected value are
the same as in the BIB Design.

7. Distribution of 5., = Y’P5P;.JY and its expected value are the same
as in the BIB Designs.

8. Distribution of s, = [k“z(rk - xzt)]l/zy'x P, PL A'Y.

8 17 22% 31
We know
2 -1/2
r - - 1
Py, = [m™(rk )\Zt] P31N
and so
s. = m kT IYIX N'P, P! A'Y
8 1 317 31
Let
A =m KX NP, PLA!
7 1 31 31
Since A7 is not symmetric, we may write Y'A7Y = Z-IY'[A7+A,'7]Y,

then since 4™ (A + AL)F(A, + Al) is not equal to 27 A, + Al), s, is

7 7

not distributed as ¥ 2 variate but as a linear combination of ¥ 2 variates;

that is, s, Zaix(z

1) where ai are the non~zero characteristic roots of

4
-1 _ ,
27A, + AL).
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ST o)
E(SS) =Em 'k Y‘X]_N'P31P§1A i 1
= Etr YY'X,N'P... P! Atm lk
NP3 Py
B 1 2 2 2
= (mk) “tr [X.LX{u'l + X, X0, + X X%, + o‘ZI]XlN'P31P'31A'

= -1 t 1 1 1 2 1 1 ! 1 2
= (mk) "tr[A X2X2X1N P31P310'2 + A X3X3X1N P31P310‘3]
T T IO I T
= (mk) "tr P31[ mrl - m 'k 'NN'|NN'P,0,

-1 2 3 -1 2o .2
(mk) [mrm (rk-)\zt) - m~k (rk—kzt) ]crztrace Ig-l

mz

H

-2 2
k (rk-}gzt)[rk - rk + )\Zt]o'z(g - 1)

2, =2 2
m k (rk-lzt)(kzt)(g - 1)0'2

Semi Regular, Group Divisible, PBIB Designs.

In this section we shall find the distributions and expectations of
the statistics in the minimal set of sufficient statistics that were found
for the semi~regular, group divisible, partially balanced incomplete

block design.

1. Distribution of 5] =Y---

s, ™~ N[u, (bla:;m)m]'(o‘2 + mko'i' + mro, + ma‘i)] as follows from s

1
for singular GD-PBIB Designs. E(sl) =

2
2 1
e

2. Distribution of s, = (mk) Y!X,P, P4 XIY.

1 21 2L 1
Let
A, = (mk)™'X. P P! X!,
1 17 21" 2171
Then
AA = A
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and

— -2 1 1 1 2 I 2_._ ] 2
Alel = (mk) "X/P 1P 2,1X1[X1X1"1 + X, X5, + XXy

+ ¢“1]X,P, P! X!

17217 21771
- -1 1 1 2 2 2
= (mk) X1P21P21X1[mko'1 +tmo,to ]
2 2 2
=[e¢” + mkc‘l + mcr3]A1
- Z Z Z "'1 ; 12 o
Let B = [o7 + mke ] + mo‘3] A,. Then Y'B, Y~ x'"(k;, A}, where

- = = = -1 '} Xl = h -t -
kl = rank of B1 = rank of A1 = tr A.1 = tr (mk) XIPZ].PZ].Xl =h-t+g-~-1I,
and
2_1 | ~1-Pkm _
MBI e X PP Xy Cle) =0
Hence
2 2 2. 2
5, ™ (o™ + rnko"1 + mo-3). X'b-it‘-leg'-l
E(s,) = (¢ + mko> + mo2)(b=t+g-1)
. . . . -1
2 o ! 1 3
3. Distribution of 53 = (mk) Y X1P23PZ3X1Y.
Let
=1
- 1 t X!,
Ay = (mk) "X P, P X
Then
Ay = Ay
and
A ZA = (mk)-‘ZX P_ P! X)X X‘a‘z + X X’-o‘z + X X'o‘Z
2772 17237 2371711 1 27272 37373
+G'ZI]X P, P! X?
47717 237 23771



= (mk)—l[ o + mkc'zl‘ + mk-l(r-)\ 0'2 + moé'].X P, P! X{

l) 17 237 23

= [0'2 + mke’

1t mk_l(r-)\l)o‘z + mel]A

2 34772

2 L2 -1 2 2:-1
Let B, = [ + mke + mk (r-A)o + mos] A

where kZ = rank of BZ = rank of A

bl § ]
> Then Y BZYM X

, StrA, = (mk)"ltrxlp P! X!

