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PREFACE 

The material presented in this thesis is the outgrowth 

of the seminar lectures presented by Professor Jan J. Tuma 

in the Spring of 1960. The literature survey and the gen-

eral theory recorded in the introduction were prepared by 

.Professor Tuma. 

The application of string polygon method to the anal­

ysis of single span rigid frames, with members of variable 

cross-section, was reported by John T. Oden. 

The general theory of the string polygon, in terms of 
' 

the energy due to bending moments, shearing forces, and 

normal forces, is presented in this thesis. 

The writer wishes to express his indebtedness and 

gratitude to Professor Jan J. Tuma for his invaluable aid 

and guidance in preparing this thesis. The writer also ex-

presses his appreciation to Professor Roger L. Flanders 

for his acting as the author's major adviser, and for his 

advice and thorough reading of the manuscript. 

An acknowledgment of thankfulness is also due Miss 

Velda D. Davis for her exceptional skill in typing of the 

manuscript. 
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CHAPTER I 

INTRODUCTION 

The idea of elastic weight and the application of the 

elastic weight~ was introduced in the middle of the last 

century by Otto Mohr (1). The extension of the application 

of elastic weig~ts and a methodical classification of elas­

tic weights wae, performed by MUller Breslau (2), (3). The 

study of deformation of beams by means of elastic weights 

was extensively presented by Wanke (4) and .Chmelka (5). 

The development of the joint elastic weights, in terms of 

end moments for strips of small length, may be found in 

work of Kaufmann (6). 

In this country, the application of finite elastic 

weights was shown by Hardy Cross as his Column Analogy (7) 

and by Michales as the Column, Shear and Torsion Analogy 

(8). 

The generalization of the joint elastic weight ex­

pression and the application of these joint elastic weights, 

in connection with the string polygon, was developed by 

Tuma (9) and exve~ded by his students, Chu (10), Oden (11), 
' 

and Boecker (12), to the solution of many special problems. 

The application of the string polygon method requires 

calculation of angular constant·s, which · are now available 

l 
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in various publications. (13) (14). 

In this thesie, the effort has been made to derive the 

general expressions for the elastic weights in terms of the 

bending moments, shearing forces, and normal forceso This 

leads to the representation of the elastic weight as a 

vector force and vector moment. This elastic weight is 

then applieq. to the conjugate structu:r;"e. The shear of the 

conjugate structure is equal to the slope of the real 

structure and the bending moment of the conjugate structure 
' is the deflection of the real structure along the line of 

the vector bending moment. The application is illustrated 

by two exampl~·So 
.. 

The nomenclature is assembled in the front part of 

this thesis. 

The sisn convention of statics is used in formation 

of equilibriUlll conditions and elasto-static equations. 

The sign conv~ntion of deformation is used for the 

calculation of cross-section elements. The signs of vectors 

~re governed by the right hand rule. 



CHAPTER II 

THEORY OF GENERAL STRING POLYGON 

The general string polygon theory for bent members is 

developed in this chapter. All the influences of the bend-

ing moments, shearing forces and normal forces are consid-

ered. 

2-1 Basic Derivation 

A bent member, ijk, loaded by a general system of 

loads is considered (Figure 2-1). .Whe cross-section of the 

member ij(jk) is given by ordinates u, u'(v,v') measured 

from the respective ends. 

a given section are: 

The cross-sectional elements at 

bending moments Mu(Mv)' 

shearing forces Vu(Vv), and 

normal forces Nu(Nv)• 

\ 

The geometry of each member is given by the slope~ 

and the length d. The horizontal projection of each dis 

~ and the vertical projection of the same length is dyo 

Due to the action of loads, the bent member ,. ijk displaces 

to the position i'j'k' and the change in change of t he 

slope at j is denoted by ¢j as shown in Figure 2-1 .. The 

3 



d kx 

Figure 2-1. Bent Member 
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_\ 

calculation of the ¢j is accomplished by means of the vir­

tual work. 

