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PREFACE 

The purpose of this paper is to examine certain properti es of 

compact p l ane continua. In doing this the writer has obtained re­

sults in three somewhat different areas. 

T h e first is that area which is concerned with a study of th e 

properties of fixed point sets, and the properties of th e spac e ob­

tained after the omission of the fixed points . The writer generalizes 

some k nown theorems in this area. 

The second area of this study is concerned with fixed points 

un,der periodic transformations. The writer s h o w s a re latio~ship 

between the study of the fixed point property under periodic trans ­

formations and the study of the fixed point property under isom etri c 

t ransformations. He shows also that a periodic transformati on of 

t h e Euclidean plane into itself which leaves invariant a compact con ­

tinuum that does not separate the plane must leave a point of the 

contiil,Uum fixed . 

The last area is concerned with intersection properties of p l ane 

continua. The writer obtains a new set of sufficient conditions for 

the intersection of a collection of compact continua in the plane being 

non-empty . He shows that these conditions are equivalent to a known 

set 'of sufficient conditions. Using these new conditions he obtains a 

generalization of a well known theorem of He1l y. 

Indebtedness is acknowledged to Dr. Olan H. Hamilton for h i s 

guidance in the research and preparation of this thesis; to the other 
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Roger.-L. Flanders, Prof. John E. Hoffman, and especially to 

Dr. Eugene K. McLachlan for the encouragement he gave during 

the time this work was done; to Dr. L. Wayne Johnson for the 

teaching position held here the past two years; and to the National 

Science Foundation for supporting a part of this thesis under grant 

numberN.S,F. G-9714. 
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CHAPTER I 

ROTATION GROUPS UNDER MONOTONE TRANSFORMATIONS 

In 1937 Lucille Whyburn (1) published a paper in Fundamenta 

Mathematicae entitled ''Rotation Groups about a Set of Fixed 

Points.,, As a basis for her work she asked for a homeomorphism 

of a space S onto itself. The author generalizes her results by re­

laxing her hypothesis that the transformation be a homeomorphism 

to the condition that the transformation be a certain restricted 

monotone transformation. He proves that all of the theorems which 

she has shown true under homeomorphisms are still valid under 

this more general transformation. Many of the following theorems 

are direct generalizations of the theorems of Whyburn and wH1 be 

so designated by an apostrophe following the number of the theorem. 

Proofs of theorems 9' through 15' follow along the same lines as those 

given by Whyburn, but in the interest of clarity the complete proofs 

are giveri. 

The following are well known results which will be needed in the 

development of this chapter. 

Definition. A monotone transformation f: A~ B is a continuous 

1:iJ=ansformation such that if x ES f(A), then f-l(x) is connected. 

Proposition A. Let A and B be compact T1 spaces and fa monotone 
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transformation such that f(A) CB. -1 
If xE f(A), then f (x) is a 

continuum. 

Proposition B. If A is compact and f(A) = B is continuous, 

then in order that f be monotone it is necessary and sufficient 

that the inverse of every connected set be connected. 

In all the work of this chapter, unless otherwise specified, S 

is. :fri mean a compact Hausdorff space; T will be a monotone trans-

formation such that T(S) = S. If Tallows fixed points in S such that 

K is this set of fixed points, then T-1(K) = K. 

Theorem 1. The transformation Tis one-to-one on K. 

Proof. Suppose this is not true, then there exist distinct points 

x and y in K such that T(x) = T(y). Since x and y are in K they are 

fixed under T and therefore T(x) = T(y) = x = y. This contradicts 

the fact that x and y are distinct and completes the proof. 

Theorem 2. Let c1 ~e a component of S-K, then T(C1) is also 

a component of S-K. 

Proof. By the hypothesis T(C 1) n K = ,1; hence T(C1) C S-K. 

Since T is continuous, T(C1) is connected and hence is contained in 

some component of S-K. Let c 2 be the component of S-K containing 

T(C1). Now suppose that T(C1) -,. C 2 . Let p E C 2 -T(C1). Since 

T(S) = S, there is a point y in S such that y ~ c1, y fE. K, and T(y) = p. 

It follows then that y is in some component of S-K, say c 3 . It 

follows that T(C 3) CC 2 . By Proposition B, the set T-1(C 2) is 

connected and, by the hypothesis on T, is contained in S.,.K. Hence 

there must be a connected set in S-K containing c 1 U c 3. This con­

tradicts the fact that c 1 and c 3 are components of S-K. 



-1 Theorem 3. If c 1 is a component of S-K, then T (C1) is a 

component of S-K. 

Proof. 
-1 ' 

By hypothesis T (C1) C S-FC. 

connected, it is contained in some component of S-K, say c 2 . 

Now T(C 2) C S-K, so suppose that C 2 -T-1(c1) /: f 
-1 

Let xEC2 -T {C1). Then T(x) is in some component of S-K other 

than c 1. This contradicts the fact that continuous functions carry 

connected sets onto connected sets. 

Theorem 4 1 • Let c 0 be a component of S-K, C = T11.(C ) for n o 

3 

each integer n, and let G be the collection ~Cn\ Then the collection 

\Cn1 forms a commutative group where the group operation is de­

fined for any two elements C. and C. as C.C. = Tj(C.). 
1 J 1 J l 

Proof. It follows directly from the definition that -1:here;:, is· 

closure with respect to the operation. To show that the operation 

is associative consider the following: C.(C.Ck) = C. rTk(C.)] = 
1 J 1 L J 

C.Ck . = Tk.+j.1c,) :.T.k.+j'+i.1,e ') = 
1 +J ' 1 '·o 

Tk(Tj(C .)) = Tk(C.C .) = (C .C .)Ck. To show that the operation is 
1 1 J l J 

commutative consider the following: CiCj = Tj(Ci) = Tj (Ti{C 0)] = 

Tj+\c0 ) = Ti+j(C0 ) = Ti [Tj(C 0 )1 = T\CJ) = CjCi. Now consider 

C.C0 = TO(C.) = C .. It follows that c 0 serves as a right and left 
J J J ' 

identity for every element of G. It is now shown that C . is an in­
-J 

verse for C.. To do this, note that C .C . = T-~(C .) = T-j [ Tj(C 0)] = 
J J -J J 

Tj-j(C 0) = c0 . This completes the proof of the theorem, 

Definition. A rotation group G will mean the group formed by a 

the component C where C is the c0 of Theorem 4 1 • a a 

Definition, The order of a group will mean the number of components 
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in the group if there is a finite number; otherwise the order will 

be infinite. 

Theorem 51 • Every component of S-K lies in one and only one 

rotation group. 

Proof. Suppose that CaE Gb' and Ca E Gd where Gd and Gb are 

distinct rotation groups. It follows then, for some two integers n 

n m n-m 
and m, that T (Cb) = Ca and T (Cd) = Ca. Consider T (Cb) = 

-m m-m 
T (C) = T (Cd)= Cd. Let C be any element of Gd. Then 

k n-m+k for some integer k, T (Cd)= C. It follows then that T (Cb)= C, 

and hence C E Gb. Tb.er efore, Gb ":=) Gd, and in a similar way it can 

be shown that Gd :) Gb. Hence it follows that Gd= Gb which contra­

dicts the supposition. 

