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CHAPTER I 

INTRODUCTION 

The hydraulic fracturing of a petroleum reservoir alters the 

physical properties of the reservoir by creating flow channels of 

increased permeability in the area adjacent to the well bore. rrhe 

petroleum industry is interested in determining the effective 

fracture radius and the increase in effective permeability created 

by different hydraulic fracturing procedures. Bottom-hole pressure 

tests have been used to determine the effective permeability of 

reservoirs; but, the theory_which has been developed assumes the 

reservoir to be of uniform permeability. In the fractured reser­

voir, this condition does not exist. 

The effect of hydraulic fracturing on a petroleum reservoir 

has been approximated mathematically by assuming the reservoir 

is composed of two, radial,,concentric zones of different permea­

bilities. (6). This theoretical representation of a fractured 

reservoir is schematically depicted by Figure L 

In this study a mathematical reservoir model composed of two . 

concentric zones of different permeability was used to approximate 

a fractured reservoir. The inner and outer zones of the reservoir 

have uniform permeabilities of K1 and K2 respectively. The radial 

1 
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ZONE 2 

FIGURE 1 RESERVOIR MODEL 



extent of the reservoir was assumed to be infinite. The reservoir 

was initially assumed to be at a uniform pressure; then a constant 

flow rate was produced across the inner boundary. 

The imposed flow rate created two pressure transients in the 

reservoir. The pressure transients were determined by using a 

3 

digital computer to solve difference equations developed for fluid 

flow in the system. By calculating the pressure at the inner boundary, 

pressure draw-down curves were obtained. 

The draw-down curves were analyzed to determine the effect of 

the two transients on the pressure at the inner boundary of the 

reservoir. From the analysis a procedure was developed for calcu­

lating the radius and permeability of the inner zone from a draw­

down curve. A set of curves was prepared for estimating the permea­

bility of the outer zone. 



CHAPI'ER II 

PREVIOUS INVESTIGATIONS 

Many single phase unst'eady-state flow problems have been studied, 

Most of the investigations are for finite and infinite reservoirs 

with uniform permeability. Very little literature has been pub-

lished for unsteady-state flow in petroleum reservoirs with non-

uniform properties. Only a few of the more significant contributions 

and those articles which directly pertain to this study will be dis-

cussed. 

Muskat (12) derived a point source solution in terms of an ex­

. ponential integral for determining the unsteady-state pressure dis­

tribution in a petroleum reservoir. Horner (7) later used the point . 
source solution to calculate press,p-~ build-up curves. A procedure 

was presented for determining the permeability of the reservoir from 

the slope of the build-up curve. A method was also given for extra-

polating build-up curves to obtain the shut-in reservoir pressure. 

The cases of finite and infinite reservoirs were studied. 

Just previous to Hornervs work, Miller, Dyes and Hutchinson (10) 

presented a similar procedure for calculating the effective permea-

bility of a reservoir from the slope of the pressure build-up curve. 

Their theory was developed from a Fourier-Bessel solution of the 

radial flow equation. The effect of after flow and of improved and 

4 
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decreased permeability in area around the well bore was studied. 

Van Everdingen and Hurst (15) presented a procedure for solving 

the radial unsteady-state flow equation by using Laplace transforma­

tions. By introducing dimensionless groups, curves and tables were 

compiled from which the bottom-hole pressure after any flow period 

could be determined in a uniform reservoir. For dimensionless time 

values greater than 100, equation (2-1) which was derived from the 

point source solution was found to give accurate results. 

where 

Pt - %[1n(tn) + Oo80907 J 

Pt"" Dimensionless pressure change function 

tD =cc Dimensionless time 

(2-1) 

Chatas (1) later expanded upon the work of Van Everdingen and Hurst, 

Graphs and tables for calculating well bore pressures in a variety 

of finite reservoir cases were developed. 

Cornell and Katz (3) applied the Schmidt method for graphical 

solution of heat flow problems to fluid flow in natural gas reservoirs. 

The radial unsteady-state flow equation was converted into finite 

difference form and integrated graphically to obtain the well bore 

pressure. The effect of turbulence at the well bore was also in­

cluded. 

Cornell (2) presented a procedure for determining the effective 

permeability of a reservoir from the draw-down curve for the constant 

production rate case. A plot of p2 versus the logarithm oft was 



made. The slope of the curve was used to evaluate the permeability 

by using equation (2-2). 