The moments, shearing forces and normal forces at the 

section, due to the loads, are shown in Figure 2-2. 

The end moments, end shears and end thrusts are des­

ignated as: 

= end moments 

vij' vji' vjk' vk. = end shears 
d 

.Ni{• Nji' N;jk' Nkj = end thrusts. 

The bending moment at the section u of the bent member 

ij is: 

(2-la) 

and at sect.ion v of the bent member jk is: 
V 1 V · 

l'1.f = M. -d· + M.. -d + Bl'1.f 
V J k --k k V 

(2-lb) 



5 

C[] j l:t:r J J 

k 

V 

v' 
Mj dk 

V 
Mk d 

,; k 

Moment Diagram 

~ I Vk I ~:v• 
Shearing Force 

Diagram 

f . INji Njk ___ + _____ N~v' 

Normal Force 
,Diagram 

Figure 2-2. Moment, Shear, Normal Diagram due to Actual 
Loading 



where BMu and BMv are the bending moments due to loads at 

the section u and v respeetively. 

The shearing force at the section u is; 

6 

vu = v. + BV 
1 u (2-2a) 

and, at section v is: 

vv =_Vk + BVV, (2-2b) 

where BV~BVv' are the shearing forces due to loads on the 

segment u and v' respectively. 

The normal force at the section u is: 

N = N + BN . u i u (2-3a) 

and at section vis: 

NV = Nk + .BNV, (2-3b) 

where BNuBNv, are the normal forces due to loads on the 

segment u and v' respectively. 

For the purpose of determining ~j' the virtual loads 

l 1 
randd 

j k 

are applied on the member ijk as shown at tne Figure 2-3. 

2-3·'· Virtual Loads 
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The normal force at u and v due to these virtual 

loads is equal to zero, which indicates that the normal 

force has no direct influence on the formation of ~jo On 

the other hand, the shearing force and bending moment do 

influence the formation of ~j and their diagrams are shown 

in Figure 2-4 .. 

The bending moment at sect:;i.on u due to the virtual 

loads is: 

u 
= dj 

and at section vis: 

(2-4a) 

" (2-4b) 

And, the shearing force at section u due to the virtual 

loads is: 

(V) 
u 

l 
= d. 

J 

and, at section vis: 

l 
= - dk 

(2-5a) 

0 (2-5b) 

From the theory of virtual work, the change in slope 

due- to bending moments and sheari:n.g forces is: 



(. 

Virtual Loads 

Q 

u I· ' a:: 
j 

Moment Diagram. 

+ 
- Ii; 

Shear Diagram 

Figure ·2-4. · Shearing Bendi~ Diagrams due to . 
· Virtual Loads 

8 



f jM (M )du { jV (V )du f k M (M )dv 
r1. U U }/ U U V V 
'f.l j = EI + 17/o A G + EI 

U · U V 

1 i j 

• (2-6) 

In terms of equations 2-4 and 2-5, the equation 2-6 

will become: 

l j J '.k u 'udu u2 du v'2 du 
d ,2 EI + Mj ( d 2 EI + d :! EI ) 

J U j U k V 

j 

v'vdv Jj 
d 2EI + 

k V 

i 

+ Vi 'if.o1· jd 1uG 
j u 

i 

1k d 1~. j BV du 
.. vk >to a I G + . d .~ G 

kV J U 

j i 

9 

(2-7a) 

r1. 'M ·G (M) + M "'F (M) + M..G (M) + ~T..(M)+ V G .Cv) 
or, l"j = ui ij uj"" j --k kj "" . J i iJ 

+ I:: 7:. (v) 
J • . (2-?b) 
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The angular constants in equation (2-7) can be inter-

preted in terms of a simple beam as shown in Table 2-1. 