Lemm a 1. If T(x0) = x0 and [ xJ is a sequence of points con­

verging to x0 , then [T-1{xi)] is a sequence of sets converging to x 0 . 

-Proof. Letting L = .U x .. , it follows from the continuity of T that 
l•O 1 

-1 · d:. - -1 T {L) is closed and hence compact. Suppose first that x0 F l}m T (xi). 

n -1 
Then there is an open set u0 about x0 such that u 0 T {L) = x 0 . -Let U. for i > 0 be an open set about x. such that U. n ( Q x.) = ¢. It 

1 1 l {.~ J 

follows that U! = T-\u.) is an open set containing T-1(x.) such that 
l 1 l 

..0 -1 
U! n ( ~i T (x.)) = ~ Hence the collection t Ui 1 including i = 0 is 

1 j:O J 

an open covering of T-1(L) which contains no finite subcovering. This 

contradicts the fact that T-1(L) is compact. Suppose now that there 

exists a pointy in lim T-1(x.) such that y f x0 . Then by the definition 
i 1 

of the limit superior, given any open set U about y, U intersects in-

finitely many of the sets T-1(xi) and hence T(U) contains an: infini;ty of 

the points xi. Therefore, T(y} is a limit point of the sequence lxiJ 
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It is known that T(y) f x0 . This contradicts the fact that the 

sequence lxi1 converges to x0 . Let [ T-1(xik)} be any subsequence 

of [ T-1(xi) 1 · It follows, from an argurn ent similar to the one above, 

that ltm T-1(x. ) = x 0 . Hence it follows that ltrn T-1(x.) = x 0 . 
lk lk 1 1 

· Theorem 6 1 • If C. and C. are two elements of a rotation group, 
1 J 

then C. - C. = C. - C .. 
l 1 J J 

Proof. It is now shown that C.-C.C'C:-C .. Note that C1. = Ti(C 0) 
l l . J J 

and C. = Tj(C 0). Hence C. = Tj=\c.). First consider the case where 
J J l 

j-i = 0. It then follows that C. = C. and the theorem is proved. 
1 J 

Next suppose that j-i = k )0, then Tk is a continuous mapping of Ci 

onto C .. If xE.: C.-C., then there is a sequence of points rx."l in C. 
J 1 l 1. 1.) l 

which converge to x. By the continuity of Tk it follows that the sequence 

1 Ti(x.) 1 converges to T(x) = x. Therefore, x is in C.-C.. Finally 
1 1 \ J J 

suppose that j-i = -k(O, in which case T-k{C.) = C., or Ti(C.) = C .. 
l J J l 

Note at this time that (Tl<)-l :i.s T-k. Again let lxi1 be a sequence of 

points from C. con.verging to x in C. -C.. Since Tk satisfies the c:on-
1 l l 

ditions in Lemma 1, it follows that lfm T-k(xi) = x. Therefore x is 

in C.-C. since T-k(x.)CC. for each i )1. In a similar manner it 
J J l J 

can be shown that C.-c.cc.~c .. Therefore it follows that C.-C. = 
J J 1 1 1 l 

C.-C .. 
J J 

Corollary. If S is locally connected, then for any rotation group 

F{UC.) = U F(C.) = F(Ck) for Ck a fixed element of the rotation 
L i L i 

group (where F(A) denotes the boundary of A relative to S). 

Proof. Obviously \j F(C .) = F(Ck) for each k since by Theorem 5 1 

'L ' l 

F(C.) = F(C.) for any two elements C. and C. of the rotation group. 
1 J l J 

Let x be in UF(C.). Then x 1C, for any i, so xq:. UC .. Therefore, 
L 1 1 1, 1 
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x E F( L) C.) and it follows that U F(C.) C F( y C.). Now suppose 
L l i, l l 

x E F( U C .) and xi M = U F(C .) = F(Ck). Then there exists an 
l 1 l l 

open set U containing x and an open set V containing M such that 
X m 

U n V = Jd; this follows from the compactness of M. Since 
X m 

x E F( UC.), it is known that there is an open connected set UC U 
l l X 

aboutx such that Un ( l) Ci) "f ¢, but U ('\ l \)F(Ci)] = ¢. It 
~ ~ 

follows then that U intersects infinitely many of the components C .. 
l 

Then, since U is connected, either U C C. for some i which is a 
l 

contradiction or u n F(C.) I¢ for some i which again is a contra-
1 

diction. Therefore it follows that F( UC.) C U F(C.), and finally 
t l (. 1 

that F( V Ci) = lJ F(Ci) = F(Ck). 
L l, 

The following example shows that it is necessary to ask that S 

be locally connected. 

Example. Let S = [··o CJ U c 0 where C = '{r,' Q): 0~ r ~ 1, 0 
ll-=' n n l. 

= 1/n J and c 0 = l (r, 0): 0 ~ r fl} . Define Tin the following manner; 

T(r, 1/n) = (r, 1/n+l) if n "f 0, and T(r, 0) = (r, 0). It is easy to see 
._, ..a 

from Figure 1 that F( 0 C.) = C 0; whereas, 0 F(C.) .: F(C.) = [ (0, 0) 1 . 
L= I 1 L= I 1 1 j 

c,_ 

Fig. 1 



Theorem 7. Let f be a monotone transformation of the uni t 

interval I onto the set M. If M is non-degenerate then M is a n arc. 

Proof. M i s connected and compact by the continuity of f. It 

..1 -1 is shown that f(O) .,. f(l). Suppose f(O) = f(l) = x. Then f (x) is a 

compact continuum containing O and 1. This implies that I C f-\x) 

and hence that M is degenerate. This contradi cts the hypothes i s 

of the theorem. Let y be a point of M such that y / f(O) and y / f (l). 

It will now be shown that y separates M. Suppose that y fails to 

-1 
separate M, then M - y is connected. It follows that f (M-y) i s 

connecte d and contains the po ints O and 1. This contradic t s the fact 

-1 
that f (y) separates I. 

Theorem 8. Let f be a monotone transformation of a spac e M 

onto the unit interval I such that f- \ O) is a uni que poin t of M. Then 

-1 
M is locally connec ted at f (0). 

7 

Proof. Let ~Ui1 be a sequence of conne c ted open set s converging 

to the point O in I. It follows by an arg~ment s imilar t o that of 

Lemma 1 and from the continuity of f that [ C 1(Ui) 1 is a sequence of 

-1 -1 
open sets converging to f ( 0). Since f is monotone, each se t f (U .) 

1 

is connected. Now, gi ve n a ny open se t V about f -\ o), there is a 

-1 -1 c connected open set f (U.) for some j such that f (U .) V, a n d 
J J 

f-\u.) i s connected. Hence M i s locally connected at f~ 1(0 ) as r'eqtiired. 
J 

The following example w ill illustrate that the inverse image of 

an arc under a monotone transformation need n ot contain an arc 

joining every two points. 

