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PREFACE 

The membrane analysis of cantilevered parabolic conoidal shells is 

presented in this thesis" The partial differential equations of equi

librium are first solved as homogeneous equations in terms of both the 

internal forces and the stress function. Particular and complete 

solutions are obtained for the force variations due to uniform load, 

parabolic variation of dead load, and corrections corresponding to 

appreciable shell rise. Stress curves are plotted, and numerical ex

amples are included showing the application of the theory presented. 

I wish to express nv indebtedness to Dr. K. S. Havner, not only 

for introducing to me the possibilities of the application of membrane 

theory to the analysis of cantilevered parabolic conoidal shells, but 

also for his valuable assistance and guidance throughout the preparation 

of this thesiso 

To JVJ.rs. Barbara Adams I wish to express nv gratitude for her careful 

typing of the manuscript. 
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CHAPTER I 

INTRODUCTION 

1-·l. Historical Sketcho 

The formulation of the equilibrium equations for the general shell 

of double curvature in terms of a stress function and pro.jected forces 

was first accomplished.by fuchero (l)o Extension of the general method 

to the problem of circular conoidal shells used as retaining walls was 

made by ~acrojao (2)o Another solution for circular conoidal shells was 

developed by Fluggeo (3), 

Soare developed solutions for conoidal shells of several different 

types, including circular, catenary, and parabolic conoidso (L)" 

However, his solutions were limited to shells supported by edge members 

having lateral stiffness in the Y-directiono Candela indicated a pos

sible means of estimating forces in the cantilevered conoidal shell by re

placing the surface with a hyperbolic paraboloid" (5)" Reissner 

suggested a solution of the differential equation of the conoidal shell 

in terms of the stress function and for deep shells developed a power 

series representation of the dead load in terms of nondimensional shell 

rise o (6)" 

1=2, Equilibrium. Equations_~.f Thin Shells. 

An element from a general shell of double curvature is consi.dered as 

1 
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shown in Figure 1-L The displacements are assumed to be small and not 

to affect the equilibrium. Bending resistance is taken to be negligible, 

the loads being resisted by linear membrane stresseso 

0 
X 

/ 
y 

z 

Figure 1-1 

Real and Projected Elements of a Shell 

The relations between the stresses on the projected element and the 

stresses on the real element are 

-· cos.f3 Nx :::: Nx _ _,;,,_ 
coso< 

The condition of equilibrium in the X-direction requires that 

( 1-:1) 

(1..:2) 

(1-3) 

(l-4) 



Similarly_, in the Y-direction 

;::::,, JIL 2J N'l(V 
.::::..::.:J.. + -=~,L + Py = O, 
2Jy ax 

The summation of forces in the Z-di.rection yields 

P . p ~ + P. §l z - z + 
X cJX y ~y 

3 

(1-5) 

(1=6) 

where Px, Py, and Pz areJ respectively, the X, Y, and Z components of the 

lateral load per unit of projected area, 

The solution of the equilibrium equations (1-Lt, 5, 6) is usual].y 

effected by reducing them to one single differential equation. This is 

accomplished by introducing Airy's stress function F, which is related 

to the membrane forces through the equations 

(1-7) 

(1-8) 

(1-9) 

Introduction of Equation (1-7), Equation (1-8), and Equation (l-9) 

into Equation (1.-6) gives a differential equation for F of the following 

form 

(1-10) 

This is the well known equilibrium equation for shells of double 

curvature, Its solution for conoidal shells tmder vaTious types of 

loading and with different edge conditions is shown in the following 

chapters. 
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1=3o Parabolic Conoidal Shello 

A corioidal surface is generated by the translation of a rectilinear 

generatrix, one end of which travels along a curve and the other end 

along a straight lineo In the special case where the curve is a parabola, 

the Parabolic Conoid is developedo 

There are two basic types of parabolic conoidal shells, as shown in 

Figure 1-20 The equations of the middle surfaces are 

y 

'Iype I: 