1 2424 µ Z T Q 
K = 2 h S 

(2-2) 

where 

K = Permeability, millidarcys 

µ=Average viscosity, centipoises 

z = Average compressibility factor 

T = Temperature of reservoir, degrees Rankine 

Q = Flow rate, Mcf /day 

h = Reservoir thickness, feet 

S = Slope of curve divided by 20303, psia2/cycle 

Mortada (11) recently published an analysis of the interference 

pressure drop for oil fields located in a non-uniform aquifer" 

Loucks (9) has derived an equation in terms of Bessel functions for 

calculating build-up pressures in composite reservoirs. Because of 

the lack of computing facilities, the ei'quation was not ~valuated. 

No literature has yet been published on pressure draw-down curves 

for unsteady-state fluid flow in composite reservoirs. 

6 



CHAPI'ER III 

DIMENSIONLESS GROUPS 

Di.mensionless groups are used in petroleum reservoir analysis 

to take advantage of the principle of similtude; two different 

physical systems described by equivalent dimensionless -groups will 

perform in a similar manner. The dimensionless groups which have 

been presented (8) for describing the properties and producing 

characteristics of natural gas reservoirs were employed in this 

study. Equivalent dimensionless groups for single phase flow in 

oil reservoirs may also be used. 

Five dimensionless groups were used in this study. They are 

dimensionless time, dimensionless radial distance, dimensionless 

flow rate, dimensionless pressure ratio and dimensionless pressure 

change function. 

Dimensionless time expresses the relationship .between time, 

permeability, average pressure, viscosity, porosity and well bore 

radius. In field units the dimensionless time is written as followsg 

where 

:::: 
2.634xl0-4 t K p 

µ .0 rw2 

tD = Dimensionless time 

t = Time, hours 

7 

(J-1) 



K = Permeability, millidarcys 

p = Average pressure, psia 

ll = Viscosity, centipoises 

¢ Porosity, fractional 

r = Radius of well bore, feet w 

The dimensionless radius is the radial distance from the center 

of the well bore to a point in the reservoir divided by the well bore 

radius. The dimensionless radius in equation form is as followsg 

R"" L (3-2) 
rw 

where 

R Dimensionless radius 

r Radial distance, feet 

r Radius of well bore, feet w 

Dimensionless flow rate expresses the relationship between the 

flow rate, average viscosity, average compressibility factor, tempera-

ture of the reservoir, formation thickness, permeability and shut-in 

formation pressure. This group is related to the slope of the steady 

state pressure gradient. In field units the dimensionless flow rate 

is expressed as follows~ 

where 

1,424 Q bi;' Z T 
h K Pf2 

qD = Dimensionless flow rate 

Q = Flow rate, Mcf/day 

µ = Average viscosity, centipoises 

(3-J) 
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Z = Average compressibility factor 

T = Temperature of reservoir, degrees Rankine 

K = Permeability, millidarcys 

h == Reservoir thickness, feet 

Pf = Shut-in reservoir pressure, psia. 

The dimensionless pressure ratio represents the fractional de-

crease in pressure at a given position and time in the reservoir. 

In equation form the dimensionless pressure ratio is written as 

follows: 

(:3-4) 

where 

P = Dimensionless pressure ratio 

p = Pressure in reservoir, psia. 

Pr= Shut-in reservoir pressure, psia. 

The dimensionless pressure change function is a dimensionless 

value which relates the dimensionless pressure ratio to the dimension-

less flow rate. The relationship is expressed as followsg 

(3-5) 

where 

Pt = Dimensionless pressure change function 

P = Dimensionless pressure ratio 

qD == Dimensionless flow rate 

The equations developed in Chapter Vandall numerical calculations 

were made in terms of these dimensionless groups. 



CHAPTER IV 

MATHEMATICAL ANALYSIS 

Unsteady-state radial flow in a porous media is defined mathe­

matically by an equation which will relate pressure with position 

and time. An equation of this type can be derived by using Darcyns 

Law (5) and the principle of conservation of masso 

The pressure distribution for radial flow has been derived by 

many authors. For natural gas reservoirsf the equation for radial 

flow in dimensionless form is given by equation (4-1). (8) 0 

(4-1) 

where 

P = Dimensionless pressure 

R = Dimensionless radius 

tD = Dimensionless time 

Equation (4-1) has been solved by finite differences. (3). The finite 

difference scheme is illustrated in Figure 2. 

