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The work reported in this thesis was conducted as part of State 

Project 1020 of the Oklahoma Agricultural Experiment Station. Title of 

the project is "Physical Characteristics of Farm Products." One of the 

objectives of this project is to develop testing equipment and techniques 

to measure physical properties of agricultural products. Many agri-

cultural materials are subjected to separating and conveying devices when 

processed. The exact behavior of particles in these devices is not 

known. This investigation was made to study the behavior of a single 

particle when placed in a separating and conveying device. 

The author is grateful to Professor Jay G. Porterfield, the thesis 

adviser, for making the necessary arrangements to carry out this study 

and for his invaluable encouragement and counsel during the study. His 

appropriate comments and suggestions in the writing of this thesis is also 

acknowledged. 

Appreciation is expressed to Professor E.W. Schroeder, Professor 

0. H. Hamilton, and Assistant Professor L. 0. Roth fer comments and 
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CHAPTER I 

IN'IRODUCTION 

Various arrangements of four bar linkages are used as separating 

and conveying devices in agricultural machines. Basic components of 

the four bar link are driver, follower, connecting element, and frame. 

The driver may have complete rotation or it may swing through an arc. 

The follower may also have complete rotation or may swing through an 

arc. Possible combinations of displacement, velocity, and acceleration 

are most numerous. One set of these conditions may or may not be 

suitable for achieving desired conveying and separating characteristics, 

thus early investigators were challenged to find acceptable types of 

motion. This usually entailed the construction of a device and observing 

its performance when subjected to certain combinations of link dimensions, 

speed, and position. Once a satisfactory combination had been found, 

investigation would cease. In reality this is a singular solution to 

a problem which has many possible ''correct" solutions. 

A second approach available for analysis of the four bar link is 

the use of analytical tools. The equations df motion of a four bar link 

have been known for many years. Not knowing the type of motion desired 

and knowing the tedious calculations involved, the analytical approach 

has received little attention prior to 1957. In this investigation one 

type of motion produced by a four bar link has been analyzed. The 
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effect of this motion on a single particle has been predicted. Apparatus 

and tests were developed to determine compatability of theory and 

laboratory observation. 



CHAPI'ER II 

OBJECTIVES 

The objectives of this study were tog 

A. Analytically predict the behavior of a single particle when 

placed on a plane surface, the surface experiencing a 

motion produced by a slider crank mechanism. 

B. Develop apparatus and techniques required to study the 

behavior of the particle. 

C. Compare observed behavior with predicted behavior. 
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CHAPTER III 

REVIEW OF LITERATURE 

Many te.xtbooks on mechanisms, kinematics, and mac.hine design discuss 

four bar linkages. Most of these discussions offer graphical solutions 

to displacement, velocity, and acceleration of points in the mechani,13Ill. 

In many cases analytical approaches are ignored because of the comple.x 

equations and tedious calculations required to evaluate them. 

Olesen (1) published an article in 1957 covering the behavior of 

particles in a jog conveyor. He assumed that the motion of the surface 

was simple harmonic and that input motion was at right angles to the 

oscillating links (follower). He characterized motion of the particles 

under certain conditions to (A) stick fast, (B) glia.e forward, (C) glide 

backward, and (D) hop. Using derived transcendental inertia equations 

solved graphically for the separate movement types, the transport capacity 

of a jog conveyor was calculated. 'Ihe maximum deviation of observation 

from the theory was appro.ximately ten percent. Finally, using observed 

values and theory he determined the best design for a jog conveyor of a 

specified capacity. 

In 1958 Berry (2) published an article on the theory of oscillating 

conveyors. Specific objectives were: (A) To make a theoretical analysis 

of the motion of a rigid particle on an oscillating conveyor and (B) Con­

duct horizontal conveyance tests of granular materials to determine 

deviations, if any, from the theory. In the analysis it was assumed 

4 



that (A) Motion of the surface was simple harmonic,and (B) That the 

input to the driving arm is through a link always at right angles to 

the driving arm. 

The motion of the particle on the oscillating surface was divided 

into four regions: (A) Stick, (B) Stick slip, (C) Slip and (D) Loss 

5 

of contact between particle and surface. The mathematical analysis 

leads to the steady state solution of a non-linear differential equation. 

The exact solution being found by graphically solving the transcendental 

equation. 

Berry (3) reports in a later paper that inadequate bearings on the 

link members created difficulty in verifying the theory in the work first 

cited. Also, included in this paper are more details on the derivation 

of some of the equations of motion of the particles. 

The problem of defining particle passage through a sieve or screen 

has received much less attention than conveyance. Soviet scientists (4) 

have conducted work concerning the passing of grain through a screen. 

The analytical approach by the Russians was to consider a single grain 

in the form of a rotating ellipsoid. The "go or no go 11 of the particle 

through the sieve perforation being dependent on the relative velocity 

of the particle with respect to the sieve. Then they proceed to estab­

lish a relationship between sieve velocity and the relative velocity of 

the ellipsoid. Experiments were conducted with sieve movement in a 

horizontal plane and movement in a vertical plane. Variables involved 

were: 

A. Amplitude 

B. Frequency 

C. Maximum acceleration 



D. Shape and size of perforation 

E. Sieve slope 

F. Type of grain used 

Conclusions are given in terms of optimum passing of grain with a 

specific set of test conditions within the range investigated. 

6 

Gaudin (5) has developed some probability statements concerning the 

passage of ore through a screen. If a particle approaches an opening at 

a right angle, the chance for passage is much greater than at some angle 

less than ninety degrees. For a given size differential between particle 

and opening, the probability of passage increases as the number of 

opportunities for passage increases. Consider a horizontal screen with 

the wire diameter equal to the square mesh opening. If the ratio of 

particle diameter (spherical) to the opening is 0.5, decreasing the 

approach angle from 90° to 50° decreases the probability of passage from 

12 percent to 8 percent. For a ratio of 0.8 the probability of passage 

at 90° is 2.3 percent. Maintaining a 90° approach angle for the 0.8 

ratio the probability of passage for 10, 100, and 1000 chances are 20.8, 

90.2, and 100 percent respectively. If the ratio is increased to 0.9, 

the probabilities for passage are 6.3, 47.9, and 99.8 percent. 

