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PREFACE

The purpose of this paper is to examine certain properties of
compact plane continua, In doing this the writer has obtained re-
sults in three somewhat different areas,

The first is that area which is concerned with a study of the
properties of fixed point sets, and the properties of the space ob-
tained after the omission of the fixed points. The writer generalizes
some known theorems in this area.

The second area of this study is concerned with fixed points
under periodic transformations, The writer shows a relationship
between the study of the fixed point property under periodic trans-
formations and the study of the fixed point property under isometric
transformations. He shows also that a periodic transformation of
the Euclidean plane into itself which leaves invariant a compact con-
tinuum that does not separate the plane must leave a point of the
continuum fixed,

The last area is concerned with intersection properties of plane
continua. The writer obtains a new set of sufficient conditions for
the intersection of a collection of compact continua in the plane being
non-empty. He shows that these conditions are equivalent to a known
set of sufficient conditions. Using these new conditions he obtains a
generalization of a well known theorem of Helly.

Indebtedness is acknowledged to Dr. Olan H, Hamilton for his

guidance in the research and preparation of this thesis; to the other
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members of the committee, Dr, Harrison S, Mendenhall, Prof.
Roger.L.. Flanders, Prof. John E., Hoffman, and especially to
Dr. Eugene K. McLachlan for the encouragement he gave during
the time this work was done; to Dr, L., Wayne Johnson for the
teaching position held here the past two years; and to the National
Sci’ence Foundation for supporting a part of this thesis under grant

number N,S.F., G-9714,

iv



TABLE OF CONTENTS

Chapter Page
I. ROTATION GROUPS UNDER MONOTONE
TRANSFORMATIONS . . . . . . . . . . .1
II. FIXED POINT THEOREMS . . . . . . . . .21

IOI. INTERSECTION PROPERTIES OF PLANE = = 7
CONTINUA . . . . . . . . .« . . . . .32



Figure

1. Figure 1.
2. Figure 2.
3. Figure 3.
4, Figure 4.
5. Figure 5.
6.. Figure 6.
7. Figure 7.
8. Figure 8.
9. Figure 9.
10. Figure 10,
11. Figure 11.

LIST OF ILLUSTRATIONS

vi



CHAPTER I

ROTATION GROUPS UNDER MONOTONE TRANSFORMATIONS

In 1937 Lucille Whyburn (1) published a paper in Fundamenta
Mathematicae entitled '"'"Rotation Groups about a Set of Fixed
Points.!' As a basis for her work she asked for a homeomorphism
of a space S onto itself. The author generalizes her results by re-
laxing her hypothesis that the transformation be a homeomorphism
to the condition that the transformation be a certain restricted
monotone transformation. He proves that all of the theorems which
she has shown true under homeomorphisms are still valid under
this more general transformation. Many of the following theorems
are direct generalizations of the theorems of Whyburn and will be
so designated by an apostrophe following the number of the theorem,
Proofs of theorems 9' through 15' follow along the same lines as those
given by Whyburn, but in the interest of clarity the complete proofs
are given.

The following are well known results which will be needed in the
development of this chapter,

Definition. A monotone transformation f: A— B is a continuous
ﬁ;:ansformation such that if x€ {(A), then f_l(x) is connected.

Proposition A, Let A and B be compact T, spaces and f a monotone

1



transformation such that £f(A) C B. If x& f(A), then f_l(x) is a
continuum,

Proposition B, If A is compact and f(A) = B is continuous,
then in order that f be monotone it is necessary and sufficient
that the inverse of every connected set be connected,

In all the work of this chapter, unless otherwise specified, S
is 1o mean a compact Hausdorff space; T will be a monotone trans-
formation such that T(S) = S, 1f T allows fixed points in S such that
K is this set of fixed points, then T'l(K) = K.

Theorem 1. The transformation T is one-to-one on K.

Proof. Suppose this is not true, then there exist distinct points
x and y in K such that T(x) = T(y). Since x and y are in K they are
fixed under T and therefore T(x) = T(y) = x = y. This contradicts
the fact that x and y are distinct and completes the proof.

Theorem 2. Let C1 be a component of S-K, then T(Cl) is also
a component of S-K,

Proof. By the hypothesis T(Cl) NK = g; hence T(Cl) C S-K.
Since T is continuous, T(Cl) is connected and hence is contained in

some component of S-K, Let C, be the component of S-K containing

2
T(Cl)' Now suppose that T(Cl) # CZ' Letp& C,-T(C)). Since

T(S) = S, there is a point y in S such that yg Cl’ y Z K, and T(y) = p.

It follows then that y is in some component of S-K, say C3. It

follows that T(C3)CC2. By Proposition B, the set T-l(CZ) is

connected and, by the hypothesis on T, is contained in S-K. Hence
there must be a connected set in S-K containing C1 U C3. This con-

tradicts the fact that Cl and C, are components of S-K,

3



Theorem 3. If C1 is a component of S-K, then T_l(Cl) is a
component of S-K,
Proof. By hypothesis T-l(Cl) C S-K. Since T—l(Cl) is

connected, it is contained in some component of S-K, say CZ'

Now T(CZ) C S-K, so suppose that CznT—l(Cl) £ 8.

Let xECZ-T_l(Cl). Then T(x) is in some corhponent of S-K other

than Cl. This contradicts the fact that continuous functions carry

connected sets onto connected sets,

Theorem 4'. Let CO be a component of S-K, Cn = In‘(CO)q for
each integer n, and let G be the collection an\ . Then the collection
icn\ forms a commutative group where the group operation is de-
fined for any two elements Ci and Cj as CiCj = Tj(Ci).

Proqf. It follows directly from the definition that there is-
closure with respect to the operation. To show that the operation
is associative consider the following: Ci(CjCk) = C:.L [Tk(cj)] =

c, {Tk(’rj(co))] = C, [Tk”(co)] = C,C,,

o

Tk(TJ(C.)) = Tk(C.C.) = {C.C,)C To show that the operation is
i i7j i7j

-
commutative consider the following: CiCj = TJ(Ci) =T [Ti(CO)] =

j+i iy el T iy .
T*Nc) = T cy) = T [T (co)] = T'(Cj) = G;C;. Now consider

chO = TO(CJ.) = CJ.. It follows that CO serves as a right and left
identity for every element of G. It is now shown that CNJ. is an in-
verse for C;. To do this, note that C,C_, = T‘J..(cj) =T [TJ(CO)] =

TJ -J(CO) =C This completes the proof of the theorem,

0"
Definition. A rotation group Ga will mean the group formed by
the component Ca where Ca is the CO of Theorem 4!,

Definition. The order of a group will mean the number of components



in the group if there is a finite number; otherwise the order will
be infinite.