The normal force will cause a linear elongation or 

contraction of each member. These deformations are: 

and: 

A . (N) 
~ij = 

= 

lljk 
(N) = 

= 

l j 
.N.· du u 
EAU . 

f. j Jj 
N.ij.du BNudu 
EA · + · --=EA....--

u . u 
J. ! 1 

fk I Nvdv 
EA 

j V 
I 
I 

··1k '. k 

N. d J mvv Jk V + 
EAT . EAV 

j J 

(2-8a) 

(2-8b) 

wht.:ri,.-e-·N . N. are- end thrust at i and J~ respectiv.ely, . ,.,.... 1a' ak , 

. BNu is.. the normal eo~~,onents of loads on the segment u, 

BNv is the normal components of 1Cl>-$ds.-G~ ,.the segment v. 



Term Nrune 

(M) The angular 
F .. flexibility 

J1 due to mo-
ment .. 

(M) The angular 
Fjk flexibility 

due to mo-
ment .. 

The angular (M) 
Gij carry over 

value due to 
moment .. 

TABLE 2-1 

INTERPRETATION OF ANGULAR CONSTANTS 

Value Physical Meaning 

f j u2 du 
The end slope of a 
simple berun ij at j 

d.2 EI due to a unit moment 
J u applied at that end. 

i 

1 k v'dv 
The end slope of a 
simple beam jk at j 

a2~rv due to a unit moment 
j applied at that end. 

f 3
uu'du 

The end slope o~ a 
simple berun 1·j at j 

d2 .EI due to a unit moment 
J u applied at the far 1 

end i. 

Illustration 

F<.r!> 
~ 

9;----1) 
(I) Q) 

F~H) 

y" 
&M -1 £--- - --~,A 
(j) 0 

6~) 

H =1 
\'"I ~1 

\ I 

<i~---i 
(J) (j) 

=1 

I-' 
I-' 



Term Nrune 

The angular (M) 
Gkj carry over 

value due to 
moment. 

-

.. (M) The angular 
-rjk load func-

tion due to .. 
moment. ' J' 

(M) The angular 

~k 
load function 
due to moment. 

TABLE 2-1 (Continued) 

Value Physical Meaning 

f k vv'dv 
The end slope of a 
simple berun jk at j 

d2 EI due to a unit moment k . v applied at the far 
J end k. 

I j Bl'lu udu 
The end slope of a 
simple be run ij at j 
due to a moment in-

djEiu fluence of the 
l. loads. 

f k BMvv'dv 
The end slope of a 
simple berun jk at j 

dkEiv 
due to a moment in-
fluence of the 

j loads. 

Illustration 

G'"'> Hl<j 
M=l 11 

k---~->'i;J 
Q) ® 

~f' ·;• 

~ -- i 

G) Q) 

r_!fl 
h"K 
I I 

~ 
0 ® 

~ 
I\) 



TABLE 2-1 (Continued) 

Term Na.me Value Physical Meaning 
,, 

(V) The angular 1j The angular slope 
.Gij carry over du of a simple beam 

value due Jb d .A G ij at j due to a 
to shear. J u unit shearing 
- i force applie.d at 

far end i. 

1k (V) The angular The angular slope 
Gkj carry ove~ dv a simple beam jk 

value due -J6 ~A1G at j due to a unit 
to shear. shearing force 

J applied at far end 
k. 

(V) The angular i j The end slope of a 
'ji load func- ,BVudu simple beam ij at 

tion due to X d.A G j due to a shear-
shear. J u ing--influence of 

1 the loads· .. 

Illustration 

G(V! 

V= i ~ 
t \ I 

l I 
(0 0 

Gt! 

~ V=1 

\ I i 
Ji kn 

J K. 

r<v) 
Ji 

'fl fl I 
~ 

i 
CD 0 

..... 
\),I 

L 



TABLE 2-1 (Continued) 

Term Name Value Physical Meaning Illustration 

c:<~> 

(V) The angular 

{ 
The end slope of a f r 

'Sk load func- BV dv simple beam jk at j \ I tion due to JftJ VI due to a shearing in-
shearo ditAvG fluence of the loadso 1~ . J . 

