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FREFACE

The membrane analysis of cantilevered parabolic conoidal shells is
presented in this thesis. The partial differential equations of equi-
librium are first solved as homogeneous eguations in terms of both the
internal forces and the stress function. Particular and complete
solutions are cbtained for the force variations due to uniform load,
perabolic variation of dead load, and corrections corresponding to
appreciable shell rise. Stress curves are plotted, and numerical ex-
amples are included showing the application of the theory presented.

I wish to express nmy indebtedness to Dr. K. S. Havner, not only
for introducing to me the possibilities of the application of membrane
theory to the analysis of cantilevered parabolic conoidal shells, but
also for his veluable assistance and guidance throughout the preparation
of this thesis.

To Mrs. Barbara Adams 1 wish to express my gratitude for her careful

typing of the manuscript.
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NOMENCLATURE

Coordinates of é point on the middle surface of

the shell.

The angles between the middle surface of the shell
and the projected plane when measured along the X

and Y axes, respectively.

Rise of shell in Z-direction.

Span of shell in Y-direction,

Length of shell in X-direction.

Normal and shearing forces on an elément of the shell.
Projected normal and shearing forces in the X-Y plane.

Adiry's stress function.

2F
3%,
Thickness of the shell.

Intensity of vertical load on projected area.
Intensity of uniformly distributed load.
‘Wéight of shell per unit area.

Compressive force in edge member.,

Constanté

Area of reinforcing steel.



CHAPTER I
INTRODUGTION

1-1. Historical Sketch.

The formulation of the equilibrium equations for the general shell
of double curvature in terms of a stress function and projected forces
was first accomplished by Pucher, (1). Extension of the general method
to the problem of circular conoidal shells used as retaining walls was
made by Torroja. (2). Another solution for circulsr ccnoidal shells was
developed by Flugge. (3). |

Soare developed solutions for conoidal shells of several different
types, includihg circular, Qatenaty, and parabolic conoids. (lL).
However, his solutions were limited to shells supported by edge members
having lateral stiffness in the Y-direction, ‘Candela indicated & pos=-
sible means of estimating forces in the cantilevered conoidal shell by re-
placing the surface with a hyperbolié paraboloid. (5). Reissner
suggested a solution of the differential equation of the conoidal shell
in terms of the stress function and for deep shells developed a power
series representation of the dead load in terms of nondimensional shell

rise. (6).

1-2. Fguilibrium Hguations of Thin Shells.

An element from a general shell of double curvature is considered as



shown in Figure 1-l. The displacements are assumed to be small and not
to affect the equilibrium. Bending resistance is taken %o be negligible,

the loads being resisted by linear membrane stresses.

Figure 1-1

Real and Projected Elements of a Shell

The relations between the stresses on the projected element and the

stresses on the real element are

N, = ¥, S9S£ =
X X Gos (1-1)
L .. cosd g

NY - Ny cos g (1 2)

The condition of equilibrium in the ¥X-direction requires that

SN, W .
§=—~x—" + 5—’;};-’ bz PX prsd (/o ) (1““1!)



Similarly, in the Y-direction

o 8%y, p Lo, (1-5)
Y 22X 4

The summation of forces in the Z-direction yields

N EEEE + 2N :2E§E + W xéiiﬁ e wP. 4+ P22 4 p 22 (1-6)
£ oxl T exay 7 ayd T B X aox YV oy

where Py, RY’ and P, are, respectively, the X, ¥, and Z components of the
lateral load per unit of projected area.

