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GLOSSARY OF TERMS

AO - abbreviation for atomic orbital. An AO is not necessarily orthogo­
nal to all other AO's in a molecule.

ab ■Ln-itio - "from first principles." This title is usually used to
distinguish methods which do not use empirical or semi-empirical
methods, i.e. methods which spring directly from the theory.

Adiabatic ionization - an ionization the initial state of which is the 
equilibrium geometric configuration of the neutral molecule and 
the final state of which is the equilibrium configuration of the ion.

"Best atom" atomic orbital - A Slater type atomic orbital the orbital
exponent of which is determined variationally for the isolated atom 
using a minimum set of atomic functions.

CNDO - abbreviation for complete neglect of differential overlap. All
integrals over atomic overlap-density functions are neglected in the
calculation.

Correlation - Generally correlation effects are defined as those effects 
not accounted for by the Hartree-Fock orbital theory. The motion of 
the electrons is correlated in the statistical sense.

GSOAO - abbreviation for Gram-Schmidt orthogonalized atomic orbital.
These functions are not "symmetric."

Gaussian atomic function - an approximation to a Slater type atomic orbital. 
A Gaussian function has exp(-ur2) dependence instead of the exp(-Çr) 
dependence of STO's.

H0M3 - abbreviation for highest occupied molecular orbital.
INDO - abbreviation for intermediate neglect of differential overlap. In

this method, all overlap integrals are neglected and most, but not 
all, energy-integrals over atomic overlap-charge densities.

LCAO-MO - abbreviation for linear combination of atomic orbitals-molecular 
orbital. A molecular orbital is approximated by a sum of atomic 
orbitals.

LOAO - abbreviation for Lowdin orthogonalized atomic orbital. These 
functions are "symmetric."
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MIMDO - abbreviation for modified intermediate neglect of differential 
overlap. This is essentially an INDO method with a different 
parameterization.

tg) - abbreviation for molecular orbital.
NDDO - abbreviation for neglect of diatomic differential overlap. This 

is the same formalism as CNDO except that only integrals which 
involve multi-center atomic overlap density functions are neglected.

NDO - abbreviation for neglect of differencial overlap. This is any
formalism where overlap is neglected and some energy-integrals over 
atomic overlap-density functions are neglected.

OAO - abbreviation for orthogonalized atomic orbital. The orbitals of
the set {i} are orthogonal if and only if the inner-product (i|j) =
*̂ ij (^ij the Kronecker delta) .

Orbital exponent - The Ç term which appears in the exponential part of a 
STO, i.e. exp(-Çr). Ç is the effective nuclear charge divided by 
the principal quantum number of the STO. The larger Ç the smaller is 
the relative size of the AO.

PNDO - abbreviation for partial neglect of differential overlap.
SCF - abbreviation for self-consistent field. An iteration method for 

solving some of the secular equations which appear in atomic and 
molecular problems.

STO - abbreviation for Slater-type orbital. These are single-term
approximations to SCF-AO's. The radial factors for STO's are not 
always orthogonal, i.e. some orbitals of the same symmetry type 
but different principal quantum number have non-zero overlap.

VB - abbreviation for valence-bond. A method for building molecular wave 
functions as products of atomic orbitals rather than from molecular 
orbitals.

Variational method - A method for finding approximate solutions to eigen­
value differential equations.
If Lu^(x) “ X^u^(x), then a trial solution $(x) obeys the variational 
principle,

- ($|L|$)/($|$) k Xq ,
where is the lowest of the eigenvalues.

Vertical ionization - an ionization which does not involve a change in the 
geometry of the neutral molecule. The final state of the ionization 
is the ion in a non-equilibrium geometric configuration.

-xii-



ZDO - abbreviation for zero differential overlap. This is an early form 
of CNDO which was applied to ir-electron systems.

-xiii-



AN APPROXIMATE AB INITIO MOLECULAR ORBITAL THEORY

CHAPTER I 

INTRODUCTION

Several years ago it was noted by a quantum chemist that the work­
ers in the area of molecular quantum mechanics could be classified into 

two areas. These areas were (1) the researchers working on large mole­
cules using semi-empirical approaches and (2) the researchers doing 

ab 'initio calculations on small molecules. This scientist concluded 

that what was needed was a contingent of workers in the middle ground, 
people who could extend the db initio methods successfully to large 
molecules.

Although today one finds primarily the same two-area division, the 

years following this publication have seen a few advances toward this 
goal. One such advance is the increased use of Gaussian atomic functions 
as the basis for the expansion of the molecular orbitals. Although the 
Gaussian expansions converge slowly (many Gaussians are needed in the 
calculations), the integrals over Gaussians are relatively easy to do, 
and the computation time with these functions is less than with a Slater- 

type atomic orbital calculation to roughly the same accuracy. All­

electron calculations on molecules of benzene-size and larger are possible 
with these techniques.^ ^ Another area in which some progress has been 

made towards that author's goal is that of providing a theoretical basis
— 1—
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for the approximations used in the semi-empirical methods. The material 
in this dissertation falls into this last category.

Even in 1971, it is safe to say that most researchers who are ap-
4plying molecular orbital calculations use the Hückel method or the 

Pariser-Parr-Pople SCF m e t h o d ^ fo r ir-electron studies. For all-electron 

(o-orbitals also) calculations, most researchers would select the CNDO/2 
method of Pople, Santry, and Segal,^ the CNDO/2 method with the Del
B e n e - J a f p a r a m e t e r i z a t i o n  for ultra-violet spectra, the MINDO/2^^’̂ ^ 

method of Dewar, or perhaps the extended Hückel m e t h o d . T h e s e  are all 
semi-empirical procedures. (I do not intend to discuss the above methods 
here as excellent reviews are available.)^

These procedures have all been developed in a partially intuitive 
manner, and many quantum chemists have felt it worthwhile to try to provide 
better theoretical justification for the methods. Indeed, one obstacle 
to wider use of the methods is a mistrust generated by the lack of a 
convincing justification.

In this chapter, some of the efforts to justify the semi-empirical 

methods will be briefly reviewed and the research effort presented 
in this dissertation will be placed in the context of these efforts.

Since neglect of differential overlap (NDO) semi-empirical theories are 
in the majority of those used, only efforts made to justify theories 
of this type are discussed. (These NDO theories assume that all overlaps 

between atomic orbitals are zero and that many or all of the electron- 
repulsion integrals involving overlap-charges are zero.) The material 
in subsequent chapters is also generally restricted to the neglect of
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dlfferentlal overlap approximations.

Serious efforts to provide a theoretical basis for the neglect of 
differential overlap methods began shortly after Pariser and Parr pro­
posed^ the zero differential overlap approximation (ZDO) for ir-electron
calculations. These efforts invoked the atomic orbitals generated by the 

18Lbwdin method of symmetrically orthogonalizing functions as the orbital 
basis of the ZDO approximation. In the Lbwdin procedure, the orthogonal­

ized atomic orbitals (OAO's) are obtained by a transformation

4) = $ s “^, CD

where 4> is the row matrix with each element a Lbwdin orthogonalized atomic
orbital (LOAO), $ is the row matrix with each element an atomic orbital
(AO), and S is the overlap or metric matrix of the AO’s. The LOAO's are 
symmetrically orthogonal. That is, where the MO's of a molecule are 
determined by symmetry, the expansion of MO's in LOAO's produces a set of 
expansion coefficients (within a normalization factor) the same as the 

set of coefficients in an AO expansion.
With LOAO's, the matrix form of the Roothaan secular equations for 

AO's is reduced from
H X = S X E (2)

to the form
H'C = Ç E . (3)

In these equations, H is the matrix which collects the elements
H = /$*H $ dr, where H is the one-electron Hartree-Fockyv y op V op
operator. E is the diagonal matrix of the MO energies, and x and C are 
the matrices of the MO expansion coefficients of AO's and LOAO's respec­
tively. The matrix H' is related to H by the transformation
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H' = S"^ H S"^. (4)

It is difficult to say who first realized that the LOAO's justified 

the ZDO approximations of n-electron theory. Probably it was Lowdin him­

self, and this fact was apparently indicated to Parr in a private communi- 
19cation. The first proof of the ZDO assumptions to appear in print was

19that of Fumi and Parr, who rationalized ZDO by LOAO's for diatomic tt-

electron systems. About this same time, McWeeny^^’̂ ^ was employing LOAO's

to do valence-bond calculations. However, the usefulness of LOAO's for
VB calculations is more restricted than for MO methods. A very complete
discussion of the importance of LOAO's in rationalizing the ZDO approxi-

22mation has been given by Parr.
23More recently, Fischer-Hjalmars extended the results of Fumi and 

Parr to general polyatomic systems. It is interesting that her efforts, 
unlike the efforts of Fumi and Parr (1) were applied not only to two- 
electron integrals (electron repulsions), but also to the a and 6 inte­

grals, and (2) had as an essential feature in the mathematical proofs the
24assumption of the validity of the Mulliken approximation for AO integrals. 

This approximation may be generally written as
ab = Y  S^^(aa + bb), (5)

where ab is an overlap-density function for the AO's a and b, and aa and 
bb are the atomic density functions. To approximate integrals involving 

overlap-densities, one inserts this approximation for ab into the particular 
integral. It should be pointed out that the validity of the Mulliken approx­

imation is essential to the proofs. The proofs are as accurate as the Mulli­
ken approximation is valid. The assumption of its validity for one- 
electron integrals (a's and 3's) leads to some unacceptable consequences.
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For example, if the Mulliken approximation is valid for one-electron
integrals, then resonance integrals (6's) calculated over LOAO's for
diatomic ir-electron systems are zero. The fact that LOAO's rationalize
the neglect of certain two-electron integrals in the ZDO approximation
is due entirely to the Mulliken approximation being a goon one icr two-
electron integrals. Needless to say, Fischer-Hjalmars did not fully
apply the Mulliken approximation in the calculation of one-electron
integrals over LOAO's. She did, however, use this approximation to

2estimate some of the terms which were factors of S and higher order in
18overlap in the binomial series expansion of a and 3. She came to the 

conclusion that since one could represent 3^j^^ as

gLOAO ^ - I  S. .{af + + O(S^) , (6)

that 3^j^^ is transferable from one molecule to another. The conclusions 
in this dissertation will disagree strongly with Fischer-Hjalmars' con­
clusions. The use of the Mulliken approximation to estimate one-electron 
integrals is not valid. The use of the slowly convergent binomial expan­
sion also leads to errors. The discussion in chapter VI shows that, even

for a two-atom ir-electron system, the first two terms in the expansion
2should be multiplied by a factor containing a term of the order of S .

A series of papers developing and applying a semi-empirical ir-
electron MO theory based upon Fischer-Hjalmars' conclusions has appear- 

25-29ed. The only real improvement over the original Pariser-Parr-Pople

procedure was the recognition that a's were somehow overlap-coupled to 

their neighbors. The electronic transition energies calculated with this 
method are better than with the original Pariser-Parr-Pople method.

It was at this point that the work represented in this dissertation
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really began. I could not help but feel that the accuracy in the 
Mulliken approximation was, in fact, the critical point, particularly in 
the case of one-electron integrals. Since no one had used the LOAO's to 
derive a set of uncomplicated, usable equations for one-electron integrals 

in MO calculations, and since these terms were treated intuitively in 
the semi-empirical MO theories, I wondered if uncomplicated equations for 
the one-electron integrals could be derived from LOAO's. The intuitive 

equations for S's in NDO theories were all based on 3^^ being a linear 
function of the overlap Was this really the case? If so, then
under what conditions? Obviously, the derivations of a and S could not 
assume the validity of the Mulliken approximation.

One of the fundamental problems involved in the undertaking out­

lined in the previous paragraph is the generation of the LOAO's. Obtain­
ing the transformation matrix S ^ is not a trivial procedure. Ldwdin^^ 
originally suggested using a binomial expansion of (1 + S') where 

S = 1 + S'. This leads to the equation

(1 + i  S' + §  s'2 - {L s'3 + .... (7)

The expansion produces the following general form for a LOAO:

- 2 : Saw + §  E * o \ s ® 6ü‘ .... (8)
a oS

Although this is an infinite series and difficult to handle mathematically, 
this is the form for LOAO's used by Fumi and Parr and Fischer-Hjalmars 

in their derivations. The series is slowly convergent for the overlaps 
found in molecules, and this fact prevents serious derivations with it.

LBwdin found that LOAO's could be generated in closed-form for
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the matrix may be generated from the first row by cyclic permutation of 

the elements of the first row). Such systems would include the ir-systems 
of ethylene, benzene and cyclobutadiene. Use of these closed-form solu­
tions limits one to a very restricted class of molecules, however.

The difficulties inherent in the binomial expansion technique led
31 32Ldwdin and co-workers to try a new method. ’ This method is that used

to compute a function of a symmetric matrix. If

Û "S U = D (D is a diagonal matrix) (9)

then, if S is symmetric (S-transpose = S)

f(S) = y f(D) y+. (10)

yt is y-adjoint (the complex conjugate of y-transpose). The object is to
calculate f(S) = S This technique has been applied in the orthogonali-
zation of functions for solids. However, obtaining S ^ by this method

33involves complicated numerical techniques. The method does not produce
foirms for LOAO's which are manageable in mathematical derivations, and

33closed-forms are apparently still restricted to cyclic systems.
One would prefer to have a more convenient method for generating 

LOAO's than those methods discussed previously. One might even sacrifice 
some accuracy in order to have manageable approximate equations for LOAO's. 

Chapter III of this dissertation is concerned, at least in part, with the 
development of a method to produce and test such a set of approximate 

equations.
More recently, semi-empirical methods have been extended to o- 

electrons. The approximations inherent in ZDO were brought over to
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all-electron calculations and renamed CNDO (complete neglect of differ­

ential overlap), NDDO^ (neglect of diatomic differential overlap),
INDO^^ (intermediate neglect of differential overlap), MINDO^^ (modified

35intermediate neglect of differential overlap), or PNDO (partial neglect 
of differential overlap). These are all various levels of approximation 
along the lines of the original ZDO approximation, Dewar's excellent 
book should be consulted for details.

These NDO (all the abbreviations have at least this much in 
common) methods have invoked the LOAO's as the orbital basis for the 

approximations that have been made. Relatively recent studies of several 
small molecules (HgO, CH^, CgH^, CgH^, HgCO, etc,) in a LOAO basis by 

Cook, Hollis and McWeeny^® and by Cook and McWeeny^^ have helped to show 
how far the LOAO basis can be used to rationalize the NDO approximations. 

The authors of these papers have shown that at least an INDO formalism 
is necessary to obtain good charge densities in molecules. Their calcu­
lations also served to provide comparisons of LOAO-calculated a's and 3's 
to parameterized values. The studies were done accurately, with no 

integral approximations and with fairly accurate LOAO's (binomial expan­

sion method). The studies are useful as studies but good, uncomplicated 

approximate expressions for a's and S's were not derived (see Chapter 
VI),

An entirely different approach to the problem of calculating a's
and S's for the Pariser-Parr-Pople method and for the various NDO theories

38 39is that developed by Linderberg and extended by Wratten, From the

equivalence of the dipole length and velocity forms of the oscillator
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strength (Heisenberg equation of motion), Linderberg deduced a dependence
of g ^ upon the overlap in the form of the equation

1 d

where S is the overlap of the AO’s and R is the intemuclear distance, yv yv
g’s were calculated for the ir-electron systems of benzene and ethylene 

with this method and the results agreed with the original Pariser-Parr 
parameterization. Wratten applied the method to the calculation of g's 

for a-AO's.
The Linderberg derivation had the anomoly that a g over orthogonal 

functions should be proportional to the derivative of the overlap of AO’s. 

This anomoly was removed by Jug^^ who explicitly used LOAO’s in the 
development of the above equation. He also used the method to obtain 

approximate equations for o.

I have a feeling that something is wrong with these derivations.
A conversation with Jug at the 1971 Sanibel symposium revealed that the 
use of the equation was producing some strange results. A test of this 

equation for the molecule is included in Chapter VI. The results of 
this test are interesting.

The original purpose of the work presented in this dissertation was 

to develop an ab vrvitio approximation to accurate db 'Lnitio all-electron 
calculations. This approximation was to embody as many of the approxi­
mations of the NDO formalism as were found to be accurate for an actual 

LOAO basis. It was planned that the approximate db initio MO theory 

would be about as easy-to-use a procedure as the NDO semi-empirical 
methods. This goal was achieved, but only for ir-electron theory. Cer­

tain obstacles arose (notably the generation of the LOAO’s) which limited
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the effort to ir-electrons only.

Using this theoretical method for ir-electrons, it was possible to 

check some aspects of the semi-empirical procedures by comparing the 
calculated values for integrals to the parameterized values. The method 
was also used to calulate ir-electron properties of molecules, and the 
calculated ionization potentials and electronic transitions were compared 
to experiment. One wonders how far the semi-empirical parameterization 
was going towards obtaining actual integrals over LOAO's, and how far the 
parameterization was going towards including effects which lie, in reality, 
outside orbital theories (electron-correlation effects). The comparison 
of the calculated results of the approximate ab ■invt-io method to experi­
ment should help to answer this question. The effort represented by this 
dissertation has served to (1) point up some of the defects in the NDO 

semi-empirical methods and (2) to suggest better approximations. Some 
alternatives to the NDO parameterizations have been suggested to include 

effects outside the simple orbital theory developed here.

In the chapters which follow, the LOAO basis is discussed, and its 
advantages and disadvantages in representing a molecular wave function 

are pointed out. A method is proposed for approximately obtaining LOAO's 
for ^-electron systems. The method is thoroughly tested. In this chap­
ter (Chapter III), a transformation theory of the Gram-Schmidt orthogo­
nalisation procedure is presented. In the past, the Gram-Schmidt pro­
cedure has been given in the form of an algorithm, and this does not 

allow one to write Gram-Schmidt orbitals directly in terms of the over­
lapping orbital set. Lowdin also realized this problem and, in a recent
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33publication, has shown a method alternative to that in Chapter III. It 

is felt that the method presented in this dissertation is more rigorous and 

mathematically "neater" than that of Lowdin.
Chapter IV presents the derivation of the approximate ab initio NO 

theory. In this chapter, the development appears in a very detailed form. 
However, due to the great number of approximations developed, the final 

equations, which are to be employed in actual calculations with the 

method, are relatively uncomplicated.
Chapter V evaluates the results of calculations using the method 

derived in Chapter IV. These calculations were done using an SCF program, 

the self-consistency check being on the bond-order matrix. The resulting 
charge densities, ionization potentials, and electronic spectra were all 
evaluated in li^t of more accurate calculations or of experimental data.

Chapter VI presents a discussion of the "one-electron" parameters 
of several semi-empirical theories. The semi-empirical parameters are 

compared to the "one-electron" integrals actually calculated in the 

present work. This chapter establishes a better basis for the NDO pro­
cedures where such procedures are found to be correct and points out 

corrections to the procedures where they are in error.
The last chapter of this dissertation discusses a modification of 

the SCF method to give an "independent particle" or HUckel procedure.

For several small molecules (Hg, HeH^, and LiH), the NDO SCF formalism is 
compared to an db initio HUckel method. This db initio method displays 
the "insides" of the HUckel a and g integrals, which are always para­

meterized. Although an extension of this approach to larger and more 

interesting molecules was attempted, several, at present insurmountable.
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problems In such an extension became apparent. These problems are 
discussed.

Such an "independent particle" theory is ad hoc. It does not 
spring directly from first principles but is designed to give total 

electronic energies and to give electronic transition energies with less 
computational difficulty than SCF approximations to Hartree-Fock. At the 
same time, however, such a theory does not give ionization potentials as 
the negative of the orbital energies.

Discussions of HUckel theory for ir-electron systems may be found 

in the books of Streitwieser or Dewar. The newer extended HUckel theory 
(extended to o-electrons) is discussed in Dewar's book. A brief discus­

sion in Dewar's book* is the only one that I have found which is anything 

like that found in Chapter VII.
The purpose of the work presented in this chapter is to elucidate, 

via reasonably rigorous techniques, the problems involved in developing 

an "independent particle" approach. In light of the failures of the 
extended HUckel treatments, such an investigation appears to be in order. 
Such an investigation should suggest some ways to improve the HUckel 

theory.

* Page 92 of reference 16.



CHAPTER II 

ESTABLISHING AN ATOMIC ORBITAL BASIS

In NDO theories, it is generally assumed that LOAO's form the 
atomic basis for LCAO-MO expansions. Why use LOAO's? Why not use another 
orthogonal set? There are as many sets of n orthogonal functions as there 
are n x n unitary matrices (see Chapter III for details). Why, indeed, 
use orthogonal functions at all?

One would like to choose a basis set of atomic functions which 
allows as much simplification of the mathematics of the calculation of 

molecular properties as possible. This simplification can be through 
exact mathematical means or through simplification of the arithmetic via 
a set of adequate approximations. LOAO's provide a maximum amount of 

both types.
Since they are orthogonal functions, the LOAO's reduce the Roothaan 

equations for the expansion coefficients of a set of AO's to a set of 

secular equations. This reduction is exact. But then any set of OAO's 

will provide this simplification.
The LOAO's allow one to assume that certain of the electron- 

repulsion integrals encountered in SCF-MO calculations are zero. These 
are integrals involving atomic density functions formed by the overlap­

ping of two LOAO's. This approximation is best or at least very nearly 
best for LOAO's. It has been found that LOAO's are very nearly those

-13-
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functions which minimize the exchange integrals (abjab). ’ However,
these integrals are decreased from their values over atomic functions
by the requirement that a and b be simply OÂO's. An example for the tt-
electron system of ethylene is the integral (aajab), a tt overlap-charge
interacting with a n atomic charge. For a and b STO's, the integral has

22a value of 3.58 ev. For a and b LOAO's, the value is -0.09 ev. The
same integral calculated with Gram-Schmidt OAO's (GSOAO's) is about -1 ev.
(For mathematical definitions, see Chapter III.)

The LOAO's provide maximum simplification of the math involved in
doing an MO calculation.

Another advantage which LOAO's have over other OAO's is that they
are symmetrically orthogonalized functions. For a simple homonuclear

molecule, the electron densities of LOAO's coincide exactly with the
43densities predicted by Mulliken population analysis of MO's expanded in 

an AO-set. Other OAO's (such as GSOAO's) are not symmetrical, and the 

atomic populations predicted by them are not symmetrical even for a 

simple homonuclear molecule such as Hg. For these OAO's, to get accurate 
charge densities one must transform the OAO coefficients to AO coeffi­

cients and do a population analysis, such as the Mulliken analysis.
For heteronuclear systems (unsymmetric systems), the LOAO's do not 

predict populations which agree with Mulliken population analysis. The 
difference is due to the fact that the LOAO's are multi-centered functions. 

If we wish to assign an electronic charge, calculated for a multi-centered 

function, to an atomic center, we can assign the charge only if the charge 
approximately coincides with that calculated for an AO.

The use of LOAO's involves the expansion $ = ^^ere $ is
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a given molecular orbital, are the LOÀO expanison coefficients for
that MO, and are the LOAO's. The question naturally arises as to how 
well the molecular orbitals given by the LOAG expansion represent the 
electron distribution in a molecule.

The standard way to determine the electron distribution for mole­
cules where expansion of the MO's has been carried out in an overlapping
atomic orbital basis (AO's), $ = Z.C.®., is that suggested by MullikenJ 3 3
and termed population analysis. For a simple diatomic molecule AB with
AO's 4> and 4 the LOAO expansion coefficients are related to the AO a b
expansion coefficients in following way;

C^OAO = E + (S/2E) Cjj

and (12)
,LOAOc: = (S/2E) + E

2 h Lwhere E = {[1 + (1 -S ) ]/2}^\ and S is the integral representing the 
overlap of and (see Chapter III). To obtain the electron density 

for the doubly occupied MO using the LOAO expansion each LOAO coefficient 
is squared and multiplied by a factor of two. This operation produces the 
following LOAO populations:

= 2 [E^C^Z + (S ^ /4E ^)  +  s CgC^]

and (13)
pLOAO ^ 2 + (S^Ae ^) + S C^C^].

The Mulliken population analysis method produces the following electronic
populations :

.AO . 2     , _A0 . 2P = 2 (C, + S C^C^) and P“  = 2 (C^ + S C^C^). (14)
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The Mulliken population analysis is identical to the LOAO population 
analysis if and only if C “ C, , that is if the molecule is homonuclear.
If the molecule is heteronuclear then the accurate way to obtain a 

population analysis from the LOAO coefficients is to transform these 
coefficients to AO coefficients and p .rform a Mulliken population 
analysis. For a large molecule, however, this is impractical, and the 
LOAO populations must be assumed to adequately represent the electron 

distribution.
The LOAO populations have been computed using the previous equations 

for and and compared to the populations given by the more
accurate Mulliken population analysis. This has been done for several 

sets of LOAO coefficients and for two different overlaps, S = 0.250 and 
S = 0.500. The results of these calculations and the errors in the LOAO 
populations when compared to the Mulliken populations are given in Table 1.

An overlap of 0.250 is representative of typical n-system overlaps, 

and an overlap of 0.500 is representative of some of the overlaps found 
in o-systems. If we are to keep the error in the orbital populations for 
a given MO below about ten per cent, then we are restricted to LOAO coeffi­

cient ratios of say 2.5 or less for a typical tt MO, but in o -systems we 
are restricted to ratios of about 1.3 or less. This condition is often 
met by ir MO's and less often met by o MO's.

Although the results in Table 1 strongly imply that the MO by MO 

LOAO populations for a MO's are unreliable, it is noted that the larger 
LOAO population is always less than the corresponding Mulliken AO popula­
tion and that the smaller LOAO population is greater than its correspond­
ing Mulliken population. For a many-MO molecule this indicates that a



Table 1

A Comparison of LOAO Populations and Mulliken AO Populations

_LOAO,_LOAO qLOAO 
a ^  a

LOAO
b

pAO
a Percentage Error in p^^AO C Percentage Error in p^^AO

S = 0.250

1 . 1 1.096 0.904 1.098 -0 . 2 0.902 +0 . 2

1.3 1.256 0.744 1.265 -0.7 0.735 +1 . 2

1.5 1.384 0.616 1.397 -0.9 0.603 + 2 . 2

2 . 0 1.600 0.400 1.620 -1 . 2 0.380 +5.3

3.0 1.800 0 . 2 0 0 1.826 -1.4 0.174 +15

4.0 1.8824 0.1176 1.9114 -1.5 0.0886 +33

5.0 1.9230 0.0770 1.9531 -1.5 0.0469 +64

S = 0.500

1 . 1 1.096 0.904 1 . 1 1 0 -0.4 0.890 + 1 . 6

1.3 1.256 0.744 1.296 -3.1 0.704 +5.7

1.5 1.384 0.616 1.444 -4.2 0.556 + 1 1

2 . 0 1.600 0.400 1.693 -5.5 0.307 +23

3.0 1.800 0 . 2 0 0 1.9236 -6.4 0.0764 +160
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summation of individual MO populations to produce a gross LOAO population 
will result in some cancellation of these errors. This cancellation may 
be expected to occur if the LOAO population overestimates the actual 
population in one MO and underestimates it in another.