Q) ® 
,, 

~ 

..... 
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The physical interpretation of equations (2-8a) and 

(2-8b) is self-evident and does not need to be explained. 

2-2a Angular Load Function due to Bending Mom.ent T (M) 

Consider the segment ij of the member ijk loaded only 

by a system of vertical loads (Figure 2-5); it is desirable 

to evaluate '7,. (M) in terms of horizontal or vertical 
J1 

coordinates, since loads are usually applied in these di-

rections. It is necessary to imagine the horizontal pro-

jection of member ij as i'j' as shown in the Figure 2-50 

TjiJ:) may be defined as the slope of the simple beam i' j' 

at j' due to loads, i' j' being the horizontal projection of 

0 <f2 !~0' l~~J 

11) 
jix 

Figure 2-5. 

(j) 
11 
_l_ 

Interpreta.t;ion of T (M) jik 
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If the unloade4 member ij is ~aturally inclined at an 

a.J?,-gle nj as shown in Figure 2-5, it follows that: 

. . . . , 

du_ dx 
- COS1tj 

and defining T. ~ (M) by 
J1X 

T .. (M) 
J1X l j BM dx 

= x.x 
d. EI 

J:X:- u 
1 . 

it is seen that 

or 

'f (M) 
ji 

T. (M) 
ji = 1 T• · ... 0 ... 0 ..... 8-- i Jix .• 

'Jtj 

(2-9) 

(2-10) 

(2-lla) 
., 

(2-'llb) 

In a similar manner, the angular load-functions for 

ij due to the aetion of_horizontal loads only may be eval-

t d ..,-, (M) i d f .. d th 1 "'f th . 1 b ua e • v ijy s . e ine . as e s ope .. v . e simp e · ea.m. 

i '.'j" at j" due to loads where i "j o· is- the vertical pro­

jection of ij as shown in Figure 2-60 



l? 

Figure 2-6. Interpr~tation of ~i,-
(M) 

It is seen that 

7-.... T .. (M) =1J =~~~ (2-12) J1Y • JY u 

Since du= 

(2-13a) 

or 

• (2-13b) 
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2-2b Angular Load Function due "tx> Shear T(y) 

By the similar manner, consider the segment ij of the 

member ijk loaded only by a system of vertical loads as 

shown in Figure 2-?. 

where 

Figure 2-7· Interpret __ atj.on of T .. . (V) · 
J1X 

BW =· -vertical loads on the segment x 
X 

BVu = perpendicular component of the loads onthe 

segment u of the member ij 



and 

defining 

BV = BW COS'Jt. 
U X · J 

d.x 
du = 

I COS'Jtj 

'j. (V) by 
·.1.X 

·,,-jix 
(V) =1 j 

BW d.x 
X 

d. AuG 
JX 

It is seen' that 

or 

also 

T .. (v) 
Jl. 

·1·j BV du 11 
= 10 d AuG 

. j 

,: .. (v) = 
Jl. 

T (v) 
jk 

i 
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• 

BW dx 
dj~uG (2-14a) 

(2-14b) 

(2-15) 

T. (v) 
ijy is defined as the slope of. simple beam i "j " 

at j" due to horizontal loads where i "j" is the vertical 

projection of ij. 



d. 
-~,·· >6Wy 

ev~ 

.,, 
J 

I 

. ,., 
C, 

A~ 
,,,// / />----

.. // /~/· 1 
\ ~ // / ! 

( / / . 
,.('/.,.._ : I 
"'Y/ =-_i}l I ·"' 

__ _i_· 1:L 
i ~ c.~~ • j J 

. (V) 
Figure 2-8 •. Interpretation of T .. jiy 

where BW' .y = Horizontal loads on the segment y 

BV u = Perpendicular loads on the segment 

the member ij 

and BV u = BWYSin1tj 

du = d.y 
Sin1tj 

20 

u of 

1,j 

BV du 
There.fore, ,;1. ( v) - 1ft; u 

u - d.AuG 
i J .. 