The solution of the equilibrium equations (1-lj, 5, 6) is usually
effecﬁed by reducing them to one single differential equaticn. This is

accomplished by introducing Airy's stress function F, which is related

to the membrane forces through the equations

2 »
3 F ,
Ny = =3 = j P, dx {1-7)
oy
2
3°F .
N, &« === « [ P, dy (1-8)
S F ;
Ny & = = 1-9
xy 5%y (1-9)

Introduction of FEgquation (1~7), Equstion {1-8), and Equation (1-9)

into FEguation (1-6) gives a differential equation for F of the fellowing

form
2, 2 2 2 2 2 )
= 22 _, 3 F 22 ,.2 g‘ 2 Z . .p, + P 2F
ox8 ay? 3Xoy 3Xoy  oy2 ax%% 3%
Y 527 ; 5%z .
+ B 224 (P, dx) 222 + ( 'Ey dy) =22 (1-10)
SN 5%2 >y

This is the well known equilibrium egquation for shells of double
curvature., Its solution for conoidal shells under verious types of
loading and with different edge conditicns is shown in the following

chapters,
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1=3, Parabolic Conoidal Shell.

A conoidal surface is generated by the translation of a rectilinear
generatrix, one end of which travels along a curve and the other end
along a straight line. In the special case where the curve is a parabola,
the Parabolic Conoid is developed.

There are two basic Types of parabolic conoidal shells, as shown in

Figure 1-2. The equations of the middie surfaces are

2
Type I: z=-%x (1~ L) (1-11)

Figure 1-2a

Paraboliec Conoid Shell Type I

.2
. Type II: 2z = 8 x L. (1-12)
a



Figure 1-2b

Parabolic Conoid Shell Type I1

Considering first Equation (1-11), the various derivatives are

2z .2(1.1) ] 2z . 28
3% 7 a b2 a7 bl
2 -
2.3 . 5%, 2c 52.’.7; 2c . (1-13)
3= 0 Sl Ty Sy X
D=, XY  ab oy ab

From Equéti@n (1-12) it is easily seen that the expressions for

2 2 2
52-5>, 2 Z, and ~2-2_. are the same as shown above. Therefore, no

matter which form of the parabolic conoidal shell is chosen, the same
form of the partial differential equation of equilibrium is cbbained.
Substituting Equaticns {1-13) into Equation (1-10), and considering

vertical loads only, the final equation becomes



7 2 2
mZymf?‘ng,-!-x 8F-+§£.:P

X2y 5x ec P

Equation (1~1L) is the governing differential equation for the parabolic

conoidal shell.



CHAPTER TI

SOLUTION OF THE HOMOGENEQUS EQUATIONS

2-1. Alternate Forms of the Equilibrium Equations.

From Equation's (1<) through (1-6) and Equation (1-1), the
equilibrium equations of the vertically lcaded parabolic conoid in terms

of the projected membrane forces are

SN 3
X 4 =0 (2"1)
DX DY
Ny, BN
Y XY
5y *Tax "0 (2-2)
: ab2
2y Wy + x Ny + . P,= 0. (2=3)

Differentiating Equation (2=-3) with respect to X:

2N D 2
Xy Ny __ b’ 3B
2y DX P X X +I%‘“ 7c 8% °

Alternately, differentiating with respect to Y:

2
8N§+x5&,=ab 2P
=)

Moy * 27 sy = 2¢ 3y

Xy

From the equilibrium Fquation's (2-1) and (2-2)

°

Sl Oy al, 3l
—L =

EF EYE 5%

Therefore, slternate forms of the final partial differential equations



are
aNy a?fx ab2 2P,

*TE Wy Nyt %e B (2-h)
x4 — I LA -
s S s i i T (2-5)

2

=] 3G ab
A A (2-6)

where
g =2F
3X

Before attempting to solve -the partial differential equations of
the conoidal shell for specific loads and specific boundary conditions,
solutions of the homogeneous equations will be developed. In the
following articles, the homogeneous form of each of Equation's (2-L, 5,
6) is investigated and the possible stress surféces are determined. For
the sake of completeness, eaéh equation is solved, although any one is
adequate to describe the theoretical distribution of stresses in the

shell.