Review of the above cited literature indicates that the theory of 

conveying particles on oscillating surfaces has received considerable 

attention. Only a limited amount of work has been done on separation 

theory. 
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CHAPTER IV 

THIDRY 

/ 

"'-

Figure 1. Schema tic of ,mechanism, which wo:u;hd,· ;iimpa:tt• ,fuo.tion ,pet_peiildicular 
to,·OsoiJ.lating surface. · · 

Analysis was made of a single particle moving down an inclined 

surface when subjected to action generated by the mechanism in · 

Figure 1. The particle is assumed to leave the surface and attain free 

flight and then to come in contact with the surface. These events 

7 
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occurring during one turn of the crank wheel. It is further assumed 

that the particle does not slide when on the surface and .. that it doe~ 

not deviate from a parabolic path when in flight due to windage effects. 

From the mechanism in Figure l the following equations were derived: 

(1) Yd= R (K + l - VK2 - sin2 e - cos 9) 

(2) 
. 

( 11D e cos Q +sine) .Yd-=::RW 
VK2 - sin2 9 

(3) 
.. G.2e- 2 Si!/ 9 Cos2 9 ) Yd = R sin 9 + 
w2 VK2 - sin2 9 K2 - sin2 e 

+ R cos 9 

Where: R = Crank length 

L = Connecting rod length 

K = L, a dimensionless ratio 
Ir 

9 = Crank position 

W = Angular velocity, assumed constant 

Yd= Surface displacement, Yd= 0 when 9 = 0 

For the particle to leave the surface the following conditions must 

exist: 

A. The surface must be slowing down at the upper end of the 

stroke. Direction of velocity is upward. 

B. Acceleration component of the surface must be downward and 

equal to or greater than the acceleration of gravityo This 

condition can be expressed mathematically as: 



(4) cos J... > ..,f 
Yd 

Wherez 

~ = inclination of surface from horizontal 
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Using the reference position of the crank angle shown in Figure 1, 

the particle must leave the surface in the fourth quadrant. By combining 

equations (3) and (4) the RPM of the mechanism necessary to place the 

particle in free flight isg 

(5) RPM = JQ 
'.I:!" 

386 .. 4 w2 

Ya cos J.... 

i 
The:cparti~le le.a.ves.ithe t,s\rl'flacenJith an in:i:.tia.1/v:eloc:ity::equal, ' 1 , •. 

to the mechanism, it assumes free flight along a parabolic path until it 

again comes in contact with the surface. 'Ihus, during one turn of the 

crank thaparticle is in contact with the surface X degrees and in free 

flight (360 - X) degrees. The following factors are pertinent during 

one hop of the particle or one turn of the crankg 

A. Time that the particle is on the surface. 

B. The crank position at which the particle leaves the surface. 

C. Time.that the particle is in free flight. 

·D. The angle at which the particle intercepts the surface. 

E. Distance the particle advances down the surface. 

Item Dis associated with the separating characteristics induced by 

the mechanism when a particle is placed on a perforated or screening 

surface. A high approach angle would imply a more optimum probability 

of particle passage than a lower approach angle. Item Eis indicative 

of the conveying characteristics of a screening system. Increased 

particle advance per hop would imply an ·increase in the conveying rate. 
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Particle behavior for a specific test condition was calculated in 

the following manner: 

A. Select suitable values of Rand L. 

B. Select the crank position at which the particle leaves. 

This must be in the fourth quadrant for the reference chosen. 
I 

C. Calculate the RPM of the .mechanism using equation (5). 

D. By use of a trial and error method determine the crank 

position at which the particle intercepts the surface. 

E. From the crank position. and the mechanism speed.t, calculate 

the time that the particle is in the air and time it is on 

the surface. 

F. Calculate particle velocity components at the interception 
I 

point and determine) approach angle using the relationship 
i 

¢ (approach angle) = Tan-l Y.J.. 
Vx 

G. Calculate particle advance from relationship established in 

Step D. 

Thirty-four conditions were evaluated. The results are presented in 

Table I. From Table I five conditions were selected for study in the 

laboratory. These five conditions are presented in Table II. 
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TABLE I 

TEST CONDITIONS EVALUATED FOR POSSIBLE STUDY 
Q = 330° 

o( R RPM Hops Sec. Approach Flight-time 
K (Deg) (In) . Per Inch Per Inch An~le ¢ t x 10-2 Sec. 

5 5 .50 270.36 18.69 4.15 82° 56 1 7.40 
5 10 .50 271.98 9.23 2.04 75° 51 1 7.36 
5 15 .50 274.56 6.09 1.37 68° 45 I 7.28 

5 5 .75 220.80 12.36 J.36 82° 53 1 9.06 
5 10 .75 221.94 6.14 1.66 75° 51 1 9.01 
5 15 .75 224,23 4,06 1.09 68° 45 1 8.92 

5 5 1.00 191.19 9.34 2.93 82° 53 1 10.46 
5 10 1.00 192.24 4.62 1.44 75° 511 10.40 
5 15 1.00 194.15 J.04 0.94 68° 45 1 10.31 

7 5 .25 388,40 38.61 5.97 82° 57 1 5.15 
7 10 .25 390.02 19.23 2.96 75° 53 1 5.12 
7 15 .25 397. 95 12.71 1.92 68° 45 1 