/ 
/ 

/ 

·. Type II: 

z 

2 
z = - £ x (1 - L) 

a b2 

b 

Figure 1=2a 

Parabolic Conoid Shell 'Iype · I 

(1-11) 

( 1-12) 
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/ 

/ 
y 

z 

Figure l-2b 

Parabolic Conoid Shell Type II 

Considering first Equation (1-11), the various derivatives are 

2 2 2 ( 1-13) a z 2e = 0 a z a z 2c 
2 = --- '""' ;~ y -·~:::: - --:z X 

ax. :axdy ay ab 

From Equation (1-12) it is easily seen that the expressions for 

c> 2z ~ 2z a 2z -- , -, and are the same as shown aboveo Therefore., no 
2>x2 a,y2 ax;;>y 

matter which form of the parabolic conoidc1l shell is chosen, the same 

form of the partial differential equation of equilibrium is obtained. 

Substituting Equaticns (1-13) into Equation (1-10), and considering 

vertical loads only, the final equation becomes 
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(1-lh) 

Equation (1-14) is the governing differential equation for the parabolic 

conoidal shelL 



CHAPTER II 

SOLUTION OF THE HOMOGENEOUS EQUATIONS 

2-1, Alternate Forms of the Equilibrium Equat~o 

From Equationus (1~4) through (1-6) and Equation (1=14), the 

equilibrium equations of the vertically loaded parabolic conoid in terms 

of the projected membrane forces are 

c>Nx + ~ 
= 0 ax ay 

(2-1) 

~ + 
~N~ - 0 ~y ax - (2-2) 

(2-3) 

Differentiating Equation (2-3) with re.spect to X: 

Alternately, differentiating with respect to Y: 

2> N o:,N.~ 
2NY"'!T + 2y xy + x ~ 

-·J ~ y 2JY 

2 
~ = ~ 2>1:z 

c.C c3Y 

From the equilibrium Equation 1 s (2~1) and (2-2) 

Therefore;i alternate forms of the final partial differential equations 

7 
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are: 

x~-2y~+Ny= 
ab2 @Pz 

(2-4) ax aY - 2c ax 
aN aN~ + = _ ab2 a Pz 

=X xy + 2y 2N:xy (2-5) ax aY 2c aY 

aG 2 oG ab2 
(2=6) x-- y 7i:y = =- Pz 

ax 2c 

where 

Before attempting to solve ·the partial differential equations of 

the conoidal shell for specific loads and specific boundary conditions, 

solutions of the homogeneous equations will be developed. In the 

following articles, the homogeneous form of each of Equation 1 s (2-4, 5, 

6) is investigated and the possible stress surfaces are determined. For 

the sake of completeness, each equation is solved, although any one is 

adequate to describe the theoretical distribution of stresses in the 

shell. 

2-2. Solution of Homogeneous Equation in Ny-~ 

The homogeneous equation in terms of Ny is: 

X 
c) N.r a N..r 

-=...:L = 2y ..::..:;JL + N__ ;,,, 0 ax ay -y - · 0 
(2-7) 

From the theory of linear, first order partial differential 

equations, the integral curves which generate the general solution can 

be determined from the ordinary differential equations 

dx~..lz~~Q 
X -2y -Ny 

Solving these equations: 



dx -~ -~ _ dI'y-
X --~ -2y - -~ 

x1y :::: c1 ~ = c2 
y2 

Thus 

is a solution of Equation (2-7), 

The admissable forms of the function f 1 can be follild by a_ trial 

methodo One of the admissable solutions is: 

-1 .1. c1 x + c2 y2 

The stress surfaces corresponding to the terms in thi.s expression 

9 

are shown in Figure 2-1, The variation in the X-direction is hyperbolic, 

the variation in the Y-direction is parabolic, 

N 
y 

y 

J!'igure 2-1 

Stress Surfaces for Ny 



Another admissable solution is 

~::: Cxy 

This is also a hyperbolic surface, as shown in Figure 2-2. 

y 

N 
y 

Figure 2-2 

Stress Surface for ~ 

l'y ::: Cxy 

10 

X 

Observing these adrnissable solutions, it is evident that a general 

solution may be achieved by assuming a stress surface of a higher order 

hyperbolic paraboloidal type with curved geng3ratrices. 

