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CHAPTER I 

INTRODUCTION 

Within the past few years.;- several new approaches to mathema-

tics instruction at the high school level have been proposed. Probably,;. 

the best single representative of the many proposals comes from the 

School Mathematics Study Group in the form of sample textbooks. Due 

to the magnitude of the project undertaken by the School Mathematics 

Study Group., that of developing., testing and revising sample textbooks 

for high school mathematics., and because of the size~ quality and in-

fluence of the membership.,, the sample textbooks can be expected to 

be of considerable influence on the secondary mathematics curriculum 

of the future. 

The topic of limits is vital in mathematics and a necessary con-

sideration in the teaching of mathematics at the secondary school 

level. The treatment of the theory of limits remains a controversial 

topic and one which is generally omitted by textbooks even though . . 

teachers and mathematicians are aware of the si~nificance of this 

topic to the high school mathematics curriculum.. Because of the im-

portance of this topic and this set of textbooks_. the writer e_lected to 

study the limit concept relative to the School Mathematics Study Group 1s 

revised sample textbooks. 

Introduction To The School Mathematics Study Group 

The School Mathematics Study Group (henceforth called the 

1 



2 

SMSG) was organized in the Spring of 1958 under the directorship of 

Professor E. G. Begle. The group includes outstanding mathemati-

cians from colleges and univers:Uies, teachers of ma.thematics at all 

levels, experts in education, and representatives of science and tech·-

nology. Among these members are found representatives from many 

organizations concerned with the improvement of mathematics in our 

schools such as the Secondary School Curriculum Committee of the 

National Council of Teachers of Mathematics, the University of 

Illinois Committee on School Mathematics, the Commission on Mathe·-

matics of the College Entrance Examination Board, and the University 

of Maryland Mathematics Project ( @'f) > pp. 454-59). 

Organization of this group began in 1958 at Yale University 

under the directorship of Professor E. G. Begle. Members of this 

group organized into writing teams and met in the summer of 1959 at 

the University of Colorado and at the University of Michigan~ Their 

purpose was 

to develop a curriculum and teaching materials based 
upon the best available knowledge of mathematics, 
pedagogy,, and the needs of our society~ ( [1], p. 616.) 

As a result of this meeting,. sample textbooks were published and dis·-

tr:ibuted dur:ing the years of 1959 and 1960. After these were tested 

by about 100 teachers and 8,, 500 students, the group met again in the 

summer of 1960 at Stanford University to revise the textbooks ( [57] ,. 

pp. 454-59). These revised sample textbooks were considered in this 

study. 

Need for the Study 

At the present time some mathematics educators agree that 
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topics on limits should be included in the secondary school mathema-

tics curriculum.. The Third Annual Symposium on Engineering Mathe-

matics was attended by approximately 280 persons who were primarily 

teachers of high school mathematics and college instructors of mathe-

matics. At this meeting a questionnaire that was given to each indi-

vidual included the following items: 

14. Check those topics in the following list that you 
feel should definitely be taught regularly in the college 
preparatory program in high school. 

a. inequalities g. determinants 
b. absolute value h. group theory 
c. algebra of sets i. field theory 
d. limit concept j. differential calculus 
e. vectors k. statistics 
f. probability l . integral calculus 
( [) OJ ,, pp . 114. ) 

Item d" limit concept,, was selected by 57% of the college teachers and 

80% of the high school teachers, giving a combined total of 73%. These 

percentages are 'below the ones for items a, b,, C; and e, of which a., 

inequalities, and b, absolute value, are not new to the curriculum 

( [s Q] I pp • 113 •• 18 ) . 

The Commission on Mathematics of the College Entrance Exam-

ination Board includes the study of limits in their proposed program of 

study for both the eleventh and twelfth grades. They state that the 

notion of limit is one of the most important ideas in all mathematics 

( [10] , p. 64). 

An intuitive study of limits is included in the revised sample 

textbooks of the SMSG. In order that merits and correctness of this 

approach could be more fully considered; an analytical investigation 

and rigorous treatment of those discussions and arguments that in-

volve a limit were needed. These books use such terminology as 
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"approaches," "close.," "sufficien tly small.," "large enough." This 

approach t o the teaching of the limit concept should not be the only one 

considered. 

The ( E., 6 ) -definition of limit is the result of more than 
a hundred years of trial and error~ and embodies in a 
few words the result of persistent effort to put this con
cept on a sound mathematical basis. Only by limiting 
processes can the fundamental notions of the calculus
derivat ive and integral-be defined. But a clear under
standing and a precise definition of limits had long been 
blocked by an apparently insurmountable difficulty · · · . 
The problem was to attach a precise mathematica· mean
ing t o the idea that f(x) " tends to" or "a_pproaches II a 
fix ed value a s x moves toward x 1. ( [}.2J , p. 305. ) 

This thes :· s, therefore., provides an opportunity for the follow-

ing groups of individuals to gain experi ence in conjunction with and :in 

addition to that provided by the revised sampl e textbooks: 

1. Authors of Textbooks. It has l ong been recogni zed that treatments 

of the limit c oncept have b een inadequat e in secondary school 

mat hematics. 

It is greatly to be desired that our t extbook writers 
and the teachers who use them have a proper concep
tion of this fundamental notion. ( [5~ , p. 202.) 

This s tudy provides authors with a brief r :lgorous interpretation of 

the di scuss ions that utilize a iimit in order that they can more 

quickl y and more surely dec i de on the amount of r i gor they con-

s i der t o be pedagogically desirable as content for a t extbook Jn 

high school mathematics. 

2. Teachers of Mathematics. Kenneth E. Brown of the United States 

Office of Education provides evidence which implies that a great 

many teachers in secondary school mathematics may lack the 

training that would lead to a thorough understanding of the conc ept 

of a limit. This conc' usion is drawn from the numbers of teachers 
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reported to have less than thirty credit hours,, no recent courses,, or 

no graduate credit in college mathematics ( I}>] :I' pp. 7-8). For any 

teacher in this categoryi> the need is great to gain a good understand-

ing of the limit processes that are found in the sample textbooks . 

. . . for how can one teach what he doe·s not know? 
By mastery I mean more that the ability to perform. 
In addition .. I mean that the teacher must know under 
what conditions the concept .. or process,. or theorem 
or formula can be applied. Further,. I believe that 
the teacher must know the genesis of what he teaches .. 
especially when there is deductive basis for the 
11what. 11 ( [2{! , p. 28.) 

3. Students of Mathematics. The availability of material such as· 

that found in this study can greatly assist those academically 

talented or keenly interested students who desire more than an 

intuitive demonstration .. 

Alsoi> there are those who say,, "Calculus is a proper high school 

subject" ( 0.6] it p. 451). J[f th.is hypothesis is accepted1 it w.ould 

indicate a need for the concept of a limit to be taught. 

The concepts of a limit and an infinitesimal and the 
application of these c:oncepts are vital to an under
standing of the calculus and a.re indeed the foundation 
stones upon which the calculus is built. ( [BJ .. p. 587.) 

Sta.tement of the Problem 

How can a rigorous treatment of the limit processes that are 

used in the revised sample textbooks of the School Mathematics Study 

Group be embedded into the mathematical structure of these books? 

In order to answer this question the following sub-problems had to be 

satisfactorily solved: 

1. The topics that involve arguments depending upon a limit 

process had to be identified. 
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2. The remaining topics and their relationship to these argu-

ments that involve limits had .to be noted. 

3. Finally~ mathematically rigorous treatments had to be 

presented, using only those concepts and processes which 

the textbooks have previously presented. 

If, however, the order of topics was found to be inadequate 

for the above stated task to be completed,. a reordering of the topics 

was to be given. Then within this new order the aforementioned tasks 

were to be completed. 

Purpose 

The purpose of this study was to devise an alternate approach 

to the concept of a limit as it appears in the revised sample textbooks 

of the SMSG. The objective was to provide an analysis and a resolu-

tion of the difficulties involved in presenting rigorous arguments in 

place of the intuitive arguments. Thereby the aspects of the concept 

of a limit could be more completely considered and the implications 

of the sample textbooks could be more broadly extended. 

Theoretical Framework 

Because of the influence of the SMSG" the sample textbooks 

that have been produced can be considered as an important contr:Um-

tion to the secondary school mathematics curriculum. However, the 

point of view expressed in these textbooks should not be considered the 

only approach to good mathematics. It is stated in the Foreword to 

Part 1 of each textbook: 

It is not intended that this book be regarded as the only 
definitive way of presenting good mathematics to stu
dents at this level. Instead, it should be thought of as 



a sample of the kind of improved curriculum that we 
need and as a source of suggestions for the authors 
of commercial textbooks. ( ~~ , Foreword.) 

The topics that use a limit process in these textbooks are 

generally treated in an intuitive manner without using a definition of 

a limit. In support of this position the Commentary for Teachers 

urges that the words "limit" and "approaches" not be used when dis-

cussing the tangent to a curve ( ~~ , p. 65). 

However, a contradictory point of view is expressed by Lehi 

T. Smith based upon a study completed in 1959. Smith gave an 

objective test of limit problems t o two groups of students in grades 

seven through twe_ve. One group had received three class hours of 

instruction on limits whereas the other group had not. On the basis 

of the results of his study, he is prompted to conclude: 

Since evidence indicates tha1: junior- s enior high school 
students can profit from experience with limits, rea
son dictates that the concept of limits be formally dis
cussed in presentations of those topics which require 
a concept of limits for full understanding. ( ~al , p. 59. ) 

In regard to those topics of the high school curriculum that involve 

limits, Smith says: 

They need to be identified a.s limit situations and the 
characteristics of these situations which make them 
problems of limits need to be discussed. Only through 
this suggested approach will full understand:i.ng of 
these topics be achieved. ( ~~ , p. 59.) 

7 

The questi on of how t o treat the concept of a limit, however, 

remains an unsettled question. Howard F. Fehr suggests the follow

. ing questions should be answered before reform can take place in 

mathematics education: 

To what extent can we be more than intuitive and short 
of rigorous in our presentation? The following ques
tions suggest themselves for consideration. 



a. ) What treatment should be given to limits and 
continuity? Are e: and 6 methods appropriate? 
What degree of rigor is necessary? ( [J~ "' p. 429.) 

8 

One point of view concerning rigor is expressed by Morris Kline. 

Regarding the development of the irrational numbers which utilizes the 

concept of a limit,. he skeptically queries: 

If it took mathematicians so long to arrive at the 
logical concept of an irrational number,. can we 
believe that young people will appreciate it at 
one e ? ( ~ ~ ,. p . 42 2 . ) 

/c 

Continuing his discussion he indicates the opfaion that rigor "does 

little good;" has accomplished nothing except "that the mathematicians 

salved their consciences;" requires a "capacity to appreciate ... ~haTI 

must be developed; 11 and possesses a meaning which is in itself con

troversial C [?!TI ~ p. 422-23). 

In an article directed as a reply to Kline,. Albert E. Meder;; Jr. 

quotes Kline as having said: 

Of course the level of rigor must suit the age and 
maturity of the student. But this does not mean to 
dispense with it entirely. I think you have missed 
the point on logic. Actually it is not lost on young 
people. My experience has been that they lap it up. 
( @3] , p. 431.) 

An amount of agreement with this endorsement of rigor is expressed 

by Edwin E. Moise)' a member of the School Mathematics Study 

Group: 

In high school teaching" rigor ought to take the form 
of disclosure,. the form of candor. Rigor is saying 
what you really mean. I think it is a mistake to 
suppose that this always makes things harder for the 
student. C [_3~ ,. p. 439.) 

These seemingly controversial points of view have important 

significance to the secondary school mathematics curriculum and 

especially to this specific study. 



Such differences of opinion stem largely from dif
ferences both in mathematical interest and in educa
tional outlook. It i s neither possible nor desirable to 
terminate these controversies. Our educational 
system can benefit by vigorous debate and by diverse 
experimenta l studies t ending to resolve some of the 
point s at issue. A great deal of hard work,. bold ex
perimentation,. and thoughtful study will indeed be 
needed t o clarify the p icture of what we should and 
can do by way of curricular reform. ( [9] , p. 69.) 

Review of Related Research 

9 

Research regarding the limit concept as a topic of secondary 

school mathematics has been very rare.. Only in recent years have 

scientific studies been conducted and reported on this subject. 

Arthur H. Steinbrenner completed a study in 1955 that was 

an analysis of historical development and existing practices in teach-

ing cont inuity. The re ation of his study to this one i s inferred by his 

statement: "Two concepts fundamental to an understanding of mathe

mat ical continuit y are limits and irrational numb ers " ( [}li] ., p. 12 ). 

He found that the im it concept was not adequately presented in secon-

dary s chool mathematics textbooks and that di scussion of a lim it wa s 

generally omitt ed ( ~!ii ., pp. 78-1 18). 

From 1955 through 1960, only one other doctoral study had 

been c ompl eted concerning the c oncept of a limit. This study by 

Smith was cited above. 

Definitions of Terms 

1. A "limit proc ess" refers to the means by which a number or set 

of numbers i s defined or shown to be the limit of a sequence., or 

functi on. This als o can be called a " limiting process. " (It 

seems t o this writer that calling the proc ess of finding a limit a 
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limiting process connotes that it is the process itself that reaches 

a limit. This is similar to calling the process of finding the sum 

of two numbers a numbering process. ) Topics in the textbooks 

that include limits or a limit process are called "limit topics .. " 

2. A "concept" of a limit is composed of the terms and logical struc

ture of the definitions and theorems of a limit .. the definitions and 

theorems themselves,, and of problems relating to these .. 

3. A "mathematical structure 11 is a pattern or particular organization 

of definitions., assumptions and theorems<> and their logical inter

relationships. 

4. There are many levels of rigor in mathematics and philosophy and 

hence;11c many definitions of the word 11rigorous. 11 The word rigo

rous when used in this study refers to that level which is accepted 

in elementary analysis. It requires that assumptions)c definitions 

and theorems be explicitly stated and that theorems be justified by 

previously stated assumptions,, definitions and theorems. 

5. A definition~ postulate,. or proof is said to be "embedded" into a 

mathematical structure if its component parts are shown to be 

established topics in keeping with an established order of topics of 

the mathematical structure. 

Hypotheses 

The hypotheses of this study were: 

1. The structure of the textbooks is adequate to allow a rigorous treat

ment of those discussions and arguments that involve limits to be 

embedded into the structure without a reordering of the topics. 

2. The arguments, intuitive or otherwise, that use a limit process are 
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logically correct when interpreted into rigorous mathematical de-

finitions, postulates, and proofs. 

3. The valid treatments of the limit topics deviate to a considerable 

degree from those found in college calculus textbooks. 

Assumptions 

The assumptions for this study were: 

1. Mathematically rigorous treatment of topics is a necessary conside-

ration in the development of and a continuously significant factor in 

a modern curriculum in mathematics. 

2. The revised sample textbooks of the SMSG are an adequate source 

for those topics that are necessary in a good secondary school ma-

thematics program. 

3. Even though the conventional "(€, 6 )-notation" is used, the implica

tion of this study pertains to most other accepted treatments of the 

topics involving limits. 

. . . when it comes to checking the existence of a limit in 
actual scientific procedure it is the ( E, 6) -definition that 
must be applied. ( [li] , p. 306.) 

4. All limit processes actually used in the sample textbooks can be 

identified by phrases such as: sufficiently close, as close as we 

please, closer and closer, tends to, approaches" limiting value; 

if x or n is sufficiently small, small enough, close to zero, large 

enough,, sufficiently large, etc. 

5. A rigorous treatment of a concept should not be presented prior 

to an introduction to deductive reasoning and the nature of proof. 

Scope and Limitations 

Because of the writer's acquaintance with other works of the 
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SMSG, it was rea~ized that the scope of this study could have been 

greatly varied. These t exts include material tha t is commonly not men

tioned in c onventional textbooks~ such as the basic concepts of the cal

culus. Therefore. it was to b e expected that many topic s would be found 

in these books that would r equire advanced college mathematics to tr eat 

completely in a mathematically r igorous manner. 

Thus in or der t o focus this study on the secondary school 

mathematics curriculum some arguments and discussion of limits were 

omitted. The decis ion of what should a nd should not be treated a t each 

grade l evel was determined by the SMSG. In their revis ed sample text

books they s el ected those t opics to b e mentioned without proof or any 

type of substantiating argument, and they chose other t op ic s or sub

t opics t o be discussed or just.Hied by a se ected type of argument. This 

study was limited t o the top ics of the l atter category .. 

While this thesis is concerned with the presentation of a rigo

rous treatment of imits. it is not proposed that the proofs given in 

this thesis are the only ones that can b e made. Rather~ proofs are 

given and s ourc es of p r oofs are cited t o exhibit a particular argument 

by which the stat ed theorems or desired conclusions can be justifi ed. 

Although some a dvanced mathematics text books are given as r eferenc es , 

the write r is not suggesting that the pas sages cited are of extreme 

difficu ty. 

Whi e the c onc ern of this thesis is with the secondary school 

mathematic s curriculum. the t opic itself confines c onsiderations to 

the _ater grades. Although the limit concept is inherent in the develop

ment of the r eal numbers~ it is seldom mentioned prior t o the deduc 

tive study of geometry. Therefore. this study focuses its att ention on 
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the mathematics of high school grades nine through twelve. The revised 

sample textbooks for these grades consist of the following publications 

in the Mathematics for High Scb.ool series~ First Course in Algebra 

(3 parts);t Geometry (3 parts),, lntermediate Mathematics (3 partsh and 

Elementary Functions (2 parts). Also.,. associated with each part of 

each textbook is a Commentary for Teachers. that consists of answers 

to problems and additional remarks and discussions for teachers 

(see@~ through @,~ }. 

Henceforth(,. in the body of this thesis reference to these books 

will be made as exemplified by the following: 

is referred to as 

Likewise 

is referred to as 

M_athematics for High School 

First Course in Algebra (Part 1) 

Chapter a,, Section 4 

First Course in· Algebra ,. 3-4 

Mathematics for High School 

Geometry (Part~) 

Commentary for Teachers 

Chapter 3, Section 4 

Geometry~"" Commentary for Teachers; 3-4. 

If however$' reference is made to this teachersV commentary within the 

discussion entitled Geometry 2,1- 3-4, the reference is simply to the 

Commentary for Teachers. 



Procedure 

The revised sample textbooks of the SMSG were analyzed in 

order to determine the following: 

14 

l. The arguments which use a limit process.. They were identified by 

such phrases as: the function approaches;; the limiting value is" 

appruxirnately equal for la:rge enough x,. when x is sufficiently small" 

the function gets closer and closer;t the ~unction can be made as 

close as we please by choosing x close enough to a" and by similar 

sta. t~rn ents. 

2~ The arrangement of topics and the method of presentation in rela

tionship to the limit arguments. 

The concern of the study was then directed toward the problem 

of determining and presenting mathematically rigorous arguments that 

would be in keeping with the structure of the textbooks. 

1. The arguments and discussions that use limit processes were inter:.. 

preted into the terrq.inology of thE:l {E, 6 )-definition of a limit. For 

example, to say that "f(x) is as close as we please to the number L 

if x is sufficiently close to a~" or ''f(x) approaches L as x gets 

close to a,. 11 it was stated that "for every E > 0 ther_,e exists 

6 > 0 such that 

I f(x) -LI < E if O<lx-al <o." 

To say that "for x sufficiently large" or "for x large enough" that 

such and such happens it was stated that ''there exists N suq:h .that if 

x > N" then such and such happens. 

2. On the basis of these arguments and discussions, definitions~ 

postulates., and theorems were determined and used in the rigorous 

treatment of the presentations, 



3. The definitions, postulates:lii, and proofs of theorems were constantly 

compared with the structure in order to assure that any concept or 

process to be used had been previously presented. 

Organization of the Thesis 

The body of the thesis consists of two chapters devoted to the 

analysis and treatment of the limit processes found in the SMSG text

books, followed by Chapter N which contains the definitions and theo-

rems required in the treatment but not found in the analysis,.. and,, 

finally, by a summary of findings. Because limits were found more 

frequently and in greater detail in Elementary Functions than in the 

other textbooks, Chapter IH is devoted to Elementary Functions and 

Chapter III to the preceding textbooks. 

In Chapters TI and JIU~ theorems and definitions are numbered· 

according to chapter, section and order of occ1.1.rrence. This was found 

to be possible because, in the textbooks treatediP no two topics involv-

ing a limit were found to have the same chapter and section number. 