Theorem 5'. Every component of S-K lies in one and onIy one
rotation grdup.

Proof. Suppose that Caé Gb’ and CaE Gd where Gd and Gb are

distinct rotation groups. It follows then, for some two integers n

n _ m _ < n-m _
and m, that T (Cb) = Ca and T (Cd) = Ca. Consider T (Cb) =
T_m(Ca) = Tm-m(Cd) = C4. Let C be any element of G . Then
for some integer k, Tk(Cd) = C. It fcllows then that Tn_m+k(Cb) = C,

and hence C & Gb. Ther efore, Gb D) Gd’ and in a similar way it can

be shown that Gd D) Gb. Hence it follows that Gd = Gb which contra-

dicts the supposition.

Lemma l. If T(x,) = x. and {xl} is a sequence of points con-

O) 0

verging to Xq then [T-l(xi)] is a sequence of sets converging to X3-

Proof., Letting L = Dxi, it follows from the continuity of T that
=0

1(x.).

T-l(L) is closed and hence c.ompact. Suppose first that xog Iim T ;
i

Then there is an open set Ub about X such that Ub N T-l(L) = X4

o
Let U, for i >0 be an open set about x, such that U, N | ,Jk;)‘,_ xj) =g, It
120
follows that UJ!L = T-l(Ui) is an open set containing T-l(xi) such that
5 -l . . . . .
Ui N %.:JZT (xJ.)) = ﬂ Hence the collection {Ui} including i = 0 is
an open covering of T-l(L) which contains no finite subcovering., This
contradicts the fact that T-l(L) is compact. Suppose now that there
exists a point y in lim T_l(xi) such that y # X5 Then by the definition
i
of the limit superior, given any open set U about y, U intersects in-

finitely many of the sets Tnl(xi) and hence T(U) contains an:infinity of

the points ;. Therefore, T(y) is a limit point of the sequence ixi}



It is known that T(y) # X This contradicts the fact that the

sequence {x.}converges to x,. Let {Tal(x. )} be any subsequence
i 0 Ly
of {T-l(xi)z . It follows, from an argument similar to the one above,

that lim T_l(x. ) = X4 .
lk 1k 0

Theorem 6'. If Ci and Cj are two elements of a rotation group,

Hence it follows that Lim T“l((xi) = x
L

then C. - C.=C, - C..
1 1 J J

Proof. It is now shown that C_imCiCC:fCJ.. Note that Ci = Tl{(CO)

O)'
j=1i= 0. It then follows that Ci = Cj and the theorem is proved,

and Cj = Tj(C Hence Cj = Tjai((Ci). First consider the case where
Next suppose that j-i = k>0, then Tk is a continuous mapping of Ci

onto Cj' Ifxe 5i-Ci, then there is a sequence of points {xi} in Ci

which converge to x. By the continuity of Tk it follows that the sequence
{Ti(xi)z converges to T(x) = x. Therefore, x is in CJ._CJ.. Finally
suppose that j-i = -k< 0, in which case T_k(Ci) = Cj’ or Ti(Cj) = Cf'

i
Note at this time that (Tk) -1

is T—k' Again let % be a sequence of
points from Ci converging to x in Ciﬂci' Since Tk satisfies the con=-
ditions in Lemma 1, it follows that lzjim T_k((xi) = x, Therefore x is
in Ej-cj since T—k(xi)C_Cj for each i1, In a similar manner it
can be shown that Ej—CJ.C_C—i—Ci., Therefore it follows that c":i-=ci =
'C'J.-CJ..
Corollary, IfS is locally connected, then for any rotation group
F(LgCi) = L_L)F(Ci) = F(Ck) for Ck a fixed element of the rotation
group (where F(A) denotes the boundary of A relative to S),
Proof, Obviously \%F(Ci) = F((Ck) for each k since by Theorem 5!
F(Ci) = F(Cj) for any two elemgnts Ci and Cj of the rotation group.

Let x be in UF((Ci). Then x ¢ C, for any i, so x¢ UCi. Therefore,
i i
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x€ F( U C,) and it follows that F(C.) C F( U C,). Now suppose
L T

Then there exists an

x € F( LLJ C.) and x £ M= Ltj F(C,) = F(C,).
open set Ux containing x and an open set Vm containing M such that
Ux n Vm = ,05; this follows from the compactness of M, Since
x € F( \LJ Ci)’ it is known that there is an open connected set U (_ Uk
about x such that U N { LL] C,l) # 55, but U N K%F(Ciﬂ = ,05 It
follows then that U intersects infinitely many of the components Ci'
Then, since U is connected, either U Ci for some i which is a
contradiction or U [ F(C)) # # for some i which again is a contra-
diction. Therefore it follows that F( U Ci) _ L(.j F(Ci)’ and finally
that F( kbj C,) = LLJ F(C,) = F(C,). L

The following example shows that it is necessary to ask that S
be locally connected.

oo

Example. LetS = &‘J‘ Cn] U C, where C_ = { {r,0): 0¢4r<i, 0
= 1/n :’; and CO = { {r,0): 0<r Sl} . Deffm_e‘T in the following manner;
T(r,1/n) = {r,1/n+1) if n £ 0, and T(r,0) = (r,0). It is easy to see

b L)
from Figure 1 that F( U C.) = C,; whereas, U F(C.) = F(C.,) = {(0,0)z .
=i 0 &= 1 1




Theorem 7. Let f be a monotone transformation of the unit
interval I onto the set M. If M is non-degenerate then M is an arc.

Proof. M is connected and compact by the continuity of f. It
is shown that £(0) # £f(1). Suppose £(0) = £(1) = x. Then f-l(x) is a
compact continuum containing 0 and 1. This implies that I C fﬂl(x)
and hence that M is degenerate, This contradicts the hypothesis
of the theorem. Lety be a point of M such that y # £(0) and y # £(1).

It will now be shown that y separates M. Suppose that y fails to
separate M, then M-y is connected. It follows that f-l(M-y) is
connected and contains the points 0 and 1. This contradicts the fact
that f-l(y) separates I,

Theorem 8, Let f be a monotone transformation of a space M
onto the unit interval I such that f-l(O) is a unique point of M, Then
M is locally connected at f-l(O).