The second partial of P with respect to R is replaced by central 

differences. (13). 

o2P = P(i-t--1,tp) - 2P(i~tn) + P(i-1,tn) 
dR2 (6R) · 

(4-2) 

10 
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FIGURE 2 • DIFFERENCE SCHEME 
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The subscripts 11 i 11 and 11 tn" on P, as indicated by parentheses, de­

note the dimensionless pressure at the 11 ith 11 pivotal point at a 

dimensionless time of +.0" The term /S.R is the dimensionless distance 

between pivotal points" 

The first partial of P with respect to R is also replaced by 

central differences" 

(4-.3) 

The partial of P with respect to to is replaced by a forward 

differenceo (13) 0 

(4-4) 

The term 6t0 denotes the incremental change in dimensionless time" 

When the differences are substituted for the partial differentials, 

equation (4-1) takes the form given by equation (4-5)" 

P(i+l.2 to)-2P(i, to)+ P(i-19 tp)+1 P( i+l, to)-P(i-1, to) 
(.6R) 2 . R 2(.6,R) 

(4-5) 
P(i,to+.6.to)-P(iyto) 

.6.to 

To insure convergence~ the ratio of (6R) 2lto must be equal 

or greater than two" (14)" The ratio (6R) 2 ft0 is set equal to two 

in order to facilitate the cancellation of the P(i,to) termo With 

this substitution, equation (4-5) takes the form given by equation 

(4-6)o (3)o 
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P(i,tn-i-6t0) =[< 1-.6.R/2R) P(i-1,tn)+ (4-6) 

(l+~/2R) P(i+l,t0)]/2 

The finite difference ·method assumes a succession of incremental 

steady-state flows to approximate unsteady-state flowo By directly 

integrating the steady-state fl.ow equation and substituting the 

result into the finite difference scheme, a closer approximation was 

obtainedo 

The steady-state flow equation or Darcy 1s Law in dimensionless 

form is given by equation (4-?)o (5)o 

(4-7) 

Integration of equation (4-7) yields equ.ation (4-8) o 

(4-8) 

Equation (4-8) may be written in the form of equations (4-9) and 

(4-10). 

P(i-1) + q ln R(i) . 
D R(i-1) ;, p(i) (4-9) 

P(i+l) l R(i+l) 
- qn n R(i) = P( i) (4-10) 

By subtracting equation (4-9) from equation (4_:'10) and solving 

for qn, equation (4-11) is obtainedo 

(4-11) 
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The substitution of q0 from equation (4-11) into equation (4-9). 

gives equation (4-12). 

P( i) = [l R(i+l) 
n R(i) P(i-1)+ 1n R(i) P(i+l)]/ 

R(i-1) 

ln R(i+l) 
R(i-1) 

(4-12) 

By using the forward difference scheme to include time, equation 

(4-12) takes the form given by equation (4-13). 

= [l R(i+l) 
n R(i) 

ln R( i+l) 
R(i-1) 

R(') 
+ln R(t-l)P(i+l,tn)J/ 

(4-13) 

Both equations (4-6) and (4-13) were incorporated into computer 

programs for calculating well bore pressures. The answers obtained 

from the computer program incorporating equation (4-13) were in 

closer agreement with the Van Everdingen and Hurst solutions than 

the answers from the computer program incorporating equation (4-6). 

In the derivation of the difference equation, (~R) 2/~tD was 

set equal to two. Solving for 6R gives equation (4-14). 

where 

1. 

6 R = [2x2 86J4,xl0 ~4 K] 6t J 2 

µ 0 rw 

K =Permeability, millidarcys 

p = Average pressure j psia • 

.6t = Time increment, hours 

(4-14) 



µ=Viscosity, centipoises 

¢=Porosity, fractional 

r = Radius of well bore, feet 
'W 

By changing K to K2 and holding ~t constant, a different value of 

15 

/:),R is obtainedo From this relationship the procedure for representing 

the two zones of different permeabilities was developed. The inner 

and outer zones were mathematically represented by pivotal point 

spacing of 6R1 and 6.R2 respe_ctively. 

By using the theory which has been presented, a procedure was 

developed to cross the boundary between the zones of different permea-

bilities. Figure 3 shows schematically the procedure used. The 

boundary conditions are a constant flow rate across the zone of 

contact and a pressure!/ P(i) 1 common to both zones. Using these 

boundary conditions, equations (4-9) and (4-10) take the form of 

equations (4-15) and ~-16)0 

P(i) = P(i+l) + qD ln R(i) 
l R(i-1) 

(4-15) 

(4-16) 

The terms qD1 and qD2 are given by equations (4-17) and (4-18). 

q :_ 1, 424 µ Z T Q 
D1- h K1 p~2 

(4-17) 

(4-18) 



1 2 i-2 i-1 i i+1 i+2 i+3 i+4 

:,., _.., ....- - ((i+t,t0) 

