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PREFACE 

The analysis of translational shells in the extensional state,using 

finite difference equations to approximate the derivatives, is presented 

in this thesis. The partial differential equation in finite difference 

form is developed in terms of both the stress :f'unction and internal for-

ces. The system of simultaneous difference equations is solved by the 

combined use of the Algebraic Carry-Over method and Relaxation. In the 

Algebraic Carry-Over solution, the unknowns have been eliminated by sue-

cessively deleting points in the network and evaluating modified carry-

over factors between retained points. Numerical examples are included 

showing the application of the theory presented. 
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NCMENCLATURE 

x,y,z, ••••••• Coordinates of a point on the middle surface of 

h ' h X y 

. . . . . . . 

. . . . . . . 

the shell. 

The angles between the middle surface of the 

shell and the projected plane when measured alcrig 

the X and Y axes, respectively. 

Total rise of the shell on the X and Y axes, res-

pectively. 

L, L ••••••• One-half the total length of the shell in the X 
X y 

and Y directions, respectively. 

N, N, N ••••• Normal and shearing forces on an element of the 
X y xy 

shell. 

Projected normal and shearing forces in the X-Y 

plane. 

F e O e G O e O e • Airy 1 s stress function. 

a, b, a1, b1 • Original carry-over factors. 

A',B' ••• a 1 ,b 1 ••• •• Carry-over factors modified once. 

A",B",C" 9a",b",c".:i • Carry-over factors modified twice. 

A"', a"'• 
- * Ny• 

. . Final carry-over factors. 

Starting value representing internal force in 

the Y direction at a point. 

A, A*, X*, X**. . Carried-over starting value at a point. 

vi 



p 

b.x' b.y• • 

t e O O • 

• • • 0 0 • 

Load intensity. 

Interval of the finite difference network in the 

X and Y directions, respectively. 

Radius of curvature of the shell in the X and Y 

directions, respectively. 

Thickness of shell. 

Major and minor principal stresses. 

Compressive stress in concrete. 

Area of reinforcing steel. 

Nx_ 

SIGN CONVENTION 

I N:xy 
' L.- --+-~ 

X 

1tNy 

Normal forces, Nx and Ny, are considered positive when they are 

tensile. 

Shearing forces, N:xy and Nyx9 are considered positive when they 

create tension in the diagonal direction of increasing values of x 

and y. 

vii 



CHAPI'ER I 

INTRODUCTION 

1-1. Historical Study~ 

In 1931, Pucher, in his dissertation, presented the extensional 

solution for shells of double curvature. In this solution he made use 

of projected forces and Airy 1 s stress function in solving the partial 

differential equations (1). He also pr&sented a series solution for 

stresses in an elliptical parabo1oid. 
II 

Flugge (2), in 19509 disr.m.ssed the analysis of translational shells 

by finite differences , using relaxation to so1ve the simul·~aneous equa-

tions. Arup and Jenkins (3) reade use of the stress function, finite 

differences, and relaxation in the analysis of a circular translational 

shell constructed in 1950. They evaluated the tension in the edge beams 

by numerical integration of normal forces aGross the shell. 
II 

Flugge and 

Geyling (4) confirmed the ·validity of the extensional solution for ellip-

ti.cal paraboloids. 

In 1956, Salvadori ( 5), in analyzing a circular translational shelJ., 

used coarse finite differenee networks in evaluating the stress function 

with final values determined by Errtrapolat.:l.on. In 1957, Parme (6) gave 

a detailed account of the analysis of t he elliptical paraboloid. He 

presented numerical t ables, prepared using a trigonometric series solu-

tion of the partial different.:ial equation, for determination of shell 

1 
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stresses. 

The solution of the finite difference equations by infinite geo-

metric series for the two dimensional, second order problem was pre-

sented by Tuma}) Havner~ and French (7) in 1958. The idea of extend-

ing the Algebraic Carry-Over method to the solution of translational 

shells was proposed by Havner (8) i.n shel l lectures delivered in 1959. 

The method of successive eliminati on of points for the solution of 

differential equati.ons in finite difference form was applied to cir-

cular plate problems by Havner (9) in 1960. 

1-2. Membrane Equations of Equilibrium. 

An element of a shell9 projected into the X-Y plane is shown in 

Figure 1-1. To simplify the equat ions of equilibrium, internal foro3s 

on the shell element have been transferred to the projected element. 

Internal forces are shown in the positive sense. 

The shell is considered to be in the extensional (membrane) stat~ 

thus, the forces on the element are membrane forces and flexural ac-

ti.on is considered negligible. Also, st r esses arising from deflection 

of the shell are ignored. 

The relationships between the projected internal forces and ac-

tual internal f or·ces may be determined by geometry. The final equa-

tions are 

Ny = Ny Cos 1: 
Cos'1/f 

Nx = Nx~ (1-1) 
Cos , 

Nxy = Nxy. 



.3 

-/Ny 

Nx 

Figure 1-1 

Element of Shell Projected in X-Y Plane 

The development of the equations of equilibrium appears in many 

references and is not repeated hereo The final three equations con-

sidering vertical load only acting on the shell are 

oNx t ~gNyx 
ax oy ::: o. 

oNz + 
c) y 

oN:x;y = o. 
c) X 

2 2 
Nx ~ + Ny ~ , ;, 2 N:x:y 

o x2 oy2 ox OY 
where pis a function of x and y only. 

= - p. 

(1-2) 

(1-3) 

(1-4) 
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The equilibrium equations contain three dependent variables, Nx, 

Ny, N:xy, each depending on two independent variables, x and y. To sim-

plify the solution of the internal forcesj Pucher (1) made use of the 

stress function in which the internal forces are described as follows: 

'Ny = c./F 
ox2 

Nx : clF 
oy2 

-- N:xy :: 
c)x OY 

Substituting Equation (1-5) into Equation (1-4) 

o2F cJ2 
z + -~· -clz _ 2 o2F 

oy2 ax2 . ox2 oy2 ax oY 

(1-5) 

yields 

q2z - (1 6) ax c)y - -p. -

Equation (1-6) is the governing differential equation in terms of 

the Stress Function. 

1-3. Shells of Translation. 

The surface of a translational shell is generated by moving one 

curve along and at right angles to another curve as shown in Figure 1-2. 

The equation of the surface is given by 

(1-7) 

Differentiating Equation (1-7) twice with respect to x yields 
2 a z n 
2 = f 1(x). (1-8) 

8x 

Similarly, with respect toy 

_g_2z _ 111 

oy2 - f2{y). (1-9) 



The mixed derivitive becomes 

= o. 
ox oy 

Figure 1- 2 

Shell of Translation 

5 

(1-10) 

f 1(x) 

f2(y) 

Equation (1-10) shows that the twist of the undef ormed surface is 

zero, .. which i s typical of t r anslational shellso 

1-4. Boundary Condit i ons. 
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The shell is supported by edge beams that are considered inoapa-

ble of vertical deflection, and incapable of resisting lateral forces. 

Therefore, at the boundary 

+ 
X = - L ' X 

Nx : O 

and at the boundary 

+ 
y = - L ., 

y 
Ny = o. 