1. j 
BY dy 
d YAuG (2-1'6a) 
jy 

or T (v) -r (v)s. = '"y 1n1tj ji· J1 . (2-16b) 

_Tjk 
(v) = (v)s. 

~ky 1n1tk (2-17) 



·'. 
2-2c Linear Load Function 0:u.e to Normal Fo;rceflij 

Consider the bent member ij loaded only by a system 

of vertiea.l load as shown in Figure 2-9. 

·~ 
I 

Figure 2-9. · Interpretation of fl .. (N) 
. 1JX 

The.linear load function 

rl .. (N) 
'l.J 

., 

. j -JJBNudu -1 BW'xSin1t; dx 
t1 COS1tj 

- ' EAU ~ _ __.,,E"""A-----ac.-

i i u 

21. 

(2-18) 

/ 
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where BNx = Vertical loads on the segment x 

BNu = Normal loads on the segment u of the member 

ij 

and BN = BWxSin1tj u 

du dx. 
= • cos-n;. 

J 

In a similar manner, consider the bent member ij 

loaded only by a system of horizontal loads as shown in 

Figure 2-10. 

/ 

~ 
f---
1 

4-

r~~ 
-' ~ 

Figurl:, 2-10. 

I 
/;\ I d,• . I 

', l, ----~---~i 
\..__/ I 

Interp!'.etation of Q .. 1 (N) 
1JY 



The linear load function 

C1 .. ·· (N) 
'"'ij 

dy 
BW cos1t. Sin1t. 

y J .J 
EAU 

where BWY = Horizontal loads on the segment y 

23 

(2-19) 

BN = Normal loads on the segment u of the member u 

ij 

2-2d Change in Slopa-=.:of~,:'t;b.e String Polygon ~. for Vertical 
· and Horizontal Loads 

The change in slope of the string polygon due to the 

vertical loads becomes:, 

(M) 
~J. = M.G .. CM) + M .• ~F.(MJ +·I't~tJ(l"l) + Tjix 

1 1J ~ J k,,~, COS'ltj 

(2-20) 
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And the change in slope of the string polygon due to 

the horizontal loads becomes: 

+ V1·G· 1· J'. (V) + VkGkJ ... (V) ,,.. s· ..,.. ·s1· + 'jiy inttj + ., jky nnk 0 

(2-21) 

2-2e Linear Displacements of String Polygon Influenced by 
Normal Forces 

(N) . 
/:,J,' ' '4:V'[i,:,) ·. 

~'.JY\ 
/"" d~l \ 

N. ,.H" ':JX 
~J 

Figure 2-llo Linear Displacement Under General Loading 
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The defined linear displacement due to the influence 

of the normal forces, which the general loading condition 

of vertical and horizontal is considered in Figure 2-11. 

A (N) = Ai;(N) cosu.; 
ij:x:: u u 

A (N) A (N)8 . 
uijy = uij l.llltj 

. (2-22) 

or 

~-. 
l.J:X:: 

j 

dK 
= Nij 

1 
AUE + 

f j 

Sinu. 
J 

i 

BW d:x:: X . 
A E + COSlt.,iCOtu. • 

u d J 

(2-23) 

and 

:BW d:x:: 
• lt lt X 

,1·j 
+ ~in. j tan j . __,.A-u.E""".- + cosxj. 

. i 

(2-24) 

J 



CHAPTER III 

ELASTIC WEIGHTS 

The change in change of slope ~j of bent line ijk of 

Figure 1-1 at j is an angular deformation at j and it ean 

be treated as a vector force normal to the plane of the 

bent member; 

(3-1) 

The linear deformations Aij and Ajk can be represent­

ed as vector moments acting at i and j, respectively .. 

(3-2) 

The angular and linear deformattons can be treated as 

elastic weights applied on the conjugate structure and used 

in elasto-static equations for the calculation of deforma-

tions. 

The relationship between a real structure and a con­

jugate structure is shown in Figure 3-1. 