\ 

5.03 

7 5 ,50 274,66 19,53 4.27 82° 59 1 7.28 
*7 10 .50 276.28 9.65 2.10 75° 541 7.24 

7 15 ,50 292.30 6.36 1.31 68° 45' 7.16 

*7 5 .75 224.04 12.97 3.47 83° 02 1 8.93 
7 10 .75 225.57 6.42 1.71 75° 541 8.87 
7 15 .75 227.77 4.26 1.12 68° 56 1 8.78 

7 5 1.00 194,25 9.67 2.99 82° 57 1 10.30 
7 10 1.00 195.30 4,83 1.48 75° 55 1 10.24 
7 15 1.00 197.21 3.18 0.97 68° 51 1 10.14 

9 5 .25 391. 79 39.85 6.10 83° 03 1 5.10 
9 10 .25 394,33 17.59 2.68 76° 35 1 5.71 
9 15 .25 397.76 11.61 1. 75 69° 53 1 5.66 

*9 0 .50 276.45 a<?' ···~ ir:.· 90° 00 1 7.22 
9 5 ,50 277.05 20.00 4,33 830 05 1 7.22 
9 10 .50 278.67 8.78 1.89 76° 33 1 8.07 
9 15 .50 281.34 5.81 1.24 69° 51 1 7.99 

9 5 .75 226.24 13.27 3.52 82° 58 1 8.84 
*9 10 .75 227.48 5.85 1.54 76° 35 1 9.90 

9 15 .75 229.77 J.87 1.01 69° 52 1 9.79 

*9 5 1.00 195.78 9.96 3.05 83° 041 10.21 
9 10 1.00 197.02 4.40 1.34 76° 361 11.42 
9 15 1.00 198.93 2.90 0.87 69° 52 1 11.31 

* Test conditions selected for study. 



Test Screen 
No. Slope 

1 0 

2 10° 

3 10° 

4 50 

5 50 

TABLE II 

'IEST CONDITIONS SELECTED FOR STUDY 
e = 330° 

R L RPM Time of 
(In) (In) Flight 

(Sec.) 

.50 4.50 276.45 .0722 

.75 6.75 227.48 .0990 

.50 3.50 276.28 .0724 

.75 5.25 224.04 .0893 

1.00 9.00 195.78 .1021 

12 

Time oh 
Surface 

(Sec.-) 

.1449 

~1''649 

.1447 

.1786 

.2042 



APPARATUS AND EQUIPMENT 

A four bar linkage was designed to produce the type of motion 

specified in the theory development. On the basis of' the five test 

conditions presented in Table II, the following adjustments were incor­

porated in the mechanisms 

A. R {Crank throw) = 0025 11 , 0.5018 , 0.75", and 1.00". 

B. K = ~ = 5, 7, and 9. 
R 

C. Scteen ; slopEJrj' ::; • o0 ' 2-1/2°' 5°' 7-1/2°' 10°' 12-1/2°' and 15°. 

Figure .2( shows a view of the complete laboratory arrangement con­

sisting of the recprding instrument, mechanism, and variable speed power 

unit. 'lhe mechani'sm is tilted in such a manner that the.oscillating 

motion is always· at right angles to the surface. 'lhe crank wheel, 

i:nicr·e- awiteh, and connecting link are shown in Figure 3. All moving 

part-s we.re mounted in ball bear.ingso The flywhee.l,. crank positton dial, 

and counterweight are shown in Figures 4 and 5. Moment of inertia of 

the flywheel is approximately .42 i't-lb-seo2• A counterweight of' 1.96 

pounds at 3-7/16 inchts was used to minimize the. unbalance produced by 

10.06 pounds of reciprocating parts. One position of the counterweight 

with respect to the center of rotation was satisfactory for all test 

conditions. A guide attached to the reciprocating member is shown in 

Figure .3. Purpose of' the guide is to minimize horizontal oscillations 

of the surface due to siight misalignment -of the moving parts. 

13 \ 



Figure 2. Laboratory Equipment Consisting of 
Recording Instrument , Mechanism, and Variable 
Speed Power Unit. 



Figure 3. Vier.' of Micro Switch, Crank Wheel, 
and Connecting Link. 
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Figure 4. View Showing Flywheel, Crank Position 
Dial, and Counterweight. 

16 



Figure 5. Side View of Mechanism with Crank 
Wheel and Connecting Rod Removed. 

17 
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A two channel oscillograph recorder was used to obtain a permanent 

record of the data. For a specific test the following quantities were 

recorded on the oscillogram: 

A. Time particle is on the surface during Che oscillation. 

B. Crank position with respect to time at which particle theoreti~ 

cally leaves surface. 

C. Time particle is in air during one ·o,spillation. 

D. Time for one turn of the crank. 

E. Time for particle to travel length of test run. 

A picture of an oscillogram is shown in Figure 6. 

A schematic of the circuitry used to measure the pertinent quantities 

is shown in Figure 7. The micro switch used to mark the crank position 

is noted in Figure 3. The switch in a normally closed position in a 

six volt d.c. circuit breaks the circuit once every turn of the crank 

wheel. The change in voltage is sensed by the recorder and is indicated 

by -pen deflection. 

TW'o conductors were mounted on the oscillating surface to track the 

particle. Figure 8 shows the surface, conductors, and particle. Guides 

were installed to limit deviations of the particle from a straight line 

path. Preliminary testing showed no measurable differences after the 

guides were mounted. 

If the particle is in the air, the output voltage to the recorder is 

battery voltage of 22-1/2 volts d.c. When the particle is on the surface, 

a short circuit results and a change in output voltage is sensed by the 

recorder. Recording the voltage changes with respect to time tracks the 

particle for a given set of test conditions. A 50 ohm resistor and small 

radio capacitor were employed to prevent arcing when the particle was 
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Figure 6. Oscillogram Showing Recorded Data 

Test No. 2 with Flywheel 

Distance b~tween adjacent horizontal lines 
represents 0.04 second. 