Proof. Let iUil be a sequence of connected open sets converging
to the point 0 in I, It follows by an argument similar to that of
Lemma 1 and from the continuity of f that {f_l(Ui)‘g is a sequence of
open sets converging to f-l(O). Since f is monotone, each set f-l(Ui)
is connected. Now, given any open set V about f-l(O), there is a
connected open set f'—l(Uj) for some j such that f—l{Uj) C V, and
f-l(Uj) is connected. Hence M is locally connected at fT]‘(O) as required.

The following example will illustrate that the inverse image of
an arc under a monotone transformation need not contain an arc
joining every two points.

Example. Let the set M be the following set; [(x, y): y = sin 1/x,
0« x Sl\g v, {_(x, y):x=0, -1€y% 11 . Let f be the perpendicular

projection of M onto I. It is easily seen from Figure 2 that f is



monotone, and there is no arc joining the points (0, 0) and (%/2,0).

>
/
——
.

- . N

0,0) .
( | \ (5,00 (1,0)

P

Fig. 2

Definition., A point p is said to be accessible from a set of
points M provided there exists a simple arc Xp contained in M U p.

Theorem 9'. If C is an element of a finite rotation group Ga’
any point p in F(C) which is accessible from C is accessible from
any component of Ga'

Proof. Since Ga. is finite, it follows that for any Ca in Ga.
Tk(C) = Ca for some positive integer k. Let Xp be an arc from x
to p such that ¥xp-pCC. Then by Theorem 7, Tk(}’{f)) = yp is an arc
such that yp-p CC,. This completes the proof.

Theorem 10'. If C is an element of Ga (where Ga. may not be
finite), and p is in F{C) and accessible from C, then for any Ca,
such that Tk(C) = Ca for some positive integer k, p is accessible
from Ca.

Defin‘ition.‘ A point set M is said to have property S if for each
e >0, M is the union of a finite number of connected sets each of

diameter less than e¢. (2).

Definition, A plane Peano continuum is a subset of the plane which



is the continuous image of the unit interwval,

Lemma 2. Let M have property S, and let the closed set K
separate M. Then, if C is a component of M-K such that C does
not have property S, there exists an € >0 and a sequence of points {pn‘g
of C converging to a point p in C-C such that no two of these points
can be joined in C by a connected set of diameter less than €.

Proof, Let it be assumed that C cannot be represented as a
finite union of connected sets of C each of diameter less than §.
Let {gn"g be a finite representation of M where each % is a connected
set of M and of diameter less than 5/4. It follows then that (“kél‘gn) NC,
where o is finite, has infinitely many components, Let these com-

ponents be denoted by [ Note that énﬂ(\K # § for in-

gm] ner, e
finitely many nx's. Now choose some Bi and call it gi_ There exists
some g ., say g:z, distinct from gi such that gi cannot be joined to

g‘z by a connected set in C of diameter less than ¢/4, and g:z NK £ @.
Suppose this is not the case, It is obvious that there are sets -
which cannot be joined to gi by a connected set in C of diameter less
than ¢/4. If this were not so, it would follow from the triangle in-
equality that C has property S contrary to the hypothesis. If each

such -0 has a closure which does not intersect K, then there can

be at most a finite number of these, Therefore, represent C as

the union of this finite collection plus the set obtained by connecting

gi with the remaining 8 's. This implies that C has property S

and is a contradiction. Now given gi and g’z choose g’3 such that neither
gi or g;a can be joined to g'3 by a connected set in C of diameter less

than 5/4. Again, if it were not possible to do this, C would have

property S. Continue in this manner inductively to obtain an infinite
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sequence {gl'd of the components g such that no two may be joined
in C by a connected set of diameter less than ¢/4. Since 5{1 NK #@
for each n, choose Py in gi such that p(pl, K) <1, and in general choose
NK#B.

Hence it is possible to choose a subsequence {Pnﬂ of the sequence of

e 2 ——
P, in g such that p(pn, K) < 1/n. Now observe that EN

x

points [pnl such that the subsequence {pnﬁ converges to a point p in K,
Now let ¢ = #/4 and the proof of the lemma is complete.

Theorem 11', Let M be a plane Peano continuum and T(M) = M.
If C is an element of a rotation group under T of order greater than 1,
then C has property S.

Proof. Suppose C does not have property S, Then since M has

property S it follows from Lemma 2 that there exists an ¢ >0 and a

sequence of points {pn} of C converging to a point p of F(C) such that
no two of these points can be joined in C by a connected set of diameter
less than e. Let N represent a circle with center p and diameter ¢/4.
Without loss of generality it mmay be assumed that P, lies inside N for

each n. Let ﬁ;f)m_ denote an arc contained in C, joining P, top

1 nt 1,
There is such an arc since C is connected and locally connected, It

follows that pnpn+lﬂN ;4 ,d since the diameter of pnpn_‘_1 is greater

than or equal to ¢ and the diameter of N is ¢/4. Let o be the first

point of the intersection of PaPo and N. Hence for each n the arc

1
ﬁ:qn is obtained such that q%ﬂN = q . Note that ﬁ:qn(\ ﬁ;&k =g
if n ;4 k (illustrated in Figure 3) since otherwise there would be a
connected set joining B and P having diameter less than ¢. Let H
denote ﬁ;rﬁ qqn Observe first that H is a continuum since it is well
known that the sequential limiting set of any sequence of connected

sets is connected, Since p is in every limiting set of a subsequence



1

of f);an’ it follows that H is a continuum, Obviously, H is contained
in C. Also note that H is non-degenerate since all but a finite number

of the arcs f)’r?;n have diameters greater than /16,

Fig, 3

Now to show that HCC-CC K. Suppose that H N C # ff, and the
point b is in HNC. Since C is locally connected at b, there is a §<e/4
such that every point of C whose distance frombb is less than § can be
joined to b by an arc whose diameter is less thanv‘e/4. Since b is in
H, there exist arcs ;Tl?ll andfﬁ.].\qj such that ﬁi—ai and ?]Taj contain
points p!1 and pj., ‘respectively,' which can be joined to b by arcs of
diameter less than ¢/4., It follows by the triangle inequality that the |
diameter of f':pl\j §‘:b U E_Ej Uﬁ.]!\pj is smaller than €. This contbradicts
the fact that pj and P, cannot be joined in C by a connected set of diamétér
less than e. Thefefore it follows that HC F(C) C K.