Although a transformation of LOAO coefficients to AO coefficients 
and a Mulliken population analysis on the AO's could be carried out to 
achieve accurate NO electron distributions, the tremendous utility of 
the LOAO's is that reasonably accurate electron distributions can be 
obtained from the LOAO populations directly. The multi-centered nature 

of the LOAO's will, therefore, not interfere with our interpretation of 

the LOAO densities in terms of a single atomic center. This applies 
particularly to the ir-electron MO theories.



CHAPTER III

THE MATHEMATICS OF ORTHOGONALIZATION OF ORBITALS

In order to develop an approximate MO theory which is both ab initio 

and neglects differential overlap, the first problem to solve is the pro­
blem of obtaining the LOAO's. Current methods of obtaining these func­
tions by binomial expansions or by the numerical solution of the equation

33for a function of a symmetric matrix S,
u"̂ S U = p (p diagonal)

then

f(S) = U f(S) U+,

are unsatisfactory. The methods are time-consuming and do not provide
uncomplicated expressions for the integrals necessary in a MO theory.

The search for a less complicated way to obtain closed-form LOAO's
led first to the development of a transformation method of obtaining
GSOAO's. This method allows one to write the GSOAO's directly in terms

44of the AO set rather than via the usual algorithm. The desirability 
of this improvement was recognized by LBwdin who proposed a way of 
improving the Gram-Schmidt procedure different from the method outlined 
here. This search also led to the conclusion that LOAO's are obtainable 
analytically only for systems of AO's which have cyclic symmetry (a 
cyclic S-matrix). An approximate method of obtaining LOAO's, suitable 
for non-cyclic molecules but only applicable to ir-electron systems, is 
therefore proposed.

-19-
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(A) Orthogonallzatlon of Orbitals by a 
Transformation Theory 

The problem of how to obtain an orthogonal set of functions from a 
non-orthogonal set may be stated in matrix language as the problem of 
solving the equation

X'S X = 1, (15)
where 1 is the unit matrix, S is the overlap matrix for an ordered over­
lapping set of orbitals, X is the transformation matrix and X' is X 
transposed. the nxn overlap matrix, may be looked upon as the
result of the following matrix multiplication:

■  ( V 2 " - V ' V 2 " - V -  (1 *)

where (*1 *2 '"'*n^ the row matrix of overlapping orbitals. "Multipli­
cation" of any two elements of the matrices is defined as taking the 

inner product of the two elements. Accordingly, 1^^ is the

result of the matrix multiplication

1 = * 9 ' ( 1 7 )"nxn 1 z n 1 z n
where Is the row matrix of the orthonormal orbitals. The
matrices S and 1 are often called the metric matrices for the AO -nxn -nxn
and the OAO sets respectively. Using these expressions for S and 1, one 
obtains a general expression for X'S X = 1 as

X7(*^$2 ' ( * 1 *2 ""'*n) - “ (*i*2 '"'*n)'(*l*2 ''"*n)" (18)

The solution to equation (18) is

(®^$2 - * * V  ? ” (*l*2 ""'*n)' (19)

i.e. that X is the matrix which transforms the overlapping set into the 
orthonormal set.
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We may now consider the problem of solving the equation X'S X = 1 

to obtain the transformation matrix X. Let
1 = P'P, (20)

thus defining P as an orthogonal matrix, and let
s = g'g. (21)

(Obviously a matrix A can be written as a product of another matrix and 
its transpose only if the matrix A is symmetric. S is symmetric.) Then 
one may substitute these equations into X'S X = 1 to obtain

X'Q'Q X = P'P, (22)
or

Q X = P. (23)
Solving this matrix equation for X, one obtains

X = q'^ P. (24)
-1 -1 It is necessary to find Q in order to obtain X. Q exists since Q is

- 1non-singular. Q may be found by solving the matrix equation

Q'Q = S (25)
for Q and then finding Q .

form

45From Cullis , the solution of this type of equation has the general

y ?a» (26)
where U is a unitary matrix and P^ is a particular solution of the 

equation. Since we are dealing here with real numbers, let U = 0 where 
0 is an orthogonal matrix. Substituting this form for Q into the equation

- 1X = Q P, one obtains

which becomes
(0 P^)"l P, (27)
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X = 0“  ̂P. (28)

By definition 0 ^ = 0 '  and with this substitution we have
X = O'P. (29)

Since the product of two orthogonal matrices is orthogonal, one may set 
O’P = B, B being any orthogonal matrix. This results in the following 

form for X:
X = P B. (30)A. —3

X may be found provided we specify the orthogonal matrix B and provided

we can find the inverse of a particular solution to the equation Q'Q = S.
One particular solution to such an equation may be obtained using 

46the following relation

where
X - (A^ 10» (31)

the X—  row of P ,
k = X - 1, 

m = the total number of columns in P^, 

and = the diagonal minor determinant in the series of leading 
diagonal minor determinants. (For example, Aq =1, and Â  ̂is the first 
element on the diagonal.) The notation ^ indicates that there are
k zeros and m-k entries of 1. The i entries are always subscripted

The first element is always These entries are obtained from the
equation

'1 2 * ^13’ “ * fGgardless of which row of the matrix is being obtained.
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X y 2} • • • ylc

S
X ) 2 ) # # • ylc

(32)

Is the determinant of (Sy)» where 1 = X,2,... ,k,k+v and

j = X,2,... ,k,k+v. This method of soXving for produces a matrix which is
- 1upper trianguXar. This makes it reXativeXy easy to obtain the inverse 

For §2 x2 ’ - takes the foXXowing form;
X S 
S X

provided the AO's are normaXized. Using the previousXy outXined procedure 
to find the orthogonaX set of orbitaXs from the overXapping set, we need 

to find ^ for this 2x2 exampXe. One obtains P^, row by row, as

(33)

Row X (X, S)

and

or

Row 2 = (X-S^)'^ (0, I-S^),

Row 2 = (0,(X-S^)^).

Putting together the rows we obtain the 2x2 matrix
X S

?a 0  (X-s2 )%
(34)

-XTo find the transformation matrix X we empXoy the equation X = P B and

seXect §2 ^ 2 “ -2x2* result is
X -S(X-S^)"^

0  (X-S^)“^
The orthonormaX set of functions generated by this transformation is 

simpXy

(35)
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♦l‘ - *1

*2 '
(36)

These functions are recognizable as the results of the familiar Gram-
4 4Schmidt orthogonallzatlon process.

To produce LOAO's we can retain the form generated for ^ and use 

a different B. In order to fix all the elements of B we need to employ 

the well-known orthogonality conditions on the elements of B plus one 

further condition on the elements. This condition is provided by the 

symmetric nature of the LBwdin orthogonallzatlon. LOAO's in the 2x2 case 

have the following form:

and

♦ 1  ■ A$^ + B* 2

* 2 " 8 * 2  A$2 '

(37)

For the LOAO the coefficient of is equal to the coefficient of $2

in the LOAO *2 » The LOAO's in the general 2x2 case have a mirror-image
-1 -1 symmetry. We return to the equation B, use the same P^ as was

used in generating GSOAO's, but leave B undetermined. This gives

(38)

Doing the matrix multiplication, employing the transformation relationship 

$ - and using all the conditions placed upon the elements of B, one 

can solve for these elements. One obtains

E S/2E

1 -S(l-s2)-% ^11 1̂2

0 (l-s2)-%
_ ^21 ^22

B
-S/2E

(39)
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where

E - {Il + (1-S^)^] / 2}^.
-1This expression for B, when substituted into the relation X = B,

produces
-S/2E

X = (l-Ŝ )'"'̂ (40)
-S/2E E 

and the transformation to obtain gives

<j)̂ = (l-S^)"^ (E$i - (S/2E)$2 )
and (41)

* 2 = (1-S^)"^ (E» 2 - (S/2E)$i).

These are the LOAO's in the 2x2 case. A different representation for these
222x2 solutions has been obtained by Parr.

This result for the general 2x2 case implies that closed-form

expressions for ÿ can be obtained only when the LOAO's have the mirror-

image symmetry. It appears that it is only under this circumstance that

a unique solution for the matrix B can be obtained from the procedure

outlined in the 2x2 example. This requirement seems to be the same as
30requiring that the overlap matrix be cyclic and would suggest that the 

only closed-form expressions for LOAO's are those for S a cyclic matrix. 

One can then conclude that no general closed-form expressions for LOAO's 

applicable to molecules with non-cyclic S matrices can be obtained.

(B) Approximate LOAO's for n-Electron Systems 

One can generate approximate LOAO's from ir AO's by orthogonalizing 

the ir AO's pairwise. In o-systerns, where for a pair of atoms there is
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more than one pair of overlapping AO's, the technique outlined here is 
probably not applicable. To employ the technique one orthogonalizes a 
pair of AO's using the 2x2 transformation of the previous section to 
produce LOAO's. These LOAO's are then orthogonalized to any other AO's 
in the system which overlap appreciably with them.

Since there is little mathematical formalism associated with this 
procedure, it is best to illustrate it with a specific example. A 
reasonably general example is the n-electron part of the glyoxal molecule. 
It is felt that glyoxal represents, as far as this procedure is concerned, 
a general example of a n-electron system. If this orthogonalisation pro­

cedure produces acceptable results for glyoxal, it is not difficult to 
accept that it will produce acceptable results for butadiene, hexatriene, 

pyridine, anthracene, etc. The AO's chosen for glyoxal are STO's with

orbital exponents of 1.60 for carbon p^ and 2.20 for oxygen p^. These
47orbital exponents were determined variationally for the CO molecule.
48The bond lengths and bond angles are those of Lu Valle and Schomaker.

There are two possible ways of orthogonalizing the tt AO's of glyoxal 
pairwise. The first is termed Option A.

^Oo
.0 —

° 1

®  ®
Option A

In Option A the ir AO's on 0̂  ̂and are orthogonalized using the 2x2

transformation matrix and the ir AO's on Cg and Og are orthogonalized in

the same way. These two steps produce the LOAO's <|»« , , <t>„ , and
° 1  ^ 1  ^ 2
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(ji- . The LOAO's and are then orthogonalized in 2x2 fashion to
° 2 ^ 1 2 
produce a new pair of LOAO's. Option A therefore results in the set of
approximate LOAO's and (j)_ . Since the overlap of theUi ^ 2 " 2

AO pair 0 ^-C2 and the overlap of the AO pair O^-Og are both small to 
begin with, it is not necessary to further complicate the picture by 
orthogonalizing these pairs. The second option is termed Option B.

^0^

.C, C2
*1

© C D  ©

Option B

In Option B the AO's on and Cg are first orthogonalized pairwise to 
produce the LOAO's and (t>„ . Next (j>̂ is orthogonalized to the AOCl C2

on 0., and * is orthogonalized to the AO on 0„. This produces a LOAO 
1

set for Option B of '» and '.
" 1  ® 2  4  ^ 2

In order to establish that the technique exhibited for glyoxal's ir 
AO's produces good approximations to LOAO's it is necessary to show that 

(1) the functions produced by Options A and B are approximately orthonormal 

and (2) that these approximately orthonormal functions have the LOAO prop­
erty of being symmetrically orthogonal. The first requirement may be check­
ed by comparing the overlap matrix for the original tt AO's to the overlap 
matrices for the approximate LOAO's. To meet the second requirement it 
must be shown that regardless of whether Option A or Option B is employed 

to produce the approximate LOAO's the resulting functions are very similar. 
Only for LOAO's should this be the case. If one uses a non-symmetrical 
orthogonalisation procedure, such as the Gram-Schmidt orthogonalisation
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method, the functions produced by pairwise orthogonallzatlon would vary 
greatly depending upon the order In which the pairs were orthogonalized. 
Since the approximate LOAO's are developed here with an eye towards 
application to n-electron MO theory, to show that the functions of Options 
A and B are roughly similar It should suffice to show that the correspond­
ing one-electron matrix elements computed with both Options A and B are 
roughly equal. If these matrix elements are equal then a it-MO calculation 
using either set of approximate LOAO's will produce LOAO coefficients 
which are equal. Wave functions for both Options A and B would then have 
the same physical significance.

The overlap matrix for the AO's Is shown In Table 2. These overlaps

were determined using the overlap tables of Mulliken, Rleke, Orloff, and 
49Orloff. The overlaps in Table 2 were used to compute the approximate

LOAO's of Options A and B. Each option gives the LOAO's as expansions In
AO's. The coefficients C for the expansion (|) = I. C $ are listed

1] j 1 Ij 1

in Table 3. Inspection of the coefficients in Table 3 Indicates that the
functions produced by Option A and Option B are very similar.

The overlap matrices for the approximate LOAO's were computed using
the functions listed In Table 3 and the overlaps of Table 2. The overlap
matrix for the functions of Option A Is presented In Table 4, and the
overlap matrix for Option B Is In Table 5. Both options have overlap

matrices which are to an excellent approximation simply the unit matrix.

Mathematically this can be stated (ij>- ()>„ ' )'(4>n '
1 ^ 1 ^ 2 ° 2 1 1 2

<J)q ) = 1. The requirement that the approximate LOAO's are approximately

orthonormal Is therefore met by the functions of both Options A and B.

The one-electron matrix elements which we shall compare here for
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Table 2 

Overlap Matrix for AO’s

' ^ 1 %

1 . 0 0 0.238 0.023 0 . 0 0 0

0.238 1 . 0 0 0 . 2 2 1 0.023

0.023 0 . 2 2 1 1 . 0 0 0.238

0 . 0 0 0 0.023 0.238 1 . 0 0
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Table 3

Coefficients in the Expansion of LOAO's 

in AO's

j "û23

1 . 0 2 2

Option A 

-0.1233 0 . 0 0 0 . 0 0

"l -0.1258 1.042 -0.1188 0.0143

° 1
1.023

Option B 

-0.1270 0.0142 0 . 0 0

Cl -0.1250 1.042 -0.1170 0 . 0 0
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Table 4 

Overlap Matrix for Option A

s *0 / s

' « 1
1 . 0 0 0 0 . 0 0 0 -0.003 0 . 0 0 0

0 . 0 0 0 1 . 0 0 1 -0 . 0 0 2 -0.003

-0.003 -0 . 0 0 2 1 . 0 0 1 0 . 0 0 0

* 0 2
0 . 0 0 0 -0.003 0 . 0 0 0 1 . 0 0 0
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Table 5 

Overlap Matrix for Option B

1.001 0.000 -0.007 0.000

0.000 1.001 - 0.001 -0.007

-0.007 - 0.001 1.001 0.000

0.000 -0.007 0.000 1.001
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glyoxal are of the following form:

OLj = (4y(l) I H(l) 1 * (D) (42)

and

I H(l) I * (D). (43)

The one-electron Hamiltonian operator is taken as a sum of the kinetic 
energy operator and the nuclear framework potential seen by an electron.
The potential due to the core of o-electrons is not included in this cal­
culation. It is not necessary to include this potential in order to prove 
that the second requirement on the approximate LOAO's is fulfilled. All 
energy integrals needed in these calculations were obtained using Roothaan's 
formulas,with the exception of the three-center nuclear attraction

integrals. The three-center integrals were obtained using the well-known
24Mulliken approximation.

The results of these calculations are shown in Table 6 . The differ­
ences between the a's calculated by Options A and B are only on the order 

of two-tenths of an electron volt. This would represent a small error in a 

ir-electron MO calculation, and for all practical purposes Options A and B 
produce the same values for a. The differences in the B's for Options A 
and B are again on the order of two-tenths of an electron volt. The B's 

calculated using the Option A LOAO's and the Option B LOAO's are effec­
tively equal. These results strongly indicate that the approximate LOAO's 
are not only orthonormal but have the important symmetry property of exact 
LOAO's. Since the approximate LOAO's have this property, the pairwise 
orthogonalization method can be initiated with any pair in the molecule.

The S's calculated for glyoxal may be compared to the S's used in
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Table 6

One-Electron Matrix Elements for Options A and B 
Orbitals (units are au except where 

otherwise indicated)

Carbon Oxygen

Option A -10.345 -11.441

Option B -10.338 -11.447

Difference (A-B) - 0.008 + 0.006

Difference (ev) - 0 . 2 1 + 0.16

B

Option A - 0 . 1 0 2 - 0.064

Option B - 0.095 - 0.058

Difference (A-B) - 0.007 - 0.006

Difference (ev) - 0.18 - 0.16
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semi-empirical MO theories. Sidman^^ has done ir-electron calculations on

molecules containing the carbonyl group, including glyoxal, using Pariser-
Parr-Pople theory. For these calculations he used 6^^ = -3.00 ev and
6 = -1.68 ev. The much more recent CNDO method as used by Jaffé and
Del Bene^^ to predict electronic spectra of molecules obtains 8 for ir
AO's from the equation 8^, = (0.585) (8% + 8“) S . With 81 of -17 ev,y V z A o y V L#

128q of -45 ev, and with overlaps for STO's with orbital exponents 
1.625 for carbon and 2.275 for oxygen, 8^^ = -4.04 ev and 8^^ = -2.12 ev.
Option A orbitals give 8 ^q = -2.77 ev and 8^^ = -1.74 ev. Option B
orbitals give 8^q = -2.58 ev and 8^^ = -1.58 ev. The 8 's calculated with 
approximate LOAO's agree more closely with the 8 's of the older Pariser- 

Parr-Pople method than with the 8 's of the newer CNDO method.

(C) Summary

In this chapter, the LGwdin orthogonalized orbitals have been derived 
through a matrix formalism. The results of this derivation suggest that 

LOAO's are not generally derivable in a convenient closed-form except in 
the special circumstance that the S-matrix is cyclic. The formal results 
for the case of a simple 2x2 S-matrix are, however, useful as a basis for 

obtaining approximate LOAO's for ir-systems.

The approximate LOAO's generated by pairwise orthogonalization are 
acceptably orthonormal and do have the LOAO property of symmetry. The 
approximate method outlined here probably works as well as it does due to 
the fact that the only AO overlaps in the glyoxal example which are 

appreciable are the nearest-neighbor overlaps. The non-nearest-neighbor 
AO overlaps are small to begin with and are reduced to less than one-third 
their original magnitude by the orthogonalization process. These features
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of the AO S-matrix can be expected to occur generally in r-systems. The 
LOAO property of symmetry allows one the very important freedom of begin­
ning pairwise orthogonalization with any pair in the molecule.

The S’s computed for the it orbitals of glyoxal compare favorably 
with the S's obtained in semi-empirical MO theories. This suggests that 
these functions would make a useful basis for generating equations for 
a's and S's in an db -initio no-overlap ir-electron theory.



CHAPTER IV

THE DERIVATION OF AN APPROXIMATE SCF THEORY 
FOR tt-ELECTRON SYSTEMS

In this chapter, the Roothaan equations for the MO expansion coef­
ficients of a set of AO's are rewritten so that they are suitable for 

(1) LOAO's and (2) m-electron systems. Through a systematic set of 

approximations, beginning with the approximate LOAO's developed in the 
previous chapter, these equations will be developed into a less formidable 
approximate ab initio ir-electron MO theory. The approximations developed 
in order to simplify the calculations are checked against more accurate 
calculations where possible.

(A) The Roothaan Equations for No-Overlap n-Electron 
Molecular Orbital Theory 

The familiar Roothaan equations^^ have, when written in an over­

lapping atomic orbital (AO) basis set, the following form;
E F C  ̂ = I S C ,E.. liv Vi yv Vi i

may be defined by the equation
F = H + G ,yv yv yv

where

A
-37-
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and

= E I(yvlXa) - y  (po|vX)].
X,o

P is defined by the equation
ooo,
m o 's

and the overlap is defined by
S = / $ $ dx.Viv VI V

H is the AO matrix element over the sum of the kinetic energy andyv
nucleus-electron-attraction potential operators. is the AO matrix
element of the Hartree-Fock electron-repulsion operator, written in the
AO basis. The P are elements of the bond order matrix, the (yvjxo)Xo
are electron-repulsion integrals, and the are the orbital energies.

If the basis set of atomic orbitals is an orthogonal set, specifi­
cally LOAO's, then the Roothaan equations for this set are

jLOAO load . LOAO _
yv VI yi i

V

pLOAO is defined asyv

where

and

„LOAO LOAO ^ -LOAO r — n T vj •yv yv yv

C °  ■ : [ < V v l W
X,o
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Here the LOAO's are indicated by (p rather than the AO notations of i> or 

simply the subscript. The LOAO bond-order matrix is defined by
oaa.

pLOAO _ 7L0A0 -LOAO
^iX ^io ’

and the elements of the overlap matrix are simply S = 6  (6 = theyv pv
Kronecker delta). The matrix S is therefore the unit matrix 1.

The performing of the SCF iteration procedure to find the MO's in 
terms of the LOAO's requires that we be able to determine the matrix 
elements « Since this work is restricted to n-electron MO theory
it is helpful to write these matrix elements so that they look like the 

sum of a ir-core interaction and a tt-tt interaction. This is done subject 
to the conditions of o-ir separability outlined by Parr.* These conditions 
define what we mean by a n MO and what we mean by a a MO. Writing 

in this fashion, we obtain
oaa. a

A X,o'

oaa. TT
MO'e , ,

- I  *X<2) *1.2 +  I): 2X0/ [(+y*vl+X+o) " 2 (+y+ol*v*x)]'
X,o

^yv^^ is, from this point on, intended to apply to ir-electrons only, i.e.
à and 6 are ir LOAO's. The electronic coordinates 1 and 2 are included y ^v
for clarity in the first term of this expression (the ir-core term) . The 
coordinates are understood in the second term (the ir-ir interaction term) .

* See reference 22, page 42.
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P „ is the operator which permutes coordinates 1 and 2 . i » ̂

The first simplification which will be made in is to call

the operator
ooa, o 
MO's

- i  v2 - r V^(l) (*,(2 )*., (2 ) - i  *,(2 ) *.,(2 ))
A X,a'

the operator V . V is the operator which includes the kinetic core core
energy and the n-core potential. To simplify the expression for 
still further, we must introduce our first approximation. The tr-ir inter­

action part of may be simplified by requiring that all t-repulsion
integrals which involve the charge densities of overlapping LOAO's be 
zero and that all other ir-repulsion integrals have the same value that 
they would have if computed with corresponding AO's. This, formally the
well-known ZDO approximation, has been shown to be valid for a LOAO basis 

22set by Parr. Application of these simplifications results in the 

following approximate form for

oca. ÏÏ 
MO's

and

Set

and

■ (*;(!) I?c.rel *%(")' (47)
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With these substitutions, we have

ooo. ■n

jLOAO , „Î AO ̂  ̂ pLOAO _ | pLOAO (4,)

and
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(B) Derivation of and

Specification of the LOAO's in terms of AO's is required in order 
to derive the and terms in equations (49) and (50). Since
general expressions for exact LOAO's are mathematically cumbersome, we 

shall use instead approximate LOAO's, produced by the pairwise orthogo­
nalisation process. In this scheme, the LOAO's obtained from a pair of 
AO's are exact. Approximate LOAO's are obtained from a set of three or 
more AO's, where each AO is on a different atomic center, by orthogonaliz- 

ing a pair of AO's to produce a pair of LOAO's. These LOAO's are then 

orthogonalized pairwise to any other AO's which overlap appreciably with 
them. (See Chapter III.)

To derive and 3!̂ ^̂ ,̂ four different geometries will be assumed

for the atomic centers. The four geometries are shown in figure 1. These 
should account for the possible geometries taken by the atoms of a ir- 
electron system. Comparison of the specific equations for 3^^^ derived 

for each case should produce a general equation. A general equation for 
^LOAO be derived using the same technique.

(1) Derivation of 3^^^^
Case A is a two-AO case. The exact LOAO's are as follows:

= (1 - S^)"^ {Ex - (S/2E)y>

and

where

- (1 - S^)'^ {Ey - (S/2E)x>,

[ { 1 + (1 - S^)^} / 2 ]̂ .



Case BCase A

Case ()Case C

Figure 1
Specific geometries considered in the derivations,
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Substituting these LOAO's into equation (48), one obtains

+ (y|Vcorely))]' (51)

This equation gives in terms of the AO's x and y. If one recalls
that the Mulliken approximation for an AO density function xy is 
xy = ^ S^(xx + yy), then it is apparent that the term in square brackets 
is the error in the Mulliken approximation for the density xy. Equation 
(51) may then be written

8^'^^ = (1 - S^)  ̂ [Error in the Mulliken approximation],

or

' (1 - "^)"' (“ )x.y- (51)
Case B is a three-AO case. Approximate LOAO's may be derived for 

this case by orthogonalizing the AO's and to give a LOAO pair
and é . 6 is then orthogonalized to the AO $ to give 4* ' and <|) . The Ty Ty ° z y z
AO's and are assumed to have negligible overlap. The LOAO's, so 

derived, have the following form:

♦x - (1 - s^y)'^ (^xy == - (5*y)lV)'’’

V  ■ (l-=^z)'*‘ ( V z * y -  ( V x ^ ' V x ) ' ) -
and

♦ z  '  ( 1  -  S y ' z ) ' ^  ( S y ' z  ' -  ( 5 y ' z ' l ’'-y'z)*y)'

In these expressions, we define

^ij “ + (1 - sj^)^} / 2 ]̂ ,

where i and j are AO's, except if primed. If one of the subscripts is
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primed, it refers to a previously obtained LOAO. The same convention
applies to In this example, the equation for should be obvious

from consideration of Case A.
To derive for the three-center case, we need to substitutexy

and into equation (48). When this has been done, and some 
algebraic simplification on the resulting expression carried out, we 

ob tain

- i  Sxy((*|Vc.rel') + i V r a ' ‘% ‘*l''coral^>

Tha term (<x|v^„^^iy) ' |  S^C(*I Viorel I''core ' 5"’' * '™>r.y'
Substituting this into equation (53), we have

C °  ' - 4 '̂'' ̂ ' r ® > x . y

- (Sy,,/2Ey,^> (E,y(x|Vc,,,|:) - (y|v„^,U)}l. (54)

Sy,g may be obtained from the definition of the overlap, 8^,^ = 

(4y|z), and is

Sy'z = ( 1 - ((E%y ' ' V V * *  '
Using properties of the inner-product, we obtain

S , = (1 - )”^ {E S - S S /2E }.y z xy xy yz xy xz xy
The first approximation introduced in deriving is to set = 0.
For TT-systems, overlaps between next-nearest neighbors are roughly an
order of magnitude less than overlaps between nearest neighbors. With



—46—
this approximation, we have

S , = (1 - )"^ E S .y'z xy xy yz

An even more approximate form for 5^,^ may be obtained by noting that,
for n-orbital overlaps, (1 - S^y) ^ is roughly equal to unity. This
allows one to crudely approximate 8^,^ by the overlap between correspond­
ing AO's S The second approximation for S ,̂  is used to simplify the

2 hterms and (1 - . Using this approximation, we have

E , = Ey'z yz

and

The crude approximation of 8^,^ by 8^^ causes little error. In each 

case, the overlap-squared is compared to unity, and the two terms are 
therefore not very sensitive to errors in the overlap. Where 8^,^ stands 
alone, it will be approximated using the first, and more accurate, 

relationship. These approximations are introduced into equation (54) to 
give

-  (((1 -

It is a consistent approximation that (xlv^^^^jz), like 8^^, is 

equal to zero. When this approximation is made in equation (55), one 

obtains
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C °  ■ Sz(™'x.y

+  {(1  -  S ^ ) - ' »  S ^ / 4 E y ^ )  ( y | V , . , , | : ) | .  (56)

The factor which is multiplied times (ylv Iz) is on the order ofcore
2 2 S . For ir overlaps, S is a small term. A crude approximation of the

factor multiplied times such a small term should still give reasonable

accuracy for 3^^^. We therefore approximate by taking = 1, and

we approximate (yl^corej^^ by setting it equal to -1.00 au. When these
approximations are introduced in equation (56), 3^^^ becomes*

This result allows to be calculated from a knowledge of the AO-xy
overlap matrix and a knowledge of the term (EM)

*  »y

There are two approximations leading to equation (57) which need
special justification. The first is the approximation that (ylv^^^^jz) =
-1.00 au. The second is that (xlv |z) = 0.' core'

(ylv^^^^jz) is a resonance integral for nearest-neighbor AO's. To

show that this integral is about -1 . 0 0  au., we calculated it for the

molecules Hg» HelT*’, and glyoxal. For Hg, at its equilibrium internuclear
separation, we obtained (ls„ IV |ls„ ) = -0.961 au. This calculationcore ' Hn

53was performed using AO-integrals from Slater. For HeH+, at its equili­
brium internuclear distance, with AO's whose exponents were determined

* «LOAO6 may be calculated to good accuracy with an equation analagous to 
tnis equation. Although such an equation does not spring directly from 
the basis of LOAO's used to calculate 6^^®, calculations on the glyoxal 
molecule in Chapter III shown that this equation should be accurate.
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varlationally by Coulson,^^ we found (ls„|v | ls„ ) = -1.282 au.
For the HeH**" calculation the energy integrals were obtained from Roothaan's

50 *formulas. A crude calculation was performed on the glyoxal molecule,
with the effect of the o-core upon the integral |V 1$^ ) beingV I  C O  J.6
estimated by the use of shielding factors. The nuclear charges
and Z_ were shielded by application of the Zener-Slater rules^S to give 

^ 1
Z- = +4.550 and Z„ = +3.25. The nuclear charges of non-nearest ui
neighbor nuclei, Z_ and Z_ , were shielded by assuming that the L2 U2

a-electrons behave like point charges. This gave Z^^ = Z^^ = +1.00.