The translational shell is incapable of resisting load by shear-

ing forces only, being that the twist of the undeformed surface is ze-

ro. At the corners of the shell an ambiguity arises as the direct 

forces are zero by the boundary conditions~ and the shearing force, al-

though incapable, must provide resistance to the load. From a theore-

tical standpoint , the shear becomes i nfinite in magnitude at the cor~ 

ners. From a practical standpoint, normal forces and bending moments 

will occur in the region near the corner , and al l values will be finite. 



CHAPI'ER II 

FINITE DIFFERENCE EQUATIONS 

2-1. Introduction. 

For most shells of double curvature, an algebraic solution of the 

differential equation is quite intractable, and one must resort to ap-

proximate methods, such as finite differences. Even in the case of the 

elliptical paraboloid,which is amenable ~o an algebraic series solution, 

there are certain advantages in using finite differences by virtue of 

the simplicity of computation. The finite difference equations neces-

sary for the solution of the differential equation of any translational 

shell are developed in this chapter. 

2-2. The Finite Difference Equations in Terms of the Stress Function. 

The finite difference approximation of 

(Figure 2-1) is 

~ = 
2 ox 

___1... (F. l . - 2F .. + F. l .). 
6.x.2 1.+ ,J 1.,J 1.- ,J 

Similar1.y in the Y direction 

a2F 1 
2 :: --2 (F. . _Ll - 2F. . + F. . 1) • 

c)y 6.y 1., J'"I' 1., J 1., J-

at the point, i,j 

(2-1) 

(2-2) 

The mixed derivative of the Stress Function becomes 

1 (2-3) 
u 4 6x 6 y (F i+l, j+l - F i-J,j+l - F itl, j-1 - F i-1, j-1) • 

7 
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Substituting Equations (2-1, 2, 3) into Equation (1-6) and employ-

ing the relationships expressed in Equations (1-8, 9, 10) results in 

In a form suitable for iteration, Equation (2-4) becomes 

Fi . : ,J 
al(F.+l . + F. 1 .) 

1 , J 1 - $ J 
t F * 

i,j 

i-1,j-l 

~
1 ,t:f-----

~1 / 

A-1 jtl 

I yz 

Figure 2-1 

Finite Difference Network 

= I -p e (2-4) 

(2-5) 



9 

where 
1 

al = A-2-f (x) 
1 2(1 t 

Ay2f;(y)) 

2 ti 

D.x r1 (x) 

D.y2f P.(y) 

b = I I 

~x2f~ ()le) l 
2(1 + ) 

D. 2· II 

y f2(y) 

After obtaining the ~.olution for the Stress Function at each pivotal 

point in the network through a system of similtaneous equations of the 

type (2-5), the stresses may be computed as follows: 

Substit~ting Equation (1-5) into Equations (2-1, 2, 3) results in 

Ny .. 
i, J 

Nxi . ,J 

Nxy .. 
i, J 

= 
= 

l 
(Fi1"1,j - 2Fi,j ;, Fi-1,j) 

D.x2 

l 
(Fi,jtl 

Ay2 
~ 2Fi,j ~ Fi,j-1) (2-6) 

Solution of the governing differential equation by the use of the 

Stress Function is subject to criticism. This is because the internal 

forces are equal to the second difference in "l", and a small error in 

11F 11 can result in a large error in the internal force. This is clearly 

shown in the following coplanar problem. 
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X y 

2 2 
X + ...z._ - 1 

400 100 -
1 5.0 9.682 

2 10.0 8.660 

3 15.0 6.614 

o--_ .... _ _....._ 

~ 
-------
~ ~ 

---------~ 
I 

Figure 2-2 

Ellipse in X-Y Plane 

Figure 2-2 shows a curve following the equation of an ellipse. 

Values of x and y satisfying the equation are shown in the inset on 

the figure. 

of y, 

The finite difference approximation of 
2 

c) y at the point 2 is ox2 

Noting that 6.x = 5 and substituting the appropriate values 

c)2y2 - 1 
-~2 - 25° (9.682 - 17 .32 + 6.614) = 0.041. 

c>x2 

Considering y2 to be in error by 5 per cent the new value is 

taken as 9.093, and 
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a2Y2 1 
: 2'2' (9.682 - 18.186 + 6.614) = 0.076. ax 2 c.-.; 

2 

When the error in y2 is 5 per cent, the second difference of y2 is :in 

error 85 per cent. Consequently, extreme accuracy is necessary in eval-

uation of "F". To avoid this, it is usually advantageous to work direct-

ly with the internal forces in finite difference form. 

2-3, The Fin1te 1 Difference Equations in Terms of Internal Forces. 

The third equilibrium equation for shells of translation may be 

written 
II 

Nx f~(x) + ffy f 2 (y) = -p. (2-7) 
II 

Dividing Equation (2-7) by f 1 (x) 

- - f"(y) 
Nx,1-Ny 2 = - p 

IJ II 
f 1(x) f 1(x) 

(2-8) 

Diff,erentiating Equation (2-8) twice with respect to x yields 

affy [ e (f;(y) ~ _ a (r~<~>) 2-·- +Ny~ 
Ox Ox f~(x) Ox ·i'i(x) 

• - 0 p 2 ( ) ox2 f~ (x) 

Differentiating Equation (1-2) with respect to x results in 

cf-ixy • o. 
Ox Oy 

Differentiating Equation (1-3) with respect toy yields 

cJiy iffxy = 0 • 
ay2 4- ax Oy 

(2-9) 

(2-10) 

(2-11) 
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From Equations (2-10) and (2-11) 

= (2-12) 

Substituting Equation (2-12) into Equation (2-9) gives 

-- a2 
( p ) 

- . c)x2 f~(x) . 
(2-13) 

Equation (2-13) is the governing differential equation in terms of. 

the intern.al force, Ny . 
2_ 

The finite difference approximation of~ at the point i,j 
OY 

(Figur.e 2-1), is 
2 

c) Ny • Ni,J+l - 2Ni,j ·°" Ni,j-1 (2-14) 
~ 6.y2 

where for convenience the symbol Ny has been replaced by the symbol, N. 

