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dimensionless pressure ratio

dimensionless pressure change function
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permeability, millidarcys
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permeability of outer zone, millidarcys
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viscosity, centipoises
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reservoir thickness, feet

number of incremental time steps

percent deviation between calculated values and
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porosity, fractional
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dimensionless pressure ratio, floating-point number
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pivotal-point spacing of outer zone

radius of inner zone

number of incremental time steps

incrementing factor

number of the pivotal point at the boundary between
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number of calculations

control parameter

number of the pivotal point at the outer boundary
incrementing factor

floating-point constant
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pivotal~point spacing of inner zone, floating-point number
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number of incremental time steps, floating-point number
calculation number
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constant

constant

constant

constant

constant

number of the outermost pivotal point which the pressure
transient has reached
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distance to pivotal point of calculation
distance to inner pivotal point

constant
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dimensionless time, floating point number

dimensionless pressure change function, floating point
number
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value, floating-point number
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CHAPTER I
INTRODUCTION

The hydraulic fracturing of a petroleum reservoir alters the
physical properties of the reservoir by creating flow channels of
increased permeebility in the area adjacent to the well bore. The
petroleum industry i1s interested in determining the effective
frecture radius and the increase in effective permeability created
by different hydraulic fracturing procedures. Bottom-hole pressure
tests have been used to determine the effective permeabiliiy of
reservoirs; but, the theory which has been developed assumes the
reservoir to be of uniform permeabiiity. In the fractured reser-
Voir, this condition does not exist.

The effect of hydraulic fracturing on a petroleum reservoir
has been approximated mathematically by assuming the reservoir
is composed of two, radial,, concentric zones of different permea-
bilities. (6). This theoretical repéesentation of a fractured
reservolr 1s schematically depicted by Figure 1.

In this study a mathematical reservoir model composed of two,
concentric zones of different‘permeability was used to appfeximate
a fractured reservoir. The inner and outer zones of the reservoir.

have uniform permesbilities of Kl and K2 respectively. The radial
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FIGURE 1 RESERVOIR MODEL



extent of the reservoir was assumed to be infinite. The reservoir
was initially assumed to be at a uniform pressure; then a constant
flow rate was produced across the inner boundary.

The imposed flow rate created two pressure transients in the
reservoir. The pressure transients were determined by using a
digital computer to solve difference equations developed for fluid
flow in the system. By calculating the pressure at the inner boundary,
pressure draw-down curves were obtained.

The draw-down curves were analyzed to determine the effect of
the two transients on the pressure at the iﬁner boundary of the
reservoir° From the analysis a procedure was developed for calcu-
lating the radius and permeability of the inner zone from a draw-
down curve. A set of curves was prepared for estimating the permea~

bility of the outer zone.



CHAPTER II
PREVIOUS INVESTIGATIONS

Many single phése unsteady-state flow problems have been studied.
Most of the investigations are for finite and infinite reservoirs
with uniform permesbility. Very little literature has been pub-
lished for unsteady-state flow in petroleum reéervoirs wilth non-
uniform properties. Only a few of the more significant contributions
and those articles which directly pertain to this study will be dis~
cussed.,

Muskat (12) derived a point source solution in terms of an ex-

ponential integral for determining the unsteady-state pressure dis-
tribution in a petroleum reservoir. Horner (7) later used ﬁhe point
source solutioﬁ to calculate pressure build-up curves. A procedure
was presented for determining the pérmeability of the reservoir from
the slope of the build-up curve. A method was also given for extra-
polating bulld-up curves to obtain the shut-in reservolr pressure.
The cages of finite and infinite reservoirs were studied.

Just previous to Horner's work, Miller, Dyes and Hutchinson (10)
presented a similar procedure for calculating the effective permea-
bility of a reservoir from the slope of the pressure bulld-up curve.,
Their theory was developed from a Fourier-Bessel solution of the

radial flow equétiona The effect of after flow and of improved and



decreased permeability in area around the well bore was studied.