2-2, Solution cf Homogeneous Equation in NYi

The homogeneous equation in terms of NY is:

X iiﬁz - 9y’:2« + Ny =0, (2-7)

ax 3y

From the theory of linear, first order partial differential
equations, the integral curves which generate the genersl solution can

be determined from the ordinary differential equations

dx _ d al,

s £ ceeao 82 Q

x -2y

Selving these equations:



%
F
Q&
&

Thus
.
£ (et

is a solution of FEguation (2-7).

The admissable forms of the function fl can be found by a trial
method. One of the admissable solutions is:

Ny z G L 4 Co y% o

The sitress surfaces corresponding to the terms in this expression
are shown in Figure 2-1. The variation in the X-direction is hyperbolic,
the variation in the Y-direection is parabolic,

N
y

=

A 02y
T /\ \\//(

é

\

\
7

Pigure 2-1

Stress Surfaces for Ny
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Another admisssble solution is
Ny::CXy

This is also a hyperbolic surface, as shown in Figure 2-2.

N
J

—

Figure 2-2

Stress Surface for Ny

Observing these admissable solutions, it is evident that a general
solution may be achieved by assuming a stress surface of a higher order
hyperbolic paraboloidal type with curved generatrices.

Thus let

NY = CxKl yKQ .

Substituting into Equation (2-7), we have

K

-1 X ~1
x CKy x1 7y 2) oy (CK, ;.xKl_yKQ ) + CxKl yK2 =0 .

Therefore
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Ki =2K, +1 =0

1 2

Ky = 2K2 -1

and the general equation for Ny becomes
NY - oxek-1 vy (2-8)

It is seen that the first three stress surfaces are special forms
of the above equation. The value of K will depend upon the type of

loading and boundary conditions.

2-3. Solution of Homogeneous Eguation in NWYl

The homogeneous equation in terms of Nky is:

2N, =3
—x —_ L = -
xRt gy W, =0 (2-9)

The correaponding differential equations of the integral curves are:

& ok y gy . E\Iﬂ_

=X "'21\]2(:), y -QNW -
N 2 _¢ N = C

xy X =0 ¥ o= Oy

Thus

£, (x2 ny, v ny) =0

is a solution of Equation (2-9).

One admissable solution of Equation (2-9) is
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with the stress surfaces shown in Figure 2-3.

N
Xy
5 / 7
Ny = O, ¥ Ll 77
e
Y- X

1

3X

Figure 2-3
Stress Surfeces for Ngy
As before, the general solution can be assumed in the form
Ny = O 1 ™2

Substituting into the Equation (2-9), we get

K,-1 K . Ky K
X [cllel yz] +2y[ClK2XK1yK2‘l}+2C1xvly2=0o

Therefore,
'°‘-‘Kl'+ 2K2‘+2:O

-Kl = 2(K2 4+ 1)



and the general solution is

o(K + 1
Ny = G x ( ) JE (2-10)

2-l, Solution of Stress Function F.

The solution may also be determined from the stress function F.
Since‘the equilibrium equation is of the first order in terms of the
quantity

G:“’éf;

the same methods of solving the partial differential equation apply.

The homogeneous equation in terms of G is

3G 3G
X 3% - 2y ?;§ =0 (2-11)

The integral curves are obtained from the ordinary differential

equations

G:Cl Xy gCQ
Therefore,
oy
f3 (G5 Xyz) :O
is a solution of Equation (2-11))or

6 =1, (33%)

By the trial method, we can easily find the general forms of
admissable solutions. Thus
G - Gt XQK yK

or



G = ¢ In (x2K yK)

The stress function is given by the equation

F =°Ii3 dx + £ (y)

The alternate forms of this equation become, upon integration:

Fzop & LK e (y) (2-12)

and

F = cé x 1n (x2K yK) -2k + g (3) (2-13)

Therefore, the general solution of stresses in the shell will be:

Fog 2Kt 15K L e ()

1
. ! K+1 K-2
Ny = 0 K (K~ 1) S v + £ (y)
(2-1k)
N = C (2K + 1) (2%) x°B ~ 1 K
J 1
1 [s37d w
o o 2K K ~ 1
Npy = <0y (2K + 1) K x*" 5
The special solution of stress will be:
F = c; x {im (2K yEy - EK} + g (y)
\ H X
e = G K2 gt )
N, = ~Ch K 2

Xy P4 v



CHAPTER TII

SPECIAL LOAD CONDITIONS

3-1. Uniform Load.

