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NCJ.1ENCLATURE 

d.x. • • • Small distance along the beam. 

e . • • • • Eccentricity of the prestressing cable. 

i, j, k •••• • •••• Beam supports. 

mj Starting moment at j. 

m - 1, m, m + 1. Intermediate points on a beam. 

. . . . . . Carry-over factor from i to j. 

w • • • . . . . . Intensity of distributed load. 

x, x' . . . . Distances measured to a section from 

the left and right supports respec-

tively. 

A, B, C. . . . . Beam supports. 

BM . . . . . Bending moment due to loads on a simple 

span. 

E • • • • • Modulus of elasticity. 

Fij' Fji . . . . .. . . Angular flexibilities. 

Gij' Gji . . . . . . . . Angular carry-over values. 

Ho . . . . . . . . Initial prestressing force. 

H • . . n 
. . . . . . . . Final prestressing force. 

I • . . . . Moment of inertia. 

. . . . . . . Lengths of spans ij, jk. 

. . . . . . . . Bending moment at a section, distance x 

from origin at i. 

vii 



• • • . . . . . . . Final bending moments at supports i, j. 

• • 8 • • . . . . . . Final bending moment at support i due 

to a unit starting moment at j . 

p(H) ••••••••••••• Equivalent concentrated real load due 

to prestress. 

-(H) p . . . . . . . . . . . . . Equivalent concentrated elastic load 

due to prestress. 

R • • • . . . . . . . Reaction of a conjugate beam. 

uijk • • • • • Strain energy of member ijk. 

V • • m, mtl 
. . . . • • • Shear in the segment m, m+l. 

T(H) 
ij 

. . . . . . . . . . . . . Angular prestress function. 

..,.ct) 
ij 

. . . . . . . . . . . . . Angular load function. 

SIGN CONVENTION 

Bending Moment 

Eccentricity e t if above the centroidal axis. 

- if below the centroidal axis. 

viii 



CHAP!'ER I 

INTRODUCTION 

The analysis of prestressed concrete beams has been done before this, 

by the classical methods - the Area Moment, Virtual Work, Slope Deflection, 

etc. The main factor of study in this subject has been the inclusion of 

the effect of the prestressing force. 

R. B. B. Moorman's (1) concept of "Equivalent Load" due to prestress 

has proved itself valuable, especially in the analysis of continuous pre­

stressed concrete beams by the method of moment distribution. 

This study shows the extension to prestressed beams of the Carry-Over 

Moment Method for analysis of continuous beams originated by J. J. Tuma 

(2). This method fundamentally studies the effect of the bending moment 

at one support, on those at the adjacent supports. In this method t he 

analysis is based on the flexibilities of the spans. 

In Chapter II is presented the main derivation of the Three-Moment 

Equation in carry-over form. Considering the support moments as redun­

dants, this equation is derived by minimizing the total strain energy of 

the structure. The angular flexibilities, load functions and prestress 

functions are also defined in this chapter. 

The Carry-Over Procedure and the modifications required in the carry­

over factors for special cases are explained in Chapter III. 

The calculation of the prestress functions is specially studied in 

Chapter IV and exact and approximate methods presented. 

1 
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The procedure of analyzing prestressed concrete continuous beams by 

this method is illustrated by two numerical examples presented in Chapter 

v. 
The final chapter summarizes the study and shows the conclusions 

drawn. 



CHAPI'ER II 

DERIVATION OF THE THREE MCMENT EQUATION 

IN CARRY-OVER Femi 

A general case of a pr~stressed concrete continuous beam is con-

sidered (Fig. 1). 

----- ~----- , * - - - --- - - ~ 
... , ______ ... ----- --- ____ , , ------ ---- _., 

., 

10 I 
G) 0 

I I 
' ~ L . 

j I - ~ ---i 

Fig. 1 

A Prestressed Concrete Continuous Beam 

with General Loading 

3 
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The supports are assumed to be rigid. The cross-section of the beam 

can be variable and the system of external load considered is perfectly 

general. The slope of the prestressing cable is small, and, hence, the 

horizontal component of the prestressing force His taken to be constant 

and equal to H. 