26 
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/ 

y 

Fi><ed l:ond 

Fre.e 6nd ~~~~~~~~~~~~~~~~~~~~~-,,... 

O_z. 

Real Cantilever Bent Bar 

Conjugate Cantilever Bent Bar 

Figure 3-1. The Relation Between a Real Structure and 
, the Corresponding Conj~gate Structure 
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From the relationship of the real structure to the 

conjugate structure, the following analogies may be stated: 

1. The shear of the conjugate structure at any 

point represents the slope of the real struc­

ture at the same point. 

2. The bending moment of the conjugate structure 

at the certain point ab.out a given axis is the 

displacement of the real structure along t:jlat 

axis. 

This two laws hold for any polygon of any set of ~em­

bers without regard to its end conditions and type of load­

ing. The end conditions of the real structure and the end 

conditions of t:P,e corresponding conjugate structure are;re­

lated to eae.b. other as shown in Table 3-1. 
; 

~he applicatio~ of the stri~g polygon equations (2-7) 

and (2-8) as elastic weights defined by equations (3-1) and 

(3-2) to a solution of a specific problem is shown in the 

last part of this thesis. 



End 

TABLE 3-1 

RELATION OF THE END CONDITION 
BETWEEN REAL STRUCTURE AND 
THE CORRESPONDING CONJUGATE 

STRUCTURE 

Real Conjugate 
Condition Structure Structure 

1 1 I q 
Free Fixed 
end end 

2 q < l 
Fixed Free 
end end 

} 5 2 I 
3 A, 

Simple Simple 
Supported Supported 
end end 

29 



CIU.PTER IV 

NUMERICAL EXAMPLES 

4-lr General Notes 

The followin,g illustrative examples comprise this 

chapter of the thesis and describe the numerical ~rocedure 

of analysis by the generai string polygon method.1 Dimen-
i,,. 

sions are chosen to simplify calculation and units for 

various values are in terms of Kips, feet and Kip:1.-feet. 

30 
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4-2. Example No. 1 

A three-member cantilever beam of constant cross sec-

tion is considered. (See Figure 4-1.) The angular and 

linear deflections at the free end 1 are required in terms 

of modulus of elasticities, E, G, , moment of inertia I, and 

area of the constant cross section A. The shape factor~ 

is assumed to be 1. 

//r·~-®,t T 
--------i---__ 1_.+ 

i 

I 1 
IQ~----J.___.__t 

Figure 4-1. Three .. Member Cantilever Beam 
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(a) End moments, end shears and end normal forces: 

Evalu- End moment End shearing force End normal force 
a ting (k-ft) (kip) (kip) joint 
(j) Mi Mj Mk vij vkj Nij Nkj 

1 0 0 - 18 0 18 0 24 -, +-, 

2 0 18 - 98 0 -~ 0 42 - +5 

3 i-18 98 -288 24 - 24 18 0 - --, +-, 

4 -98 -288 0 - 14 0 0 0 

(b) Elastic constants 

Evalu-
G~(El) FM(EI) ,M(EI) GV(AG) ,v(AG) a ting 

joint 
(j) ij kj ji jk ji jk ij kj ji jk 

1 0 .2. 0 10 0 ~ 0 -1 0 - ~ 3 3 
2 .2. .2. , 10 10 . ~ 80 1 -1 - ~ 16 

3 3 3 3 3 3 -.-, 
3 2 .2. 10 10 80 125 1 -1 16 -~ 3 3 3 3 3 3 -, 
4 2 0 10 0 125 0 1 0 -~ 0 

3 3 3 



.·. (c) E.lastic weights 

-~ ~ · .. -?EI+ ;AG 

( 24) ( l) ( . · ) ( 1) 41 ~ 22__ ~-~--, .m +.".'"24 -E.-m=-3Er+5AG 
.. ··:: : . . .,·· 

. ~ .92-
=. - 3EI -~ 

A 24 4 _9§_ 
ul2y = EJ\ X '5 = 2EA 

33 
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=N. (18)1 du . 1 ~dx rr23 = A23 -~ ·""""5 ll + .. ta:p.'lt2: . ~ 
0 · 0 · 

180 + 6ij _ 3§ + ~ _ §Q -~-- - -n EA-EA 

· · 60 4 240 
A23x = EI·x·; == '5µ 

(d~ Con~ugate system 

z 

34 

/ 
H~~--J---.2;~~7"--~~~---:/,-~~~~~-r'----e.__~~~~~-,,...x_ 

// 
...... 