Thus., Theorem A5-1 7. 2 is the second theorem presented in the treat-

ment of the Appendix;. Chapter 5 Seetion 17. The following is a list of 

the topics in each textbook that are treated in this thesis>: 

. ' Geometry~ 15-3# 15-4, 15-fr~ 16-5. 

Intermediate Mathematics~ 1-8; l-9jc 1-10, 5-4:,, 6-5, 6-6, 

A9-l, A9-2, A9..:.3,. A9-4, A9-8; Al0-9, Al3-4, 

Al3-5, A13-6. 

Elementary Functions: 
• j 

2-3.tc 2-5; 3-1:;, 3-3, 3-4, 3,..5. ,3-11; 

A4-16.., A4-18iP A5-17. 
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The treatments given in Chapters !I and III usually refer to the 

textbooks for supporting statement!;!:~ Aeflili'tion~_. or theorems. How

ever., if a treatment requires a supporting definition or theorem that 

is not mentioned or inferred in the textbooks._ it will be given in Chap

ter IV.. Because other definitions and theorems of the report are num

bered by at least three digitsli no confusion results by numbering the 

entries in Chapter IV consecutively and by referring to them by their 

assigned number. 

Appendix A contains pertinent letters received by the writer 

in answer to specific questions pos.ed to members of the SMSG writing 

group and to other qualified mathematicians. Reference is given in the 

body of the report to the appropriate letter at that time when it is per

tinent to the material being presented. 

Summary 

The SMSG revised sample textbooks for high school mathema

tics were selected as a source of those topics that involve the concept 

of a limit and also as an example of a widely accepted presentat:ton of 

the topics. Each argument or discussion that involves a limit has been 

studied to determine assumptions, definitions,, and. theorems required 

by these presentations. Furthermore.;. a search has been made for a 

treatment of these presentations in which the required conditions are 

explicitly statedi and justified when necessary. Herein,are reported 

the results of this study. 



CHAPTER II 

THE LIMIT TOPICS FOUND IN FIRST COURSE IN ALGEBRA. 
---,- -~----' -l---- -----=--

GEOMETRY~ AND INTERMEDIATE MATHEMATICS 

Treated in this chapter are those courses which are convention-

ally a part of the high school mathematics curriculum. They include 

First Course in Algebra~ Geometry,. and Intermediate Mathematics. 

First Course in Algebra-General Introduction 

The importance of this textbook to the present study does not 

lie in the discussions that involve a limit concept. Rather,. these books 

offer a background of mathematical concepts to be used in subsequent 

topics. 

No discussion was found that involved the limit concept. Topics 

that indirectly pertain to this study were found to be the following: 

1. An introduction to the real numbers. This includes the fundamental 

properties of real numbers except for the Completeness Property. 

2. An introduction to Ix! and inequalities. 

3. An introduction to the co:q.cept of functions and the graph of a func-

tion. 

Geometry-General Introduction 

The use of limits in the study of elementary geometry is mini-

mized by the SMSG material. By using the Birkhoff approach and by 

carefully selecting postulates and definitions, many proofs that in con

ventional texts require a limit concept are avoided here ( ~fil $ p. 439). 

17 
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The prime example is found in what is commonly referred to 

as the "incommensurable case." In common high school textbooks 

used today and in the past;, consideration of incommensurable line seg

·ments is either with limits or it is omitted because limits are needed 

However,, in the SMSG Geometry course tne Distance Postulate 

(page 34), the Ruler Postulate (page 36);. the Ruler Placement Postu

late (page 40), the Angle Measurement Postulate (page 80)" the Angle 

Addition Postulate (page 81), and the Supplement Postulate (page 82) 

associate the real numbers with geometry. Therebyt proofs can be 

made using properties of real numbers and the consideration of incom

mensurable segments and angles can be avoided ( @:'U, p~ 86) .. 

Another topic of geometry that is frequently treated by a limit 

process i.s the area of a rectangle (for a typical argument see [7] ,, 

p. 182). In the SMSG Geometry the area of a rectangle, A = bh, is 

postulated (page 322). Then the area of a square is found as a special 

case of the area of a rectangle;; and again the need for a limit process 

is avoided. 

In presenting the basic concepts of solid geometry, Cavalierifs 

Principle is encountered (page 558). In conventional texts a limit pro-

cess is used to prove this theorem while in the SMSG text this princi

ple is postulated. 

Limits are not;, however" avoided completely. It will be point-

ed out below that the limit concept as well as the word itself is used in 

considering the measur-es associated with circles. 
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Geometry ~ 15- 3 

In this section the textbook introduces the notion of a limit. It 

is stated on page 526: "It seems reasonable to suppose that if you want 

to measure C [he circumference of a cir cl~ approximately~ you can do 

it by inscribing a regular polygon with a large n-qmber of sides and 

then measuring the perimeter [p] of the polygon." The paragraph 

continues with the definitional statement: "If we decide how close we 

want p to be to C, we ought to be able to get p this close to C merely by 

making n large enough . . . [we writ~ p ~ C and we say p approach-

es C as a limit. 11 

No dther discussion is given to define a limit; hence from the 

above statement the followi:q.g definition is drawn. 

Definition 15-3. 1. Let f Pnl be a sequence of numbers and c be a real 

number. The limit of fp l is C, lim p = C, if for every E > 0 there n5 n-+oo n . 

exist a natural number N such that if n > N, then 

I Pn - CI < E • 

This, the conventional (E. N) -definition of the limit of a se-

quence, would precede a discussion of sequences if presented here. 

Not until Intermediate Mathematics page 754 is the limit of a sequence 

discussed as a topic. Therefore, if the treatment of limits is to be 

done with rigor., a reordering of topics is needed at this point. 

The word limit is used to define the circumference of a circle 

as "the limit of perimeters of the inscribed regular polygons. " This 

statement is symbolized in the textbook by 

and in this thesis by 

p -4' c. 

limp =C. n-oo n 
(1) 
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{This symbol is used to avoid confusion later with the symbol for a func

tion.,) However, it should be noted that the textbook is tacitly assuming 

that this limit exists. No discussion whatsoever is given to sugg~st 

that this statement is even to be considered. Comments on this limit 

were obtained from Edwin E. Moise, and Walter Prenowitz,. members 

of the SMSG writing group ( [41] 5 p. 142) and from F. A. Sherk, 

Professor of Mathematics~ University of Toronto, and Merrill Shanks, 

Professor of Mathematics, Purdue University. The comments are re-

produced in Appendix A. 

Utilization of the limit definition of circles and also the Com-

!llentary for Teachers infer that a rigorous treatment of the succeeding 

topics will require a knowledge of sequences. Therefore, throughout 

the treatment of geometry given in this study it is assumed that Defini-

tion 15- 3. 1 and Theorems A 13-4. 1 through A13-4. 9 are available {see 

Intermediate Mathematics, Chapter 13). 

Using the above quoted definition of circumference, the text

book suggests on page 527 that 'lf be defined as the ratio i . 
To show that the ratio of i is constant for every circle, a limit is re-

c cv 
quired to prove 2r == 2r v where G, r and CI, r1 are the circumferences 

and radii of any two circles. The textbook adequately proves that 

where p and p I are the perimeters of regular n-gons inscribed in the 

respective circles. A limit argument is needed, as will be pointed out 

in the following theorem,. to justify the concluding remark "p ~ C) 

C C i ' 
by definition and p 1 ~ C 1, by definition. Therefore, r"" 7 ! 11 
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Theorem 15-3.1. If r~ r 1i> p $ p 1 are radii of ·circles and perimeters 
n n 

of inscribed regular n-gons respectively1- and if 

-r 

p I 
,n 
rt" # 

(2) 

C C 1 
then r "" r' where C and C' are the circumferences of the rel:lpective 

circles. 

Proof: By the uniqueness of limits, Theorem A13-4. lt and (2)t 

By Theorem A13-4 .. 3, 

Pn 
lira -
n.-oo r 

p ' = 1· n rf~ r'. 

1 1· 1 1· i - 1m p = -r, 1m p t r n-oo n n-oo n 

but lim p = C and lim p ' = C' by definition of circumference of n-oo n :q.-oo n 

· C C' a circle. Thereforet - = -, which was to be proved. r r• 
C The symbol 1r is then defin~d to be the common ratio 2r . 

Hence., C = 2·JTr. 

Geometry ~ 15'-4 

In a manner similar to that <;>f the preceding section~ area of a 

circle is defined on page 531 to be the "limit of the area's of the in

scribed regular polygons. Thus 

A ~ A" or lim A ::: A. 
n n-oo n 

Again the textbook tacitly assumes that this limit exists. The 

justification of the existence of this limit is a problem similar and re

lated to the existence of the limit of a sequenc~ of perimeters. It is 

not treated in this thesis except for comments from capable mathema-

ticians which are found in Appendix A. 

The textbook provides an argument to derive the formula 
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2 
71T The first consideration is to show na ~ r" which in the 

form of a theorem is: 

Theorem 15-4. 1. Lim a z:: r where a is the apothem of a regular · n~ n n 

n-gon inscribed in a circle of radius r. 

Proof: As hinted by the textbook the Pythagorean theorem can be used 

to express a. in terms of r and s , the length of a side of the inscribed 
n n 

n-gon. Hence, 

a 
n 

But, since p "' ns and lim p ;c: c, then lim ns ~ c. This im-n n n-+oo n n-oo n 

plies that lim s can be no number except O by Theorem 1. n-+oo n 

Therefore, Vr s 
1. 1. 2 ,.· 2n) 2 1ma :c: 1m r -\ 
n -oo n n -oo "" r 

by Theorems A13-4. 3, and A13-4. 5 and Theorem 2. 

(1) 

The second consideration of the argument is justification of a 

statement presented here as a. theorem. 

Theorem 15-4. 2. With a, p 1 r, and c defined as above, 

Proof: By {1) and Definition 15-3. 1 

li:m a :o: r and lim p :c: c. n-..oo n n-+oo n 

Therefore,, by Theorem A13-4. 5, 

and by Theorem A13-4. 3, 

Um a p "' re"' n-oo n n 

lim -21 a p = -21 re. n-oo n n 

This conclusion could be stated: lim A = A 
n"""OO n 

2 
= 7Tr • 
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Geometry ~ 15-5 

Continuing in the manner of the previous two sections# the 

length of an arc is defined here as a limit. It is suggested that an arc 

AB of a circle with center Q be partitioned by points A, P 11 P 2, • · • 

P n _ p B such that the angle between successive points be ,J:;_. mAB. 

The length of arc AB is then defined to be "the limit of AP1 + P 1P 2 + 

· · · + P 1B as we taken larger and larger." 
n -

Here again# as in the previous two sectionsi the textbook tacitly 

assumes that such a limit exists. In addition to those references pre-

viously cited a discussion of the existence of this limit can be found in 

Johnson and Kiokemeister 1s Calculus ( [?~ 1 pp. 234-35). 

Geometry~ 16-5 

This section is concerned with the volume and surface area o.f a 

sphere. It is proved by Cavalieri's Principle that the volume of a 

sphere is j 1rr3; then this formula and the notion of a limit are used 

to derive a formula for the surface area. 

On page 571 the following argument is given: "Given a sphere 

of radius r,. form a slightly larger sphere of l?adius r + h. 11 This 

forms a shell of thickness h whose volume can be computed and called 

I V II d V. It is suggested that surface area is 'approximately, S :::i h .,. an 

"as h gets smaller and smaller, we have 

V ..... II h -:?'' s. 

This discussion infers that h and V are both continuous var-

iables. Because limits of sequences have been assumed,. a restric-

tion is placed here on the values of h. Henceforth;, let it be under-
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·stood that h ·~ ~ where n is a positive integer. 

Although a definition of S is suggested by the Commentary 

for Teachers on page 448• none is made in the textbook. Therefore., 

for the purposes of this study., the following definition iE;i given: 

Definition 16-5. L 
1 . 

If V and - are the volume and thickness of a . n 

spherical shell of inner radius r" then 

S = lim nV n-oo J 

where S is called the surface area of the sphere of radius r. 

The textbook finds that the ratio of ~ t which is nV if ~ = h"' 

4 2 1 1 2 
nV :: 3 1r (3r + 3r(n) + (n) ). 

Now,. by Theorem A13-4. 4 and because lim .! ::: 0., it follows that n....+oo .n 

lim nV = 41rr2 m S. n-oo 

The definition given above can be generalized or similar defini-

tions can be given to find the surface area of a right circular cylinder 

and cone. Problem 11 page 573 is to find the surface area of a right 

circular cylinder., and the Commentary for Teachers on page 450 out

lines an approach to finding the surface area of a right circular cone. 

Intermediate Mathematics-General Introduction 

This textbook includes topics from conventional high school 

and college algebra and plane trigonometry .. 

Limits are to be found in the discussion of properties of the real 

numbers and related topics such as the development of the logarithmic 

and exponential functions. Also;; as was mentioned previously• limits 

of sequences are discussed in the latter part of this textbook. 
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Intermediate Mathematics..!_,. 1-8 

Although there are no statements that resemble a discussion of 

the limit concept in this section.,. it does involve infinite decimals. Be

cause infinite decimals and the development of real numbers are depen

dent upon the limit concept,. this section was analyzed. 

To this point~ the textbook has discussed special properties of 

rational numbers in preparation for an introduction to the development 

of the real number system. On page 69,. however,. discussion is given 

which is premature. · It is suggested that "each repeating decimal ex

pression represents a rational number .• " The proof of the statement 

is exemplified by an accompanying example which requires that 

(103) (0. 123) = 123. 123 

(. ab means • abababab ... ab ... ). 

(1) 

If the discussion cited above is to be independent of the proper-

ties of the real number system,. then it does not justify the statement 

to be proved. Consider the example; if it is not known that 1. 12 3 is a 

rational number then the product of this number by a rational number 

is yet to be defined. Hence,. the argument has assumed the repeating 

decimal to be a rational number. This discussion would be valid if it 

were known that 0. 123 is a real number and that the product of two real 

numbers is as stated in (1 ). 

Intermediate Mathematics .1:_,. 1-9 

The system of real numbers is introduced in this section by 

a discussion of their development and a statement of basic properties. 

Again,as in the previous section# the relevance of this section to the 

present study is through the real number system. The concept of a 
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limit and infinite se·quences can be used to develop the real numbers 

from the rationals as is done in Goffmann's Real Functions ( I}~ > 

pp. 28-4l)t and Thurston"s The Number-System @4] • 

The last of the basic properties n o7 (R )" (hereafter called the 

Completeness Property) is necessary for the considerations of this 

study and is therefore stated below in slightly different form. 

Completeness Property. If fan) and(bJ are two sequences of :r,:eal num

bers with the properties · 

(i) 

(ii) 

(iii) 

(iv) 

< ,• .. 
-1 

< a < n 

> b > .n -

a < b ,. for every natural number nt 
n - n 

lim (b -a) rt O 
n-co n n 

then there is one and only one real number c such that a < c < b n- - n 

for every natural number n ( ~OJ,.. p. 95). 

The textbook states for property (iv): 

"b - a < - 1- ,1 for every natural number n." 
n n 10n 

This statement is i.nadequa.te as exemplified by the following example: 

Consider 

Now properties (i)., (ii), and (iii) are satisfied but 

b - a 
n n 

and property (iv) as stated by the textbook fails. However, for every 

natural number N there exists a natural number n"' (2)10N such that 

b - a < - 1-n n 10N 
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which is equivalent to the statement 

lim (b - a ) = 0. n-+oo n n 

In order that the discussions involving limits in Geometry 

could be treated,, the-properties of sequences and limits of S'equences 

had to be assumed. Likewise, from this point on through Intermediate 

Mathematics the definitions and the-orems concerning sequences and 

limits of sequences are required. Therefore., the definitions and theo-

rems to be found in the treatment of limits of sequences (Intermediate 

Mathematics ~ Chapter 13) will be cited throughout the treatment of 

Intermediate Mathematics. 

Intermediate Mathematics ~ 1-10 

As an example of the properties of the real numbers that are 

not shared by the rational numbers .. the solution of xn = a is discua-

sed. In regard to these properties the .Commentary for Teachers on 

page 51 states: "The real number system is a system 1closed 1 under 

limiting processes." Because no discussion is given of limits in the 

textbook., this topic is not treated in this study. However,, more infor-

mation about the Completeness Property can be found in many college 

textbooks ( Q.2] ., pp. 68-72,. [50] ., pp. 89-95., [}a] ., p. 41., 1]5{] ,. 

pp. 29-33). 

Intermediate Mathematics 1,. 6-4 

Reference is given in this section to "limiting forms" of conic 

sections. Because the meaning of this term is vague,. and because 

specific examples of the conic sections are considered in the next sec-

tion,. it is the next section .that is treated in this thesis. 
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Intermediate Mathematics I., 6-5 

The reference to 11 limiting form" is given on page 336 where it 

is stated that a circle is a limiting form of an ellipse because "If e is 

very close to O, b = a \j 1 - e 2 is very close to a. In fact .. · the 

ellipse becomes more and more like a circle; so that the circle is a 

limiting form of an ellipse." At this point, if the discussion is to be 

verified as follows, Definition 1 and Theorems 3 through 12 are 

required. The ellipse under discussion is 

{1) 

By Theorems 8, 4> 10, and 12, it follows that 

Therefore, ki.!Po b = a and equation (1)"' if b = a, would become 

2 2 
;+~=1. 
a a 

which is the equation of a circle. 

Intermediate Mathematics ~ 6-6 

In regard to the asymptotes of a hyperbola it is stated on page 

345 that "the curve gets closer and closer to these lines [§.symptoteaj 

as x increases." This statement could not be adequate as a definition 

1 of asymptote. Consider as an example y = x for x > O. The graph 

gets "closer and closer" to the lines y = -1, x = -2, but these lines 

are not asymptotes (see Figure 1). 
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I 
y 

I \ I 
I 
I 1 
1x - -2 y ~ -

X 

I 
I 
I 
I 

X 

I 
_. ___ J__ y = -1 

I 

Figure 1. 

However, the statement quoted above suggests the notion of a 

limit in defining an asymptote of a hyperbola. Therefore, the following 

definitions are given: 

Definition 6-6. 1. The linear equation y ::: g(x) is that of a non-

vertical asymptote of the fµnction defined by y = f(x) if 

Definition 6-6.2. The linear equation x ·"' k is that of a vertical 

asymptote of the function defined by y = f(x) if 

lim . f (x) "' + oo or lim f (x) = + oo . 
x-k+ · - x-+k-

These definitions involve the limit of functions. Such limits are 

defined and theorems are g:iven :in Chapter IV. 

Under these definitions the statement, "If we take large values 

for x, then y in the first quadrant i.s nearly equal to ~x, II suggests the 

following theorem: 

Theorem 6-6. 1. If the equation of a hyperbola i.s 
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2 2 

~ ~ = 1,. 

b then y :: -x and y -a 
-E.x are the equations of the asymptotes of the a 

hyperbola. 

Proof: To use Definition 6-6. 1 consider 

Now 

and 

f(x) = ~~ x 2 - a 2 and F{x) 

z a - X) b - -a 

2 -a 

2 
- a + X 

by Theorems13 through 18 .. Therefore,. 

2 -a 

2 
a 

2 
- a + X 

= 0 

So if y = f{x) is the equation of the part of the hyperbola which lies in 

the first and second quadrants,. then by Definition 6-6. 1 y = ~x is the 

equation of the asymptote to the hyperbola in the first quadrant. A 

similar argument implies that y = E-x is the equation of the asymptote 
a 

of the hyperbola in the third quadrant and y = - ~x is the equation of 

the asymptote of hyperbola in the second and fourth quadrants. 

Definition 6-6. 2 can be used to determine the vertical asymp-

tote of the hyperbola yx = k. k 
The equation,., written y "" x' shows 

the asymptote to be x O Oby Theorems 19 and 20. 



31 

Intermediate Mathematics 21 A9- l 

Chapter 9 of the Appendix to Intermediate Mathematics ~ is de-

voted to a discussion of logarithms and exponents.. This first section,, 

on page 455., suggests that the area of "the shaded region be used to 

define • • · the new ~ogarith~ function" (see Figure 2 ). 

y 

0 1 

k 
y = -

X 

Figure 2. 

