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PREFACE

The material presented in this thesis is the outgrowth
of the seminar lectures presented by Professor Jan J. Tuma
in the Spring of 1960. The literature survey and the gen-
eral theory recorded in the introduction were prepared by
,Professor Tuma.

The application of string polygon method to the anal-
ysis of single span rigid frames, with members of variable
cross-section, was reported by John T. Oden.

The general theory of the string polygon, in terms of
the energy due to bending moments, shearing forces, and
normal forces, is presented in this thesis.

The writer wishes to express his indebtedness and
gratitude to Professor Jan J. Tuma for his invaluable aid
and guidance in preparing this thesis. The writer also ex-
presses his appreciation to Professor Roger L. Flanders
for his acting as the author's major adviser, and for his
advice and thorough reading of the manuscript.

An acknowledgment of thankfulness is also due Miss
Velda D. Davis for her exceptional skill in typing of the

manuscript.

Paul C. M. Wu
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CHAPTER I
INTRODUCTION

The idea of elastic weight and the application of the
elastic weights was introduced in the middle of the last
century by Otto Mohr (1). The extension of the application
of elastic weights and a methodical classification of elas-
tic weights was performed by Milller Breslau (2), (3). The
study of deformation of beams by means of elastic weights
was extensively presented by Wanke (4) and Chmelka (5).
The development of the joint elastic weights, in terms of
end moments for strips of small length, may be found in
work of Kaufmann (6).

In this country, the application of finite elastic
weights was shown by Hardy Cross as his Column Analogy (7)
and by Michalos as the Column, Shear and Torsion Analogy
(8).

The generalization of the joint elastic weight ex-
pression and the application of these joint elastic weights,
in connection with the string polygon, was developed by
Tuma (9) and extended by his students, Chu (10), Oden (11),
and Boecker (12), to the solution of many special problems.

The application of the string polygon method requires

calculation of angular constants, which are now available

1



in various publications. (13) (14).

In this thesis, the effort has been made to derive the
general expressions for the elastic weights in terms of the
bending moments, shearing forces, and normal forces. This
leads to the representation of the elastic weight as a
vector force and vector moment. This elastic weight is

then applied to the conjugate structure. The shear of the
conjugate étfucfure is equal to the slope of the real
structure and the bending moment of the conjugate structure
is the deflection of the real structure along the line of
the vector bending moment. The application is illustrated
by tWo examples,

The nomenclature is assembled in the front part of
this thesis. |

The sign convention of statics is used in formation
of equilibriuﬁ conditions and elasto-static equations;

The sign conVention of deformation is used for the
calculation of cross-section elements. The signs of wvectors

are governed by the right hand rule.



CHAPTER II
THEORY OF GENERAL STRING POLYGON

The general string polygon theory for bent members is
developed in this chapter. All the influences of the bend-
ing moments, shearing forces and normal forces are consid-

ered.

2=1 Basic Derivation

A bent member, ijk, loaded by a general system of
loads is considered (Figure 2-1). {The cross-section of the
member ij(jk) is given by ordinates u, u'(v,v') measured
from the respective ends. The cross-sectional elements at
a given section are:

bending moments Mu(ﬂv)’

shearing forces vu(vv), and

normal forces Nu(Nv)'

The geometry of each member is given by the slope =
and the length d. The horizontal projection of each 4 is
dk and the vertical projection of the same length is dy.
Due to the action of loads, the bent member ijk displaces
to the position i'j'k' and the change in change of the
slope at j is denoted by QJ as shown in Figure 2-1., The



Figure 2-1. Bent Member

calculation of the ¢j is accomplished by means of the vir-
tual work.
| The moments, shearing forces and normal forces at the
section, due to the loads, are shown in Figure 2=2.
The end.moments, end shears and end thrusts are des-
ignated as:
My, My, M,

v

end moments

i3 Vji’ ij, ij end‘shears

end thrusts.,

§

'Nij" Nji’ N,jk’ Nkj
The bending moment at the section u of the bent member
ij is:

+ M

i A+ 1 '
4 i EE 3 EE + BMu o (2=1la)

and at section v of the bent member Jk is:

- v! X -
Mv = Mj T, + My 3, + BN (2=1b)



" ! M M + M v'!
18 | My Rt J Ay
a v
My ad "k T
Moment Diagram
—y— e

BVu < /’_" ? v \c»—__________ 4——<>—Bv
v, L b + o L ¥ e e

i —a— K
Shearing Force

Diagram

\1 ——
Lot — BNV'

EN“ N ¥ w,, Ok ¢ |

1 ~—-o—i Ji —n—k
Normal Force

Diagram

Figure 2-2. lMoment, Shear, Normal Diagram due to Actual
Loading



where BMu and BMv are the bending moments due to loads at
the section u and v respectively.
The shearing force at the section u is:

V, =V, + BV, | - (2-2a)

and, at section v is:

Vy = Vi + BV, | (2-2p)
where BVuBVv, are the shearing forces due to loads on the
segment w and v' respectively.

The normal force at the section u is:

N, = Ny + BN, (2-3a)
and at section v is:

N =N+ BNV, (2-3b)

where BNuBNv, are the normal forces due to loads on the
segment u and v' respectively.

For the purpose of determining ¢j’ the virtual loads

1 1
- and ——
dj 3,

are applied on the member ijk as shown at the Figure 2-3,

2-3. Virtual Loads



The normal force at u and v due to these virtual
loads is equal to zero, which indicates that the normal
force has no direct influence on the formation of ¢jo On
the other hand, the shearing force and bending moment do
influence the formation of ¢j and their diagrams are shown
in Figure 244.

The bending moment at section u due to the virtual

loads is:

M) = g (2-48)
and at section v 1is:

() =4§i . (2-4b)

And, the shearing force at section u due to the virtual

loads is:

1 \
(Vu) = 53 : (2-5a)

and, at section v is:

1

) = -3, - (2-5b)

From the theory of virtual work, the change in slope

due- to bending moments and shearing forces is:



Virtual Loads

. ' d
J "2 > 4 —-"--k s - aand

vMoment Diagram

-<
a.
j+..,\»_f

—4

V 1p-||—4' T
)

Shear Diagram

Pigure 2=4. Shearing Bending Diagrams due to .
: . Virtual Loads -



J J k
o I'Iu(Mu)du +6% Vu(Vu)du 2 Mv(Mv)dv
i e T TR
i - | J
k
A Vv(Vv)dv (2-6)
A G
3 v

In terms of equations 2-4 and 2-5, the equation 2-6

will become:

J
g = M u udu uzd.u ‘3du
- M d EI d EI
i
i J BM udu k BM v'dv
+ T 2Tt +
d. EI d. EI di Elv
J

J k | J BV _du
+ V) T - Ve ] it TiT
Ja KV e
i 3 i
kav,dv
- o TAT (2-7a)
J

o, By = MGy, + mzr, s ey, ) By 2t Ny,

% vk-GkJ(") + z'rj-(v) p (2-7b)
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The angular constants in equation (2-7) can be inter-
preted in terms of a simple beam as shown in Table 2-1.
The normal force will cause a linear elongation or

contraction of each member. These deformations are:

J
a, Tt
ij . EAu
i
bj»
BNudu ( )
= 2=8a
. EAu
i
and:
k
(M) N_dv
EA.v
J .,
: |
- (2-8b)

where“Nij, Njk are end thrust at i1 and j respectively,
,BNu is the normal components of loads on the segment u,

BN, is the normal components of loads-on the segment v.



TABLE 2-1

INTERPRETATION OF ANGULAR CONSTANTS

end i.