Obviously, it was assumed that no o-charge shift had occured. With such
shielding rules, we obtained ($_ IV |$_ ) = - 1.14 au. These three0 '̂ core Cl
calculations, covering three very different situations, lend strong 
support to the approximation (yjv^^^^lz) = -1 . 0 0 au.

(x|v^Qp^|z) is a resonance integral for non-nearest neighbor AO's.
To test the approximation that (xlv^^^^jz) is zero, the integral

($Q l^core^*C2  ̂was computed for glyoxal. Again the o-core was included
in the calculation by shielding. Since the overlap S_ „ is so small,ui^z
the o-core electrons should, to a good approximation, act like point 
charges. This requires that the shielded nuclear charges all be +1.00.

With these nuclear charges, we found that “ -0.045 au.
Since the integral is between one and two orders of magnitude smaller 
than the nearest-neighbor resonance integrals, it is a good approximation 

to neglect it. This calculation lends support to the general approximation

The AO basis is the same as that used in Chapter III.
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that the AO resonance Integrals between non-nearest neighbors are equal 

to zero.
In a MO calculation which explicitly includes overlap (an AO 

calculation), the approximations that = 0  and ( x | | z )  = 0 produce 

what is called the "tight binding" approximation. This approximation 
has been shown to be a legitimate first approximation to calculations 
including all in t e g r als.One  could, therefore, think of the 

derived using these approximations as "tight binding B's."
For Case C, the linear four-center example, there should be two 

distinct Derivations of these B’s show that

' ^ z ( ™ x . y  - ®yz V ' '
and that

' y T  ' < 1 - S%y)'^ - C)""" t^xy ®z»‘“ >y.z

- \ z « z w *  V

The derivations may be found in Appendix I. in the four-center

case is the same as that for the three-center case. The effect upon
B^^^ of other atoms in the molecule extends only to the nearest neighbors
of X and y. ig analagous to in that the same types of nearest- ̂ yz xy
neighbor molecular-environmental effects are evident.

The treatment of the non-linear four-center case. Case D, produces 

the following equation for xy

C °  ■ ' V  "yz<“ 'x,y
- S (S + S ) / 4]. (60)xy yz yw
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(This derivation may also be found in Appendix I.) This is the same type 
of equation as was found for in the linear four-center example.
Whether each center in the resonance integral has one nearest neighbor, 
or one center has two nearest neighbors and the other center none, the 

environmental effects enter in the same way.
The great similarity in form exhibited by for the four

cases allows one to generalize the specific results into a general 
equation for 3 .  This equation may be written

n^p,v mjtv,v m^p,v n^p,v

-B„v B + Sv.) / '■1 • (61)

where all products H and summations Z are intended to range over nearest
neighbors only. B and E are defined as **  ̂ pv pm

“vv = ( 1 -

and

= {(1 + Bum' ^

, calculated from equation (61), is in atomic units (au).
This equation provides a relatively easy way to obtain 3^^^^. One 

can obtain excellent approximations to the ir-orbital overlaps by using 

the tables of Mulliken, Rieke, Orloff, and Orloff. The only term in the 
equation which is not readily available is the (EM)^ ^ term.

The error in the Mulliken approximation,

-  (Buu/B) ( (w IV core lw )  +  ( ' ’ l ’ c o r e l ' ' " '  ' ^ 2 )

could be obtained for each AO pair by computing the integrals in equation
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(62). This process would consume much time. Â good approximation for
(EM) would be much better. Since the terms (ylv |v) and (vIv Iv)' core' ' core'
will have to be evaluated in order to obtain and a good
approximation of (plv^^^^jv) in terms of these integrals would be appro­
priate. However, since the (u|v^^^^|v) are on the order of -1.00 au and, 

as we shall find later, the (EM)^ ^ are on the order of -0.05 au, we are 
required to approximate (p|V^^^^|v) to better than one per-cent accuracy. 

This is too difficult.
A more direct means will be taken to approximate (EM)^ ^ . Integrals

for the H2 molecule are readily available for a large range of inter- 
53nuclear distances. We also have integrals, computed using Roothaan's

formulas, for a few molecules at their equilibrium internuclear distances,
HeH^, LiH, ir-glyoxal, and n-HgCO. (EM)^ computed using equation (62),

is plotted versus for the molecule in figure 2. The values of
(EM)^  ̂and together with an interesting breakdown of (EM)^ ^ into

kinetic and potential energy parts, are shown in Table 7. From figure 2,
it appears that, for the S -interval 0.500 to 0.000, (EM) is almosty V y > V
exactly linear in Now for at its equilibrium internuclear

configuration is about 0.75, and this overlap does not fall in the 
region of linearity. But for the n-electron systems of molecules, all 
the overlaps lie in this range. The assumption is made that (EM)^  ̂is 

linear in provided is less than 0.500.
The data in Table 7 shows that the part of (EM)^ ^ which is computed 

over the kinetic energy operator is negative. The part of (EM)^  ̂

computed from the potential energy operator is positive. Since a negative 

(EM)^ ^ is required for binding in the H2 molecule, these results tell us
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Figure 2_
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S
0 . 7 5  1 .0

Error in the Mulliken approximation, (EM) in au, for the one-electron 
integral of H2 plotted against the overlap S. (The orbital exponent 
of the Is AO of hydrogen is 1.00.)



Table 7

The Error in the Mulliken Approximation, (EM)„ „ , for the H„ Molecule;M1 ,H2 t-
Its Breakdown into Kinetic Energy and Potential Energy 

for Several Values of the Overlap

(Is orbital exponent 

= 1.00)

(EM)„ „ K. E. (au) (EM)„ „ P. E. (au)
”l ’“ 2

(EM)„ „ (au)
“l ’“ 2

ILnWI

0.960 -0.050 +0 . 0 0 1 -0.049

0.858 -0 . 1 2 2 +0 . 0 1 2 -0 . 1 1 0

0.725 -0.167 +0.032 -0.135

0.587 -0.181 +0.053 -0.128

0.458 -0.170 +0.062 -0.108

0.349 -0.150 +0.066 -0.084

0.189 -0.095 +0.051 -0.044
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that the kinetic energy part of (EM)^ ^ provides most of the binding 
energy in the molecule. The potential energy part is actually destabiliz­
ing; it is also several times smaller in magnitude than the kinetic 
energy term. These conclusions are precisely the opposite of what would 

be predicted from calculation of 3 for an overlapping atomic orbital 
basis.

This appears to be the first time that such an analysis of 3 has
been made. The conclusion that the kinetic energy is responsible for
most of the binding energy in the molecule, though at first surprising,

has been arrived at by a different route by Ruedenberg.^^ The fact that
this binding contribution appears so dramatically in 3 is the surprising

part. Most people have the feeling that 3 is determined mostly by
potential energy.

It remains for us to see what factors influence the slope of the
assumed linear plot of (EM) versus S . To find these factors, com-p,v pv
puted values of (EM)^ ^ (equation (62)) were compared to for HeH^,
H<,, TT-H-CO, and LiH, all in their equilibrium configurations. (EM)c L y » V
is calculated over the kinetic energy operator and nucleus-electron-
attraction potential operator of the Hartree-Fock effective Hamiltonian.

Where a core of a-electrons is present, this core is not included in the
calculations. Studies have shown that the a-core will have very little

36effect upon (EM)^ (This statement does not strictly apply to the
part of which contains the electronic permutation operator g.

This part of V introduces o-ir exchange. There are some electron-core
repulsion integrals introduced into by the c-ir exchange effect,
which, though small, are non-zero. These integrals are of the type
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*y(l) 1 0^(2) <j>̂ (2)), where (j)̂ and are o-LOAO's on atomic 

centers v and v respectively. These integrals show little of the type 

of overlap coupling effect found in (EM)^ ^ , and, to a good approximation, 
they may be considered apart from the treatment of (EM)^  ̂.) The com­
parisons of (EM)^  ̂ and are shown in figure 3, where straight lines 

are drawn connecting the (EM)^ ^ with the origin of the graph. The lines 

are extrapolated to S » 0.500, thereby covering the region of assumed 
linearity.

The slopes of the lines in figure 3 are obviously very different. 

However, some general relationships may be inferred. It appears that the 
larger the difference between the orbital exponents of the AO's and 
used to compute (EM)^ ^ , the greater the error in the Mulliken approxi­

mation. There also appears to be a dependence upon the sum of the orbital 
exponents, the greater the sum the greater (EM)^ ^ . Based upon this 
admittedly small sampling of data, a guess can be made as to the form for 
(EM)^ The guess is that (EM)^ ^ can be expressed by the following

equation:

where
is a constant depending upon whether the

and
orbitals are o(i = o) or %(i = n).

(:he absolute value of the difference 

in orbital exponents of the AO's y and v.
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(EM)

- 0 . 2 8

— 0 . 2  4

He H- 0.2 0

- 0 . 1 6

HgCO
- 0.12

- 0 . 0 8
Li  H

— 0 * 0 4

0.0 0
0 . 4 0 . 50.2 0 . 30 0.1

Figure 3_

Error in the Mulliken approximation, (EM) in au, for the one-electron 
integrals of HeH'*’, n-H^CO, H2 , and LiH plotted against the overlap S. 
Dots on the heteronuclear plots correspond to values at the equilibrium 
configuration. (The orbital exponents for the AO pairs are as follows: 
HeH+, 1.87, 0.722; HgCO, 1.57, 2.23; Hg, 1.00; LiH, 0.658, 1.00.)
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Based upon the sole point in figure 3 for u-systema, that for 

HgCO, a value of 0.112 is chosen for For o-systems, the appropriate
value for k° is roughly double what it is for ir-systems, k° = 0 .2 1 1 .

This value of will reproduce the actual (EM)^ for the molecules 
Hg, HeH^, and LiH, to within 10%.

Of course for this ir-electron development, the only form for 
(EM)^ ^ which will be used is that form with Therefore, we may

restrict our attention to the equation

‘1 + I s  - S ll < S  + S >  ' 2- <“ )

This equation relates (EM)^ ^ to a specific AO basis through both the 

overlap and the orbital exponent factor. In order to calculate with such 

an equation, it is necessary to specify that AO basis. The basis set 
which will be used in this work is a minimum set of STO’s with orbital

58exponents determined variationally by Roothaan for the isolated atoms.

The orbital exponents for these best atom AO's, for the atoms C, N, and 

0, are listed in Table 8 .
Once we have specified a basis set of tt-AO's, we can calculate the 

orbital exponent factors in equation (64). For the atoms C, N, and 0 
the factors have been calculated, with the term -0 . 1 1 2  being absorbed, 

and are listed in Table 9. The factors are given by the equation

V  • -0 - 1 1 2  < 1 l5„ - (yl) %  * / 2 - (65)

may now be substituted into equation (64) to obtain the simpler

equation

For a given AO pair, w and v, (EM)^ ^ is related only to the overlap.
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Table 8

Orbital Exponents for Best Atom Atomic Orbitals.

Atomic Orbital Carbon Nitrogen Oxygen Hydrogen

Is 5.673 6.665 7.658 1 . 0 0 0

2 s 1.608 1.924 2.246

2Po 1.568 1.917 2.226

1.568 1.917 2.226

a) Reference 58.

b) For purposes of comparison, the Slater orbital exponents for 2s and 
2p of C, N, and 0 are, respectively, 1.625, 1.950, and 2.275.
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The

Table 9

K Parameter yv

Atom Pair (y. V) V

N. N -0.215

0 , 0 -0.249

C, C -0.176

N, 0 -0.304

N, c -0.263

0 , c -0.352
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For additional proof of the validity of the equation for (EM)^

we calculate the (EM) for ethylene using equation (65). This (EM)y , V y » V
and the overlap are used to calculate for ethylene. Such a
calculation produces a of -0.056 au. Cook, Hollis, and McWeeny

computed a P^^^^ for ethylene of -0.05 au.^^ They used accurate methods, 

comparable to a calculation using equation (62). Considering that they 
do not report a third decimal place, the agreement between the two values 
for 3 is satisfactory. This comparison provides additional evidence for 
the choice made for iĉ .

For the simple two-center case. Case A, this development gives us 
a simple form for This form is

etS** " (1 - Syv)"' Kyv ^yv" (*?)
However, for the polyatomic molecule with a which includes potential
terms due to atoms other than y and v, one wonders how applicable the 
preceding development really is. In the multi-center case, (EM)^  ̂con­

tains not only the error in the Mulliken approximation for the two-center
integrals over the y and v contributions to V , but also the error incore
the Mulliken approximation for the three-center integrals, which appear
because of other atoms included in V . For n-systems, there are twocore
factors which minimize the importance of these three-center contributions 
to (EM)^ First, the H^ example shows that kinetic energy terms are
the largest contributors to (EM)^ ^ . The kinetic energy terms are at most

' 59two-centered. Second, calculations involving three hydrogen atoms, at
internuclear distances where the overlap between the hydrogen Is orbitals 
is on par with ir-overlaps, show that the error in the Mulliken approxima­
tion for three-center potential energy integrals is from four to six times
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less than the error in the Mulliken approximation for two-center inte­
grals (two-center in Table 7). These arguments minimize the importance 
of the three-center potential energy integrals in determining (EM)^ ^ . 
Therefore (EM)^  ̂is approximately the same for a poly-center molecule 
as it would be for a two-center molecule, given that the overlaps 
are the same in both cases. Formally ignoring the three-center integrals 
over AO’s in the 3^^^^ terms for poly-center molecules is equivalent to 
saying that such integrals are approximated to acceptable accuracy by the 
Mulliken approximation.

Having determined (EM) as a function of S and K , we may now ® li,v pv yv
write the equation for 3^®^® as follows:yv

n^y,v m^y,v m^y,v n^y,v

- : (S*. + / '•1 - « «
m^y,v

This equation gives 3^^^^ as the product of the overlap and a term 
which collects the effects of the local molecular environment.

(2) Derivation of 
We derive the defined by equation (47),

for the same four cases as in the derivation of 3^^^^ (see figure 1 ).

We use the same sets of LOAO's for each case, and, since we have written 
these sets in deriving we shall not reproduce them here.

For the two-AO case. Case A, one substitutes the AO-expansion for
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into equation (47) and obtains

= (1 - (G^y('|Vc.r«l=) (y|v,,^|y)

- Sxy(x|?corely))- (*»)

This equation gives in terms of the overlap S^, the integrals

(xlv Ix) and (ylv ly), and the resonance integral (x|v ly).‘ core' ' core' ' core'
The calculation of the first three of these terms, though tedious, is 
straightforward. (x|V^Q^^|y) is more difficult to calculate and will be 

approximated. For now, we shall not simplify equation (69) further.
For the three-AO case. Case B, one needs to derive both and

OyOAO. The AO expansions for and <j>̂' are substituted into equation 

(47) with the following results:

- S,y(*|Vc.rely))'

and

- Sy':(+,|Vcorel:))-

^LOAO the same form in this three-AO example that it had for Case A. 

One can conclude that an is influenced only by the local molecular

environment, i.e. nearest neighbors. This is consistent with the envi­
ronmental behavior of

The approximations which we make in order to simplify are the
same as those made in simplifying the 's. One can approximate 3^,^
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by

or by
s , = s .y z yz

2 2 Wherever Sy,^ is compared to unity, i.e. in (1 - 8^,^), the second
approximation is used. Where 8^,^ stands alone, the first approximation
is used. Where LOÂO's appear in the energy integrals, we expand them
in AO's. Such expansions give

■ Sxy(*|Vcorel?))'

and

(*y|Vc.rel2 ) ' % < > •  l''cor.l' < V ^ V  <’‘l''corel=>>-

With the approximation that (x|V^^^^|z) = 0, (*̂’y becomes

Substituting these approximations into equation (71) and simpli­

fying, we obtain

- (: - i,)"' - <y)"' 4(^l^c.rely)

+ «yz (=|v..,elx) + « L  Sy,/4Gy,) <“l''corel">

- ®yz Sxy(»|Vc.rely) ' 4  ̂ z « I V r e l "»• ««
We do not employ the approximation (x|v^^^g|y) = (y|v^^^^|z) = -1.00 au



—64—
used in deriving In the equations for 3^^^^ these integrals were

2multipliers of factors on the order of S . Here, the integrals multiply 
factors on the order of S. Therefore, unacceptable error would occur if 
this approximation were used in equation (72). We shall approximate 

these integrals using more accurate methods.
Within the accuracy allowed by the approximate nature of the LOAO's 

used here, an is independent of the molecular environment, save
nearest neighbors. Therefore, the linear four-AO example. Case C, will 

provide no new information regarding a general equation for The
equations derived for and for Case B are applicable to the
linear four-center case.

The non-linear four-center case, Case D, does provide some unique 
information. No approximation techniques beyond those for Case B are 
used. The results of these derivations, carried out with the same LOAD 
set as was used to obtain the 0^^^^'s for this case, are as follow :

<y|Vcorely)

and

+ (*l?c.relx) + <  ®yz/“ yz> <’‘l''coral‘=>

+ 4  ("l’corai") - ^yz =xy<’'l''coral>'>

-  4  :yz(y|Va.rJ =) ' 4  4 z

The derivations of these terms may be found in Appendix II. As expected.
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^LOAO^ with only one nearest neighbor, has the same form as that found 

in Case B.
The great similarities between the equations derived for in

the specific examples allow one to generalize the results. The general
- LOAO . equation for is

+ : <( " 
n?<y m^n,y

nĵ y m^n,y

where all summations Z and products II are over nearest neighbors to y
only. B and E are defined here in the same way that they were defined  ̂ yn yn
for equation (61).

In order to calculate with equation (75), we must calculate
not only the overlap matrix for the molecule, but also integrals of the 
types ( n | v  |n) and (y|V |n). We can simplify equation (75) byC0X6 C01T6
approximating (y|V |n) in terms of integrals ( n |v  |n). When thisC01T6 C01T6

simplification is completed, the formal derivation of is finished.
In deriving an equation for , we found that (EM)^ ^ could be

expressed in two ways. The first was an exact expression and the second 
an approximation to this exact expression. These two equations (equations 

(62) and (6 6 ) respectively) are

= (ul'crelv) - I’cor J  >'> + I''core
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and

\ v \ v -

since equation (6 6 ) provides a good approximation to (EM)^ ^ , we equate 
the two expressions and solve for We obtain

I ' 'c o re  I ' ' ’ ■ t I  ( (w IV core lw ) + ' ' ’ ' ' ' c o r e  I ' ' »  +

This equation shows the relationship between formal no-overlap MO 
theories and MO theories which Include the overlap. A good approximation 
for (EM) automatically Implies a good approximation for (yjv |v).y V  C O J . 6
We have obtained an approximation for which maintains the
original form for the Mulllken approximation but which Improves It by
adding a correction term.

Although the AO resonance Integral (y|v^^^gjv) Is taken over the

total Including the o-electrons, was obtained earlier using
only the kinetic energy and nuclear-framework-potential of the Hartree-
Fock operator. This underlines the point made earlier, that the Mulllken
approximation adequately takes account of the effects In (ylv^^^^jv) due

to a-electrons (with the exception of o-tt exchange effects caused by the
presence of the P, _ operator In V ). The error In the Mulllken 1 , 2 core
approximation Is due almost solely to the error for Integrals taken over 
the kinetic energy and nuclear-framework-potential operators.

Equation (76) may be used to simplify the general equation for
LOAO

Into equation (75) gives

^LOAO 2he substitution of the approximate expression for
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'« : <„) - I ( n 
n?fy n^y n^y m^n,y

+ : (( " ®'m> Sp„Ul/2Ej^) - 1 } / 2 } (nlv^^^Jn)
W y  m#n,y

n?̂ y m^n,y

This expression for couples the AO integral (yjv^^^^^jy) to its
nearest nei^bors. This coupling occurs through the elements of the
overlap matrix S.

(C) Testing the Approximate Equations for and

The and 3^®^® have been calculated in Chapter III for they yv
glyoxal molecule. These calculations were done using the kinetic energy

and nucleus-electron-attraction part of V only. The values ofcore C
and and and , computed in this chapter, are given in

1 1  1 2
Table 10.

We have computed these same terms with the approximate equations
(equations (6 8 ) and (77)), and the values of these terms are also listed
in Table 10. All integrals in the approximate equation for o^^AO

type (i|Vg^p^|i) were calculated over the kinetic energy and nucleus-
electron-attraction part of V only. The and computedcore ■'

using the approximate equations are generally slightly larger than the 
a^OAOig and g^^^^'s of Chapter III. This slight difference is to be 

expected. The reason for it is that some approximations were made in 
deriving equations (6 8 ) and (77) based upon there being a o-core of
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Table 10

A Comparison of Approximate Calculations of and to
Accurate Calculations of and g^®^®V yv

for the Glyoxal Molecule

Integral Approximate Value 
(au)

Calculated Value 
(au) Option A ^ 
Atomic Functions

Calculated Value 
(au) Option B ^ 
Atomic Functions

LOAO“o -11.438 -11.441 -11.447

LOAO“c -10.354 -10.345 -10.338

LOAO
®C0 - 0 . 1 0 1 - 0 . 1 0 2 - 0.095

LOAO
®CC - 0.072 - 0.064 - 0.058

a) The two options refer to the two possible choices in the initial 
pair in the orthogonalisation process.
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electrons. The approximations were that (x|V^^^^|z) = 0 if x and z are 
not nearest neighbors and that (xlv^^^^jy) = -1 . 0 0  au. if x and y are 

nearest neighbors. These approximations cause the and
to be slightly larger than if the approximations were not made and the 
integrals actually computed over the part of used in Chapter III.

For calculations on actual molecules, which do have o-cores, the approxi­
mate equations show the correct behavior. The fact that the 
computed with the approximate equations have values which are close to 
the values of the computed in Chapter III supports the contention

that, beyond the effect of o-ir exchange, are not influenced much
by the o-core.

(D) Further Approximation of

The operator V has earlier been written core
oco. a 
M O ’s

''core = - î - ’i -  <*X«>
A X,a'

- i *1 . 2

We can write this operator formally as

'core = ('core'o + «core'r

where contains the kinetic energy, the nucleus-electron attrac­

tion, and the effect of the o-core of atom y. (V ). contains the sumcore j
of the nucleus-electron attraction and o-core repulsions of atom j.

Introduction of this decomposition for into the integral
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(u I''core I

<" I''core I") " ("l(Vcere);l") + '"I  ̂ <''core> j l“> ’

This equation gives the interaction of an electron in the y n-orbital
with the total core as the sum of a y ir-electron, y core interaction
and a term which accounts for the coulombic interactions of the other
cores in the molecule.

We shall make a further decomposition of V We can write ̂ core
V = (V ) + E (V ). + E (V ) , (80)core core y core A core m

A^y mjty

where the summation over A includes nearest-neighbors-to-y which have
ir-electrons, and the summation over m includes all atoms except nearest-
neighbors-to-y and all atoms which bear no m-electrons. Substituting
this V into (ylv ly) produces core core

(wlVcrel") = + '"I
W n

+  ( " I  :  ( ' ' c o r e ' l l ( 8 1 )
W y

Another way to write this equation is

(vlv^rel") - (wl(Vccre)l.call«) + ("'  ̂ (''cora)»'“) • («^
ngfy

where (V ). . includes the y atom and its n-electron bearing nearestcore local
neighbors.

Where equation (82) is used to expand the terms (yjv^^^^jy) in 
equation (77), the second term of equation (82) will be "factored out" of
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the equation. The integrals (n|V^Q^g|n) will be computed over the local 
core operator only. Equation (77) then becomes

nî̂ w

-  ̂ =vn«Xl‘l<Wlocall>'> *
n?̂ y iK3̂ ,V n?(y m^n,y

- 11 / 2 )("|(Vc.re)i.cailn) - 1 ( H 2 %^)
n^y m(n,y

+ (W 1 (83)
m?(y
m^ nearest ir-bearing 
neighbors-to-y

We make this approximation in order to emphasize the local nature of the

overlap-coupling effect. The y orbital is coupled only to its nearest
neighbors by overlap. The non-nearest neighbors which have n-electrons

and all atoms which are not a part of the n-system affect only
through the electrostatic interactions of their cores.

Whether is computed with equation (77), utilizing the full
V » or with equation (83), using (V ). , inside the overlap-core core local
coupled part of and adding on the effect of other atoms, one

obtains to a good approximation the same result. This is to be expected 
if the Mulliken approximation adequately takes account of the three- 
center integrals introduced by non-nearest neighbors. Since equation (77) 
was derived under this assumption, it is consistent to take the step 

which leads to equation (83).
In order to calculate the (i|(V^Q^^)j|i) we need to write out



-72-
in more specific terms. If j = i, then we have

ooo. a 
MO's

■ - I ’l - + S
X,o'

(LOAO’s on i)

- i  Pl.2 *.'(2))' (84)

If j / i, then we have

oca. a
MO's _ .