Van Everdingen and Hurst (15) presented a procedure for solving
the radial unsteady-state flow equation by using laplace transforma-
tions. By introducing dimensionless groups, curves and tables were
compiled from which the bottom-hole pressure after any flow period
could be determined in a uniform reservoir. TFor dimensionless time
values greater than 100, equation (R-1) which was derived from the

point source sclution was found to give accurate results.

Py = %[In(tp) + 0.80907] (2-1)

where
Pt = Dimensionless pressure change function
tD = Dimensionless time
Chatas (1) later expanded upon the work of Van Everdingen and Hurst.
Graphs and tables for calculating well bore pressures in a variety
of finite reservoir cases were developed,

Cornell and Katz (3) applied the Schmidt method for graphical
solution of heat flow problems to fluid flow in natural gas reservoirs.
The radial unsteady-state flow equation was converted into finite
difference form and integrated graphically to obtain the well bore
pressure. The effect of turbulence at the well bore was also in-
cluded.,

Cornell (2) presented a procedure for determining the effective
permeabllity of a reservoir from the draw-down curve for the constant

2

production rate case. A plot of p~ versus the logarithm of t was



made, The slope of the curve was used to evaluate the permeability

by using equation (2-2).

K

where
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_L.424 072 7Q (2-2)

2h 8

Permeability, millidarcys

Average viscosity, centipoises

Average compressibility factor
Temperature of reservoir, degrees Rankine
Flow rate, Mcf/day

Reservoir thickness, feet

Slope of curve divided by 2.303, psiaz/cycle

Mortada (11) recently published an analysis of the interference

pregsure drop for oil fields located in a non-uniform aquifer,

Loucks (9) has derived an equation in terms of Bessel functions for

calculating build-up pressures in composite reservoirs. Because of

the lack of computing facilities, the éQuation was not evaluated.

No literature has yet been published on pressure draw-down curves

for unsteady-state fluid flow in composite reservoirs.



CHAPTER III
DIMENSIONLESS GROUPS

Dimensionless groups are used In petroleum reservoir analysis
to take advantage of the principle of similtude; two different
physical systems described by equivalent dimensionless groups will
perform in a gimilar manner, The dimensionless groups which have
been presented (8) for describing the properties and producing
characteristics of natural gas reservoirs were employed in this
study. EQuivalent dimensionless groups for single phase flow in
0ll reservoirs may also be used.

Five dimensionless groups were used in this study. They are
dimensionless time, dimensionless rédial distance, dimensionless
flow rate, dimensionless pressure ratio and dimensionless pressure
change function.

Dimensionless time expresses the relationship between time,
permeability, average pressure, viscosity, porosify and well bore

redius, In field units the dimensionless time is written as follows:

| 2.634x107% t K p (an
D = bog rWZ KB"’-M)

where

tD = Dimensionless time

o+
it

Time, hours
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K = Permeability, millidarcys
D = Average pressure, psia
i = Viscosity, centipoilses

g

r= Radius of well bore, feet

Porosity, fractional

The dimensionless radius is the radial distance from the center
of the well bore to a point in the reservoir divided by the well bore

radiiis. The dimensionless radius in equation form is as followss

Y
where
R = Dimensionless radius

r

Radial distance, feet

i

r

W Radius of well bore, feetl

Dimensionless flow rate expresses the relationship between the
flow rate, average viscosity, average compressibility factor, tempera-
ture of the reéervoir, formation thickness, permeability and shut-in
formation pressure., This group is related to the slcpe of the steady
state pressure gradient. In field units the dimensionless flow rate

is expressed as followss

1,424 Qp Z T

ap  ~ h K pe® (3-3)

where

= Dimensionless flow rate

&£ 0
|ws]
i b

Flow rate, Mcf/day

=
!

= Average viscosity, centipoises
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Average compressibility factor

T = Temperature of reservoir, degrees Rankine

K = Permeability, millidarcys

h = Reservoir thickness, feet

Pe = Shut-in reservoir pressurse, psia.