X X 

It must be noted that area has not been defined for figures not 

previously considered in geometry. Therefore,. the discussion to fol-

low in the textbook and hence in this thesis is based upon the students 

intuitive notion of area and visual analysis of the pictures. A rigorous 

approach to this same topic in which the integral is used to define area 

can be found in calculus texts such as those by Thomas ( @~ ,, pp. 287-

296) and Taylor ( @1] "pp. 301-314). 

Intermediate Mathematics ~~ A9-2 

On page 471 the concept of area under a curve is hinted to be 

a limit process. Rectangles are used by the textbook to estimate the 

area under the curve.. Jn regard to the rectangles it is stated: "If a 

large number of rectangles is used* the sum of their areas is very 

close to the area under the curve." 
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Because area has been defined in terms of the students visual 

interpretation of the pictures,. it must be assumed that this statement 

is to be accepted on the same basis.· Otherwise# a development of 

integral calculus would need to be presented where there is no discus-

sion in the textbook that could be interpreted to give such a develop-

ment. 

Intermediate Mathematics~). A9-3 

In the discussion of the properties of the logarithm function.,. 

on page 477 it is said to have a graph that is a "continuous curve." 

The only explanation given for this term is that it "follows from the 

fact that the graph has no breaks or jumps in it." The limit definition 

of continuity is ~iven in Chapter 'IV. Using the intuitive concept of 

area and Definition 2 of continuity the continuity of the lograithm func-

tion can be proved as a theorem .. 

Theorem A9-3. 1. The logarithm function is continuous. 

Proof: Considering the assumed definition that ln x (loge x ::: ln x ) 

is the area above the x-axis under the graph of y c ~ between x c 1 

and a fixed value x > lt it follows by visual analysis of Figure 3 that 

if x> 1 and lh I< x - 1"' then 

1-1~ (x + h) - ln x I' < !hi ~ • 

or 

[ ln (x + h) - ln x \ < I h I x ! h • 
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y ·-

1 -
X 

1 
x+h 
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1 
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y 

1 
x+h 

1 
X 
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Figure 3 

In either case~ for- every E > 0 there exists 

1 
y = 

X 

o = min (x ; 1 ~ 1 ~ E) > 0 such that if O < !hi < o ~ then 

and !hi 
X + h X - 0 

< 0 
X - 0 ~ 

or 

j ln (x + h) £. -ln x I < E • 
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Hence, rt!:m ln (x + h) = ln x by Definition 1. Therefore_" by Defini

tion 2 and Theorem 23» the function defined by y = ln x is continuous 

for X > 1. 

Now consider x = 1 and h > 0 in the left hand graph of Figure 

3. Using again the assumed concept of area;-c it follows that 
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\ln (1 + h) - ln 1\ < !h[ for everyh ~ O. 

Hence.,. by Definition 1.,. 

J~+ ln (1 + h) c ln 1 = O. (1) 

For x c 1 and -1 < h < 0 write 

lim ln (1 + h) = lilim (- ln l+lh ). h-o- -o- · 

Note that if -1 < h < 0 then 1;h > 1 and the furi.ction defined 

by y = ln l!h for 1!h > 1 is continuous. Therefore.,. by Theorems 

24 ~nd 7 it follows that 

lim ln r1 + h) = lii..+o- \ 
1 

-ln lim 1 h .,. 
h-o- + 

and by Theorems 8 and 11 that 

lim ln (1 + h) = -ln 1 = O. h-+o- . 
(2) 

Therefore,. by Theorem 25;, (1) and (2) combine to give 

lilim ln (1 + h) = ln 1;,, 
-o 

so the function defined by y = ln x is continuous at x = 1. 

Finally.,. to show the function defined by y = ln x is continuous · 

for O < x < 1 use again ln x = -ln ~ • Note that if O < x < 1 ... then 

..!:. > 1 and the function defined by y = ln ..!. is continuous for every 
X X 

J > 1. Therefore.,. as in the preceding paragraph.,. if O <: a < 1 

lim ln x c lim ' - ln ..!:. ) = -ln ..!:. ::: ln a. x-a x-a \ x a 

Hence,. by Definitions 2 and 3 it follows now that the function defined by 

y ::: ln X is COntinUOUS for every O < X < 1. 

This completes the proof because every x > 0 has been consi-

dered and the function has been proved continuous in each case. 
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In general, y :: log·. x defines a continuous function. Because a . 

. ln X 
log X "" -1-- ;1, a n a 

it follows by Definition 2 and Theorem 11 that the function defined by 

y = log x is continuous for every x > 0 when a is any positive p.um-a . 

ber. 

Also;1, on page 477 an "important consequence of this property" 

of continuity is given: If x 1 < x 2 and c is any number such that 

log x 1 < c < log x 2,, then there is a number x 0 such that x 1 < x 0 < x 2 

and log x 0 = c. 11 Because this statement is discussed later under the 

special name "The Location Theorem1 " no treatment is given at this 

point in this thesis (see Elementary Functions ..!_1 page 59). 

Intermediate Mathematics !j A9-4 

In this section the properties of the logarithmic function are 

extended and reviewed. In addition to the references to continuity and 

asymptotes the notion of a limit is used in a new way. 

On page 485 it is stated that as. "x increases without limit1 y 

also increases without limit on the graph of y = log x." From the 

accompanying discussion the following definition is drawn for tp.is 

statement: 

Definition A9-4. 1. A function defined by y n f(x) is said to have a 

graph that increases without limit as x increases without limit; 

lim f (x) :: co if,. for every number N > 0 there ex:Lsts a number 
x-co 

k > 0 such that if x > k,, then f(x) > N. (This definition is essentially 

the same as D~finition 10 which was required in 6-5.) 

From the discussion in the textbook and hence this definition, 

it might be inferred that a function whose graph is increasing witho-qt 
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limit is monotonic. This is not necessarily true and is not actually 

implied. 
. 2 

For example consider the graphs of y = x and 

y = x + 2 sin x which are increasing without limit as x increases 

without limit but are not monotonic. 

To show that the graph of y = log x increases without limit as 

x increases without limit the textbook on page 484 considers log 2n as a 

specific set of values. The requirements of the above definition can be 

met by considering an increasing sequence of values. Thus" because 

log 2n > 0~ for any number N > 0, there exist a smallest integer that is 

greater than 1 N 2; +t can be called k. Therefore,, if n > k:1 then 
og .. \ 

log 2n = n log 2 > k log 2 > N. 

Because log x = y has a graph that is strictly increasing,, this argu-

ment implies that 

j 
llm f(x) = co. x-+co 

Discussion is also given concerning the vertical line x = O" 

as the asymptote of the graph of y = log x. The textbook explains 

that as "x decreases toward zero" y decreases without limit." In the 

form of Definition .6-6. 2,, this means that 

lim + log x = -co. x-+-o 
-n Specifically y = log 2 is considered. For any number M '<:'. 0 

-M 
there exists a smallest positive integer greater than log 2 which can 

be called k. Therefore,, if n > k and log 2 > 0 then 

log 2-n = - n log 2 < - k log 2 < M. 

Thus~ 

i-,-n 
lim log .::. = -oo ,, n;:;vco 

by Definition 10. But because the graph of y = log x is strictly in-

creasing and because log x is defined for every x > O,, then 



lim + log x = -oo .. 
x-o 

(For consideration of li:rn 2-n :i 0, see Theorem 26.) 
n~ 

Intermediate Mathematics ~ A9-8 
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This section is devoted to the defi~ition of the exponential 

function as the inverse of the logarithm function. No limit discussion 

is given but continuity is II}entioned on page 525. It is suggeated there 
I 

that the exponential function has a continuous. graph because the loga

rithm function has a contiI1i'uous graph. 

A proof of the contiinuity of an inverse function of a continuous 

function is given in Johnso1:1 and Kiokemeister 1s calculus textbook 

( [? 1] ~ P •. 254). The proof utilizes Definition 2 of continuity in an 

argument that involves the limit concept. 

Because the textbook refers to a continuous graph as one with 
) 

I 

no holes or jumps and the graph of an inverse function as one which is 

symmetric to the line y = · x~ continuity of the graph of the inverse 

function is inferred in the textbook by visual analysis of the pictures 

and not by a limit process.! 

Intermediate Mathematics~,, Al0-9 

11' 
On page 593 reference is given to the vertical lines x = .± 2 

being asymptotes to the graph of y = tan x. Using Definition 6-6. 2 

this can be proved i:n the following theorem: 

' 11' i Theorem Al0-9. 1. The lines given by y i:: + (2n - 1) 2 ~ where n s 
.J 

a natural number,,, are asymptotes of the graph of y = tan x. 

Proof: Write tan x = sin x ( co! x ). Then by the previous discussion 

and graphs of y = sin x and y = cos x it is assumed that 
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lim sin x c 1 and lim cos x e 0, 
X->f X-->f 

and also 

7f 7f 
cos x >O if -2 < x < 2 , 

and 

<o 'f 7f " < 31r COS X 1 2 <., X 2 . 

By Theorems 2 L, 27 and 28 it follows that 

lim,. {sin x) ( 1 ) = X->y · COSX 

and 

lim (sin x ) ( 1 ) "" oo ;, 
x-,JC COS X z . 

7f so x ::: 2 is the equation of a vertical asymptote of the graph of 

7f y :::: tan x. In a similar manner x ::: (2n - 1) 2 for any natural num-

ber n will be an asymptote. 

Intermediate Mathematics !.t A13-4 

In chapter 13• of the Appendix to Intermediate Mathematics ~~ 

series and sequences are defined and considered. This section is de-

voted to an intuitive definition of limit and some assumed properties of 

limits. 

In keeping with the established procedure of this thesis, the 

phrases found in the textbook 1s definition of a limit of a sequence are 

stated here in terms of E and N. Thus the phrase,, "a becomes and 
n --

remains arbitrarily close !9· A as n gets larger and larger,." gives 

rise to the following (E;;N) -definition that is given in the treatment of 

Geometry and restated here. 

Definition 15-3. 1. A sequence f anj is said to have a limit A if for 

every E > 0 there exists a natural number N > 0 such that if n > N, 



then I a - A I < E. n 
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Because no proofs are given in the textbook for the important 

limit theorems found on pages 758 and 759; they are repeated here and 

numbered in keeping with other theqrems of this thesis. Because the 

proofs of many of these theorems are given by John F. Randolph in the 

23rd Yearbook of the National Council of Teachers of Mathematics 

( [?'i] ;, pp. 208-16); they are not repeated here. However$ the theo-

rems listed include not only those cited by the textbook but also those 

proved by Randolph in proving the ones stated by the textbook. (In 

addition to the conventional (E • N) or (e;, N) definition he also uses an 

equivalent definition. His proofs are readily rewritten in (E.,N) 

form.) 

On page 757 the following theorem is suggested: 

Theorem A1~4. 1. If a sequence has a limit A" then no other number 

B ~ A is the limit of the sequence.( [rU -~ p. 206 ). 

On page 758 of the textbook a theorem is stated which is re-

stated below, numbered in keeping with other theorems of this thesis, 

and prov-ed. 

Theorem A13-4. 2. If f cn1 is a constant sequence# 

C 1 :: C2 "' •." = C :e: • .• • ~ ·n # 

then 

lim C = C. n-oo n 

Proof: Definition 15-3. 1 is :immediately satisfied b~cause for every 

E > 0 there exists N i:: · 1 such that if n > N. then 

le - c I = 0 < €. 

The following theorems are either found on page 759 or are 



necessary for their proofs: 

Theorem A13-4. 3. If lim a = A and c is a real mirr.iber t then rY-oo n 

lim ca "' c lim a ' '3'[] #< p. 213). n-oo n · n-oo n ' L'.:: 

Theorem A13-4. 4 .. If lim a = A and lim b "' B, then · n-oo n n-oo n 

lim (a + b) = Iim a + Iim b ( ~iJ~ p.213). n-oo n - n n-oo n - n-oo n 

Theorem A13-4. 5. If Um a = A and lim b = B" then n-oo n n-oo n 

1 im 'a b ) ::: 'lim a ) H'lim b ) ' 13 'i] ,. p. 2 13). 
ff-oP·' n n 'n-oo n · 'n-+oo n ' L'.:: 
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Theorem A13-4. 6. If lim b = B ~ 0 then there exists a natural n-oo n · 

number N such that if n > N,. then bn .~ 0. ( [3'D -i·· p/ 211,). 

Theorem A13-4. 7. If lim b = B Ji£ OJ' then · n-+oo n 

1. B 
1m .-----b,· n-oo n 

= 1 ( L3 7] , p . 2 14) . 

Theorem Al3-4. 8. If lim b = B ;rt 01 then n-oo n 

lim (bl -) = Bl ( @'fl ;. p. 2 14). n-oo . 
n 

Theorem A13-4. 9. If lim a = A and lim b = B ,;r. O, then n-oo n n-oo n 

a 
lim ( bn ) = AB ({37] .,- p. 215). n-+oo 

n 

These theorems are used throughout the remainder of Chapter 

13 in the textbook. Also, the remaining sections are based directly 

on the concept of a limit and specifically on the theorems cited above. 

Intermediate Mathematics 3" A13-5 

The sum of an infinite series is defined in terms of the limit of 

a sequence of partial sums. On page 771 infinite series are given for 

ex .. sin x .. and cos x. Because no discussion is given concerning the 
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justification of these series,. and because these series are treated in 

greater detail in Elementary Functions, they are not considered here. 

Intermediate Mathematics ~. Al 3-6 

ln order to draw conclusions about the sum of an infinite geome

tric series the textbook considers .some exampJies from which the fol ... 

lowing theorem and proof are taken: 

Theorem A13-6. 1. If a 1 + k~l :a1 rk is an infinite geometric series. 

then the series converges if (i) Ir I < 1 or (U) a1 = O and diverges if 

(iii) Ir I ?: 1 when a1 ;l O. 

Proof: Previously it was shown that if f sn) is the sequence of partial 

sums, then 
(1) 

The sequence of partial su .. -nns would be 

o. o,, o •••• ,. o._ • ... if a 1 = O as in (ii) 

or at• al• ..• ;. .al• • • • .!f r = o. 

In ei"ther·case. by Theoz·em A13-4. 2 'these sequences con.verge. 

I 1 n 1 n 1 
If Ir < Land r ~ o, then~ > 1. and r = ~l/r )' = (l/r)n • 

By Theorem1:r 2 9 and 3 0 

ffW.oo rn. 
1 

= hi.woo ( 1/r )n = O • 

a 1 (1 : r) by Theorems A13 ... 4. 3 and 

A13-4. 4. (~n ~ternate proof of (i)1 in which m:a.thematfoal induct:l.(,):!1.J. is 

req'llired,. can be fo:1\lnd in What is Mathematics? ( [1.2] , PP• 64-5).) 

To show (iii). that there is. no sum of an inflnite series if 

I rl > 1,, special cases are considered. For example •. , if r ;; 1 and 

a 1 ? 0 the geometric series becomes 

al+ al+ al+ •.• +al+ .•.• 



Assuming that this series had a sum would be assuming that the se ... 

quence of partial sums rua 1 had a limit. But for every number 

N., [ na1/ > N whenever n > l~J so na1 could not have a limit9 

If r ::,: - 1 the series would be 

a1 - al + al - $JL1 + . . . + ( ... 1 )n "!: 1 a1 + • • • ' 

and the sequence of partial sums would be 

There is no number L such that 

Ja - LI n 

Hence,. there is no limit. 

ai 
< -.=r- for n > N for any N. 

.t. 

If / r / > 1. the sequence of partial sums is gitven by (1 ). 

Consider r > 1; then by Theorems 29• 31, and 32• Jf.!Poo rn ::,: oo 

and 1:1.m s ::: + oo depending on the sign of a 1• n-oo n - 1 
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Consider r < "" 1. 'fhe sequence of alternate terms.,, 

1 - r2n 
s ::,: a 1 ( h can be treated as above,. s:o that Um s 2 ::: + oo 2n 1 - r n-<>oo n 

depend:lng again on the sign of a 1• Therefore .. no number L could be 

the sum in this case because for ever natural number N the alternate 

terms s 2n for 2n > N are in.creasing or decreasing without limit. Tb.at 

h:1 for every natural number N there exists an even number 2k > N 

suc:h that I s 2k - LI > 1 so that L cannot he a limit. 

Summary of Major Pointi~ 

It was found that First Course :ln Algebra wELS p.1~:e1-s.ented ft~om 

an intuitive le-'vel •,.:vHh no d:l.r~cussio:ns that involve the coneept of a 
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limit. A major part of Geometry was found to be void of any discus-

sions that involve limits. Because Birkhoff's postulates were accepted~ 

many topics that depend on lunits were treated by other means. 

Not until the measure of the circumference and area of a circle 

and related top_cs were presented in Geometry were limits discussed. 

The discussion. however. was found to prec ede a definition of sequen ~e 

and limit_. and the theorems about limits of sequen es. Futhermore. 

it was found that the existence of limits were tacitly assumed. Not 

until Intermediate Mathematics were th e properties of the real num

bers includ:mg the Completeness P roperty presented and it was upon 

these properties that a proof of the existence of a limit would depend. 

In Intermediate Mathematics asymp·~otes were d scussed which 

suggested the need for definitions and theorems c oncerning 

The logarithm function was found to be introduced in the Appen..:. 

dix to Intermediate Math ematics~ as the area under the graph of 

1 y = x . Although s · ch area was not def:L."led., a proof was given for 

this study to show that the 1ogarithm function is continuous. The 

proof required a limit definition of continu_ty instead of the t extbook's 

explanation which was: " the graph has no holes or gaps. 11 

A defini"'ion of sequence., series and limit of a sequence was 

found in Intermediate Mathematics 3. Some theorems about limits 

mentioned without proof in the textbook were restated for this study 

and proved or sources for proofs were cited. 

The final topic treated was concerned with convergence of a 

geometric series. A proof was given that required theorems which 

were proved in Chapter IV. However, if mathematical induction had 
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been 'presented prev\ously,,_, a more common proo:f. which was cited~· 

for the convergence of the series could have been utilized. 



CHAPTERm 

THE LlMIT TOPICS FOUND IN 

ELEMENTARY FUNCTIONS 

The textbook Elementary FuneUons is designed to be used in 

the twelfth grri;de. It includes discussions: of polynomial,. exponential., 

log~Uhm1 and circular functions whieh are designed to provide the 

student wjth a better background for the calculus wt'chout trespassing 
. ' ~ ,; 

upon it as it is taught a.t the college level .. 

Element~ry Functions !J 2-3 

On page .5 O;. a. polynomial function is said to have a graph that 

is "a continuous curve witth no breaks o~ holes in it." This is the only 

description given in. the student~s book regarding continuity of a poly ... 

nomial funct!cJm •. Also,. the Commentary for Teache:i;-s on page 33 

points out that.- even though "continuity of polynomi~l functions is as

sumed, 11 an explanation of the assumption would involve showing that 

the "graph of a polynomial function contains no holes or breaks." No 

other discussion is given. Definitions 2 and 3 of Chapter IV are the 

common definitions of a continuous function in which a limit is used. 

On the basis of these definitions the continuity of a graph can be de-

fined (Definition 4). It should be noted1 however,. that so far in the 

textbooks"' there is no distinction made between continuous functions 

and continuous curves. 

Another topic is begun on page 52 where it is stated that a term 

45 
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3 
2x dominates the polynomial function 

f: x ~ 2x3 - 3x2 - 12x + 13 

which in factored form becomes 
·-

3 3 6 _ ~) f: x ~ 2x (1 - 2x - 2 3 . 
X 2x 

The reason given is that 11 2x3 dominates all other terms for large 

IX I • • . [becaus~ for sufficiently large values of r XI " the expression 

in pareniheses has a value close to 1. 11 Additional explanation of a 

similar nature is found on page 53 of the Commentary for Teachers. 

From this discussion the following definition and theorems are drawn: 

Definition 2-3. 1. A term t of a polynomial expression f(x) is said to 

dominate the polynomial function f: x ~ f(x) as Ix J increases if 

lim ft(x) "" lim ft(x) = 1. 
x-+oo x-+ -oo 

Theorem 2-3. 1. As indicated in the textbook, t = anxn; the term 

of highest degree dominates the polynomial as Ix I increases. 

n n-1 
Proof: Consider f: x ~ anx + an_ 1x + · · · + a 1x + a 0 • 

The same function could be written for x ;£ 0 as 

so that 

f: x -?'" a xn (1 + 
n 

an-1 
a X 

n 

__!1&_ 
n a X n 

1 + an-1 
a X 

n 

+ .... 
a 

+-0-) 
n 

a X 
n 

+ • . . -r-- n a X 
n 

Hence,, it follows from Definitions 5 and 6~ and Theorems 13 through 

16 that 

lim f(x) 
X-00 n a X n 

"" lim x--oo 
!a_ 

n 
a X 

n 

:= 1. 
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Therefore" anxn is the dominating term of f~ 

Regarding this definition the textbook states on page 52 ~ 

"This means that the sign of f(x) will agree with the sign of the term of 

largest degree for large lxl ,. '' This satement is proved here as a 

theorem. 