(«core)j = Vj(l) + S  (*x(2 ) ♦c'(2 > - 2 *x(2 ) ?1 . 2 *c,'(«)- (“ >
X,a'

(LOAO's on j)

To facilitate the calculation of (i|(V^Q^^)^|i), we assume that the 
electron density ÿ^(2 ) <j>̂ ,(2) on i does not interact with the n-density 
i(l)i(l) unless X = o'. If X = o ’ then the density 4^(2)$^(2) interacts as 

though the interaction were computed with AO’s instead of LOAO’s. The 
density is, therefore, written X(2) X(2). The exchange operator 

- Y  4* ;̂ (2) 2 4g.,(2) will likewise interact only if X = o’, and its
interaction is assumed to be given by AO’s instead of LOAO’s. We therefore 

write an approximation to equation (84)

(Vcore)i ° - Î  - ?i(l) + S  (1 (2 ) K^) ' I  K 2 > ?1 . 2  (“ >
X=o 

AO’s on i

To facilitate calculation of (i|(V^g^^)j|i), we assume that the 

electron density *^(2 ) ij>̂ ,(2) on j does not interact with the density
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1(1) 1(1) unless X ■ o'. If X = o' then the density 4^(2) 4^(2) Interacts 

as though It were the AO density X(2) X(2). We assume that the exchange 

operator - ̂ 4* ̂ (2) 2 0^,(2) does not Interact with the density

1(1)1(1). Therefore, we write an approximation to equation (85) as

("core)] " - <87)
X=o

AO's on j

When we substitute equation (86) Into (l|(V^^^^)^|l) we obtain

(i | (Vcore^ll^> = ( K D  1 - ̂  1(D) + ( K D  | - V^(l) 11(1) )

oao, a

+ P̂ ^̂ AO (1(1) 1(1)|X(2) X(2)) - Y  S ^ x X ^ ®  (i(i) A(l)|i(2) X(2)). (88) 
X=o X=o

AO's on 1 AO's on 1

When we substitute equation (87) Into U ^ c Q ^ e ^ j ^ h a v e

(i|(Vcore>jl^^ “ (1(1) I " Vj(l)lKl)) + ^  ^XX^° ( K D  i(DU(2) X(2)). (89)
X=o 

AO's on j

In order to derive equations (88) and (89), we set certain LOAO 

density functions equal to zero and set other LOAO density functions equal 
to functions over the corresponding AO's. The work of Cook, Hollis, and 
McWeeny Indicates that the LOAO densities which we have set equal to 

zero are Indeed negligible. Setting the remaining LOAO densities equal 
to AO densities Is, however, not strictly justified by their work. To 
strictly justify this approximation, we shall have to rely upon the quality
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o£ the results produced by calculations with the overall method.

We may, however, provide some qualitative justification for this 

approximation. Cook, Hollis, and McWeeny concluded that one-center LOAO
A A I ^ ^integrals of the form | (|)̂ <j>̂) should be about 9 to 14% larger

than the electron-repulsion integrals calculated over the corresponding 
AO's. They concluded that two-center LOAO integrals of the form 

(<l>̂ *̂1 I *̂ k̂  should be about 9 to 14% smaller than the integrals com­
puted over the corresponding AO's, provided that A and B are nearest 
neighbors.* Since an atom in a -rr-system will have more near est-neighbor 

integrals than one-center integrals, these conclusions indicate that the 
electron-repulsions calculated over LOAO's would be a per cent or so 

smaller than the electron-repulsions calculated over AO's. With our 

approximation of the LOAO density 4^(2) by the AO density X(2) X(2)
and substitution of the resulting approximate equations for (i|(Vg^pg)^|i) and 
(i|(V^Qpg)j|i) (equations (88) and (89)) into the equation for we

do achieve a slight decrease in the electron-repulsions calculated over 
the AO's. Qualitatively, our approximations are in the right direction.
Also, it is mathematically incorrect to include the one-center exchange 
integrals (i(l) X(l) | i(2) X(2)) in equation (88) and then substitute 

equation (88) into the equation for These exchange integrals have
about the same value calculated over the AO basis as if calculated over 
the LOAO basis. However, as Cook, Hollis, and McWeeny point out, these

* These conclusions must apply only to integrals involving interactions 
of TT-electrons with o-electrons and o-electrons with o-electrons. Parr 
(reference 22) has shown that the LOAO integrals are almost exactly 
equal to the AO integrals for ir-electrons interacting with ir-electrons.



-75-
integrals are small. Including them in equation (88) provides much 

simplification and little error.
For equations (88) and (89), we can calculate the kinetic energy 

integrals, the nucleus-electron-attraction integrals, and the electron- 
repulsion integrals with Roothaan's f o r m u l a s . W e  must approximate the 

in some fashion. Once these things have been done, we can calcu­
late the (i|(V ),|i) and (i|(V ).|i), substitute them into equationcore 1 core 1
(83), and calculate .

(1) Further Approximation of (i|(V ).|i) and (i|(V ) |i)CO jTc X COi.6 J

We could calculate the (i{(V^^^^)^|i) interactions by assuming some 

^XX^^ and calculating all the necessary integrals from Roothaan's 
formulas for each molecule. But it would simplify things to assume 
values for the to compute the parts of equation (88) over a
specific AO basis, and to sum these terms to give an (i|(V^g^g)^|i) for 
each atom of a n-system. We have done this for the atoms carbon, nitro­
gen, and oxygen for the "best atom" AO's defined by the data in Table 8. 
The results are listed in Table 11.

Table 11 gives the sum of the first two terms of equation (88) in 

column one. In column two, we give the total o-core repulsion seen by 
a m-electron. We compute the entries of column two assuming that the

are well approximated by the orbital populations of isolated atoms.
2We assume that the o-AO's are sp hybridized and that the populations of 

2the three sp hybrids are all equal. We assume the promotion of one 2s 
electron to the 2p subshell for carbon, and we assume no s-p promotion 

for oxygen and nitrogen. We obtained values for the electronic repulsion
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Table 11

Some Integrals Used In the Calculation of the Interaction 
of a ir-Electron with Its Own Core

Atom Nucleus-Electron Attraction 
Plus Kinetic Energy (au)

IT, a-core Repulsions 
(au)

Total (au)

C -3.474 3.220 -0.254

N -4.873 4.646 -0.227

0 -6.426 6.169 -0.257
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Integrals from the tables of Sahnl and Cooley.Column three of Table 
11 shows the sum of the first three terms of equation (8 8 ). One would 

expect the magnitude of (l|(V^Qpg)^|l) to be largest for oxygen and 
smallest for carbon. The fact that the sum of the first three terms 
of equation (8 8) does not exhibit this trend shows the Importance of the 

fourth term In equation (8 8 ). This term Is not Included In Table 11,
It will be treated when we discuss the effect of o-ir exchange.

Using the carbon atom as an example calculation, we compute the 
value of the kinetic energy of the p-electron as +1.230 au. The p- 

electron-nucleus-attractlon term has a value of -4.704 au. The total.

In column one. Is -3.474 au. The ir-electron, a-core repulsion for 
carbon Is computed from the equation

a-ir repulsion = ^is^is n|ls Is) + P^s^Zs 2 s)

+ ^2pfzpa 2pa).

We approximate the by atomic populations, with an s-p promotion of

one electron, and obtain the electron repulsions to give

o-ir repulsion = 2(0.775 au) + 0.576 au + 2(0.547 au),

or
a-IT repulsion = 3.220 au.

The approximation of by the AO populations of Isolated atoms
can be Improved upon. There are o-core polarization effects In a molecule 

which change the electronic populations of the atoms. We shall. In a 
later section. Introduce a method to approximately Include this polari­

zation effect.
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The two-center terms, (i|(V^g^g)j|i), are a sum of two parts, the

ir-electron, nucleus attractions and the ir-electron, a-core repulsions.
We have calculated these terms for all possible pairs of the atoms
carbon, nitrogen, oxygen, and hydrogen. The calculations were performed
with the same approximations for used in the calculation of the
terms (il(V ).li). We have calculated the attractions and repulsions core 1

over several intemuclear distances. Roothaan's formulas were used to 
calculate the electron-nucleus attractions, and the tables of Sahni and 
Cooley were used to obtain the electron-electron repulsions. The object 
of this exercise was to obtain an equation in R^^ , the intemuclear 

distance of i and j, which would approximate the accurate calculations.

We shall illustrate the approximation techniques for the specific 
example of an oxygen r-electron interacting with the nucleus and a- 
electrons of nitrogen. For the remainder of the interaction pairs, we 

list only the results.
A plot of the oxygen ir-electron, nitrogen-nucleus attraction energy, 

(iTq(1) I - Vjj(l) 1iTq(1)) , versus R^^ appears in figure 4. Table 12 shows 
the coordinates of the points on the graph. We have made similar plots 
of the integral (n^(l)| - Vj(l)|n^(l)), for all the other pairs of C, N, 
and 0 11-electrons and C, N, 0, and H nuclei. In every case, the plots 
show a similar shape to that of figure 4.

We computed the values of the oxygen ir-electron, nitrogen o-core 
repulsion energies at each R^^ with the equation
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Figure ^ Rno(ou)
Oxygen n-electron, nitrogen nucleus attraction at one-au intervals in 
the intemuclear distance
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Table 12

Oxygen ir-Electron, Nitrogen Nucleus Attraction 
Energy, (tTq(1) j - Vjj(l) j 7Tq(1 )) , for 

Several Intemuclear Distances

»N0 (tTq(1 )| - Vj^CDItTqCD) (au)

1 . 0 -5.271

2 . 0 -3.241

3.0 -2.254

4.0 -1.715

5.0 -1.379
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S  <”o ”0 1  ̂«  ° ("o ” 0 1 '•“n ^”n>
X=o " "

ÂO's on N

■'* ^ 2 8  2s (^0 ^ol^®N ■*■ a ^^0 "oJ^N °N̂N N N N

‘'o 'ol'N' ”n'^'N N

where o^ and ir̂ ' are, respectively, the nitrogen p AO’s pointing towards
oxygen and pointing at a ninety degree angle to the oxygen-nitrogen line
of centers. We assume that = 1, that p^^^^ = 2,

”N ’n °N “n
and that 2a« = 2. We obtained values for the AO-repulsion integrals

from the tables of Sahni and Cooley. The results of these calculations 

are plotted versus in figure 5, and the data for the plot are in 

Table 13. Similar calculations were performed on the repulsion energy 
of all other pairs of ir-electron, o-core interactions. In each case, 
the shape of the plot was very similar to that of figure 5.

The shape of the plot in figure 4 is very similar to the shape of 
the plot in figure 5. It appears that it is possible to fit both curves 
by the same basic formula. In order to establish the form of this basic 

equation, we used the fact that, at large R^j, both the nucleus-electron 
attractions and electron-electron repulsions are well approximated by a 
simple point-charge potential,

(i(l)| - Vj(l)|i(l)) = - Zj/R^j (90)

and
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Figure _5
Oxygen ir-electron, nitrogen a-core repulsion at one-au intervals in the 
intemuclear distance
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Table 13

Oxygen ir-Electron, Nitrogen a-Core Repulsion 

Energy for Several Intemuclear Distances

(au) TT-Electron, o-core repulsion (au)

1.0 4.059

2.0 2.740

3.0 1.941

4.0 1.473

5.0 1.189
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pLOAO (1 (1 ) i(i)|x(2) X(2)) = (91)
X»a 

AO's on j

(for Rj, j large) ,
where is the charge on the j-nucleus and is the number of electrons 

in the a-core of j .
At smaller R^^, the point-charge approximation overestimates the 

magnitudes of both terms. We should correct the point-charge approxima­

tion by including a term to decrease the results of this approximate 

treatment. Since the point-charge approximation is good at large R^j, 

this term should go to zero as R^^ tends to infinity. A reasonable way 
to include such a term is shown in the equation

l i j  = ( Q j / R i j )  U  -  ( D ^ j / R ^ j ) } ,  ( 9 2 )

where i is the atom bearing the ir-electron, 1 ^̂  is either a nucleus- 
electron attraction or an electron-electron repulsion, = -Z^ if 
is a nucleus-electron attraction, and if 1 ^̂  is an electron-
electron repulsion. is a parameter which depends upon the nature of
the i-j pair and on whether 1 ^^ is an attraction or repulsion.

We determined, by trial and error, that could be represented
in terms of three basic parameters A, B, and C, in the equation

= A + B/C^ij. (93)

The parameters A, B, and C depend upon the nature of the i-j pair and 
upon the nature of 1^^. We obtained A, B, and C values, which are of 
adequate accuracy, by solving equation (92) for D^j, given ^, Q^, and
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. The results were then plotted versus R^^. An example of such a 

plot; the Dqjj for the oxygen ir-electron, nitrogen o-core Interaction, 

is in figure 6 . At large values of j» assumes a fairly constant 
value. This value becomes the A-parameter. In order to find the B and 
C parameters, we need only to solve equation (93) at two values of R^^.

Rĵ j = 2.0 au and R^^ = 4.0 au bracket the usual bond lengths for 
molecules. Below 2.0 au, the equation for 1^^ gives erratic results and 
should not be used.

The parameters which were arrived at by this technique are shown 
in Tables 14 and 15. Table 14 contains data for the nucleus-electron 
attractions, and Table 15 contains data for the repulsions. We calculated 

with equation (92) and the parameters of Tables 14 and 15 at R^^ =

3.0 au and R^j =5.0 au. Tables 16 and 17 compare the results of the 
approximate calculations to the results obtained from Roothaan's formulas 
or the Sahni and Cooley tables.

The approximate calculations give results which are within at least 

0.3 electron volts of the results of the accurate calculations. These 
comparisons lead us to believe that the use of the approximate formulas 
will cause errors of no more than ± ^  6V in experimentally obtainable 
quantities determined by accurate calculations. We therefore judge 

the values of the A, B, and C parameters to be of adequate accuracy.
One can simplify the approximate determination of (i|(V^gp^)j|i) 

even further by combining the equations for the attractions and repulsions 

into one equation giving the interaction energy of an i ir-electron with 
the total core of j. When this is done, one has an approximation to 
(i](V^^^^)j|i) in terms of a five-parameter function. We term this
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Figure 6̂
The parameter Dq u » in au, computed from the oxygen ir-electron, nitrogen 
o-core repulsion as a function of the intemuclear distance %o*
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Table 14

Parameters Needed in the Approximate Calculation 

of Two-Center %-Electron, Nucleus 
Attraction Integrals

Atom Bearing the 
ir-electron

A B C

C 0 . 1 0 0 0.820 2.08

N 0 . 1 0 0 0.650 2.24

0 0.070 0.610 2.79
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Table 15

Parameters Needed in the Calculation of Two-Center 
TT-Electron, a-Core Repulsions

Atom Fair
(The first atom bears 
the ir-electron)

0, H 0.075 1.56 2.94
N, H 0.050 0.854 1.82

C, H 0.025 0.955 1.63

c, c 0.075 1 . 6 8 2.60

N, N 0.050 1.36 2.59
0 , 0 0.025 0.748 2.38
C, 0 0.075 1.32 2.44

C, N 0.075 1.57 2.56
N, 0 0.050 0.833 2.29

N, C 0.050 1.61 2.71
0, C 0.025 1 . 2 1 2.70
0, N 0.025 0.940 2.53
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Table 16

Comparisons of Approximate Calculations of it-Electron, 
Nucleus Attraction Integrals to More 

Accurate Calculations

TT-electron, nucleus 
pair

R (au) Accurate^ 
Value (au)

Approximate^ 
Value (au)

Error (ev)^

C, C 3.0 1 . 8 6 6 1.872 +0.16
5.0 1.170 1.170

C, N 3.0 2.177 2.184 +0.19
5.0 1.365 1.365

C, 0 3.0 2.488 2.496 +0 . 2 2

5.0 1.560 1.560
N, C 3.0 1.908 1.902 -0.16

5.0 1.176 1.176
N, N 3.0 2.226 2.219 -0.19

5.0 1.372 1.372
N, 0 3.0 2.544 2.536 -0 . 2 2

5.0 1.568 1.568
0, C 3.0 1.932 1.932

5.0 1.182 1.182
0, N 3.0 2.254 2.254

5.0 1.379 1.379
0 , 0 3.0 2.576 2.576

5.0 1.576 1.576
C, H 3.0 0.311 0.312 +0.03

5.0 0.195 0.195
N, H 3.0 0.318 0.317 -0.03

5.0 0.196 0.196
0, H 3.0 0.322 0.322

5.0 0.197 0.197
a) All terms have negative sign.
b) A blank indicates no error to about two decimal places in ev.
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Table 17

Comparisons of Approximate Calculations of u-Electron, 
G-Core Repulsions to More Accurate Calculations

TT-electron, o-core 
pair

R (au) Accurate 
Value (au)

Approximate 
Value (au)

Error (ev)^

C, C 3.0 1.558 1.570 +0.32
5.0 0.980 0.980

C, N 3.0 1.873 1.884 +0.30
5.0 1.176 1.176

C, 0 3.0 2.196 2.205 +0.24
5.0 1.369 1.372 +0.08

N, C 3.0 1.594 1.595 +0.03
5.0 0.985 0.985

N, N 3.0 1.911 1.914 +0.08
5.0 1.181 1.182 +0.03

N, 0 3.0 2.241 2.240 -0.03
5.0 1.381 1.379 -0.05

0, C 3.0 1.621 1.620 -0.03
5.0 0.989 0.990 +0.03

0, N 3.0 1.938 1.944 +0.16
5.0 1.189 1.188 -0.03

0 , 0 3.0 2.264 2.268 +0 . 1 1

5.0 1.386 1.393 +0.19
C, H 3.0 0.305 0.306 +0.03

5.0 0.196 0.196
N, H 3.0 0.313 0.313

5.0 0.197 0.196 -0.03
0, H 3.0 0.317 0.318 +0.03

5.0 0.198 0.197 -0.03

a) A blank Indicates no error to about two decimal places in ev.
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approximation V^j, with (ilCV^gpgXjli) ~ V^j, and write

= ( 1 / R y )  { p .  +  (1 /R j . j )  (A’ +B'/(C’)^j - D/(E)*lj)}, (94)

where

and

Pj = -1 . 0 0 if j is an atom other than hydrogen

Pj = 0 . 0 0  if j is hydrogen.

If one takes Pj to be -1.00 for atoms other than hydrogen, he assumes 

that the atom contributes only one electron to the n-system. If the 

atom contributes two electrons to the -ir-system, at the expense of the 
a-electrons, then Pj should be -2 .0 0 . p^ is the negative of the charge 

on the o-core. A', B', C', D, and E are the five parameters listed in 

Table 18.
With the exception of the final term in the equation for 

(i|(V^Q^g)^|i), we have approximated the ir-electron, core interaction 

potentials. If one can take account of this term and calculate the ir-ir 
electron repulsions, he can use the previously developed approximations 
and equation (49) to calculate

(E) Approximate Equations for the ir-ir Repulsions

The one-center ir-electron repulsions can be calculated from a 

knowledge of the orbital exponents defining the basis set of AO's (Table 
8). We have determined these repulsions from the Sahni and Cooley integral 
tables, and the one-center ir-ir repulsions are
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Table 18

Parameters Needed in the Calculation of the 
ir-Electron, Core Interaction Energy

ir-electron, core 
atom pair

A' B' C D E

C, H 0.075 0.820 2.08 0.955 1.63

C, C 0.225 4.92 2.08 8.40 2.60

C, N 0.250 5.74 2.08 9.42 2.56

C, 0 0.275 6.56 2.08 9.24 2.44

N, H 0.050 0.650 2.24 0.854 1.82

N, C 0.350 3.90 2.24 8.05 2.71

N, N 0.400 4.55 2.24 8.16 2.59

N, 0 0.450 5.20 2.24 5.83 2.29

0, H -0.005 0.610 2.79 1.56 2.94

0, C 0.295 3.66 2.79 6.05 2.70

0, N 0.340 4.27 2.79 5.64 2.53

0 , 0 0.385 4.88 2.79 5.24 2.38
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(ir̂  TTg I TTç TTg) = 0,613 au,

(^N 1 “ 0-750 ^u,

and

(:^0 I ̂0 " 0.870 au.

One could obtain the two-center ir-electron repulsions by using 
Roothaan's equations. However, the success of the previously developed 

three-parameter approximate equation in reproducing the nucleus-electron 
attractions and ir, o-core repulsions led us to attempt to use this same 
technique for the two-center ir-ir repulsions. Again, at large R^^ the 
ir-ir repulsions can be approximated by a point-charge potential. At 
smaller R^^ the point-charge approximation over-estimates the value of 

the integral. We computed the two-center ir-ir repulsions and plotted them 
versus R^^. Equations (92) and (93) were found to apply very well for 

the ir-ir repulsions. We therefore extended these equations to

= ( 1 / R i j )  {1 -  ( D ^ j / R . j ) } ,  (96 )

where is defined as in equation (93), and I I i s  an approximation 
to the repulsion of an electron in a n AO on atom i and an electron in 
a n AO on atom j. The A, B, and C parameters for established by
the same techniques used earlier, are given in Table 19.

The ir-ir repulsions computed with the 11̂  ̂ agree very well with the 
actual values of the integrals. Tests of 11̂  ̂ versus accurate calculations 
of the integrals revealed no errors greater than 0.05 ev. This level of 

error is not only acceptable but excellent.
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Table 19

Parameters Needed in the Calculation 
of ir-TT Repulsions

Atom Pair A B C

C, C 0 . 2 0 0 1.07 2.15

C, N 0.175 0.920 2.08

C. 0 0.175 0.908 2.29

w,̂ -N 0.150 0.644 1.95

N, 0 0.125 0.490 1.76

0 . 0 0 . 1 0 0 0.490 1.87
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(F) Inclusion of o-tt Exchange Energy

The ah iri'itio investigations of Cook, Hollis, and McWeeny and the 
semi-empirical calculations of Dewar and Baird have emphasized that a 
modification of the all-electron CNDO formalism is required. The neglect 

of one-center electron-repulsion integrals of the type (ij | ij), which 
is a part of CNDO theory, is unjustified. The retention of such integrals 
gives us a formalism similar to the NDDO formalism.^ The NDDO formalism 
would, however, retain more electron repulsion integrals than the CNDO 
integrals and the (ij j ij) type.

Work done by Edmiston and Ruedenberg in developing a method for 
transforming MO’s to localized orbitals by the minimum-exchange-energy 
principle provides some useful data on the exchange energy of a and ir 

MO's.^^ One can sum the a-ir MO exchange energies for a given ir-MO in a 
molecule and obtain the total a-ir exchange energy for an electron of the 
ÏÏ-MO. The results of such summations, for several diatomic molecules, 
are in Table 20. These energies are certainly not small or negligible. 
They are all on the order of six ev. Although Edmiston and Ruedenberg 
employ "best molecule AO’s" in their calculations, they point out that 

the exchange energy is not very sensitive to AO-type.
One wonders what integrals are involved in the calculation of a-it 

exchange energy, and how the integrals can be included in an approximate 

IT-MO theory. We consider the carbon monoxide molecule as a specific 
example. For a basis set of orbitals (formally LOAO's), Og, 2s^ 
and t7q, Oq, and 2Sq, the exchange energy of an electron in one of CO's 
ir-MO's and the a-MO's of CO is as follows;
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Table 20

a, ir-Electron Exchange Energies for 
Some Diatomic Molecules

Molecule o - tt exchange (au)

Mg 0.201

CO 0 , 2 1 7

Eg 0 . 2 5 4

LiF 0 . 2 3 7

BF 0 . 2 5 7



-97-

 ̂ ‘=0 .i<*c °cl’c °c) +  ̂ 4s.i< 'c 2=cl"c 2=c>C C i c

+ 2 : Ca,.i C2S(.i('c °cl'c 2»c)' + c'o ( : Gcgif'o °ol'o °o)

+  ̂ Gzsgit'o Zsol'o :So) + 2 : ^Zsgit'o °ol'o 2 =0 ))

+ 2G C ( : G C (Wj, Ocl'o .(,) + Z G Cas^lt'c °cl'o 2:o'L U L U L U

■'■  ̂ Ssj,i Gogi(*C ■‘‘  ̂ Ssj,i ^28^1

The summations over 1 extend over occupied a-MO's. The contribution to 

the a-7T exchange due to the Is electrons may be estimated by adding the 
terms (x Is |n ls_) and (n Is |n Is.) to the above equation.TiQ w L L L TTq U U U U
Formally, the coefficients In the above equation are LOAD coefficients.
In this equation, we have retained only those Integrals which are retained
in the NDDO formalism. It Is a good approximation to calculate the
electron-repulsion Integrals In this equation over AO's rather than LOAO's.

2The factor multiplied by C In the CO exchange should be included
*̂ C

in the carbon matrix element and the term multiplied times CU L  TTq
should be Included In the oxygen matrix element The first two

factors are specific examples of the integrals appearing in the last term 
of equation (8 8 ). The Integrals (tt̂  a^lm^ 2s^> and (ir̂  OqUq 2Sq) are 

Identically zero. This means that these first two factors include the 

(ij I ij) Integrals necessary to improve CNDO. If the (ij | ij) integrals are
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Included, one has partially accounted for the o-tr exchange energy. The
multiplier of 2C C , the C-0 ir bond-order, is the effect of o-ir 

-LOAOexchange upon .
We have calculated the exchange energy contribution to equation

(8 8 ). The a-AO populations were obtained from two sources, a calculation
62on CO molecule by Sahni, and a calculation on HgCO molecule by Good-

63friend, Birss, and Duncan. The a-ir exchange energy is mildly sensitive
to the AO-populations used in its calculation. The HgCO populations were
used to calculate the o-ir exchange contributions for carbon and oxygen.

These contributions should apply to C and 0 with o-cores which are approx- 
2imately sp hybridized and are as follows:

Carbon = 0.128 au
and

Oxygen = 0.262 au.

We assumed the same o-AO population for nitrogen as that used in earlier

calculations for and With this population, we obtained an
exchange contribution for nitrogen of

Nitrogen = 0.215 au.