Considering a uniformly distributed live load of intensity P, = Pg
to be acting on the parsbolic conoidal shéll, the governing differential

equation in terms of the stress function becomes

2
26 o, 8G _ _ &b p 3
* 3% sy 2¢O (3-1)
where as before
DF
G = —=

The solution of the homogeneous equation was obtained in the previous
chapter. The particular solution may be determined by taking G to be
either a logarithmic function of X or a logarithmic function of Y.

Thus, in the first case

G = Bl In x

Substituting into Equation (3-1), we have

2
-2 p

By =
1 oe 0]

Therefore,

2
= - EE—IJ in x

G
1 oc O

~is a particular solution.

Similarly,

15
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and the constant B2 is determined as

Therefore,

is also a particular solution.

The alternste forms of the stress function can be obtained by inte-

gration. Thus

G, = - 2P 1nx a _ 2y In j
1% 7 %2¢ % 2 e 07

2 2
ab ab .
F=-_2.6_.Ox(lnx—1) ‘ Fzzzé_POxlny

The corresponding equations for the normal and shearing forces are:

2
ab
F1=—§-5—Pox(1nx—l)

e

)
g

¢
joh

[‘ (3-3)
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These solutions for the stresses in the shell satisfy different
boundary conditions.which will now be discussed.

In the case of & conoidal shell supported as shown in Figure 3-1,
the approximate stress distribution is given by Equstion (3-2). (L ).

The laterel rigidity of the edge members is assumed to be developed
by sufficient buttresses, lateral ties, or prestressing, and the entire

load is carried by arching action in the Y-direction.

Figure 3-1

Conoidal Arch'Shell Simply Supported

The force boundery conditions csn be prescribed as

X:O,E;NX:O,NXY=O

which are evidently consistent with expressions for stresses in BEguation
(3-2).
In the case of a uniformly loaded cantilever conoidal shell (Figure

3-2), however, the load cannot be carried by arch action as the edge



members are assumed to heve negligible leteral stifiness.

o)

g
A -l

Figure 3-2

Uniformly Loaded Cantilevered Conoidal Shell

The force boundary conditions are

and the stress distribution on the boundary is as shown in Figure 3-3.
The ribs supporting the arches must be designed to carry the
tangential shear load imparted to them by the shell, and the vertical
load must be carried by the components of the shearing and normsgl
stresses.
Eguationts (3—3) setisfy the boundary conditions for the cantilever
shell, the load being cerried by shesring and longitudinal forces. An

investigetion of the equations, however, indicates that they are not



Figure 3-3

#dge Forces on the Catilever Shell

valid near the crown of the conoidsl shell where Ny and ny become
increasingly large, approaching infinity as y approaches zero. That
the equations yield infinite values along this line is dependent both
upon the mathematical nature of the assumed membrane stresses under
uniform load and upon the physical action of the membrsne state.
Considering first the mathematical viewpoint, a study of the homo-~

geneous and particular solutions for N, shows that, for Ny to be zero

U
5
along the longitudinal edges of the shell, it must be zero throughout

thie shell. Thus,no advantage can be taken of the curvature of the sur-

face in the Y-direction, and the load must be carried by vertical compo-

nents of shearing and normal stresses in the X-direction. -Along the top
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of the cantilevered shell, however, the undeformed surface is flat in the
X-direction and the Ny and I, forces lie in 2 horizontal plane. (Figure

xy
3-l) .