The dimensionless pressure ratio represents the fractional de-~

crease In pressure at a given position and time in the reservoir.
In eguation form the dimensionless pressure ratio is written as

follows:

where
P = Dimensionless pressure ratio
p = Pressure in reservoir, psia.
P Shut-in reservoir pressure, psia.
The dimensionless pressure change function is a dimensionless
vélue which relates the dimensionless pressure ratio to the dimension-

less flow rate. The relationship is expressed as follows:

-1
Pe o= qp (3-5)

where
Py = Dimensionless pressure change function
P = Dimensionless pressure ratio
dp = Dimensionless flow rate
The equations develcped in Chapter V and all numerical calculations

were made in terms of these dimensionless groups.



CHAPIER IV
MATHEMATICAL ANALYSIS

Unsteady-state radial flow in a porous media is defined mathe-
matically by an equation which will relate pressure with position
and time. An equation of this type can be derived by using Daréy“s
Law (5) and the principle of conservation of mass.
| The pressure distribution for radial flow has been derived by
meny authors. For natural gas reservoirs, the equation for radial

flow in dimensionless form is given by equation (4-1). (8).

2

9P, 1R 2P

582~ ROR ~ dty (4-1)
where

P = Dimensionless pressure

R = Dimensionless radius
ﬁD=:Dimensionless time |
Equation (4-1) has been solved by finite differences, (3). The fiﬁite
difference scheme iz illustrated in Figure 2,
The second partial of P with respect to R is replaced by central

differences. {(13).

3%p _ P(ivrl,tp) - 2P(i,tp) + P(i-1,tp) {(4~2)
SRF (AR)®

10
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The subsecripts "i" and "tD" on P, as indicated by parentheses, de-
note the dimensionless pressure at the "ith" pivotal point at a
dimensionless time of %p. The term /AR is the dimensionless distance
between pivotal points.

The first partial of P with respect to R is also replaced by

central differences.

QP _ P(i+l,tp) - P(i~1,tp)

3 S (AT) (4=3)

Q/

The partiai of P with respect to tp is replaced by a forward

difference, (13).

0P P(i,tp+Atp) - P(i,tp)

gg; iy (4-4)

The term [}tD denotes the incremental change in dimensionless time.
When the differences are substituted for the partial differentials,

equation (4-1) takes the form given by equation {4-5).

. . . 1 P(i+1,tp)-P(i-1,tD)
P(1+1-9tD)"(2AP<Rl;.2tD>+ P<l"l9tD)+R = 2(DAR) = D e

P(i,tp+ Atp)-P(i,tp)
A

To insurs convergence, the ratio of ([ﬁR)ZépD must be aqual to
or greater than two. (14). The ratio (Z&R)zé@D is set equal to two
in order to facilitate the cancellation of the P(j tp) term. With
this substitution, equation (4~5) takes the form given by equation

(4-6). (3).
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P(i,tpr Ntp) = 1-AR/2R) P(i-1,tp)+ (4-6)
(1+AR/2_R) P(1+41,%p)]/2

The finite difference method assumes a succession of incremental
steady~-state flows to approximate unsteady-state flow. By directly
integrating the steady-state fleow eguation and substituting the
result into the finite difference scheme, a closer approximation was
obtained.

The steady-state flow equation or Darcy’s law in dimensionless

form is given by equation (4~7). (5).

qp = R‘%% (4~7)

Integration of equeticn (4~7) yields equation (4-8).

)

Equation (4-8) may be written in the form of equations (4-9) and

(4-10).
, R{(:) - . -
P(i-1) + gp In ﬁ%i%Ij = P(1) (4~9)
. Ris+1)
P{i+1) - gp 1n ﬁ%ﬁjll = P(i) (4-103

By subtracting equation (4-9) from equation (4;10) and solving

for qp, equation (4-11) is obtained.,

. y R(i+1 SN
@ = (F11) - B6-1)1 /10 'R%If)z | RS
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B

The substitution of qp from equation (4~11) into equation (4~9)

gives equation (4-12).