All integrals were determined from the Sahni and Cooley tables with the 

AO's defined in Table 8 .
The part of the o - tt exchange energy which goes into the off-diagonal 

matrix elements looks very much like it could be approximated by

assuming that the a-bonding MO's are formed from equally weighted hybrids. 
It is assumed that only the a-MO which joins the y and v atoms provides 
a significant contribution to the o - ïï exchange in the it matrix element
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pLOAO^ Lone pairs and a-bonds with atoms other than p and v should yv
contribute little to the a—ir exchange, as is witnessed by the small 

singlet-singlet and singlet-triplet splittings in n->ir* transitions. 
Therefore, an estimate to the o-ir exchange effect on is
y  (tt̂  hy^jn^ hy^), where hy is a hybrid AO. For the CO molecule with

sp hybrids, this term adds 0.027 au to
2 2Assuming C = 0.60, C = 0.40, 2C C = 0.98, 0.027 au for the 
^ 0  '̂ C ’̂C ’̂ 0

multiplier of 20 C , and the o-AO populations of the Sahni wave func-
'"c ""o

tion, one obtains about 0.21 au for the a-ir exchange energy of CO. This

falls in the range of values calculated by Edmiston and Ruedenberg.
In Table 21 the contribution to due to the last

term of equation (8 8 ) , the o-ir exchange term, is added to the results
for the first three terms of this equation (Table 11). By way of analogy

to V^j, we call these approximate results for (l|(Vgo2g)i|l) the
We label the effect of o-ir exchange upon 8^^^, (EX)^^. (EX)^^ is

timated by calculating the term ̂  (ir̂  hy^jn^ hy^), where hy^ and hy^
2are sp hydrids located on atoms i and j respectively. These integrals 

are calculated for several values of and the results for all i-j 
pairs appear in Table 22.

Since all of the pairs produce about the same exchange contribution, 
an equation which fits the average of values for all pairs at each R^^ 

should be adequate. We employed the same three-parameter function used 
successfully for and . The technique used to establish values for 

the parameters is the same as that employed earlier. The equation is

(EX)^j = (l/2R^j) {1 - (- 30.18 + 30.06/(0.9693)*ij) (97)

es
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Table 21

One-Center ir-Electron, Core Interaction Energies, Vii

Atom i Total from o-ir exchange (au)
Table 11 (au) (EXj^^ (au)

C -0.254 -0.128 -0.382

N -0.227 -0.215 -0.442

-0.257 -0.262 -0.519
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Table 22

The Effect of o - tt Exchange Upon ((EX)^j)

i, j (EX)ij (au)

(au) = 1 . 0 2 . 0 3.0 4.0 5.0

c, 0 0.035 0.025 0 . 0 1 0 0.005 0 . 0 0 2

C, C 0.030 0.025 0.013 0.006 0.003

N, N 0.038 0.024 0 . 0 1 0 0.004 0 . 0 0 2

0 , 0 0.043 0 . 0 2 1 0.007 0.003 0 . 0 0 1

N, 0 0.040 0.023 0.008 0.003 0 . 0 0 2

N, c 0.033 0.025 0 . 0 1 1 0.005 0 . 0 0 2
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This correction is added to and puts the o-ir exchange into the
off-diagonal Roothaan matrix elements of v LOAO's.

Now that we have completed the approximation of the o - tt exchange 
energy we have ready the main mathematical apparatus of our ir-electron 
theory. This theory might be cescribed as an ab initio ZDO theory plus 

o-ir exchange. It is an excellent approximation to the more general 
NDDO formalism. We would, however, like to make the theory a bit more 
flexible.

(G) Inclusion of o-Core Polarization

One assumes that each atom i in a molecule either gains or loses a 
small fraction of its o-electron population by way of core polarization.
One can set Y(i) equal to the difference in o-electronic charge of the 
atom i in the molecule and in the neutral atom. If i gains electrons by 
polarization effects, Y(i) is positive, and, if i loses electrons, Y(i) 

is negative. If i neither gains nor loses then Y(i) = 0. We need to 

reconsider any of the approximations we have developed which involve ir- 
electron, o-core interactions. These approximations are the and 
(EX)^j. The (EX)^j terms are small and relatively insensitive to changes 

in the o-electronic populations.
We wish to include the Y(j) in without complicating our pre­

viously developed formulas too much. Therefore, Y(j) is included in the 
two-center in an approximate way, giving reasonably accurate calcu­

lated results only where Y(j) is small in magnitude, say less than 0.1. 

Y(j) is included as a point-charge interaction. It interacts with the i—  

ir-electron by the potential Y(j)/R^^.
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For the diagonal terms, we average all the ir, o-core repulsions, 

obtaining the average o-core repulsion per o-electron. We assume that, 
when a small amount of o-electronic charge is added to i or removed from
i via polarization effects, this charge interacts with a ir-electron on i

through this average repulsion. This is not correct, but if Y(i) is 
small it should not cause much error. The terms of Table 21 are, 
therefore, redefined, without a change in notation, to the following:

Vqq = - 0.519 + 0.844 Y(0),

(98)
= - 0.442 + 0.738 Y(N), 

and

Vgg = - 0.382 + 0.618 Y(C).

One can include the Y(j) in the two-center by modifying the 
three-parameter approximate equation for the ir-electron, o-core repulsion 
to include the Y(j) as a point-charge interaction of Y(j) with the i—  

ir-electron. This three-parameter function can then be resynthesized with 
the function which approximates the nucleus-electron attractions to give 
a modified form of equation (94) for . We write this modified equa­
tion, without a change in notation, as

= (l/R^j) {Pj + Y(j) + (1/E_j) (A' + B'/(C')*lj - D/(E)*ij)}. (99)

The parameters A', B*, C', D, and E are listed in Table 18.
These equations for and are the general equations for calcu­

lating ir-core interactions in the case where o-electronic charge is trans­
ferred from one atom to another. When Y(i) and Y(j) are zero, we obtain 

the previous equations for no o-charge shifts. The Y(i) are parameters
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which must be guessed. Some m-electron calculations should be insensi­
tive to the values of Y(i), i.e. electronic transition energies. In the 
cases where the results of the ir-electron calculations are dependent 
upon the Y(i), the Y(i) will have to be chosen by analogy to accurate 
o-orbital calculations on smaller molecules.

(H) Summary

To summarize the derivation of the method, it is best to write the 
first approximations to the equations for the Roothaan SCF matrix elements, 

equations (49) and (50), in terms of the further approximations we have 
developed for the 3^^'^^'s, and ir-ir repulsions. Originally we

had
ooa. ir

,LOAO .  MAO +  g pLOAO I .  1 pLOAO (4, )

and

'“"I'’'''-

The ir-ir repulsions (ii | j j) are approximated by With this

approximation, equations (49) and (50) become
OQO. ir

jLOAO , ^LOAO ^ S % L O A O  „ . i  J (100)
W  u aa po 2 py pp

and
jLOAO . LOAO IpLOAOj _ (101)
pv pv 2 pv pv

One calculates the elements of the matrix (H^^) from equations (95) and
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(96). The parameters required for calculations with equation (96) are

found in Table 19.
The are explicit functions of the (p|(V ) |p), the K ,^ C01C6 m

and the and this dependence is shown in the previously derived
equation, equation (83),

»< : <n>
n?(p n?̂ u

n^tp ngtn, y n fp  W n ,y

n^y m^n,y

+ ("I Ï (Vcore).!")- (83)
W P
wé nearest ir-bearing 
neighbors-to-y

We have approximated the (y1(V ) ly) by V . The terms‘ core n' yn
(^l^^core^locall^^ ® ir-electron, o-core interactions for the
y-core and the cores of the n-bearing nearest neighbors-to-y. We write, 
therefore, the approximate relations

(“ K W l o c a l i ' ' )  = (\>local =  ̂ (102)
n=y
and n-bearing nearest 
neighbors-to-y

The last term in equation (83), the (y| I (^core\mj^^ term, we approximate
m{(y
wé nearest ii-bearing 
neightors-to-y

by the relation
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("I : : : V  (1°3)
mfw rrr̂v
m/ nearest n-bearing mf nearest ir-bearing
neighbors-to-y neighbors-to-y

We may now rewrite equation (83), including these approximations, to 
obtain

° ' " \n>'' »< " i ( il s j y 2 } (V^)local
n^y n^y n^y m^n,y

+ Z (( : s'm) - 1 ) / 2 } (Va)iocai
nî̂ y m^n,y

-  ̂ “ %;.) " L  V '  + ‘̂ 'remote-
n?ty m^n,y

where one should remember that all products H and summations Z which
appear explicitly in this equation are taken over nearest neighbors-to-y

only. is a function of elements of the matrix , some elements
of the matrix (V^^), and of the parameters Elements of (S^^) may
be calculated using Roothaan's formulas or estimated from Mulliken's 
tables. The elements of (V\j) are defined by equations (98) and (99), 
and the parameters needed in equation (99) are listed in Table 18. The 

parameters can be found in Table 9.
Our approximate equation for therefore, becomes

oac. IT

where is written as having explicit dependence upon elements of the
matrices S, V, and K. One should use this equation as the means to
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approxlmately calculate Fyy^-
We calculate the term from equation (6 8 ) and the exchange

term (EX)^^. We write without a notation change, as

n^y,v mfy m^y,v n^y,v

- : (S,m + Sv.) / 4] + (EX)yy. (106)
Bi9̂ y,v

where (EX)^^ corrects equation (6 8 ) for the exchange of ir with a LOAO's.

One can, therefore, write for the Roothaan matrix element theyv
approximate equation

■ V -  < ® > v v >  - 1  C “  \ v

Here we indicate the explicit functional dependence of 8^^^^ upon some
elements of the S matrix, upon K , and upon (EX) . One should use this’ y V ^ yv
equation to approximately calculate

In actual calculations on the ir-systerns of molecules, we have found 
that the are in slight error at large R^^. If an atom i has a large 
number of neighbors j beyond an R^^ of about 4.0 au these errors in 

accumulate to the extent of causing moderate errors in calculated ioniza­
tion potentials. It is better, for R^^ = 4.0 au, or greater, to calculate 

by a simple point-charge approximation, that is, to take to be the 
negative of the core charge of j divided by R^j. This amounts to leaving 
out the part of equation (99) for which depends upon A', B', C', D, 
and E for R^^ i 4.0 au.

In this work, we have derived an approximate ab initio ir-electron
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SCF MO theory. The basis set of functions used to expand the ir-MO's is

a set of approximate Uwdin orthogonalized atomic orbitals (LOAO's).

These basis functions are employed to derive approximate equations for
the matrix elements and which are analagous to the para-V pv
meterized one-electron integrals of semi-empirical theories. The LOAO 

populations, which may be calculated from the LOAO-coefficients resulting 
from the SCF calculations, should be good approximations to the populations 
which would have been obtained by Mulliken population analysis of calcu­
lations using a basis set of overlapping atomic orbitals (AO's).

The ot̂ ®̂ ® and g^®^ contain the effects of overlap-coupling in the P pv
molecule. These overlap effects couple the corresponding p and pv AO 
matrix elements to their nearest neighbors. is the sum of a part
containing these overlap-coupling effects and a part containing a contri­
bution due to o-TT exchange. The first part of which includes the
overlap-coupling, is analagous to the g's of semi-empirical theory. This 

term is a product of the overlap and a term which contains the 

environmental effects due to nearest neighbors. For a simple, two tt-AO 
molecule, the assumption that g is equal to a constant times S, an 
assumption which is employed in some of the semi-empirical theories, is 

found to be correct only in the case of small overlap. The overlap- 
coupling found in Q^®^ has never been discussed in detail in any of the 

semi-enq>irical treatments. This coupling is vaguely hinted at in the
gdevelopment of CNDO/2.

Our ab initio theory also includes simplification of the theoretical 
calculation of ir-ir repulsions and ir, o-core interactions. These inter­
actions are determined by use of approximate equations much simpler than
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the equations of Roothaan. The approximate equations are based upon a 

simple modified point-charge approximation to the integrals. The 
equations are not useful below an R^^ of about 2 . 0 au, but, for calcu­
lations on most molecules, this is no inconvenience.

We have tested the individual approximations by comparing the 

results of the approximate calculation to more accurate results wherever 
possible. The ultimate test of the method, however, lies in utilizing 

the entire apparatus of the theory in doing calculations on molecules. 

Calculations have been performed on the ir-systems of a series of mole­
cules, and the results of these calculations are presented and discussed 
in the next chapter.



CHAPTER V 

CALCULATIONS WITH THE SCF METHOD

In the previous chapter, the equations necessary to construct an 
approximate, no-overlap, n-electron molecular orbital theory were derived. 

No semi-empirical techniques or parameterization were used in order to 
fit experimental data. The atomic basis for the derivations was a mini­
mal set of LSwdin orthogonalized atomic orbitals (LOAO’s), with the ir- 
LOAO's being given in an approximate closed-form. The equations for the 
one-electron ir-integrals in this basis explicitly showed the effects of 
overlap-coupling of the nearest-neighbor atoms in a molecule. The two- 
electron integrals were either computed directly from "best atom" atomic 
orbitals or approximated by formulas designed to reproduce the two- 

electron integrals calculated with "best atom" AO's.
In this chapter, the results of calculations using the full appara­

tus of the theory are shown for the ir-systems of several molecules. The 

ir-electron densities predicted by the theory are compared to the ir- 
densities calculated by other theories, both theoretical and semi- 
empirical. The changes in the ir-electron densities with o-electronic 

charge shift from one atom to another are also examined. The ionization 
potentials predicted by this theory from Koopmans’ theorem are compared 
to experimental ionization potentials. The deviations of the theoretical 
results from the experimental ionization potentials are discussed and 
suggestions are made as to how to bring the theoretical ionization poten­
tials into better agreement with the experimental values. The theoretical 

ionization potentials are found to be dependent upon the assumed charge
-110-
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shifts of the o-core. For some molecules where experimental data is 
available, the h-tt* electronic transitions predicted by the theory are 
compared to experimental results. A method is suggested to correlate the 
theoretical molecular orbital results with the experimental values.

Finally, the tt wave functions of molecules show greater changes 
with o-charge shifts than do the total ir-electron densities. This is 

demonstrated for the glyoxal molecule, where the expansion coefficients 
for the calculated molecular orbitals are shown for several o-charge 
distributions.

In the molecular calculations which follow, experimental bond 

lengths and bond angles were used where possible. Experimental bond 
lengths and angles were used for formaldehyde,^^ ethylene,glyoxal, 
benzene,pyridine,1,3-diazine,^^ 1,4-diazine,^® b u t a d i e n e a n d  
p-benzoquinone.^^ Acrolein was constructed from the bond lengths and 
angles of glyoxal and butadiene. For hexatriene, the bond lengths and 
angles were assumed to be the same as for butadiene.

(A) ir-Electron Densities

The ir-MO's are given as expansions in LOAO's by the equation

The population of a ir-LOAO in a doubly occupied MO is given by
and the electronic population of the LOAO in the molecule

is the sum of the (|)̂ populations for each MO (the p—  diagonal element 

of the bond-order matrix),
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OQQ. II

(10,)yii lE-w yi

We can expect that the u-LOAO populations are good approximations
43to the tt-AO populations given by Mulliken population analysis. There­

fore, we have = P^^, and we drop the LOAO superscript from theyy yy  ̂ r r
population and index the population by a single subscript»

OOQ, ir 
yiO'S -nan ')

\ • (110) 
i

Regardless of whether LOAO population analysis or Mulliken population 
analysis is used, we should obtain the same atomic populations for tt 

atomic orbitals.
A close examination of the ir-densities of several molecules should 

show the accuracy of the present theory in predicting these densities.

The molecules are formaldehyde, butadiene, hexatriene, pyridine, glyoxal, 

and acrolein. The total ir-electron densities are shown for these 
molecules in Table 23. We list, for each molecule, several sets of 
Y-parameters and the ir-densities for each set of Y's. One should note 

particularly the changes in ir-densities which occur when the a-charges
are changed. One should also note that, unlike Pariser-Parr-Pople theory,

hydrogens are explicitly included in the present theory. The presence of
the hydrogens influences the ir-densities to a surprising extent.

The formaldehyde molecule is especially interesting. If no o- 
charge shift is assumed, i.e. {Y} = {0}, then the ir-MO shows oxygen
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Table 23

ïï Charge Densities for Several Sets of the Core 
Polarization Parameters Y(i).*

1) Formaldehyde (H2 CO)
Set Y(C) Y(0) Y(H) "c " 0

(1) 0 . 0 0 0 . 0 0 0 . 0 0 0.95 1.05
(2 ) 0 . 0 2 0.04 -0.03 0.99 1 . 0 1

(3) 0.03 0.06 -0.045 1 . 0 2 0.98
(4) 0.04 0.08 -0.06 1.04 0.96

2) Butadiene (C=C-C=C)
1 2  3 4

Set Y(C-l) Y(C-2) Y(H) ^C- 1 ^C-2

(1 ) 0.04 0 . 0 2 -0 . 0 2 1.05 0.95
(2 ) 0.08 0.04 -0.04 1.06 0.94

3) Hexatriene (C—C—C—C—C":C)
1 2 3 4 5 6

Set Y(C-l) Y(C-2) Y(C-3) Y(H) Pc- 1 ^C- 2 ^C-3

(1 ) 0 . 0 0 0 . 0 0  0 . 0 0 0 . 0 0 1.05 0.96 0.99
(2 ) 0.04 0 . 0 2  0 . 0 2 -0 . 0 2 1.05 0.96 0.99
(3) 0.08 0.04 0.04 -0.04 1.06 0.95 0.99
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4) Pyridine

Set Y(N) Y(C-2) Y(C-3) Y(H) Pjj ^C- 2 ^C-3 ^C-4

(1) 0 . 0 0  0 . 0 0 0.00 0.00 0.96 1 . 0 2 1 . 0 0 1 . 0 1

(2) 0.04 0.00 0.02 -0.02 0.94 1.03 1 . 0 0 1 . 0 1

(3) 0.03 0.015 0.03 -0.03 0.94 1.03 1 . 0 0 1 . 0 1

(4) 0.02 0.03 0.04 -0.04 0.95 1.03 1 . 0 0 1 . 0 1

5) Glyoxal (0=C-C=0)
Set Y(0) Y(C) Y(H) fo "c

(1 ) 0 . 0 0 0 . 0 0  0 . 0 0 1.07 0.93
(2 ) 0 . 0 2 0.01 -0.03 1.06 0.94
(3) 0.04 0.01 -0.05 1.04 0.96
(4) 0.04 -0.01 -0.03 1.04 0.96

6 ) Acrolein (0=C-C=C)
1 2  3 4

Set Y(0) Y(C-2) Y(C-3) Y(C-4) Y(H) Pq ^C- 2 ^C-3 ^C-4

(1 ) 0 . 0 0  0 . 0 0 0 .00 0.00 0.00 1.07 0.92 0.96 1.04
(2 ) 0 . 0 2  0 . 0 0 0 .02 0.04 -0.02 1.06 0.94 0.96 1.05
(3) 0 . 0 2  0 . 0 2 0 .04 0.08 -0.04 1.06 0.94 0.95 1.05

a) These results are obtained by SCF-iteration to a self consistency of 
0 . 0 1  in the bond order matrix.
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polarity. As we allow a-electronic charge to shift from the hydrogens 

to carbon and from carbon to oxygen, the oxygen polarity of the ir-MO 

diminishes. Finally, the polarity of the ir-MO changes and becomes polar 
in the carbon direction.

The non-classical carbon polarity of the occupied ir-MO of formalde­

hyde has been shown by other theoretical calculations which include all
63electrons. The calculations of Goodfriend, Birss, and Duncan and of 

37Cook and McWeeny show this behavior. The first calculation obtained 
Pg = 1.04 and = 0.96, while Cook and McWeeny calculated P^ = 1.03 and 

Pq = 0.98.
One could obtain sets of Y-parameters from the o-MO populations of 

these theoretical calculations. Population analysis of the wave function 

of Goodfriend, Birss, and Duncan and comparison of the o-atomic populations 
to the populations of neutral atoms produce the Y-set, Y(H) = -0.10,
Y(C) = 0.06, and Y(0) = 0.14. Qualitatively, this Y-set resembles the 
Y-sets which give carbon polarity with the present method. However, the 

parameters of this set are all larger. One might expect such a discrep­
ancy. Our method of including the Y's for two-center interactions and 
one-center interactions overestimates the effects of the charge shifts.

This is so because the effect of Y upon the two-center repulsions is 
represented as a point-charge, and the effect of Y upon the one-center 

repulsions is through an average of all a-AO repulsions. The Y-set 
deduced from the calculations of Cook and McWeeny is Y(H) = -0.06, Y(C) = 

0.08, and Y(0) = 0.04. These Y's are unlike the Y-values from Table 23 
necessary to reproduce the ir-densities of Cook and McWeeny. These Y's 
also disagree with the Y-values determined from the o-densities of
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Goodfriend, Birss, and Duncan. It is only fair to mention that Newton 
and Palke^^ redid the work of Goodfriend, Birss, and Duncan and obtained 

a moderately different wave function. Their ir-densities look to be 

almost identical.
From the previous discussion concerning the formaldehyde molecule, 

we may conclude that the present method predicts the proper m-electron 

densities for formaldehyde if we assume a Y-set based mainly upon classi­
cal ideas of electronegativity. Trying to pick a Y-set from the results 
of theoretical all-electron calculations appears to be a very frustrating 
procedure.

On the other hand, the CNDO semi-empirical theory shows the incor­

rect oxygen polarity for the ir-MO of formaldehyde. The CNDO/1 calculation
cof Pople, Santry, and Segal gives P^ = 0.98 and P^ = 1.02. The CNDO/2 

calculation of Cook and McWeeny gives P^ = 0.85 and P^ = 1.15.
The TT-densities of butadiene and hexatriene show that the larger the 

number of hydrogens a carbon has, the greater that carbon's r-electron 

density. It is assumed in the calculations that no a-charge shift occurs 

between carbons, the only a-shift occuring between carbon and hydrogen.
This behavior of the ir-densities is not shown in Pariser-Parr-Pople ir- 
electron theory where the hydrogens are neutral, non-interacting parts 

of the core.
The effect of the hydrogens is not small. It appears from Table 

23 that a pair of H's on a carbon increase the carbon's matrix element 
to about that for oxygen. Compare the ir-densities of butadiene, glyoxal, 
and acrolein. This is also shown by the almost non-polar ir-orbital of 
formaldehyde, where a carbon with two H's competes with oxygen for ir-density.
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Pyridine's TT-densities disagree somewhat with what one would 

intuitively expect. With any choice of Y-set in Table 23, is always 

less than 1.00. All P^ are 1.00 or greater. Classically, one would 

expect the more electronegative nitrogen to have more of the ir-density 
than carbon. The work of Del Bene and Jaffé^^ in producing a CNDO/2 
for spectra gives the following ir-densities for pyridine: P^ = 1.16,

Pg_ 2  “ 0.91, Pg_g = 1.04, and P^_^ = 0.93 (same atomic labels as in 
Table 23). These authors compare the electron densities produced by 
their method to those calculated by Clementi^ from a Gaussian orbital 

basis. His results for pyridine are as follows: P^ = 1.01, P ^g “
1.00, Pg_ 2  = 1.00, and P^_^ = 0.97. These densities are actually closer 

to the ir-densities calculated with the present ir-electron theory than 
they are to the all-electron, semi-empirical calculations of Del Bene 

and Jaffé. For pyridine, the ir-densities don't seem to be too sensitive 
to the a-charge shifts in the core.

The results for the molecules glyoxal and acrolein are interesting 

when they are compared to butadiene. All three molecules show about the 

same ir-electron densities. It appears, from the acrolein example, that, 
in competition for n-electronic charge, an oxygen atom competes against 
a carbon atom having one H slightly better than a carbon with two H's 

competes against a carbon atom with only one H. The oxygen atom at one 
end of acrolein has slightly greater ir-density than the carbon at the 
other end. In acrolein and glyoxal, one does not find the shift in ir- 
density from oxygen to carbon that one finds in formaldehyde. The reason 

for this is now clear. In acrolein and glyoxal, the oxygen competes for 
ir-charge against a carbon with only one bonded hydrogen, not two.
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(B) ïï Ionization Potentials

By Koopmans' theorem, we can obtain approximations to the vertical 
ionization potentials of molecules by taking the negative of the orbital 
energies. We apply this theorem to the first tt ionization potentials 

of several molecules. The ionization potentials calculated for each 
Y-set of the molecules are shown in Table 24. It appears that the 
ionization potentials vary about one-half electron volt over the range 
of Y-values shown in the table. Therefore, if we compare ionization 

potentials for a series of molecules, we need to pick comparable Y-sets 

for the series.
In Table 25, we show calculated vertical ionization potentials 

(Koopmans* theorem), experimental ionization potentials, and the errors 
in the calculated results. The Y-set used to obtain the calculated 
ionization potential for each molecule is given in parentheses.

All the experimental ionization potentials are vertical except 

those of p-benzoquinone and hexatriene. These ionization potentials 
were determined respectively by photoelectron spectroscopic and Rydberg 
series methods and are adiabatic rather than vertical. The vertical 

ionization potentials are usually from 0.1 to 0.5 electron volts greater 
than the adiabatic ionization potentials.