Thus let 

K1 K ~ : Cx y 2 

Substituting into Equation (2-7), we have 

K =l K K K--1 K K-
x (C Kl x 1, y 2) -2y (C K2 :1( 1 y·c. ) + C x 1 y·=c. : 0 • 

Therefore 



11 

and the general equation for Ny- becomes 

(2-8) 

It is seen that the first three stress surfaces are special forms 

of the above equation. The value of K will depend upon the type of 

loading and boundary conditions. 

2-3. Solution of Homogeneous Eq_uation in Nxy~ 

The homogeneous equation in terms of N.:xy is: 

aN aN 
-x xy 2y .xy + 2N = O ax + oY .:xy . (2-9) 

The corresponding differential equations of the integral curves are: 

dx - ~ 
-x - _2y 

The solutions of these equations are obtained as before: 

dx dN · 
- ?SY 

-x - -2N:xy 

Thus 

is a solution of Eq_uation (2-9). 

.9l = dNN: 
y -2N.:xy 

One admissable solution of Eq_uation (2-9) is 



N 
xy 

C3 x2 + C -1 - 4 y 

with the stress surfaces shown in Figure 2-30 

y 

N 
x:y 

Figure 2-3 

Stress Surfaces for Nxy 

As before, the general solution can be assumed in the form 

I,1 C K1 K2 ~xy::: lx y 

Substituting into the Equation (2-9), we get 

Therefore, 

12 
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and the general solution is 

(2-10) 

2=4. Solution of Stress Function F, 

The solution may also be determined from the stress function F" 

Since the equilibriura equation is of the first order in terms of the 

quantity 
2>F 

G "' ax 

the same methods of solving the partial differential equation apply. 

The homogeneous equation in terms of G is 

2lG aG 
xax-2Y7;y=O (2-11) 

The integral curves are obtained from the ordinary differential 

equations 

dx _ _,Sl dG 
X - -2y := 0 

Proceeding as before the solutions for the integral curves are: 

Therefore, 
1,. 

f J ( G, :xy2 ) ::: O 

is a solution of Equation (2-ll))or 

By the trial method, we can easily find the general forms o.f 

admissable solutions. Thus 

or 



and 

G = C11 ln (x2K yK) 

The stress function is given by the equation 

F = JG dx + f (y) 

The alternate forms of this equation become, upon integration: 

F = c{ x2K + 1 YK + f (y) (2-12) 

F = c~ x ln (x2K yK) - 2K + g (y). (2-13) 

Therefore, the general solution of stresses in the shell will be: 

F = C~ x2K + 1 yK + f (y) 

Nx = Ci K (K = 1) x2K + 1 YK - 2 + fll (y) 
1 

\ = c~ (2K + 1) (2K) x2K - l YK 

N:x;y = -C~ (2K + 1) K x2K yK - l 

The special solution of stress will be: 

(2-14) 

(2-15) 



CHAPTER. III 

SPECIAL LOAD CONDITIONS 

3-1. Uniform Load. 

Considering a uniformly distributed live load of intensity Pz = P0 

to be acting on the parabolic conoidal shell, the governing differential 

equation in terms of the stress function becomes 

X ~ - 2y oG 
ax ay 

(3-1) 

where as before 

The solution of the homogeneous equation was obtained in the previous 

chapter. The particular solution may be determined by taking G to be 

either a logarithmic function of X or a logarithmic function of Y. 

Thus, in the first case 

G = B1 ln x 

Substituting into Equation (3-1), we have 

Therefore, 

is a particular solution. 