Example. Let the se t M be the fo llowing set; [ (x, y) : y = sin 1/x, 

0 (. x ~ 11 \) [ (x, y) : x = 0, -l ~ y ~ 11 . Let f be the perpendi cular 

projection of M onto I. It is eas ily seen from F i gure 2 that f i s 



monotone, and there is no arc joining the points (0, 0) and (1/2-,Q}. 

l.

r_1 \ 

I\ / \ 
\ ( 
I 

(o,o) r------t-' ------+\~--'-----+--~---.-~--
\ i . 

l V \/ 
Fig. 2 

Definition. A point p is said to be accessible from a set of 

points M provided there exists a simple arc xp contained in MU p. 

Theorem 9'. If C is an element of a finite rotation group G , 
a 

any point p in F(C) which is accessible from C is accessible from 

any component of G . 
a 

Proof. Since G is finite, it follows that for any C in G 
a a a 

Tk(C) = C for some positive integer k. Let xp be an arc from x 
a 

to p such that xp-pCC. Then by Theorem 7, Tk(xp) = yp is an arc 

such that yp-pCC .. This completes the proof. 
a 

Theorem 10'. If C is an element of G (where G may not be 
a a 

finite), and pis in F(C) and accessible from C, then for any C , 
a 

k 
such that T (C) = C for some positive integer k, p is accessible a 

from C . a 

Definition. A point set M is said to have property S if for each 

e ) 0, M is the union of a finite number of connected sets each of 

diameter less than e. (2). 

8 

Definition. A plane Peano continuum is a subset of the plane which 
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is the continuous image of the unit interval. 

Lemma 2. Let M have property S, and let the closed set K 

separate M. Then, if C fs a component of M-K such that C does 

not have property S, there exists an e= >0 and a sequence of points f pn\ 

of C converging to a point p in C-C such that no two of these points 

can be joined in C by a connected set of diameter less than £. 

Proof. Let it be assumed that C cannot be represented as a 

finite union of connected sets of C each of diameter less than S. 

Let f gn1 be a fin ite representation of M where each gn is a connected 

set of Mand of d iameter less than a/4. It follows then that ( U g ) (\C, 
'lt6'1° n 

where er is finite, has infinitely many components. Let these com-

ponents be denoted by f g J- .. Note that g (lK 'f ¢ for in-l. no<. ne,,..., o<.E./\.. ,:iov 

finitely many n°' 's. Now choose some g and call it g'. 
nd:'. 1 

There exists 

some gn-, say g', distinct from g' such that g' cannot be joined to 
- 2 1 1 

g' by a connected set in C of diameter less than d/4, and g' (\K 'f ¢. 
2 2 

Suppose this is not the case. It is obvi ous that there are sets g noe 

which cannot be joined to g1 by a connected set in C of diameter less 

than J/4. If this were not so, i t would follow from the tr i angle in-

equality that Chas property S contrary to the hypothesis. If each 

such ~c;<; has a closure which does not intersect K, then there can 

be at most a finite number of these. 'Tiherefore, represent C as 

the union of this finite collection plus the set obtained by connecting 

g11 with the remaining g 's. This implies that C has property S 
no: 

and is a contradiction. Now given ~ and g2 choose g~ such that neither 

g' or g' can be joined to g' by a connected set in C of d iameter less 
1 2 3 

than ~/4. Again, if it were not possible to do thi s, C w ould have 

property S. Continue in this manner inductively to obtain an infinite 
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sequence r g' < of the components g such that no two may be joined 
l n1 n~ 

in C by a connected set of diameter less than cf/4. Since g~ nK f :fJ 

for each n, choose p1 in g1 such that p(p1, K) < 1, and in general choose 

p in g' such that p(p , K) < 1/n. Now observe that O p n KI fJ. 
n n n "=l n 

Hence it is possible to choose a subsequence t pni1 of the sequence of 

points ~pn 1 such that the subsequence f P ni1 converges to a point p in K. 

Now let E = V 4 and the proof of the lemma is complete. 

Theorem 11 1 • Let M be a plane Peano continuum and T(M) = M. 

If C is an element of a rotation group under T of order greater than 1, 

then Chas property S. 

Proof. Suppose C does not have property S. Then since M has 

property S it follows from Lemma 2 that there exists an£'> 0 and a 

sequence of points f pn 1 of C converging to a point p of F(C) such that 

no two of these points can be joined in C by a connected set of diameter 

less than E. Let N represent a circle with center p and diameter £"/4. 

Without loss of generality it JTJay be assumed that p lies inside N for 
n 

each n. Let pp 1 denote an arc contained in C, joining p to p 1 n~ n ~-

There is such an arc since C is connected and locally connected. It 

follows that pP l () N f fJ since the diameter of pp l . 
n n+ n n+ 1s greater 

than or equal to E and the diameter of N is E/4. Let~ be the first 

point of the intersection of pp 1 'and N. Hence for each n the arc 
n n+ 

pq is obtained such that pq n N = q . Note that pq (\ pkqk = ¢ n'°n n'°n n nn , 

if n f k (illustrated in Figure 3) since otherwise there would be a 

connected set joining pn and pk having diameter less than e. Let H 

denote lim pq . Observe first that H is a continuum since it is well 
n n n. . 

known that the sequential limiting set of any sequence of connected 

sets is connected~ Since pis in every limiting set of a subsequence 
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of f>n<\i' it follows that His a continuum. Obviously, His contained 

in C. Also note that H is non-degenerate since all but a finite. number 

of the arcs Pn<\i have diameters greater than e/16. 

·~? ; 
I 
I. 

/ I""" I 

,~-
/ I I I I 

I I I 
I I 

I I 

I I I 

I 

J I I 
1P .. I - I~\ 

.. I 
1...: -- - - - - - -- -

' / I 1 ; I 
I I I 

I I 

I : i . 
I I 

I 
I 

H 

Fig. -3 

Now to show that HCG.,.GCK. · Suppose that H (\Cf!, and the 

point b is in H n G. Since C is locally connected at b, there is a ~<e/ 4 
--

such that every point of C whose distance from b is less than i can be 

joined to b by an arc whose diameter is less than e/4. Since bis in 

H, there exist arcs p.q. and :p.q. such that p.q. and 'p.q. contain 
11 JJ 11 JJ. 

points p! and p!, respectively; which can be joined to b by arcs of 
l J . . . . 

diameter less than e/4. It follows by the triangle inequality that the 

~- ,,,,-:-::,. ...--.. ~ . 

diameter of p!p. U p!b U bp! V p!p. is smaller than E. This contradicts 
l .l. l J J J . . 

the fact that pj and pi cannot be joined in C by a connected set of diameter 

less than E. Therefore it follows that H.C F(C) C K. 