It is known that H contains p and a point 0f N, say q. Hence the



12
diameter of H is greater than ¢/16. Let p' be a point of H such that
p(p',p) = ¢/16. Let N' be a circle with center p' and diameter less

1 ! 1
than ¢/16. Let [Phk} be a subsequence of {anS such that no p, is
contained in N' plus its interior, and furthermore such that p' is in
the sequential limiting set of the sequence of arcs [pnkan where
———— — 1 . -
p;lkanc P %ok Let {pnk} be a sequence of points converging to

p' such that pI']L‘k is in the arc Pzt1kqn and pl'_l‘k is interior to N', It

k
: ; 7. a ” = e
follows then that there exists in the arc Pk -2 sub-arc T PhiEnk
which intersects N' in only the points E and S K- Since M is

locally connected, there is a connected open subset of M about p'
and contained in the interior of N'. It follows then that there exists
an integer G such that if n and m are greater than G, then p;_l' and
pr'_l'_l may be joined by an arc of M contained in the interior of N'.
(refer to Figure 4).

Let n, m, and k be integers larger than G and consider the three
/-E)"-T% , and @k'

arcs ¥ p''s_,
Hh n metmm
other two in N' plus its interior. Without loss of generality suppose

One of these arcs separate the

'S separates ¥ p''s_f Fpits,.. L T ptt plip!

Ha "mPm ®m P nPn " n T TP Sy o PPk aas PPm

be arcs lying in N' plus its interior. The existence of these arcs has

been demonstrated above, The arc p;;]p;; will contain a sub-arc

u_Vv_whose intersection with m is the point u__ and whose

m n m m m m
intersection with ﬁn is the point ¥ It is now shown that such
- g Sy
an arc ©__v_does exist, Order the points on p''p'' from p'' to p''.
m n m' n m n

Let u__ be the last point of the intersection of p''p'' and £ p''s .

m m n m Im Im

Let 1 be the first point of the intersection of the arc Gprr:b-?rl and

_ .
B P8 (refer to Figure 5).



Fig, 4

Fig, 5

In the manner described above, obtain the arc 2 Wi such that

11 - /"_T'\ .
Z Ve f\l‘um m = %y 2nd W, N\ FpUS =w . Since the

diameter of the set p q_mu U 1 is less than ¢, it follows

that a_ v N K # @ and likewise me NK £ . Let X, be the first

point of @_v._ NK which is ordered from u__ to v_. Let y. be the
m n m n 1

13
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first point of z_ W ﬂ K which is ordered from z_  to w,. Now
m m k
}/{Fl will denote the arc which is the union of the arcs ﬁ:n?l’

L —— . ’ . .
oz and z_ vy m V1 It follows that xlyl-(xl\_j yl) is contained in

C and that X is separated from vy in N' plus its interior by the
arc mm" By Theorem 7 it follows that T(xlyl) is an arc.

Now T(xlyl) must contain a point b, lying outside N'. To show

1
this, observe that T(xl) =x and T(yl) =y Hence T(Xl) is separated
from T(Yl) in N' plus its interior by the ard@m. It follows
that either T(xlyl) contains a point outside of N' or contains a point
of @m' The latter case is impossible since rmpH]s C C
and by hypothesis the order of C is greater than 1. In this manner
choose an infinite sequence of arcs {)’(;371;% so that they converge
sequentially to p', and such that T(E;?n) contains a point bn lying
outside N' plus its interior, By Lemma 1 the sequence of sets
X_T-l(bi)ﬂg must converge to p'. However the éequence of points
{T(T-l(bi))} = b, does not converge to T(p') = p'€ N'. This
contradicts the continuity of T. . Therefore, C must have property
S.

Definition.‘ If A is a subset of M, the M-boundary of A is the
boundary of A intersected with M,

G. T. Whyburn (3) has shown that in order for every point of
the M -boundary B of a bounded connected open subset R of a Peano
continuum M to be accessible from R it is sufficient that R should
have property S. It follows from this result of Whyburn's that
under the hypothesis of Theorem 11!, every point of F(C) is accessible

from C.

G. T. Whyburn (4) has also shown that if every point of the closed
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and bounded point set K in the plane S is accessible from each of
two mutually exclﬁsive connected subsets Rl and R2 of S-K, then
either K is a simple closed curve or there exists a simple con-
tinuous arc which contains K. He obtains as a corollary to this
result the fact that, under the same conditions, there exists a
simple closed curve which contains K,

Theorem 12', If M is a plane Peano continuum and C is an
element of a rotation group of order greater than 1, then F(C) is
contained in some simple closed curve.

Proof. This result follows immediately from the conclusion
of Theorem 10', and the results of Whyburn stated above,

Lemma 3. Let pX, Py, and Pz be arcs joining the point p to the
distinct points x, y, and z, respectively, There exist arcs ELIE,
ql?, and ql? (possibly degenerate) joining the point q, to the points
x, y, and z, respectively, such that q;x Uﬁ?yUﬁiECﬁ;c Uby U pz
and §ENGY = qp, GXNGZ = q), and §YNGZ = q;.

Proof. Let pxX be ordered from p to x, and let q, be the last
point on px and also in Py () D2z (note that q, may be the point p or
the point x), It follows that 9, is a point of Py or a point of pz.
Without loss of generality suppose that q4, is a point of py. Let the
arc pz be ordered from p to z, and let q;?f be contained in py. First
consider the case where Qf(‘\f)_z‘ £g. If q_y NPz #0, let a, be
the last point in this intersection relative to the ordering on pz,

In this case let q, = qy, and EIELX be contained in @ Now set
q”]ji = @XU q;}‘c, and let ﬁ?z and q;r be contained in Pz and'q/;r,
respectively, It is se en that if q;z and a:_1§ have points other than d;

in common, then either qY is not the last point of the intersection
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of q.y and Pz or q. is not the last point of intersection of f)?c and
ﬁuﬁ. This would contradict the construction of the arcs (note

Figure 6). Also it is obvious that cIfy (\ﬁz}\c =q) and q‘l? (\sz = q-

Fig. 6

Fig. 7

Now consider the case where cT;rf\ffz = @. Let the arc qu
be contained in the arc Py and order fqu from p to 9. Let qy
be the last point in the intersection of f)?;lx and pZ (note Figure 7).