IQ' 

'· 

Figure 4-20 Conjugate Structure 



(e) Defo·rmations at end 1 

= - 97220 312 + ~12 
3:E;I - 5AG EA 

35 

(A~gu. lar deformation at ) 
e1:l,d 1 with respect to 
end 4 · 

' ' ' 

(
Horizontal linear de-) 

formation at end l 

262 2-L' ' .·· .. ~ 22-
= (-·3EI + 5AG)(G) + ( .... 3EI + ~)(l4-) 

. §324 _m - AG - ,n· (
Vertical.linear de- ) 

formation at end l J 
' J 
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4-3. Exam:ple.2. 
. . 

Find the reactions at A and E o:t the symmetrical 

gabled. frame shown i~ Figure 4~3. 
' 

~ 

i 0 
I ~ 
'D 

,t 

A E 

Figure 4:..3. Symmetrical Gabled Frame 



A. Elastic Constants 

Joint G(M? .E 
1J 

I;F(M) .E 
' J 

a-CM) E 
kj 

' ' 

A - 55.94 14.86 

B 14.86 20.14 4.86 
--

ff 4.86 16.66 4.86 
- .. - .. ;..-: .... 

D 4.86 20.14 14.86 
·, ., 

.. ··"· 

E 14.86 55.94 -
.. . .. -

.. 

G(V) E 
ij 

G(V) E 
. kj 

- --1.79-

1.79 -1.22 

1.22 -1.22 
- -· 1 

1.22 -1.79 
. ' 

1.79 -
. ' . 

-
1;,;{11) jE. . 

-
163.50 

150.20 

-

-
_ .. 

····*" 

1',(V) .E 
. J 

-
-.... 

-4.00 

+4.00 
--

-

-

...I 

\.),I 

-..J 



B. Moments, Shearing Forces,.·. and Normal Forces 

Shearing force 

Joint Moment 
vij vkj 

A MA - -RAX 

B MA - 20RAX -RAX .... 4RAX 

r1- .916RAY - 6.4 

c; MA - 28 RAX .., .,.,4 RAX +.916 RAY fr .,4 RAX +.916 RAY 

+ 18.33 RAY - 64 fr 6.4 

D MA - 20 RAX + .4 RAX+ • 916 RAl RAX + 16 

+ 36.67 RAY + 64 + 6 .. 4 

E MA + 36.67 RAY RAX+ 16 --

+ 384 ·-· 

Normal force 

Nij Nkj 

- -RAY 
,-· 

-RAY - .916 RAX 

- .4 RAY - 14.6 
.. 

- 0916 RAX-.4 RAY - .916RAX 

+ .4 RAY - 14.6 

- .916 RA+ .4 RAY +RAY 

-1604 

., 

+RAY -
. -

lj,I 
(X) 



C. Linear Deformations due to Normal Force 

Member AB BC CD· DE 

1 

[¥ 13.54 .9.23 9.23 13.54 

r wds - 75.9 - -o A 
' 

,, .... ,. 

... 

' j 
I . 