It is known that H contains p and a point o_f N, say q. Hence the 



diameter of H is greater than e /16. Let p' be a point of H such that 

p(p', p) = e/16. Let N' be a circle with center p:1 and diameter less 

than e/16. Let f Phk1 be a subsequence of f Pn1s such that no p~k is 

contained in N 1 plus its interior, and furthermore such that p 1 is in 

th~ sequential limiting set of the sequence of arcs [ p~k~kl where 

P~kqnkC ~nk" Let [P;;k1 be a sequence of points converging to 

p I such that p~1k is in the arc ·~ nk and p;:k is interior to N 1 • It 

follows then that there exists in the arc ~~k _a sub-arc ~nk 

which intersects N 1 in only the points r k ands k. Since M is . n n 

locally connected, there is a connected open subset of M about p 1 

and contained in the interior of N 1 • It follows then that there exists 

an integer G such that if n and m are greater than G, then p 11 and 
n 

p 11 may be joined by an arc of M contained in the interior 9f N 1 

m 

(refer to Figure 4). 

12 

Let n, m, and k be integers larger than G and consider the three 

,..----;--:-- ....---:-:-- ,....--,-;-:,. 
arcs r p''s r p 11 s and r p 11 s . One of these arcs separate the 

n n n' m m m' k k k 

other two in N' plus its interior. Without loss of generality suppose 

that ~ separates rp"S from r.u!'skpk' 1 sk. m m m n n n 
~ ~ Let p 11 p 11 and p 11 p 11 

m k nm 

be arcs lying in N' plus its interior. The existence of these arcs has 

been demonstrated above. 
~ 

The arc p 11 p' 1 will contain a sub-arc 
m n 

uv whose intersection with~ is the point u and whose 
mn mmm m 

intersection with ~ is the point v . It is now sho wn that such 
n n n n 

an arc uv does exist. 
m n 

~ 
Order the points on p 11 p 11 from p' 1 to p 11 • 

m n m n 

Let u be the last point of the intersection of p"p' 1 and~ . 
m mn mmm 

~ 
Let v be the first point of the intersection of the arc u p 11 and 

n m n 

rp"s (refer to Figure 5). 
n n n 
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Fig, 5 

In. the manner described above, obtain the arc z"m wk such that 

- n ----.-.-. - d ~ n· ....--i.- - s · h zm wk rmpmsm - zm an zm wk rkp ksk - wk. 1nce t e 

diameter of the set pcl V uv \J p q is less than E, it follows m"'m mn nn. 

that um vn n K 'f j$ and likewise Qk (\K 'f ,. Let x1 be the first 

point of uv (\K which is ordered from u to v . Let Y1 be the m .n m n 

13 



first point of zm wkn K which is ordered from zm to wk, Now 

9 1 will denote the arc which is the union .of the arcs Q 1, 

- d -------u z , an z y1. 
mm m . 

It follows that xjy1-(x1 U y1) is contained in 

C and that ~ is separated from y1 in N' plus its interior by the 

arc ~m.. By rheorem 7 it follows that T(xi!1) is an arc. 

Now T(xi!1) must contain a point b1 lying outside N', To show 

14 

this, observe that T(x1) =~and T(y1) = y1. Hence T(x1) is separated 

..----:-:-
from T(y1) in N' plus its interior by the arc rmp~sm It follows 

that either T(xj>\) contains a point outside of N' or contains a point 

of ~ . The latter case is impossible since T!)"'s C C 
mmm mmm 

and by hypothesis the order of C is greater than 1. In this manner 

choose an infinite sequence of arcs lQJso that they converge 

sequentially top'; and such that T(xy ) contains a point b lying 
n n n . 

. outside N' plus its interior, By Lemma 1 the sequence of sets 

lT-\bin must cpnverge top'. However the sequence of points 

[T(T-\bi))j = b. does not converge to T(p') =.p'E N'. 
1 

This 

contradicts the continq.ity of T ... Therefore, C must have property 

s. 

Definition. If A is a subset of M, the M-boundary of A is the 

boundary of A intersected with M. 

G. T. Whyburn (3) has shown that in order for every point of 

the M-boundary B of a bounded connected open subset R of a Peano 

continuum M to be accessible from R it is sufficient that R should 

have property S. It follows from this result of Whyburn's that 

under the hypothesis of Theorem 11 1 , every point of F(C) is accessible 

from C. 

G, T. Whyburn (4) has also shown that if every point of the closed 



and bounded point set Kin the plane S is accessible from each of 

two mutually exclusive connected subsets R 1 and R 2 of S-K, then 

either K is a simple closed curve or there exists a simple con-

tinuous arc which contains K. He obtains as a corollary to this 

result the fact that, under the same conditions, there exists a 

simple closed curve which contains K. 

Theorem 12 1 • If M is a plane Peano continuum and C is an 

element of a rotation group of order greater than 1, then F(C) is 

contained in some simple closed curve. 

Proof. This result follows immediately from the o.on:clu:S:ioµ 

oj Theorem 10 1 , and the results of Whyburn stated above. 
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Lemma 3. Let px, py, and pz be arcs joining the point p to the 

distinct points x, y, and z, respectively. There exist arcs q1x, 

cfiY, and <I1 (possibly degenerate) joining the point q 1 to the points 

x, y, and z, respectively, such that c:r;:xuvU~C.pxUpyUpz 

and vn<fiY = q1, ~nq1z = q1, and ~nv = q1. 

Proof. Let px be ordered from p to x, and let qx .b.e the la:s.t 

point on px and also in py U pz (note that qx may be the point p or 

the point x) . It follows that q is a point of py or a point of pz. 
X 

Without loss of generality suppose that q is a point of py. Let the 
X 

arc pz be ordered from p to z, and let q y be contained in py. First 
. X 

consider the case where qy(\pz f fi1. If cfy(lpz f Ji1, let q be 
X X y 

the last point in this intersection relative to the ordering on pz. 

In this case let q 1 = q , and q1q be contained in qy. Now set 
y X X 

q1x = ¥x\J qxx, and let q]:z and cfiY be contained in pz and Q, 
respectively. It is seen that if %2' and q1x have points other than q 1 

in common, then either q is not the last point of the intersection 
y 



of qY and pz or q is not the last point of intersection of px and 
X X 

PY\jJ?Z, This would contradict the construction of the arcs (note 

Figure 6). Also it is obvious that~(\~= q1 and¥ (\ ci? = ql" 

-- . :_ _..,,( 
/ ' 

) 

/ 
I 

"'\ 
\ 

\ 

/ ' . /\ ' 

~· ',,'•I•.. ~III- \ t 

p . " ~ . ' ' 

Fig. 6 

'Z 

Fig. 7 

Now consider the case where qy(\pz = ¢. Let the arc pq 
X X 

be contained in the arc py and order pq from p to q . Let q 
. X X y 

be the last point in the intersection of pq and pz (note Figure 7). 
X 

Let qq be contained in pq , and qz be contained in pz. Set 
y X X y 
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q 1 = qx, and cit= <QlyUV· rt is easy to see that~ n<'fix: = 

q1, ~z nQ = q1, and q1y n ¥ = q1. Therefore,the proof is 

complete. 