A---. Theoretical time when particle 
leaves surface. 

B --- Actual time particle leaves surface. 

C --- Actual time particle touches surface. 

19 



22 1/2 V.D.C. 

Particle 

\ 

Particle travel 

2 conductors mounted on 
oscillating surface 

Particle Tracking Circuit 

6 V.D.C. 

l 
• 

Recorder 

Revolution Counting Circuit 

Figure 7. Schematic Wiring Diagram 

20 

Output voltage 
to recorder 

j Crank wheel 

-....--...... 



Figure 8. Oblique View of the Surface Shows the 
Particle on the Two Conductors. The Guides 
Assist the Particle in Maintaining a Straight 
1ine Path. 

21 
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leaving or encountering the surface. Using the highest ch13.~t speied_on 

the recorder, time increments of .005 second can be measured from the 

trace. This is about eight degrees of crank rotation for the speeds 

used. 

The particle used for all tests was a circular disk 1.25 11 in 

diameter made from steel and weighed .109 pound. In Figure 2 the 

particle is sitting on top of the recorder. Size and shape was selected 

on basis of stability and electrical properties. Mass of the particle 

insured minimum effects from windage. 

The crank position dial and an Ames deflection indicator were used 

to position the micro switch so that actuation would occur at the desired 

crank position. The switch was positioned statically. An automotive 

timing light was used to oheck the switch dynamically. This check was 

made at the outset of the experimental work and was not performed prior 

to every test. Use of the timing l.ight indicated the switch marked at 

the same crank position when running at test speed or slower. 

The surface slope was adjusted by means of the two pivoted arms 

shown in the foreground of Figure 4. Increments of 2-1/2 degrees from 

0 to 15 degrees are available. Adjustable legs and length adjustment 

in the arms provided additional flexibility. Slope was set for a given 

test using a protractor level. A level was used to level the surface at 

right angles· to the direction of· par:t,icle :travel.· ·: · ·1 

. RPM variations of O to· 400 was provided ,by -the,.-va.ria:ble speed power 

unit. Power was transmitted to the mechanism by a roller chain. 



CHAPTER VI 

PROCEDURE 

Preliminary observations were used to establish an acceptable 

procedure for conducting a test. Initial data was analyzed by statis­

cal methods to determine the number of observations required for a 

particular test. 'Ihirty hops of the particle were found to be satis­

factory in reducing variance to an acceptable level. For conducting 

a given test the following procedure was used: 

A. Turn on the recording instrument for warm up. 

B. Select R Value. 

C. Select L Value. 

D. Adjust guide to minimize horizontal oscillations of the 

surface. 

E. Position counterweight 3-7/16'' from center of rotation and 

(180°) opposite crank offset. 

F. Mount Ames deflection dial. 

G. Using crank position dial and Ames deflection dial, position 

micro switch to actuate at 30 degrees from top dead center. 

'Ihis is the theoretical crank position at which the particle 

leaves for all test conditions selected. 

H. Remove Ames deflection dial. 

I. Adjust surface to desired slope. 

J. Connect power unit and mechanism with roller chain. 



K. Start power unit and set speed with the assistance of a 

tachometer. 

L. Depress the 1 mm/sec chart speed button on the recorder 

and adjust amplifiers to proper gain and zero settings. 

M. Place particle on surface at head end. 

N. When particle reaches test area, depress the 125 mm/sec chart 

speed button on the recorder. 

0. Recorder tracks particle while in the test area. 

P. When particle leaves test area, depress the 1 mm/sec 

chart speed button. 

24 

Q. Go back and start at Step Mand continue this procedure until 

enough observations are obtained for analysis. 

R. Depress 11off11 button on recorder. 

S. Stop power unit. 

T. Count JO legible hops and identify each on the trace. If JO 

observations were not obtained, repeat the procedure starting 

at Step K. 

Evidence was obtained to indicate that by following the established 

procedure, acceptable repeatability can be achieved, irrespective of when 

the test was conducted. 

For tests number 1, 2, 3, and 4 without the flywheel, the particle 

was tracked for 17.1 inches. For all other tests a length of 18 inches 

was used. The original length of 17.1 inches was determined on the basis 

of no slippage of particle when on the surface. The change to 18 inches 

was for convenience. 



CHAP!'ER' VII 

PRESENTATION AND ANAtYSlS OF DATA 

The experiment, consisting of five test conditi~ns was run without 

a flywheel. Experimental values deviated considerably from the theory. 

A supr:,lementary study to determine the cause of the deviations was 

initiated. - Evidence was obtained to indicate the mechanism was not 

operating; at constant speed. The theory is based on the assumption of: 

constant angular rotation. A flywheel was constructed and installed on 

the mechanism. The purpose :.'was: to reduce speed fluctuation. The 

exper-iment was conducted again using the flywheel. The observed mean 

values .for all experimental work is presented in Table III. Also 

inc.luded· for comparison are the theoretical values,. Meaning of the 

syinbo.Is· used in the table is: 

X ~ir = Average time per hoµ the particle is in free fligrt base~ 

on 30 observations. 

C.V. = Coefficient of variation. 

l surface = Ave·rage time per hop the particle is on. the surt'ace­

based on 30 observations. 

i lead= ~verage time per hop the particle is leaving the surface 

too soon based on 30 observations. Average degrees of 

crank posi ti.on the particle is leaving too soon is also 

tabulated. 

25 



X hops per inch= Average hops per inch. The number of observa­

tions varied for different test conditions. Variation 

wae due to selecting a constant number of ll.opf! (30). 

Time ~ccounted far =X air+ X surface f aver~ge time fo~ one turn 

of the crank whe.el based on JO re·volutions chosen at 

random from the oscillogram. 