P(1i) = [In %%—Jiﬂjll P(i-1)+ 1In %&-}l—)— P(1+1) ]/

(1+1) (4-12)
In B(iy

By using the forward difference scheme to include time, equation
(4-12) takes the form given by equation (4-13).

' R o R ‘o -
P(i, tD+AtD) = [1n —éﬁ% P(i—l,tD) +1n %P(i*’l,t]ﬁ]/

(s j (4-13)
in 2 ?+1

R(i-1)
Both equations (4-6) and (4~13) were incorporated into computer

programs for calculating well bore pressures. The answers obtained

from the computer program incorporating equation (4-13) were in

closer agreement with the Van Everdingen and Hurst solutions than

the answers from the computer program incorporating equation (4-6).
In the derivation of the difference equation, (AR)2/Atp was

set equal to two. Solving for AR gives equation (4-14).
1

2526310~ K5 A7 '
AR = [}-— ; 5 2 ] (4=14)
M W

where
K =Permeability, millidarcys
P = Average pressure, psia.

At =Time increment, hours



Viscosity, centipoises

it

u
g

r= Radius of well bore, feet

Porosity, fractional

By changing K to K, and holding At constant, a different value of
AR is obtained. From this relationship the procedure for representing
the two zones of different permeabilities was developed. The inner
and outer zones were mathematically represented by pivotal point
spacing of ZlRl and ZXRZ respeptivelyc

By using the theory which has been presented, & procedure was
developed to cross the boundary betwesn the zones of different permea-
bilities., Figure 3 shows schematically the procedure used. The
boundary conditions are a constant flow rate across the zone of
contact and a pressure, P(i)9 common to both zones. Using these
boundary conditions, squations (4-9) and (4-10) take the form of
equations (4-15) and (~16).

R .l 1 ~
P(1+1) * ap; 1n 1) (4~15)

Py

il

/ R ¢
B(1) = P(i-1) - ap, In “é%i%l (4-16)

it

The terms Ip, and 4p, are given by equations (4-17) and (4-18),

. 1g424§:§ -Z T 8 (Z 19'-:)
= - l’_“ l{
D17 h ok PR

_ L4245 7T Q (4-18)

2
D, hE P




1 2 -2 -1 | i+l _i+2 +3 j+4
i+2

| A1PG+1,tp)
P, tp+Atp)

ZONE 1 ZONE 2
= ARy~ ~ARo~

FIGURE 3 MATHEMATICAL MODEL
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Where

Average viscosity, centipoises

i
Il

[\ B

= Average compressibility factor.

T = Temperature of reservoir, degrees Rankine
Q = Flow rate across boundary, Mcf/day

h = Reservoir thickness, feet

Shut-in reservoir pressure, psia,

Pe
Ky = Permeability of inner zone, millidarcys
K2== Permeability of outer zone, millidarcys
The dimensionless flow rate dp is obtained by dividing equation
2

(4-18) by equation (4~17) and rearranging terms. Equation (4-19)

gives q. .
D2

a - LD (4-19)
. |
2

By subtracting equation (4-15) from equation (4-16) and substituting

equation (4-19) for ap,» equation (4-20) is obtained.

R(i K R(3
ap, = [P(1,1)"P(1-D1/(1n g4l 1 Sy (4-20)
The substitution of equation (4-20) into equation (4~15) gives

equation (4-21).

Ki . R(: Res
P(i) = [K% ‘é%?%l P(i~1) + In ﬁ%%%l) P(i+1)]/

ﬂn Biil—— + §l in Eﬁiil&i
R(i-1) Ko R(4)

(4-21)



By using the forward difference scheme to introduce time, equation

(4-21) takes the form given by equation (4-22).