P(i-1, ~)P(i, to~D.lo) 

ZONE 1 ZONE 2 

LiR1 R2 

FIGURE 3 MATHEMATICAL MODEL 
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Where 

µ Average viscosity, centipoises 

-Z Average compressibility factor 

T Temperature of reservoir, degrees Rankine 

Q = Flow rate across boundary, Mcf/day 

h = Reservoir thickness, feet 

Pf= Shut-in reservoir pressure, psia, 

K1 = Permeability of inner zone, millidarcys 

K = 2 Permeability of outer zone, millidarcys 

The dimensionless flow rate qD is obtained by dividing equation 
2 

(4-18) by equation (4-17) and rearranging terms. Equation (4-19) 

gives qD. 
2 

(4-19) 

By subtracting equation (4-15) from equation (4-16) and substituting 

equation (4-19) for qD2, equation (4-20) is obtained, 

Rf~\ K R(· 1) qD = [P( · 1)-P(i-l)]/[ln -.LI:L-+ _l lnH ] 
1 i+ R(i-1) K R(i) 

2 

The substitution of equation (4-20) into equation (,4.-15) gives 

equation ( 4-21) • 

R(i+ll ~ 
R(i) P(i-1) + ln R(i-1) P(i+l)]/ 

Q..n R( i) + K1 ln R(i+ l)J 
R(i-1) K2. R(i) 

(4-20) 

(4-21) 



By using the forward difference scheme to introduce time, equation 

(4-21) takes the form given by equation (4-22). 

R( i) 
P(i-1, tD) + ln R(i-~)"" P(i+l, tD) ]/ 

R( i+l) (4-·22) 
ln R(i) ] 

Equation (4-19) reduces to equation (4-13) when K1 is equal to K2, 

The total elapsed ti.me is equal to the number o.f incremental time 

steps ta.ken multiplied by the size of the time increment. This, re·· 

lationship is given by equation (4-23), 

where 

t c:: N(6t) 

t = 'l'otal time, hours 

N = Number of incremental time steps 

Dt = Time increment~ hours 

(4-'2J) 

By using equations (3-1) 9 (4-14) and (4-23) J an equation for the total 

elapsed dimensionless time in terms of the number of incremental 

time steps taken and the pivotal point spacing is obtained. Equa­

tion (4-24) expresses this relationship. 

(4-·24) 

The equations developed in this chapter were used to calculate the 

pressure draw-down at the inner boundary of the reservoir. Chapter V 

explains the procedure which was used in making the calculation:so 



CHAPTER V 

CALCULATION PROCEDURE 

The equations developed ~n Chapter IV were incorporated in 

a 650 Fortran program. All calculations were made on an IBM 650 

digital computero. A listing of the program is presented in Table I. 

A flow chart is presented in Figure 4 to illustrate the basic steps 

of the program. 

First 9 300 storage locations were reserved in the memory 

of the computer. These storage locations represented the pivotal 

points in the mathematical reservoir model. 

The initial data read into the computer were the dimensionless 

flow rate at the inner boundary of the reservoir, the pivotal point 

spacing of the inner zone, the pivotal point spacing of the outer zone 

and the radius of the inner zone. With the initial data, the calcu­

lations were made. 

The calculation procedure used was similar to the graphical 

solution method presented by Cornell and Katz (J)o 

The initial condition of a uniform pressure throughout the 

reservoir was imposed by setting the pressure ratios at all pivotal 

points equal to oneo A constant flow rate across the inner boundary 

was then imposed on the reservoir. This condition was imposed by 

setting the slope of the pressure gradient on the logarithmic distance 

19 
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TABLE I 

THE 650 FORTRAN PROGRAM 

DIMENSIONPl3001 63 0 IF(I-IKRl64,68t70 
l 0 READtKOD,KDRK1,KDRK2tKRK1ZtNtK 64 0 ROaAI*DRKl+l,0 
1 1 DRitIKR,NPC,LtIOB,M 65 0 Rl=RO-DRKl 
2 0 AaKQD 66 0 RN•RI-DRKl 
3 0 QD=A•0,000001 67 0 GOT073 
4 0 A•KDRKl 68 0 Pl I 1 "IW*PI I-ll+X*PI I+l 11 /Y 
5 0 DRKl=A•0,01 69 0 G0T076 
6 0 A=KDRK2 70 0 Rl•RK1Z+IAI-AIKRl•DRK2 
7 0 DRK2•A•O,Ol 71 0 ROcRI+DRK2 
8 0 A•KRKlZ 72 0 RN=RI-DRK2 
9 0 RKlZ•A•0,01+1,0 73 0 B=LOGEFIRI/RNI 