Term Name Value Physical Meaning Illustration
Ff,'f"
(M) The angular The end slope of a 1 o
Fji flexibility u? du simple beam ij at J \ s
due to mo- d. EIu due to a unit moment —
ment. J applied at that end. ; A é@%
' ©
Foy
(M) The angular k The end slope of a “¥
F iy flexibility v dy simple beam jk at j B
due to mo- & ET due to a unit moment (’V‘
ment. 3 applied at that end. &MH______,,/
(32
: ]
(M) The angular J The end slope of a M= ﬂ
Gij carry over uu'du simple beam ij at j \
value due to d?JEIu due t0 a unit moment = =
moment . i applied at the far Ag:- i 2 i%%

XL



TABLE 2-1 (Continued)

Term Name Value Physical Meaning Illustration
_ 5
(M) The angular k The end slope of a |/ M=
de carry over vv'dv simple beam jk at J /
value due to d?kEIv due to a unit moment /fﬁ)
moment . 3 applied at the far MQ;““‘=~——- ;ﬁ}
end k. @ ®
: 7
(M) The angular The end slope of a Tﬁ
T,jk load func- BM udu simple beam ij at j \
% tion due to T due to a moment in-
moment. C: D | fluence of the sy
i loads. TS
® @
rly}
(M) The angular The end slope of a
1ak load function BMvv'dv simple beam jk at J |/
due to moment. due to a moment in-

fluence of the
loads.

ct



TABLE 2-1 (Continued)

Term Name Value Physical Meaning Illustration
‘ cY
ld
(V) The angular J The angular slope V=1
Gij carry over du of a simple beam t
value due 2 d.KuE ij at J due to a T
to shear. J unit shearing A@v
i force applied at
far end 1i. ©
GM
) The angular k The angular slope .
ij carry over dv a simple beam jk x{
value due -% dk i at j due to a unit \
to shear, shearing force o
J applied at far end 3
(V) The angular J The end slope of a Kﬂ
131 load func- BVudu simple beam ij at |
tion due to 2% I10 j due to a shear- T T
shear. " i - ing influence of
i the loads.

¢t



TABLE 2-1 (Continued)

Term Name Value Physical Meaning‘ Illustration
| T
(V) The angular @k The end slope of a Y—V
13k load func- Bvav simple beam jk at J \!

tion due to
shear.

due to a shearing in-
fluence of the loads.

&

@

IOk

1
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The physical interpretation of equations (2-8a) and

(2-8b) is self-evident and does not need to be explained.

(1)

2-2a Angular Load Function due to Bending Moment T

Consider the segment ij of the member ijk loaded only
by a system of vertical loads (Figure 2-5); it is desirable
to evaluate H&i(M) in terms of horizohtal or vertical
coordinates, since loads are usually applied in these di-
rectionéa It is necessary to imagine the horizontal pro-

jection of member ij as i'Jj' as shown in the Figure 2-5;

1)
_ Tji’i&;c

may be defined as the slope of the simple beami'j'

at j' due to loads, i'J' being the horizontal projection of

EY

ij.

(1)

- Figure 2-5. Interpretation of 7ﬁik
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If the unloaded member ij is naturally inclined at an

angle nj as shown in Figure 2-5, it follows that:

eesey and defining 7ﬁix(M) by
_ J
T (M) - BMXxdx
Jix I_EL.
ij u
i

it is éeen that

J .
731(M) ‘BMuudu - 1 B@Xxdx
TET, CGS;E T T,
i
(M)
or T = 1 Tas
J1 Cosn,  Ji% -

(2=9)

(2-10)

(2-11a)

(2-11b)

In a similar manner, the angular load-functions for

ij due to the action of horizontal loads only may be eval-

uated. T (1) is defined as the slope”of‘the simple beam

idy

i"j" at j" due to loads where i"J'" is the vertical pro-

jection of ij as shown in Figure 2-6.
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Figure 2-6. Interpretation of T.. (ﬂ)

iy
It is seen that
J By yay |
le(M) = T ET . | (2-12)
Jy Tu
i

. d: T,
Since du = Sinnj it follows that
™M _ _1
Tsy 0= ST (2-13a)
or

(1) 1 . B
Ts4 " Binw, Tiy  ° (2-13b)
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2=2b 'Angular Load Function due o Shear T(y)