:4, statistical analysis was made to determine U" any population· 

dif'fe~ence existed within a test condition. Model used was a two g~oup 

experimep.t of equal s.ize. The two treatments as.signed to each test 

condition were: (A) no flywheel, and (B) with flywheel, It was 

hypothesized that no dif'ference existed between the means or·! air, 

X surface, X lead, and X hops per inch for the two treatments. Probability 

level was selected at ninety percent. 

The ari~inal data obt.(iined for all test work are presented in th~ 

appenc;li.1t. 
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TABLE III 

THEORETICAL AND OBSERVED BEHAVIOR OF PARTICLE 

Test No. 1 Theoretical Without With 
Flywheel Flywheel 

X air (Sec) .0722 .0950 .0957 N.D. 

c.v. (%) 3.66 4.06 

X surface (Sec) .1449 .1185 .1198 N .D. 

C. V. (%) 4.16 3.00 

X lead (Sec) 0 .0098 .0078 * 
(Deg) 0 16.40 13.00 

c.v. (%) 21.40 36.26 

X hops per inch o() 

C. V. (%) 

Time act. for(%) 100 98. 93 98.93 

Test No. 2 Theoretical Without With 
Flywheel Flywheel 

X air (Sec) .0990 .1320 .1237 * 
c.v. (%) 6.50 4,28 

X Surface (Sec) .1649 .1226 .1353 * 
c.v. (%) 7.30 4.65 

X lead (Sec) 0 .0105 .0123 N.D. 

(Deg) 0 16.10 16.80 

c.v. (%) 37.70 38.13 

X hops per inch 5.85 1.76 1.91 .~ 
(19 observations) 

c.v. 2.91 1. 91 

Time act. for(%) 100 98.15 99.10 
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TABLE III (Continued). 

Test No. 3 'lb.eore ti cal Without With 
Flywheel Flywheel 

X Air (Sec) .0724 .1063 .1058 N.D. 

c.v. (%) 5.20 5.14 

X Surface (Sec) .1447 .1087 .1093 N.D. 

C. V. (%) 5.10 5.73 

X Lead (Sec) 0 .0072 .0108 * 
(Deg) 0 12.00 18.00 

c.v. (%) 50.00 32.40 

X Hops per inch 9.65 2.60 2.91 .~ 
(6 observations) 

c.v. (%) 1.88 0.97 

Time Act. for(%) 100 99.10 99.46 

Test No. 4 Theoretical Without With 
Flywheel Flywheel 

X Air (Sec) .0893 .1195 .1213 N.D. 

c.v. (%) 4.70 4,33 

X Surface (Sec) .1786 .1425 .1452 N .D. 

C .V. (%) 3.88 2.63 

X Lead (Sec) 0 ,0103 .0140 * 
(Deg) 0 13,90 18.80 

C .V. (%) 33.70 27.14 

X Hops per inch '.12.97 4,98 4.68 N.D. 
(5 observations) 

c.v. (%) 2.80 1.95 

Time Act. for (%) 100 98.13 99.19 



Test No. 5 

X Air (Sec) 

c.v. (%) 

X Surface (Sec) 

C. V. (%) 

X Lead (Sec) 

(Deg) 

C. V. (%) 

X Hops per inch 
(8 observations) 

C. V. (%) 

Time Act. for(%) 

TABLE III (Concluded) 

Theoretical 

.1021 

.2042 

0 

0 

9.96 

100 

Without 
Flywheel 

.1505 

5.46 

.1557 

4.83 

.Q260 

30.60 
.. 

18\"00 

3.60 

1.98 

93.74 

With 
Flywheel 

.1383 

4.86 

.1612 

4.13 

.0136 

16.00 

36.00 

3,51 

1.97 

98.04 

* - A significant difference at the 90 percent level. 
N.D. - No significant difference at the 90 percent level. 
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CHAP'I'ER· VIII 

DISCUSSION OF RESULTS 

A. Speed Fluctuation 

A supplementary study was initiated to determine if the mechanism 

was varying in speed within a revolution. After considerable thought 

and experimentation a means for detecting speed differences between two 

crank positions was devised. A schematic of the device is shown in 

Figure 9. For the arrangement shown, RPM0 #,Rfl·1m,· Periodically both 
, , ; I 

switches will be actuated at the same time and a voltage change will be 

sensed by the recorder. For a given speed differential between the 

check motor and mechanism a definite marking pattern on the oscillogram 

is established. If the switch on the mechanism i~ rqtated, say 15°, and 

keeping all other things constant an indication o~ the speed ~t that 

point relative to the original position will be obtained. If, after 

rotating the switch i5° , the marking pattern on the oscilloiram remains 

the same, there is no difference in speed between the two points. How-

ever if the marking pattern does change, then speed fluctuation between 

the two positions is occurring. This is a qualitative measurement and 

gives no indication of magnitude of speed change or whether speeding up 

or slowing down i s .occurring. 

A test was conducted using the iibo•e·"ll~ch. The switch on the 

crank wheel was positioned at the theoretical crank position at which the 

··· particle leave·s the surface. The units· were allowed to run for .·about 

io minutes and the mar.king pattern wa:s-irttt~.. 'Then .the switch 

JO 



Oheck motor 

J 
RPM 

m 

Crank wheel on 
mechanism 

6 V.D.C. 

Recorder 

Figure 9. Schematic of Speed Fluctuation Indicator Circuit 
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was rotated 15° into the general are~ wheire the parti,clEl_ac:tl_lB.lly W!3,E3 

leaving the surface. This was done while the check_me>tor and ine_ghariism 

were running. The marking pattern for this position was.obtained l:>y 

running the units for about 10 minutes. Comparing the two oscillograms_ 

on a light table revealed that a phase shift occurred. The oscillograms 

were not identical and variation in speed between the two pe>intswas 

concluded to exist. The experiment was conducted with and without the 

flywheel. Under both conditions variations were obtained. 