Let qux be contained in f)’ﬁx, and q;:z be contained in pzZ. Set
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q; = and c’ii'i = ﬁ'}:ﬁyuﬁ;—z‘ It is easy to see that q;z ﬁq’ii‘: =
q; C'irz ﬂffle =9 and fl-l_if N Ei_l?c = q. Therefore,the proof is
complete,

Theorem 13', Let M be a plane Peano continuum and T(M) = M
a monotone transformation which is one-to-one on the set of fixed
points, If F(C) contains more than two points, then the rotation
group of C is of order less than or equal to 2,

Proof. Suppose the rotation group of C is greater than 2. Let
D and E be in the rotation group of C where T(C) = D # C, TZ(C) =
T(D)=E#Dand E# C. Letx, y, and z be distinct points of F(C).
Let p be a point of C, By the corollary above obtain arcs Xp, yp
and zp which are contained inC except for x, y, and z, respectively.
Using Lemma 3, obtain three arcs éfl_ﬁ, :’:I;:, and E{i’z‘ (note that
these arcs are non-degenerate since q ;f X, y, or z) such that the
intersection of any pair is d;- By Theorem 7 it follows that T(ﬁ?{),
T(q‘?}?), and T(cEZ) are three arcs lying in D except for T(x) = x,
T(y) = y, and T(z) = z, respectively. It is seen also that each of
these arcs have incommon with D the point T(ql). Again with the
help of Lemma 3, obtain a point r; and three arcs fIS‘c, F{?, and
i:?z' lying in D except for the points x, y, and z, respectively, and
such that the intersection of any pair of these arcs is the point Ty
In a similar manner obtain three arcs in E which satisfy the same

conditions relative to E. Denote these by 8%, 5”1"?, and EI‘Z (note

Figure 8).
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Note now that f?{\jcf?x\)f?z \Ug 2 forms a simple closed curve L,
Without loss of generality assume that y is in the bounded component
of the complement of L. (Figure 9). It follows that the arc f'l?r Ucii?
separates the interior of L into two components and hence the set

f;? U c’1137 \UL separates the plane into three components. Denote these
components by Q, 0,, and Q in such a way that xéq, zéb—z, and
y¢63. It is obvious that s, must lie in the interior of one of these
components., Hence it follows that either x, y, or z is not accessible
from s This is a contradiction and hence the proof of the theorem
is complete, |

Note that C. Kuratowski (5) has shown that the graph described above

and pictured in Figure 8 cannot lie in the plane.

Fig. 9
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Theorem 14', Let M be a plane Peano continuum and T(M) = M.
If G is an infinite rotation group generated by C, then F(C) reduces
to one point and, for any preassigned positive number e, 5(Ci) < €
( §(A) is the diameter of A and C, = Ti(Co)) for all but a finite
number of subscripts i.

Proof. First show that F(Ci) is connected, By the Corollary
to Theorem 6 it follows that F( L[.)Ci) = vF(Ci) = F(Ck). Also it
follows that F(Ck) = lim Ci. If this were not the case F( L-L}Ci)'ié
F(Ck) for each k. Hence it may be concluded that F(Ci) is connected,

If F(C.l) has more than one point, it must contain infinitely many
points., Hence by Theorem 13 the order of G is less than 3, This is
a contradiction and the proof that F(C) reduces to one point is com-
plete,

The fact that E(Ci) = lim Ci and that F(Ci) consists of one pocint
leads to the conclusion that S(Ci)< € for all but a finite number of
subscripts i.

Theorem 15', Let M be a two dimensional sphere and T(M) = M.
If there is a rotation group under T of order greater than 1, then K is
a simple closed curve,

Proof. Let G be a rotation group of order greater than 1. Let
Cl and ('.’}2 be elements of G. It follows from Theorem 12' that F(Cl)
is contained in a simple closed curve J. Since Cl is open in M, F(Cl)

separates M, Hence F(Cl) = J, Since F(Cl) = F(C it follows that

3
F(Cl) = F(CZ) = J, Now it is shown that C1 U CZU J = M., By the

Jordan Curve Theorem M-J = Dl U D2 where D, and ]32 are mutunally

1
separated connected open sets, Suppose ClC Dl' It follows that

F(Cl) = F(C F(Dl) and hence C1 = Dl‘ In the same way it can be

5) =



shown that C, = D Ther efore, clLJCZU J=MandJ =K, so

-
the proof is complete.

Corollary, Under the conditions of Theorem 15' there exists

only one rotation group under T and this group is of order 2.
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CHAPTER II
FIXED POINT THEOREMS

A well known unsolved problem in topology is the following:

If M is a compact continuum in the plane and does not separate
the plane, and T is a periodic transformation such that T(M) = M,
does T necessarily allow a fixed point in M ?

The question has been answered in the affirmative in certain
cases, The main result along this line, obtained by P, A, Smith
(6), is stated as follow;;: Let K be a point set in Euclidean m-space
and T a topological transformation of K into itself of finite prime
period p. If every continuous single-valued image in K of every
sphere of dimension less than or equal pm-m-1 is deformable in
K to a point, then T leaves fixed atleast one point of K,

It has also been shown that if T is a one-to-one catinuous
and orientation preserving transformation of the Euclidean plane
S onto itself which leaves a bounded continuum M invariant, and
if M does not separate S, then some point of M is left fixed by T.
This result was first obtained by M, L. Cartwright and J. E,.
Littlewood (7); later O. H. Hamilton (8) obtained the same re-
sult using a much shorter method,

"The writer is able to obtain in this chapter the result that if
T is a periodic transformation of the plane into itself which leaves

a plane continuum M invariant, and if M does not separate the

21
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plane, then some point of M is left fixed by T. This result is
not contained in either of the previously mentioned results, since
a periodic transformation need neither be orientation preserving
nor of prime period.

The writer shows that the answer to the general problem
concerning the existance of fixed points in continua which do
not separate the plane under periodic transformations is in the
affirmative if every isometry I of Euclidean n-space into itself
which leaves a unicoherent continuum M invariant necessarily
leaves some point of M fixed.

The following theorem is basic to the development of this
chapter,

Theorem 1, If T is a periodic transformation of a metric
space S with metric p onto itself, then there exists a metric p' on
S such that T is an isometry relative to the metric p'.