Similarly in the X direction, 

2)2Ny Ni+l,j - 2Ni,j + Ni-1,j 
aJ. . II 6.x2 (2-15) 

The finite difference approximation of~ at the point, i,j, is 

awy N1+1,j - Ni-1,j (2-16) 
0 X :: 2 6.x 

Substituting Equations 

Ni,j~l - 2Ni,j ~ Ni,j-1 

6.y2 

(2-14,15,16) into Equation (2-13) results in, 

+ f~(y) (Ni+l,j .;. 2Ni,J + Ni-1,j) 

f 1(x) · 6.x2 



where 
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0 2 (N ) 2 (f"(y) ) 
ox2 f1(x) i,j 

• - 02 ( p ) . <2-11) 
ox2 f"(x) 

1 ij 

In a form suitable for iteration Equation (2-17) becCllles 

ai;,l,ij = 

-a -i-1,ij 

= 

1 ~f2(Y)j c) 

Di,j fl(x) i,; ~ 

1 
Di,j 

2 8x 

[r2(y}) - a 
f"(x) ox 
1 i,j 

I 

(2-18) 

( f2(y}) 
f.i_(x) 1,j 

~x] 
((y}) J f~(x) i,j fu 

The value of the internal force in the Y direction may now be com-

puted at each pivotal point through a system of simultaneous equations 

of the type (2-18). Knowing Ny, the internal force in the X direction 
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may be obtained by direct substitution into Equation (2-8). The internal 

shearing force, N:xy, however, cannot be obtained directly but may be 

determined as follows: 

Considering the case of a symmetrically loaded, symmetrical trans-

lational shell, it is evident that the shearing force, Nxy, equals zero 

on the axis of symmetry. 

l 

l 

I 

' 

i-1 .. .i-1 i+l. i-1 

_ii i-1-1:s,.i i.±~- ---~ - , 
X 

i-1,jtl i,j+l i+l,j+l i+2. j+l 
I 

i , j+2 i+l..i+2 i+2 • .i+2 

' 

Figure 2-3 

Symmetrical Finite 

Difference Network 
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Equation (1-3) is now written in finite difference form for the 

point, i+l,j+l. 

(Ny)i+l,j - (Ny)i+l,j+2 = (Nxy)1+2,j+1 - (Nxy)1,j+1. 
(2-19) 

2 l:::,,.y 2 6.x 

Considering the values of Ny know~ the value of Nxy at i+2,j+l can 

be computed from Equation (2-19) as Nxy at i,j+l is equal to zero. 

Equation (1-3) is now written in finite difference form for the 

point i,jtl as follows 

(Ny). ·+2 - (Ny) .. 1,J J.J -- (Nxy)itl,j+l - (Nxy)i-1,j+l 

2 Dax 
• 

(2-20) 

The left-hand side of the above equation is known and the right-

hand side may be reduced to one unknown by symmetry, that is 

(Nxy). 1 · 1 = -(Nxy). 1 · 1 • 1+ ,J+ J.- ,J+ 
(2-21) 

In a similar manner values of Nxy at all points in the shell may be 

determined. 

When the shell is subjected to an unsymmetrical load, the shearing 

force, Nxy, is no longer zero on the axis of symmetry. There is no start-

ing point on the shell that can be used for the elimination of unknowns. 

Suffi cient equations of the type (2-19) ar e available to obt ain a s olution 

if forward or backward differences ar e used. However, f r om an accuracy 
' 

standpoint, it is deemed advisable to evaluate Nxy f or the unsymmetrical 

case by use of the Stress Function. 



CHAPTER III 

THE SOLUTION OF THE FINITE DIFFERENCE ~UATIONS 

3-1. Methods of' Solution. 

Many methods are available for the solution of the finite differ-

ence network. However, all methods fall into just two categories: 

(a} Approximate Solutions 

(b) Exact Solutions. 

All solutions of finite difference equations are approximate in that 

the accuracy of the solution is dependent on how well the derivative of 

the function is represented by a finite difference equation. However, in 

referring to a method as an "Approximate Solution," it is intended that 

this be considered a solution gained through a process of iteration or 

successive approximation. The accuracy of' "Approximate Solutions" is de­

pendent upon the number of cycles of iteration in the procedure. In con­

trast, "Exact Solutions" yield results that are dependent only on the in­

terval of the _finite difference network chosen. 

Of the "Approximate Solutions" available, the Relaxation method has 

the greatest application to shell analysis. This method has the advan­

tage of simplicity; but to use the method effectively, a technique must 

be acquired that can be gained only through considerable experience work­

ing relaxation networks. A significant reduction in labor can be realiz­

ed if a reasonably accurate estimate of initial values is possible. 

"Exact Solutions" are only applicable to systems having a limited 

16 
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number of unknowns. Therefore, it is necessary to use a coarse grid. Of 

the "Exact Solutions" available, the Algebraic Carry-Over method has ex-

cellent app),ication to finite difference networks. This method will be 

fully described in Part 3 of this chapter. 

All methods of solution require considerable labor when a fine 

lattice is used. As the interval (6x, 6y) is halved, the number of 

simultaneous equations is increased by four. Therefore, it is important 

to use the largest network interval that is practical. 

It will be shown in the numerical example in Chapter IV that, for 

translational shells, a coarse network analyzed by the Algebraic Carry-

Over method yields excellent results for the direct internal forces. 

However, being that the direct forces are discontinuous on the boundary 

at the corner, the shearing forces are subject to appreciable error. 

To reduce this error, a finer network is necessary and solution by re-

la:x:ation becomes applicable. The relaxation solution, however, is very 

short if the initial values are based on the final values gained through 

the Algebraic Carry-Over procedure. 

3-2 . Reduction of the Finite Difference Network by Symmetry and Boundary 
Conditions. 

A, The Complete Network. A forty-nine point network (Fig. 3-1) has 

been chosen for analysis. The boundaries of the network are coincident 

with the boundaries of the translational shell. Carry-over factors con-

forming to. Equation (2-18) are shown in Figure 3-1. 

B. Reduction of the Network by the Condition of Symmetry. Consi-

dering the case of the symmetrically loaded, symmetrical translational 

shell, the carry-ov~r factors and internal forces are symmetrical td both 

the x and y axis. By taking advantage of symmetry, the network can be 
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- --- --,.- --- -- --
•36, 37 •37. 38 •3s , 39 8 39 ,4o •4o, 41 8 41,42 
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43 - 44 ---· 45 - 46 -- 47 - 48 ---
·~ Y! 

f 

Figure 3-1 

Forty-Nine Point Network 
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reduced from 49 Ullknowns to 16 unknowns or pivotal points as shown in 

Figure· 3-2. Carry-over factors that contribute to final values on 

the axis of symmetry must be modified when the network reduction would 

otherwise effect the final values at such points. As an ex.ample, the 

point 32 (Figure 3-1) re~eives contributions of a31, 32iy31 from point 

3l., a.nd a 33, 32iy 33 from point 33. From symmetry 

(3-1) 

Ny33 = iY31 

Therefore, it is permissible to let the contribution to point 32 

equal the modified carry-over value 2(a iy ). 
33, 32 33 

Figure 3-2 shows 

the reduced network with the required modified carry-over factors. 

--,----,.- --,-

8 25,26 a26, 27 

r ~~ ,o~ 1 
ia33,32 

ti 
&34,33 

f J 

32 ---- 33 --- -----a32, 33 a33,34 

t ~ :i J t ,o~ ;J ,0 ,0 

2a4o,39 
39 -

--,_. 

a 39, 4o 

't l~ ff J 
2a47,46 

46 

I 
Yt 

-

a41, 4o 
4o -------a4o,41 

t J ; J 
a4g,47 

47 .....__ 

27 
_._,,.. 

a27,2g 

t.:r •35,JS 

lC\ 

"" ,0 

34 ----a 
34,35 

ti C\J 
.-=t 

p 

a42,41 
41 --a41,42 

t1 °' .-=t 
,0 

a49,48 
48 -,.:___ 

Figure 3-2 

Sixteen-Point Network 

1' , , 

J 

35 

J 

42 

j 



C. Reduction of the Network from Boundary Conditions. Boundary 

conditions dictate that Ny equals zero at points 46, 47, 48, and 49. 