Further indication of speed fluctuation was noted when test 

number 5 was run without the flywheel. The mechanism did not operate 

smoothly and the roller chain developed a whipping motion. This could 

be caused by speed fluctuation of the input shaft or output shaft of the 

power transmission system~ It is believed that the input shaft to the 

mechanism was responsible for the behavior noted. 

B. Interpretatioh:of.Analysis 

1. For all test conditions observed mean values djffered s::ignif icant:).:y 

from theoretical values. Inspection of individual observations showed 

that the theoretical value did not lie in the range of the observed 

values. Exceptions to the above statement are: (A) In test 1, with 

the flywheel the particle was observed to leave the surface at the pre­

determined position once in thirty observations. (B) This was also 

true for test 2 with flywheel. (C) In test 3 without flywheel in three 

out of 30 runs it was noted the particle left at the predetermined 

crank position. (D) In test 4 without flywheel the particle left the 

surface at the predetermined position once in thirty observations. In 

976 individual observations, six were in agreement with the theory. 
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2. Comparison of no flywheel and with flywheel reveals: (A) X 

air - no difference in Tests 1, 3, and 4; significant difference in 

Tests 2 and 5. (b) X surface - no difference in Tests 1, 3, and 4; 

significant difference in Tests 2 and 5. (C) X lead - no difference in 

Test 2; significant difference in 'lasts 1, 3, 4, and 5. (D) X hops 

per inch - no difference in Test 4; significant difference in Tests 1, 

2, 3, and 5. 

3. In test 1, installation of the flywheel significantly changed 

the crank position at which the particle leaves the surface. The 

position was the only variable in test 2 that did not change signifi­

cantly when the flywheel was used. In test 3 the position and hops 

per inch were significantly different. The particle left the surface 

at a significantly different place in test 4 for the two treatments. 

All other variables were not affected. Indications are that observa­

tions for the two treatments in test 5 were not from the same population. 

It is hypothesized that the experimental results differ from the 

theory because: 

1. Due to speed fluctuation (qualitative evidence) the 

surface is slowing down at the upper end of the stroke more 

rapidly than predicted. This would induce higher acceleration 

in the mechanism and would cause the particle to leave sooner 

in terms of crank position. 

2. This in turn would change the initial velocity of the 

particle when it leaves the surface. Under these circumstances 

a different flight time would be expected. 

3. Since the observed time of flight is greater than 

calculated, an increase in the approach angle from the theoretical 



values would be expected. Increasing .the approach aiiglewould 

increase the probability of particle passage in the event the 

surface were replaced with a screen. 

4. Observed hops per inch are less than calculated due 

to a longer flight time and due to sliding when the particle is 

on the surface. As a result, the number of opportunities per 

inch of travel for particle passage would decrease. 
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CHAPTER IX 

SUMMARY AND CONCLUSIONS 

A theory was presented to predict the behavior of a particle on an 

oscillating surface. The oscillating effect being produced by a slider 

crank mechanism. Behavior was predicted for hopping of the particle, 

travel down an incline, and approach angle. Apparatus and instrumenta­

tion was developed to study particle behavior in the laboratory. 

Specific conclusions reached from the study are: 

A. Due to speed fluctuation within one turn of the crank 

wheel, observed behavior differed significantly from 

predicted behavior. 

B. Installation of a flywheel altered the speed fluctuation 

but the behavior still differed significantly from 

predicted values. 

C •. Observed particle behavior would indicate a higher 

probability of partial passage due to increased 

approach angle as compared to the theoretical value. 

D. Observed particle behavior would indicate a lower 

probability of particle passage due to increased flight 

time from theory and due to sliding of particle when 

on the surface. 

E. The net probability change is not known. Derivation of 

probability expressions for the system used was excluded 

from this study. 

35 
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In conducting this st1,1Q.y se1vera~_qu~13t:i.c_gu:,_ .. af9§le :wb:i,cl:J. .. :rEll!l,aµ:t __ 

unanswered. Additional investigations and study could be initiated to 

consider the following points: 

l. Develop equipment and techniques to meas'tll"e lj:lpeed. 

fluctuation. Quantitative measurements within five 

degrees of rotation would be desirable. 

2. With the assistance of a speed fluctuation indicator;· 

approaches to designing constant speed equipment 

could be developed. 

3. Develop probability statements concerning particle 

passage. 

4. Expand theory and probability statements to mass flow 

or particles. 
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DA TA SHEET ·(1) 

TEST NO. 1 WITHOUT FLYWHEEL 

R = .50" L = 4.5 11 J.. = oo Observed RPM= 278.04 

Observation X air X surface X lead 
No. Sec. Sec. \ Sec. 

l .090 .120 .005 
2· .095 .110 · .010 
3 .095 .125 .015 
4 .095 .110 .010 
5 .095 .120 .010 

6 .095 .120 .010 
7 .095 .125 .010 
8 .095 .120 .010 
9 .090 .115 .005 

10 .100 .120 .015 

11 .100 .115 .010 
12 .090 .120 .010 
13 .100 ~115 .010 
14 .090 .120 .010 
15 .095 .115 .010 

16 .090 .125 .010 
17 .090 .130 .010 
18 .095 .120 .050 
19 .090 .125 .010 
20 .100 .120 .015 

21 .095 .120 .010 
22 .095 .120 .010 
23 .095 .110 .005 
24 .095 .120 .010 
25 .095 .115 .010 

26 .100 .120 .010 
27 .100 .110 .010 
28 .100 .115 .010 
29 .095 .120 .010 
30 .095 .115 .010 



DATA SHEET (j) 

TEST NO. 2 WITHOUT FLYWHEEL 

R = .75 11 L ::;: 6. 75 11 ;.. = 10° Observed RPM= 228.72 

Observation X air :x; surface X lead 
No. Sec. Sec. Sec. 