Similarly, 

ab2 
G1 :--P0 1nx 

2c · 

15 
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G- = B2 ln y 

and the constant B2 is determined as 

Therefore, 
2 

G _a.b P, lny 
2 - 4c O 

is also a particular solution. 

The alternate forms of the stress function can be obtained by inte-

gration. Thus 

ab2 
Gl = - re po ln X 

b2 
F = - .£._ P,o x ( ln x - 1) 

2c 

2 
G ab P. 1n 

2 - - 0 Y - t.c 
2 

F2 - ab P x ln y 
- I. 0 

l.lC 

The corresponding equations for the normal and shearing forces are: 

2nd 

1-,y. ab2 1 = - -P -
2c OX 

N = 0 y 

2 
1J = _ ab p .J: 
xy 4c O y 

1 
J 

l 
J 

(3-2) 

(J-3) 
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These solutions for the stresses in the shell satisfy different 

boundary conditions which will now be discussed. 

In the case of a conoidal shell supported as shown in Figure 3-1, 

the approximate stress distribution is given by Equation (3-2). ( 4 ) . 

The lateral rigidity of the edge members is assumed to be developed 

by sufficient buttresses, lateral ties, or prestressing, and the entire 

load is carried by arching action in the Y-direction. 

y 

z 

Figure 3-1 

Conoidal Arch Shell Simply Supported 

The force boundary conditions can be prescribed as 

x:O,a; l'Jx=O,Nxy-=0 

which are evidently consistent with expressions for stresses in Equation 

(3-2). 

In the case of a uniform]y loaded cantilever conoidal shell (Figure 

3-2), however, the load cannot be carried by arch action as the edge 
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members are assumed to have negligible lateral stiffness. 

1-------------------------------1 

C 

y 

Figure 3-2 

Uniformly Loaded Cantilevered Conoidal Shell 

The force boundary conditions are 

X = 0 

y = ±b ' N = 0 y 

and the stress distribution on the boundary is as shown in Figure 3-30 

The ribs supporting the arches must be designed to carry the 

tangential shear load imparted to them by the shell, and the vertical 

load must be carried by the components of the shearing and normal 

stresses. 

z 

Equc1tion's (3-3) satisfy the boundary conditions for the cantilever 

shell, the load being c.srried by shearing and longitudinal forceso An 

investigation of the equations, however, indicates that they are not 



T ---- ~{-----e=--===---==:::::--i~ 

-

C 

Figure 3-3· 

Edge Forces on the Canillever Shell 

valid near the crown of the conoidal shell where Nx and N:xy become 

increasing]y large, approaching infinity as y approaches zero. That 

the equations yield infinite values along this line is dependent both 

upon the mathematical nature of the assumed membrane stresses under 

uniform load and upon the physical action of the membrane state. 

19 

Considering first the mathematicel viewpoint, a study of the homo

geneous and particular solutions for~ shows that, for Ny to be zero 

along the longitudinal edges of the shell, it must be zero tD.roughout 

the shell. Thus,no advantage can be taken of the curvature of the sur

face in the Y-direction, and the load must be carried by vertical compo

nents of shearing and normal stresses in the X-direction. Along the top 
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of the c.sntilevered shell, however, the undeformed surface is flat in the 

X-direction and the Nx and N:xy forces lie in a horizontal plane. (Figure 

3-4). 

X 

z 
Figure 3-4 

Stress Diagrams 

Thus, if there are no compressive arch stresses in the Y-direction 

(as required mathematically) it is physically impossible for the uniform 

vertical load to be carried by lineax membrane forces, Bending will 

take place in the central region of the shell (this portion acting 

similarly to a cantilever beam) and the load will be carried by tran

sverse shearing forces. The membrane theory breaks down for the cono

idal shell, therefore, even before deformation incompa.tibilities at the 

boundaries are considered. Nevertheless, F,quation (3-3) may well yield 

an acceptable approximation for the true state of stress over a consider

able portion of the surface of the shell. To determine the extent of 

this possible region of membrane action, and to determine the upper 

limit on the magnitude of the membrane forces near the crown of the 
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shell, a linear bending theory·would be necessary, which is beyond the 

scope of this thesis. 