10 0 DRizKDRI 74 0 C=LOGEF I RO/RN I 
11 0 AIKR,.IKR 75 0 PI I I =PI 1-11+ IP I I +11-P I 1-1 I I *Bl 
12 0 AN:N 75 1 C 
13 0 K=l 76 0 CONTUNUE 
16 0 CONTINUE 78 0 IF(J-Nl79,B2,82 
17 0 J=l 79 0 J=J+2 
20 0 00211"1 t-300 126 0 IF!IMAX-IOB)80tll8tll8 
21 0 Plll=l,0 80 0 IMAX=IMAX+l 
25 0 Z=(DRK1/DRK21**2 Bl 0 GOT035 
26 0 T=LOGEFIIRKlZ+ORKll/RKlZI 118 0 PIIOB)=PIIOB-11 
27 0 W=Z•T 119 0 GOT035 
28 0 X'"LOGEFIRKlZ/IRKlZ-DRKll) 82 0 TD=AN*0,5•DRK1**2 
29 0 Y=W+X 83 0 PT=0,5•(LOGEF(TD)+Oo809071 
30 0 S=QD•LOGEF12,0*DRK1) 84 0 APR=PT•QO 
34 0 IMAX=3 85 0 CPR=l,0-P(l) 
35 0 CONTINUE 86 0 DEV=IAPR-CPR)/APR 
36 0 00521=3,IMAX,2 87 0 KTD=TO 
37 0 IFII-IMAX)38,52,52 88 0 KPT=PT*lOOO,O 
38 0 AI=I 89 0 KP=Plll*lOOOOOOOOoO 
39 0 IFII-IKRl40t44,46 90 0 KOE=DEV•lOOOOoO 
40 0 RO=AI*ORKl+loO 91 0 KDRKl=DRKl*lOO,O 
41 0 Rl=RO-DRKl 110 0 GOTO(ll6,lllltl 
42 0 RN=RI-DRKl 111 0 CONTINUE 
43 0 GOT049 121 0 PUNCH,KORKl,KORK2tKRK1ZtIKR,IM 
44 0 PIIl=IW*P(I-l)+X*PII+lll/Y 121 1 AX,TD,PT 
45 0 GOT052 112 0 001141=1,300 
46 0 Rl=RK1Z+IAI-AIKRl•DRK2 113 0 PUNCHtltP(Il 
47 0 RO=RI+DRK2 114 0 CONTINUE 
48 0 RN=RI-ORK2 115 0 GOTOl 
49 0 B= LOGEF (RI/RN) 116 0 CONTINUE 
50 0 C=LOGEF I RO/RN I 94 0 PUNCH,KtKTD,KP,KPTtKOE,NtKDRKl 
51 0 Pl I )=Pl 1-ll+(PI I+ll-PI I-1 I l*B/ 95 0 IF(K-NPC)96tltl 
51 1 C 96 0 BIKR=IAIKR-1,01 - 0RI*loO 
52 0 CONTUNUE IKR=BIKR 
53 0 Plll =Pl3)-S IOB =IKR*M+ l 
55 0 IF!IMAX-IOBl56,58t58 97 0 BORKl=(RKlZ-1,01/BIKR 
56 0 IMAX•IMAX+l 98 0 ORK2=DRK2*(BDRK1/0RK1) 
57 0 GOT059 99 0 ORKl=BDRKl 
58 0 Pl IOB)=P(IOB-11 100 0 AIKR=BIKR+loO 
59 0 CONTINUE 101 0 IKR=AIKR 
61 0 0076I=2,IMAX,2 103 0 K=K+l 

IFII-IMAX162,76,76 104 0 GOT016 
62 ·o AI=I 105 0 END 
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RESERVE STORAGE IN TEST TO DETERMINE IF -MEMORY SPECIFIED NUMBER OF TIME 

+ ~ 
STEPS HAVE BEEN TAKEN 

READ DATA t NO 

~ t TEST: IMAX= IOB? 

CONVERT DATA TO i NO 
FLOATING POINT NUMBERS ' . ' _, 

IMAX = IMAX + l 

+ 
INITIALIZE PRESSURES -' SET FLOW RATE ACROSS ..... 
AT ALL PIVITOL POINTS ~ 

' · OUTER BOUNDARY TO ZERO , 
t 

CALCULATE CONSTANTS ___.., CALCULATE: t 0, Pt' 
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between pivotal points one and three equal to the dimensionless flow 

rate across the inner boundary. 