The first ionization potentials of pyridine, 1,3-diazine, and 
1,4-diazine are interpreted to be ir ionization potentials rather than 

ionization potentials of electrons in non-bonding MO*s on nitrogen.
79This interpretation is justified by the results of Al-Joboury and Turner' 

for the first adiabatic ionization potential of pyridine. This ionization
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Table 24

IT Ionization Potentials for Several Sets of the Core 
Polarization Parameters Y(i)^

Set Y(C)
1) Ethylene 

Y(H) First TT I.P. (ev)

(1 ) 0 . 0 0 0 . 0 0 9.8
(2 ) 0.04 -0 . 0 2 9.5
(3) 0.08 -0.04 9.2

2) Formaldehyde

Set Y(C) Y(0) Y(H) First ir I.P. (ev)

(1 ) 0 . 0 0 0 . 0 0  0 . 0 0 10.9
(2 ) 0 . 0 2 0.04 -0.03 1 0 . 6

(3) 0.04 0.08 -0.06 10.3
(4) 0.03 0.06 -0.045 10.4

3) Butadiene (C=C-C=C)
1 2  3 4

Set Y(C-l) Y(C-2) Y(H) First ir I.P. (ev)

(1 ) 0.04 0 . 0 2  -0 . 0 2 8.7
(2 ) 0.08 0.04 -0.04 8.4
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4) Glyoxal (0=C-C=0)

Set Y(0) Y(C) Y (H) First ir I.P. (ev)

(1 ) 0 . 0 0 . 0 0 . 0 10.4
(2) 0 . 0 2 0 . 0 1 -0.03 1 0 . 2

(3) 0.04 0 . 0 1 -0.05 9.9
(4) 0.04 -0 . 0 1 -0.03 1 0 . 1

5) Hexatriene (C=C-C=C-C=C)
1 2 3 4 5 6

Set Y(C-l) Y(C-2) Y(C-3) Y (H) First ir I.P. (ev)

(1 ) 0 . 0 0 0 . 0 0 0 . 0 0  0 .0 0 8 . 2

(2 ) 0.04 0 . 0 2 0 . 0 2  -0 .0 2 8 . 0

(3) 0.08 0.04 0.04 -0.04 7.7

6 ) Benzene

Set Y(C) Y (H) First ir I.P. (ev)

(1 ) 0 . 0 0 0 . 0 0 9.9
(2 ) 0 . 0 2 -0 . 0 2 9.6
(3) 0.04 -0.04 9.3

1

6 2
7) Pyridine  ̂1 3

4
Set Y(N) Y(C-2) Y(C-3) Y(H) First iT I.P. (ev)

(1 ) 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 9.8
(2 ) 0.04 0 . 0 0 0 . 0 2  -0 . 0 2 9.6
(3) 0.03 0.015 0.03 -0 .03 9.4
(4) 0 . 0 2 0.03 0.04 -0.04 9.3
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8 ) 1,3-Diazine 6 N N ̂  
5 1 ^ 3  

4
Set Y(N) Y(C-l) Y(C-3) Y(C-4) Y(H) First IT I.P. (ev)

(1 ) 0 . 0 0  0 . 0 0 0 . 0 0  0 . 0 0 0 . 0 0 9.8
(2 ) 0.015 0.01 0 . 0 1 0 . 0 2 -0 . 0 2 9.6
(3) 0.03 0.02 0.02 0.04 -0.04 9.4
(4) 0 . 0 2  0 . 0 2 0.03 0.04 -0.04 9.4

9) 1,4-Diazine
Set Y(N) Y(C) Y(H) First TT I.P. (ev)

(1 ) 0 . 0 0 0 . 0 0 0 . 0 0 9.8
(2 ) 0 . 0 2 0 . 0 1  -0 . 0 2 9.6
(3) 0 . 0 2 0.03 -0.04 9.4
(4) 0.04 0.02 -0.04 9.5

0 ^

,3
1 0 ) p-Benzoquinone 1 J4

T
0 6

Set Y(0) Y(C-2) Y(C-3) Y(H) First TT I.P. (ev)

(1 ) 0 . 0 0 0 . 0 0  0 . 0 0 0 . 0 0 8.5
(2 ) 0 . 0 2 ■0 . 0 2  0 . 0 2 -0 . 0 2 8.3
(3) 0.03 •0.03 0.04 -0.04 8 . 1

a) These results are obtained by SCF-iteration to a self consistency of 
0.01 in the bond-order matrix. More iteration steps appear to change 
the calculated ionization potentials by only ±0 . 1 ev.
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Table 25
A Comparison of Calculated and Experimental First ir Ionization 

Potentials (Y-Set from Table II in Parentheses)

Molecule Calculated I.P. 
(ev)

Experimental I.P. 
(ev)

Difference
(ev)

Ethylene (3) 9.2 10.5* 1.4
Formaldehyde (4) 10.4 1 1 .8^ 1.4
Butadiene (2) 8.4 9.2* 0 . 8

Glyoxal (3) 9.9 1 1 .6 * 1.7

Hexatriene (3) 7.7 8 .2 ^ 0.5
Benzene (3) 9.3 9.5* 0 . 2

Pyridine (4) 9.3 9.8® 0.5

1,3-Diazine (4) 9.4 9.9® 0.5

1,4-Diazine (3) 9.4 1 0 .0 ® 0 . 6

p-Benzoquinone (3) 8 . 1 9.7-10.0* -1.7

a) Reference 73. p-Benzoquinone I.P. is adiabatic.
b) Reference 74.
c) A value calculated in reference 31.
d) Reference 75. This is an adiabatic ionization potential.
e) Reference 76.
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potential was determined by photoelectron spectroscopic measurement, which 
allows positive identification of the bonding character of the MO from 
which ionization took place. This work showed that the electron removed 
in the first ionization of pyridine is removed from a bonding molecular 

orbital.
The IT ionization potentials calculated by Koopmans' theorem are 

always less than the corresponding experimental values, with the error 
being between 0.5 and 1.7 ev. These errors are comparable in magnitude 

to those usually obtained using ah initio orbital energies. One wonders 

why errors of this magnitude occur with ab initio calculations and what 

can be done to improve the theoretical ionization potentials.
There are two areas where errors can be expected to occur. The 

first is the neglect of electron correlation energy. We have done very 
approximate Hartree-Fock calculations in the present work, which do not 
include electron correlation energy. Electron correlation can be expected 
to increase the ionization potentials to about the same extent as the 
range of error in the calculations. The second area where error occurs 
is the neglect of the reorganization of the remaining electrons in the mole­

cule after an electron is ejected. We could include this effect in the 
mathematical treatment of the theory by doing an open-shell Hartree-Fock 
calculation^^ on the resulting positive ion. Because an electron has been 

removed, we would find that the shielding of the nuclei in the molecule 

by the electrons is diminished and that the orbital exponents of the AO's 

should be increased. This would allow contraction of the molecular wave 
function. Another important reorganization of the ion would be shown by 

such a calculation if the electron were removed from a MO which had greater
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electron density on some atoms in the molecule than on others. Excitation 
from this non-symmetric MO would leave a potential unlike that of the 
neutral molecule. The result of a hypothetical open shell treatment would 
be that the electron density of the ion computed with the original MG’s 
of the molecule would change by having electronic charge flow from one 

atom to another. The energy of the ion would be lowered. We don't have 
any reliable ways to quantitatively measure the above effects, but we 

shall attempt some semi-quantitative corrections to the Koopmans* 
ionization potentials anyway.

If we were to utilize the pair populations method of Hollister and
 ̂ 78Sinanoglu to calculate the correlation energy of the neutral molecule 

and extend their method to include + 1  ions, we would find that the mole­
cule has roughly one electron volt more correlation energy than the ion 
formed by removal of a ir-electron. The use of this method to calculate 
the energy of positive ions has no theoretical justification as the method

was developed for closed-shell molecules only. However, the success of
79the semi-empirical "half-electrons" method of Dewar et àt in predicting 

the heats of formation of hydrocarbon radicals provides support for such 

an extension. With the approximate treatment of Hollister and Sinanoglu 

in mind, we shall add 1.5 ev to the Koopmans* theorem ionization poten­
tials to account for the correlation energy change upon removal of a 
ir-electron.

Shown in Table 26 are the results of across-the-board addition of 

1.5 ev to the theoretical ionization potentials. The error range of 
these calculations is from about 0.1 ev to 1.3 ev. This doesn*t represent 
much Improvement. The ionization potentials so calculated are now generally
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Table 26

A Comparison of Correlation-Corrected First ir Ionization 
Potentials with Experimental Ionization Potentials

Molecule Corrected I.P. 
(ev)

Experimental I.P. 
(ev)

Difference
(ev)

Ethylene 10.7 10.5 +0 . 2

Formaldehyde 11.9 1 1 . 8 +0 . 1

Butadiene 9.9 9.2 +0.7

Glyoxal 11.4 1 1 . 6 -0 . 2

Hexatriene 9.2 8 . 2 +1 . 0

Benzene 1 0 . 8 9.3 +1.3
Pyridine 1 0 . 8 9.8 + 1 . 0

1,3-Diazine 10.9 9.9 +1 . 0

1,4-Diazine 10.9 1 0 . 0 +0.9

p-Benzoquinone 9.6 -9.8 -0 . 2
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too high. We can expect an error in the orbital energies of about ev 

based upon errors in the approximations made in the MO theory. There is 
in Table 26 a set of four molecules whose ionization potentials, calcu­
lated with Koopmans' ionization potentials plus correlation correction, 
are within ±0.2 ev of the experimental ionization potentials. Considering 

the errors expected in the orbital energies, this is excellent agreement.
On the other hand, we have a set of six molecules whose ionization 
potentials calculated using the correlation correction are about one 
electron volt too large.

To explain the discrepancy exhibited by the molecules of the second 
group, we need to consider the effect on the ion of electronic reorgani­
zation. Any reorganization will lower the energy of the ion and therefore 

decrease the ionization potential. We could get a qualitative idea of 
the reorganization due to excitation of an electron from a non-symmetric 
MO by examining the relative magnitudes of the coefficients of the highest 
occupied MO (HOMO). But we have no way of estimating the lowering of the 

ionization potential due to contraction of the ionic wave function relative 
to the molecular wave function. In a calculation where an atomic basis 

set is selected and no variation of orbital exponents is allowed in the 

calculation, it is impossible to account for this effect. We therefore 
assume that the effect is negligible. This assumption is implicitly made 
in the "half electrons" method where parameters for the neutral molecule 

are used to calculate the heats of formation for radicals.
The magnitudes of the expansion coefficients of the HOMO for each 

of the four molecules whose ionization potentials are nearly correctly 
predicted in Table 26 are shown in Table 27 as members of Group I. As
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Table 27

Magnitudes of the Expansion Coefficients of the Highest 
Occupied Molecular Orbitals of Several Molecules

Group I: Molecules whose experimental ionization potentials are correctly
predicted by the sum of the Koopmans' ionization potential and a 
correlation correction.

1) Ethylene;
(0.707) (0.707)

2) Formaldehyde:
(0.713) (0.701)

3) Glyoxal:
(0.561) (0.430) (0.430) (0.561)

4) p-Benzoquinone: (0.501)
0

(0.305)

(0.305)

0
(0.501)

250)
(0.305)

305)
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Group II: Molecules whose experimental ionization potentials are not
correctly predicted by the sum of the Koopmans' ionization 
potential and a correlation correction.

1) Butadiene:
(0.589) (0.392) (0.392) (0.589)

2) Hexatriene:
(0.495) (0.296) (0.408) (0.408) (0.296) (0.495)

3) 1,4-Diazine:
(0.500)
(0.500)

(0.00)
’N V.

w /  
(0.00)

(0.500)
(0.500)

4) 1,3-Diazine: (0.542)

(0.323) ^  (0.256)

(0.244) V  (0.336) 
(0.603)

5) Pyridine: (0.00)
(0.497) ^  (0.497)
(0.503) (0.503)

(0.00)
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6) Benzene*: (0.117)
(0.565)

(0.431) (0.384) (0.181) (0.548)
(0.548) (0.181) (0.384) (0.431)

(0.565)
(0.117)

a) The highest occupied level in benzene is doubly degenerate. The 
magnitudes of both sets of coefficients are listed. The functions 
obtained from any linear combination of the coefficients of the 
degenerate set are legitimate MO*s.
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expected, the HOMO's of ethylene, formaldehyde, and glyoxal are exactly 
or very nearly symmetrical. Only p-benzoquinone has a non-symmetrical 

HOMO. The coefficients of the six-membered ring in p-benzoquinone are 
nearly equal, but the coefficient of oxygen is double in magnitude the 
coefficient of its nearest neighbor carbon atom. It is suggested that 
the reason why electronic charge is not shifted from carbon to oxygen 

in the ion is the fact that oxygen has only one nearest neighbor, while 
the carbon in question has three. Since one-center and two-center 
interactions both go into the determination of a LOAO matrix element, 

the greater + charge on the oxygen after ionization is offset by the 

greater number of nearest neighbor interactions seen by the carbon.
The magnitudes of the HOMO coefficients for the six molecules whose 

Koopmans' ionization potentials plus correlation corrections are in 
greater error are also shown in Table 27 in Group II. Since the first 
ionization in benzene is from a set of degenerate MO's, the coefficients 
of both orbitals are listed. These functions, or any linear combination 
of them, are legitimate HOMO's. All of the six-membered rings in Table 
27 show very unsymmetrical HOMO's. Butadiene and hexatriene have non- 

symmetrical h o m o's , more so than the HOMO's of the molecules of Group I. 
Butadiene, with the most symmetrical MO, has the least error, as expected. 

That the error is greater than that of glyoxal is to be expected from 
examination of the magnitudes of the coefficients of the HOMO's of both 

molecules. That the error is so much greater is probably due to errors 

in the calculated MO orbital energies.
Based upon the examination of the preceding examples, we conclude 

that the best way to correct the calculated MO orbital energies to produce
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reasonably accurate vertical ionization potentials is to add 1.5 ev to 

Koopmans* ionization potentials for molecules whose HOMO's are either 

very symmetrical or are such that little reorganization would be expected 
to occur. For molecules whose HOMO's are not symmetrical, one should 
add only one-half ev to the negative of the orbital energy. This suggestion 
produces calculated ionization potentials which agree with the experimental 
ionization potentials to about ±0.3 ev for the ten examples considered 
here.

(C) TT—tr* Transitions

In order to calculate the vertical it- it*  transition energies with the
52present theory, we employ the equation suggested by Roothaan for calcu­

lating electronic transition energies in molecules

- c, - - «la - <1 1 »

1 3“where E( * 4^^) is the energy of the singlet or triplet excited state
2̂  —obtained by promoting an electron from MO i to MO a, E( 4>̂ ) is the energy 

of the singlet ground state, is the orbital energy of the MO to which 
the electron is excited, is the orbital energy of the MO from which 

the electron is excited, is the coulomb repulsion integral of an 
electron in MO i and an electron in MO a, and is the exchange integral 

over the MO's i and a. The plus sign in equation (111) is to be used in 

calculating a singlet-singlet transition energy and the minus sign in 
calculating a singlet-triplet transition energy. In this paper, we are 

concerned exclusively with singlet-singlet transitions.
The TT-ir* transition energies are practically insensitive to the
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Y-set chosen to represent the polarization of the o-core. Therefore, one 

does not need to specify a Y-set when quoting calculated ir-ir* transition 
energies in molecules.

In Table 28 we list the vertical transition energies calculated 
with the present db initio MO theory. Transitions are listed only for 
those cases where experimental data are available for the transition
energies. Also listed in Table 28 are the errors in the theoretical 
values relative to the experimental transition energies. With the 
exception of ethylene, every theoretically computed transition listed in 

Table 28 differs from the corresponding experimental value by a fairly 
wide margin. The theoretical results in this table are always too large. 

This type of behavior is to be expected, as ab initio MO calculations of 

transition energies are always in great error.
Although the semi-empirical MO theories which fit electronic spectra

(Pariser-Parr-Pople theory and CNDO/2 as modified by Del Bene and Jaffé)

utilize limited configuration interaction (01), it is not included in the
present ab initio theory. Limited Cl mixes only those states which can
be derived from the ground state of the molecule by promoting one electron
from one of the computed ground state MO's to another virtual MO. Limited

Cl has been found necessary to correctly order the transition energies in
molecules where there is actual or near degeneracy in the energies of the
excited states. The only molecule in Table 28 where limited Cl is required

is benzene. For this molecule, we have calculated the transition energies
80with the limited-CI equations of Pariser using the values of 8 and of the 

electron-repulsion integrals calculated with the present theory. Although 

the third it-h* transition energies calculated with the present theory for
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Table 28

À Comparison of Some Calculated ir-ir Transition Energies 

and Experimental tt-tt* Transition Energies

Molecule Calculated (ev) Experimental (ev) Difference

HgCO 10.6 8.0^ +2.6

Ethylene 7.5 7.6^ -0.1

Butadiene 6.7 5 .7b +1.0
8.9 7 .2b +1.7

Acrolein 7.8 6 .3 d +1.5

Glyoxal 9.8 7.6" +2.2
11.6 9 .0 b +2.6

Hexatriene 5.8 5.0^ +0.8

Benzene 6.4* 4.7* +1.7
7.5* 6.1® +1.4

10.2* 6.9® +3.3
p-Benzoquinone 6.8 +2.3

7.1 5 .1b +2.0

a) After limited Cl.
b) Reference 51. The second ir-ir* transition of glyoxal is a calculated 

value.
c) Reference 22, page 58.

d) Reference 81.
e) Reference 11.
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butadiene and glyoxal are almost the same as the energies of the second 
ir-TT* transitions, the states derived from these transitions do not mix 
with one another.

Since the errors in the calculated transition energies appear to 

be larger for larger transition energies , we plotted these errors against 

the calculated transition energies. The plot is shown in figure 7. The 
points on the graph appear to have a low correlation. But, with the 
exception of the second transition in benzene, the errors in the transition
energies for the two molecules which contain rings appear to fall on a
line above the errors for linear molecules. The second transition energy 

has been found difficult to predict by the semi-empirical spectral theo­
ries, and a possible reason for their failure is discussed elsewhere.

A recent study reassigning the second and third ir-ir* transitions in 
82benzene complicates the problem of calculating the spectra even further. 

If correct, the reassignment makes all previous limited Cl semi-empirical 

calculations incorrect and puts their parameterization schemes into a bad 
light. For theoretical calculation of the benzene spectrum, the implica­
tion of this reassignment is that very high order Cl is necessary even 

to properly order the excited states with respect to the ground state.
We did a simple least squares fitting of the points in figure 7 by

a straight line, using one equation to fit the errors in the ringed
compounds and one equation to fit the errors in linear compounds. The 

resulting equation for benzene and p-benzoquinone errors, denoted by 

superscript r, is*

* The second transition of benzene was not included in the least squares 
fit. This fit is not based on the assignment of the benzene spectrum 
given in reference 82. Basing the fit on this assignment would not 
change the equation greatly.
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(ev) = .38 (ev)} - 0.6. (112)

The equation which fits the errors in the spectra of linear molecules 
(A-superscript) is

AE^ (ev) = 0.29 {E^ , (ev)} - 0.9. (113)calc.

We employed these equations to calculate all the errors in the 
transitions of Table 28 and corrected the calculated transition energies 
accordingly. These corrected transition energies are compared to the 
experimental transition energies in Table 29. The errors in the corrected
calculations are generally much less than before and within the error

limitations of the approximations made in developing the present MO 
theory. Exceptions to this statement are the second ir-ir* transition 
energy of benzene and, surprisingly, the transition energy of ethylene. 
Both these transitions are predicted to be of lower energy than they 
actually are. The benzene transition energy is 0.8 ev too low. This 

is the same error found in the prediction of this transition energy by 

the semi-empirical theories.
The error in the ethylene transition energy is very surprising. The 

transition energy in ethylene computed from equation (1 1 1 ) depends only 
upon and upon the one-center and two-center ir-ir electron-repulsion
integrals. We have the corroborating calculation of Cook, Hollis and 

McWeeny to support our calculation of the non-exchange part of 
and the part of due to o-ir exchange is only about 0.4 ev. It is
difficult to see how the large error in the transition energy could 
result from error in . The one-center ir-ir electron repulsions are
accurately calculated, and the two-center repulsions are fitted to about
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Table 29

Corrected Theoretical tt— it*  Transition Energies Compared 

to Experimental Transition Energies^

Molecule Calculated (ev) Experimental (ev) Difference (ev)

H2 CO 8.4 8 . 0 +0.4

Ethylene 6 . 2 7.6 -1.4

Butadiene 5.7 5.7 0 . 0
7.2 7.2 0 . 0

Acrolein 6.4 6.3 +0 . 1

Glyoxal 7.9 7.6 +0.3
9.1 9.0 +0 . 1

Hexatriene 5.0 5.0 0 . 0

Benzene 4.6 4.7 -0 . 1
5.3 6 . 1 -0 . 8
6.9 6.9 0 . 0

p-Benzoqulnone 4.8 4.5 +0.3
5.0 5.1 -0 . 1

a) References to experimental values are in Table 28.
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0.2 ev accuracy by our approximate equation. Perhaps the ethylene case 

obeys the rule that the simplest member of a series doesn't follow the 

behavior of the other members.*
The semi-empirical MO theories fit spectra by adjusting the values 

of the ir-ir electron-repulsion integrals. What we have done is to suggest 
an alternative approach, which appears to fit the spectra of the molecules 
we have considered to about the same accuracy as semi-empirical theories. 
The simple dependence of the error in the transition energies of the MO 
calculation upon the calculated energy of the transition may be discussed 
in Cl-language. According to the work of Del Bene and Jaffé,^^ if two 

states do interact through Cl, then the magnitude of that interaction is 
governed mainly by the energy separation of the two states, the smaller 
the separation the greater the interaction. This interaction causes the 
singlet states to repel each other, i.e. their energy separation becomes 

larger. If we could do infinite-order Cl on a molecule, then we would 
expect the energies of the higher energy excited states considered here 

to be depressed to a greater extent by interaction with all the states 

above them than the lower energy excited states. This is the type of 
behavior shown in the corrections we have made to the calculated 

transitions.

One wonders why ethylene does not conform to the linear plot, while 
formaldehyde does conform. There is some feeling that the first tt- tt*  
transition of formaldehyde lies not at 8 ev but nearer 1 1 ev (remark 
by Lionel Goodman at the 1971 Sanibel Symposium). This would mean that 
our method predicts formaldehyde accurately, and this removes much of 
the ethylene nystery.
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(D) Effect of Core Polarization upon tr MO’s

In Table 30, we show the LOAD expansion coefficients produced by 

the present theory for the MO's of glyoxal. There are four sets of 
coefficients, one set for each Y-set chosen to represent the polarization 

of the o-core. This one example is included to illustrate the effect of 
core polarization upon the ir MO's. The coefficients of the tt-MG's are 
probably the result of a MO calculation most sensitive to charge shifts 

in the o-core.
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Table 30

II MO's of Glyoxal for Several Sets of the Core 

Polarization Parameters Y(i)*

1 ) {Y(0), Y(C), Y(H)} = {0 .0 0 , 0 .0 0 , 0 .0 0 }

i
'cii ^C^i \ ±

(au)

1 0.461 0.536 0.536 0.461 -0.478
2 -0.569 -0.420 0.420 0.569 -0.376
3 -0.536 0.461 0.461 -0.536 0.154
4 -0.420 0.569 -0.569 0.420 0.260

2 ) {Y(0), Y(C), Y(H)} = {0.02, 0.01, -0.03}

i \ i
(au)

1 0.457 0.540 0.540 0.457 -0.472
2 0.565 0.425 -0.425 -0.565 -0.368
3 -0.540 0.457 0.457 -0.540 0.162
4 0.425 -0.565 0.565 -0.425 0.266

3) {Y(0), Y(C), Y(H)} = {0.04, 0.01, -0.05}

i <=C2 i "Oji (au)

1 0.452 0.544 0.544 0.452 -0.468
2 0.562 0.430 -0.430 -0.562 -0.362
3 -0.544 0.452 0.452 -0.544 0.167
4 -0.430 0.562 -0.562 0.430 0.270
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4) (Y(0), Y(C), Y(H)} = {0.04, -0.01, -0.03}

i
' * 2 1

(au)

1 0.451 0.545 0.545 0.451 -0.472
2 -0.561 -0.430 0.430 0.561 -0.366
3 -0.545 0.451 0.451 -0.545 0.163
4 0.430 -0.561 0.561 -0.430 0.266

a) These results are obtained by SCF-lteration to a self consistency of
0 . 0 0 1  in the bond-crder matrix.



CHAPTER VI

A THEORETICAL DISCUSSION OF THE "ONE-ELECTRON" PARAMETERS 
OF SOME POPULAR NEGLECT OF DIFFERENTIAL 

OVERLAP SEMI-EMPIRICAL THEORIES

One of the purposes of the development of the present àb initio 
method is to provide a basis for evaluating some of the existing semi- 
empirical methods. This chapter gives a comparison of some of the semi- 
empirical parameters to the calculated values of the parameterized 

quantities. Such a comparison should suggest more accurate ways to 

obtain the semi-empirical parameters.

(A) Theoretical and Semi-Empirical S's

The 3, or resonance integral, for a pair of it atomic orbitals may 

be defined by the equation

■ ("I'corelv). (U4)

where p and v are atomic orbitals, here LOAO's, on the atoms y and v.
In all-electron calculations, such as the CNDO methods, the V^^^^ operator 
is formally restricted to a sum of the kinetic energy operator and the 
operators representing the nucleus, ir-electron attraction potentials for 
all the nuclei in the molecule. Generally for n-electron methods, V^^^^ 
includes the above plus the sum of the operators representing the tt-  

electron, o-core repulsions for all the o-cores in the molecule. In
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Chapter IV, It was found convenient to follow the convention used by
the ^-electron theories and to include the o-core operators in V forcore
this theoretical method.

The effect of the o-cores upon 6^^ is slight if y and v are LOAO's, 
the only effect of any magnitude being due to o-ir exchange. By defini­
tion, the two-electron integrals are excluded from in CNDO methods, 

and the o-ir exchange effect is not discussed in theories which treat the 
TT-electrons separately. Accordingly, it is appropriate to compare to the 
semi-empirical B's that part of g-theoretical which does not include o-ir

exchange effects. For molecules with valence o atomic orbitals which are 
2approximately sp hybridized, the o-ir exchange is only about two-tenths 

to one-half ev in magnitude.
We calculate the theoretical 3 for ir LOAO's with the equation 

(Chapter IV)

nfy,v m̂ y,v m̂ y,u n̂ y,v

- : (Sp. + / ‘ 1 > « «
nsty,v

2 i<where S is the overlap of the AO's y and v, B = (1 - S ) , and E = yv yv yv ymL{(1 + B ) / 2} . The K are constants which can be obtained from the ym yv
equation

where g are the orbital exponents of the AO's. All the sums Z in 
equation (6 8 ) are over nearest neighbors to y and v only. The products 
of and the products of are over nearest-neighbors-to-y only.
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The theoretical 3's are Identifiable by the superscript LOÀO.

If y and v have no nearest n-electron bearing neighbors, other than 

each other, then equation (6 8 ) reduces to the form

We shall term the of equation (115) the local It is the
resonance integral in absence of any effects of outside-environment on 
y and v. The 8^^^ of equation (6 8 ) is the environmental 8 ^^. It 
includes the contribution of y and v and the contributions of other ir- 
electron bearing atoms in the molecule. Obviously for a two-ir-AO 
system, (local) and g^®^® (environmental) become the same.

(1) Evaluation of Environmental Effects and Comparison 

to Semi-Empirical 8 's

Table 31 includes 8^^^^ calculated from equation (115), 8^ ^^  
calculated from equation (6 8 ), and the overlaps for "best atom" AO's 

for the bonded-atom pairs of the n-systems of several molecules. The 
environmental effect listed in Table 31 is the number of ev which must 

be added to 8^ ^^ (local) to obtain 8^^^^ (environmental). This effect 
is not small. Its magnitude ranges from about y  ev to 1 y  ev, and the 
effect is such that the magnitude of (local) is always increased in
going to (environmental).

^yv^ (local) is dependent upon It is not possible to pick a
constant term for each atom pair which will accurately reproduce 8^^^^ 

(local) over a wide range of overlaps. The local part of 8^^^^ should be 
computed for each case. However, it may be possible to estimate the



Table 31
A Comparison of 3^®^® with g's for Three Semi-Empirical Theories®

Molecule Atom
Pair

Best Atom 
AO Overlap

gLOAO ®
(local)
(ev)

gLOAO ^
(environ­
mental) (ev)

Environ­
mental 
Effect (ev)

Slater 
AO Over­

lap

b
8-CNDO
(ev)

c
e-CNDO
(ev)

d
8 -P.P.P.