O

Figure 3-4

Stress Diagrams

Thus, if there are no compressive arch stresses in the Y-direction
(as réquired nathematically) it is physically impossible for the uniform
vertical load to be carried by linesr membrane forces, Bending will
take place in the central region of the shell (this portion acting
similarly to a cantilever beam) and the load will be carried by tran-
sverse shearing forces. The membrane theory breaks down for the cono-
idal shell, therefore, evén before deformation incompzstibilities at the
boundaries are considered. Nevertheless, BEquation (3-3) may well yield
an acceptable approximation for the true state of stress over a consider-~
able portion of the surface of the shell. To determine the extent of
this possible region of membrane action, and to determine the upper

limit on the magnitude of the membrane forces nesr the crown of the
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shell, a linear bending theory would be necessary, which is beyond the
scope of this thesis.

Some idea of the varistion of the theoretical stresses can be

H

obteined from Figure 3-5, where the dimensionless ratios —2X . and

% are plotted against one another.

Figure 3-5

Shearing Force Variation

The guantity - ggfb is the shearing force in a hyperbolic psraboloid
having the same dimensions as the parabolic conoidal shell. It 1is
.evident from the figure that the membrane force in the conoidal shell
is less in the outer one guarter of the transverse span 2b, greater in

the middle one-half. Use will be made of Figure 3-5 in Chapter IV to
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estimate the forces in the edge members and in the shell.

3-2. Parabolic Loading.

A conoidal shell will in general be constructed with increasing
thickness near the fixed end (Figure 3-6), thus requiring stresses due
to an arbitrary variation to be superimposed upon the'uniform loéd stresses.
To determine these stiresses, a parabolic variation of thickness is assumed
because of its mathematical simplicity, and a shallow shell is considered
(i.e. the force per unit of projected area and the weight per unit area

of the shell can be taken as equal).

Figure 3-6

Conoidal Shell with Variable Thickness
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The intensity of the additional load thus becomes

p A
I

Where A is an arbitrary constant to be determined from the given
variation of thickness.

Substituting this load condition into Equation (2-4)
2

@k B &b
X 2y 5 + Ny =

— Ax .
BX 2c

A particular solution can be obtained by taking Ny = Bx. OSub-

stituting, the constant B is

and

N,

From Equation (2-2) the complete solution will be

Lic

T T, 2
ek -1 _ K ab
Ty 1 X ¥ - hc AX (3"&—)

Introducing the boundary condition y = b, Ny = 0, the constants

C1 and K can be determined, Thus

2K - 1, K _ ab?

i Ax = O
LLCY

In order that this expression vanish for zll values of x, let
K =1, from which
ab ,

The final equation for the normzl force Ny is

}3y=~ar-2Ax(b-y) . (3-5)



2l

The shearing force is obtained by integrating Eguation (3-5):
SN
ny=— -—-\ﬁzd}{‘l'f(y)
¥

The function f (y) can be taken as zero and the final equation

becomes
2
N, = -2 AXT (3-6)
xy e 2
Similarly,

ol
e e 125 e s s
- e g (y)

The function g (y) also can be taken as zero, from which
N, =0 . (3-7)
The solution of stresses given in Equation's (3-5), (3-6), and

(3~7) gives very satisfactory results which'are finite at all points of

the shell.

3-3. Series Expansion.

In previous articles it has been assumed that the weight per unit
area P is the same as the vertical intensity of load on the projected
area. This is only approximastely true. The actual intensity P, is

given by the eguation

pd 2
DZ DZ
Py = PJ 1653+ (55

Substituting the values for the derivatives:

29 S
C 2c 4
PZ.':PJ]_"'(E'b%) > ;{)—é-x(y)

This equation can be expanded in a power series as shown by Reissner. (6).