Theorem 2-3. 2. If a term t dominates a polynomial f: x -~ f (x) 

as Ix I increases, there exist numbers m and n such that if 

x > m, then f(x) and t have the same signj-

and if x < n, then f(x) and t have the same sign. 

Proof: If 1. f(x) _ 1 1m t - i x-oo ' 

then by definition of this limit,. there exists a number m such that 

if x > m, then 

Likewise if 

I f~x) - 1 J < 1 or f~x) > O. 

lim f(x) = 1 
x-- 00 t ., 

then there exists a number n such that if x < n, then f~x) > 0. 

This means that f(x) and t have the same sign whenever x > m or 

X < Il. 

It would not be correct that the dominating term t could be 

defined as follows: A term t of a polynomial expression f(x) is sa:id to 

dominate the polynomial function f: x ~ f(x) if there exist numbers m 

and n such that if 

or if 

x > m; then f(x) and t have the same sign> 

x < n .,. then f(x) and t have the same sign. 

Although this is a necessary con.dition,, as has been shown above; it is 

not a sufficient condition. Consider 

f: x ~ x 4 + x 2 + L 



48 

2 Because f(x) > 0 and x > 0 for all x F ,o, m could be chosen any posi-

tive number* n chosen any negative number* and it would follow that if 

x > m*" then f(x) and x 2 have the same signi, 

and if x < n .,, then f(x) and x2 have the_ same sign. 

HC>wever, lim f(2) f(x) =;~00 2 =oo;tl. x-oo 
X X 

Elementary Functions .!J. 2-5 

In order to locate zeros of polynomial functions:t it must be 

known that the· graph of the function crosses the x-axis.. A statement 

is made on page 59, called "The Location Theorem," that provides 
. ! 

the student with this information. Because the statement is given 

without proof or a justifying argument,, it is not treated in this study. 

However,, the proof of the statement, a special case of the Interme-

diate Value Theorem, is proved using a limit process in Taylor 1s 

Advanced Calculus ( ~(!] * pp. 103-4)., 

Elementary Functions 1,. 3-1 

In the first topic of Chapter 3, "Introductionci, 11 brief remarks 

are given on a strictly intuitive. level. Because every topic mentioned 

in the first section is discussed, more fully in later sections, the rigo

rous treatment of limit processes is given in conjunction with tlle 

presentations found later in Chapter 3. 

Elementary Functions 1,. 3-3 

The terms "tangent" and '.'best linear approximation" to a graph 

are used interchangably in this and later chapters. In Section 3- 3t dis-

cussion is given from which three definitions are drawn. 



On page 97 it is stated that 

f(x) = 1 + X 

, is the best linear approximation to the graph of 

2 
f(x) = 1 + x - 4x = 1 + (1 - 4x)x 

at the point P(O~ f(O)) because the expression 1 - 4x can be made to 

"lie as close to 1 as we please by making tx \ sufficiently small." 

Hence, the first definition follows: 
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Definition 3-3. 1. The equation y = f(O) + mx is that of the best linear 

approximation to the graph of 

if f(x) can be written 

where 

f: x ·~ f(x) at P(O~f(O)) 

f(x) e f(O) + (q(x ))x 

~~ q(x) = m. 

A second definition,. called the "wedge" interpretation (Commen-. 

tary for Teachers, page 64h is extracted from page 99 where it is 

stated that "if we stay close enough to x = 0 the graph of 

f: x ~ 1 + (1 - 4x)x lies between two lines••· which differ in direc

tion as little as we please." 

Definition 3-3. 2. The equation y = f(O) + mx is that of the best 

linear approximation to the graph of 

f: x ~ f(x) at P(O~ f(O)) 

if for every £ > 0 there exists 6 > 0 such that if O < Ix \ < 6 , 

then the graph of y = f(x) lies between the two lines 

and 

L 1 : y = f(O) + (m - E)X 

L2 : y = f(O) + (m + E)X. 

Algebraically this means that if O < Ix I < 6 • then 
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f(O) + (m ~.€ )x < f(x) < f(O') + (m +E )x for x > O,. 

and f(O) + (m - E)x > f(x) > f(O) + (m + E)X for x < 0. 

The Commentary for Teachers on p.age 65 mentions. that the 

definitional statements quoted above avoid difficulties connected with 

limits of quotients as are commonly found in college calculus text

books ~i] • [5i] , ~ii . The third definition of the best linear ap-

proximation1 therefore. involves the limit of a quotient to which the 

Commentary for Teachers refers. 

Definition 3-3. 3. The equation y :::: f(O) + mx is that of the best 

linear approximation to the graph of 

f: x ~ f(x) at P(O, f(O)) 

if lim f(x) - f(O) = m 
X-+O X - 0 • 

Theorem 3-3. 1. Definitions 3-3. 2 and 3-3. 3 are equivalent. 

Proof: By Definition 3-3. 2,. y = f(O) + mx is the equation of the 

tangent to the graph of 

f: x ~ f(x) at P(O, f(O)) 

if for every E > 0 there exists 6 > 0 such that if O < Ix I < 6~ 

then f(O) + (m - E)x < f(x) < f(O) + (m + e:)x for x > O, 

anq f(O) + (m - E)x > f(x) > f(O) + (m + e:)x for x < Q. 
I 

This means that for every E > O there exists 6 > 0 such that if 

0 < Ix I < 6, the above two inequalities reduce to give 

or 

Now;, by Definition 1 

. < f(x) - f(O) < + m -e: x m €-, 

I f(x) - f(O) - I m < e: .• 
X 

lim 
X-+C) 

f{x) - f(O) 
X - 0 = m 
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and :it follows that Definition 3-3. 2 implies Definition 3-3. 3. 

Since each step of the above proof is reversable, a reversal 

of the steps would show that Definition 3-3. 3 implies Definition 3-3. 2. 

Hence these two definitions are equivalent. 

Theorem 3-3. 2. If f is a polynomial,. Definitions 3-3. 1 and 3-3. 2 are 

equivalent. 

Proof: Definition 3-3. 1 requires that f be written as 

f: x ·.~ f(x) = £(0) + (q(x))x. 

In the case that f is a polynomial, 

n-1 
f(x) = a 0 + (a 1 + · · · + i:i,nx )x, 

the definition is readily usable. Therefore,. assume that definition 

3-3. 2 holds for f(x). Hence, for every e:: > 0 there exists o > 0 such 

that if O < Ix I < 6 1. then 

f(O) + (m - e::)x < f(O) + (q(x))x < f(O) + (m + e::)x for x > 0~ 

and 

f(O) + (m - e:: )x > f(O) + (q(x))x > f(O) + (m +e::)x for x < 0. 

T).1is implies that for every e:: > 0 th~re exists o > 0 such that if 

0 < Ix I < 6,. the above two inequalities reduce to give 

m - e:: < q(x) < m + € 11 

or 

lim q(x) "' m. x-o 

Therefore; Definition 3-3. 1 is satisfied when Definition 3-3. 2 is 

assumed. 

By reversing the above steps the converse of this statement 

ca:q. be verified so it .follows that Definition 3:-3.1 and Definition 3-3.2 

are equivalent if f is a polynomial. 
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Now) since it has been proved that Definitions 3-3. 2 and 3-3. 3 

are equivalent) and Definitions 3-3. 1 and 3--3. 2 are equivalent if f is 

a polynomial) then it follows that Definitions 3-3. land 3~3. 2 are 

equivalent if f is a polynomial. Therefore,. the following theorem is 

proved: 

Theorem 3-3. 3. Definitions 3-3. l" 3-3. 2) and 3-3. 3 are logically 

equivalent when applied to polynomials. 

In applying the above mentioned definitions to a polynomial 

n n-1 
function f: x ··~ anx + an_ 1x + · · · + a 1x + a 0 .t the following 

substitutions are required: 

f(x) 

f(O) 

m 

q(x) 

On the basis of these formally stated definitions the following 

theorem# which is used by the textbooks) can be rigorously proved: 

Theorem 3-3. 4. If f: x-;;. a 0 + a 1x + · · · + anxn is a polynomial 

function,. the equation of the tangent or best linear approximation to 

the graph off at P(O, f(O)) exists and is y ::: a 0 + a 1x. 

Proof: Consider 

n n-1 
a 0 + a 1x + , ·. + anx n a 0 + (a 1 + a 2x + · · · + anx ) x. 

Now 

+ n-1 
a X ) n 

and by Definition 1 and Theorems 4" 8) and 10. 

lim q!x) = a 1.,. x-o \ 
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so that y c a 0 + a 1x is the best linear a:pproxima:tion by Definition 

3-3~ 1. 

Elementary Functions 1-,; 3-4 

In this section two topics are discussed which involve limits. 
: ~;· 

The first one concerns the dominating term of a polynomial for x in a 

neighborhood of O and the second refers to the best polynomial appro-

ximation to the graph of a function. 

On page 101 an example is given to provide an answer to the 

question: "Which term dominates the situation and determines the 

shape [of the graph of the functioru about x = 0 ? 11 Concerning the 

example 

f: x ~ 1 + x + x 2 - 2x 3 

it is said that "sufficiently near x = 0 the lower degree term x 2 

dominates the higher degree term -2x 3 and that the graph of f has the 

same character as if the term -2x 3 were missing." These statements 

yield the following definitions and theorems: 

Definition 3-4. 1. A term t of a polynomial expression f(x) is said 

to dom·inate the polynomial function f: x ~ f(x) for x in a neighborhood 

of O (or about x = 0) if 

1i f(!_l 
x!lb t 

C 1. 

It is to be noted that in this and some later sections of both the 

textbook and this thesis the definitiqn is used to determine the dominat

ing term of a polynomial that is a part of the polynomial under initial 

consideration. Consider the example cited above. The polynomial 

under initial consideration is 

f: x ~ 1 + x + x 2 - 2x3 
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The polynomial, a part of the one under initial consideration, that is 

dominated by x 2 for x in a neighborhood of O is 

x .--;;., x 2 - 2x 3 . 

Theorem 3-4. 1. The term of lowest degree is the only term that 

dominates a polynomial for x in a neighborhood of 0. 

Proof: Consider 

where k < n and ak ~ 0. Now 

n a X , 
n 

k k+l n k ilk+l an n-k 
akx + ak+lx + · · · + anx "" akx (l+a:;-x + · · · + ak x ), 

so that 

ak+ 1 
=lim(l+ x+···+ 

x-o ak 

Now by Definition 1 and Theorems 4;t 8 1 and .10. 

lim f(x) = 1 
x~o k 

akx 

so that akxk dominates the polynomial function. To show that the term 

of lowest degree is the only dominating term" consider any other term 

m 
amx where am Y O, k < m .:S n, of the polynomial expression. Then, 

f(x) 
m a X 

m 

where at least k - m < 0 and for some number j, k + j = m. 

f(x) "' (ak/am)xk + ..• + (ak+j/am)xm + ... + (an/am)xn 

a }Gm xm 
m 

which by Definition 1 and Theorem 33 is increasing or decreasing with-

out limit as x approqches O depending on the sign of ak/am. 

Theorem 3-4. 2. If a term t dominates a polynomial f: x --;;.. f(x) 
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for x in a neighborhood of n,, there exists a number o > O such that if 

0 < Ix I < o, then f{x) and t have the same sign. 

Proof: If 

lim f{x) = 1,. 
x-o t 

then there exists a number o > 0 such that if O < I x I < o , then 

or f~x) > O. 

This means that if O < Ix I < o then f(x) and t have the same sign. 

It would not be correct to define the dominating term t as 

follows: A term t of a p9lynomial expression f(x) is said to dominate 

the polynomial function f: x ·~ f(x) for x in a neighborhood of O if 

there exists a number o > 0 such that f{x) and t have the same sign 

whenever O < Ix I < o . Although this is a necessary condition,. as has 

been shown above,. it is not a sufficient condition.. Consider 

2 
f: X _,;.. X + 1. 

2 
Because f(x) > 0 and x > 0 for every number x and any o > O where 

0 < Ix I < o .. then ±'{x) and x 2 have the same sign. However 

lim f(x) = oo ~ 1. 
x-o 2 

X 

Also,. in this section of the textbook, examples are given of the 

best second degree approximation and the best third degree a.pprox~:ma-

tion to the graph of a polynomial at ;?(O,. f(O)). A geometric as well as 

an algebraic interpretation are given. 

On page 102 it is stated, 

· "x ~ 1 + x + x 2 

is the best quadratic approximation to the graph of 



f: x ~ 1 + x + x 2 - 2x 3 " atP(O~ f(O)) 

because: "We can write 

2 3 
f~) = 1 + X + X - 2x 

in the form f(x) "' 1 + x + (1-2x)x2 

and note that 1-2x is arbitrarily close to 1 for lxl small enough .. " 

This is interpreted in the following definition: 

Definition 3-4. 2. The equation g(x) = a 0 + a 1x + · · · + arxr is 

that of the best rth degree polynomial approximation to the graph of 

f: x ~ f(x) at P(O. f(O)) if f(x:) can be written as 

f(x) "" a 0 + a 1x + · · · + ar_ 1xr-l + · (q(x))xr 

where 
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The second definition is drawn from pages 103 and 104. Two 

examples are used in which a best approximation is found" and in 

summary a generalized definitional statement is given for the best 

second degree approximation to the graph of a third degree polynomial: 

11If f ' + + 2 3 : x ~ a 0 . a 1x a 2x + a 3x. 

we can write f(x) = a 0 + a 1x + (a2 + a 3x)x 2 

and conclude that the graph lies between the graphs of 

2 
x ~ a 0 + a 1 x + (a2 + € )x 

and 

for arbitrarily small €,;, provided that \ a 3x I < € • " This is further 

generalized in the following definition: 

Definition 3-4. 3. The equation g(x) ~ f(O) + a 1x + •. · + arxr is 

that of the best rth degree polynomial approxi:p:iation to the graph of 
n/~ ~ 

f: x ~ f(x) at P(O.,, f(O)) if for every € > 0 there existsfo > 0 such that 

if O < · I xi < o • then the graph off lies between the graphs of 
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g 1 :x ~· f(O) + a 1x + ... + (ar+E)xr 

and g 2 :: x ~ f(O) + a 1x + · · · + (ar - t )xr. 

Theorem 3-4. 2. Definitions 3-4. 2 and 3-4. 3 are equivalent with re-

gard to polynomial functions,. 

Proof: Consider for r < n, 

+ ... + 

and r-1 r 
g: x -;> f(O) + b 1x + · · · + b 1x + b x . r- r 

Assume that g is the best rth degree polynomial approximation to the 

graph of f in the sense of Definition 3-4. 3. Therefore, f(O) = a 0, 

and for every E > 0 there exists 6 > 0 such that if O < lxl < 6, the 

graph of f lies between 

and 

This means that either 

or 

.g1(x) < f(~) < g2 (x) 

g 1 (x) > f(x) > g2(x). 

Hence, upon division by x ;e · 0, either 

or 

(1) 

(2) 

r-1 n-1 r-1 
b 1 +···+(br-E)x >a1 +···+anx >b 1 +···+(br+E)x . 

Now to show that b 1 = ap let I b 1 - a 1 I = k. 

By Theorems 3 through 10, it follows that 

and lim (b 1 + · · · + (br ± E )xr- l) s: b 1. x-o -
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Hence,_ for every e: and 6 in the sense of Definition 3-4. 3,, there is for 

every e: 1 > 0 a number 6 1 > 0-" 6 r < 6,- such that if O < lxl < 6',,..then 

r-1 a X 
r 

+ ... + a xn - 1 - a j < El 
n 1 

and I b 1 + · • · + (br .± € )xr-l - b 1)1 < E'. 

This means that if e: 1 = V3 lb 1 - a 11 > O,. that 

a 1 + · · · ·· + arxr- l + • · · + anxn- l is within a distance of 

1/3 I b 1 - a 1 1 from a 1 for O < Ix I < 6 '· Simultaneously however., 

by the requirements imposed by Definition 3-4. 3,,. 

r-1 n-1 
a 1 + · · · + a x + · · · + a x is also within a distance of r n 

V3 I b 1 - a 1i from b 1 for O < !xi < 6 1• This is impossible unless 

I b 1 - a 1 \ "' 0 or b 1 = a 1. 

The same procedure can be repeated to show 

Now g can be written 

· r-1 r 
g: x ~ a 0 : + a 1x + · · • + ar_ 1x + arx 

and (1) and (2) can be replaced by tp.e restriction that either 

or 
r n· 

ao + ... + (ar -e:)x > ao + • . . + anx > ao + •.. + (a + E)xr • 
r 

I 

In either case, the inequalities reduce for x ~ 0 to 

This means that 

€ < 
a xr: + 

r 
r 

X 

<a + E .. r 

lim (a + • ·. + a xn-r) ,,. x-o r n ar • 
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ln the polynomial f,. rewritten here in different form.,. 

. . · n-r r 
f: x ~ a 0 + a 1x + .. . . + (a + · · • + a x · )x cJ r n 

it follows that 

q(x) C a + • • • 
:r 

+ n-r ax n • 

Hence.., lim ( ) x-o q x "' ar• 

which is the requirement of Definition 3-4. 2. A reversal of the above 

steps would show that Definitions 3-4. 2 would imply Definition 3-4. 3. 

Renee the two definitions are equivalent .. 

Theorem 3-4. 3.. The best rth degree polynomial approximation to the 

graph of a polynomial function 

f: X ~ a 0 + • • • 

at P(O"' f(O)) is 
r 

y = a 0 + a 1 x + . . . + arx • 

Proof: By factoring# f can be written 

ao + alx + !. ',. + (ar + 

By Definition 1 and Theorems 4.., 8"' and 10 

. n-r 
hm (a + .. · • + a x ) x-+o r n = a i r 

so Definition 3-4. 2 is satisfied and the theorem is proved. 

Although the -textbooks have not given (€,.6) "" definitions and 

proofs.;, Exercises 7 through 12 on page 105 ask the student to "show 

that for any € however small it is possible to choose I xi so that f(x) 

lies between" 

+ + + . r 
ao a 1x .. ~ (a + € )x . ·r 

and ao + a 1x + + ,(ar - € )xr. 

(The addition of · · • + in the above expressions is necessary and was 
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not included by the t!;)xtbook.. This problem is essentially that of find-

ing the number 6 that corresponds to an arbitrarily selected € > O .. ) 

Elementary Functions ~. 3-5 

The discussion in this section is equivalent\to that given in 

3-3 and 3-4 with a substitution of variables that results from a linear 

transformation. For an arbitrary point P(h..., f(h)) the statements in 
I 
I 

the textbook as well as the definitions and theorems in this study that 

involve the best approximations and the dominating term for x in a 

neighborhood of h ·would be altered by substituting x-h for x and h 

for O. The discussion in the textbook suggests that 

f(x) = a 0 + a 1x + · · · + anx 
n 

be written in terms of x-h as 

n f(x) ::: a t + a ·t (x - h) + ". · + a t (x - h) 0 1 . n 

which is a horizontal translation of 

• . • + 

The aforementioned definitions and theorems then could.have 

been given in terms of x-h so that h = 0 would have been a special case .• 

Example: The best linear approximation to the graph of f at, P,Qi~ f(h)) 

would be 

because 
• • . + n-h anl(x.., h) )(x - h) 

and 

lim (a1 t + a 1(x - h) + ·, • + a '(x ... h)n - h) t:1 .al" " 
x~ 2 n 

The dominating term for x in a neighborhood of h for 

g:,x ~ a/ (x - h{ + • • · + an' {x - h)n 
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. r 
would be ar 1(x - h) because 

r n a l(x - h) + · · · + a 1fx. - h) r n \ 
r 

a/(x - h) 
... 1. 