and

_o2-1 t ~17Pkm _
M= T X P asP Xy Gl = 0

Hence

2

2 2 -1 2, 2
s~ [¢7 + mke | + mk (z=Moy + mo 5] X g(n-1)

1

2 2 ~1 2 2
E(s;) = g(n-1)[o" + mke | + mk (1'--;)-\1)0'2 + mo’;]

4. Distribution of s, = (mr)'lY ‘AP31PélAlY

4
Let
A =(mr)—lAP P! AL,
3 310 31
Then
A3A3 = A3
and
A JA, = (mr)“ZAP P! AYNX X'G'Z-I' X X’-o‘2+ X X'..TZ
3773 317 31 17171 27272 33" 3

2 ! H
+ c“IJAP, PL A

= -lp 2 2 1 At
= (mr) [o” + mro,JAP; PLA

2 2
=[{c"” + mrcrz]A3

a2 21-1 1 12
Let B3 =[{oc" + er'Z] A3. Then Y B3Y ~ X (k3, )\3),

96

2

1F 23F 23%] = gln-1)

where k3 =
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rank of B3 =z rank of A, = tr A, = (n’rrf)m1 tr AP

3 3 P‘fﬁAl =g -1, and

31

2. bkm T oY o s R
= Ct
,\4 v Jl AP3 PS?AJ 0y =0
Hence
; 2 2, 2
s4~ (o™ + mmrz) X(m-—l)
_ 2 2
E(s4) (g-1{c” + mr GZ)
. . . _ -l '
5. Distribution of Sg = {(mv) 7Y AP3ZP32AY
Let
A, = (mv) 1AP PLOAY
4 327 32
Then
Aghy = By
and
— 2 3 H 1 1 Z
A4ZA4 = (mv) "AP,,PL,A [X1X1°'ﬁ X, X} + X Xhey

- H i
+ l]APzZPBZA

-1 2 2
= (mv) [0 + m\mZ]AP SPLA!

2
= [ F mvo 2]A4

Let B, = ‘ T Z]nlA Then Y'B,Y ~v 2 k., A, where k, =

et By = o mvo, 4 en Y 'B, XY 40 Mgl ere ky =

oy |
- of = = = AR ' Al = ofn - i), ar
rank of B4 = rank of A4 = tr A4 = {(mv) "ir AP33P32A = g{n - 1}, anrd
2.1 PoA bkm o
)\.5 = J.b AP3ZP J1 C{z) =0

Hence

S_ ~t (or2 + m'vrrz) XZ
5 2" [ gln-1)]
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‘E(s5) = [0‘Z + mvo‘g][g(n - 1)]

6. The distribution of 5¢ = M lY lFP4P4F 'Y! and its expectation are

the same as those for BIB Designs.
7. The distribution of S = ’Y'i:‘&_)Pif_)Yl and its expectation are the same

as those for BIB Designs.

-Z(r'—)\]_)]l/ZY'XlP Pl A'Y. We know

. . . 2
8. Distribution of sg = [m®k 23P 3,

= [mz'(r-)\l )] l/ZP' N

32
- ]' ! 14 1 1
Sg =k 7Y XIN P32P32A Y
Let
- 1
7 k™ X N P32P32A
Since A7 is not symmetric, we may write Y'A7Y = Z-IY '(A7 + AIZ)Y.

: -1 ! 1 -1 i : : :
Then since 4 (A, + A7)>Z(A7 + Al) £ 2 [A7 + A7], sg is not distributed
as xz variate, but as a linear combination of xz variates. That is,
sg ‘Zaix(zl) where a; are the non-zero characteristic roots of
-1 -
27 A+ A7)zl.

1

-1 t ! 1
E(s8) =k "Etr (Y'XlN P32P32A Y)
— -1 t ! i i
=k tr E(YY'XN'P_ PL AY
- -1 1 t 2 1 1
=k tr[X 1 1+X Xzo‘ +X3X3o‘ + o I]XlN P32P3ZA
=k ltrP' A'X X'X NP Z
327712 1 Z 2
-1 «1 =1 2

1

1 - 1 1 :
k “trP Z(rrnI m "k NN )NNP320‘2
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-1 3 _mlo3, 2
=k "tr[rm (r-)\l) k “m (r-)\l) ]Ig(n-.l)o-z

2
(n-1)72

i

k‘2m3(r—)\1)[rk -+ ] trIg

H

g(n-l)ma(r'-)\l)[rk -r Kl]k~2¢§

Regular GD~PBIB Designs.