1 .130 .135 .015 
2 .120 .140 .005 
3 .125 .125 .005 
4 .135 .130 .015 
5 .140 .115 .015 

6 .140 .125 .010 
7 .140 .120 .010 
8 .115 .130 .010 
9 .130 .135 .015 

10 .130 .130 .015 

11 .125 .145 .010 
12 .130 .120 .005 
13 .130 .135 .010 
14 • l,35 .115 .010 
15 .125 .125 .005 

16 .125 .130 .010 
17 .130 .120 .010 
18 .135 .120 .010 
19 .130 .130 .010 
20 .130 .130 .015 

21 .125 .130 .005 
22 .130 .135 .015 
23 .150 .110 .01~ 
24 .145 .120 .010 
25 .120 .135 .010 

26 .13.0 .130 .010 
27 .130 .125 .010 
28 .125 .135 .010 
29 .135 .125 .010 
30 .130 .120 .010 

_/ 
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DATA SHEET (.3) 

TEST NO • 3 WITHOUT FLYWHEEL 

R = .50" L = 3.5011 J.. = 10° Observed RPM= 276.50 

Observation X air X surface X lead 
No. Sec. Sec. Sec. 

1 .110 .100 .010 
2 .105 .110 .005 
3 .110 .105 .005 
4 .105 .105 .ooo 
5 .105 .105 .005 

6 .100 .115 .010 
7 .105 .liO .005 
8 .110 .105 .005 
9 .100 .110 .010 

10 .095 .120 .ooo 
11 .105 .110 .010 
12 .105 .105 .005 
13 .105 .115 .010 
14 .105 .110 .005 
15 .120 .100 .010 

16 .110 .110 .015 
17 .105 .110 .010 
18 .105 .110 .010 
19 .105 .110 .010 
20 .105 .115 .005 

21 .105 .115 .005 
22 .120 .100 .010 
23 .100 .115 .005 
24 .100 .105 .ooo 
25 .110 .105 .005 

26 .100 .115 .005 
27 .110 .100 .010 
28 .115 .100 .005 
29 .110 .115 .010 
30 .105 .110 .010 
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DATA SHEET ( 4) 

TEST NO. 4 WITHOUT FLYWHEEL 

R = • 7511 L = 5.2511 cf- = 50 Observed RPM= 224.72 

Observation X air X surface X lead 
No. Sec. Sec. Sec. 

1 .120 .140 .010 
2 .125 .130 .010 
3 .120 .140 .010 
4 .120 .140 .010 
5 .115 .150 .010 

6 .130 .135 .010 
7 .120 .145 .010 
8 .120 .145 .015 
9 .115 .145 •. 010 

10 .125 .140 .015 

11 .120 .140 .010 
12 .125 .140 .015 
13 .130 .140 .015 
14 .125 .145 .015 
15 .120 .140 .010 

16 .110 .145 .010 
17 .120 .150 .010 
18 .110 .150 .005 
19 .120 .145 .010 
20 .120 .1.35 .010 

21 .120 .145 .010 
22 .110 .150 .010 
23 .110 .140 .ooo 
24 .120 .140 .015 
25 .110 .150 .010 

26 .115 .150 .005 
27 .125 .1.30 .005 
28 .120 .140 .010 
29 .120 .145 .010 
.30 .125 .145 .015 
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DA TA SHEET (.5) 

TEST NO. 5 WITHOUT FLYWHEEL 

R = l,.0011 L = 9.00" e)... = 50 Observed RPM= 195.97 

Observation X air X surface X lead 
· No. Seo. Sec. Sec. 

1 .160 .165 .020 
2 .160 .155 .030 
3 .155 .165 -.025 
4 .155 .155 ,030 
5 .160 .160 . • 030 

6 .150 .160 .025 
7 .165 .150 .025 
8 .160 .135 .030 
9 .150 .160 .030 

10 .155 .145 .030 

11 .135 .160 .020 
12 .145 .170 .020 
13 .150 .155 .025 
14 .150 .155 .030 
15 .150 .160 .020 

16 .150 .160 .020 
17 .160 .150 .030 
18 .150 .150 .020 
19 .145 .160 .020 
20 .150 .145 .030 

21 .155 .165 .025 
22 .140 .160 .030 
23 .150 .155 .030 
24 .135 .150 .020 
25 .130 .165 .030 

'. --. -
26 .150 .145 .0.30 
27 .150 .155 .020 
28 .150 .155 .0.30 
29 .160 .150 .0.35 
30 .140 .155 .025 
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DATA SHEET (6) 

TEST NO • 1 WITH FLYWHEEL 

R = .5011 L = 4.5 11 Observed RPM= 275.44 

Observation X air X surface X lead 
No. Sec. Sec. Seo. 

1 .100 .115 .005 
2 .100 .12b .010 
3 .095 .120 .010 
4 .100 .120 .010 
5 .085 .125 .005 

6 .090 .120 .005 
7 .100 .115 .005 
8 .095 .120 .010 
9 .100 .115 .010 

10 .095 .120 .010 

11 .090 .125 .005 
12 .090 .125 .005 
13 .095 .120 .010 
14 .090 .120 .010 
15 .095 .120 .010 

16 .100 .125 .010 
17 .095 .120 .005 
18 .100 .115 .005 
19 .095 .120 .010 
20 .100 .110 .000 

21 .095 .120 .005 
.22 .095 .115 .010 
23 .095 .120 .010 
24 .095 .120 .005 
25 .100 .120 .010 

26 .095 .120 .005 
27 .095 .120 .010 
28 .100 .120 .010 
29 .095 .120 .010 
30 .095 .125 .010 
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DA TA SHEET ( 7) 

TEST NO. 2 WITH FLYWHEEL 

R = .7511 L = 6.75 11 J- = 10° Observed RPM= 227.85 

Observation X air X surface X lead 
No. Sec. Sec. Sec. 