Thus 2
i 2.2 2 ’ 2.2 2
P =P 1L 2c_ -3 [_C. b 2c_
2=yt T 3 {ab2) +(ab2 Xy)} 5 |G b2) +(ab2 ) T
(3-8)
In the case of a shell that is relatively shallow (%, -%é %‘),

the guentities (%)2 and (%)2 are sufficiently small to permit all but
the first term on the right side of Iguation (3-8) to be disregarded.
With ¢ so restricted, the first neglected term is less than L per cent
of what is retained. £11 other terms are less significent still, and
P, may be taken egual to P in all celculations.

In the case pf ¢ deeper shell (% < %, % <1), the third and éll
succeeding terms can still be neglected but the second term may prove
significant. Considefing a shell of constant thickness, the equilibrium

equation (Equation 2-12) can be written

2 - 2.2 2
x-—a-c—}-Ey—é-g.-.—-g%’—P 1+%[(§%§) +(~E—E—2—xy)] . (3-9)

DX =
Denoting
2
A . _ ab _ __¢c v _ _ _C
Al S P A2 = babz P A3 = ;EZ P
Equation (3-9) becomes
26 G ki 2 2 |
LI .2 = A, + A + A . -
R Al R I 3%y (3-10)

‘The particular solution corresponding to the constant term Ay was
obtained in Article 3~1. The general solutions corresponding to the
second and third terms are deterwmined as follows.

The particular solutions of Equation (3-10) corresponding to the
Ay and A3 load terms are:

A A
Gy = - =2 yh G, = - =2 Xy .

8
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Hence the stress functions are

A Ay 3 2
F2 - 8 F3 3 Yy
and the particular solutions for stresses become
Ho 2 133
NX=-—2-—}QY ——3—}(

N = - Ay

Ao 3 2
Nky =+ ET y- o+ A3 Xy

From Equations (2-1l), the complete solutions are

2K+ 1 K -2 3¢ 2 3
N, =C. K (K~-1) x ¥ + 1 (y) + Pxy < + 2 <
x 1 , 8ab2 3ab2
Nz C (2 + 1) (2k) K20 TR e S pxy?
y 1 ab (3-11)

! K _K -1 c 3 c 2
N =-Cy (2K + 1) K x2Ky - Py” - Pl y .
el 1 - 8ab ;g?

For the cantilever shell with boundary conditions

x=0 : N, =0, yw=b ¢ N =0
The values of Ci, K, and the function f" (y) can be determined. Thus

1 n
K=1 C, = --S_P f (y):o
1 6ab

and the final equations become

N = _3_0_ ny2 + L Px
8ab? 3ab



c N
N --=p 1 -2
y - ab 7 [ b]
0 - S pgl-_C 3 —il-ng
X T 2ab Babe v ab? 7

Hguation's (3-12) are the forces in the deep shell due to load

correction.

(3-12)



CHAPTER IV

WUMERICAL EXAMPLES

LL-1. Genersal Notes.

Two examples are shown in the following articles.

In the Ffirst exeample, the varistion of stresses in a cantilevered
shell under uniform load is described and the theoreticsl forces in the
edge regions are determined.

In the second example, stresses due to dead load are determined,
using a parabolic veristion of thickness. This results in a more
satisfactory distribution of stresses which are finite at every point.

Units for verious values are in terms of pounds, feet, or pounds

per foot.

L-2. Example 1.

A cantilevefed conoidal shell acted upon by a uniformly distributed
load of intensity L1 psf. is considered. (Figure L-1).

The dimensions of the shell are 20 x 20 feet in plan and the thickness
is 3% inches.

The projected forces in the shell can be obtained from Fquations

(3-3). N .
WL AP @ efxla (B
ke (F T bxLse (@

X

&

- 2100 v pounds per foot.