Theorem 13'. Let M be a plane Peano continuum and T(M) = M 

a monotone transformation which is one-to-one on the set of fixed 

points. If F(C) contains more than two points, then the rotation 

group of C is of order less than or equal to 2. 

Proof. Suppose the rotation group of C is greater than 2. Let 

D and Ebe in the rotation group of C where T(C) = D / C, T 2(C) = 

T(D) = E / D and E /. C. Let x, y, and z be distinct points of F(C). 

Let p be a point of C. By the corollary above obtain arcs xp, yp 
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and zp which are contained inC except for x, y, and z, respectively. 

Using Lemma 3, obtain three arcs <fix, ¥• and <i;:z (note that 

these arcs are non-degenerate since q1 / x, y, or z) such that the 

inter section of any pair is q 1. By Theorem 7 it follows that T(~), 

T(q1y). and T(<I?) are three arcs lying in D except for T(x)' = x, 

T(y) = y, and T(z) = z, respectively. It is seen also that each of 

these arcs have in common with D the point T(q1). Again with the 

· help of Lemma 3, obtain a point r 1 and three arcs y, f'iY, and 

9 lying in D except for the points x, y, and z, respectively, and 

such that the intersection of any pair of these arcs is the point r 1. 

In a similar manner obtain three arcs in E which satisfy the same 

conditions relative to E. Denote these by~. 5iY, and 8i"z (note 

Figure 8). 



, • ... " .. " " ·' '7,f s 
., ,i J. 

'-. . . .• ' 
~ .. ., , " ~-------- •". 

·y--
I 

,'-;-!...., 

Fig. 8 
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I 
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Note now that fix Vcfix u:r;:z Ucfiz forms a simple closed curve L. 

Without loss of generality assume that y is in the bounded component 

of the complement of L (Figure 9). It follows that the arc riY U ¥ 
separates the interior of L into two components and hence the set 

:rj! UV UL separates the plane into three components. Denote these 

components by q, G>2, and q in such a way that x¢0l' z ~15i, and 

y¢03 . It is obvious that s 1 must lie in the interior of one of these 

components. Hence it follows that either x, y, or z is not accessible 

from s1. This is a contradiction and hence the proof of the theorem 

is complete. 

Note that C. Kuratowski (5) has shown that the graph described above 

and pictured in Figure 8 cannot lie in the plane. 

z 

• s 
1 

Fig. 9 
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Theorem 14'. Let M be a plane Peano continuum and T{M) = M. 

If G is an infinite rotation group generated by C, then F{C) reduces 

to one point and, for any preassigned positive number e:, ~{C.) < e: 
l 

{ HA) is the diameter of A and C. = T\c )) for all but a finite 
l 0 

number of subscripts i. 

Proof. First show that F{C.) is connected. By the Corollary 
l 

to Theorem 6 it follows that F{ UC.) = U F{C.) = F{Ck). Also it 
L l L i 

F{Ck) for each k. 

If this were not the case F{ \) Ci) i 
L 

Hence it may be concluded that F{ C . ) is connected. 
l 

If F{C.) has more than one point, it must contain infinitely many 
l 

points. Hence by Theorem 13 the order of G is less than 3. This is 

a contradiction and the proof that F{C) reduces to one point is com-

plete. 

The fact that F{C.) = lim C . and that F{C.) consists of one p 9int 
l i l l 

leads to the conclusion that ~{C . ) < e: for all but a finite number of 
l 

subscripts i. 

Theorem 15'. Let M be a two dimensional sphere and T{M) = M. 

If there is a rotation group under T of order greater than 1, then K is 

a simple closed curve. 

Proof. Let G be a rotation group of order greater than 1. Let 

c 1 and c 2 be elements of G. It follows from Theorem 12' that F{C1) 

is contained in a simple closed curve J. Since c 1 is open in M, F{C1) 

separates M, Hence F{C1) = J. Since F(C1) = F{C 2), it follows that 

F(C1) = F(C 2) = J, Now it is shown that c1 U c 2 U J = M. By the 

Jordan Curve Theorem M-J = n1 U D 2 where D1 and D 2 are mutually 

separated connected open sets. Suppose c 1 C D1. It follows that 

F{C1) = F{C2) = F{D1) and hence c1 = D1. In the same way it can be 



shown that CZ= Dz· Therefore, clUcz u J =Mand J = K, so 

the proof is complete. 

Corollary. Under the conditions of Theorem LSI there exists 

only one rotation group under T and this group is of order 2. 
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CHAPTER II 

FIXED POINI' THEOREMS 

A well known unsolved problem in topology is the following: 

If M is a compact continuum in the plane and does not separate 

the plane, and T is a periodic transformation such that. T(M) = M, 

does T necessarily allow a fixed point in M? 

The question has been answered in the affirmative in certain 

cases. The main. r.e:sult along this line, obtained by P. A. Smith 

(6), is stated as follows: Let K be a point set in Euclidean m-space 

and T a topological transformation of K into itself of finite prime 

period p. If every continuous single-valued image in K of every 

sphere of dimension less than or equal pm-m-1 is deformable in 

K to a point, then T leaves fixed at least one point of K. 

It has also been shown that if T is a one-to-one cmtinuous 

and orientation preserving transformation of the Euclidean plane 

S onto itself which leaves a bounded continuum M invariant, and 

if M does not separate S, then some point of M is left fixed by T. 

This result was first obtained by M. L. Cartwright and J. E. 

Littlewood (7); later 0. H. Hamilton (8) obtained the same re­

sult using a much shorter method. 

The writer is able to obtain in this chapter the result that if 

T is a periodic transformation of the plane into itself which leaves 

a plane continuum M invariant, and if M does not separate the 
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plane, then some point of Mis left fixed by T. This result is 

not contained in either of the previously mentioned results, since 

a periodic transformation need neither be orientation preserving 

nor of prime period. 

The writer shows that the answer to the general problem 

concerning the existance of fixed points in contin-ua ,which a.o 

not separate the plane under periodic transformations is in the 

affirmative if every isometry I of Euclidean n-space into itself 

which leaves a unicoherent continuum M invariant necessarily 

leaves some point of M fixed. 

The following theorem is basic to the development of this 

chapter. 

Theorem 1. If T is a periodic transformation of a metric 

space S with metric p onto itself, then there exists a metric p 1 on 

S such that Tis an isometry relative to the metric p'. 