Proof. First define the function p' which is defined from S X S
to the real numbers as follows: let p'(x,y) = mraix[p(Tn(x), Tn(y)):
Niendl, 208 e, m_-f where m is the period of T. Now show that
p actually satisfies the conditions for a metric., Observe first that
p(Tn(x), Tn(y)) is greater than or equal O for each n, and therefore
p'(x, y) is greater than or equal 0. Now show that p'(x,y) = 0 if
and only if x = y. Suppose x = y, then Tn(x) = Tn(y) for each n,
and hence for each n it follows that p(Tn(x), Tn(y)) = 0. It may
be concluded that p'(x,y) = 0. Suppose now that p'(x,y) = 0, It
follows that p(Tn(x), Tn(y)) = 0 for each n and in particular when
n =m. Since p is a metric, it follows that Tm(x) = Tm(y). Now

using the fact that T is periodic of period m, it is seen that x =y,
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In order to show that p'(x,y) = p'(y, x) observe that p(Tn(x), Tn(y)) =
p(Tn(y), Tn(x)) for each n, and hence max [p(Tn(x), Tn(y))jz
max [p(Tn(y), Tn(x))] . To prove that the triangle inequality is
valid under p' note that p(T"(x), T (2)) < p(T (x), T(y)) + p(T (y),
Tn(z)) for each n. It follows that p'(x,z) = max [p(Tn(x), Tn(z)ﬂf_
max [p(T(x), T(y)) + p(T"(y), T(2))]< max [p(T(x), T"(y))] +
max [p(T(y), T"(z))] =p'(x,y) + p'(y,2). This completes the
proof that p' is a metric,.

In order to show that T is an isometry with respect to the p'
metric observe that since T is periodic of period m, the collection
of non-negative real numbers {p(Tn(x), Tn(y)): n=l, 2280 4 o .m}

is identical with the collection {p(TrH' l(x), Tn+1

W n=1,2.3, ... .08,
The following example shows that if the distance between two
points x and y is defined to be the mliln [p(Tn(x), Tn(y)) oo R
ey | ON mJ , then the resulting function need not be a metric
(refer to Figure 10), It is easy to show that the triangle inequality
is the only property which may fail to be satisfied,
Example, Let M be a subset of the plane such that M =
{(0,0), (4,0), (5,0), (5,1){ . Define the transformation T of
period 2 as follows; T(0,0) = (4,0), T(4,0) = (0, 0), T(5,1) =
(5,0) and T(5,0) = (5,1). Note that under the induced function the
distance between the points (0, 0) and (4, 0) is 4, whereas the dis-

tance between (0,0) and (5,1) plus the distance between (5,1) and

(4,0) is 14 V2. Therefore, the triangle inequality does not hold,
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Theorem 2. If S is a metric space with the metric p, and T and
p' are defined as in Theorem 1, then the topology induced by p'
is equivalent to the topology induced by p. |

Proof. Let S'E(x) denote a spherical region about x of radius
¢ in the p' metric, and let S (x) denote a spherical region about
x of radius ¢ in the p metric. Take any spherical region Se(x)‘
in the p metric., Observe that p'(x,y) = p(x,y) for all x and y.
Therefore it follows that S{(x) is contained in Se(i).

Now it will be shown that given any spherical region S¢ (k)
in the p' metric, there exists a spherical region S; (x) in the p
metric such that Sa (x) is contained in St(x). Since T is continuoué ‘

at each point x, it follows by definition that, given ¢ >0, there
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exists é‘e‘)O such that if p(x, y’)(é'E then p(T(x), T(y))<e. In
general it can be shown inductively that, given € >0 and a
positive integer m, there exists a number 5;, rx\‘;O such that
if p(x,y)< Se,m then p(Tn(x), Th(Y))( eforn=0.1.2,. ..., m,

Therefore it may be concluded that the region S Sie m(x) is

)
contained in S'E(x). This completes the proof of the theorem.
Theorem 3. If T is a periodic transformation of period k.
of a subset M of Euclidean n-space onto itself, then M can be
imbedded in Euclidean nk-space in such a way that the mapping T',
induced by T, of M'(M' is the result of imbedding M in nk-space)
onto itself is an isometry under the usual metric of Euclidean
space,
Proof. Let X represent the point (xl,xz, o .,xn) in n-space
Let Xl = (xi, KIZ.
M 1o genersl B will debote TN Lab (LA - e 4 4l

: | ! 1 e L2 2 m _m
note the point (xl, Kos o v o9 X3 Xpy Xop 0 0 0y Xy 000y Xy X,

3 xi) denote the image of X by T if X is in

z ,xn;) in Euclidean mn-space. Now define the transformation
F such that F carries M into nk-space in the following manner, if

X is in M, then F(X) = (X, XI’X e Xk-l)' It will be shown that

20 v
F is one-to-one and continuous on M and hence is a homeomorphism,
Obviously, F is one-to-one, To show that F is continuous, note

that T is continuous and hence given ¢ /4/k >0 there exists $»0 such if
p(X, Y)<§ then p(Xi, Yi)< e/ﬁ fori=1,2,3,. .., k. Also observe
that p(F(X), F(Y)) = (p(x 1)) %+ [p(x, ¥) 2 . . .+

@(Xk—l’ Yk-l)] . ) 1/2. Therefore it follows that if p(X, Y) {§ then
p(F(Y); F(X)) < [k(e/ W) ] /2 _ (1e2 /)% = ¢ and hence F is

continuous. To clarify what is meant by the induced mapping T'
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it is defined in the following manner; if X is in M then

T'(X, Xl’XZ’ . .. "Xk-l) = (Xl’ XZ’ C . ,Xk_l,X). It is
easy to see that T' is a distance preserving transformation,.

Note, in relation to the question of extending the transformation
T', that the following result is well known, If Iis an isometry
which is defined on a subset of Euclidean space, then I may be
extended as an isometry to all of the space,

Theorem 4. If T, T', M, and M' are defined as in Theorem 3,
then T leaves a point of M invariant if and only if T' leaves a
point of M! invarié,nt.

Proof. Suppose that T leaves the point X of M invariant. Then
2+« o X, X) where X = X, for i=1,2,3,...,k.
It follows immediately that T'(F(X)) = F(X). Suppose now that

THE(X)) = (X, X

TYF(X)) = F(X). It then follows that (X, Xl’XZ’ e ey Xk—l) =
(XIXZ’ c e s Xk—l’ X). It may be concluded that Xi =X fori=
1,2,. . ., k-1 and,therefore, T(X) = X,

The following theorem is well known but i the interest of clarity
a proof is given, |

‘Theorem 5, LetC be‘ a circle and T be a transformation
of C onto itself such that T is a rotation which is not periodic
on any point of C (that is, a rotation through some angle A such.
that kA # 0 (mod 2T7) for any integer k # 0). Then the closure |
of the union of the pdints Ti(x) for all integers i is C for any x
in C,

Proof. Suppose there is an arc %b on C such that ab() [Q:I‘_l_(—;)]
= ff. Since B = [J’ITIT;)} is a compact: set, the arc ab may be ex-