Therefore, carry-over factors to, from, and between these points must 

equal zero. From Equat:ion (2-8), it is noted that Ny is a prescribed 

value at points 28, 35, and 42: 

20 

( 2-8a) 

Since the value is prescribed, iteration can i n no way effect 

Ny at points 28, 35, and 42. Therefore, it follows that all carry-over 

factors to these points must equal zero. That is 

a - a = a • 2b = b m b = O. 27, 28 - 34, 35 41, 42 2S 35 42 

25 282b, 25 26 
~ 

t ~~ •25-:r 1 
2a 

32 _ 33,32 -a 

r p~ 32.~; l 
2a 

.39 4o ,39 
>"' 

a 
39,4o 

-

t l •26-J~ 
a 

33 _ 34,33 -
t 8

33,3~ l 
~ :;: 

.0 ,0 

~ _a41,4o 

~ 

a 
4o,41 

Figure 3-3 

Nine-Point Network 

t 
34 

r 
41 

(3-2) 



21 

From Equation (2-18), the expression for Ny27 may be written 

Ny27 = a28, 2_.,NY28 t a26, 2~Y26 + 2b27N!34 + N;27 (2-18a) 

where a 8 Ny28 is a known value similar in form to the starting value, 
* 2 , 27 · 

Ny • Denoting the carried-over starting value as .i\., the values of 
27 

at points 27, 34, and 41 become 

A. 27 • a28, 27~Y28 

'JL 34 - 8 35, 34NY35 (3-3) -
A.. 41 = a42 41NY42 , 
The sixteen-point network has been reduced to a nine-point network 

a.s shown in Figure 3-3. 

3-3. Redu~ion of the Finite Difference Network by Removal of Points. 

A. Reduction by Removal of Alternate Points. In Figure 3-3 all 

odd-numbered points may be removed from th~ network and the difference 

eq_uations at these points may be incorporated into the difference eg_ua-

tions at the retained points. This mey be accomplished by either direct 

substitution or by a much shorter meiihod. As a 1,Ileans of explanation and 

proof of the shorter method, the exp~ession for the internal force in 

the Y direction at point 32 will be developed by substitution as follows. 

The finite differenee approximation of the force, Ny32 , is 

- * + NY32• (3-4) 

The finite difference cipproxiJl)ations of jy at the deleted points, 

25, 33, and 39, are now written: 

Ny33 11 8 32, 33Ny'S2 t 6 34, 33NY34 + b33(Ny26 + .NYJ.i-0) + Ny3; (3-5) 

Ny39 = 2(a4o, 39iy40 ) t . b39iy32 t Ny3; 
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Substituting Equation (3-5) into (3-4), transposing, and arranging 

terms results in 

Ny32 = A'Ny + C'Ny + D'Ny4 + A * 
34 26 O 32 

(3-6) 

where the modified carry-over factors are 

= _.L (2a a 
33) -x32 33, 32 34, 

A' 

C' = _.L (2a b + 2a 6 25 b32) X32 33, 32 33 2 , 

" _.L (2a 
32 b33 t 2a40 , 39 b32) x32 33, 

D' 

A.3: = x~2 [2a33, 32iy3; • b32(iy2; + iy3;j • i:r3; 

x.,_. = -1 - 2a a - 2b b - b b . 
32 33, 32 32, 33 25 32 32 39 

The force, Ny 2, is now in terms of forces . in the y direc.tion at 3 . 
retained points in the network. Expressions for Ny at the other retain-

ed points may be develop~d in a similar manner. 

The shorter method, previously mentioned, takes advantage of carry-

over, and algebraic series principles. The Equation (3-6) can be written 

by observation ,f the following rules are adopted. 

1. The numerator of the modified carry-over factor is the product 

of the original carry-over factors along the path through the point re-

moved or the sum of the products along the paths if two points are re-

moved. 

2. The denominator of the modified carry-over factor is the sum of 

the algebraic power series forming between the retained point and the ad­

jacent deleted points in the network when the starting value (A.) at the 

retained point equals unity. 
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Rule No. 1 can be illustrated by investigating the modified carry- -

over factor between points 26 and 320 

The product of the original carry-over factors through point 25 is 

2a26, 25b32 • Similarily, through point 3.3 the product is b332a33, 32 • 

The ·sum of the products is identically equal to the numerator of er in 

Equation (3-6) o 

Rule No. 2 can be illustrated by assigning a starting value ( A ) 
at point 32 and carrying this value over to the deleted points and back 

to point 32. This procedure results in 

]L = ~ + ·_ .A. (2a33, 32 a32, 33 + b32 2b25 + b32 b39). 

Letting the terms in parenthesis equal /J and repeating the carry-over 

procedure n times results in a value at point 32 of 

An -= A,+).~,+ (5 2 + ($ 3 t ••••. /3 j . 
It is obvious that a power series has developea,and when n becomes 

infinite and when(~) equals unityp the denominator, denoted~, be-

comes 

= 1 - 2a a - b 2b - b b 
33, 32 32, 33 32 25 32 39 

which is identically equal to the value determined by substitution in 

Equation (3-6). 

Expressions for Ny at points 26, 34, and 40 obtained by this method 

are given as follows 

Ny26 = c' Ny32 + B' Ny40 + E' Ny + A 2: 
(3-7) 

34 

Ny.34 = e' Ny26 + at Ny.32 + gV Ny40 + A * 
34 

(3-8) 

Ny40 
::: b' Ny + di Ny.32 + GI Ny34 + i\. * (3-9) 

26 40 

where 



a' = a.222 ,23 a .2 .2 2 .261: 
x34 

b' = b.2.2 b£c0 
X:40 

c' = 2b22 a222 26 ,1,, 8 ,22 2 .2.2 2b26 
126 

d' = b39 a39 2 ~O + a,22 2 ~ bkO 
x-40 

e' = a261 27 b.3~ + b22 a.2.222.4 
x34 

gt = a£c0a £cl b.261: + b.2.2 a.22s 261: 
:x;_ 
34 

B' - b33 2b26 -
~ 

E' • 2b27 a27a 26 + a3~a 22 2b26 

~ 

G' = ~2 .2.2 b£c0 + b~l a~la ~O 

:x;40 

X26 - 1 - 2a269 25 a25~ 26 - b.33 2b26 - a27, 26 8 26, 27 

Xj'Z: = 1 - b41 b34 - a34, .33 a33, 34 - b.34 2b27 

X'z:o = 1 - b40 b33 - 2a40, 39 8 39, 40 - a41, 40 a40, 41 

24 

A26 ~ x~ G25 9 2JY25 + 2b26NY.3; + a27, 26 (Ny2; +A27) + Ny2~] 