Some idea of the variation of the theoretical stresses can be 
N 

obtained.from Figure 3-S, where the dimensionless ratios xy and 

l are plotted against one another. 
b 

4.0 

3.0 

2.0 

1.0 

0.5 

( - ab P. ) 
2c ·o 

0 ~-~~~--''--~-,.---.,_~~-,......,_~~_,._,..._,._,.~_,.~_,._,.__.. 
0.25 0.5 0~75 1.0 

Figure 3-5 

Shearing Force Variation 

l. 
b 

The quantity - ;~ P0 is the shearing force in a hyperbolic paraboloid 

having the same dimensions as the parabolic conoidal shell. It is 

;evident from the figure that the membrane force in the conoidal shell 

is less in the outer one quarter of the transverse span 2b, greater in 

the middle one-half. Use will be made of Figure 3-5 in Chapter IV to 
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estimate the forces in the edge members and in the shell. 

3-2. Parabolic Loading. 

A conoidal shell will in general be constructed with increasing 

thickn.ess near the fixed end (Figure 3-6), thus requiring stresses due 

to an arbitrary variation to be superimposed upon the uniform load stresses. 

To determine these stresses, a parabolic variation of thickness is assumed 

because of its mathematical simplicity, and a shallow shell is considered 

(i.e. the force per unit of projected area and the weight per unit area 

of the shell can be taken as equal). 

0 

/ 

/ 
/ I 

/ I 
z 

Figure 3-6 

Conoidal Shell with Variable Thickness 



The intensity of the additional load thus becomes 

Ax.2 
Pz = -2-

~fuere A is an arbitrary constant to be determined from the given 

variation of thickness. 

Substituting this load condition into Equation (.2-4) 

x ~ - 2y eI-Jy + N. = - 2a,ci Ax • ax ay -y 

A particular solution can be obtained by taking ~ = Bx. Sub

stituting, the constant Bis 

and 
2 ab 

- - J\x 4c 

From Equation (2-2) the complete solution will be 

2:3 

(3-4) 

Introducing the boundary condition y = b, Ny= o, the constants 

c1 and K can be determined. Thus 

TIT ·c x2 K - 1 1 K .ab2 A.. 0 
,.;[ = 1 0 - 4.C J:U. = 

In order that this expression vanish for all values of x, let 

K = 1, from which 

C ab 
1 = 4C A 

The final equation for the normal force~ is 

l~ = - ~ Ax ( b - y) (3-5) 



The shearing force is obtained by integrating Equation (J-5): 

N:xy = - 1~ dx + f (y) 
aY 

The function f (y) can be taken as zero and the final equation 

becomes 

Similarly, 

ab Ax2 
= ---4c 2 

Nx = - Ja:xv dx + g (y) 
ay 

The function g (y) also can be taken as zero, from which 

N~ = O 

24 

(3,..6) 

(3-7) 

The solution of stresses given in Fquation's (3-5), (3-6), and 

(3-7) gives very satisfactory results which are finite at all points of 

the shell. 

3-J. Series Expansion • 

In previous articles it has been assumed that the weight per unit 

area Pis the same,as the vertical intensity of load on the projected 

area. This is only approximately true. The actual intensity P z is 

given by the equation 

2 
1 + ~c'Z) + (~l ax ay 

Substituting the values for the derivatives: 

J C ;_)2 2c )2 
Pz = P 1 + Ca:~ + C-2 :xy 

b ab 

This equation can be expanded in a power series as shown by Reissner. ( 6 ). 
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+ 1. 2 + ••• } 

(3-8) 

In the case of a shell that is relatively shallow (~, ~ ~ i), 
the quantities (%)2 and (~) 2 are sufficiently small to permit all but 

the first term on the right side of Equation (3-8) to be disregarded. 