(ev)

1,3-Dlazlne C. N 0.228 -1.71 -2.58 -0.87 0.215 -4.94 -2.70 -2.576
C. N 0.233 -1.76 -2.61 -0.85 0.218 -5.01 -2.74 tf

C, N 0.224 -1.69 -2.61 -0.92 0 . 2 1 0 -4.83 -2.64 II

C. N 0 . 2 2 0 -1.65 -2.58 -0.93 0.205 -4.71 -2.57 II

C. C 0.260 -1.33 -2.39 -1.06 0.243 -5.10 -2.41 -2.39
C, C 0.273 -1.41 -2.50 -1.09 0.255 -5.35 -2.53 II

1,4-Dlazlne C. N 0.233 -1.76 -2.75 -0.99 0.218 -5.01 -2.74 -2.576
C. C 0.273 -1.41 -2.45 -1.04 0.255 -5.35 -2.53 -2.39

Ethylene C. C 0.291 -1.52 -1.52 0 . 0 0 0.271 -5.69 -2.69 -2.92
Butadiene Cl c 0.287 -1.50 -2.07 -0.57 0.265 -5.57 -2.63 -2.92

c .  c 0.241 -1 . 2 2 -2.39 -1.17 0 . 2 2 0 -4.62 -2.18 -1 . 6 8
p-Benzoqulnone C. 0 0.224 -2.25 -3.13 -0 . 8 8 0 . 2 1 0 -5.46 -3.81 -3.0

c .  c 0.228 -1.15 -2.61 -1.46 0.209 -4.39 -2.07 -1 . 6 8
c .  c 0.300 -1.58 -2.72 -1.14 0.280 -5.88 -2.78 -2.92

Acrolein C. 0 0.237 -2.40 -2 . 8 8 -0.48 0.223 -5.80 -4.05 -3.0
c .  c 0.237 -1 . 2 0 -2.23 -1.03 0.217 -4.56 -2.16 -1 . 6 8
c .  c 0.291 -1.52 -2.09 -0.57 0.270 -5.67 -2 . 6 8 -2.92

Hexatriene c .  c 0.287 -1.50 -2.07 -0.57 0.265 -5.57 -2.63 -2.92
c .  c 0.241 -1 . 2 2 -2.37 -1.15 0 . 2 2 0 -4.62 -2.18 -1 . 6 8

Glyoxal C. 0 0.237 -2.40 -2 . 8 8 -0.46 0.223 -5.80 -4.05 -3.0
C. c 0.233 t1.18 -2.07 -0.89 0.213 -4.47 -2 . 1 2 -1 . 6 8

Pyridine c .  N 0.228 -1.71 -2.67 -0.96 0.215 -4.94 -2.70 -2.576
c ,  c 0.269 -1.38 -2.48 -1 . 1 0 0.249 -5.23 -2.47 -2.39c. c 0.264 -1.35 -2.56 -1 . 2 1 0.243 -5.10 -2.41 II

CO C. 0 0.271 -2.80 -2.80 0 . 0 0 0.255 -6.63 -4.62N2 _N, N 0.292 -1 . 8 6 -1 . 8 6 0 . 0 0 0.282 -7.05 -4.29
H2C0 c ,  0 0.233 -2.37 -2.37 0 . 0 0 0.218 -5.67 -3.95 -3.0
Benzene Cl c 0.266 -1.37 -2.56 -1.19 0.245 -5.15 -2.44 -2.39

UiI



a) Is computed without inclusion of o-ir exchange. The CNDO theories shown here ignore this effect.

b) Here g-CNDO is computed from the equation and parameters of reference 8 .

c) Here 8-CNDO is computed from the equation and parameters of reference 11.

d) All values are taken from reference 83, except B^q » which is from reference 51.

e) Computed using the equation 8^j^^ “ (1 - S^j) ^ (EM)^ j, where (EM)^ j is the error in the Mulliken
approximation for the Integral (ilv^^^^jj). Here i and j are ir AO's on the atoms i and j.

f) Computed using the full equation for 8^^^^, including the environmental effects of nearest neighbors.
•>
I
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environmental effects with reasonable accuracy without using equation 
(6 8 ) for each case. If only one of the members of the p-v pair has a 
nearest neighbor, the environmental effect is about ^ If the y-v
pair has two nearest neighbors, the environmental effect is about one ev.
If there are three nearest neighbors, the effect is about one and one- 
half ev. One could approximately calculate by calculating
(local) and increasing the value obtained by one-half ev for each nearest 
neighbor. For the molecules considered here this procedure produces 
gLOAO,̂  accurate to about ±0 . 2 ev.

Table 31 also includes the overlaps for pairs of Slater atomic 
functions with orbital exponents determined by Slater’s rules (STD’s) 

and the S’s for several semi-empirical methods calculated using these 
overlaps. Both CNDO methods calculate B's with an equation of the 
general form

«UV - y  "

where k is a constant, S is the overlap of the STO's y on atom A and vyv
on atom B, and 6^ and 8^ are parameters assigned to atoms A and B. The 
CNDO method of Pople, Santry, and Segal uses k = 1 for all AO pairs. The 

CNDO-spectral method of Del Bene and Jaffé^^ employs k = 0.585 for y and 
V tt-AO's and < = 1 for y and v o-AO’s. The two methods differ slightly 
in their choice of B“'s. The Pariser-Parr-Pople method does not utilize 

an overlap-dependent formula for g.
The 6 ’s computed with the method of Pople, Santry, and Segal are 

all about two ev greater than the other g’s in the table. This discrepancy 

justifies the choice of k made by Del Bene and Jaffé for ir-g's. The g’s
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calculated from the method of Del Bene and Jaffé show better agreement
with the 8 's selected in the older Pariser-Parr-Pople scheme. The only
major disagreements between the two methods occur in the choices of 8 ^^
and in the choice of 8 „„ for the middle ir-bond of butadiene. Here there
are differences of one-half to one ev.

Although the semi-empirical equation for 8 ^^ is very similar to the
(local) equation of the theoretical method, the values calculated for

8^^ from this equation and reported in Table 31 are all very different from
the 3^^^ (local) results. But the semi-empirical 8 's of the last two

columns of Table 31 are surprisingly similar to the results of the
(environmental) calculation. They are, in fact, almost identical for the
molecules benzene, pyridine, 1,4-diazine and 1,3-diazine, i.e. for those
molecules where each atom-pair has two nearest neighbors. The 8 's of
Del Bene and Jaffé agree with the theoretical values except in the cases

®C0 * ^CC ethylene, 8^  for molecule, and in the qualitative
ordering of 8 gg's in butadiene. The 8 's of the Pariser-Parr-Pople scheme
agree with the theoretical values except for 8 gg in ethylene and the
8gg's of butadiene.

The only 8 where both semi-empirical theories seriously disagree with

the theoretical calculations is that for ethylene. Since the LOAO calcula-
36tions of Cook, Hollis, and McWeeny on ethylene using more time-consuming 

and more accurate methods corroborate our calculation of 8 qq for ethylene, 
we conclude that the semi-empirical 8 's of Table 31 have no valid theoreti­

cal basis in this case.
13The more recent semi-empirical MINDO/1 scheme of Baird and Dewar 

employs a resonance-integral equation which is a slightly modified form
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of equation (116). It has the following form:

where

■ »cc + (B^c / *1»)- (1:8)
Here is the overlap of the STO's y and v. and are the neutral- 
atom valence-state ionization potentials, and are parameters, and 

is the intemuclear distance in angstrom units.
Although we do not list the results of calculations of B with this 

equation in Table 31, we calculated the tt resonance integral for ethylene 
using the STO overlap in Table 31 and the parameters of reference 13.
This calculation produced a value for in ethylene of about -1.5 ev. 
This is almost exactly what we obtained from theoretical calculation.

The problem with the MINDO/1-3 is that this value for the tt 

resonance integral would also be used for cases such as the end ir-bonds 
of butadiene. Here, environmental effects cause to be larger than
the MINDO/l-B. We can conclude that the MINDO/l-B will probably reproduce 

the (local) results. There is at least consistency between the
value calculated from the MINDO/1 equation and the local nature of the 
MINDO equation. This consistency does not exist for other semi-empirical 

theories.
The MIND0/2-B is calculated with an equation analagous to equation 

(117), in which is replaced by a constant term.^^ The parameters
employed in the equation for the MINDO/2-g were determined by optimization 
over a wider range of molecules than for MINDO/1. The Bgg calculated for 

the TT-bond of ethylene with MINDO/2 parameters is about -2.0 ev. The
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MINDO/2-0 appears to be a compromise between S (local) and g (environmental).

The general agreement between theoretical and semi-empirical g's in 
Table 31 is surprising. One might conclude that the semi-empirical formulas, 

though local in structure, can simulate theoretical calculation including 
environmental effects for molecules where all AO-pairs have the same number 
of nearest neighbors. Where the AO-pairs in molecules have different num­
bers of nearest neighbors, there is greater disagreement between the semi- 
empirical g's and the theoretical calculations. The best agreement of any 
two sets of g's in Table 31 occurs between (environmental) and the
g's of the older Pariser-Parr-Pople theory.

It is possible to find any (environmental) approximately repro­
duced, for a given y-v pair, in a given semi-empirical theory. However, no 
single semi-empirical theory follows the theoretical results in all cases.

The reason for this is clear. The semi-empircal theories select a local form­
ula for g where an environmental equation should be used.

It is interesting that the developers of semi-empirical theories 
which include the overlap (such as the extended Hückel method of Hoffmann ) 

use the same overlap-dependent equation for g as do the developers of no­
overlap MO theories. The arguments to justify the choice of an overlap- 
dependent formula for g are the same for overlap theories as for no-overlap 

theories. In fact, the two theories formally make use of entirely different 
atomic basis sets. In the overlap theories, an overlapping basis is used, 
and the rationale of the overlap-dependent form for g makes more sense.
In the no-overlap theories, that a g over orthogonal atomic orbitals should 
be proportional to the overlap of the corresponding AO's has not been cor­

rectly justified. Equation (115) of this paper shows that the g over two
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orthogonal functions is a linear function of the overlap for small over­
laps. This proportionality occurs through the linear proportionality-to- 

overlap of the error in the Mulliken approximation. The apparent contra­

diction of the no-overlap B being proportional to the overlap of the 
corresponding AO’s is therefore removed.

(2) Other Approximate Theoretical Formulas 
84Mulliken, Rieke, and Brown originally proposed a theoretical ex­

pression for B for the neglect-of-overlap formalism in the two-AO case.
5 83This expression was later used by Pariser and Parr ’ to calculate B’s 

for ethylene and benzene. The equation used by Pariser and Parr is

8p, “ - (Spq/2 ) <-^ir  +

where is the matrix element of the p and q it AO's over the core-poten-pq
tial operator. This equation for B^^ is precisely what we have termed (EM)^  ̂

the error in the Mulliken approximation for the integral It is the

same as except for the normalization factor (1-S^ )~^. Later workpq pq
by Parr^2 using LOAO’s resulted in the correct modification to include the 

(1-S^ )  ̂term in the calculation for the two-AO case.pq
Pariser and Parr calculated a B for ethylene of -2.80 ev and a B 

for benzene of -2.48 ev. These results are numerically similar to the 
values chosen for the semi-empirical B’s in the Pariser-Parr-Pople scheme 
(Table 31). The value for benzene is very nearly the same as that calcu­

lated with the present method. The magnitude of the B computed for 
ethylene is about 1.3 ev greater than the value we have obtained. The 
papers in which Pariser and Parr did the calculation are not sufficiently 
detailed to permit critical appraisal. In view of the agreement of the
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present method, the studies of Cook, Hollis, and McWeeny, and the recent
MINDO method on a value for 0-ethylene of about -1.5 ev, the calculated
value of -2.80 ev appears doubtful.

The studies of Cook, Hollis, and McWeeny involved computation of

LOAO matrix elements from the binomial theorem expansion for the LOAO’s
18proposed originally by Lbwdin. These authors suggested an approximate 

expression for 0^^^^, as follows:

This form is based upon keeping terms in the binomial expansion to the
first power of overlap only. In this expression, a quantity with a bar

refers to LOAO’s. Unbarred quantities refer to AO’s.
This expression is the same as that proposed originally by Mulliken,

Rieke, and Brown. It is a 0 (local) and neglects the normalization factor
(1 - S^j) For TT-electron theory, where overlaps are small, the neglect
of this factor causes little error. For o atomic orbitals, the overlaps

2are larger, and the neglect of the (1 - term is unjustified. Cook,

Hollis, and McWeeny did not report any calculations attempted with this

approximate equation.
Another approach to the calculation of 0 for NDO theories is that 

38proposed by Linderberg and discussed in Chapter I of this disseration.

The equation proposed by Linderberg is

- ruv liv

A graph of 0^^ computed for the H^ molecule with this equation
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(for Is orbitals with Ç = 1.00) is shown in figure 8 . Also shown in 
figure 8 are the results of calculation with the exact equation for ^ « 
In view of the obvious conclusion to be drawn from this comparison, it is 
suggested that the Linderberg equation is unreliable. In figure 8 , we also 
show the results obtained with our approximate equation for , valid
for overlaps less than 0.500.

(B) Theoretical and Semi-Empirical One-Center Integrals

The one-center, integral for an atomic orbital, which we shall term 
a, is defined by the equation

“p - (121)

In the present theory y is a ir orbital, and is defined in the same

way as in the previous section. Since this definition includes the o-
core of electrons in V , a is not, strictly speaking, a one-electroncore y
integral. The two-electron integrals representing the interaction of a 

ir-electron with the o-core are included in a^. These integrals have been 
qualitatively treated as recommended in reference 36, and a discussion of 

this treatment is found in Chapter IV.
As pointed out earlier, the it atomic orbitals employed in the present 

theoretical method are approximate LOAO's. To distinguish the theoretical 
a^, calculated with these functions, we add a LOAO superscript, 

may be calculated from the equation (Chapter IV)

1 »P.)'' " (  “ ^pn> - 1 ( ' <.) (’p)lccal
nî^y n?*y n^y mg(n,y
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Figure 8

Hg B’s from the Exact Method (o), the Linderberg Method (x) 
and the Method of Chapter IV (A).
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+  ̂ - 1 ) / 2 } (V,),,;.!
n?̂vi Wn,W

-  ̂ ' <»> + (''«'remote-
nï̂ y m?̂ n,y

The terms B , E , and K have been defined earlier, and the limits of yn yn yn
the sums and products are set in the discussion following equation (6 8 ).
All terms on the right-hand side of equation (104) are computed over 

members of the overlapping atomic orbital set. local i^^cludes the
interaction of the y ir-electron with its own core and the cores of its 
nearest ir-electron-bearing neighbors in the molecule. This can be ex­

pressed as

(Vlocal - ("I ('core'local I")'

where the operator of equation (9) has been separated into a local
part and a part remote relative to y. Likewise, we can express 

as

(%'ramote = ("I ̂ cora'remote'"'' (“ «

where (V )  ̂ includes the operators representing the ir-corecore remote
attractions of all non-nearest neighbors which have ir-electrons and the
iT-core attractions of all non-ir-electron-bearing neighbors. The methods

employed to calculate (.V ), , and (V )  ̂ are discussed in Chapter ̂ y local y remote
IV.

By equation (104), the (V^)^^^^^ is coupled to the (V)̂ ^̂ ^̂ ';; of 
the nearest neighbors of y. This coupling takes place through the over­
lapping of the AO y with its nearest neighbors. The results in Table 32
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Table 32

The Effect of Overlap-Coupling on
for Glyoxal and p-Benzoquinone

Molecule Atom(vi) (V ) , (ev)^ ) ) (ev/’ Difference (ev)y local y y remote

Glyoxal C -29.58 -28.74 0.84
0 -26.02 -25.40 0.62

p-Benzoquinone 0 -25.65 -24.99 0 . 6 6

0
M y < 1 -37.92 -37.05 0.879
0

< 2 -28.94 -27.94 1 . 0 0

a) (V )- 1 is the attractive interaction of a ir-electron on the atom y withy local
the core of y and the cores of y's nearest ir-electron bearing neighbors.

b) is defined by = (ylv ly), where y is a LOAO and V is they y ' core' core
operator which includes all cores in the molecule. (V ) is they remote
attractive interaction of a ir-electron on y with the cores of non-nearest 
neighbor, ir-bearing atoms and with the cores of atoms which are not a part 
of the ir-electron system.
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illustrate quantitatively the effect of this coupling upon local’
Table 32, we have listed, for the molecules glyoxal and p-benzoquinone,
the (V ). , and the results of calculation with that part of equationp local
(104) which does not include (V )  ̂ . These calculations were carriedy remote
out with no o-core polarization in the molecules, local reduced
by overlap-coupling in each case of Table 32. This reduction of (^y^iocal 
occurs generally.

The CNDO-spectral method of Del Bene and Jaffé and the MINDO 
method are both modifications of the CNDO/2 method of Pople. The develop­
ment of a CNDO/2 method was found to be necessary because the original 
CNDO/1 consistently overestimated the binding energies and underestimated 
the bond lengths of diatomic molecules. Pople placed the blame for these 
errors upon the inclusion of the "penetration" effect, the attraction felt 
by an electron due to the presence of other neutral atoms in the molecule. 

Such attractions were neglected in CNDO/2, and the justification for this 

neglect was based upon an examination of the Hg"*" molecule. In this case, 
the neglect of overlap was found to introduce errors of a similar kind 
but of opposite sign to the neglect of penetration.

Since CNDO/2 has been so widely extended by other workers, it would 

appear helpful to have a fuller understanding of the success brought about 
by dropping the penetration terms. At least for ir-electron theory, the 

one-center integrals over AO's are decreased about one-half to one and 
one-half ev due to overlap coupling. If this decrease is neglected and 
the calculations carried out as in CNDO/1, the one-center integrals are 
found to be too large. Too much binding energy results. If one neglects 

the overlap-coupling effect and neglects the ir-electron, neutral-atom
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attractions due to other atoms in the molecule, he qualitatively obtains 
a better approximation, as in CNLO/2. This is true not only for diatomic 

ir-electron systems, where an atom has only one ir-electron bearing nearest 
neighbor, but also for polyatomic ir-electron systems, where an atom may 
have two or three nearest neighbors. For an atom with several nearest 

neighbors, equation (104) shows that each neighbor reduces 

Likewise, each neighbor increases the through the "penetration" effect.
Although CNDO/2 takes account of overlap-coupling in a qualitative

manner, we feel that the best policy is to include it quantitatively, as

in the present ir-electron theory. The overlap-coupling of non-nearest
neighbors in the molecule is negligible for ir-electron systems, but so
is the neutral-atom attraction for a ir-electron. For nearest neighbors

which do not have ir-electrons, there is almost no decrease in (V ,y local
due to overlap-coupling. At the same time, there is an attraction of 
the ir-electron by the neutral atom. Here, this attraction is not 
counterbalanced by the overlap-coupling. Therefore, neutral hydrogen 

atoms increase the ir-electron Integrals of the atoms to which they are 

bonded by approximately one-half ev per bonded hydrogen.
Due to the great number of approximations absorbed into the one- 

center parameters of semi-empirical theories, there is a great deal of 
apparent "disagreement" among the various theories as to the numerical 

values selected for the parameters. Therefore, it is not very informative 
to compare the results of the present method to the semi-empirical one- 

center terms.
A comparison of the approximate Roothaan matrix elements would be 

more interesting. The most meaningful case for comparison is that of a
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molecule, all of whose atoms are neutral. We consider the CNDO/2 approxi­
mation to the Roothaan matrix element F for a carbon 2pir orbital in the

W
hypothetical case that all atoms in the molecule are neutral. In this 
case CNDO/2 gives = - ^  (l^ + A^), where is the experimental ioni­
zation potential and the experimental electron affinity of the atom.

9Pople's data for the carbon atom require F^^ to be -5.572 ev. For the 
cases of ethylene and benzene, with no core polarization, this would be 
the CNDO/2 carbon ir matrix element. With this set of circumstances, we 
obtain with the theoretical method about -3.3 ev for the matrix element 
in both cases. Some of the difference of about 2.3 ev could be ascribed to 
the lack of inclusion of correlation energy in the present theory and the 

inclusion of this energy in the atomic data of Pople.

(C) Conclusions

In this chapter, we have discussed the theoretical calculation of 
the integrals computed over the core operator in the ir-electron theory.

We have compared these calculations to the parameters used in several 
popular neglect-of-overlap semi-empirical theories. The conclusions 

drawn from these discussions are as follows:
(1) Both the ir-electron resonance integral and the one-center 

integral are altered by overlap coupling to nearest neighbors. 
The is increased in magnitude by overlap-coupling and the

a is decreased.
(2) It may be possible to obtain reasonably accurate B^^'s (±0.2 

ev) by computing B^^ locally and then adding one-half ev to 
B^y (local) for each nearest neighbor. Such a procedure could
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not be applied to a^.
(3) Semi-empirical equations for are capable of accurately 

reproducing the theoretical calculations for ir-electron systems 
only where each atom in the molecule has the same number of 

nearest neighbors.
(4) The need to include overlap-coupling in has already been 

recognized in the transition from CNDO/1 to CNDO/2. In CNDO/2 
this inclusion is done in qualitatively correct fashion for 
most AO-pairs but erroneously for a few pairs (non-overlap- 

coupled pairs).



CHAPTER VII 

AN àb initio BASIS FOR HUCKEL THEORY

The Hückel formalism is the simplest computational scheme of all 
the MO formalisms. The interactions contained in the Hückel Hamiltonian 
are not treated explicitly. These terms are parameterized. In its sim­

plest form, the Hückel theory is not self-consistent, although more 
sophisticated Hückel theory provides some self-consistency. Self-consis­
tency, of course, implies that one is approximately including the elec­
tronic interactions in an explicit fashion (see reference 4, Chapter 4). 

It is felt that the simple, non self-consistent Hückel theory is the 
form worth cultivating. Any attempt to use a self-consistent iteration 

routine increases the time required to complete the calculation and 

destroys the most appealing element in Hückel theory. Presently, the 
Hückel method is the only one fast enough so that calculations on really 
large molecules are feasible.

At the same time that computational simplicity is the greatest 
advantage of Hückel theory, it is also its greatest drawback. So little 
has been made explicit in Hückel theory that we are left trying to make 
shrewd guesses about the values of the parameters used. The lack of 
mathematical structure in the parameters makes guessing them very diffi­
cult. This difficulty becomes very apparent for heteronuclear molecules. 
Hückel theory, therefore, removes the computational difficulty but

—161—
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replaces it with difficulty in evaluating the actual interactions (a kind 
of conservation-of-difficulty principle). As a result, these interactions 

are always evaluated by fitting them to experiment.
In this chapter, an attempt will be made to elucidate the para­

meters by writing some explicit expressions for them. These expressions 

are in some ways ad hoc. They are not derived from first principles but 
are written to comply with a set of definitions. The results of calcu­
lation with these "calculated parameters" will be compared to the results 

of an ab -initio CNDO-SCF method and to experiment. This comparison is 
made for three two-electron molecules. The results of this study have 
not been successfully extended to larger and more interesting molecules, 
although the problems associated with such an extension are discussed.

The first step in a study of the HUckel method is to rigorously 
define the method. (In the literature the method seems to get defined 
according to what happens to be convenient.) The following set of defi­
nitions is essentially that of Parr (reference 22, page 45) and is felt 

to be mathematically the most precise set of definitions:
(1) The total molecular electronic wave function may be written 

in the form

^̂ x̂ , ... ) = n (Xĵ)
i

where Y is the total electronic wave function of the molecule, 
and the are molecular spin orbitals. The coordinates of
the i—  electron are x^. The assumption that the wave function 
is in this form formally requires that the molecular state be 
a closed-shell.
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(2) The are approximated by the LCAO method, where the atomic 

basis is an orthonormal set. The orthonormal set is assumed 
here to be a set of LOAO's.

(3) The total electronic energy is given as a sum of the orbital 
energies. This total electronic energy can be added to the 
sum of the intemuclear repulsions to obtain a total molecular 

energy which may be compared to experiment.
The first and third parts of the definition define the electrons as inde­
pendent particles. Statistically, the coordinates of the electrons are 
random variables; the instantaneous position of an electron is not 

influenced by the instantaneous positions of the other electrons in the 

molecule.
One should note that this Ÿ, unlike that for SCF theories mentioned 

in earlier chapters, is not an antisymmetrized function. The function 
does not automatically obey the Pauli principle; that is, the electrons 
of the same spin are not forced into different space orbitals by exchange- 
correlation. This wave function is a correlation-free function. There 

is no exchange, and there is no correlation of the coulombic type. In 
order to satisfy the Pauli principle, we shall simply require that the 
wave function obey this principle. We can enforce this requirement by 

computing the space orbitals for the molecule and by putting no more than 
two electrons in each space orbital.

All the correlation effects, both exchange and coulombic will need 
to be added to the quantities which we calculate with the HUckel method 

as corrections to the independent-particle model for the electrons. If 
the corrections are small, it might also be possible to include them in
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the matrix elements of the theory. This procedure would be acceptable 
provided it did not change the calculated charge densities to any great 

extent.
The second statement in the definition requires that the integrals 

which appear in the method be evaluated over LOAO's rather than over AO's. 

The electronic charge densities which are obtained from the calculations 
are therefore LOAO populations. These populations will agree exactly with 
AO populations only for homonuclear molecules.

The HUckel formalism defined by these three statements will allow 
relatively easy calculation of certain observables (total energies and 

electronic transition energies) but make more difficult the calculation 
of other observables (ionization potentials and electron affinities). A 
method based on these definitions will be called a "total energy theory" 

or a theory of type I.
It should be emphasized that another set of definitions could be 

agreed upon as defining HUckel theory. Such a set of definitions might 

be, (1 ) V = det($^(Xj)), (2 ) the same as the second definition stated 
previously, and (3) the Hamiltonian is exactly the same as a SCF-NDO 
Hamiltonian. These definitions would require that HUckel theory is a 
first approximation to the SCF theories that we have examined in the 
preceding chapters. These definitions would also require that SCF HUckel 
theory is exactly the same as the SCF-NDO method. With these definitions, 
exchange is explicitly included in the method, and the total electronic

g
energy is not given by a sum of orbital energies. Pople appears to 
implicitly assume these definitions for HUckel theory. With this set of 
definitions, ionization potentials and electron affinities are easily
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calculated, but total electronic energies and electronic transition 
energies require more calculation. This set of definitions therefore 
provides a method complementary to the method established by the first 
set of definitions. A HUckel theory based on these definitions is 

therefore termed an "ionization potential theory" or a theory of type II.
The two sets of definitions have been explicitly written in an

attempt to make this investigation more systematic and to aid in clearing
up some confusion about the nature of HUckel theory. (Blyholder and

85Coulson, for example, seem somewhat confused. ) There are, in fact, 
several HUckel formalisms. The assumptions of Hoffmann^^ imply a differ­

ent set of definitions than either of the above two sets. His "defini­

tions" are closer to those of a type II theory than to a type I theory.
His atomic basis is a set of AO’s, however, and the parameters of his 
method must be interpreted as coming from this basis. His extended 
HUckel method should be classed as an ionization potential theory. This 

classification must hold in spite of the fact that Hoffmann uses the 
method to compute total molecular energies. The energies which he obtains 
are in great error as they obviously should be.

The purpose of this chapter is to investigate the true independent 

particle method, that of type I. A method of type I is of great interest 

in predicting binding energies in molecules. The method of the type II 
has exactly the same explicit equations for parameters as the CNDO/2 
method. There is no need, therefore, to investigate such a method any 

further.
The three two-electron systems examined in this study are H^, HeH , 

and LiH (only the valence MO is treated). Hg is the simplest of the three



- 166—

and Is examined first.
The Roothaan SCF matrix elements for Hg are, in the NDO formalism

F = (1^°^°(1 ) 1- Y  }  (1 1 11 1 ) + (1 1 1 2 2 ) (1 2 2 )
 ̂ IHi ^1H2

and

= (1^°^( 1 ) I- I  ^  ^  I 2^°^°(D) - I  (1112 2 ). (123)
^ ^ ^IH^ ^IHg ^

The atomic basis is a set of two LOAO's generated from the Is AO's for the

two atoms. In the above equations, the atomic orbitals are indicated as
1 = ls„ and 2 = ls„ . Where LOAO's are explicitly used in the calculation 

1 2 
of terms, they are indicated by the superscript LOAO.