Proof. First define the function p 1 which is defined from S XS 

to the real numbers as follows: let p 1 (x, y) = m~x[p(Tn(x), Tn(y)): 

n = 1, 2, 3, ... , m] where m is the period of T. Now show that 

p actually satisfies the conditions for a metric. Observe first that 

p( Tn(x), Tn(y)) is greater than or equal O for each n, and therefore 

p 1 (x, y) is greater than or equal 0. Now show that p 1 (x, y) = 0 if 

and only if x = y. 
n n 

Suppose x = y, then T (x) = T ( y) for each n, 

and hence for each nit follows that p(Tn(x), Tn(y)) = 0. It may 

be concluded that p 1(x, y) = 0. Suppose now that p 1(x, y) = 0. It 

follows that p( Tn(x), Tn(y)) = 0 for each n and in particular when 

n = m. Since p is a metric, it follows that Tm (x) = Tm (y). Now 

using the fact that T is periodic of period m, it is seen that x = y. 
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n n 
In order to show that p'(x, y) = p'(y,x) observe that p(T (x), T (y)) = 

n n ( n n \7 p(T (y), T (x))foreachn, andhencemg:x p(T (x),T (y)~= 

m~x [ p( Tn(y), Tn(x))J . To prove that the triangle inequality is 

. n n n n n 
vahd under p' note that p(T (x), T (z)) ~ p(T (x), T (y)) + p(T (y), 

Tn(z)) for each n. It follows that p'(x, z) = mg:x [ p(Tn(x), Tn(z)il ~ 

mg:x [p(Tn(x), Tn(y)) + p(Tn(y), Tn(z))]~ mg:x [p(Tn(x), Tn(y))] + 

m~x [p(T(y), Tn(z))] = p'(x, y) + p'(y,z). This completes the 

proof that p' is a metric. 

In order to sho.v that T is an isometry with respect to the p' 

metric observe that since T is periodic of period m, the collect i on 
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of non-negative real numbers [ p(Tn(x), Tn(y)): n = 1, 2, 3, . .. , .m 1 
is identical with the collection l p( Tn+ \x), Tn+ \ y)) : n = 1, 2, 3, . . . , m ~ . 

The following example shows that if the distance between tw o 

points x and y is defined to be the mhn [p(Tn(x), Tn(y)) : n = 

1, 2, 3, ... , m J , then the resulting function need not be a metric 

(refer to Figure 10). It is easy to show that the triangle inequality 

is the only property which may fail to be satisfied. 

Example. Let M be a subs et of the plane such that M = 

l (0, 0), (4, 0), (5, 0), (5, 1)} . Define the transformation T of 

period 2 as follows; T(O, 0) = (4, 0), T(4, 0) = (0, 0), T(5,l) = 

(5, 0) and T(5, 0) = (5, 1). Note that under the induced function the 

distance between the points (0, 0) and (4, 0) is 4, whereas the dis-

tance between (0, 0) and ( 5, 1) plus the distance between (5, 1) and 

(4 , 0) is l+ '112. Therefore, the triangle inequality does not hold. 
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Theorem 2. If S is a metric space with the metric p, and T and 

p' ar,·e defined as in Theor:e.m 1, then the topology induced by p' 

is equivalent to the topology induced by p. 

Proof. Let S 1 (x) denote a spherical region about x of radius 
E 

e in the p' metric, and let Se(x) denore a spherical region about 

x of radius e in the p metric. Take any spherical region SE(x) 

in the p metric. Observe that p'(x, y) 2!. p(x, y) for all x and y. 

Therefore it follows that S~,(x) is contained in SE(x). 

Now it will be shown that given any spherical region St_(;ic) 

in the p 1 metric, there exists a spherical region S!i (x) in the p 

metric such that SS (x) is contained in SHx). Since Tis continuous 

at each point x, it follows by definition that, given e>O, there 



exists g ) 0 such that if p{x, y) < ~ then p{ T{x), T(y)) < e:. In 
E E 

general it can be shown inductively that, given e: > 0 and a 

positive integer m, there exists a number ~ )0 such that 
e:, m 

if p{x, y) < d then p{ Tn{x}, Tn{y)) < e: for n = 0, 1, 2, . . . , m. 
E, m 

Therefore it may be concluded that the region S <' {x) is 
Cl E, m 

contained in S 1 {x). This completes the proof of the theorem. 
E 

Theorem 3. If Tis a periodic transformation of period k. 

of a subset M of Euclidean n-space onto its elf, then M can be 

imbedded in Euclidean nk-space in such a way that the mapping T', 

induced by T, of M'(M' is the result of imbedding M in nk-space) 

onto itself is an isometry under the usual metric of Euclidean 

space. 

Proof. Let X represent the point {x1, x 2, ... , xn) inn-space 

Let x1 = {xi, x~, ... , x~} denot.e the image of X by T if Xis m 

n . n 1 2 m 
M. In general X will denote T (X). Let {X , X , . . . , X ) de-

h . (1 1 1 2 2 2 mm 
note t e point x 1, x 2, ... , xn, x 1, x 2 , ... , xn, .. , x 1, x 2 

. . . , x:in) in Euclidean mn-space. Now define the transformation 
n 

F such that F carries M into nk-space in the following manner, if 
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:X is in M, then F(X) = {X, x1, x 2 , . . . , Xk-l). It will be shown that 

F is one-to-one and continuous on Mand hence is a homeomorphism. 

Obvi ously, Fis one-to-one. To show that Fis continuous, note 

that T is continuous and hence given e: /"vk >O there exists ~>0 such if 

p{X, Y)<~then p{X., Y.)( e:/·'k for i = 1,2,3, ... , k. Also observe 1 1 -'¥"' 

that p{F{X), F{Y)) = (~(x,. Y)] 2 + lp{Xl, Y 1) J 2 + . . . + 

~{Xk-l' Y k-l}] 2 ) l/2 . Therefore it follows that if p{X, Y) (~ then 

p{F(Yh F{X)) < [_k{e/v{K) 2 J l/Z = {kE 2 /k//2 = E and hence F is 

continuous. To clarify what is meant by the induced mappin:'g ·.T' 
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it is defined in the following manner; if X is in M then 

easy to see that T 1 is a distance preserving transformation. 

Note, in relation to the question of extending the transformation 

T 1 , that the following result is well known. If I is an isometry 

which is defined on a subset of Euclidean space, then I may be 

extended as an isom etry to all of the space. 

Theorem 4. If T, T 1 , M, and M 1 are defined as in Theorem 3, 

then T leaves a point of M invariant if and only if T 1 leaves a 

point of M 1 invariant. 

Proof. Suppose that T leaves the point X of M invariant. Then 

T 1 (F(X)) = (X1, X 2 , ••• , Xk-1' X) where X = Xi for i = 1, 2, 3, ... , k. 

It follows immediately that T 1(F(X)) = F(X). Suppose now that 

T'{F(X)) = F(X). It then follows that (X, X1, X 2 , .•• , Xk-l) = 
. , Xk-l' X). It may be concluded that Xi = X for i = 

1, 2, ... , k-1 and, therefore, T(X) = X. 

The following theorem is well known but in the interest of clarity 

a proof is given. 

Theorem 5. Let C be a circle and T be a transformation 

of C onto itself such that T is a rotation which is not periodic 

on any point of C {that is, a rotation through some angle A such 

that kA 'f O (mod 21"\") for any integer k 'f 0). Then the closure 

of the union of the points T\x) for all integers i is C for any x 

in C. 