In this section we shall derive the distributions and expectations
of the statistics in the minimal set of sufficient statistics that were found

for the regular group divisible partially balanced incomplete block de~

signs.
1. Distribution of S =Y. and its expectation will correspond to those
of slffbr','S’-‘%GD—PBIB Designs.
. . . - "1 ¥ 1 1
2. Distribution of 5, = (mk) Y X1P21P21X1Y
Let
A =(mk)“‘1XP Pl X1
1 1" 21" 2171
Then
A1A1 = A1
and
AJA = (mk)“ZX P,.P! XX Xie® + X X1e2 + X Xlol
17771 ma21r 2111 1 27272 37373

2o 1 1
+ ¢ 1]X, P, PL X!

_ -1, 2 2, 2 ot vt
= (mk) (¢ + mkeo 1\,+ mUB)X1P21P21X1

= (o'2 + mko‘2 + mo‘Z)A

1 3771

2 -1A . Then Y‘BIY ~ X 'Z(kl, )\1), where

2 2
Let B, = (o +mko'1+m0'3) 1

1
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k, = rank of B, = rank of A, =tr A :=tr(mk)"1XP P! X! =b~1t, and

1 1 1 1 PP a%)
21 | <, bkm
MR e X PP Xt G0 =0

Hence

2 2 2, 2
5, ~ (™ + mkey + m0'3) X (b-t)
2 2 2
E(SZ) = (b-t) (o + mkcrl + mo‘3)
. . . -1 ., .
3. The dlstrlbgtlon of s, = (mk) Y'X1P22P22X1'Y and its expectation
will correspond to those of S5 for S-GD-PBIB Designs.
TR - S . L il . :
4. The distribution of S4= (mk) Y;X1P23P23X1Y and its expectation
will correspond to those of Sy for SR-GD-PBIB Designs.
k

5. The distribution of s ~—— Y'AP, . PL A'Y and its expectation

57 \tm 31 31
will correspond to those of Sy for S-GD-PBIB D‘esigns.
“ly 'AP32P§2A 'Y and its expectation

will correspond to those of sg for SR-GD-PBIB Designs.

6. The distribution of s¢ = (mv)

7. The distribution of 5., = m™'Y'FP,P}F and its expectation will

correspond to those of S, for S-GD~PBIB Designs.

8. The distribution of sg = Y'PSP%Y and its expectation will correspond
to those of S5 for S-GD-PBIB Designs.

9. The distribution of g = [k‘z(rk—)\,zt)]l/zY 'Xlesz'ﬂA'Y and its

expectation will correspond to those of Sg for S-GD-PBIB Designs.

10. The distribution of sy, = [k‘z(r—xl)]l/z‘y 'X,P,,PL,A'Y and its

expectation will correspond to those of 58‘ for SR-G]j-PBIB Designs.



APPENDIX IV

Now we shall determine the pairwise independence of statistics in
the minimal set.

In order to determine pairwise independence, we shall make use
of the well known theorem:

If the bkm x 1 vector Z is distributed as the multivariate normal
with mean p and covariance matrix ¥ and if Zis Zps - - - s Z‘q are sub=

vectors of Z such that Z = (Zl’ Z c Zq)’ then a necessary and

AR
sufficient condition that the subvectors are jointly independent is that
all the sub-~matrices Zij (i # j) be equal to the null matrix.

In the balanced incomplete block design, we defined the vector Y

and transformed Y to Z by the relation Z = P'Y. Then

Z ~ MVN[P%, PZP].

We then formed a partition of Z into (ZI’ ZZ’ Z3, Z4, ZS’ Zé).
The form of PIP is as given in Table I and is the covariance matrix
of Z.

By making use of the above theorem, we have Zl’ ZZ’ ZS' Z6’ as
mutually independent and they are independent of Z3,and Z4 and that Z,

and Z4 are not independent. We can have the following relationship.