(It follows from Definition 1 that lim f(x) = lim f(x).) 
x-h x-h-o 

The textbook., however, rnore often refers to the approxima-

tions at P(O.,. f(O)) than at any other point. For this reason"' and also 

because the definitions and theorems concerning P(O, f(O)) are more 

simple to state~ because they are readily generalized__. and because 

the textbook gives a more complete discussion concerning P(O.,. f(O));; 

they are used in this study instead of the general ones .. 

Elementary Functions 1,,. 3-11 

This section is a summary of Chapter 3. Now that the text-

book1s discussions which involve the concept of a limit have been inter-

preted formally in this study* the summary could be written in the 

language of this new interpretation. 

For example, on page 136 the textbook states: "If P ts the 

point (h,. f(h)) on the graph G of a polynomial function f: x ~ f(x), 

there exists a straight line T through P which is called the tangent to 

G at P. T is the best linear approximation to G at l? in the following 

sense · · • . 11 

The paragraph can be completed by: Let m be the slope of T 

and E any arbitrarily small number. Then there exists 6 > 0 such 

that if O < I x - h I < 6 , 

f(h) + (m- E)(x - h) < f(x) < f(h) + (m + E}(x - h) for x > hf 

and 

f(h) + (rn- E)(x-h) > f(x) > f(h) + (m +E){x - h) for x < h. 
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Or by: Let m be the slope of T ~ Then 

lim f (x) - f(hJ 
x-+h X - h 

= m. 

Elementary Flunctions 1-t A2-12 

Curve fitting is the topic discussed in this s.ection. In order to 

consider a curve through a finite set of points it is stated on page A-17 

that "we would prefer to work with polynomials • • • for the purpose of 

fitting a continuous graph to a finite number of points. " Here; as in 

previous sections,. a polynomial function is assumed to have a "con-

t . h II muous grap • 

On pages A-22 and A-23 a different type of continuity is sug-

gested because here the term is used to refer to a function and not to 

its graph. However, the following definition is inferred by the discus-

sion. 

Definition A2-12 .. 1. A function is continuous if it has a continuous 

graph. 

An interpretation of the Weierstrass Approximation Theorem is 

also given which suggests that a limit would be needed if more discus-

sion were to be given. A proof of this theorem which involves limits 

can be found in McShane's RealAnalysis ( [3~ • pp. 88-89). 

Elementary Functions 1. A3-12 

This section is devoted to an introduction of the integral in an 

informal manner only ... for it is stated that "the extended study of this 

key concept must • · • await further developments in your mathematical 

education. " A more thorough treatment of the discussion in this sec

tion can be found in college calculus texts ~u .. [s!l j [§3] • 
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On page A-29 an e¥:ample is discussed in which the area under 

2 
the graph of y == x .. above the x-axis between x = 0 and a vertical 

line through x > 0,. is assumed to be between an over-estimate 

3 
X 1 3 2 (3 ) (6 ) (2n + 3n + n) 
n . 

and an under-estimate 
3 

c;.) c.!.) (2n 3 - 3n2 + n) 
n 6 

for every integer n > O. (Area is not defined for figures not considered 

in Geometry. The student1s intuition and visual an~lysis of the pictures 

are relied upon.) These estimates and the Co:rppleteness Property for 

real numbers are used to arrive at a value for the area desired. The 

argument given by the book .. which involves statements such as "the 

difference between the estimates • • • is small if n is large,.'' is restated 

here as a theorem. 
I 

Theorem A3-12 .. 1.. There exists one and only one real number A(x) 

such that 

3 1 3 2 ~ 3 1 3 2 
(~HaH2n - 3n + n) < A(x) < (~)(6)(2n + 3n + n) 
n n 

for every integer n > Q. 

Proof: (i) If m> n > 0 where m and n are integers~ then 2m > m + n,. 

and 2mn 2: 2m because n 2: 11 and so 3mn > 2m.n > m + n. Hence , 

3 > c.l + ~),. 3(_!_ l) < 1 1 3 1 <~ 1 - (~ - ~),. and- - 2 - , .. . m m n m n m n m n 

3 + 1 > 3 + 1 
so -,- - -

~ 
.. m n m 



Therefore, for x > 0 

or 

3 1 3 2 x 3 1 3 2 (~H6)(2m - 3m + m) > (-3 )~H2n - 3n' + n). 
m n 

(ii) If m > n> 0 where m and n are integers, then 

2 < i and _l_2 < __!_2 • 
m n m n 

Therefore, 

or 

3 
~) < ~6)(2 + ~ + ~) 
m n 

3 3 
( x 3 H!H2m3 + 3m2 + m) < f\HiH2n3 + 3n2 + n). 
m n 

(iii) If x > 0 and n is a positive integer 

x 3 1 3 2 x 3 1 · 3 2 x 3 
(-g)~)(2n - 3n + n) < (""""3")~)(2n + 3n + n) by 11 . 
n n 

3 
(iv) This difference~ xn ,. is such that 

3 
lim ~ =< O. n-oo n 

Therefore, by the Completeness Property of the real numbers there 

exists one and only one number A(x) such that for every n 

x 3 1 3 2 ~ 3 1 3 2 
(-g)~)(2n - 3n + n) < A(x) < t-gH6 )(2n + 3n + n). 
n n 

Now,. by Theorem 34 and because 

64 



3 
it follows that A(x:) = \ • 

Elementary Functions !J A3-13 
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This section is devoted to the fundamental theorem of calculus 

and includes an argument for a special case. A more general proof 

can be found in college calculus texts such as the one by Johnson and 

Kiokemeister, ( ~ 1] , pp.. 149 - 51 ). In the language of the textbook, A 

is the "area function" of the function f referred to in the previous sec-

tion. The symbol A' is used for the "slope function" of the area func-

tion. Therefore.; in these symbols the statement to be proved is 

A' = f. 

The validity of this section, however, depends upon a statement 

found on page A-32 that is basic to this study: "If x-h is small enough,. 

f(x) exceeds f(h) by any arbitrarily small amount, that is,. for x-h 

small enough 

f (X) < f (h) + € • II 

The truth of this statement depends upon the function f being 

continuous as well as the definition of continuity itself. To this point 

in the textbooks, a function has been considered continuous if its 

graph has no "holes or breaks. 11 Now Definition 2 is needed so that 

if f is assumed to be continuous, then lim f(x) == f(h). Then it would 
x-h 

follow that for every E > 0 there exists 6 > 0 such that if O < Ix - h I < 6_. 

then f(h) - E < f(x) < f(h) + E. The argument in the textbook can be 

concluded by saying that for ever E > 0 there exis'fJ3 6 > 0 such that if 

0 < Ix - h I < 6 , then "the graph of A lies between the straight lines 

y l = A(h) + f(h){x - h) 

and y 2 = A(h) + (f(h) + E )(x - h)) 
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for points near enough to P on the right side." 

Because of the definition of continuity mentioned above, a 

similar argument for x on the left side of P would follow to give: For 

every E > 0 there exists 6 > 0 such that if O < Ix - h I < 0 , then the 

graph of A lies between the straight lines 

y 3 - A(h) + (f(h)-E )(x - h) 

and y 1 = A(h) + f(h)(x - h). 

for points near enough to P on the left. 

These two statements summarize to give: For every E > 0 

there exists 6 > 0 such if O < Ix - h I < 6 t then the graph A lies be -

tween 
y 3 = A(h} + (f(h) - E )(x - h) 

and Y2 = A(h) + (f(h) + E}(X - h). 

This is Definition 3-3. 2 of the statement: The equation 

y = A(h) + f(h)(x - h) is that of the best linear approximation to the 

graph of A at P(h,,. A(h)). This proves the following theorem: 

Theorem A3-13. 1. If A is the area function associated with the func-

tion f, and if f is a continuous function,. then A' = f. 

Elementary Functions ~ .. 4- 3 

Integral an.d rational exponents have been used and discussed 

by the textbooks prior to this section. Now,,. arbitrary real exponents 

are to be introduced. The major part of this section is devoted to a 

discussion of 2 V2 as an example of the way all other expressions 

2r can be defined. The major parts of the example are repeated in 

this report so that the example can be thoroughly treated. 

It is given that [ r ) is the sequence of the greatest (n + 1)
n 
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digit numbers whos:e s·quare. is less than 2_. thus 

[rnJ O 1.4-1- 1.41, 1.414J- 1.4142-'•••. (1) 

Likewise_. ( sn~ is the sequence of the smallest (n + 1) - digit numbers 

whose square is greater than 2l thus 

t S ~ C 1. 5,t 1. 42.,, 1. 415.ti 1 .. 4143" • • • 
n 

On page 159 it is stated that "the difference s - r can be made 
n n 

(2) 

arbitrarily small.'' This means that lim 's - r ) = o., as surely n-oo \ n n 

it does because 

sn - r n (3) 

which has O as a ljmit as n increases. The discussion concludes with 
r s 

the remark: "We • • • look at the intervals 2 n < y < 2 n • •" which 

pinch down to a uniquely determined number, which we shall define as 

the number 2x ~ \}2] • 11 This statement, which requires the conclu-

sion of the Completeness Property-1 can be accepted if the hypothesis 

of the Completeness Property can be met. Necessary inequalities for 

meeting the hypothesis_. however.;. are not given until page 161 where 

it is proved that 

2r < 2s -1 if rands are rational and r < s. (4) 

Using these inequalities;, the example is completed below and 2 '{2" is 

defined by the Completeness Property for real numbers .. 

Theorem 4-3. 1. . If fr j and ( s ) are as defined jn ( 1) and (2 ).t then 
r s n n 

(2 n! and(2 n) satisfy the hypothesis of the Completenes.s Property. 

Proof: ( r ) 
(i) f2 nl ... 

is such that 

by (4). 



is such that 

by (4). 
r s 

(iii) 2 n < 2 
n 

because by (3) rn< Sn, and (4). 

r s 
(iv) lim (2 n 

2 n) r: 0 for the following reason: -n-+oo 

Because s 
n 

- r 
n 

s 
2 n 

r 
- 2 n 

and by (4) 

then 

1 1 

s r 
2 n - 2 n > O. 

By Theorems A13-4. 3 and Al3-4. 4 and Theorem 36 

1 
n 

lim (2 2 (2 10 - 1)) = O. n--+oo 
1 
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r s 2 lOn 
Therefore~ by Theorem 34 since O < 2 n - 2 n < 2 (2 - 1) for every 

r s 
lim (2 n - 2 n) ::: O. 
n-+oo 

Now1 by the Completeness Property# it can be concluded that 
r s 

there is a unique number y such that 2 n :=; y ~ 2 n for every n. 

This is the number defined to be 2 "V2. 

In order to define 2x for arbitrary real x_,, a short discussion 

is given -on page 160. It is stated that "the number obtained [Y, as 

in the previous example] is independent of choice. of sequences .. 11 

Even though the Commentary for Teachers page 159 says" "This deve.:.. 

lopment is presented at an intuitive level,,. 11 the interpretation of the 

discussion regarding 2 '\/2 yields the following definition: 
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Definition 4-3. 1. If fr ) is a monotonic increasing sequence1 and n 

f sn \ is monotonic decreasing sequence such that 

lim n-+oo r 
n = lim s n-+oo n 

,:: X 

then ax is the uniquely determined number 

r s n x n 
a ~ a S a for every n. 

Such a definition cannot be used, however,. until it is proved that 

r } s 
la n} and(a n1 satisfy the requirements of the Completeness Pro-

perty as was shown in the above example of 2 'Y2. No discussion of 

any type is given in the textbooks regarding this question. Therefore~ 

it is assumed that the definition and development of real numbers of 

the type ax, where x is an a rbitrary real number, is to be omitted in 

these textbooks and hence from this study. References are given in 

Intermediate Mathematics _!, Commentary for Teachers on page 49 

regarding the development of real numbers in general; ax . is one type. 

Another approach that uses Cauchy sequences and limits can be found 

in Goffmann 1s Real Functions ( Q.a J , pp. 28-45 ). 

Therefore, in lieu of a justifying argument,. the textbook 

assumes on page 164 that f: x ~ ax has a graph that i s continuous. 

one-to-one, steadily increasing, and that the properties of exponents 

hold for irrational exponents the same as for rational exponents pro-

vided a> O. 

Elementary Functions ~ 4- 6 

The first part of this section is devoted to finding the equation 

X of the tangent to the graph G of y ,,. 2 at P(O~ 1). The method by 

which this is done is of considerable importance to this study . The 
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section consists, mainly# of an argument to ,show that G lies in a 

"hatched region" (see Figure 4) so that Definition 3-3. 2 can be used. 

It will be pointed out below.,. however, that the argument given by the 

textbook is dependent upon the assumption that the conditions of De

finition 3-3. 3 are given. 

X 

Figure 4 

On pages 171 to 173 the discussion and exercises that are 

given are to prove wha.t is stated here as a theorem. Although the 

theorem is not specifically stated in the textbook and of course 6 is 

not used.,. a precise statement of the object of the discussion would 

provide the following theorem: 

Theorem 4-6. 1. For every number b such that O < b < 1 there exists 

a number 6 > 0 such that if O < Ix I < 6 then G, the graph of y = 2x., 

lies in the "hatched region" (see Figure 4) between the lines 
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Ll: 1 + 
2b - 1 y = b x,.. 

-b 1 
L2: 1 + 2 -y = x. -b 

The argument found in the textbooks is correct except for failure 

to consider the sign of 1 - m 2x2 on page 172 and,. similarly-1 

1 - m 2x 2 on page 169 of the Commentary for Teachers. It is stated 

that if O < X < b-1 

because 

1 - mx 
2 2 

1- m X 

> 1 - mx 

This statement is not necessarily true unless it is also stipulated that 

0 < 1 - m 2x2 or lxl < Ii!. J. 
Therefore •. in this case. x must be chosen such that 

0 < lxl ~- min{b,. I r!i I). 
The completion of _the textbook 1s argument,, and hence the vali

dity of the conclusion. is dependent upon the statement: "We expect 

that if b is small enough. the lines L 1 and L 2 will have slopes which 

differ by as little as we please. " The slopes of the lines are 

f(b) - f(O) d f(-b) - f(O) 
b an -b • 

The sentence quoted is an assumption of the statement 

lim f(b) - f(O) = lim f(-b) - f(O) .. 
O .... OT b -o .... o- -b 

By Theorem 2 5 if b is called X-1 then ~US f(x) ~ f(O) exists. Call this 

limit m and note that f(O) • L Thus,.. by Def~ition 3- 3. 3 it is assumed 

that y = l'{'.+·m.x is the tangent to the graph of y = 2x at P(O,. 1) .. 
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Therefore, the argument given in the textbook is circular in 

that one definition which involves the limit of a quotient (Definition 

3-3. 3) is assumed in an argument given to show that the "wedge" de-

finition (Definition 3-3. 2) holds. However, it was proved in Theorem 

3-3. 1 that these two definitions are equivalent. A valid derivation of 

the equation of the tangent to the graph of y = 2x,, using Definition 

3-3. 3 can be found in the calculus textbook by Johnson and 

Kiokemeister ( ~ ~ • pp. 211-228). 

Furthermore, it is the difference quotient found in Definition 

3-3. 3 that is used to approximate the slope of the tangent to the graph 

of y = 2x at P(O; 1). This particular slope is henceforth_. in the 

textbooks and this report, called k. On page 172, the example 

b = O. 01 is given and the slopes 

f(b) - f(O) · d 
b an 

are given as 

f(-b) - f(O) 
-b 

11 
II 0. 6 96 

0.01 · • • and 
0.690 
0.01 

respectively~ Thus, if g! x ~ 2x , the equation of the tangent at 

P(O.t 1) is 

y=kx+l (1) 

which the textbook writes as 

"g(x) ~ kx + 1;, for Jxl small." (2) 

On page 173;, general results are sought from the foregoing 

discussion. It is stated that for any a > o. there exists a number a 

such that "a = 2a so that 

ax = 2ax: = g(ax:). 11 



Hence,. "it follows that [as in (2TI 

g( ax) ~ kax + 1, for r ax I small. 11 

This statement is written in the form of (1) and proved here as a 

theorem. 

Theorem 4-6.2. The equation y = kax + 1 is that of the tangent 

to the graph of y = 2ax = ax at P(O,, 1)., 
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Proof: By (1) with ax substituted for x and Definition.3-3. 2 it follows 

that for every E > 0 there exists 6 > 0 such that if O < !xi < oJc then 

(k - ~ )(ax) + 1 < 2(£1:'X) < (k + ~)(ax) + 1 for x > O,. a a 

and (k - ~)(ax) + 1 > 2(ax) > (k + ~)(ax) + 1 for x < O. 
a a 

Therefore,, 

(ka - E)x + 1 < 2 ax < (ka + E)x + 1 for x > 0,, 

and (ka - E )x + 1 > 2 ax < (ka + E)x + 1 for x < o. 

This means,. by Definition 3- 3. 2, that the equation of the tan~ent to 

y = 2ax = ax at P(O,, 1) is 

y = kax + 1 (3) 

The final objective of this section is to define e as that number 

such that the graph of y = ex has as the equation of its tangent, 

y = X + 1 (4) 

at P(O,, 1). Hence, by (3) and (4) e is defined by e == 2 l/k: 

"An important method for approximating the value of e, which 

would be expressed as follows 

1 n e ::::: (1 + -) for n large,." 
n 

is given at the last of this section, on pages 174 and 175. In order 

that this statement ''may be made plausable" the textbooks gives the 



following argument: 

"ex ~ 1 + x for Ix I near O_. 11 

1 
which become, for x = -n 

1 

11 en ~ 1 + _!_ • 11 
n 

In the language of limits this means that 

1 

lim ex = lim '1 + x) and lim en x-o x-o \ n'"+OO = lim n-oo 
1 (1 + -). 
n 
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These statements are indeed true but were found to be an inadequate 

basis to prove the required statement that 

e = J~ ( 1 . + ~ t . 
Consider for example,. 

1 

ii.!Po ex = ii.!Po (1 + 2x) and~ en = J~ (1 + ~). 

2 n However, e ;,!. lim ( 1 + - ) as can be shown by other means. 
n-oo n 

A rigorous development of the limit (5) can be found in the 

(5) 

calculus textbook by Johnson and Kiokmeister ( [?l] _. pp. 215-17) 

which is readily ap.aptable to use th~ Completeness Property as stated 

in this report. 

Elementary Functions ~ 4-7 

Having discussed in detail the tangent to the graph of y = e X 

at P(O., 1), the textbook in this section generalizes the previous results 

to obtain the tangent to the graph of y = ex at P(h, eh). On page 178 

it is stated that "we write x c h + (x - h) and 

x h + (x - h) , .. , h x-h 
e = e = e. e 

For I x .:. h I small enough. we use ~x ~ 1 + x] • •, · . " Using this 

suggestion the following statement is presented and proved as a 
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theorem: 

Theorem 4-7. 1. The equation y = eh + eh(x - h) is that of the tan-

gent to the graph of y X h 
= e at P (h, e ). 

Proof: Let y = 1 + x be the tangent to the graph of y = ex at 

P(O, f(O)). Hence, by Definition 3-3. 2 it is given that for every 

e > 0 there exists o > 0 such that if O < I xi < o ~ then 

€ X € 
1 + (1 - h)x < e < 1 + (1 + h)x for x > O, 

e e 

and € X € 
1 + (1 - h)x > e > 1 + p + h)x for x < 0. 

e e 

Now making a linear transformation by substituting x - h for x, the 

above becomes: For every e: > 0 there exists o > 0 such that if 

0 < I x - h I < o , then 

€ X - h € 
1 + (1 - h)(x - h) < e < 1 + p + h)(x - h) for x > h., 

e e 
and 

€ X - h € 
1 + (1 - hHx - h) > e > 1 + (1 + 11)(x - h) for x < h. 

e e 

Upon multiplication by eh > O, these inequalities can be written: 

h h X h h 
e + (e - e )(x - h) < e < e + (e + E}(x - h) for x > h, 

and 
h h X h h e + (e - E}(x - h) > e > e + (e + e)(x - h) for x < h. 

Therefore, by Definition 3-3. 2, (with x - h substituted for x) the 

equation of the tangent line to the graph of y = ex at P(h., eh) is 

y = eh + eh (x - h). 