1,

o]
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Ny =0
b 1 20 x 10 1
N = - "a""' P = = ¢ 1
Xy Le (Z) L x 1.96XLL (y_)
b b
1
=z - 1020 =7~  pounds per foot.
(%)
‘P = L1 psf

ACTTOITTTT

Fig\ire L-1

Uniformly Loaded Cantilever Shell

The forces in the shell are evaluated in Table I.
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TABLE I

INTERNAL FORCES IN PARABOLIC

CONOIDAL SHELL

- X <
Forces | - 3 %
0.00 0,10 0.20 0.L0 0.60 0.80] 1.00
0.1 <0 | -21000 -5250 -13380 -583 -318 =210
0.2 -4,2000 | -10500 | -2760 | -1166 | <5636 | <420
My 0.5 -105000 | -27250 | -6900 -2915 | -1590 | -1050
0.8 -168000 | -L2000 | -110LO | -L66lL | -252) | -1680
1.0 -210000 | -52500 | -13800| -5830 | -3180 | -2100
ny % -10200 -5100 -2550 -1690 | -1275 | -1020

The stress distribution in the shell is shown in Figure L-2. From
the sharpness of rise of the theoretical curves, the validity of the
membrane stresses may not extend inside the interval % 2 00— 0.2 for
the shearing force and % = 0 —— 0.4 for the normal force. In any case
it will be assumed acceptable to take the upper limits for the shearing

and normal forces to be at % = 0.1 and % = 0.2, respectively.

The unit compressive stress at the point % = 1.0, % = 0.2 is

1
N, = = 52500 = - 1350 psi.
12 x 3.25

1
wWnich shows that, using ordinary concrete, with f, = 1700 psi., it would
not be theoretically necessary to reinforce the interior of the shell

for compression.
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The unit shearing stress at the point % = 1.0, % = 0.1 is

n' o .2 20200 o6 psi.
.12 x 3.25

4 A 3 Il r

" 0.5 0. 0.3 0.2 0.1 0

o i<

Figure L-2

Stress Distribution for NX, ny

The tensile steel reinforcement in the shell can be computed
using Mohr's circle.

The theoretical tensile and compressive forces in the edge regions



necessary to resist the shearing stresses cen be computed from free

body diegrams as shown in Figure l;-3. Thus

T = 10200 x 20 x 2 = L0BOGO pounds

C = 1020x 20.2= 20400 pounds.

N

,___,." }W
_—
e ~

Figure L-3

Stresses on Edge lMember

L)
N



L-3. Example 2.

12.1 ft.

]1.58 4.
- - _*O
12 £t. ‘ 1

Z

T

Figure L-I

faaN
N

Cantilevered Shell with Paraboiic Thickness Variation

33



A cantilevered conoidal shell of varisble thickness and specified
span, rise, and overhang (Figure L-L) is to be designed such that the

entire weight of the shell can be represented by a parsbolic load functiorn

Paak
2

Taking the thickness t2 at the wall to be two and one half times

the thickness tl at the end of the shell:

o1 x,°
—=x 150 = A ——
12 2

2;5tl

(10 + x~)2
L x 150 = £ —— 2T
12

Yliminating A and tl between these two eguetions and solving for

Xy yields

17.2 feet.

Selecting the thickness tq =z 1.5 inches, the constant A is found
to be
A= 0.126 1p/eth .
If the force per unit of projected area and the weight per unit
area of the shell are taken as equal, the maximum error in the repre-
sentation of the load will occur gt the corner x = a, y = b, and can

be determined by substituting into Equation (3-8). Thus

2 2¢c.@
1 c L=l
P 1+5B§ + (5 ]...,

P+ 0.091 P

\gv]
i

from which

b

20218 4 100 = 8. 36%

Mex. F __2091P
Mex. Error = T.091P
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This difference will be neglected and stresses computed by taking

P, = P.

2

The

The

The

From Equations (3-5 ) the internal forces in the shell are

2.2 2 2
L ab X _ ¥y . fe7.2)" (12)
J Lic A (a) (1 b)“ L (2.5)

=
81

(0.126) (%) (1 -4

il

- 1340 (3) (1 - £)

3 o 0y3 :
__ &b, x2 _ (27.2) (12) . X2
Ny = . A_ga) = X3 (0.126) )
= - 1525 (§°
) N, =0

Curves representing the variation of forces are shown in Figure L=5.

constants B1 and B2 are given as

By = - 1340 B, = - 1525 .

unit shearing stress is constant throughout the shell:

2
i - ()
R = A = - 33.9 1b. per sq. in.