With c so restricted, the first neglected term is less than 4 per cent 

of what is retained. All other terms are less signific2nt still, and 

Pz may be taken equal to Pin all calculations. 

In the case of a deeper shell (i < ~, ~ < 1), the third and all 

succeeding terms can still be neglected but the second term may prove 

significant. Considering a shell of constant thickness, the equilibrium 

equation ('Equation 2-12) can be written 

x aG _ 2y aG 
ax ay 

= _ ab2 p {l + 1. [<.£ i!:_/ + (.?.£._ xy-/J}. 2c'"" 2 a b2 ab2 

Denoting 
2 

A ab p 
l11 - "2"c J; C p 

·2 = - Lab2 

Equation (3-9) becomes 

aG aG x- - 2yax · ay 

A3:- c p 
ab2 

(3-9) 

(3-10) 

·The particular solution corresponding to the constant term A1 was 

obtained in Article 3-1. The .general solutions corresponding to the 

second and third terms are determined as follows. 

The particular solutions of Equation (3-10) corresponding to the 

A2 and A3 load terms are: 

A2 4 
G2 = - --- y 8 



Hence the stress .functions are 

A3 3 2 
F3 ---x y - 6 

and the particular solutions for stresses become 

From Equations (2-14), the complete solutions are 

, ( ) x2K + 1 YK - 2+ fl1 (y) + 1£._ Pxy2 + _c_ Px3 
1~: Cl K K· - 1 Bab2 3ab2 

26 

Ny : C~ (2K + 1) (2K) x2K - l yK + 
8

: 2 Pxy2 
(3-11) 

= - c~ (2K + 1) K x2K YK - 1 -~ Py3 - -:%- Px2 y 
Bab ab 

For the cantilever shell with boundary conditions 

X = 0 y = b : N = 0 y 

I 
The values of Cl-' K, and the function f" (y) can be determined. Thus 

K = 1 c~ = - 6:b P f 11 (y) : 0 

and the final equations become 

N 3c Pxy2 + _c_ Px3 
x=--2 2 

Bab Jab 
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(3-12) 

Equation's (3-12) are the forces in the deep shell due to load 

correction. 



CHAPTER IV 

NUMEH.ICAL E.X.AMPLES 

4-1. General Notes. 

Two examples are shown in the following articles. 

In the first example, the va.riation of stresses in a. cantilevered 

shell under uniform load is described and the theoretical forces in the 

edge regions are determined. 

In the second example, stresses due to dead load are determined, 

using a parabolic vnri:ction of thickness. This results in a more 

satisfactory distribution of stresses which are finite at every point. 

Units for various values are in terms of pounds, feet, or pounds 

per foot. 

4-2. Example 1. 

A cantilevered conoidal shell acted upon by a uniformly distributed 

load of intensity 41 psf. is considered. ( Figure L-1). 

The dimensions of the shell are 20 x 20 feet in plan and the thickness 

l . is J;;1 inches. 

The projected forces in the shell can be obtained from Equations 

(3-3). 

a2P (.?.S) 2 (~) 
Nx 

a 20 X 4.1 
= - 4c Ct?' = .- 4 X 1.96 <tl 

(~) 
= - 2100 _c_. - pounds per foot. 

<1;>2 
28 



= -
1 

1020-
(t) 

Ny = 0 

= _ 20 x 10 x 41 l._ 
4 X 1.96 (Y.) 

l:> 

pounds per foot. 

20 ft. 

Figure 4-1 

Uniformly Loaded Cantilever Shell 

The forces in the shell are evaluated in Table I. 