L1 BGa1) Ri)

P(1, tprltp)= [E; In R(;) P(i-1, tp)+ In R(lnll’P(i+l, gV

, » ~22)
[1n K1) + X1 1n Eiiiil] (422

R(i-1) %2 77 R(1)
Equation (4-19) reduces to equation (4-13) when Ky is equal to Ky,
The total elapsed time i1z equal to the number of incremental time

steps taken multiplied by the size of the time increment. Thisg re~

lationship is given by equation (4-23).
t = N(AY) (4-23)

where
t = Total tims, hours
= Number of incremental time steps
At = Time inerement, hours
By using equations (3-1), (4-14) and (4~23), an equation for the total
e¢lapsed dimensionless time In terms of the rnumber of incremental
time steps taken and the pivotal point spacing is obtained. Equé@

tion (4-24) expresses this relationship.

0 =

ty = (AR)? (424,

The equations developed in this chapter were used tc calculabte the
pressure draw-down at the inner boundary of the reservelr. Chapter V

explains the procedure which was used in making the calculations.



CHAPTER V
CALCULATION PROCEDURE

The equations developed in Chapter IV were incorporated in
e 650 Fortran program., All c;lculations were made on an IBM 650
digital computer. A listing of the program is presented in Table I,
A flow chart is présented in Figure 4 to illustrate the basic stepé
of the program.

First, 300 storage locations were reserved in the memory
of the computer. These storage locations represented the pivotal
points in the mathematical reservoir model.

The initial data read into the computer were the dimensionless
flow rate at the inner boundary of the reservoir, thé pivotal point
spacing pf the inner zone, the pivotal point spacing of the outer zone
and the radius of the inner zone. With the initial data, the calcu-
lations were made. ‘

The calculation procedure used was similar to the graphical
solution method presented by Cornell and Katz (3).

The initial condition of a uniform pressure throughout the
reserveir was imposed by setting the pressurs ratios at all pivotal
points equal to one. A constant flow rate across the inner boundary
was then imposed on the reservoir. This condition was imposed by

setting the slope of the ﬁressure gradient on the logarithmic distance

19
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THE 650 FORTRAN PROGRAM

DIMENSIONP(300)
READsKQD sKDRK1 sKDRKZ2 s KRK1Z#NsK
DRISIKRsNPCoL+I0BsM
A=KQD

QD=A%0,000001

A=KDRK1

DRK1=A%#0.,01

A=KDRK2

DRK2=A%0.01

A=KRK1Z

RK1Z=A%#0,01+1.0

DRI=KDRI

AlIKR=IKR

AN=N

K=1

CONTINUE

J=1

D0O211=14300

PlI)=140

Z=(DRK1/DRK2 ) %#%2

T=LOGEF( (RK1Z+DRK1) /RK1Z)
W=Z%*T

X=LOGEF (RK1Z/(RK1Z-DRK1))
Y=W+X

S=QD¥*LOGEF (2+0%DRK1)
IMAX=3

CONTINUE

DO521=3sIMAX»2

IF(I-1IMAX) 38452452

Al=1

IF(I=TKR)40s44046
RO=AI*DRK1+1.0

RI=RO-DRK1

RN=RI-DRK1

GOTO49
P(1)=(W*P(I=1)+X%*¥P(1+1))/Y
GOTO52
RI=RK1Z+(AI-AIKR)*DRK2
RO=RI+DRK2

RN=RI-DRK2

B=LOGEF (RI/RN)

C=LOGEF (RO/RN)
PII)=P(I=1)+(P(1+1)=P(I=-1))%*B/
C

CONTUNUE

P{1)=P(3)-5
IF(IMAX-10B)56+58458
IMAX=IMAX+1

GOTO59
P(10B)=P(I0B~-1)
CONTINUE

DOT761=29IMAX»2
IF(I-IMAX)162s76276
Al=]

63
64
65
66
67
68
69
70
71
12
73
14
15
75
716
78
79
126
80
81
118
119
82
83
84
85
86
87
88
89
90
91
110
111
121
121
112
113
114
115
116
94
95
96