= 5
V12 x3.75(%)

maximum unit normal stress will occur in the end of the shell at
crown (% = 0.632, % = 0) 3

_ 13h0(.632)

P . D
(]\57 )ma_x = 12 x 105 = = h?ol 1b. -per sg. 1n.

maximum unit normal stress at the wall is:
¥ B
(NY ) = - m-;éégéwj = - 29.8 1b. per sq. in.
‘ 12 = 3,75

tensile force in the edge member at the crown can be computed from

free body diagram of Figure L~-6 and is equal to:



]

-

4 1.0

1 0.8

4 0.6

O.

3]

A )

1.0 0.8 0.6 0 0.2 0
0.J622
Figure -5

Stress Distrfbuﬁion for N .
5 1 PO Ny
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b



37

a a
T =2 N dx = 42 2825, 13
il (27.2)2 3

=+ 1.37 [(27.2)3 - (17.2)3] = + 20700 1b.

The steel area reguired in the edge member is:

L = 20700 _ 1 oy sq. in. (Allowable stress of steel = 20000 psi)
5 7 20000

Six No. L bars are selected (4; = 1.18 sq. in.). The compressive force

in each of the inclined edge members is (Figure L=6):

cos @

a —
N
c_=‘£’ X dx = - 10400 1b,
%1

where cos 8 = 0.995.

The area required in the edge member is

A, = 20LO0 . 0,520 sq. in.

§

Three No. I} bars are selected (AS = 0.50). The compressive force Cq

in the edge member at the end of the shell is approximately:

¥ 12.1
o :ng N, dy :dga (- 1370) () (0 - £) dy
0 0
5 12.1
= (- 1370) (0.462) (v - =)
| 0
= 3800 1b,
Steel area required
a, = 220 0,19 sq. in.

20000



From static eguilibrium of the entire shell, the tensile and
compressive forces in the edge members can readily be checked.

The force diagram in the shell is shown in Figure }-6.

Figure L6

Force Diagram



CHAPTER V
SUMMARY AND CONCLUSIONS

The analysis of cantilevered parabolic conoidal shells by linear
membrane theory is presented in this thesis. Points of major significance
may be suwmarized as follows:

1. The general solution of the homogeneous eguations may be achieved
by assuming a stress surface of a higher order hyperbolic
paraboloidal type with curved generatrices.

2. The particular solution depends upon both the type of loading
and the boundary conditions, ylelding infinite values for
stresses along the crown of a cantilevered shell under uniform
load.

3. The infinite values of stress in the uniformly lcaded shell can
be explained both physically and mathematically, indicating the

reakdown of the membrane theory and the necesslty for bending
stresses even before deformation incompatibilities are considered.

L. A cantilevered shéil designed witﬁ'a parabolic variation of
thickness gives satisfactory results, finite at all points, for
dead load stresses.

5. The significance of the shell rise in determining corrections +o
the stresses can be evaluated by expanding the load intensity
in a power series.

The membrane theory of the cantilevered parsbolic concidal shell
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is not adeguate for 211 load conditions. In the case of uniform load

it yields values for stresses which increase without limit near the
crown, causing considerable.incompatibilities between stresses in edge
members and stresses in the shell., Only an adeguate bending theory,
beyond the scope of this thesis, could predict the region of validity of
the membrane stresses.

In the case of dead load, however, varying the thickness of the
shell according to a parabolic equation so completely alters the theor-
etical membrane stress distribution in the shell that it would seem
worthwhile as a topic for further investigation. The shearing étress is
constant throughout the shell and less than the stress in a comparsble

hyperbeolic paraboloid.
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