- (N) t 
MBC = 6 BL= (-0.916 RAX - 0·.4 RAY - 14-.6)(9.23) - 75.9 

Mcfo = 6 (N)CD = (-i0.916 RAX + 0.4- ;RAY - 14.6)(9.23) 

EDE = 6 (N)DE = 13.54- RAY 
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D. Elast:i,,;C \,[eig;Jb.ts 

PA-= 'PA = 55.94 MA +'.14.84 (MA ... 20 RAX) + 1.79 RAX • 

P~ .- c/>B = 14.86 HA + 20.14 (MA - ?O ;RAX) + 4.86 (MA - 28 RAX 

+ 18.33 RAY • 64) - 1.79 Rj -+ j~~2 (-.4 RAX + .916· 

!(RAY - 6.41~ + 163.5 - ·4. • 

!30 == cf:,0 = (MA - 20 RAX) 4.86 + .. <Mi - ~e ~AX + 18.33 .RAY 
''' ' ' ' ..... I " •• '" .' 1 ' ,, • '.i' ' : ,\' • 

".9 64) (16.66) + (MA ;.. 20 Ru + 36.37 RAY + 64)4.86 
I I '\ 

+ (- .4 RAX t .916 RAY) (1.22) +. ( .4 RAX + .;916 RAY 

+ 6.4) (-1.22) + 154 • 
'I' 

PD =·<pD = ~MA - 28 :~AX + 18.33 RAY .. 64) (4.86) + (MA 

- 20 nAX + 36.67 RAY+ 64) (20.14) +(MA+ 36.67RAY 

+ 3e4) (14.86) _+. ( ~4 RAX + .916 RAY + 6.14-) (1.22) 

+ (RAX + 16), (-, 1.79) 0 

E •. Elastic Eguations 

EP = 0 

f47.7 MA - 2332 RAX+ 4546 RAY+ 28375 = 0 (1) 

!:PY+ Ef1x = o 

2332 MA - 40116 RAX+ 42862 RAY+ 113578 = 0 (2) 

EP:i: +!:My= 0 

4542 MA - 4f739 RAX + 154480 RAY + 1055327 = 0 (3) 
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F. Resultants 

Solving equations 1, 2, and 3, gives the following: 

RAX = 804684 Kip. 

RAY = 7.5225 Kip + 
MA = 5601181 K. ft.F) 

Applying the equatio.r+ of static, gives the following: 

R:Ex = 705316 Kip~ 

REY = 7.5225 Kip + 
~ =5103749 K. ft . ~ 

G. Comparison of Resultants 

This problem was solved by Oden (11), using the angular 

elastic weight due to bending moment only. The comparison of 

this writer 1 s resultants with Oden ' s resultants is as follows: 

Writer's Oden's 

RAX 804684 Kips 8048 Kips 

RAY 7.5225 Kips 7o55 Kips 

MA 5601181 Ki:p fto 56.02 Kip fto 

REX 7 o5 316 Kips 7o52 Kips 
- ·· -

REY 7.5225 Kips 7.55 Kips 

ME 5103749 Kip fto 5lo20 Kip ft. 



CHAPTER V 

CONCLUSION 

The applic~tion of the general stri,ng polygon theory 

to the analysis of co-planar bent members is developed in 

this thesiso 

The significant points of this study are summarized 

as .:follows: 

lo The general expression for the joint elastic 

weight due to de.formation of bending, shear and 

normal force is represented by a vector force and. 

a vector momento 

2o Thes~ joint elastic weights are applied on the 

conj~gate structure and are in equilibrium with 

the end conditioning elements (reac~ions of the 

conjugate structure)o 
', 

3o The s~ear of conjugate structure is the slope of 

real structure; also, the bending moment of the 

.conjugate structure about a given line is the de­

flection of the real s.tructure along the same line~ 

4-o Because the end conditioning elements are forming 

the st~tic equilibrium with the elastic weights, 

th:&ee independent static equations are available 
' •, I' • 

for each conjugate struc·ture. These equations are 

42 
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called the elasto-static equationso 

5. The inclusion of the influence of the shearing 

for~es and normal forces in the analysis of de­

forml:iyion of bent members loaded in their own 

plane do.es not cause a~ special difficulty by 

th;i.s method .. 



(l)o 

(2). 

(3). 

(4). 

(5)o 

(6). 

(7). 

(8). 

(9). 

(lO)o 

(11). 
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