By the similar manner, consider the segment ij of the

member ijk loaded only by a system of vertical loads as

shown in Figure 2-7.

where

i
o

Figure 2~7. Intefpretation of 71..(V)

BwW

BV

Jjix

“vertical loads on the segment x

perpendicular component of the loads on the

segment u of the member i]j
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and BVu = wacosnj
dx
du = Soens
d
.. (V)
defining ‘Gix by
(V) BW_dx
fr.. =% X
Jix —=t== .
' dijuG
i

It is seen that

J
BW_dx
v) X

T 7 = T3xmug (2-142)

i .
or Tji(v> = 73ix(v>cosﬁj (2-14b)
also 73k(v) = 7hkx(v>c°s“k o (2-15)

(v)

Tijy is defined as the slope of simple beam i'j®
at j" due to horizontal loads where i"j" is the vertical

projection of ij.
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QN
iy

Figure 2-8. Interpretation of T

where Bwy = Horizontal loads on the segment y
BVu = Perpendicular loads on the segment u o'f
the member ij
and BVu = BWySinn i
<
du = Sinn
J
J - J
BV_du BW_dy
(v) _ B o s 3 \
Therefore, 'Ta.i = PIE -) S:Lnnj TG (2-16a)
i i 7
) o (Ve
s = T.. S . -
or Tsi. Tiiy =~ Sinmg (2-16b)
) (Vg 17)
Tix = ka Sinm, (2-17)
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2-2c Linear Load Function due to Normal Forcef}ia

Consider the bent member ij loaded only by a system

of vertical load as shown in Figure 2#9,

o I
(%

Figure 2-9. Imterpretation ofilin(N)

The. linear load fuqction

(2-18)
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where BNX = Vertical loads on the segment x
BNu = Normal loads on the segment u of the member
iJ
and BNu = BWXSinnj
du = cgzn ‘

J
In a similar manner, consider the bent member i

loaded only by a system of horizontal loads as shown in

Figure 2-10.

BNw —
ol
’ i ;ﬁBWV |
¥ |
[ i

()
y

Figure 2-10. Interpretation of Q5
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‘The linear load function

(2-19)

where Bwy = Horizontal loads on the segment y
BNu = Normal loads on the segment u of the member
id
BNu = Bwycosnj
du=§.‘,_dl_
_ inn,

J

2—2d Change in Slope-of:the String Polygon ¢j for Vertical
“and Horizontal Loads

The change in slope of the string polygon due to the

vertical loads becomes:

- (M)
_ (11) M) o (D Tiix
Py = MGy + MjZFj +~Mk§£j? + Gosn;
Tice ) W , .
+ 55@§MK- + ViGij + Ekaj + 751Xc05nj
o+ T, (2-20)

akaOSTk
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And the change in slope of the string polygon due to

the horizontal loads becomes:

_ (1) () () . Tiiy Tiky
Py = MyGy 7 + MIF T 4 MGt 4 Sinn, * Sinm,

+ ViGi.(V> + V. G (N + T.. . Sinn. + T,

3 Kk HETT s jeySinT

(2-21)

2=2e¢ Linear Displacements of String Polygon Influenced by
Normal Forces

I

o
TN
3

NN\

o

Figure 2-11. Linear Displacement Under General Loading
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The defined linear displacement due to the influence
of the normal forces, which the general loading condition

of vertical and horizontal is considered in Figure 2-11.