29 

p = L.1 psf 
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TABLE I 

INTERNAL FORCES IN PARABOLIC 

CONOIDAL SHELL 

Forces X l a b 
0.00 0.10 0.20 0.40 0.60 0.80 1.00 

0.1 C>O -21000 -5250 -1380 -583 -318 -210 

0.2 -42000 -10500 -2760 -1166 -636 -420 

Nx 0.5 -105000 -27250 -6900 -2915 -1590 -1050 

0.8 -168000 -42000 -11040 -4664 -2524 -1680 

1.0 -210000 -52500 -13800 -5830 -3180 -2100 

N:xy 0,0 -10200 -5100 -2550 -1690 -1275 -1020 

The stress distribution in the shell is shown in Figure 4-2. From 

the sharpness of rise of the theoretical curves, the validity of the 

membrane stresses msy not extend inside the interval t = 0 -- 0 .2 for 

the shearing force and t; : 0 -- 0.4 for the normal force. In any case 

it will be assumed acceptabl~ to take the upper limits for the shearing 

and normal forces to be at t = 0.1 and t: 0.2, respectively. 

The unit compressive stress at the point~= 1.0, t: 0.2 is 

- 52500 
12 X J.25 

= - 1350 psi. 

I 
Which shows that, using ordinary concrete, with fc = 1700 psi., it would 

not be theoretically necessary to reinforce the interior of the shell 

for compression. 
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The unit shearing stress at the point~ = 1.0, t = 0.1 is 

N' ;: - 10200 
xy 12 X J.25 

262 psi. 

10.0 

5.0 

L.,o 

J.O 

2.0 

1.0 

b 

Figure 4-2 

Stress Distribution for Nx, N:xy 

The tensile steel reinforcement in the shell can be computed 

using Nohr's circle. 

The theoretical tensile and compressive forces in the edge regions 



necessarjr to resist the shearing stresses can be computed from free 

body diaerams as shown in Figure 4-3. Thus 

and 

C 

T - 10200 x 20 x 2 = 408000 pounds 

T 

C = 1020 x 20. l·= 20400 pounds. 

-- -
--

Figure 4-3 

N 
xy 

Stresses on Edge Member 

- C.L. 
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4-3. Example 2. 

I 
---·=12:..::·:..:l....:f:..:t:..:.·--== :j 

~~-==-====: ~,-, 1..58 ft. 
Y -----=--- -·. -----4 or.:.:. 

12 ft. ·1 
z 

Figure 4-4 

0 

z 

Cantilevered Shell ·with Parabolic Thickness Variation 
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A cantilevered conoidal shell of variable thickness and specified 

span, rise, and overhang (Figure 4-4) is to be designed such that the 

entire weight of the shell can be represented by a parabolic load functiou 

x2 
p = .A -

2 

Talcing the thickness t at the wall to be two and one hali times 
2 

the thickness t 1 at the end of the shell: 

tl 
- X 150 
12 

X 2 
= A -1_ 

2 

2 • .5t1 
--- X 150 

12 

2 (10 + x1) 
= A-----

2 

Eliminating A and t 1 between these two equations and solving for 

x1 yields 

x1 = 17,2 feet. 

Selecting the tl1ickness t 1 = 1.5 inches, the constant A is found 

to be 

A: 0.126 lb/ft4 . 

If the force per unit of projected area and the weight per unit 

area of the shell are taken as equal, the maximum error in the repre-

sentation of the load will occur at the corner x = a, y = b, and can 

be determined by substituting into Equation (3-8). Thus 

= P + 0.091 P 

from which 

IVfax. Error ,091P 
: l,09lP X 100 : 8. 36% 
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This difference will be neglected and stresses computed by taking 

pz ::: P. 

From Equations (3- 5 ) the internal forces in the shell are 

N = - a2b2 4- (~) (1 - -Z.)= = (27 .2)2 (12)2 (0.126) (2f) (1 - ~) 
Y 4c ~· b 4 (2.5) a b 

= - 1340 <1) (1 - t) 
3 = _ a b A (:!) 2 

Be · a 

. 3 
(27 .2) (12) (0.126) c2E>2 

8(2.5) a 

= - 1525 (i) 2 

Curve.s representing the variation of forces are shown in Figure 4-5. 