97
98
99
100
101
103
104
105

C0O000C0C0OO=O0DO0O0C0O00C0O000000O000C000COCO=0DO0O0O00000CCOO0O0O0O

cocoCcOoOOOO

IF(I=IKR)64+68+70
RO=AI*DRK1+1,0

RI=RO-DRK1

RN=R1-DRK1

GOTO73
PII)=(W*P(I=1)+X*P(I+1))/Y
GOTO76
RI=RK1Z+(AI-AIKR)*DRK2
RO=RI+DRK2

RN=RI-DRK2

B=LOGEF (RI/RN)

C=LOGEF (RO/RN) ,
P(I)=P(I=1)+(P(I+1)=-P(1-1))%B/
[}

CONTUNUE

IF(J=N)T79s82+82

J=J+2
IF(IMAX=I0B)80+118s118
IMAX=1MAX+1

GOTO35

P(IOB)=P(10B-1)

GOTO35

TD=AN*0s5%DRK1%%2
PT=0+5%(LOGEF{TD)+0+80907)
APR=PT#*QD

CPR=1+0-P(1)
DEV=(APR~CPR)/APR

KTD=TD

KPT=PT#1000,0
KP=P(1)*100000000,0
KDE=DEV#100004.0
KDRK1=DRK1#100.,0
GOTO(116s111)sL

CONTINUE :
PUNCH»KDRK1sKDRKZ2+sKRK1Z# IKRs IM
AXsTDsPT

DO1141=1,300

PUNCH» I sP( 1)

CONTINUE

GOTO1

CONTINUE
PUNCHsKoKTD s KP s KPT o KDE # N9 KDRK1
IF (K=NPC)96+s1s1
BIKR=(AIKR=1.0)=-DRI*1.0
IKR=BIKR

I0B=IKR*M+1
BDRK1=({RK1Z-140)/BIKR
DRK2=DRK2* (BDRK1/DRK1)
DRK1=BDRK1

AIKR=BIKR+1,0

IKR=AIKR

E=K+1

GOTO16

END
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between pivotal points one and three equal to the dimensionless flow
rate across the ilnner boundary.

Equation (4-13) was used to calculate the pressure transients in
the reservoir. The pressure ratios were alternately calculated at
successive even and odd numbered pivotal points. The calculations
for each set of pivotal points represents an increment in timeo

The pressure transient moved outward one pivotal point spacing
with each time step. When the pressure transient crossed the boundary
between the two zones, equation (4-22) was used to calculate the
pressure ratio at the pivotal point on the boundary.

After a specified number of time steps had been taken, the total
elupsed dimenslonless time, the dimensionless pressure change func-
tion and the percent deviation were calculated. The total elapsed
dimensionless time was calculated by using equation (4=24). Equa-
tion (2-1) was used to calculate the dimensionleés pressure change
function. The percent deviation between the ca%;ulated answers and
the Van Everdingen and Hurst solutions was obtaiged by using equa-
tion'(5-—l)°
_ 5 qD"fE:P

D = x 100 (5-1)
Pt qD )

where
D = Percent deviation
Pt: Dimensionless pressure change function
P = Dimensionless pressure ratio at inner boundary

Ap= Dimensionless flow rate across inner boundary



The pivotal point spacing was increased and the entire calcu-
lation procedure was repeé'tedo A new pressure ratio was thus ob-
tained at a larger dimensionless time after the same number of calcu-
lations. This resulted in a nearly constant percent deviation between
the calculated values and accepted values. The calculation procedure
was repeated until a specified number of pressure ratios had been
calculated.

For the case of zero permeability in the outer zone, the pressure
ratios at the pivotal peint on the boundary between the zones and the
next inner pivotal point were set equal to each other after every
time step. The flow across the boundary was thus set equal to zero.