= xl ~.34 (A27 + Ny2; + .A.41 t Ny4~) t a3.3, 34NY3; +A.34 t Ny.3~ 
.34 4.1 

\; = ?a E39, j i,y3; + \oiiy3; + a41, 40(iiy4~ + l.41) + iiy4~ • 

The network reduced by removal of alternat e point s i s shown in Fig-

ure 3-4. 
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Figure 3-4 

Four-Point Network 

25 

X 

B. Reduction by Removal of Sucessive Points. A single point may 

be deleted in the network and equations may be written in terms of the 

remaining points in precisely the same manner as described for the re-

moval of alternate points. In Figure 3-4, point 32 is deleted from the 

networko The expressions for Ny at the remaining points follow 

where 

Ny26 = a" Ny40 t C" ~ ** Ny34 t J\..26 

Ny34 
::: c" Ny26 

Ny40 
1il:: A" Ny 

26 

a II - B' + cqnv - 1 - c 1C1 

b" • G1 + dUAI 
1 - dVDI 

t B" Ny 
40 

+ b" Ny 
.34 

+ A ** 
34 

+ A. ** 
40 

AIV -

B" ;: 

b' ± d'C' 
1 - d'D' 

g' ± a 1 D' 
1 - a 1A1 

(3-10) 

(3-11) 

(.3-12) 



c" = e 1 + a 1 cv 
1 - avAv 

A ** = cl .l 2~ + 
26 1 - c 1C1 

A2i 

A ~rn = a I i\. 2~ t A- 2! 
.34 1 - a 1A1 

...it *~~ = d'A 2~ + A-1& 
40 1 - d1D1 

.. 
The reduced network is shown schematically in Figure .3-5. 
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In a similar mannerl point .34 may be deleted. Expressions for Ny 

' at the remaining two points follow 

Ny26 

-
Ny40 

where 

a'" 

A'" 

= a"' Ny 
40 

A"' Ny = 26 

= a" -1- B11 C11 

1 - c"C" 

= A"+ b"c" 
1 - b 11 B11 

+ A *** 
26 

+ j\_ *** 
4.0 

C" A ** + A. ~* .3!t 2b 
1 - c"C" 

bii.A, ~* AH 1 *** = 34 + 40 
40 1 - b"B" • 

The reduced and final network is shown in Figure 3-6. 

Solving Equations (.3-13) and (3-14) simultaneously yields 

attV A *** 
+ 'A.2i** 

Ny26 = 40 
1 - a 11v A"V 

A"V A2i** .i\. *** 
Ny40 :: - 40 

1 - a 11v AIIV • 

( .3-1.3) 

(.3-14) 

(.3-15) 

(.3-16) 



Figure 3-5 

Three-Point Network 

A t.•• 
2b' 26 

Figure 3-6 

Two-Point Network 

27 

Reviewing, Equations (3-15) and (3-16) represent the projected in-

ternal force in the Y direction at pivotal points 26 and 40, respec-

tively, that are compatible with a known projected internal force in 

the Y direction at pivotal points, 28~ 35, and 42. 

Now that Ny at points 26 and 40 can be computed, Ny at all points 

in the network can be evaluated. This can be accomplished by either 

direct substitution into the developed simultaneous equations or by ob­

serving Figures 3-6, 5, 4, and 3 .and maki:qg the required carry-over com-

putations. This latter method will be clearly demoQstrated in the numer-

ical example in Chapter IV. 



CHAPI'E.R IV 

NUMERICAL EXAMPLES 

4-1. Example Problem No. lo 

It is required to compute the internal forces, Ny, Nx, and N:xy, and 

the design stresses acting in the elliptical paraboloid shell shown in 

Figure 4-1. The shell is subjected to a uniform dead load and live load 

of 60 pounds per square foot. The edge beams on the shell provide negli-

gible lateral rigidity and are considered incapable of vertical displace-

ment. The thickness of the shell is three inches. 

p = 60 lbs. 
sq. ft. 

Figure 4-1 

Elliptical Paraboloid 

28 
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The equation for the elliptical paraboloid shown in Figure 4-1 is 

z = 
hx x2 
L 2 

X 

• 

Substituting the known quantit.ie-s: 

and from Equations (1-8) and (1-9): 

r"(x) = 16 
1 352 

From Equation (2-18) 

a = ( ;~2) (if) 2 [~ + (~) (if)] 
b = 6.x?-

6.y2 
... 
• + (!~2) 

Choosing a 49 pivotal point network 

6.x. - 22 
3 

then 

a e li~) (~f 

6,y 

(1 + 

(if)] 

20) ::: 0.2777 
16 

b ~ (~)2 .,t. 
0 

t 2-(fo)2 
2(~)2 _(1+ f~J = 0.2222 • 

It is noted that for the elliptical paraboloid, the carry-over f ac-

tors, a and b, are constant over the domain of the shell. Evaluation of 

the modified carry-over fa ctors follows. 

From Equations (3~6, 7~ 8, 9) 
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T2 = 1 - 2(.2777)2 - .3(.2222)2 = o.6977 

~ = 1 - .3(.2777)2 - 2( .2222)2 = 0.6699 

~ = 1 - ( .2777)2 - .3 ( .2222 )2 • 0.7748 

~ = 1 - .3(.2777) 2 - (.2222) 2 - 0.719.3 -
A' = 2, .2777{ - 0.221 a' = (.2777)2 - 0.0995 .6977 - -.7748 

B' = 2( 12222)2 = 0.1474 b' • 1.22222.2 :. o.o6S6 
• 6699 .719.3 

C' = /J;( .2777J ( .2222) • 0 • .35.38 c' • ~( .2777) ( .2222) = O.J6S4 
.6977 .6699 

D' • C' - 0 • .35.38 dl • 2( .2777) ( ,2222) • 0.1716 - .7193 

E' = c' • 0 • .3684 e' = 2( .277'1) ( .2222) = 0.159.3 
.7748 

G' = di • 0.1716 g' • e' • 0.1593. 

From Equations (3-10, 11, 12) 

A" = .0686 ± ~.J5J8l{ol716l = O.l.376 1 - ( • .3538)(.1716) 

B" = .1222 + (.0222}( 0 2228l 
1 - (.2210)(.0995) = 0.1989 

C" = • 68 ~ .2210 ~ 
1 - ( • .35.38 ( • .3684 = 0.5172 

a" - ~'Jdt.7~ + (o32J8)(.J68~) 
1 - (.3538)( • .3684) = 0 • .319.3 

b" i= 
.1716 :t ( .2210 .1716 :: 0.22.30 l - (.35.38) .1716 

c" = B" = 0.1989. 

From Equations (3-13) and (3-14) 

A"' • .J..376 + (.2220){.198.2.l 
1 - (.2230)(.1989) -· 0.1903 



a'" -· Q~3193 + .lJ/i~2lL5172l :: 
l - (.1989)(.5172) 

004706 0 

All the carry-over f actors have r:.ow been evaluated. The starting 

values at all points are now compute.d . 