The constants B1 and B2 are given as 

The unit shearing stress is constant throughout the shell: 

1 - 1525(-i/ 
N = 2 ::: - 33.9 lb. per sq. in. 

x::J"- 12 X 3.75(.!) 
a 

The maximum unit normal stress will occur in the end of the shell at 

the crown (~: 0.632, l = 0) g 
b 

I 1340(0632) 
(N ) = = - 47.1 lb .. per sq. in. 

Y max 12 x 1.5 

The maximum unit normal stress at the wall is: 

(~ 
1

) = - l340 ,· = - 29.8 lb. per sq. in. 
12 X J • 75 

The tensile force in the edge member at the crown can be computed from 

the free body diagram of Figure 4-6 and is equal to: 



X 

a 

LO 

"l - 0 1 b - 0 

x/a = 1.0 

.. /; 
'.:: 

I Z = 0.0 
b 

Figure 4-5 

Stress Distribution for Nxy, ~ 

~ 
B 

1 

1.0 

Oo6 
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T c 2 f a N:xy dx = • 2 

xl 

1525 
(27.2)2 

a 

::: t L37 ((27.2)3 - (1.7o2)3] - 1• 20700 lbo 

The steel area required in the edge member is: 

37 

20700 4 . As = -- ::: LO sq. in. (Allowable stress of steel::: 20000 psi) 
· 20000 

Six No. 4 bars are selected (As= 1.18 sq. in.). The compressive force 

in each of the inclined edge members is (Figure 4-6): 

C -. Ja . -

where cos 8 = 0.995. 

N 
?SL dx::: - 10400 lb. 

cos e 

The area required in the edge member is 

A : 10400 = Oo520 sq. ino 
s 20000 

Three No. 4 bars are selected (As= 0.50), The compressive force c1 

in the edge member at the end of the shell is approximately: 

! 12.1 

Nxy dy = (- 1370) (~) (1 - t) dy 

0 

12.l 
y2 

= (- 1370) (0.462) (y - ) 2b 

: 3800 lbo 

Steel area required 

As= 3SOO = 0.19 sq. in. 
20000 

0 



From static equilibrium of the entire shell., the tensile and 

compressive forces in the edge members can readily be checked, 

The force diagram in the shell is shown in Figure 4-6. 

T 

C 

2 
p ""'.A~ 

-·--~~-

2

--- CoLo 

f 

( 
I 

I 
I 

/ 
I 

Force Diagram 
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CHAPTER V 

Sill1M.ARY AND CONCLUSIONS 

The analysis of cantilevered parabolic conoidal shells by linear 

membrane theory is presented in this thesis. Points of major significance 

may be summarized as follows: 

1. The general solution of the homogeneous equations may be achieved 

by assuming a stress surface of a higher order ~yperbolic 

paraboloidal type with curved generatrices. 

2. The particular solution depends upon both the type of loading 

and the boundary conditions, yielding infinite values for 

stresses along the crown of a cantilevered shell under uniform 

load. 

3. The infinite values of stress in the uniformly loaded shell can 

be explained both physically and mathematically, indicating the 

breakdown of the membrane theory and the necessity for bending 

stresses even before deformation incompatibilities are considered. 

4. A cantilevered shell designed with a parabolic variation of 

thickness gives satisfactory results, finite at all points, for 

dead load stresses. 

5" The significance of the shell rise in determining corrections to 

the stresses can be evaluated by expanding the load intensity 

in a power serieso 

The membrane theory of the cantilevered parabolic conoidal shell 
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is not adequate for all load conditionso In the case of uniform load 

it yields values for stresses which increase without limit near the 

crown, causing considerable.incompatibilities between stresses in edge 

members and stresses in the shello Only an adequate bending theory, 

beyond the scope of this thesis, could predict the region of validity of 

the membrane stresses. 

In the case of dead load, however, varying the thickness of the 

shell according to a parabolic equation so completely alters the theor

etical membrane stress distribution in the shell that it would seem 

worthwhile as a topic for further investigationo The shearing stress is 

constant throughout the shell and less than the stress in a comparable 

hyperbolic paraboloido 
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