Elementary Functions ~ 4-12 

The discussion in this section, that refers to approximations 

for "r XI small enough, II is either repetition of what has been covered 
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previously,t or introduction to what will be covered later in A4-16 and 

A4-18. Therefore, this study follows the suggestion made by Commen

tary for Teachers (page 193): The answers to the questions which 

arise "are not answered in Section 4-12,. but are discussed in the Ap-

pendix (Section 4-16) • • · and (Section 4-18 ). 11 

Elementary Function 2J, 5-10 

This section is devoted to finding the equations of the tangents 

to y = sin x and y = cos x at P(O,. f(O)). Necessary inequalities are 

verified by the textbook; the three most important ones are: 

if 0 < x < ; J- then x( 1 - x 2 ) < sin x < k; (1) 

if 
-1[ 2 

0 > x > 2 ,. then x( 1 - x ) > sin x > x; (2) 

and if 
1[ 1[ 2 - 2 < x < 2 , then 1 - x < c OS. x <. 1. (3) 

The following theorems use an argument suggested by the textbooks 

and the definitions of tangent that are previously stated. 

Theorem 5-10. 1. The equation y = x is that of the tangent to the 

graph of y = sin x at P(O,. 0). 

2 
Proof: ~~ (1 + x ) = 1 because for every E: > 0 there exists 

6 = YE > 0 such that if O < Ix I < 6,. then 

2 
X < €_. 

and hence:,. 1 - x 2 > 1 - E: • 

This becomes.,, by (1) and (2): For every E: > 0 there exists 

6 = min(; ,.'i(i:) > 0 such that if O < !xi < 6,. then 

2 
(1 ~ E: )x < (1 - x ) x < sin x < x < (1 + E: )x for x > 0,. 

and (1 - € )x > (1 - x 2) x > sin x > x > (1 + € )x for x < 0. 
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Therefore, by Definition 3-3. 2, the equation of the tangent to the graph 

of y = sin x at P(q, 0) is y = x. 

Theorem 5-10. 2. The equation y = 1 is that of the tangent to the 

graph of y = cos x at P(O, 1 ). 

Proof: Lim x = 0 because for every f£ > 0 there exists 6 = e: > 0 x-o 

such that if O < I x I < 6 , then 

lxl < € or 

This becomes, by (3), for every e: > 0 there exists 6 = min i, e:) > 0 

such that ii O < Ix I < 6,. then 

1 - € x < 1 - x 2 < cos x < 1 < 1 + e: x for x > o,, 

and 
2 . 

1 - Ex>l>cosx>l - x >1 + e:x forx<O. 

Therefore., by Definition 3-3. 2, the equation of the tangent to the graph 

of y = cos x is y = 1. 

Elementary Functions ~. 5-11 

The results of the previous section are to be generalized here 

to find the tangents to the graphs of y = sin x and y = cos x at a 

general point. This is done by writing x ash + (x - h) and then using 

the trigono~etric identities referre'd to as the "addition formulas." On 

page 278 it is given that 

"sin [ii + (x - h)] = sin h cos (x - h) + cos h sin(x - h),,. (1) 

cos [!i + (x - h)] = cos h cos (x - h) - sin h sin(x - h). (2) 

We now replace cos(x - h) and sin(x - h) by their best linear approx

imations • • • and obtain the required tangent lines.'' 

This procedure, however, requires the qest linear approxima-

tion of the sum of two functions to be the sum of the best linear approx-

i:mations ·• and the best linear approximation of the function.,, 
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g: x ~ kf(x) to be k times the best linear approximation of 

f: x ~ f(x). Because the textbook fails to consider these requirements. 

these two relationships are more exactly stated and proved below as 

theorems~ 

Theorem 5-11. 1. If the equation of the tangent to the graph of 

f: x ~ f(x) at P(O.., f(O)) is y = f(O) + mx and tp.e equation of the 

tangent to the graph of g: x ~ g(x) at P(O., g(O)) is y = g(O) + nx, 

then the equation of the tangent to to.e graph of f + g: x ~ f(x) + g(x) 

at P(O, f(O) + g(O)) is 

y = f(O) + g(O) + (m + n)x. 

Proof: With regard to f_. it can be stated by Definition 3-3. 2 that for 

every E > 0 th~re exists 61 > 0 such that if O < Jx I < 61_. then 

€ ' € f(O) + (m - i)x < f(x) < f(O) + (m + 2)x for x > 01 

and f(O) + (m - ;)x > f(~) > f(O) + (m + ~)x for x < O. 

With regard to g.,, it can be stated by Definition 3- 3~ 2 that for 

every e: >. 0 ~er~ exists ,~6 2. > 0 such that if O < Ix I < 6 2 .. then 

g(O) + (n - i>x < g(x) < g(O) + (n +·~)x for x > O, 

€ € and g(O) + (n - 2 )x > g(x) > g(O) ,.+ (n + 2 )x for x < O. 

Now, for every e: > O there exists 6 = min ( 61_. 62 ) > O such that if 

0 < Ix I < 6, then both pairs of inequalities hold and can be added to 

give 

f(O)+g(O) + (m+n-e:)x < f(x)+g(x) < f(O)+g(O) + (mfn+e: )x for x > O.;. 

f(O)+g(O) + (m+n-e:)x > f(x)+g(x} > f(O)+g(O) + (m+n+e:)x for x < 0~ · 

Therefore.,;, by Definition 3-3. 2, y = f(O) +. g(O) + (m+n)x gives the 

best linear approximation of the SUfll, f + g:x ~ f(x) + g(x), and is 

also the sum of the best linear approximations, y = f(O) + mx 



and y = g(O) + nx. 

Theorem 5-11. 2. If the tangent to the graph of f: x ~ f(x) at 

P (O, f(O)) is y = f (O) + mx, then the tangent to the graph of 
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g: x ~ kf(x) at P (O, g(O)) is y ~ kf(O) + kmx, for any real number 

k. 

Proof: Let k > 0. By Definition 3-3. 2, the hypothesis can be stated: 

For every E > 0 there exists o > 0 such that if O < Ix I < o , then 

€ E f(O) + (m - k)x < f(x) < f(O) + (m + k)x for x > O, 

and f (O) + (m ·- ~)x > f(x) > f(O) + (m +~)x for x < 0. 

The above inequalities can be multiplied by k > 0 to give 

kf(O) + (km - E )x < kf(x) < kf(O) + (km +c )x for x > 0, 

and kf(O) + (km - E )x > kf(x) > kf(O) + ~m + E)x for x < O. 

Therefore, it follows by Definition 3-3. 2 that y = kf(O) + kmx is the 

best linear approximation of g: x -~ kf(x) at P(O, g(O)). For k < 0 

the proof is essentially the same as that given above. If k = O, the 

graph of g becomes the straight line y = 0 and the tangent coincides. 

Therefore, because every real number k has been considered, the 

theorem is proved. 

The above theorems are readily generalized for P (h, f(h)) as 

was done in Elementary Functions 1, 3-5, so that the argument given 

in 5-11 is justified. Hence, it follows from (1) that the equation of 

the tangent to the graph of y = sin x at P(h, sin h) is 

y n sin h + (cos h) (x - h), 

and from (2) that the equation of the tangent to the graph of y = cos x 

at P(h, cos h) is 

y = cos h - (sin h) (x - h). 
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Elementary Functions 21 A4-16 

Previously,, in section 4-12 the textbook conjectured that the 

best nth degree polynomial approximation to the graph off: x -.;;, ex 

at P(O,, 1) is 

-{- . • . + 

The purpose of this section is to provide justification of this conjecture 

for X > 0. 

The arguments given_. however, were found to be incomplete 

and logically inadequate. After analyzing these arguments, this 

writer corresponded with Professor Donald E. Richmond of Williams 

College,, Williamstown,. Massachusetts, who is a member of the SMSG 

writing group ( @'fl ,. p. 143). Professor Richmondvs letter that con-

tains suggested proofs of the statements in question is reproduced in 

Appendix A of this report. In order that these arguments can be satis-

factorily analyzed,, they are reconsidered here. 

In order to show that y = ~(x) is the equation of the best 

linear approximation off: x ~ ex at ;p(o, 1) when x > 0.., the discus

sion suggests it is to be shown that the graph off lies above 
2 n 

g :x~l+x+~+···+x 
n 2! ii! 

for every x > 0., and below 
2 

X 
hn: X ~ 1 + X + 2f + • · • 

n 
+ ex 

n! (1) 

for some x > 0, depending on the number c > 1 (c is arbitrarily close 

to 1 ). This would satisfy Definition 3-3. 2 if c-1 were called E because 

then_. for every E > 0 there would exists 6 > 0 such that if O < x < 6 1 

then 
g (x) < f(x) < h (x). n n 



On page A-53; the discussion begins with the statements: 
xn 

"~ t(x) = gn(x) - n! ; 

g '(x) < g (x) when x > O. 
n n 

The graph of the function f: x ~ ex climbs at such a rate that f 1(x) 
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is always equal to f(x) (i°'(x) = ex] . Since the graph of gn(x) climbs 

less rapidly it will fall below that off." However, this last sentence 

is not justified on the basis of the given inequalities. If 

and 

f '(x) = f(x), 

gn r (x) < gn (x); 

it cannot be concluded that "the graph of g (x) climbs less rapidly" 
n 

than the graph off, or 

gn '(x) < f' (x) 

unless it is known that g (x) < f(x). This is the relation to be proved 
n 

and, therefore., it cannot be used in the argument. This proof can be 

completed; however, by other methods (see Appendix A). 

Later on page A-53, h 3(x) as special case of (1) is discussed. 

It is stated that: "h3(x) < g 3(x). It turns out that for sufficiently 

small positive values of x, h 3(x) is also greater than ex, as we now 

show. We wish to have h 3(x) climb too fast ta" represent x ~ ex 

~r h 3 1(x) > f'(x[I . This will be true if the slope is greater than the 

ordinate, that is, 

h 3 1(x) > h 3(x)." 

However, this last sentence is not justified on the basis of the given 

inequalities. Even if 

and 

h 3 1(x) > h 3(x) > g 3(x) 

fr (x) = f (x), 
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it cannot be concluded that h 3 1 (x) > f'(x) unless it is known that 

h 3(x) > f(x) (which is to be proved), or g3(x) > f(x) (but it was proved 

that g (x) < f(x)). This relationship can be proved, as in the previous 
n 

argument, by other methods (see Appendix A). 

The remainder of this section is devoted to finding the number 

6 that corresponds to the number c > 1. If c is called 1 + E then for 

every E > 0 it would follow from the textbook's discussion that there 

exists a corresponding 6 > 0 which would be n(1 ~ el· Hence, by De

finition 3-3. 2 the following theorem is justified for x > 0; 
2 

Theorem A4-16. 1. The equa,tion gn(x) = 1 + x + ~! + 

is that of the best nth degree polynomial approximation to the graph of 

X 
y = e at P(O, 1 ). 

Elementary Functions ~ A4-18 

This s .. ection is devoted to justifying approximations of the type 

2 
11n x ~ (x - 1 ) - (x 2 1 ) + 

3 (x - 1) 
3 

f 1 f 1 II • lf or va ues o x near ., or 1n genera or n = 

2 3 
u u ln (1 + u) ~ u - 2 + 3 + (- 1 )n - 1 

n 
u 
n 

(1) 

On page A-60 it is stated: "It can be shown that in this case the error 

E made by replacing ln (1 + u) by ..• 

G -1 + ~ 3 - . . . + (- 1 )n - 1 u:j 
n+l 

is numerically less than u " 
n + 1 I 

that is 

I n+ 1 I 
0 < E < un + 1 for I ul < 1. (2) 
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No discussi9n is given in thi? textbook regarding the justification 

of (1).,, and it is stated on page A-61 that "a fuller juatification of the 

methods discussed_ depends upon a knowledge of calculus." Specifically;, 

a rigorous treatment in which ln (1 + x) is used as an example can be 

found in Taylor's Advanced Calculus ( ~tj] _,- pp. 115-116> 54~-43). 

It is the concern of this study to show that if (2) is accepted_,-

the arguments included in the textbook are justified. First,. consider 
n+l 

the statements made on page A-61: "We note that if u < 1 then un + 1 

can be made arbitrarily small by choosing n large enough. 11 This can 

be restated: if I u I < 1~ then 

lim n-oo 

n+l u 
n+t :: 0. (3) 

Therefore,. the desired conclusion;, "a polynomial approximation of 

ln (1 + u) can be found which is as accurate as you please,,;," follows 

from (2) and (3) if lul < L 

Discussion is given concerning the approximations for fixed 

n and "for I u I small" as in (1),. but it is not argued that these ap-

proximations are the best nth degree polynomial approximations. How-

ever, -if (2) is accepted> the textbooks could have continued with 

2 1 n n+l 
ln(l + u) > u u + + (- l)n - u I un+ 1 I - 2 

... -n 

2 n 
lun + 11 

(4) 

and ln(1 + u) < u 
u + + (- 1)° - 1 u + - 2 

.. -.. - n+1· n 

Now if 1 > u > 0.,, (4) becomes 

2 1 
- n 

ln(l + u) > u 
u· 

+ + ((- l)n - nl·ui)E,_ - 2 
... 

n+l n 

2 nluJ )Un 
' (5) 

and ln(l + u) < u u + + ((- l)n - 1 - 2 
... + ri + 1 n · 



If - 1 < u < O and n is even, I un + 1 1 

.~ 

ln(l + u) ~ u - ;.- + • •. + 

2 
and ln(l + u) < u - u2 1 + • · · + 

n +· 1 = - u and (4) beco:µies 

((- l.)n - 1 _ n I ul ) un 
n + l n 

((.'"'.l)n - 1 + n [ul ) un 
n + 1 .n • 

··~· 

+11 n+l · If - 1 < u < 0 and n is odd,. Jun · = u and (4) becomes 

2 
ln( 1 + u) > u - u2 + · · · + (.(-l)n - 1 + n lul ) un 

n+l rt 
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(6) 

(7) 

But when n is fixed;, 

lim n lul 
u-·o n + 1 = 0 

iili. ,, 

and it follows that for every E' > 0 there exists 61 > 0 such that if 

0 < I u I < 61" then 

_ e: < n lul 
n+l < e:. 

Therefore; for every e > 0 there exists 6 = min ( 61"' 1) such that 

if O < f ul < 6 ~ then (5) and (6) can be written 

2 1 Un 
ln( 1 + u) > u - ;- + · · · + ((-1 )n - - e) n 

and 
. · 2 1 n 

ln(l +u)<u - u2 + ... · + ((-l)n - +e:) ~;,; 

and (7) can be written 
. 2 

ln(l + u) ~- u - ~ + . ~. ~ · . . . 2 . 

n 
. n - 1 u + .C(-1) . - ¢) n 

. . 

and 
2 .n . · .. u n-1 u 

ln( 1 + u) .>. u - 2 + . . . + ( (-1) + E:) n . 

So"' by Definition 3-4. 3 the followin~ theorem is proved: 
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Theorem A4- 18. 1. 
u 2 n-1 un 

The equation y = u - 2 + · · · + (- 1) n , 
is th~t of the be~t nth degree polynomial approxi-

mation to the graph of y = ln (1 + u) at P(O, 0). 

Elementary Functions ~ A5-1 7 

In this section polynomials are generated as the best approxi-

mation to the graphs of the functions sin and cos. On page A-81 it is 

stated that "we assert without proof that sin x is between any two sue-

cessive polynomial approximations,, II that is, 

3 5 7 3 5 
X + X X < sin < .X 

X + X 
X -

3T 5! ·- 7! X - 3T 5T (1) 

and similarily.,, 

2 4 6 2 4 
1 X + X X < < 1 X + X - '2T 4! 6T COS X - 2T 4T (2) 

The proof of these statements can be found in Taylor's Advanced 

Calculus in which this partict!lar example is discussed ( @Q] , p. 544). 

It is also stated on page A-81: "We shall not prove that the 

polynomials written represent the best approximation :possible for the 

degree chosen. (They do)." However"' as a concern of this study, the 

statement is proved using (l) and (2 ). 

Theorem A5- 17. 1. 
x3 n - 1 x2n-1 

The equation y ::: x - 3 ! + · · · + (-1) (2n- l)! , 

n = 1, 2l 3; · · · t is that of the best (2n - l)st degree polynomial ap-

proximation to the graph of y = sin x at P(O, 0). 

Proof: Consider I as inferred in (1 ), if x > 0 and n is even,, or x < 0 

and n is odd,, then 

and 

3 2n - 1 
X n 1 X 

Sin X > X - 31 + • • · + (-1) - (2n _ 1) ! 

3 
X · n sin x < x - 3T + •.. + (-1) 

2n + 1 
X 

(2n + 1) ! ' 

(S) 



and if x > 0 and n is odd or x < 0 and n is even; then 

and 

3 2n + 1 
X n X 

sin x > x - 31 + · • · + (-1) ~(2-n-+~1~)! 

3 
, < X + + (- l )n - 1 sm x x - 3! · · · 

2n - 1 
X 

(2n - 1 )! 

In (3) the second part of the inequality can be written 

_ x 3 + . . + (( l)n - 1 + (-l)n (2n - l)! x 2 ) 
X 3! • - (2n + 1) ! 

Similarily the first part of (4) can be written 

2n - 1 
X 

(2n - 1 )! • 

2n - 1 
X 

86 

(4) 

_ x 3 + + -((-l)n - 1 + (-l)n (2n - 1)! x 2 ) 
X 3! • • 0 

- (2n + 1) ! (2n - 1) ! · 

Now,. because for each fixed value of n,. 

2 
(2n - 1) ! X 

liWo (2n + 1) ! = 0 

it follows that for every E > 0 there exists 6. > 0 such that if 

O< Ix[ <6then 

2 
(2n - 1) ! X 

(2n + 1) ! < E • 

and thereforeJ in either (3) or (4)J 

3 
X 

sin x > x - 3! + · . . + 
2n - 1 

(4'-l)n-1 E:)x _ 
'- - (2n - 1 )! 

and 
x3 n - 1 x2n - 1 

Sinx<x-sr+••• +((-1) +E)(2n-1)!" 

or 
x3 n - 1 x2n - 1 

sin x < x - 3! + • · • + ((-1) - E) (2n _ 1) ! 

and 
x3 n _ 1 2n - 1 

sin x > x - 3! + · • · + ((-1) + E ) ( 2n _ 1 )! 

Hence,. because the requirements of Definition 3-4. 3 are satisfied .. 

the theorem is proved. 

Theorem A5-1 7. 2. 
x 2 n-1 

The equation y = 1 - 2! + • •· + (-1) 
2n 

X 

(2n)!" 

n = 1, 2,. 3~ · · ·, is that of the best (2n)th degree polynomial 



approximation to the graph of y = cos x at P(O, 1 ). 

Proof: Consider, as inferred by (2) if n is even, then 

and 

2 2n 
X · n - 1 X 

COS X > 1 - 2! + • • • + (-1) (2n)! 

2 
X n 

COS X < 1 - 2! + • • • + (-1) 
2n + 2 

X 

(2n + 2) ! ' 

and if n is odd, then 
2 2n + 2 

cos x > 1 - ~ + . . . + (- l)n · ....,.,x_-,--,,.-.-
2! (2n + 2)! 

and 
2 2n 

X n - 1 X 
cos x< 1 - 2T + ··· + (-1) (2n)! 

In (5) the second part of the inequality can be written 

2 2 x n - 1 n (2n) !x 
1 - 2! + ··• + ((-l) + (-l) (2n+ 2)!) 

Similarily, the first part of (6) yields 

2n 
X 

(2n) ! · 

1 - ¢. +- ••. + H-l)n - 1 + (-l)n ~!) ~! • 

Using the fact that for every n, 

1· (2n) !x2 - 0 
x1!Io (2n + 2) ! 

it follows that for every € > O there exists 6 > O such that if 

0 < Ix I < 6 , then 

2 
(2n) ! X 

(2n + 2) ! 
and therefore in eith,er (5) or (6), 

2 
X 

COS X > 1 - 2! + JO•• 
n - 1 x 2n 

+ ((- l) - €) (2n) ! 

2n 2 
X 

COS X < 1 - 2! + •.. + n - 1 X 
((-l) +e:) (2n)! 

Hence> because the reruirements of Definition 3-4. 3 are met, the 

theorem is proved. 
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(5) 

(6) 
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Summary of Major Points 

It was found that throughout Elementary Functions the concept 

of a "best approximation" of a graph of a function was used. In the 

case of a best linear approximation, it was shown in this study that 

this was equivalent to the conventional calculus definition of a tangent. 