The calculation procedure requires a vast amount of very accurate
calculations; consequently, the only feasible means for making the

calculations was on a digital computer,



CHAPTER VI
PRESENTATION OF RESULTS

The answers, obtained for the case of an inner permeability
zone with dimensionless radius of 600, are presented in Table II,
Similar sets of answers were calculated for reservoirs with inner
permeability zones of dimensionless radii equal to 300, 400 and 500,

The values of the pressure ratios calculated at the inner boundary,
when the permeabillty ratio between zones was equal to one, agree very
closely with the Van Everdingen and Hurst solutions. The maximum
deviation was less than 0.65 percent. For the case of an infinite
permeability ratio, the dimensionless pressure ratios calculated
agreed within 0.50 percent of answers obtained from an eqguation de-
veloped by Chatas (1).

The results of all cases were made to coincide with one set
of curves by properly selecting the dimensionless parameters for
the coordinates of the plot., Figure 5 shows a plot of the results.
The curves all deviated from a straight line at the same dimensionless

' 2
value of tD/Rl"

The symbol Rl is used to denote the radius of the
inner zone. The plot 1s for dimensionless times greater than 100 and
dimensionless radii of the inner zone greater than 150,

The dimensionless pressure change function was used on one

coordinate so the curves could be used for any flow rate. The
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dimensionless pressure change functions for the plot were obtailned
from the calculated dimensionless pressure ratios by using equation
(3-5).

The straight line portion of the cufves represents the pressure
draw-down that would occur if the entireﬂreservoir had. the same
permeablility as the inner zone. The effébt‘of the outer permea-

bility zone on the draw-down curve occurs when the curve deviates

from a straight line.



CHAPTER VII

SUMMARY AND CONCLUSIONS

The purpose of this study was to develop a procedure for
theoretically determining the effective fracture radius and the in-
crease in effective permeability created by hydraulic fracturing a
natural gas reservoir.

A fractured reservoir was approximated by assuming the reservoir
was composed of two radial concentric zones of different permeabilities.
Difference equations were developed to solve the flow equation for the
system, By incorporating the difference equation into & computer pro-
gram, dimensionless pressure ratios at the inner boundary of the
reservoir were determined for the constant production rate case.

The results were plotted on a coordinate system which gave the same
set of curves for reservoirs with various inner zone radii.

The reservoir was initially assumed to have a uniform pressure.
Then a constant flow rate was imposed across the inner boundary. The
pressure transient created by the imposed flow rate moved outward in
the reservoir with time. When the pressure transient reached the
outer zone, the change in permeability resulted in a second transient
being reflected back towards the inner boundary.

Before the second transient reached the inner boundary of the

reservoir the pressure draw-down curve was determined by the

28
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permeability of the inner zone., The straight line portion of the
curve represents the draw-down characteristics of a reservoir with

a uniform permeability. This conclusion is illustrated by the curve
for the case where the permeability ratio between the inner and outer
zones is equal to one.

After the second pressure transient reached the inner boundary,
the pressure draw-down curve deviated from a straight line. The
amount of deviation depended upon the permeability ratio between
the inner and outer zones.

The time required for a pressure transient to reach the outer
zone and be reflected back was dependent upon the radius and permea-~
bility of the inner zone, From the draw-down curves, this time was
determined to be equivalent to a tD/Ri value of 0.25. This relation-
ship agrees with an equation developed by Cornell (4) to determine
the dimensionless time at which the pressure draw-down curve for the
finite reservoir case deviates from a straight line. The case of
an infinite permeability ratio between the inner and outer zones
is equivalent to the finite reservoir ease.

From the analysis of the results, it was concluded that the
permeability of the inner zone could be determined for the slope of
the straighthline portion of the draw-down curve:> The procedure for
calculating the effective permeability from draw-down curves has been
presented by Cornell (2)(8). The procedure is discussed in Chapter II,

By determining the tp value at which the draw-down curve deviated
from a straight line, the radius of the inner zone can be calculated.
The inner zone radius is obtained by multiplying the tD value by

0.25. By using the coordinates of Figure 5 to draw a curve, the



permeability of the outer zone can be estimated by comparing the
curve with the plot in Figure 5. An example problem is worked
in the Appendix.