(N) _ (W) . (W) _ (M) s
Aijx = Aij COSnj Aijy = Aij S:Lnnj
' (2-22)
or
E BW_a
X
X . X
Ai,jx = T + Sl]:l‘t:aj --K;E—- + coswzjcotnj .
i
(2-23)
i
and




CHAPTER III
ELASTIC WEIGHTS

The change in change of slope ¢j of bent line ijk of
Figure 1-1 at j is an angular deformation at J and it can
be treated as a vector force normal to the plane of the

bent member:

=
n
ol

(3-1)

The linear deformations Ai and Ajk can be represent-

J
ed as vector moments acting at i and Jj, respectively.

iy = My | Ajx = Mg (3-2)

The angularnand linear deformations can be treated as
elastic weights applied on the Qonjugate structure and used
in elasto-static equations for the calculation of deforma-
tions;

The relationship between a real structure and a con-

jugate structure is shown in Figure 3%-1.

26
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r’ﬁ?—_ Fixed End
e -
O= %z
Real Cantilever Bent Bar
A
A
s -X
M., Conjugate Cantilever Bent Bar

Figure 3-1l. The Relation Between a Real Structure and
. the Corresponding Conjugate Structure
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From the relationship of the real structure to the
conjugate structure, the following analogies may be stated:
1. The shear of the conjugaté structure at any
point represents the slope of the real struc-

ture at the same pbint. :

2. The bending moment of the conjugate structure

at the certain point about a given axis is the
displacement of the real structure along that
axis.

This two laws hold for anj polygon of any set of mem~
bers without regard to its end conditions and type of load-
ing. The end conditions of the real structure and the end
conditions of the corresponding cohjugate structure are re-
lated to each other as shown in Table 3-1.

The applicatién of the string polygon equations (2-7)
and (2-8) as elastic weights defined by equations (3-1) and
(3-2) to a solution of a specific problem is shown in the

last part of this thesis.



TABIE 3-1

RELATION OF THE END CONDITION
BETWEEN REAL STRUCTURE AND
THE CORRESPONDING CONJUGATE

STRUCTURE
End Real Conjugate
Condition Structure Structure
| 2
1 3 ] » ¢
Free Fixed
end end
) — —
Fixed Free
end end
3 2% AN
Simple Simple
Supported Supported

end

end ’

29



CHAPTER IV
NUMERICAL EXAMPLES

4.1, General Notes

The followigg illustrative examples comprise this
chapter of the thesis and describe the numerical procedure
of analysis by fhe general-string polygon method. Dimen-
sions are chésen to simplify calculation and units for

various values are in terms of Kips, feet and Kip-feet.

30
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4-2, Example No. 1

A three-member cantilever beam of constant cross sec-
tion is considered. (See Figure 4-1.) The angular and
linear deflections at the free end 1 are required in terms
of modulus of elasticities, E, G,, mpment of inertia I, and
area of the constant cross section A. The shape factor ob

is assumed to be 1.

| Keg

N D
TUORNY

50r,
L

|
|

8’ o

Figure 4-1. Three-Member Cantilever Beam



(a) End moments, end shears and end normal forces:

32

Evalu-| End moment ||End shearing force || End normal force
ating ]
joint | (k-ft) (kip) (kip)
(30 My | My | My Vij Vi Nig | kg
1 o of- 18 0 S 1‘58- o |+ -25%
2 o|- 18|- 98 0 - 55§ gl ‘-'gg
3 |l18|- 98|-288| - %‘t 5y + _15§ 0
4  |losl-288| of - 14 0 0 0
(b) Elastic constants
Evalu-
ating e | FieEn) | TED 1] aVac) | TV(ae)
joint
D) 13 |kJ [ 3d4 | dk | Ji]| Ik 13 (x5 | 91 | Ik
10 4 o &
X 0 g o] o -g o t=1] ‘o g
10 | 10 | 45| 80 16
2 tle 52| %l | 1]|-1|-2|-%
5| 5 |10 |10 | 80|12 P
5 2% |35 373 et e 1 e
4 g 0 lg o |12¢] o 1| o _g; 0
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‘{e) Elastic weights