- * From Equation (2-1.3), the starting ,ralue, Ny, at all interior 

points is zero, because the second derivative of the load function is 

.31 

zero. At pivotal points on a line, y :::. L , bou.r:.dary conditions dictate 
y 

that Ny= O. On a line, x = L, boundary cor..ditions dic~at.e that Nx = 0 
X 

and from Equation (2-8) 

Ny -- (20) 
502 

(;£.) 
16 

• -60 (~l) 16 

therefore 

- * - * - * Ny2$ • Ny_,5 = Ny 42 - -~'7500 1:)S . per ft.. 

From Equation. Ot.3) 

21"7r1r,( r750"l ~ 
• I I I ~ 1~ I = -2082.7 lbs. per ft • 

From Equations (3-6ll 7, 8j and 9) 

(-2082 o'7 ) = ~863 . 5 lbs. per ft. 

A._34 - 02222 
,.,r,L 8 

o 1 I -{. -
(2 )( =-208:2 o'7) ~·:2082 . 7 - -·3882. 6 lbs . per ft. 

'\ * :.,; . 277? { ~2QR2 o'7,) R I\. 40 0719-3 \ -~ u - - ,..,04.ol lbs . per .ft. 

From Eq11ations (3=10, 11, 12) 

'A ** ::: ~862.5 . :;:; =992 / 1 1bs . per ft. 26 1 - (.3538 )( • .3684) 

1 ** - -,2882 .6_ :::: ·-3969 . 9 lbs . per ft . 
34 1 ~ ( . 2210) ( . 0995 ) 

"A ** /,,0 = --- =80.4..1_ 
1 ~" r.3538) ( . 1'716; 

:: -856 .1 lbs . per ft. 



From Equations (3-13) and (3-14) 

/\.. *** = -992.9 + .5172 (-3969.9) = -3395.4 lbs. per ft. 
26 1 - .1989 (.5172) 

1\...4~** = -856.1 + .2230 (-3969.9) = -1822.3 lbs. per ft. 
1 - .2230 (.1989) 
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X** The values of are substituted into Equations (3-15) and (3-16) 

N = (.47o6)(-l822·~i -JJ2~ = -4671.1 lbs. per ft. Y26 1 - (.4706 .1903 

N = ( .1903)(-33~5 ·+~ -1822!2 Y40 ( 6 1 03~ ·~ -2711.0 lbs. per ft. 1 - o4i0 • 9 } 

Values of Ny at the remaining points may be determined by carry­

over principles. For example 1 in the determination of Ny at point 34, 

reference is made to Figure 3-5. The values of Ny at points 26 and 40 
tt II 

are multiplied by the carry-over constants, c and B, respectively. 

These two quantities are summed and the result is added to the starting 

). ** value at point 34 which is /\.34 • In equation form this reads 

- "- "- ). ** 
Ny34 : c Ny26 + B Ny40 + /'-34. 

Substituting known values 

Ny34 = .1989 (-4671.1) + .1989 (-2711.0) - 3969.9 

= -543802 lbs. per ft. 

Ny can be evaluated at other pivotal points in the same manner. 

Nx may be evaluated by direct substitution into Equation 28. For 

example, the value of the projected internal force in the x direction at 

point 34 is 

Nx34 = -E543s,2@g~ (i#) - 60 (i#)] 
= -1262 .8 lbs. per ft. 

Nx can be evaluated at other points in a similar manner. 
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As discussed in Chapter II, N:xy is zero at points 25, 26, 27, 28, 

32, and 39. Also, N:xy approaches i nfinity at pivotal point 49. N:xy at 

point 34 may be evaluated by substituting into Equation (2-19) as follows 

(Ny 40 - Ny 26) 22f y = - (N:xy 34 - N:xy 32) 2&x • 

Substituting known quantities 

(-2711.0) - (-4671.1) ...l.. = - (N:xy - o) -2. 
100 34 70 

N:xy34 : -(1960.1) 007 = - 1372.1 lbs. per ft. 

By following a similar procedureJ) N:xy may be evaluated at all points 

in the network. 

Rounded values of the projected normal forces, Nx and Ny, and the 

shearing forces, N:xy, for all points in the network are tabulated in 

Table 4-1. 

Comparing the results in Table 4-1 with the classical series solu-

tion of the partial differential equations (6), it is found that the per-

- -centage error in Nx and Ny varies from about one per cent to four per 

cent. Also )) the percentage error in N:xy varies from about three per cent 

to thirty per cent j increasing in magnitude as the corner is approached. 

This accuracy is certainly adequate for the ·norma.l forces, but the higher 

percentage errors i n Nxy are not acceptable. Reasonably accurate values , 

of Nxy are essential so that the distribution of load to the edge beam 

may be ascertained. 
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Force 

Pivotal Nx Ny Nxy Point 

25 -1965 -4290 0 

26 -17.35 -4670 0 

27 -1045 - 5795 0 

28 0 - 7500 0 

.32 -2260 -.3815 0 

.3.3 -2015 -4210 - 690 

.34 -1265 -5440 -1.370 

.35 0 -7500 -1915 

.39 -3170 -2.325 0 

40 - 29.35 . -2710 -13.35 

41 -2115 -4045 -2945 

42 0 -7500 -5145 

46 -4595 0 0 

47 -4595 0 -2200 

48 -4595 0 ·-5135 

49 0 0 co 

Table 4-1 

Projected Normal and Shearing Forces 

To reduce the error in Nxy a finer ne t work must be empl oyed. In 



35 
..!. 

0 1./'\ 0 1./'\ 0 LX 1./'\ 0 1./'\ 0 
0 (\J 1./'\ I:'- 0 C\J 1./'\ I:'- 0 
0 rl (\J ("I'") 1./'\ \!) I:'- a) 0 . . . . ~x 

0.000 
0 0 0 0 0 0 0 0 

+35 -4290 -47 -4}00 •23 4500 •39 -4780 +26 5130 •10 -5E'oo +46 -6200 +11 O -7500 
+ 9 + 17 0 - 117 .10 15 0. J9 tll 12 +23 0 + 46 -10 
+17 tl4 + 14 .21 -12 - 11 - 9 t 5 - s - s + 3 

0 0 + 9 tll - s -12 + 2 0 - 5 
• 4 • 5 +15 -11 0 0 - 2 - 7 

• 9 0 0 - J - 4 - 6 0 
0 - 3 - 6 - 5 

- 1 
- 27} - 32 - 3 -

0.125 -25 -4200 +42 -4290 -16 -44oo -22 -4650 -47 ·5000 -28 - 5500 -65 -6700 o -7500 
- 7 +32 + 32 =~~ - 21 =~2 - 26 0 - 47 -41 - 41 0 • 65 
- 3 0 - 12 -11 - lJ 0 - 9 -14 • 19 

- 6 -21 0 -18 - 5 -19 
- 3 0 - 6 -13 - 9 0 
- l • 3 -10 0 0 - 2 
+ l 0 -12 

= l 
- 3 - 4 

0 - 1 
- 8 

0.250 

-4ooo 

0.375 
•i6 -J74o .,1 •)800 +62 -4)00 +47 -4700 .+4o -5200 - 5 -5800 +29 66oo O -7500 
+ 2 + 62 • 8 + 48 +79 • 79 +69 + 69 •59 + 59 -17 - 10 .11 - ll 