The matrix elements of the HUckel theory of the first type may be

written

a = (1^°^°(1 )|_ j  7% - ^  |l^°A°(l)) + \  (11111) + j  (11122) (124)

and

e = (1^040(1) |_ 1  ? 2 _ ^  I 2^°^°(D). (125)
IH^ IHg

Definitions of specific terms in a and g are the same as for the SCF 
method. Equations (124) and (125) are fabricated to fit the type I defini­

tions and to give the electronic transition energy as a difference of 
orbital energies.

The molecular orbitals for this problem are determined by symmetry. 

Both the SCF and HUckel methods give the same sets of expansion 
coefficients. We are Interested, therefore, not in the MO's but in the
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calculated total energy, ionization potential and electronic transition 

energy.
The orbital energy of the ground-state MO is termed and that of 

the first excited MO E^. In the SCF method, the total electronic energy 
is given by the equation

^total = 2 E^ - Y  { ( 1 1 1 1 1 ) + (111 2 2 )}, (126)

where

^ 1 " ^ 1 1  ^1 2 "

The total energy is not a sum of orbital energies. The singlet-singlet 
electronic transition may be computed by applying equation (1 1 1 ),

AE^'l = Eg - - (J^g - K^g) f K^g, (127)

where (in the NDO approximation)

and

Jl2 = I  + (1 1 1 2 2 )}

Ki2 = Y  { ( 1 1 1 1 1 ) - (111 2 2 )},

Consider the first three terms of equation (127). Substitution of the 

orbital energies Eg = F̂ ^̂  - F̂ ĝ and ê  ̂= F^^ + F^g, and of the equations 

for J 2̂ and K^g in terms of the AO repulsion-integrals gives

= 2  -  ' 1  -  < ^ 1 2  -  > ' 1 2 >  -  I -  •  ( 1 2 8 )Ixî  2

The term on the right-hand side of this equation is just 26 (6 defined in 
equation (125)). The SCF singlet-singlet transition is thus
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AE^'l = 28 + K^2 * (129)

The singlet-triplet transition energy is

AE^'3 = 28 - K^2 * (130)

The center of gravity of these two transitions is 28. This center-of-

gravity transition will be indicated by AE.
elAlthough the and AE's require some calculation beyond compu­

tation of the orbital energies, the ionization potential is easily obtained 
in the SCF method by Koopmans' theorem. The ionization potential is ap­

proximated as the negative of the orbital energy E^. Therefore one can 

write
I.P. = - e^. (131)

With the HUckel method defined by equations (124) and (125) , the 

total electronic energy may be written

■ ZSl" ' 2(a+S). (132)

It should be noted that for the molecule is given by the equation

'total ' ' t L l - ^ R ^ ’ (133)

where is the intemuclear distance.
The electronic transition energy is just

AE = Eg" - E^" = 28. (134)

Since the HUckel theory has an exchangeless wave function, we cannot predict

the singlet-triplet split without calculating K^g explicitly. The HUckel 
method can predict only the center of gravity of the first electronic
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transition.
Although the total energy and the transition energy are predicted 

directly from the HUckel orbital energies, the calculation of the ioniza­
tion potential is more difficult. The ionization potential cannot be 

predicted by application of Koopmans' theorem. The ionization potential 
can be calculated from the equation

I.P. = - J  {(111 11) + (ll|22)}. (135)

The LOAO's for are

and

iLOAO = 1.373 (1) - 0.615 (2)

2LOAO = 1 . 3 7 3  (2 ) - 0.615 (1),

where the orbital exponents of 1 and 2 are 1 .0 0 , and the intemuclear 
distance is 1.42 au. The AO overlap is 0.747. The LOAO's defined by 

these equations are used to compute the one-electron integrals in the 
matrix elements of both the SCF and HUckel methods.

The results of calculation of the AE's, and the I.P., plus
the matrix elements of both methods, are shown in Table 33 together with 

the experimental quantities. The calculated AE, and I.P. are the
same for SCF and HUckel methods. The calculated values for these quantities 

do not agree with experiment. They should not agree since (1) coulombic 
correlation energy is neglected and (2 ) the basis set of atomic functions 
is too small. A minimal basis set calculation on Hg which explicitly 
includes the overlap and which uses no integral approximations predicts a 
binding energy of -2.65 ev (reference 22, page 14) and a singlet-singlet



-170-

Table 33

SCF and HUckel Results for H^ Molecule

SCF (ev) HUckel (ev) Experimental (ev)

-30.07 -31.94*

- 2.89 - 4.75*

  -1 1 .8 ^

16.7-------------------

  -11.3^

16.9 -15.5 ̂

-16.26 ----

- 8.35 ----

total 
Binding energy

AE^'l

AE
1,3AE

I.P.

1 , 1  matrix element

1 , 2  matrix element

-30.07

- 2.89 

18.4 

16.7 

15.0 

16.9

- 1.78 

-15.16

a) Reference 8 6 .

b) Reference 55, page 484.
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electronic transition energy of about 19 ev (reference 53, page 69). The 

large errors in the prediction of experimental observables by computation 
are not due to the approximations that we have made in using the NDO 
formalism, but to the two effects mentioned above.

It is well known that variation of the orbital exponent gives a 
better binding energy in H^. An orbital exponent of about 1.2 gives a 
calculated binding energy of about -3.5 ev. Could variation of the orbi­
tal exponent not also improve the calculated transition energy and ioniza­

tion potential? AE and the I.P. were computed, in the HUckel method, as 
a function of orbital exponent. The results of this study are shown in 
Table 34. They show that, while the total molecular energy is worse for 

orbital exponents less than 1.00, AE and the I.P. improve. Although this 
study suggests some interesting extensions to the calculation of spectra 
and ionization potentials for larger molecules, such extensions are doomed 
to failure. Decreasing the orbital exponents of the tt-AO’s in a ir-electron 

calculation will, in fact, increase the errors in AE's and the I.P. This 

is obvious if one remembers the behavior of 3^®^^ with changes in overlap 
(figure 2, Chapter IV).

The Hg case is rather trivial due to the symmetry. HeH^ is much 

mo«.e interesting. One would like to define ctg, 0^^, and S for the HUckel 
theory so that they are analagous to the quantities defined for H^.

In the NDO formalism, the Roothaan SCF matrix elements may be 

written

F_x . (HW3A0(i)|_ 1 ,2 _ , ,fOAO(i))
HH 2 1 RiHe

+ (HH|hH) + (HH|HeHe), (136)
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Table 34

Limited Basis Set HUckel Calculations on H^ Molecule 
for Several Values of the Orbital Exponent^

Orbital Exponent Binding energy (ev) AE (ev) I.P. (ev)

1 . 2 -3.72 19.9 16.5

1 .0 - -2.89 16.7 16.9

0.9 -1.41 14.5 16.8

0 . 8 +0.65 12.5 16.5

Experimental 4.75 -1 1 . 6 -15.5

a) Calculations are at R = 1.42 au.
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j.ci IfiG

■‘■y^HeHe (HeHejHeHe) + (HHjHeHe), (137)

and

Fh ,h - (H“ “ ( l ) i - i v ^ , - ^ - ^ | H e “ “ (l)) -ip^7(H H | H e H e ) .  (138)
IH Xn6

These matrix elements are written for a limited basis set where

the LOAO chiefly centered on the hydrogen atom, is the LOAO chiefly
centered on the helium atom, and H and He are the corresponding Is AO's.
The are elements of the LOAO bond-order matrix.

For the HUckel matrix elements, one should choose

a = (H^°^°(l)|- Y  1h^°^°(D)
IH IHe

+ f  (HH|hH) + J  (HHlHeHe) , (139)

oua .  (HeP)AO(D|_ 1  _ !% !_ | HetOAO(i))
He *iHe

+ ̂  PggHg (HeHe|HeHe) + j  (HHjHeHe), (140)

and
6 = (H^°^°(l) I - I  1 He^°^°(D). (141)

^  ̂ ^IH ^IHe

If we were treating a simple homonuclear molecule, say Hg, then these equa­

tions would reduce to equations (124) and (125).
elThe SCF and HUckel equations for ^total’ Che I.P. are.
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in this example, analagous to the equations for In the SCF method,
ôXEtotai given by a sum of the orbital energies minus the electron

âXrepulsions, is a sum of and the intemuclear repulsion, AE
is given by equation (111), and the I.P. is approximated as the negative

elof the orbital energy. In the HUckel method, is a sum of orbital
energies, is defined the same way as for the SCF method, AE is
given by a difference in orbital energies and the I.P. is approximated by
the negative of the orbital energy minus one-half the electron repulsions
felt by the electron in the orbital.

The AO basis chosen for HeH^ is that determined variationally by 
54Coulson and Duncanson. It is a minimal set with an orbital exponent of

0.722 for ls„ and an exponent of 1.87 for ls„ . The intemuclear distancen
used in this calculation is that chosen by Coulson, 1.48 au. The overlap 

of the AO's is 0.484.
LOAO's were calculated using the method shown in Chapter III, and 

the diagonal elements of the LOAO bond-order matrix were calculated from 
the AO coefficients of Coulson (see Chapter II). The SCF method began 

the iteration sequence with the LOAO populations produced by this tech­
nique, and iterations were carried out to a self-consistency of 0 . 0 1  in 
the LOAO bond-order matrix. The HUckel calculation used the potential 
determined by the LOAO populations obtained from the Coulson AO coeffi­

cients by transformation. The HUckel calculation is not self-consistent. 
The results of calculations with the SCF and HUckel methods are compared 
and compared to more accurate calculations in Table 35.

The SCF and HUckel methods agree very closely on every quantity 

computed except the wave function. The wave function is probably the
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Table 35

SCF and HUckel Results for HeH

SCF (ev) HUckel (ev)
More Accurate 
Calculation (ev)

^total —80.6 —80.8 { -80.8^ 
-80.8°

Binding energy - 1.5 - 1.7 { - 1.72&
- 1 .6 8 *)

38.3 -—— 31.8^

AE 36.0 35.1 ---

I.P. 45.5 44.5

H,H matrix element - 9.05 -26.78 ---

He,He matrix element -38.69 -55.66 ---

Electronic Population on H 0.314 0.179 0.320^

Electronic Population on He 1 . 6 8 6 1.821 1.680^

a) Reference 87.

b) Reference 8 8 .

c) Mulliken population analysis of the LCAO wave function of reference
54.
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quantity most sensitive to changes in the matrix elements. The overesti­
mation of the charge shift from H to He gives the first indication of a 

problem which will grow much worse for larger molecules.
The close agreement between the calculated by the SCF and

HUckel methods and the calculated by accurate methods is striking.
The calculation of Coulson and Duncanson, which the calculations done 
here should simulate, gave an of only 79.2 ev. This amounts to a

prediction of no binding in the molecule. The errors caused by taking 

certain LOAO electron-repulsion integrals equal to AO electron-repulsion 
integrals and caused by neglecting electron-repulsion integrals involving 
overlap-charges have given fortuitous agreement with good calculations.

If such errors always move the calculation in the direction of a better 
answer, then we would be very fortunate. It is possible that they do so, 

since the errors in Hg gave a better binding energy by -0.3 ev. The errors 
here are larger on an absolute scale since the repulsions are larger.

The LiH molecule is a four-electron problem. However, we shall 
treat it here as a pseudo two-electron problem. In fact, the LiH molecule 

will be treated in the most naive fashion possible in the following study. 
Since this is a study of HUckel theory, it is felt to be more in keeping 
with the "philosophy" of HUckel theory to treat LiH in such a fashion.

The calculations are for a limited basis wave function, that is Is^, Is^^, 

and 2sL . only. 2p . will not be included since this would require an 
extension of the basis beyond the simple intuitive basis of atomic Li.
Also, the Is electrons of Li will be treated as occupying a core MO which 

does not mix with the valence MO and which screens the Li nucleus. The 

fact that the Iŝ  . and 2s^ . STO's are non-orthogonal will be ignored. We
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therefore have only a 2x2 determinantal problem to solve.

All the levels of approximation that are implied by the previous
89discussion have been studied by Fischer. This study showed that the 

wave functions and energies calculated by the naive method (neglect of 
ls-2 s non-orthogonality and omission of 2 p^^) are in good agreement with 

the most accurate of the MO calculations suggested in the previous para­
graph. Since the wave functions calculated here will be compared to 
Fischer's calculation at the same level of approximation, the aims of this 

study can be accurately met by a naive calculation.

The Roothaan SCF matrix elements for LiH in the NDO approximation

are

^ l U  “ CLi“ “ (l)|- i  i  ^  + i  plOAO
In ILx

+ (LilllHH) + Pi (142)
LX LX

P h h  -  « “ “ o )  I -  i  P Î  -  4  -  1 +  i  C °in iLx

and

F^^. = (H^°^°(l)|- Y  I Li^°^°(l)) - I  (HH|LiLi). (144)
IH ILi

Here H is the Is function on the hydrogen atom, Li is the 2s Li function, 

and LOAO's are distinguished from AO's by a superscript. The AO basis is 

the same as that used by Fischer.
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The matrix elements in the HUckel formalism may be defined in the 

same fashion as HeH^, the only difference being the presence of a Is core 
on Li. These elements are

■ (“ “ “ ( I ) + 1 ^uîi

+ (LiLilHH) + (LiLijls^^ls^^), (145)

Og = (H^°^°(i) I- Y ? !  -  I +  I  ( h h Ihh)
IH ILi.

■‘’i^LiLi (HH|LiLi) + (HH|ls^^ls^^), (146)

and
8 = (H^°^°(l) 1- I  1 Li^°^°(D) . (147)

IH ILi

The LOAO’s are computed using the method of Chapter III for the 
intemuclear distance 3.02 au (taken by Fischer as the experimental inter- 
nuclear distance). The overlap (h|l1) is 0.477. The SCF calculation was 
initiated with a potential calculated using LOAO populations obtained by 
the transformation from Fischer's AO coefficients (Chapter II). The itera­

tion was taken to a self-consistency of 0 . 0 1  in the bond-order matrix.
The HUckel calculation utilized a non self-consistent potential calculated 
with the LOAO populations obtained from the transformation.

The SCF and HUckel results are compared, and both methods are com­
pared to experiment in Table 36. The terms shown in the table are calcu­

lated in a fashion analagous to that for Hg and HeH'*'. The SCF and HUckel
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Table 36 

SCF and HUckel Results for LiH

Experimental or 
More Accurate

SCF (ev) HUckel (ev) Calculation (ev)

r*total 219.9 2 2 0 . 8 219.3*

Binding Energy 3.1 4.0 2.5*
1 . 1 _ bAE * 1 0 . 6 3.3

AE 8 . 6 9.6

I.P. 10.3 9.5 -8 %

Li,Li Matrix Element -0.14 -17.4

H,H Matrix Element -5.36 -23.7

Electronic Population on Li 0.64 0.34 0.70^

Electronic Population on H 1.36 1 . 6 6 1.30^

a) Reference 78. The total energy is estimated by a sum of the Hartree- 
Fock and correlation energies.

b) Reference 90.

c) Mulliken population analysis of the wave function of reference 89.
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methods agree to within an electron volt on the computed energies. The 

wave functions, however, disagree. This is the same trend as was found 
for HeH^. It should be mentioned that making the Htickel potential self- 
consistent gives better agreement with the SCF results. Again the NDO 
errors give a binding energy which is comparable to the experimental 

binding energy. The calculated electronic transition energies, however, 
are not comparable to the experimental result. The primary reason for 
this discrepancy is the use of a limited atomic basis. The addition of a 

2 p^^ function should improve the calculations considerably.
From these calculations on HeH^, and LiH, we have learned that 

it is possible to construct a theory of the first type which reproduces 

the SCF results exactly for homonuclear molecules. For heteronuclear 
molecules, the results agree to within about one ev for energy calculations 
but the HUckel wave function is unreliable.

For larger molecules, one could construct the HUckel matrix elements 
by analogy to those for the molecules treated here. The general rules for 

this construction are (1) to define HUckel 0’s as strictly one-electron 
integrals and (2) to define HUckel a's by partitioning the electron 
repulsions so that, in an electronic interaction between two LOAO's, half 

the electron repulsion appears in one LOAO matrix element and half in 

the other.
Since the total wave function is assumed not to be antisymmetric 

in the HUckel method, no exchange appears in the calculated energies. 

Correlation energies of both exchange and coulombic type will need to be 
added to the HUckel results as correction factors. One interesting 
result from the study of the diatomic molecules is that the NDO errors
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"include" the coulombic correlation to a certain extent. It may, therefore, 

be possible to get good by adding only an exchange correction.

One problem, however, makes the application of the preceding formal­
ism to many-electron heteronuclear systems very difficult. The HUckel 
3's are smaller than the off-diagonal SCF matrix elements. On the other 

hand, the HUckel a's are many times larger than their SCF counterparts.
Some experimenting with a set of 2x2 secular equations, with a 3 of 
roughly -0.1 au and a's of roughly -5 au, shows that, if the a's are not 

almost exactly the same, then the calculated charge density is almost 
entirely on the atom with the larger a. This unpleasant situation occured 
in a test calculation on the glyoxal molecule.

This problem currently limits any application of the method to 
homonuclear systems. No calculations have, however, been done on systems 
of this type since the interesting problem is the heteronuclear one.



APPENDIX I

DERIVATION OF FOR THE FOUR-CENTER CASESUV

Case C

To produce a set of approximate LOAO's, one orthogonalizes the AO's

$ and $ , and one orthogonalizes the AO's $ and $ . This produces the X y ° z w
LOAO set 6 , 6 , (|i , and 6 . Since (J) and à are not orthogonal, it is X y z w y z
necessary to orthogonalize them to give (jî' and • The functions which 
result are as follows:

♦x = <1 -

♦/ = a  - - (Sy,,,/2Ey,

«■z’ “ "  - {:y':' *x - (Sy'x'/2 By'x')*y)'

and

♦w ■

A prime on a subscript of overlaps and E's means that the primed subscript 
refers to a LOAO rather than an AO. For a specific example of these func­
tions (the glyoxal molecule) see Option A of Chapter III.

is derived by putting the AO-expansions of <{î' and (j)̂' into 
its defining equation (48). The expansion of this integral allows 3^^*^
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to be written as a sum of four terms, as follows:

gLOAO ^ Term i + Term II 4 Term III 4- Term IV. xy

The terms are

Term I = (1 - (1 - E^,^,

l e m  II = - ((1 - 5 ^)-’= (1 - Sy,,./(2Ey,,,)) (x|Vc,,,l*,).

Term I I I  = - {(1 - (1 - E^,^, S^/(2E_^)) (♦y|v^„^Jy).

and

Term IV = ( U  ' d  - sj.,,)’’' S ^ , ^ . / ( 4 E ^  E^,^,)}

(ylVcorel*:'-

Term I is simplified by expanding in terms of AO's in the

integral (xlv U  ) and setting S = S  = S  =0. To simplify Term ° ' core' y ° xz xw yw
I fully, one needs to approximate S^,^, and Ey,^,' Expansion of 8 ^,^,
in terms of AO's, subject to the approximation S = 8  = 8  =0, givesxz xw yw

Sy'e" - d  d  - E ^  E^„

2A still more approximate form for 8 , , is 8 , , = 8 . Where 8 , , isy'z y z yz y z
compared to unity, the second approximation, 8^,^, ~ ̂ yz* be used.
Where stands alone, the first approximate form for 8^,^, will be

used. Term I may then be expressed as
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lerm I - (1 - S^)-l (1 - (E^ (*|Veorel>'>

To simplify Term II, it is necessary to expand (j>̂ in AO's and to 
employ the approximation that (x|v |z) = (x|v |w) =0. Term II isC 0 1 T 6  C 0 1 T 6
then approximately zero.

Term III is simplified by expansion of ())̂ in terms of AO's in the 

integral (^ylv^oggly) and by the approximation S^,^, = Term III
may then be written

T e m  III . (1 - S^)-^ <1 - Ey^ (- (S^/2) (y|v^^^Jy)

+ (xl^corely)}'

Simplification of Term IV requires that (jî be expanded in the 

integral ( y  I (̂.grê  and that applications of the approxima­
tions for Sy,^, be made. It is also necessary to set (y|v^g^^|w) = 0, 
With these approximations. Term IV becomes

Term IV - ((I - (1 - (I - (S^

(?|Vcorel:)'

The factor ((1 - ^ E ) has a value of 1.12 for S of 0.250. Itzw zw zw
is a good approximation to set this factor equal to unity. One then 

obtains the following equation for Term IV;
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Term IV = {(1 - S^)'l (1 - (S^ S^^/4)} (y|V^^^Jz).

In this equation, the further approximation that (ylv^^^^jz) = - 1.00 au 

is made. Term IV becomes

Term IV = (1 - )“  ̂ (1 - )"^ (S S /4).xy yz xy yz

The four terms are added together and algebraically simplified to 
produce the following expression for

« T  ' [Gy: <“ >x.y ' S z  V ' "

The derivation of 8^^^^ from the set of approximate LOAO's used to
derive 8^ ^  produces an equation which is overly complicated. Another
set of approximate LOAO's can be obtained by first orthogonalizing the
AO's $ and $ to produce 6 and 6 . é is then orthogonalized to $ y z y z y x
and orthogonalized to This is the Option B set of LOAO's of
Chapter III. The Option B set of LOAO's produces a fairly simple
equation for it has been established that the calculatedyz yz
from Option A LOAO's and that calculated from Option B LOAO's agree to 

within two-tenths of an ev for the glyoxal molecule. We therefore choose 
to derive 8^^^^ with the Option B LOAO's. The Option B LOAO's are as 
follows :

* x  -  ( " x y '  *  -  ( S . y ' / 2 G x y ' ) + y ' '

V  ■  < " x y ’ * y  ‘
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* ' = (1 - S^, {E„. * - (S^, /2E^, )w}.2  W  2  W  2  2  W  2  W

and

gLOAO then derived by substitution of 6 ' and 6 ' into the y2 y 2

defining equation for Simplification of this integral gives
LOAO gg g sum of four terms, 
yz

LOAD ^ Term I + Term II + Term III + Term IV, 
yz

where

Tern I = (1 - S^y,)-% (1 - E^. E,,,

Tern II = - {(I - S^,)-*= (I - E^, S^,„/(2E^.^»

and

Ten. IV = {(I - S%y.)-t (I - S^, S^,„/(4E^, E^,„»

Making consistent use of the approximations already developed, we
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reduce these equations to the following approximate expressions:

Term I = (I - (1 - (1 -

Term II = - (1 - (1 - (1 - S^/4,

Term III - - (I - <I - (I - S^/4.

and

Term IV = 0.

When these approximate equations are added and the result simplified 

algebraically, one obtains

Case D

For the non-linear four-center case, it is necessary to derive
only one form for 0^®^, To derive 0^^^^, a set of LOAO's ispv ’ xy xy
produced by orthogonalizing and to produce and (J)̂. Next, is
orthogonalized to to produce (|>y' and Last, is orthogonalized
to to give the LOÂO pair (1)̂" and (|)̂. The set of approximate LOAO's

which results from this process is the set ‘I’y"»
We derive in terms of the AO's by substituting the expansionsxy

of (|î and into the defining equation for 0 ^  . The procedure
followed to obtain an approximate expression for is the same as
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that employed in the linear four-center example. If he wishes, one may 

check the validity of the following approximate equation for by

using the previously established approximation techniques. For Case D, 
one obtains

- ®xy (Syz + V ' * ' ’



APPENDIX II

DERIVATION OF IN THE NON-LINEARy
POUR-CENTER CASE

The basis set of approximate LOAO’s for Case D has been described 
in Appendix I. It will not be discussed here. In this example, there 
should be two distinct and Since the x atom has
only one nearest neighbor, has the same form as found for Case B.

^LOAO be derived by substituting the expansion of in terms 

of AO’s into the defining equation for The first step in this

derivation produces

+ '"l''corel"> - Sy". '^y' '’corel” »  ‘

In this equation, a double-prime on the y-subscript of S or E indicates 

that the overlap is taken with 4^', i.e. S^„^ =
Sy„^ and Ey„^ may be simplified by using approximations developed 

earlier. We approximate Sy„^ as

V »  ‘ <1 - Sy-,)'^ Ey'z Sy'.'

or, approximating S^,^ in analagous fashion.

-189-
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V v  - ( 1 - ( 1 - :y'z =xy ^y.-

Following the practice established in the derivation of 3^^^» we approxi-
2mate S „ by the second equation where S „ stands alone. Where S „ is y w y w y w

2compared to unity, i.e. in terms ( 1 - , the approximation Ŝ ,,̂  =

will be used. Following this same approach, the approximation
can be used in the terms ( 1 - S^,^) ^ and in the above equation.
This further approximation allows us to write

S „ = (1 - (1 - E E S .y w yz xy yz xy yw

The next step in the expansion of in AO's is to expand the
approximate LOAD ÿ ' in the integrals (ifi ' | V | ÿ ') and ' | V |w).^y " ^y ' core' y y core'
The first of these integrals has already been derived in the study of 

the three-AO example. This derivation required the approximations

Sy': =

or (where appropriate)

®y'z ^yz’

and

(*|Vcorel:) '

The result of these approximations plus some algebraic simplification 

was equation (72),
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U / l V c o J V >  •  (1  -  (1  -  ( y l V c o r e l ? )

+  « y z  « l ' ' c o r e l = ‘> +  < 4  S y z ' ^ y z »  « l ’ c o r e ' ' '

-  " y z  " z y  ( * | V z . r e l ? )  '  " y z  « I V r e l ^ » '

With the approximations that (zlv |w) = 0 and S , = S , the second' core' y z yz
integral, (‘t’y ' 1 1 ♦ ®®y be written

(♦y'|Vc„el»> = (1 - Syz''^ "yz (*yl?e.rel")-

This may be further simplified by expanding <1)̂ in terms of AO's in the 
integral «uid then setting (xjv^^^^lw) = 0. This procedure

produces the following approximate equation for (^y'iv^o^gh*):

( * y ' | v . o r « l " )  "  « - " y z > ' ‘‘ « - 4 > ' ‘' " y z " z y « l ' ' c o r z l ” > -

These approximate expressions are then substituted for S^„^, Ey,,̂ ,
(è 'Iv !<{>’)» and ((j) ' IV |w) in the equation for q̂ bOAO y^en this '^y ' core' y y ' core' y
has been done and the result simplified, one obtains

«  - "yz)" «  - " I ) "  « y z  4  4  «l''=orel^) 

+ « ^  "yz ('IVcrel') + « ^  "yz«"yz> « l ’corzl')

+ «yz " I  " ^ / < )  « l ’corel”) ' "yz "zy «'''core'^)

- " L  "yz «l^orel^) - "yz "yv «IVrel»))'
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