’2=¢‘» - ((18)GED) + (-98)GEy) + FF + <'%‘><' o - 518
- 2522 . FA%
T =g - (-18><,521,> + (= 98>< 51 + <-288><—%—> + 568

vl

+CBG - CMC @ -t - - P -
By =y = (-98)(587) + (-288)(z59) + %—%% + (- 14)(—(;) - =22
224 9
ol

=N x - _ 8 Xdax 8
Wio= 890 = tan"f EA “'Gf""“EA = GER
. o Ok

[}
_gﬂg
[
(92]

#
i
ba|

O

24
Brox = E1 % % < 55

4
B1oy = EX ¥ 5 = 5EX



-N' 5
23—A23=( f-ﬂ+tannf.

8
X

g

‘ t‘i
B

0

60
EA

_ 180  6x32 36 . 24 _
= TEA * _éjE'A'EA+EA"
AL .60 4 _ 240
“23x T EA XS T TEA
. _ 60 _ 3 _ 180
Bosy = EL * 5 = BEx

34

Figure 4.2,

Conjugate Structure
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(e) Deformations at end 1

B o . 2200 _ 52§ Angular deformation at
¢HA- TP ZET 7\ end 1 with respect to
‘end 4
Biuy = TP + TF

40 2 240
<3%T2 é——)(s) + (5282 - Zg) (14) + %EK'*BEK

97220 _ 312 | 312 <Horizontal linear de-

81~ 5AG ' TEA - formation at end 1

b1py = ;fy
%E% gzﬁ><6> . (- a2 §E—><14>

24 180 _ 13814
%"“QEI #%) (2% - &5 - 555 - ’%ﬁ"i

_ 2%6 Vertical linear de- §

"
/\

+

formatlon at end 1

] ]
=
?)k

e
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4-2, Example 2.

Find the reactions at A and E of the symmetrical

gabled frame shown in Figure 4-3,

2R

20~-0"

E

Figure 4-~%, Symmetrical Gabled Frame



A. Elastic Constants

Joint G(szE zF(M)jE G(M)kjE G(V)ijE ‘G.(V)ka.E | z:‘t@) JE T(V)jE
A - 55.94 14.86 - -1.79 - -
B 14.86 20.14 4.86 1.79 ~1.22 163.50 4,00
c 4.86 16.66 4.86 1.22 ~1.22 150. 20 +4.00
D 4.86 20.14 1;.86 122 -1.79 - -
E 14,86 55,94 - 19 - - -

LS



‘B, M‘bments, Shearing Forces, and Normal Forces

Shearing force | Normal force
Joint |  Moment . .
Y1 kg - My k]
B M, - 20R,y R,y - AR, R,y - .916 RAX
H- 0916RAY - 604 - .LI"RAY - 1406
C_: ) A - 28 RAX N 64RAJ(+0916 RAY+ 04RAX +.916RAY - °916RAX—.4RAY- 0916 R.A.X
-+ 18033 RA.Y— 64‘ . - ’ - 604 . + 04' RAY,- 1406' 4
D MA— 20 R.A_X + °4RAX+ 0916 RAY RAX + 16 - 0916RA+.4RAY +RAY
+ 56"67RA-Y + 64 |+ 6.4 R _ - 16.4
E DM, o+ 36.67 R,y Ryx + 16 - +Ryy -
+ 384 _

8¢



C. Tinear Deformations due %o Eormal Force

39

Wember | AB % | oo | IE
1  1 S
f g | 13.54 | 9.23 |9.23 | 13.54
0
1
j; wEE - 1759 | - -
Myp = A(N)sz*';i?°5‘* Ryy
o, = a0 = (-0.916 Ry - 0.4 R,y - 14.6)(9.23) - 75.9
Msp A(N)CD= (=0.918 R,y + 0.4 Ryy - 14.6)(9.23)
Mo = s - 13,54 Ry
Mypx = O yﬁABY - -13.54 Ry
Mpoy = =7-8Ryx = 3.4R,y - 193.5 Mpoy = =34 R,y - 1.5R,y -84.3