Proof. Suppose there is an arc~ on C such that ab n l~Ti(x)] 

= Jb. Since B = [ yTi(x)] is a compact; set, the arc ab may be ex-
~ ,, . 

tended to an open arc cd such that the points d and d belong to B. 



n 
The points c_. and dare either of the form T {x} for some 

n or are limit points of the 'set U Tn{x}. Let p{ c, d} = e:. 
)t 

There exist integers k and k' such that p{Tk{x}, Tk 1{:x:~} ( E/2 

since B must possess a limit point. Choose ~ >0 such that 

k k' 
p(T {x}, T {x)} / ~ . Choose integers n and j such that 

p{Tn{x}, .G} .( t and p{Tj{x}, d) L.. ~. Obviously, Tis both an 

orientation preserving and isometric transformation on C. Let C 
~ . 

be oriented by the arc Tn(x} TJ{x} from Tn{x} to TJ {x}. Consi der 

~ 
the case where the arc T {x}T {x} agrees with C in orientati on 

k k' 
from T {x} to T {x}. Let m = n-k, and consider the points 

Tk+m{x) and Tk'+m{x}. Note that each of these poi nts is in B. 

Furthermore since T is an isometry, Tk'+:in.{x} must lie between 

c·. and din the arc which is a contradiction. Now suppose that 

~) is negatively oriented. Then by letting m = j-k' the 

same contradiction is obtained. Therefore , the proof is complete. 

The writer will make use of the following well known resul t . 

If I i s an isometry of t h e plan e, then I must be one of t he follo wing 

transformations: (1) Identi ty, (2) Rotation, (3) Translation, (4) 

Reflection , (5) Glide Reflection. The following t h eorem is one of 

the main results of thi s chapter. So far as is known, it is new. 

Theorem 6. Let T be an isometry of a compact conti nuum 

M of the plane onto itself. If T is not periodic on any point of M, 

then C = U T\x) is a continuum for any point x in M. 
X \, 

Proof. Consider the different types of isometries i n the 

plane. The hypothes i s that Tis not periodic on any point of M 

excludes the types (1) and (4). The hypothes i s that M is compact 

excludes types (3) and (5). Hence it follows that T must be a 
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rotation about sorrfo point _p ndtin M so tha:t 1'i{:X:) liE)s on 

some circle whose center is p. Since T is not periodic on x, 

it follows that the angle of rotation A is such that'kA /. 0 (mod 

2 TI ) for any integer k /. 0. There fore, by The or em 5 it follows 

that C = C where C is the circle with center p and radius 
X 

p(x, p). ThereforejC is a continuum. 
X 

Theorem 7. Let T be an isometry of a compact continuum 

M of the plane onto its elf. If K denotes the set of fixed points of 

M under T and T is not periodic on any point x of M-K, then 

C = U T1 (x) is a continuum for any point x of M. 
X \, 

Proof. The proof is essentially the same as that of Theorem 

6. 

The following example shows that it is possible to have a 

homeomorphism T of a compact continuum M of the plane onto 

itself such that T is not periodic on any point of M and such that 

there is a point x in M where C = \) T\x) is not connected. 
X L 

/ 

( . T(x.) 

I 

/ Cl-/ 

,/ 

// 

Fig. 11 
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Example. Let M = L (Q,: r): 1 fr~ 3]. Define T(Q, r) = 

F [H(Q, r)] , where H(Q, r) = (Q, 4:--r) and F(Q, r) = (Q+ s, r) for 

a fixed rational num her s. It can be shown using the results 

of Theorem 5 that UT\Q, r) with r f 2 is the union of two 
L 

circles c1 and C 2 where c1 has its center at the origin and 

has radius r, and c 2 has its center at the origin and has radius 

_4-r"(refer to Figure 11). 

It is known that if M is a continuum which does not separate 

the plane, then M is the intersection of a monotonic descending 

sequence of topological 2-cells. (9). Using this information it 

is possible to prove the following theorem. 

Theorem 8. Let T be a periodic transformation of the plane 

into itself which leaves the compact continuum M invariant. If 

M does not separate the plane, then T leaves a point of M fixed. 

Proof. Let p be the period of T, and M be the intersection 

of the monotonic descending sequence L Ci~ of topological 2-cells. 

Let S. = U Tj(C.); it is now shown that (\S. = M. It is obvious 
1 j,:O 1 L=l 1 
"" -that ns.:) M. To show that (\S. CM assume that there exists 
W 1 ~ 1 

"° a point X in n S; such that Xis not in M. Then there exists an 
L=l 1 

open set U about M such that xis not in U. Since T is continuous, 

there exists an open set V about M such that Tk(V) CU for k = 

ce 
0, 1, 2, ... ,p-1. Since nc. = M it follows that there exists a 

~=1 1 

C. for some j such that C. CV. Therefore,x is not in S .. This 
J J J 

oO 

is a contradiction and hence [) S. = M. 
i= 1 1 

Let Q. be defined as the topological 2-cell which contains 
1 

U T\C.) and whose boundary F(Q';) is contained in the set 
J=O 1 1 

UP-I Tj(F(C".)). Th . t h 2 11 b k th (9) ere ex1s s sue a -ce y a nown eorern. .. 
):.o .. 1 
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It is now shown that (\ Q. = M. 
i=-1 l 

-" 
It is obvious that ['i Q.-:) M. 

l•l 1 

To show that n Q. C M, suppose that there is a point X in 
isl 1 

oO n Q , such that Xis not in M. It follows that X must be in a 
l•I 1 

bounded component of E 2 -S. for each i {where E 2 denotes the 
1 

plane). 
2 

Let y be in the unbounded component of E -S . . It 
1 

follows that S . separates x from y for each i, and from a known 
1 

theorem x is separated from y by Cl S. = M. (9). This is a con­
L• t 1 

tradiction and hence it follows that (\Q. = M. 
i.• t 1 

It is now shown that T{Q.) C Q . . From the defini tion of Q . 
1 1 1 

it is known that T(F(Q.))C Q.. Let x be an interior point of Q. 
1 1 1 

such that T{x) is in Q.. Assume that T{Q.) is not contained in Q . . 
1 1 1 

Then there is a point y in the interior of Q. such that T{y) is not in 
1 

the bounded component of T{F(Q.)). Since Q. is connected and x 
· 1 1 

and y are interior points of Q. there is an arc xy from :;i: to y con-
1 

tained in the interior of Q.. It follows that T{xy) does not inter-
1 

sect T{F{Q.)). Therefore, T{x) and T{y) are not separated by 
1 

T{F{Q.)). This contradicts the assumpti on that T{x) was in the 
1 

bounded component of the complement of T{F{Q.)) and that T{y) 
1 

was in the unbounded component. It follows now by the Brouwer 

fixed point theorem that each Q. contains a po int which is fixed 
1 

under T, and hence M must contain a poi nt whi ch is fixed under T. 

Theorem 9. If T is an isometry of a compact continuum M of 

the plane into its elf and M does not separate the plane, t.lien T 

leaves a point of M fixed. 