The dimensionless groups used in developing the difference
‘equations were for natural gas reservoirs. The results and curves
apply equally as well to single phase production from oil reservoirs

when dimensionless groups for oil reservoirs are used.



CHAPTER VIII
RECOMMENDATION FOR FUTURE STUDY

The draw-down pressures calculated in this study were for the
constant production rate case in an infinite composite reservoir,
Draw-down curves for the constant pressure case could be calcu-
lated using the procedure which has been presented. The case of
a finite composite reservoir could also be investigated.

A closely related problem would be developing theory for
pressure build-up curves in composite reservoirs. The finite
difference procedure was extended to calculate pressure build-
up curves; but, sufficient accuracy was not achieved. The equa-
tion developed by Loucks (9) could be évaluated on a computer to
obtain pressure build-up curves.

By studying actual field tests, a comparison could be made
between the pressure draw-down and build-up characteristics of

fractured reservoirs and non-uniform mathematical reservoirs.
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APPENDIX

The following problem was made up to 1llusirate the calculation
procedure used for determining the radius of the inner zone and the
permeabilities of both zones in a composite reservoir.

PROBLEM:

4 fractured natural gas well which hasg been shut-in is prodused
at a constant fiow rate of 500 Mcf/day. The original reservoir
pressure was 800 psia, The bottom-hole pressures are shown in

Table III. The known fluid and reservolr properties are as followss

i

Reservoir temperature, T = 125°F
Porosity, ¢ = 0.20
Reservoir thickness, h = 17.0 feet

0.022 centipoises

Viscosity,u
Well bore radius, r = 0,25 feet
Determine the effective fracture radius and the permeability of the

inner and outer zones.

SOLUTION:

A semilogarithmic plot of the draw-down data is constructed.
Figure 6 shows this plot. By using equation (2-2), the permeability
of the inner zone is determined from the slope of the first poriicn
of the draw-down curve. The slope was found to be'6y100 psia2 per

time cycle.

3h



TABLE III

EXAMPLE PROBLEM DRAW-DOWN DATA

Measurement Time Pressure
Number (hours) (psia)
1 0.15 779.2
2 0.25 778.2
3 0.50 777.2
4 0.75 776.5
5 1.00 775.9
6 1.25 775.5
7 1.50 775.0
1.75 7746
9 2,00 .1
10 2.50 773.3
11 3.00 772.4
12 4,00 7711
13 5,00 770.1
14 6,00 769.1
15 7.00 768, 5
16 8.00 767.6
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1,424 02T 9
Ky = 2h S
Ko Leblh X 0.022 x 0,89 x 585 x 500 x 2.303
1 2 x 17 x 6.1x10°

Kl = 90.6 millidarcys

To determine the radius of the inner zone, the dimensionless
time at which the draw-down curve deviates from a straight line is
first calculated. From Figure 6 the time the draw-down curve deviates
from a straight line is 1.32 hours. By using equation (3-1) the dimen-

sionless time is calculated.

2634310 7 K T
= 2

%
D y
bogr,

: ::g&ézgxlo”A_x 1.32 x 90.6 x 783.5
D 0.022 x 0,20 x 0,0625
tD = 90,000
Knowing that the draw-down curve deviates from a straight line at a

2 3
tp/Ry value of 0,25, the radius of the inner zone can be calculated.

tp &
R= G538
1
Ry= 2(90,000)%
Ry= 600

By using equation (3-2) the inner zone radius in feet is obtained.

R - &
T
T = 600 x 0.25

r - 150 feet
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The permeability of the outer zone 1s determined by making a
plot shown by Figure 7. The Py function for the plot is obtained
from equations (3-3), (3-4) and (3-5). By comparing the curve in
Figure 7 with the curves in Figure 5, the permeability ratic of the
inner and outer zones was determined to be 4.0. Since the permea-
bility of the inner zone has already been determined, the permea-

bility of the ocuter zone can be calculated.
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