The calculus definition of tangent (and derivative, called the slope 

function) was included in the study because it was tacitly assumed in 

an argument concerning the best linear approximation of the graph of 

X y = e . The best rth degree polynomial approximation was defined 

as suggested by the textbook and used throughout the treatment of 

Elementary Functions. 

Another topic that was treated in this study was the concept of 

a dominating term of a polynomial function. Definitions and theorems 

were presented for the case of x in a neighborhood of zero as well a s 

for x increasing without bound. 

Although the integral was not formally presented in E lementary 

Functions related discuss ions were found and treated. This included 

the computation of area under a curve and a proof of the fundamental 

theorem of calculus, both of which involved limits . 

The explanat ion of continuity presented in Elementary Functions 

was that the "graph has no holes or jumps." It was found,however, 

that the limit definition is tacitly assumed and used in a proof of the 

fundamental theorem of calculus. In treating this theorem, the need 

for and use of the limit definition of continuity was explicitly stated. 

Another major topic which was treated with limits was the 

justification of the textbook's discussion devoted to the definition of 
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the real number 2 '12. A complete discussion of the development of 

the exponential function is not given in the textbook but rather this 

example is given to suggest a development. Properties of the exponen

tial function are assumed without a justifying argument by the textbook; 

hence.t they were not treated in this report. 



CHAPTER IV 

AUXILIARY DEFINITIONS AND THEOREMS 

The following definitions and theorems are presented for jus-

tification of some statements made in the previous chapters. When 

they were used in an argument they were referred to by number; hence, 

no discussion is needed in this chapter. The definitions and th.e'orems 

of this chapter are located here rather than in the precedipg chapters 

because they are not discussed by the textbooks and they would inter-

rupt the continuity of the presentation if stated or proved at the source 

of need. 

Theorem 1. If lim ns = c > O_.,. then lim s = O. n-oo n n-oo n 

Proof: If lim .ns = c then for every E > 0 there exists a natural n-+oo n 

number N such that if n > N, then 

Select E < c, then 

or 

\ ns - c I < E. n 

0 < c - E < ns < c + E ,, n 

<s < C + E 
n n 

But for every E > 0 there exists a natural number N 1' the smallest 

positive integer greater than C + E , such that if n > N 1, 

Thus,, by definitio~ 

C + E -E<O<s < <e:. n n 

lim s = O. n-+oo n 

Theorem 2. If fan~ is a sequence of non-negative real numbers 
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and lim a "" A> O, then lim Ya:. = VA: n-oo n n-oo n · 

Proof: If lim a = A., then for every € > 0 there exist a natural n-+oo n 

number N such that if n > N,; then 

Taken > N. If a n 

I~ - VAi 
If a + A < E ; then 

n 

+ 

:c 

I an - Al 

A> €" then 

Ian - Al 
1-va;;: + VKj 

< 2 
€ .. 

2 
€ < 

1van + VA" I 

I~ - YAI < I~+ VAi < €. 

Hence lim "Tan = '{A. n-+oo V ..... n 

2 
<~ = € • - € 
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Definition L The limit of a function fat a is b~ lim f(x) = b" if for x-a 

every E > 0 there exists 6 > 0 such that if O < Ix - al < 6 j then 

,I f(x) - b I < e: .. 

Definition 2. A function f is said to be continuous at x = a if f is 

defined in a interval containing x = a and Iim f(x) i::: f(a) .. x-+a . 

Definition 3. A function f is said to be continuous on an interval 

[a~ ~ · if it is continuous at each point of the interval. 

Definition 4. A graph G of a function f is called a continuous graph at 

a set of points P(x..; f(x))s,, if the function f is continuous at the corres-

ponding values of x. 

The following Theorems 3 through 11 are proved in many cal-

culus texts and are for this reason not proved here. 

Theorem 3. ~~ (mx + b) = ma + b. { f?1J • p. 35). 

Theorem 4. If lim fix) exist., then Um k fh'x) >= k lim f'x) for every 
x-+a ' x~ ' x-+a ' · 

number k ( [? 1] # p. 35 ). 

Theorem 5. Lim 1 = al for a .JI' 0 11 [?i] + p. 39). 
x-+a x ' 



Theorem 6 .. 

Theorem 7. 

~~ 'vx ,,. ya for a > 0 ( ~ 1] .. p.. 41 ). 

If the function f is continuous at band lim g(x) = b_.. x-+a 

thenlim f(g(x)) = f(lim g(x)) = f(b) ( []1], p.48). x-a x-a 

Theorem 8. If lim f"x) and lim g1x) exisL then 
x--a \ x-+a ' "' 

lim 'f'x) + g'x)) = lim f(x) + l:im gi'x) ( []i] _.. p.48). 
x-a ' " - \ x-a - x-a ' · 
Theorem 9. If lim f'x) and lim g'x) exist$' then 

x-+a ·' x-+a ' 

¥~ (f(x) • g(x)) = ii~ f(x) • ii~ g(x) ( ~1] _.. p .. 48). 

Theorem 10. If lim f(x) exists and n is a positive number,. then 
X--+a 

ii~ ~(X) :: (iim f(x))n ( ~1] I p'." 48). 
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Theorem 11. If lim f(x) and lim g(x) exist and if lim g(x) ~ O, then x-+a x-a x-+a 

lim ~ 
x-+a g(x) 

lim f'x) x-+a \ 
~l-Wa. g(x) 

c ~D .. p.48). 

Theorem 12.. If iiE~ f(x) exists and n is a positive integer_. then 

~r-::-;-: n 
ii-Wa_ vr(x) = \/J_i~ f(x) ( [?D, p.48). 

Definition 5. The limit of the function fas x increases without bound 

is b.., lim f(x) = b,, if for every € > 0 there exists a number N such x-oo 

that if x > N, then I f(x) - b \ < E • 

Definition 6. The limit of the function f as x decreases without bound 

is b;, lim f 1x) = b ... if for every E > 0 there exists a number N such 
x--oo ' 

that if x < N, then I f(x) - b I < E. 

The following Theorems 13 through 17 are stated without ac-

companying proofs because the proofs are but slight modifi.cations of 

the ones given for Theorems 8 through 12 ( [? U , p. 170). 

For Theorems 13 through 17 it is to be assumed that 1:l.m f(x) 
x-++.oo 

and lim g(x) exist. 
x-++oo 

Theorem 13. xldt.~ (f(x) + g(x)) = x~oo f(x) .± xUfoo g(x). 



Theorem 14. 

Theorem 15. 

Theorem 16. 

Theorem 17. 

x14Foo (f(x) • g(x)J = xUfoo f(x) • 

Lim (f (x ))n = ( lim f(x ))n. 
x-±oo 'x-±oo 

g f{x) If lim g'l.x) 1' O,, then lim R ) 
x-±oo x-foo g,x 

Lim J; lf(x) = x-±oo V .,~~ 1 
"{J lim f(x). 

x-+±oo 

lim g(x). 
x-±oo 

lim f(x) 
= x-±.oo 

lim g(x) · 
x-±oo 
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In the following definition and in some definitions and theo.rems 

below., words or phrases will be found in parentheses. These allow 

two definitions or theorems that are closely related to be given simul-

taneously. One statement is obtained by omitting the phrases in paren-

theses; the other is obtained by considering the part in parentheses 

and omitting the phrases that immediately precede the parentheses. 

Definition 7. The limit of a function f as x approaches a from the 

right (left) is b,, lim f(x) = b ( lim f(x) = b )~ if for every E > 0 
x-a+ 'x-a-

there exists o > 0 such that if O < x - a < o (0 < a - x < o ),, then 

t f(x) - b I < E .• 

Definition 8. The function f increases without limit as x approaches 

a from the right (left)J lim+ f(x) = oo,... ( lim,. f(x) = oo ), if for 
. x-a x--+a-

every number M > 0 there exists 6 > 0 such that if O < x - a < 6 

(0 < a - x < 6 ), then f(x) > M. 

Definition 9. The function f decreases without limit as x approaches 

a from the right (left)., x1.~T+ f(x) = -oo CJ.iw- f(x) = -oo), if for 

every number M < 0 there exists o > 0 such that if O < x - a < o 

(0 < a - x < oh then f(x) < M. 

Definition 10. The function f increases (decreases) without limit as 

x increases without limit,. ¥.!P:oo f(x) = oo (¥.!Foo f(x) = -oo )., if for 
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every M > 0 (M < 0) there exists a number N such that if x > N then 

f(x) > M (f{x) < M). 

Definition 11. The function f increases (decreases) without limit as 

x decreases without limit.,_ lim f(x) = oo ( li1!100 f(x) = -oo ).,_ if . x-- 00 x ... 
for every M > 0 (M < 0) there exists a number N such that if 

x < N then f(x) > M (f(x) < M). 

k 
Theorem 18. If liE100 f(x) = ± oo.,_ then ii.mo f{x) = 0 for every real 

number k. 

Proof: If k - 0 and lim f(x) = oo., then there exist some number x-+oo 

N such that if Ix I > N.,_ then lf(x)I > 0 so \ f~) \ = O. Hence, 

lim -~ = 0 if k = 0 
x-oo f(x) · 

If k ~ 0 and lim f (x) = oo, then for every M > 0 there exists x-oo 

a number N such that if X > N then f(x) > I kl M > o.,_ or If(!) r < ~ • 

Hence.,_ for every € > 0.,_ there exist M > 0 such that if x > N then 

I ft) I < € for every k J' O .. Now.,_ ¥.Woo f~) = 0 fork .JL o, and 

above lim ·rt) = O for k = O so it follows that lim f~ = O for x~ ~ x~ ~ 1 

every real number k when lim f'x) = oo. x-+oo \ 

The proof of the theorem for lim f(x) = -oo is essentially the 
x-oo 

same as that given above. Hence.,_ it is not given here. 

Theorem 19. If f(x) > 0 for all a< x < c and lim f(x) -· O.,_ then 
x-a+ 

'. . k 
llm I ~/ :,: 0() for every number k > o. x-a ,- J.,x, 

Proof: If lim+ f(x) = O., then for every € > 0 there exists c > 6 > 0 
x-a 

such that if O < x - a < 6; then O < f(x) < € • Hence.,_ if M is any 

positive number.,_ there exists c > 6 > 0 such that if O < x - a< 6 then 

0 < f(x) < ~ or f(!) > M when k > O. Therefore,JJ:..W+ ft) = oo. 

Theorem 20. If f(x) > 0 for all a> :,,c > c and lim f(x) = O.,_ then 
. x-a- · 



lim = oo for every number k > O. 
x-a-

Proof: The proof is essentially the same as the one given above. 

Theorem 21. If f(x) < 0 for all a > x > c (a < x < c) and 

lim+ f(x) = 0 Him f(x) = 0)., then lim-'--
x-a x-a - x-+a• 

( lim frr~) = -oo) for every number k > O. 
x-a- 'l.x 

k -- = -oo f(x) 

Proof: The proof is essentially the same as the one given for 

Theorem 13. 

Theorem 22. If x1li\ f(x) = ± oo CJi..W- f(x) = + oo).. then 

lim.., k f (x) ::: + oo ( lim k fffx) = + oo ), for every number k < 0. x-+a ,- x-a- · \ 

95 

Proof: Consider the case limL f(x) = oo. This means that for every 
x-a· . 

M > 0 there exists 6 > 0 such that if O < x - a< 6 then f(x) > M. 

Hence, if-Mis any negative number, there exists 6 > 0 such that if 

-M 
0 < x - a< 6, then f{x) > k: or k f{x) < -M when k < O. Therefore, 

lim-'- k f(x) = -oo. 
x-+a, 

The other parts of the theorem are proved in same manner. 

Theorem 23. If :1:i~ f(x) = f{a), then tt!.m f(a + h) = f(a)., and 

conversely. 

Proof: Given that ~i-Wi_ f{x) = f(a).,. call x = a + h. By definition,,. 

it follows that for every E > 0 there exists 6 > 0 such that if 

0 < I (a + h) - a I < 6 then I f(a + h) - f(a) I < E •. But 

I (a + h) - a I I h I . Hence, itUB f(a + h) = f(a). The converse 

follows in a like manner. 

Theorem 24. If lim f(x) = b, then lim-'- f(x) = b and lim f(x) = b. 
x-+a x-a· x-a-

Proof: If ~i~ f(x) = b, then by definition it follows that for every 

E > 0 there exists 6 > 0 such that if O < Ix - a I < 6 then 

I f(x) - b I < E.. However,. 0 < I x - a I < 6 if O < x - a< 6 and 
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and O < a - x < 6 • Hence., the conditions of Definition 7 are satisfied 

under the hypothesis stated so lim+ f(x) = b and lim_ f(x) = b. 
x-a x-a 

Theorem 25. If lim__L f(x) = b and lim f(x) = b., then 
x-a· x-a- .. 

lim f(x) = b., 
x....,.a 

Proof: Under the hypothesis it can be stated by Definition 7 that for 

ev<eryE' > 0 there exist 6 1 > 0 a:nd 6 2 > 0 such that if O < x - a< o 1 
; 

or O < a - x < 6 2-1' then I f(x) - b I < €. Therefore" for every 

€ > 0 there exist 6 = min ( 6 1" 6 2 ~ such that if O < I x - a I < 6 

then I f(x) - b I < e:. Thus,. by Definition 1 .. }i.!Pa f(x) :cc: b. 

Theorem 26. Li.m 2-n = O. n--+oo 

Proof: Lim 2-n = lim _!_ • Consider now 2n. Assume there exists · n-oo n-oo 2n 
n .. n some number M > 0 such that 2 _:s: lVI for every n. But 2 ~ M only 

if log 2n ~ log M for every number n and it was shown that for every 

number M' there exist a number n such that log 2n > M'. Therefore., 

for every number M > 0 there must exist some number N such that 

if n > N,, 2n > M > 0 or .l_ < Ml 
2n 

Furthermore,, for every number E > 0 there exists a number 

N > 0 such that J < e: • Therefore,, combining the results above,, :it 

can be stated that for every e: > 0 there exist a number N > 0 such 

that i.f n > N,, then .l_ < e:. This by Definition 15-3. 1 implies that 
2n 

-n 
lim 2 = O. n-oo · 

Theorem 27. If lim__L f(x) 
x-a· 

then lim_._ f(x)g(x) = + oo 
x-a· -

= b > 0 (b < 0) and }2..T+ g(x) = 

(}!.W+ f(x)g(x) = + oo ). ' 

Proof: Consider lim f(x) = b > 0 and lim g(x) = -oo. 
x-+a+ x-+a+ 

I 

It must be shown that for every M < 0 there exists 6 > 0 such that if 

0 < x - a < 6 then f(x)g(x) < M. Let .M .he negative number and 
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2 
M' = b M. By the hypothesis it follows that there exists 6 i > 0 such 

that if O < x ·- a < 6 \, then 

I f(x) - b I < i or ~ < f(x) < 1b, 

and g(x) < M 1 < 0~ 

' ' b fv.x)g(x) < f(x) M 1 < 2 M 1 ::: M. 

Therefore, by Definition 9, lim+ f(x)g(x) = -oo. The proofs of the 
x-a 

other cases follow in the same manner. 

Theorem 28. If lim fix) ::: b > 0 fh < 0) and lim gtx) = + oo,, then 
x-a- " \'-' x-a- ' 

lim f(x)g{x) ::: + oo (xl-ima_ f(x)g(x) c + oo). 
x-a-

Proof: The proofs are essentially the same as that given above. 

Definition 12. The sequence [ s ] increases (decreases) without n . 

limit, lim s ::: oo (lim s = -oo ).,, if for every number M· > 0 n-oo n n-+oo n 

(M < 0) there exists a number N > 0 such that if n > N,,. then 

s > M (s < M). n n 

Theorem 29. If x > 1, then lim x:n = oo. n~oo 

Proof: In Intermediate Mathematics ~' A9-8 it is shown that 

x 1 > x 2 if and only if ln x 1 > ln x 2• Let M be any positive number, so 

xn > M if ln xn > ln M. But In xn = n in x and since In x > O, 

ln M n ln x > ln M whenever n > In x . Therefore;. for every number M > 0 

there exist a number N = ln M > 0 such that if n > N then xn > M. 
ln X 

This implies by Definition 12. that lim xn ::: oo. · n-oo 

Theorem 30. If lim s n-oo n 

for any real number k. 

k = oo and s P O for any n; then lim - = 0 n n-oo s n 

Proof: The proof is essentially the same as the proof of Theorem 18 

and is not repeated here. 



Theorem 31. If lim s = + oo., then lim (k + s ) == + oo. n-oo n - n-oo n -

Proof: If lim s = oo, it is as follows that for every M 1 > 0 there n-oo n 

exist N > 0 such that if n > N then s > M'. Let M be any positive n 

number and 1\/.i;t = M - k. Therefore, under the condition above .. 
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sn > M - k or k + sn > M. Hence, by Definition 12 it follows that 

lim (k + s ) = oo. The proof of the theorem for n-oo n 

lim (k + s ) == -oo is essentially the same. n-oo n 

Theorem 32. If lim s = + oo and k is a real number different from n-oo n 

o .. then lim ks = + oo if k > 0 and lim ks = + oo if k < O. n-oo n - n-oo n 

Proof: Consider k > 0 and lim s = oo. Take M > O. Under this --- n-oo n 

assumption it can be stated that for every Mt> O there exist N > 0 

such that if n > N then s > M 1• Let M' ::: Mk • Therefore under the n . 

condition above ks > M. Hence.,. by Definition 12 it follows that n 

lim ks ::: oo for k ? 0, n-oo n 

The proofs of the other cases are essentially the same arid are 

not repeated here. 

Definition 13. The function f increases without limit as x approaches 

a., ¥-Wa. f(x) = oo, if for every M > 0 there exists 6 > 0 such that if 

0 < Ix I < 6 1 then f(x) > M. 

Theorem 33. If ~i~ g(x) ::: k > 0 and ~i,m., f(x) = oo, then 

I . ~ - 0 
1m f( ) ~ • x-o X 

Proof: Let e: be any positive number. Under the assumption that 

~Eh g(x) = k > 0 it can be stated that there exists o1 > 0 such that 

I g(x) - k I < ~ or ~ < g(x) < 1k. Also, since }l,Wo f(x) "' oo., it 

follows that there exists o2 > 0 such that f(x) > ~! > O. When 

o = max ( 61' 62 ) both inequalities hold to yield O < 1/f(x) < ;~ so 
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k 3k 
0 < 2 /f(x) < g(x) /f(x) < 2 /f(x) < E or· - i. ~ g(x)/f(x) < € . Hence,. 

·• the requirements of Definition 13 are met so *iEh 1~~~ = 0. 

Theorem 34. If lim r = lim s = band r < c < s for every n., n-+oo n n-+oo n n - - n 

then b = c. 

Proof: If lim r = b,. and lim s = b then for every € > 0 there n-+oo n n-+oo n 

exists N 1 > 0 and N2 > 0 such that if 

(a) n > N 1, then Ir - bl < €, and n 

(b) n > N2' then lsn - bl < €. 

Hence, for any€ > 0 select N = max(N 1, N2 ) so if n > N, (a) and (b) 

both hold. Assume c ;t b, then I b - c I > O. Eowever, there exists 

a number N > 0 such that if n > N, then 

Ir - bl < lb - c\ l bl < 
n 3 ' sn -

lb - CI 
3 

This implies that if r < c < s , then c must be within I b - c I 
n- - n 3 

of b for all n > N. This is impossible unless., of course, 

I b - c I = 0 or b = c. 