Equation (4-13) was used to calculate the pressure transients in 

the reservoir, The pressure ratios were alternately calculated at 

successive even and odd numbered pivotal points. The calculations 

for each set of pivotal points represents an increment in time. 

The pressure transient moved outward one pivotal point spacing 

with each time step; When the pressure transient crossed the boundary 

between the two zones, equation (4-22) was used to calculate the 

pressure ratio at the pivotal point on the boundary. 

After a specified number of time steps had been taken, the total 

elapsed dimensionless time, the dimensionless pressure change f'unc-

tion and the percent deviation were calculated. The total elr;1.psed 

dimensionless time was calculated by using equation (4-24). Equa­

tion (2-1) was used to calculate the dimensionless pressure change 

function. The percent deviation between the calculated answers and 

the Van Everdingen and Hurst solutions was obtained by using equa-

tion ( 5-1). 

(5-1) 

where 

D = Percent deviation 

Pt= Dimensionless pressure change function 

P = Dimensfonless pressure ratio at inner boundary 

qD= Dimensionless flow rate across inner boundary 
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The pivotal point spacing was increased and the entire calcu­

lation procedure was repeated. A new pressure ratio was thus ob­

tained at a larger dimensionless time after the same number of calcu­

lations. This resulted in a nearly constant percent deviation between 

the calculated values and accepted values. The calculation procedure 

was repeated until a specified number· of pressure ratios had been 

calculated. 

For the case of zero permeability in the outer zone, the pressure 

ratios at the pivotal point on the boundary between the zones and the 

next inner pivotal point were set equal to each other after every 

time step. The flow across the boundary was thus set equal to zero. 

The calculation procedure requires a vast amount of very accurate 

calculations; consequently, the only feasible means for making the 

calculations was on a digital computer. 



CHAPTER VI 

PRESENTATION OF RESULTS 

The answers, obtained for the case of an inner permeability 

zone with dimensionless radius of 600, are presented in Table II. 

Similar sets of answers were calculated for reservoirs with inner 

permeability zones of dimensionless radii equal to 300, 400 and 500. 

The values of the pressure ratios calculated at the inner boundary, 

when the permeability ratio between zones was equal to one, agree very 

closely with the Van Everdingen and Hurst solutions. The maximum 

deviation was less than 0.65 percent. For the case of an infinite 

permeability ratio, the dimensionless pressure ratios calculated 

agreed. within 0.50 percent of answers obtained from an equation de-

veloped by Chatas ( 1). 

The results of all cases were made to coincide with one set 

of curves by properly selecting the dimensionless parameters for 

the coordinates of the plot. Figure 5 shows a plot of the results. 

The curves all deviated from a straight line at the same dimensionless 

2 value of tD/R1• The symbol R1 is used to denote the radius of the 

inner zone. The plot is for dimensionless times greater than 100 and 

dimensionless radii of the inner zone greater than 150. 

The dimensionless pressure change function was used on one 

coordinate so the curves could be used for any flow rate. The 

24 
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TABLE II 

COMPUTER PROGRAM ANSWERS 

CAL. to p pt 
O/o 

N b.R1 NO. DEV. 

*:=1.0 
l+ 94963+ 33- 51+ 
2+ 94926+ 35- 51+ 
3+ 94692+ 37- 51+ 
4+ 94654+ 39- 51+ 
5+ 94616+ 40- 51+ 
6+ 94175+ 42- 51+ 
1+ 94734+ 44- 51+ 
6+ 94690+ 45- 51+ 
9+ 94644+ 1- 51+ 

10+ 94597+ 49- .51+ 
11+ 94547+ 50- 51+ 
12+ 94495+ 51- 51+ 
13+ 94440+ 53- 51+ 
14+ 94361 + 54- 51+ 
15+ 94320+ 55- 51+ 
16+ 94254+ 57- 51+ 
17+ 94164+ 58- 51+ 
18+ 94026+ 59- 51+ 0+ 
19+ 93940+ 60- 51+ :4+ 
20+ 93844+ 61- 51+ 0+ 
21+ 93737+ 61- 51+ 6+ 
22+ 93619+ 62- 5 I+ :o+ 
23+ 93484+ 62- 51+ 1+ 
24+ 93329+ 62- 51+ P+ 
25+ 92922+ 61- 51+ :0+ 