M

‘, Mopy = ‘3'4RAX +1.5R,y -53.9

Iy

pEx = ©

Moy

= 13.54 RAY

zﬁx = -1 5.‘,6 Ryx - _5'17. 5
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D. Elastic Weights

55.94 M, + 14,84 (M, - 20 Ryp) + 179 Ry .

ol
>

fl
;@ )

"

AX

e
Lo~ IR
it
e
[}

14.86 I"'IA + 20.14 -(MA - 20 RAX) ‘+ 4,86 (MA—28R ;

+<

18.33 Ryy = 64) - L.79 R, = 1,22 (-.4 RAX'+'6916~

KRAY - 6'47? _"”16;72'5 - 4 s ' : ‘ )

il

cuf9bc - (M, - 20 Ryy) 4.86 + () - 28 Ryy + 18.33 R,

64) (16.66) + (M, - 20 Ryg + 36.37 Ryy + 64f4.86
+ ("' 04 RA.X + 0916 RAY) (1-22) + 5(04 R.A.X + ’916RA.Y
+ 6.4) (-1.22) + 154

- (M, - 2813AX + 18.33 R,y - 64) (4.86) + (M,

ol
"
-~
o]

I

D=

- 20 Ryy + 36.67 Ryy + 64) (20.14) + (M, + 36.67R

A
+ 384) (14.86) + (.4 R

AY

AX + .916 R.A.Y + 60\4’) (1022)

+ (Ryy + 16) (= 1.79) - :

E. Elastic Equations

P = 0 |

pu7.7 My - 2332 Ryy + 4546 Ryy + 28375 =0 (L)
FY + sl = 0 |

2352 M, - 40116 R;y + 42862 Ryy + 113578 =0 (2)

5PX + IFy = O

4542 M, - 42739 R,y + 154480 Ry + 1055327 = 0 - (3)
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F. Resultants

Solving equations 1, 2, and 3, gives the following:

R 8.4684  Kip <g—

AX

Ry

745225 Kip ¢

MA =5691181 Ko ftn’)

Applying the equation of static, gives the following:
REX 7.5316 Kip «—

Rpy

n

72285 Kip ¢
Mg = 51.3749 K. ft.’)

G. Comparison of Resultants

This problem was solved by Oden (1l1), using the angular
elastic weight due to bending moment only. The comparison of

this writer's resultants with Oden's resultants is as follows:

Writer's Oden's
RAX 8.4684 Kips 8.48 Kips
Ry 7.5225 Kips 7.55 Kips
M, | 56,1181 Kip ft. 56.02 Kip ft.
Rpyx| 7.5316 Kips 7.52 Kips
Rgy| 7.5225 Kips 7.55 Kips
ME 51,3749 Kip f+t. 51.20 Kip ft.




CHAPTER V

CONCLUSION

The application of the general string polygon theory

to the analysis of co-planar bent members is developed in

this thesis.

The significant points of this study are summarized

as follows:

1.

The general expression for the joint elastic
weight.due to deformation of bending, shear and
normal force is represented by a vector force and
a veetor moment.

These Jjoint elastic weights are applied on the
conjugate structure and are in equilibrium with
the end conditioning elements (reactions of the
conjugate structure).

The shear of conjugate structure is the slope of

real structure; also, the bending moment of the

~conjugate structure about a given line is the de-

" flection of the real structure along the same line.

Because the end conditioning elements are forming
the static equilibrium with the elastic weights,
three independent static equations are available

for each conjugate structure. These‘equationsare

42
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calléd the elasto-static equations.

The igclusion of the influence of the shearing
forceé and normal forces in the analysis of de-
formation of bent members loaded in their own
plané‘does not cause any special difficulty by

this method.



(1).
(2).
(3).
(4);

(5).
(6).
(7).
(8).

(9).

(10).

(11).
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