Theorem 35. If [ sn~ is a positive monotone nonincreasing sequence 

that is bounded below., then there exist a real number b such that 

lim s = b. n-+oo n 

Proof: Given s 1 _> s 2 > s > · · · > s > · · · and M > 0 such that 3- - n - -

O< M < s for every n., form new sequences (a 1 and lb ) in the - - n n l n 

following manner: Consider the intervals [ M,. s i ~-; ~M J , and 

[ s + M 
1 2 ., aJ . If there exists a term of f sn1 

r. s1 + MJ 
in LM, 2 , 

s 1 + M 
= and 2 

s 1 + M 
let b 1 = M and a 1 = 2 _; if not, let b 1 

a 1 = s 1• Next consider the intervals 
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and 

Ii al + bl] 
Againt if there exists a term of f sn1 in Lblt 2 , let b 2 = b 1 

a + b a + b 1 1 1 -. 1 
and a 2 = 2 ; 1f not., let b 2 = 2 and a 2 = a 1• Con-

tinue in this manner to generate the sequences [ bnl and [ anl with 

the following properties: 

(i) 

(ii) 

(iii) 

(iv) 

b <b <b <···<b <··· 1- 2- 3- - n-

a >a >a >···>a>··· 1- 2- 3- - n-

s1 - M 
b <a by----n- n 2n 

Because a 
n 

b 
n 
=---- then 

n 

lim (b n-oo n a ) = O. Therefore, there exist a number c such that 
n 

b < c < a for every n. 
n n 

Also,, lim a = c since for every E > 0 there exists a numn-oo n 

ber N > 0 such that if n > N, then J an - c I = a -c<a -b <E. n n n 

Now to show that lim s = c, recall that by the construction n-oo n 

of the sequence [an1 it follows that for every integer k there exists 

a number Nk · > 0 such that if n > Nk then sn ~ ak. Take any 

E > 0,, then because lim a = c there exist a number N' > 0 such n-oo n 

that if k is any number k > N' then ak - c < E. But there exists a 

number Nk· such that if n > Nk, then sn < ak. Therefore,, by select

ing N = max (N',, Nk) it follows that sn - c < ak - c < E. Fur

thermore,, sn > c otherwise there would be some term of ( an} less 

than c,, and this is not so. Hence, it can be concluded that for every 

E > 0 there exists a number N > 0 such that if n > N then 



I sn - c I .. < E which defines J~ sn = c. 

1 

10n 
Theorem 36. Lim 2 = 1. n-+oo 
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1 1 

n m . 1 1 1 on 1 om 
Proof: If n > m > 0 then 10 > 10 and -- < so 2 < 2 

10n 10m 

as discussed in this report prior to the need for this theorem. There-
1 1 

fore, 
10n 10n 

2 is a monotone decreasing sequence and since 2 > 1 ~ 
1 

it is bounded below. By Theorem 351 lim n-oo exists, and can be 

called b. 

From the definition of lim s I it follows readily that n-+oo n 
1 

10n 
b=lim2 "' n -«l 1 

10 lOn 
so that b = b . Hence1 b = 0 or b = 1. However 1 2 > 1 so 

b JI' 0 and therefore b = 1. 

Summary of Major Points 

This chapter has presented the definitions and theorems cited 

in Chapter II and m but not presented in those chapters.. The text-

book gave no definitional statements or arguments from which these 

statements could be drawn. However, the rigorous treatments pre-

sented in this study required that these definitions be given and these 

theorems be proved. 

It should be specifically noted that the proof of Theorem 36 

required the establishment of the existence of a limit, which was 

proved in Theorem 35. These proofs were more difficult than similar 

theorems involving exponentials which were presented previously. 
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The reason for this was that the exponential function was defined in 

Intermediate Mathematics to be the inverse of the logarithm function 

while in Elementary Functions,. where these theorems were required,. 

the exponential function was defined prior to the defining of the 

logarithm function. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The problem of this study was to embed a rigorous treatment 

of the limit concept into the SMSG revised sample textbooks. The pro-

blem required an analysis of the textbooks to determine the discussions 

that involved limits. Such discussions were restated in more exact 

mathematical terms to yield definitions and theorems. The theorems 

for which a proof was suggested were proved in this study by arguments 

using material that was either presented by the textbooks or selected 

from other texts. Invalid arguments were identified and tacit assump-

tions were explicitly stated. Therefore, the objective of the study# 

which was to provide an analysis and a resolution of the difficulties 

involved in presenting rigorous limit arguments# has been realized. 

Findings 

On the basis of the presentations of the preceding chapters, 

the following findings seem to be warranted: - ' 

1. Without a reordering of the topics,. the structure of Geo-

metry and Intermediate Mathematics is not adequate for a rigorous 

treatment of those discussions and arguments that involve limits to 

be embedded. The theorems on limits of sequences required for 

Geometry 15-3# 15-4# 16-5~ and for a rigorous statement of the Com

pleteness Property in Intermediate Mathematics 1-9 are not given 

until Intermediate Mathematics A13-4. Also# if the continuity of the 

103 
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logarithm function is to be proved as exemplified in this study, the 

inequalities in Intermediate Mathematics A9-3 require a slight but 

definite reordering. 

A major omission of definitions was found in Intermediate Math-

ematics. The following types of limits are suggested: JLIR f (x), 

lim+ f(x), lim f(x) , lim f(x), lim f (x), lim s ; each of these x-a x-a- x-oo x-+-oo n-+oo n 

limits could be called b, oo, or -oo. Therefore~ eighteen definitions 

are required to define every combination of these symbols and the 

textbook offers discussion of only one definition. 

If it is assumed that the definitions and theorems required for 

a rigorous treatment of the limits in Intermediate Mathematic s are 

given, then Elementary Functions is adequate to complete the afore

mentioned task. Although the limit definition of a continuous function is 

required in proving a form of the fundamental theorem of calculus in 

A3-13 and it is not given in the textbook., the definition can be given 

in the language of the textbook and limits. 

Similarly, in 5-11 the textbook assumes properties involving 

the tangent to the graph of the sum of two functions and of a function 

multiplied by a constant. Such an assumption is unneces sary because 

a proof can be given that requires only those concepts previous ly p re-

sented. 

Another necessary addition that can be made within the struc-

ture is the derivation of the equation of the tangent to the graph of 

y :: ax at P(O, f(O)) in Elementary Functions 4-6. Although the text-

book tacitly assumes the quotient definition of derivative in an argu-

ment to show that the equivalent wedge definition holds, it is pointed 

out that the quotient definition may be proved from the concepts pre-
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viously presented. 

2. Arguments were found in both Intermediate Mathematic s 

and Elementary Functions that were logically unsound. In Interme

diate Mathematics 1-8 the argument given to show that a repeat ing 

decimal is a rational number assumes that the number is rational in 

the course of the argument. The Completeness Property of Int e r me

diate Mathematicg 1-9 is inadequate unles s provis ions are made for 

a generalization such as that given in this study. Al so., the definitional 

statements given for asymptot es in Intermedia t e Mathematic s 6-6 are 

inadequate. 

In Elementary Functions the arguments a ssociated with the 

following topics need corrections such as those suggested in th is stu dy: 

A3-13 which is devoted to a proof of a form of the fundament a l theorem 

of calculus. 4-6 which includes a derivation of the equation of the tan 

gent to the graph of y ::: 2x at P (O# f (O))~ and A4-16 which c ons ists of 

a derivation of the equation of the best rth degree polynomial approxi

mation to the graph of y = ex at P (O~ f( O)) . 

Care must be taken at some points to insure corr ect inte r p re

tation of the discussions giv en in the textbooks. Particularly# in 

Elementary Functions 2- 3 following a definiti onal stat ement the text 

book uses the phrase "this means" to introduce a condition that i s 

necessary but not sufficient . 

3. The valid t reatments of the limit topics deviat e lit tle from 

those found in college calculus textbooks. The major points of dev· a 

tion result from the somewhat uncommon stat ement of the Compl et eness 

Property. the definition of the equation of a tangent to the gr aph of a 

function at a point# and the definition of the equation of the best rth 
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degree polynomial approximation to the graph of a function at a point. 

First Course in Algebra is not mentioned in any of the above 

findings. This is due to the fact that no limit discussions were found. 

Hence# there are no findings concerning limits except those which are 

vacuously satisfied. 

Recommendations 

The writer believes the following recommendations are sup

ported by this study: 

1. Teachers and students who are interested in the topic of 

limits in secondary school mathematics should examine or repeat this 

study in order to gain a broader unde;rstanding of the limit concepts and 

the problems and difficulties involved in treating this topic at the high 

school level. 

2. Authors of textbooks who expect to utilize excerpts of the 

SMSG sample textbooks should investigate carefully the presentations 

and the structure to determine tacit assumptions# invalid arguments, 

and the relationships between the topics. 

3. Authors of textbooks and teachers should make a r igorous 

analysis of their teaching mat erials # as exemplified by this study, 

in order to determine and correct possible imperfections that , other

wise> they might not have noticed. 

4. Researchers in mathematics education should test the 

teachability of limits presented by (€ # 6) -arguments. 

5. Researchers in mathematics education should test the de

sirability of the (€ # 6) -notion of limit to determine the time that 

could profitably be spent in such a study of the concept. 
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6 .. Researchers in mathematics education should determine 

and compare the advantages and disadvantages of teaching the SMSG 

approach to the concept of a derivative with the conventional calculus 

approach. 
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REQUEST FOR INFORMATION CONCERNING 

THE EXISTANCE OF LIMITS 

ASSOCIATED WITH CIRCLES 

May 4" 1961 

(Inside Address) 

Dear Sir: 
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In a doctoral study of the limit concept in secondary school ma
thematics and specifically in the SMSG revised sample textbooks, I have 
become stymied by a problem. A search of books in our department and 
library has been unfruitful. I hope that you will assist me. 

The problem is to show by elementary geometry and algebra that 
the various limits associated with circles exist. More specifically.,. con
sider the following questions: 

If a I p , A are the apothem, perimeter.,. and area of an inscribed ren n n 

gular n-gon, how can it be proved that lim a , limp I and lim A exist? n n n 

How can the sequences fan 1, (Pnl , ( An) be proved to be monotone 

increasing? 

How can these sequences be bounded above? 

Your suggestions for proofs.,. articles or books to consult, or 
your opinion regarding the possibility of making such proofs will be 
greatly appreciated. 

Sincerely yours, 

Donald W. Hight 
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BROOKLYN COLLEGE 

Brooklyn 10, New York 

Department of Mathematics 

May 19, 1961 

Dear Mr. Hight, 

The question you pose is interesting - we justify the mensuration 
formulas in plane geometry by one procedure, but give the final rigori 
zation later by methods of the calculus, instead of trying to carry through 
the original methods. 

I think you would have gotten more help with the problem if you 
had consulted the preliminary edition of the SMSG Geometry text rather 
than the revised edition! The reason is that the original treatment was 
considered too difficult for the students and was softenep. in the revision. 
The prelim. edition pp. 516-517 justifies quite carefully that a ~ r. 

n 
Let us go on from this. The justification on p. 515 that P ~ C is per
fectly satisfactory for the students, but has a subtle flawnmathemati
cally. For the definition of the circumference merely say s : If Pn 
converges its limit is called the circumference of the circle. ~us we 
must prove that Pn converges, which is not done in the SMSG text or 
commentary or anywhere else that I know. 

To tackle this, study An first, it is easier. Let An be the area 
of the inscribed regular po~ygon P 1 P2 · · · Pn, Construct a kind of 
"circumscribed'" polygon as follows: 

-At the midpoint of P1P2 draw a line 
tangent to the circle, and drop per
pendiculars to this tangent froni P 1, 
P2 with respective feet P 1', P2'. 

Do this successively for P2P3, 
and form the polygon 

P1 P2' P2 P2" P3' P3 · · · Pl. 
Let A I denote the area of this polygon. 

n 
then 

A 
n 

1 = - a p 2 n n 

An' = An+ (r - an)Pn 

and I An' - Anl = (r - an)Pn 

r 
a 

n 

P ' 2 
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Note that for every m and every n (m, n ~ ~) 

A <A I 
n m 

Hence the set of A is bounded and has a L. U. B. which we may call A. n 

Then 

so that 

A s AS A I 
n- n 

(r - a )p • n n 

We know r - a ~ O; we show ( p j bounded. We have n t n 

p = 2A /a . n n n 

Since ( An~ is bounded and an ~ r ff 0# we see that lPn1 is bounded. 

Then I A - A I S (r - a )p n - n n 

implies A ~ A. Thus A truly converges. 
n n 

Now pn = 2An/an implies that pn also converges. 

The usual procedures now can be applied to show C = 2'1!"r and 
A = 1rr2. 

This treatment doesn't require the proof that (Pn) , (An) are 
monotonic, which seems very difficult by elementary methods. Using 
trigonometry and some calculus these sequences can now be proved 
monotonic. To validate the properties of the trigonometric functions 
(including their derivatives) in the familiar way we need the theory of 
arc length., but this can be justified by the method used above. 

The Illinois Group doesn't use the definition Circumference "' 
lim Pn but essentially takes it to be the least upper bound of the set of 
numbers Pn and in the commentary discusses arc length based on a 
related definition. 

Sincerely, 

Walter Prenowitz 



116 

HARV ARD UNIVERSITY 

GRADUATE SCHOOL OF EDUCATION 

Mr. Donald W. Hight 
Department of Mathematics 
Oklahoma State University 
Stillwater~ Oklahoma 

Dear Mr. Hight: 

Lawrence Hall, Kirkland Street 

Cambridge 38,, Massachusetts 

May.25, 1961 

The easiest way for me to answer your inquiry is to send you 
a portion of the notes for my course at Harvard this year. I am 
sending you this under separate cover. 

Sincerely~ 

Edwin E. Moise 

P. S. I know of no easy way to show that an and Pn increase, the geo
metric proofs are hard, and the only real approach is to use the 

sin x monotonicity of near the origin. 
X 

E. E. M. 



Mr. D. W. Hight 

QUEEN'S UNIVERSITY 

KINGSTON, ONTARIO 

Dept. of Mathematics 
,Oklahoma State University 
Stillwater, Oklahoma 

Dear Mr.. Hight: 
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Dept. of Mathematics 
May 26/61 

Please excuse the delay in answering your letter of May 4. This 
was partially due to the fact that I was in the process of moving for 
the summer upon its arrival, and partially to the fact that I can make 
no concrete suggestions on your problem. 

The only reference I can think of at the moment is Courant and 
Robbins book "What is Mathematics?'\ and I'm not even too sure that 
that will be helpful. 

As to the desirability or possibility of making the proofs you 
mentioned.,. I think that a certain balance will have to be made between 
intuition and rigor. A fully rigorous proof would; I fear.,. be much too 
subtle and high-powered. I personally am not opposed to an intuitive 
approach as long as the assumptions which are made are pointed out 
faithfully. 

When Dr. Crowe arrives at 0. S. U. for the Summer Institute.,. 
you might discuss the problem with him. I feel sure that he could 
advise you much better than I could. 

Sincerely yours.,. 

F. J\. Sherk 
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THE UNIVERSITY OF NOR TH CAROLINA 
CHAPEL HILL 

May 21,, 1961 

DEPARTMENT OF MATHEMATICS 

Dear Mr. Hight: 

Your letter reached me here in Chapel Hill where I am for the 
summer. I'm sorry to be a bit slow answering but perhaps the com
ments below will be of some help - and that more can be achieved in 
conversation as I shall be in Stillwater in August for the mathematics 
meetings. 

In the first place,, it is doubtful if one can, in brief compass, 
prove all the necessary theorems connected with circles and arc 
length without recourse to fairly sophisticated limit considerations. 
The exposition in our text is aimed at clarity of concept rather than a 
selection of the easiest chain of theorems for full proof. For example 
we define circumference using regular polygons - because we think it 
conceptually best for the student - but it is not the best for proofs. I 
don't know of any place where a full treatment can be found. Below 
are some comments on the theorems you mentionec;l. 

Theorems 11 - 12. As you have observed an elementary proof 
is hard and tedious. The hardest part is to prove that Pn + 1 > Pn . 
Using a bit of trigonometry it is relatively easy - but that is cheating. 
If we do not restrict to regular polygons then we are better off. Let 
p 1_, p II be the perimeter of two inscribed polygons. Let V be the ver
tices of the two polygons. L et p be the perimeter of the inscribed 
polygon make vertices V. Then p 1 < p and p 11 < p. 

Since the perimeter of any inscribed polygon is < Sr and since 
the inscribed polygons form a directed set, (ordered by the inclusion 
relation on the vertices) limp exists. 

In the same way,, Theorem 11 - 15 is for clarification.of con
cepts not ease of proof. Observe that if we stick to polygons of 2n 
sides then s4 < sa < · · · < s 2n < •.. < 4r2 and lim s 2n obviously 
exists. 

Theorem 11 - 16 of course depends on AC'" being small in 
Fig. 11 - 12. If we allow any inscribed polygons we can get small 
sides as follows. Choose € > 0 choose H such that TIH""" < € and H 
not on the line of G and 0. On the ray OH choose I such that 
CTI = r = OG. Then IH < € and GI < 2€ by the triangle inequality. 
Thus there are inscribed polygons of arbitrarily small sides. 
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In Theorem 12 - 3 we can almost make a full proof. Certainly so 
if we assume that arclength = lim lp. exists as in Theorem 12 - 2. 
Then the "proof" in Thm 12-3 I think stands. 

I hope to see you in August 

Yours truly# 

Merrill Shanks 

P. S. This picture "almost proves that).>n < 8r by the triangle in
equality." There is the "nuisance' that A may not fall at the 
right point. 

P. P. S. I shall be back at Purdue about June 4. 

r 

~ note by the author of this thesis: The theorems to whicj 
Dr. Shanks refers are in the book Geometry written by 
Brumfiei# · Eichol~, and Shanks. 



LETTER OF INQUffiY CONCERNING THE DERIVATION OF THE 

BEST rth DEGREE POLYNOMIAL .f~PPROXIMATION TO THE 

GRAPH OF y = ex at P-(O. 1 ). 

Dr. D. E. Richmond 
Department of Mathematics 
Williams College 
Williamstown., Massachusetts 

Dear Sir: 

March 18., 1961 
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As a part of a research project undertaken to complete a Doc
tor of Education degree.,. I am attempting to treat rigorously., those 
topics found in the SMSG revised sample textbooks that involve the 
concept of a limit. As an author of Elementary Functions (Part 2) 
(revised edition)., your comment on 1he following discussion would be 
greatly appreciated. Or if another person should be contacted con
cerning this part of the book" pleafte suggest to whom these questions 
should be directed. 

There seems to be a flaw in the reasoning in regard to Functions 
2., Topic 4-16., An Approximation for ex., page A51. Specifically., on 
page A53 it is to be proven that gn (x)> ex = f(x) for some x. Start
ing at the second paragraph '1The first observation • • · '1, it is shown 
that 

gn' (x) < gn (x) when x > 0 

and it is known that if f(x) = eX 

f'' (x) :: f (x). 

Can it be concluded that 

~' (x) < f(x) ? 

It would appear that it must be known that 

gn (x) < f (x) 

A relationship that I could not show without using an induction argu-
ment. · 

Similarily at the bottom of this same page.,. if 
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where h 3(x) < f(x) = f'(x),, 

how can it be concluded that 

h 3 ' (x) > f 1 (x) ? 

Is it possible to prove 
2 n 2 n 

1 + x + ~ + · · · + ~, < ex < 1 + x + x + • · · + ex c > 1 
2! n. 2! n! " 

using what has been given in the books? Also,. what argument .. if 
any.. can be made in the case of x < 0 ? 

Sincerely, 

Donald W. Hight 



WILLIAMS COLLEGE 

Willi~mstown, Massachusetts 

Department of Mathematics 
April 6,. 1961 

Mr. Donald W. Hight, 

Th~nk you for your recent letter apropos of the argument on 
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·page A-53, Elementary Functions, Part 2. ·We wrote this appendix dur
ing the last week and you are right in saying that the statement needs 
more justification. We had thought that an intuitive appeal was sufficient 
but I see that this is not the case. The following argument will perhaps 
do the job. 

We know that f(O) = gn (0) (= 1) and wish to prove that f(x) < gn (x) 
for all x > 0. Suppose first that for some a>. O,. gn (a) = f(a). Then 
~' (a) < f'(a) and the f graph must be below the gn graph on the left of 
a and above it on the right· of a. There is at most one intersection. The 
two possibilities which we wish to exclude are shown in the following 
figures 

b 

A 
1 

a 

(one intersection) 

A 

1 

(no intersection) 

In either case there would be an interval,. 1 < y < b for which the 
gn graph would be to the left of the f graph. Let y :e: c (1 < c < b) in
tersect the graphs at x 1 and x2 (x 1 < x2 ) 
as shown,. then 

and 

gn, (x 1) < f, (x 2). 

Hence the horizontal distance 
between th~ graphs increases as we 
decrease y. Since this holds at 
lower levels,. it contradicts the fact 
that the graphs intersect at A. 

f 

A 
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It follows that the gn graph is to the right of the f graph and hence 
below it. 

It would probably be possible to change this to a direct proof. 
The whole thing would of course be simpler if we could assume a couple 
of theorems about derivatives. 

Thank you for drawing this to my attention. 

Sincerely yours., 

Donald E. Richmond 

P. S. Of course the same type of argument would apply further down the 
page. 
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