K,=157 1+ .. ,.I !"""" j"" f 
51+ 

r 
K. ·. 2+ 7586 93938671+ 022+ 3- 51+ 5 54+ 

3+ 9180 93839475+ 118+ 9- 51+ 6 00+ 
4+ 11333 93726781+ 223+ 9- 51+ 6 66+ 
s+ 14343 93595130+ 341+ o- 51+ 7 00+ 
6+ 18734 3436220+ 474+ 7- 51+ 8 71+ 
7+ 25500 3237428+ 629+ 1- 51+ 10 o+ 
8+ 36720 2979595+ 811+ 6- 51+ 12 o+ 
9+ 57375 92632114+ 034+ 3- 51+ 15 0+ 

*:=16.0!! "''i 
93623691+ 

f" t 
51+ 

r 11333 + 93689501+ 223+ 51+ 6 66+ 
3+ 14343 + 93512618+ 341+ 30- 51+ 7 00+ 
4+ 18734 + 93263013+ 474+ 04- 51+ 8 71+ 
5+ 25500 + 92886023+ 629+ 31- 51+ 10 00+ 
6+ 36720 92270975+ 811+ 1 47- 51+ 12 00+ 
7+ 57375 + 91155898+ 034+ 2 72- 51+ 15 00+ 

f:=co l+ .. ,.I r, .. ,, 
r f 

51+ 

r 
2+ 7586 93931298+ 022+ 51+ 5 54+ 
3+ 9180 + 3820722+ 118+ 9- 51+ 6 00+ 
4+ 11333 + 93682402+ 223+ 1- 51+ 6 66+ 
5+ 14343 + 93496633+ 341+ 5- I 51+ 7 00+ 
6+ 18734 93228496+ 74+ 6- 51+ 6 71+ 
7+ 25500 + 92612543+ 629+ 2- 51+ 10 00+ 
8+ 36720 92110119+ 811+ l 3- 51+ 12 o+ 
9+ 57375 0769472+ 034+ 3 1- 51+ 15 O+ 
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dimensionless pressure change functions fdr the plot were obtained 

from the calculated dimensionless pressure ratios by using. equation 

(3-5). 

The straight line portion of the curves. represents the pressure 

draw-down that would occur if the entire reservoir had the same 

permeability as the inner zone. The effect of the outer permea­

bility zone on the draw-down curve occurs when the curve deviates 

from a straight line. 



CHAPI'ER VII 

SUMMARY AND CONCLUSIONS 

The purpose of this study was to develop a procedure for 

theoretically determining the effective fracture radius and the in­

crease in effective permeability created by hydraulic fracturing a 

natural gas reservoir. 

A fractured reservoir was approximated by assuming the reservoir 

was composed of two radial concentric zones of different permeabilities . 

Difference equations were developed to solve the flow equation for the 

system. By incorporating the difference equation into a computer pro­

gram, dimensionless pressure ratios at the inner boundary of the 

reservoir were determined for the constant production rate case. 

The results were plotted on a coordinate system which gave the same 

set of curves for reservoirs with various inner zone radii. 

The reservoir was initially assumed to have a uniform pressure . 

Then a constant flow rate was imposed across the inner boundary. The 

pressure transient created by the imposed flow rate moved outward in 

the reservoir with time. When the pressure transient reached the 

outer zone, the change in permeability resulted in a second transient 

being reflected back towards the inner boundary. 

Before the second transient reached the inner boundary of the 

reservoir the pressure draw-down curve was determined by the 

28 
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permeability of the inner zone. The straight line portion of the 

curve represents the draw-down characteristics of a reservoir with 

a uniform permeability. This conclusion is illustrated by the curve 

for the case where the permeability ratio between the inner and outer 

zones is equal to one. 

After the second pressure transient reached the inner boundary, 

the pressure draw-down curve deviated from a straight line. The 

amount of deviation depended upon the permeability ratio between 

the inner and outer zones. 

The time required for a pressure transient to reach the outer 

zone and be reflected back was dependent upon the radius and permea­

bility of the inner zone •. From the draw-down curves, this time was 

determined to be equivalent to a tn/Rf value of 0.25. This relation­

ship agrees with an equation developed by Cornell (4) to determine 

the dimensionless time at which the pressure draw-down curve for the 

finite reservoir case deviates from a straight line. The case of 

an infinite permeability ratio between the inner and outer zones 

is equivalent to the finite reservoir case. 

From the analysis of the results, it was concluded that the 

permeability.of the inner zone could be determined for the slope of 

the straight line portion of the draw-down curve. The procedure for 

calculating the effective permeability from draw-down curves has been 

presented by Cornell (2)(8). The procedure is discussed in Chapter IIo 

By determining the tn value at which the draw-down curve deviated 

from a straight line, the radius of the inner zone can be calculated. 