0 • 14 0. 27 0 • 27 0 JO 0 - l - 3 

:L .14 .17 .19 t 10 +16 • 10 • 8 - 7 - 9 

• ~I 
.21 +27 .21 + 5 -10 -ll 

1y 0 0 +JO + 8 0 0 
+ 4 +lo 0 • 6 - 3 - 3 
• 6 0 • 7 
• 9 - : l - +lo • - 58l0 0 

0 

0.500 -
- 5 -3170 -27 -3220 -21 - 34110 -29 -}700 +15 -•llO -24 -4700 -32 -54oo - 82 -6300 o •7500 
• 9 • 8 -16 - I -12 + 12 +30 + 41 ·Ji - 8 - 55 - 55 0 - 82 
• 5 - 9 • l - l ,41 -2 0 - 12 -15 • 28 
• 8 - 3 • 4 • 5 0 -16 - 8 -28 

0 - 1 • 6 • 7 • 7 - 5 -10 0 
I + 9 - 8 -1 ?. - 4 

,11 0 0 - 6 
- )l 2 -J?.20 -) 0 -j 88 • 9 

• 1?9 - 08 - 2 ·5 - 9 - 1 • 500 - 4 

0.625 
-26 ·2500 '38 -26uo • 6 -27':,J • 7 -3020 +• 8 -3500 ·~4 - 4100 -16 - 4900 -43 -6ooo o -7 500 
-35 • 19 •JO • JO +14 + 14 -12 0 t 48 • 7 • 47 • 5 - ll -61 • 61 
-19 0 0 t 1 :la • 10 0 - 7 - 9 0 - 16 

0 - 5 - 2 - ) - 24 - 7 

di - l • 2 +13 0 -ll -1) 
• 5 ,10 - 2 0 -16 

0 - 4 - 4 0 

- }020 -3 2 - l(J 53 
- 7 

- 920 
- 2 - 500· - ~5 19 • ?.5 O •? 3 

- 9 
0 

0.750 
-16 . 36 • • l -86 - 27 -2470 - 24 -4100 - 4) - 54oo O -7500 -l 70<J ·11 50 -1925 -2050 -3100 • 95 
-lb - 43 36 ,17 0 - 86 -51 • 4o . ' 2 0 t 95 - 17 - }O 

- 3 ·1 2 • 7 -ll - 16 - 40 - 15 +l?. - 8 - 10 - 30 
0 - 'i • 3 -1 6 

-1~ 
• l -10 0 

- 41 - 7 0 0 - } 0 • 3 
- 6 t 3 - 4 -1 5 - 6 + 4 - l 

0 - 7 t 2 - 4 --
-l •) -1 8 - 19?5 -211)2 • 2 -2~?5 - )100 - 5 30 - ';iJO 

0 

o.875 
- )) - 8:() ,1) - 910 - 6 - 980 tll -llOO - 4,o -1 )00 ' 6 -17 ':,J t 22 .ll()OQ o -7500 

0 - 33 9 - 12 - 12 - 8 • 22 - 49 - 49 - 8 - 5 -tl 5 -. 15 
- 9 - 9 0 - 2 0 - 10 - 5 0 

0 - 7 - 2 0 - 6 0 + 3 

- 41 - 'I - ) - -, - J 
0 -10 

- 9 0 

- ,92 - 919 - 992 -ll22 -1 3~9 -17 55 -)985 -7 500 

1.000 yo o 0 0 0 0 0 0 0 0 · o (J 0 0 0 

Relaxation Procedure 
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Table 4-2, the Relaxation method has been used to solve a network invol-

ing 64 unknowns. The relaxation operator has been modified to allow the 

use of the carry-over factors, a and b. Initial values at each pivotal 

point have been estimated using final values in Table 4-1 as a guide. 

Final rounded values of Ny at the eighth points of tpe s~ell have been 
' · 

transferred to Table 4-3. Values of Nx and Nxy have been computed as 

before and also appear iri Table 4-3. 

y 
Value of I: -.. 

e Force OoOO 0.25 0.50 0.75 1.00 

NY -4275 -4000 -3160 -1745 0 
o.oo .Nx -1975 -21L5 -2655 -3527 -L,.'595 

N:x:v 0 0 0 0 0 
J!y -L..585 -L..230 -3400 -1925 0 

0.25 l;!x -1785 -2000 -2510 -'3L..15 -L,.'59'i 
N:xv 0 - 39 5 I - 810 -1155 -131:iO I 

fur -51.LO -4880 i -4130 -2525 0 
0.50 .Nx - l l.1,5 -1605 -2065 -3050 -L..5915 

Nxv 0 - 750 -1625 -2L..85 -301:i'i 
1hr -6160 -6005 I -5L..65 -L..015 0 

0.75 Jix - 820 - 915 -1245 -2135 -4595 
N-xv 0 -1035 -2385 -4090 -6085 
!Y - 7500 -7500 - 7500 -7500 0 

1.00 ]:x 0 0 0 0 0 
N)cy" 0 - 1155 -2760 -5555 Cl() 

Table 4-3 

Projected Normal and Shearing Forces 

The finer network has r educed the error in Nxy considerably in spite 

of the premature curtailment of the iteration process. For example~ at 



y = Ly, X:: 0.75 1x 

Nxy (Table 4-3) = -6085 lbs. per ft. 

Nxy (Classical Solution) = -5600 lbs. per ft. 

Percentage error = 8.7%. 
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The percentage error in Nxy increases along the boundary as the cor-

ner is approached. The reason for this error becomes obvious if the var-

iation of the internal force is plotted for one quadrant of the shell. 

Figure 4-2 shows the variation of the internal force, Ny. It is noted 

that the firs·t derivative of Ny with respect to y (slope) increases at 

/ ,, X 

Figure 4- 2 

Vari ation-Internal Force Ny 
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an accelerated rate in the region near the corner as the boundary, 

y = Ly,is approached. Accordinglyj the first derivative in finite dif­

ference form is not a good approximation of the true value. 

To increase the accuracy in the corner region a finer network is 

required. However, it is not deemed necessary to evaluate Ny at points 

on the finer network by finite differences. Having an understanding of 

the force variation, interpolation of Ny should yield sufficiently ac-

curate results. In this problem~ interpolation has not been used, and 

the error in Nxy has been considered tolerable. 

The projected forcesp Nx, Ny, and Nxy~ can be transferred to the 

middle surface of the shell by substitution into Equation (1-1). 

Ny -~ Ny - s 

Nx = Cos d?_ Nx 
Cos'fl 

Nxy • Nxy 

The coefficient can be expressed as a function of x and y as follows 

Cos(p 
Cos'/' 

= 
1 + 

l + 

Recognizing that the coefficient i s a maximum at Lx = 1, ~ = 0 and 

a minimum at .Z. = 0~ .:L = 
LX Ly 

treme conditions follows 

(Cos cb) 
Cos 'I' min =) 

X y 
lp the value of the coefficient for the ex-

1 + 

1 

(2 X lQ )2 
50 



(Cose/;>) - J 
Cos 'o/ max 

1 - 8 2 
(~ X 35) 

1 
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= 1.10. 