1 .130 .135 .015 
2 .125 .135 .010 
3 .120 .140 .015 
4 .125 .140 .020 
5 .120 .140 .010 

6 .125 .140 .020 
7 .125 .140 .015 
8 .130 .135 .015 
9 .120 .145 .015 

10 .125 .145 .015 

11 .140 .125 .020 
12 .125 .130 .005 
13 .120 .135 .010 
14 .125 .135 .015 
15 .120 .140 .010 

16 .125 .145 .010 
17 .120 .130 .005 
18 .130 .130 .010 
19 .135 .125 .020 
20 .130 .140 .015 

\ ..... 
21 • 120 .140 .010 
22 .130 .130 .010 
23 .120 .140 .010 
24 .120 .130 .010 
25 .130 .135 .010 

26 .125 .140 .010 
27 .135 .120 .015 
28 .120 .135 .010 
29 .130 .130 .015 
30 .125 .130 .ooo 
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DATA SHEET (8) 

TEST NO. 3 WITH FLYWHEEL 

R = .5011 L = 3.5011 d-- = io0 Observed RPM= 277.35 

Observation I air X surface X lead 
No. Sec. Sec. Sec. 

l .100 .120 .015 
2 .110 .100 .010 
3 .100 .110 .010 
4 .110 .110 .010 
5 .110 .105 .015 

6 .105 .100 .005 
7 .105 .110 .015 
8 .105 .115 .010 
9 .100 .110 .005 

10 .105 .110 .010 

11 .095 .110 .005 
12 .105 .120 .020 
13 .100 .105 .005 
14 .105 .120 .010 
15 .110 .110 .010 

16 .115 .115 .015 
17 .105 .110 .010 
18 .105 .110 .010 
19 .110 .100 .010 
20 .115 .100 .010 

21 .100 .110 .010 
22 .100 .110 .015 
23 .100 .110 .010 
24 .105 .115 .010 
25 .100 .115 .010 

26 .110 .105 .015 
27 .110 .1:15 .010 
28 .J,.15 ·.095 .010 
29 .115 .105 .015 
30 .105 .110 .010 



R = .7511 

Observation 
No. 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

DATA SHEET (!)) 

T.EST NO. 4 WITH FLYWHEEL 

L = 5.25 11 Observed RIM= 223.33 

X air X surface X-lead 
Sec. Sec. Sec. 

.120 .145 .015 

.125 .145 .015 

.120 .145 .015 

.120 .140 .015 

.130 .135 .015 

.120 .150 .010 

.125 .140 .020 

.120 .150 .010 

.120 .145 .015 

.110 .150 .010 

.130 .140 .015 

.110 .150 .010 

.115 .140 .010 

.115 .155 .015 

.125 .150 .010 

.125 .145 .010 

.130 .140 .020 

.130 .145 .015 

.120 .150 .010 

.120 .140 .015 

.120 .150 .010 

.125 .140 .015 

.125 .145 .010 

.120 .145 .020 

.115 .150 .020 

.120 .150 .015 

.120 .140 .010 

.125 .145 .020 

.120 .145 .010 

.120 .145 .020 
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R = 1.0011 

Observation 
No. 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

DA:I'A. SHEET (10),, 

TEST NO. 5 WITH FLYWHEEL 

L = 9.0011 Observed RPM= 196.40 

X air X surface X lead 
Sec. Sec. Sec. 

.130 .175 .010 

.140 .160 .010 

.140 .160 .010 

.135 .175 .010 

.150 .165 .020 

.145 .155 .020 

.140 .170 .010 

.140 .160 .020 

.150 .150 .020 

.140 .165 .005 

.140 .155 .015 

.140 .170 .010 

.140 .160 .015 

.130 .165 .015 

.140 .160 .010 

.135 .160 .010 

.135 .165 .020 

.130 .170 .010 

.140 .155 .015 

.150 .160 .020 

.130 .160 .010 

.140 .165 .015 

.130 .160 .010 

.140 .155 .020 

.140 .160 .010 

.140 .150 .015 

.130 .160 .010 

.150 .150 .025 

.130 .155 .010 

.130 .165 .010 
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DATA::\SHi&~':t( tr.): 

HOPS PER INCH 

~------~----------------------------------·-----
Test No. 2 Test No. 3 

Without Flywheel With Flywheel Without Flywheel With Flywheel 

1.696 

1.754 

1.813 

1.813 

1.813 

1.754 

1.813 

1.754 

1.754 

1.754 

1.696 

1.754 

1.813 

1.813 

1.754 

1.696 

1.637 

1.754 

1.813 

1.889 

1.8.33 

1.944 

2.000 

1.889 

2.000 

1.944 

1.944 

1.889 

1.889 

1.944 

2.000 

1.833 

1.889 

1.778 

1.889 

1.889 

1.833 

1.833 

2.573 2.944 

2.632 2.889 

2.632 2.944 

2.632 2.889 

2.515 2.889 

2.632 2.889 

Note: Hops per Inch for 
Test No. 1 has no 
meaning. 



Test No. 4 

D1ATAl'!-.SHEET '° (!2) 

HOPS PER INCH 

Test No. 
Without Flywheel With Flywheel Without Flywheel 

5.146 4.667 3.555 

4.912 4.611 J.667 

5.088 4.667 3.611 

4.971 4,833 3.722 

4.795 4.611 3.611 

3.611 

3,555 

3.500 

50 

5 
With Flywheel 

3.611 

3.500 

3.500 

J.555 

3,555 

3,500 

3.389 

3.444 
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