The inner zone radius is obtained by multiplying the tD value by 

0.25. By using the coordinates of Figure 5 to draw a curve, the 



permeability of the outer zone can be estimated by comparing the 

curve with the plot in Figure 5. An example problem is worked 

in the Appendix. 

30 

The dimensionless groups used in developing the difference 

equations were for natural gas reservoirs. The results and curves 

apply equally as well to single phase production from oil reservoirs 

when dimensionless groups for oil reservoirs are used. 



CHAPTER VIII 

RECOMMENDATION FOR FUTURE STUDY 

The draw-down pressures calculated in this s,tudy were for the 

constant production rate case in an infinite composite reservoir. 

Draw-down curves for the constant pressure case could be calcu­

lated using the procedure which has been presented. The case of 

a finite composite reservoir could also be investigated. 

A closely related problem would be developing theory for 

pressure build-up curves in composite reservoirs. The finite 

difference procedure was extended to calculate pressure build­

up curves; but, sufficient accuracy was not achieved. The equa­

tion developed by IA)ucks (9) could be evaluated on a computer to 

obtain pressure build-up curves. 

By studying actual field tests, a comparison could be made 

between the pressure draw-down and build-up characteristics of 

fractured reservoirs and non-uniform mathematical reservoirs • 

.31 
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APPENDIX 

The following problem was made up to illustrate the calculation 

procedure used for determining the radius of the inner zone and the 

permeabilities of both zones in a composite reservoir. 

PROBLEM; 

A fractured· natural gas well which has been shut-in is produced 

at a constant flow rate of 500 Mcf/day. The original reservoir 

pressure was 800 psia. The bottom-hole pressures are shown in 

Table III. The known fluid and reservoir properties are as follows~ 

Reservoir temperature, T = 125°F 

Porosity,¢ = 0.20 

Reservoir thickness, h 

Viscosity,µ 

Well bore radius, rw 

=17.0 feet 

= 0.022 centipoises 

= 0.25 feet 

Determine the effective fracture radius and the permeability of the 

inner and outer zones. 

SOLUTION: 

A semilogarithmic plot of the draw-down data is constructedo 

Figure 6 shows this plot. By using equation (2-2), the permeability 

of the inner zone is determined from the slope of the first portion 

of the draw-down curve. The slope was found to be 6,100 psia2 per 

time cycle. 
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TABLE III 

EXAMPLE PROBLEM DRAW-DOWN DATA 

Measurement Time Pressure 
Number (hours) (psia) 

1 0.15 779.2 

2 0.25 778.2 

3 0.50 777.2 

4 0.75 776.5 

5 1.00 775.9 

6 1.25 775.5 

7 1.50 775.0 

8 1.75 774.6 

9 2.00 774.1 

10 2.50 773.3 

11 3.00 772.4 

12 4.00 771.1 

13 5.00 770.1 

14 6.00 769.1 

15 7.00 768.5 

16 8.00 767.6 
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~ X 0.022 X 0.89 X 585 X 50Q X 2.303 
Kl = 

2 X 17 X 6.lxl03 

K1 = 90.6 millidarcys 

To determine the radius of the inner zone, the dimensionless 
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time at which the draw-down curve deviates from a straight line is 

first calculated. From Figure 6 the time the draw-down curve deviates 

from a straight line is 1.32 hours. By using equation (3-1) the dimen-

sionless time is calculated. 

-4 
tD _ 2.6~1Q__t K j5 

- µ ¢ r 2 
w 

_ 2.s.,634,xlO - 4 x 1. 32 x 90. 6 x-2£U~ 
tD - 0.022 x 0.20 x 0.0625 

tD = 90,000 

Knowing that the draw-down curve deviates from a straight line at a 

tn/Rf value of 0.25, the radius of the inner zone can be calculated, 

1 

R - ( .!:J2_ )2-
1 - 0.25 

R1 = 600. 

By using equation (3-2) the inner zone radius in feet is obtained. 

r = 600 X 0.25 

r = 150 feet 



The permeability of the outer zone is determined by making a 

plot shown by Figure 7. The Pt function for the plot is obtained 

from equations (3-3), (3-4) and (3-5). By comparing the curve in 

Figure 7 with the curves in Figure 5, the permeability ratio of the 

inner and outer zones was determined to be 4.0. Since the permea-

bility of the inner zone has already been determined, the permea-

bility of the outer zone can be calculated. 

K2 = 22. 7 millidarcys 
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