L

tended to an open arc ¢d such that the pointsﬂ ¢ and d belong to B.
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The points c and d are either of the form Tn(x} for some
n or are limit points of the set |JT"(x). Let p(¢,d) = e.
w
1
There exist integers k and k' such that p(Tk(x), Tk (x))<e/2
since B must possess a limit point. Choose §>0 such that
1
p(Tk(x), X (x))>§. Choose integers n and j such that
p(Tn(x), ¢)< §, and p(TJ(x), d)Z§. Obviously, T is both an
orientation preserving and isometric transformation on C, Let C
R B n j
be oriented by the arc T (x) T"(x) from T (x) to TJ(x). Consider
~k K
the case where the arc T (x)T (x) agrees with C in orientation
1
from Tk(x) to Tk (x). Letm = n-k, and consider the points

k+m

1
T k+m(

(x) and T x). Note that each of these points is in B,
Furthermore since T is an isometry, Tk'+m'(x) must lie between
¢ and d in the arc which is a contradiction. Now suppose that
EK, o )
T (x)T (x) is negatively oriented. Then by letting m = j-k' the
same contradiction is obtained. Therefore,the proof is complete.
The writer will make use of the following well known result,
If Iis an isometry of the plane, then I must be one of the following
transformations: (1) Identity, (2) Rotation, (3) Translation, (4)
Reflection, (5) Glide Reflection. The following theorem is one of
the main results of this chapter. So far as is known, it is new,

Theorem 6. Let T be an isometry of a compact continuum

M of the plane onto itself, If T is not periodic on any point of M,

then 6:: = q Ti(x) is a continuum for any point x in M,

Proof. Consider the different types of isometries in the
plane. The hypothesis that T is not periodic on any point of M
excludes the types (1) and (4). The hypothesis that M is compact

excludes types (3) and (5). Hence it follows that T must be a
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rotation about.some point p not in M so that Ti(*x‘) lies on
some circle whose center is p. Since T is not periodic on x,
it follows that the angle of rotation A is such thaf‘kA # 0 (mod
2 T) for any integer k # 0. Therefore,by Theorem‘ 5 it follows
that (_IX = C where C is the circle with center p and radius
p(x, p). Therefor eg(_lx is a continuum,
Theorem 7. Let T be an isometry of a compact continuum
M of the plane onto itself, If Kdenotes the set of fixed points of

M under T and T is not periodic on any point x of M-K, then

C—x = U Tl(x) is a continuum for any point x of M,
L

Proof. The proof is essentially the same as that of Theorem

The following example shows that it is possible to have a
homeomorphism T of a compact continuum M of the plane onto

itself such that T is not periodic on any point of M and such that

there is a point x in M where C—x = U Tl(x) is not connected.
L

T ‘\\ .
- e TRy
/ . \\\
/ g / A\
T - N\, )
T / v
Thy / G /
; / //(\J‘N - - ﬁ:(eﬁ:y“,
( I / L L= H
| \ \ / r ’, /
y = Z* ’ /”
\ Eﬂ\_ S /Cl /
\
\\ v
N T - 7 '
— e

Fig, 11
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Example. LetM = 1(0,- r):14¢r <3}, Define T(0,r) =
F [H(O, r)] , where H(O,r) = (9, 4~r) and F{0,r) = (6+ s, r) for
a fixed rational number s, It can be shown using the results
of Theorem 5 that mr) with r # 2 is the union of two
L

circles C1 and C2 where C. has its center at the origin and

1
has radius r, and C2 has its center at the origin and has radius
4-r' (refer to Figure 11).

It is known that if M is a continuum which does not separate
the plane, then M is the intersection of a monotonic descending
sequence of topological 2-cells, (‘9). Using this information it
is possible to prove the following theorem.

Theorem 8. Let T be a periodic transformation of the plane
into itself which leaves the compact continuum M invariant, If
M does not separate the plane, then T leaves a point of M fixed,

Proof. Let p be the period of T, and M be the intersection
of the monotonic descending sequence X_Ci‘S of tppological 2-cells,
Let Si = \::jo Tj(Ci); it is now shown that (jlsi = M, Itis obvious
that C)Si D M. To show that "ﬁsi C M assume that there exists

=1

Y=
a point x in [ Si' such that x is not in M. Then there exists an
=1

open set U about M such that x is not in U, Since T is continuous,
k
(

there exists an open set V about M such that T (V) C U for k =

0,1,2,. . .,p-1. Since ﬁci = M it follows that there exists a
: =l
Cj for some j such that Cj C. V. Therefore,x is not in SJ.. This

=}
is a contradiction and hence () Si =M,
=1

Let Qi be defined as the topological 2-cell which contains
P- . .
u TJ(Ci) and whose boundary F(Q’-'i) is contained in the set

3=
P

= O

TJ(F(C'i)). There exists such a 2-cell by a known theorem. (9)
J=0 .
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)

It is now shown that QQi = M. It is obvious that ﬁQi D M.
To show that ﬁQi C M, suppose that there is a point x in
C\Qi such that x is not in M. It follows that x must be in a
bounded component of EZ-Si for each i (where E2 denotes the
plane)., Let y be in the unbounded component of EZ-Si. It
follows that Si separates x from y for each i, and from a known

theorem x is separated from y by ﬁsi = M. (9). This is a con-

tradiction and hence it follows that ﬁQi =M,

=1

It is now shown that T(Qi)CQi' From the definition of Qi
it is known that T(F(Qi))C Qi' Let x be an interior point of Qi
such that T(x) is in Qi' Assume that T(Qi) is not contained in Qi'
Then there is a point y in the interior of Qi such that T(y) is not in
the bounded component of T(F(_Qi)). Since Qi is connected and x
and y are interior points of Qi there is an arc Xy from x= to y con-
tained in the interior of Qi' It follows that T(XV) does not inter-
sect T(F(Qi)). Therefore, T(x) and T(y) are not separated by
T(F(Qi)). This contradicts the assumption that T(x) was in the
bounded component of the complement of T(F(Qi)) and that T(y)
was in the unbounded component. It follows now by the Brouwer
fixed point theorem that each Qi contains a point which is fixed
under T, and hence M must contain a point which is fixed under T.