Proof. Again consider the different types of isometries in 

the plane. As noted above, any isometry of a subset of the plane 

into its elf may be extended to an isom etry of the whole plane into 
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itself. ._Qh:s.e.r.ve that nei~her of the types (3) or (5) transforms 

a compact set into itself and that (1) leaves every point fixed. 

Therefore, it is necessary to consider only types (2) and (4). 

First consider type (4), and let L represent the line about 

which the reflection occurs. If M intersects the line L then 

the theorem is true. If M does not intersect L then T(M) is 

separated from M by L, This is a contradiction of either the 

hypothesis that T transforms M into M or the hypothesis that 

M is a continuum. Now consider type (2). If T is a rotation 

about a point in M then the theorem is true. Suppose that T is 

a rotation about a point p not in M. It is easy to see that if T 

is periodic at some point of the plane other than p, then T is 

periodic at every po:int of the plane and the period would be the 

same for each point other than p. It would follow from Theorem 

8 that M contains a point which is fixed under T. If T is not 

periodic on any point of the plane other than p, then by Theorem 
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5 it follows that for any point x of M the closure of the set of iterates 

of xis a circle containing p as its center (where the set of :iterates 

of xis V T\x)). This contradicts the fact that pis not in M and 
L 

that M does not separate the plane. 



CHAPTER III 

INTERSECTION PROPERTIES OF PLANE CONTINUA 

In 1930 Eduard Helly (10) proved the following theorem: Let 

there be given in Rn (Euclidean n-space) any collection of cells. 

If the intersection of each k of these fork= 1, 2, 3, .... --.,, n is 

again a cell, and the intersection of each ri+l is not empty, 

then the intersection of all the cells of the collection is not 

empty and again a cell. 

In 1957 Josef Molnar (11) proved the following generalization 

for the Euclidean plane: If in the plane an arbitrary number of 

simply connected, bounded and closed domains are given so that 

the intersection of every two is connected and the intersection of 

every three is non-empty, then the intersection of all the domains 

is not empty. 

The writer shows that in the plane to require the intersection 

of every three be non-empty is equivalent to requiring the union 

of any three fail to separate the plane. In the remainder of this 

chapter the spac~ will be the Euclidean plane. 

The writer makes use of the following properties of the 

Euclidean plane: 

Proposition A. Let A and B be subcontinua of the plane, 

neither of which separates the plane. Then AU B does not 

separate the plane if and only if An Bis connected. (12). 
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Proposition B. If C is an oriented simple closed curve 
xy 

containing the points x and y (x 'f y), and furthermore Hand K 

are compact disjoint sets such that H (\ xy = ¢ and K ('\ yx = ¢ 

(ao is to denore the simple arc on C where the orientation from 

a to b is positive if a 'f b), then there is a simple arc from x 

to y such that it is contained in the interior of C except for x 
xy 

and y, and does not intersect HU K. (9). 

The following theorem is the main result of this chapter. 

Theorem 1. Let { C« 1 be any collection of compact continua 

which do not separate the plane such that the intersection of any 

two is non-empty and connected. Then the union of any three fails 

to separate the plane if and only if the intersection of any three 

is non-empty. 

Proof. Let the union of any three fail to separate the plane. 

Assume the intersection of some three, say C, D, and E, to be 

empty. Let Acd = C (\ D and in the same manner define the sets 

A and Ad . Now consider (C U D) ('\ E. This set must be 
ce e 

connected by Proposition A since CV DUE does not separate 

the plane. But (CUD)(\ E = A U Ad and hence is not connected ce e 

by the assumption that C n D (\ E = ¢. This is a contradiction. 

Therefore, C n D n E 'f ¢. 

Let the intersection of any three be non-empty. Assume 

that there exist some three sets, say C, D, and E, such that 

their union separates the plane. It is known that A d' A , and c ce 

Ade are each connected. Since C n D(\ E 'f ¢ it may be concluded 

that A u A du Ad is connected. Let X be a point in the ce c e 

33 

unbounded component of S-(C VD VE) (where S denotes the Euclidean 



plane) and p be a point in one of the bounded components of 

S-(C VD\) E). Since CV D does not separate the plane (this 

follows from proposition A). S-(C U D) is connected and open, 

Therefore there exists a simple arc from x to p which intersects 

only E. Denote this arc by Le and in a similar manner obtain Ld. 

Let x d be the last point on L in order from x to p such that x d 
e e e 

is in the intersection of Le and Ld, and also in the unbounded 

component of S-(C U DUE). Let y d be the fir st point on L in 
e e 

order from x d to p in the intersection of L and Ld, and in a 
e · e . 

bounded component of S-(C U DUE). Denote by K the simple 
xy 

closed curve consisting of the union of the arc Q ed contained 

in Le and the arc Q ed contained in Ld. The simple closed 

curve K separates the plane into two components one of which 
xy 

contains the cmtinuum C , Without loss of generality, suppose C 

is in the unbounded component. Let B(K ) denote the bounded 
xy 

component of S-K By Proposition B it follows that 
xy 

E nD n B(K ) If Otherwise X would not be separated from p 
xy 

by C UDUE. and hence A de B(K ) since A dis connected. 
e xy e 

Therefore, conclude that A d and A d\) A are separated sets 
e ·c ce 

and thereby reach a contradiction. 

Corollary 1. If ~ C«.\ is any collection of compact simply 

connected sets in the plane such that the intersection of any two 

is non-empty and connected, and the union of any three fails to 

separate the plane, then the intersection of the collection is 

non- empty. 

Proof. This follows immediately from Theorem 1 and the 

result of Molnar. 
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As a special case of Corollary 1 the following result is 

obtained. 

Corollary 2. If t Co(1 is any collection of compact convex 

set,s in the plane such Jhat the intersection of any two is non­

empty and the union of any three fail to separate the plane~ 

then the intersection of the collection is non-empty. 

It is now possible to prove a theorem which is somewhat 

more generq.}, than the the or em of Molnar. 

Theorem 2. Let i Cc<1 be any collection of compact simply 

connected sets in the plane such that the intersection of any two 

is non-empty and the union.,.of any three fails to separate the 

plane. Then the intersection of the collection is non-empty. 

Proof. Assume the union of some two sets c1 and c 2 

separates the plane. Let C denote the union of the bounded 

components of S-(C1 U C 2). If C~ be any other set of the 

collection, then CC Gp • Otherwise c 1 U c 2 U Gp would separate 

the plane. Note that the boundary of C, deno1Ed by F (C), is 

contained in c1 UC 2 . Let D be a compone;nt of C. It follows 

then from the Brouwer Property that F(D) is connected. (12). 

Since F(D) = (F(D) ('I C1) U (F(D) ('IC 2), it follows that 
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F(D) ('I (C1 n C 2) /: Jd. Choose pan element of the set Jf(D) n (c1n :c 2). 

Now since F(D) C Gp for every f, it follows that pis an element 

of their inter section. 

In the case that the union of no two sets separates the plane 

it follows that the intersection of any two sets is con.nected. The 

proof of the theorem is then completed by the use of Theorem 1. 
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