V)
"
N

101
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3 373
sg = 24‘124
S¢ = Z;_)Z5
S, = Zézé
S4 = Z%)Z4

Hence we conclude that the statistics in the minimal set of sufficient
statistics are pairwise independent except for the pairs (s3, 54), (s3, 55)

and (54, 55).

The Singular, Group Divisible PBIB Design.

Following the procedure given in previous section and examining

Table XIII, we have the results as stated in Corollary 2. 3.

The Semi=-Regular, Group Divisible PBIB Design. .

Following a procedure similar to that of the first section and examin~-

ing Table X, we have the results as stated in Corollary 3. 3.

The Regular, Group Divisible PBIB Design.

Again following the procedure of the first section and examining

Table XII, we have the results as stated in Corollary 4. 3.



APPENDIX V

In what follows we shall try to associate each of the statistics in

the minimal set with block-treatment and interaction sum of squares.

1 s... This statistic is the mean of all observations in the vector Y
1
and is the unbiased estimate of p.

(2) S5 = [km3(r-—)\)]—]'Y’X1N‘P3P§NX{Y. The quantity NX{Y isatxl

vector of elements Tj (say) where Tj is the total of all blocks containing

treatment j. P3P3f can be replaced by (I ~ t-]'J). Making this substitu=

tion, we have

s, = [km3(r-x)]'1Y X NI - t“lJ)lelY
_Y 3. -1 t 1 1 =l t !
= [km (r-N)] T [Y X NINX[Y - t7 ¥ 'X NINKIY]
= [km (r-N)] "= sz - tTHkY. . )7
- [km3(r-x>]‘1z(crj - T.)?
~1 1 .
where T. =t ZT.and Y... =J,. Y.
j bkm
k ; : -1
(3) S5 = o Y‘AP3PéA'Y, If we replace P3Pé by I -t °J, we have
K o, -1 k
T —— T = 1 L, 1 1
S5 = o VAL = tTIAY = e YIAAYY
Consider A'Y = (X"Z - m-lkulNXl‘)Y. This we shall denote by Qj 's and

it has the same conventionally known interpretation as we have one

103
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observation per cell. Therefore,

Kk oo 2
55 % Tm = 2
(4) s, =m"Y'P,FF'P,Y. The way in which we have picked P,

assures us that s6 = m'.1

Y'FF'Y. This is true since le is bk=b-t+l x bk
orthogonal vectors of the bk x bk orthogonal matrix which diagonalizes
the idempotent matrix m-lF 'F which has rank bk-b-t+l. Let us call this

orthogonal matrix 0. Let

or=| 4
1
Py
where P"1 is bk=b-t+l x bk and leﬂ is b¥t-1l x bk orthogonal vectors.
Since
I ko ¢
0'm 1F’FO bkeb=t+l
¢ ¢
we have
m”lpt FIFP . = ¢
41 41
Therefore,
-1, IV = =l - 1 IV o~ = lvr !
m YFP4P4F Y = m “Y'WF[I P41P41F Y=m Y'FF'Y
If we substitute
—1 — L] - .t - —
F'=X,-m 'k 1M'X1' - m L - m TN (x g
- rn-'lk—l

1
NX})
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then

m Yy ERrY = Y'[fn'lx3x§ - m T x x k

X1 - wemAA1Y

But the right hand side is the interaction sum of squares as shown below.
2
Y

Rlp, 7, B> (B1)] = ~ mi— H Wher‘e Yij' = 2y,

ij ij k ijk

=1 ...]_b K t .
R[Ha 'T»ﬁ]— m k ZYl + —):E-—-—ZQ 3 whereYi. = Z 2Zvy.
i=] j:

ik ijk

Therefore,

I

R(BT|ps 74 B =Rlps 7, 8, (BT)] = R(ps 7, 8)

v.2 b v
U .omht sy, - K zq?
n i=1 NP e

!
™M

1"11 oL k 1 '
YX1X1Y —)\—t—YAAY

-1 t 1
m YX3X3Y

m Yy FFY

11

Therefore,

)"‘1 t 1 o=lo=lo N k : 1
m YX3X3Y-m k YX1X1Y »Xt——YAAY

it

%6

bk -1
[z:c -k ZB-———ZQ]
n=l ° i=1

where C is the n-th element of XéY.

(5) = YP5P5Y " In view of the above arguments we can infer that

84 is the intra=-block error.
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