Theorem 9, If T is an isometry of a compact continuum M of
the plane into itself and M does not separate the plane, then T
leaves a point of M fixed,

Proof. Again consider the different types of isometries in
the plane., As noted above, any isometry of a subset of the plane

into itself may be extended to an isometry of the whole plane into
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itself. Observe that neither of the types (3) or (5) transforms

a compact set into itself and that (1) leaves every point fixed.
Therefore, it is necessary to consider only types (2) and (4).
First consider type (4), and let L represent the line about

which the reflection occurs, If M intersects the line L then

the theorem is true., If M does not intersect L then T{M) is
separated from M by L., This is a contradiction of either the
hypothesis that T transforms M iﬁto M or the hypothesis that

M is a continuum., Now consider type (2). If T is a rotation

about a point in M then the theorem is true. Suppose that T is

a rotation about a point p not in M, It is easy to see thatif T

is periodic at some point of the plane other than p, then T is
periodic at every point of the plane and the period would be the
same for each point other than p. It would follow from Theorem

8 that M contains a point which is fixed under T. I T is not
periodic on any point of the plane other than p, then by Theorem

5 it follows that for any point x of M the closure of the set of iterates
of x is a circle containing p as its center (where the set of iterates
of x is kLJTi(x)). This contradicts the fact that p is not in M and

that M does not separate the plane,



CHAPTER III

INTERSECTION PROPERTIES OF PLANE CONTINUA

In 1930 Eduard Helly (10) proved the following theorem: Let
there be given in RrR" (Euclidean n-space) any collection of cells.
If the intersection of each k of these for k=1,2,3,. . .,.,nis
again a cell, and the intersection of each n+1 is not empty,
then the intersection of all the cells of the collection is not
empty and again a cell,

In 1957 Josef Molnar (11) proved the following generalization
for the Euclidean plane: If 1n the plane an arbitrary number of
simply connected, bounded and closed domains are given so that
the intersection of every two is connected and the intersection of
every three is non-empty, then the intersection of all the domains
is not empty.

The writer shows that in the plane to require the intersection
of every three be non-eﬁpty is equivalent to reqﬁiring the union
of any three fail to separate the plane., In the remainder of this
chapter the space will be the Euclidean plane.

The writer makes use of the following properties of the |
Euclidean plane:

Proposition A, IL.et A and B be subcontinua of the plane,
neither of which separates the plane., Then A B does not

separate the plane if and onlj if AN B is connected. (12).

32



Proposition B, If nyis an oriented simple closed curve
containing the points x and y (x ;! y), and furthermore H and K
are compact disjoint sets such that HN &y =@ and KN\ yx = §

(ab is to denote the simple arc on C where the orientation from
a to b is positive if a # b), then there is a simple arc from x
to y such that it is contained in the interior of ny except for x
and y, and does not intersect H UK. (9).

The following theorem is the main result of this chapter.

Theorem 1. Let {Cq} be any collection of compact continua
which do not separate the plane such that the intersection of any
two is non-empty and connected. Then the union of any three fails
to separate the plane if and only if the intersection of any three
is non-empty.

Proof. Let the union of any three fail to separate the plane,
Assume the intersection of some three, say C,D, and E, to be

empty. Let AC = C N D and in the same manner define the sets

d

Ace and Ade' Now consider (C UD) N\ E. This set must be

connected by Proposition A since CUDU E does not separate
the plane. But (CUD)NE = AceU Ade and hence is not connected
by the assumption that CNDNE = g, This is a contradiction.
Therefore, CNDNE # #.

Liet the intersection of any three be non-empty. Assume
that there exist some three sets, say C, D, and E, such that
their union separates the plane. It is known that Acd’ Ace’ and

Ade are each connected. Since CNDNE # § it may be concluded

that AceU Ach Ade is connected. Let x be a point in the

33

unbounded component of S-(CUDVUE) (where S denotes the Euclidean



plane) and p be a point in one of the bounded components of
S-(CUDUE). Since CUD does not separate the plane (this
follows from proposition A), S-(C UD) is connected and open,
Therefore there exists a simple arc from x to p which intersects

only E. Denote this arc by Le and in a similar manner obtain Ld.

Let X, be the last point on .L.e in order from x to p such that x

d

is in the intersection of I"e and L

ed
Q and also in the unbounded
component of S-(CUDUE)., Let Yod be the first point on Le in

order from X4 to p in the intersection of Le and Ld, and in a

bounded component of S-(C\U D\ E). Denote by ny the simple

closed curve consisting of the union of the arc X aVed contained

d contained in Ld. The simple closed

curve ny separates the plane into two components one of which

in Le and the arc Xed¥e

contains the continuum C. Without loss of generality, suppose C
is in the unbounded component. Let B(ny) denote the bounded
component of S--ny. By Proposition B it follows that

END ﬂB(ny) # . Otherwise x would not be separated from p

by CUDUE, and hence Aedc B(ny) since Ae is connected,

d

Therefore, conclude that Ae and Acd\_) Ace are separated sets

d
and thereby reach a contradiction,

Corollary 1. If SLCJ is any collection of compact simply
connected sets in the plane such that the intersection of any two
is non-empty and connected, and the union of any three fails to
separate the plane, then the intersection of the collection is
non-empty,

Proof. This follows immediately from Theorem 1 and the

result of Molnar.

34
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As a special case of Corollary 1l the followiné result is
obtained,

Corollary 2, If {C%.‘g is any collection of compact convex
sets in the plane such that the intersection of any two is non-
empty and the union of any three fail to separate the plane,
then the intersection of the collection is non-empty.

It is now possible to prove a theorem which is somewhat
more general than the theorem of Molnar,

Theorem 2, Let {Cﬁ& be any collection of compact simply
connected sets in the plane such that the intersection of any two
is non-empty and the union.of any three fails to separate the
plane, Then the intersection of the collection is non-empty.

Proof. Assume the union of some two sets Cl and C2
separates the plane., Let C denote the union of the bounded
components of S-(Cl \J CZ)' If Cg be any other set of the
collection, then C CCP . Otherwise C1UC2 U C)B would separate
the plane, Note that the boundary of C, denoted by F(C), is
contained in Cl J CZ' Let D be a component of C. It follows
then from the Brouwer Property that F(D) is connected. (12).
Since F(D) = {(F(D) ﬂcl) U (F(D) ﬂcz), it follows that
F(D)N (Clﬂ CZ) # #. Choose p an element of the set "F(D) () (Clﬂ :CZ).
Now since F(D) CCp for every g, it follows that p is an element
of their intersection.

In the case that the union of no two sets separates the plane
it follows that the intersection of any two sets is connected, The

proof of the theorem is then completed by the use of Theorem 1,



(1).

(2).

(3).

(4).

(5).

(6).

(7).

(8).

(9).

(10).

(11).

(12).
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