Therefore, the maximum difference in magnitude between the project-

ed force and actual force on the shell is 10 per cent. Being that direct 

stresses in the shell are never critical~ this difference can be ignored. 

Design Stresses. 

From Table 4-3, it is noted that the maximum design stresses will 

occur at the boundary and near the corner. It is also noted that the 

shearing force, N:x:y, has a considerable influence on the principal forces • 

. It has been developed that N:x:y at the corner theoretically approaches 

infinity. That is 

N:x:y = .....- C,O • 
x-L 

X 

Y-ly 

As previously explained, values of all the internal forces in the 

corner region are not reliable. The point where these forces do become 

reliable is largely a matter of judgement. Parme (6) has suggested that 

the cut- off points for design forces along the boundary should be locat-

ed at 

~ = Lx - O. 4 ,,/ r x t 

Lx LX 

where 

t • shell t hickness 

rx = radius of curvature of t he shell i n the x direction 

3/2 
:: ~ 

16 
I, 2]3/2 
t! + (1~) = 102 ft. 
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r = radius of curvature in they direction 
y 

3/2 [1 +(-fil)2 J 3/2 
502 

[ l+ (;g)"J 156 ft. = = = o2 z 20 

oy2 

Substituting known quantities 

L = 
LX 

• 

~5 - 0.£i: .../102 x .25 
35 

50 - 0.4 ,J156 X .25 
50 

= 0.94 

= 0.95 • 

The force, Nxy, is known at the sixteenth points of the shell. 

Consequently, curves may be drawn showing the variation in shear force 

on a coordinate line and values at any point may be taken from the curve. 

This has been done in Figure 4-3 for the variation in shear along the 

boundaries. The cut-off lines are also shown and the design forces are 

noted. 

Maximum and minimum principal forces at the cut-off points will be 

computed. Design forces at~ = 0.94, ..::I. = 1 are 
1x Ly 

Nx = -4595 lbs. per ft. 

Ny = 0 

Nxy • -11~900 lbs. per ft. 

Letting v 1 and v2 represent the maximum and minimum principal 

forces respectively 

0-1 -k22.2 - J(~11~900)2 2 = -14,417 lbs. per ft. = + (- 2297.5) 2 

0-2 = -lli2 
2 + 1J(-11~900)2 + (-2297.5) 2 = + 9,822 lbs. per ft. 
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-14,000 

-12,100 
-12,000,~--1-~---1-~~-4--~~---1-~~-1-~~---1-~~-i-~~-i-~~-1 
-11,900-

-10,000 . 

- 8,000 

N:x:y 

- 6,000 

- 4,000 

- 2,000 

:rat Xi LX 
N at y = Ly 

Cutoff Poinfs 

at r iii o.9il- ~ 
~-+~ at y • Oo9~ L 

I y o.._--~....._~~---~~..._~~....._~~"-~~--~~--~....;::~ 
1.00 0.75 0.50 0.25 0 

Figure 4-:"'3 

Tangential Shearing Force 

At Shell Boundary 



At the point 1x = 
X 

Nx = O 

1, J. = 0.95 
L 
y 

Ny = -7500 lbs. per fto 

Nxy = -12,100 lbs. per ft. 

The principal forces become 

c,-1 = -7~00 - j (·~12.9100)2 + (-.3750) 2 

0-2 = -1200 + j (- 12,100)2 + (-.3750) 2 
2 

= -16,418 lbs. per ft. 

= + 8,918 lbs. per ft. 

The maximum compressive stress in the concrete is therefore 

= -16.418 : 6 b fc .3 x 12 -45 1 s. per sq. in. 

which is considerably less than the allowable concrete stress. 

Assuming an allowable reinforcing steel stress of 20,000 lbs. per 

sq. in., the tension reinforcement required at the most critical point 

is 

As = ~ • Oo49 sqo in. per ft. 
20,000 

From Table 4- .3~ it is noted that both the compressive and tensile 

stress reduce in magnitude regressing from the corner in any direction. 

other points on the shell should be similarily checked to establish cut-

off points for the tensile reinforcement. 

4-2. Example Problem No. 2. 

It is required to outline the procedure for analysis of a transla-

tional shell subjected to a load varying uniformly in intensity .. The 

shell is to be an elliptical paraboloid with physical dimensions as 

given in Example Problem No. lo Consider the shell to be subjected to a 
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uniform base load of 40 pounds per square foot and a varying load in-

creasing in intensity in the x and y direction at a rate of 0.5 pounds 

per square foot per linear foot. The loading diagram is shown in Fig-

ure 4-4. 

The equation of the load function in terms of x and y is 

p = 40 + 0.5 (x + y) 

-* From Equation (2-13), the starting value, Ny, at all interior 

points is zero, because the second derivative of the load function is 

zero. At pivotal points on a line, y = Iy, boundary conditions die-

-* tate that Ny equals zero. On a line, x = L, boundary conditions 
X 

dictate that Nx = 0 and by substituting into Equation(2-8) 

' .. 

p"' 40 + 0.5y 

Figure 4-4 

Uniformly Varying Load 
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For the same forty-nine point network used in Example Problem No. 1, 

the starting values at the points, 28, 35, ·and l;2, become 

Ny2; = 502 
[ 40 + 0.5 (35)] = -7187 lbs. per ft. 20 

- * 50~ [ 40 + 0.5 (35 + ~) J = -8229 lbs. per ft. NY35 • 20 

- * 222 
[40 - 0.5 (35 + -w~ = -9271 lbs. per ft. Ny42 = 20 

With the exception of the preceding changes the procedure for anal-

ysis is identical to the procedure presented in Example Problem No. 1. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

A new procedure for analysis of translational shells by finite dif­

ferences is presented. The steps in analysis are summarized as follows. 

1. The finite difference equation governing the variation of inter­

nal force Ny in the general translational shell is formulated. 

2. A basic difference network of forty-nine pivotal points is cho­

sen and reduced to nine points from boundary conditions and symmetry. 

3. ':t'he nine-point network is solved by Algebraic Carry-Over, em­

ploying the method of successive elimination of points and correspond­

ing modification of carry-over factors between retained points. 

4. The algebraic expressions for Ny are evaluated for a specific 

shell and used for initial starting values on a finer network solved by 

relaxation. 

The solution of the coarse network by Algebraic Carry-Over has ex­

cellent application to shells. The unique method of pivotal point elim­

ination for modifying carry-over factors is marked by its simplicity 

and the small possibility of mechanical error. 

In applying the method to a specific translational shell, the al­

gebraic solution on the forty-nine point network was found to yield 

values for normal forces which differed only one to four per cent from 

those of the classical series solution. Accurate values of the shear­

ing forces were obtained by advancing to a finer net and using the re-
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sults from the algebraic solution as starting values at the pivotal 

points, an approach which served to considerably reduce the effort 

usually expended in the relaxation process. Should greater accuracy 

by desired in the area of discontinuity, a finer network could beef­

fected by interpolation. 
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