(a) Statics and Free Body Diagrams 

The free body diagrams of spans ij and jk, isolated from the beam, 

are shown in Fig. 2. ~, Mj, and Mk are the internal bending moments de­

veloped at supports i, j, and k, respectively. 

The bending moment on a cross-section at any distance x, on either 

span, can be obtained by superimposing the effect of external load, bend­

ing moments~, Mj, Mk and the prestressing force H acting at an eccen­

tricity ex at the section. 

(b) Bending Moments 

Thus, 

(i) (i) (i) (i) 
M - : BM + ME.... t Mj .!_ + He (la) 

X - 0 ~ Lj X i L, Lj X 
J 

(j) (j) {j) (j) 

MX: 0 ~ Lie - BM t M.E-- + ~L- t He (lb) 
X J Lk Lie X 

(c) Strain Energy Expression and Application of Castigliano's Theorem 

The total strain energy Uijk of these two spans ij and jk can be 

expressed as the sum of the strain energies Uij and Ujk· The strain en­

ergy of volume change due to temperature or moisture content change is 



M. 
l. 

X x' 
Lj 

..,,.r:r::::::: I :::::::::,.,,.....,., 
<'. 7 \ - :::::,., 

C ( ~f " //,,. +)~ ',,, 
/( ~ \ 

BM 
X 

Ff::?>-~ -- 32tz:~~>- M. 
J 

X 

~ 
-= ~ .,<"L'. 7 ...... .........., ....... 

x'~ 
I 

.,c:::======c + J I ..... , .... , , , I , I ',, 

~ 

1er~ 
Due to 
Loads 

Due to 
~x' 

L 
ME 
Jt ------""" -==----d ~ :~~~~~ 

Fig. 2 

Free Body Diagrams for Spans ij and jk -

Bending Moments 

He 
X 

Due to Pre­
stressing 

Force 

\Jl 
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not considered. The strain energy due to normal forces and shearing for-

ces is small and therefore neglected. Considering only the strain ener-

gy due to bending, the expression for strain energy becomes 

uijk = uij + ujk 

where 1~1~2 dx 
uij = 

2E1x 
(2a) 

and 1~~j12 dx 
ujk = 

2EI 
j X 

(2b) 

Considering Mj as a redundant moment, by Castigliano's Theorem, 

oui.jk auir1 + (YUjk = 0 (.3) 

0 Mj 
= 0 Mj C Mj 

Now j (i)aM(i) 

aui.i J 
~ X dx 

= 8Mj (4a) 
CMj EI X 

i 

and 
(j )c)M(j) k 

au.ik = J ~ aM; dx 
(4b) 

aMj EIX 
J 

Also from (1) 

(5a) 



and 

oi4 j) :: x' ( j) 

aMj 1k 
(5b) 

Substituting the values from (5) and (1) in (4) and adding, equa­

tion (3) becomes 

j [ (i) (1) (i) J (i) 

Lj Lj Lj dx f ~ + ~£..- t Mj L- + He L-

i E1x 

r: (j) (j) (j) J (j) 
~ + Mj.!!..._ + Mk L- + He .!!..._ 

x Lie Lie Lk dx 

EI 
X 

Expanding and rearranging, the equation becomes 

j (i) (1) JBMX X 

i Lj Eix 

dx Jj . (i) (i) 
+ Mi x x 1 dx 

L.2 EI 
i J X 

:: 0 

j 

~ x·(i)2 dx 

L 2 EI 
j X 

k k (j) (j) I !fl x· dx + 
j 11<: EJ...x 

M Jx•(j)2 dx 

j L. 2 El 
j K X 

k 

} 
(j) (j) 

+ ~ X X 1 dx 

L. 2 El 
j K X 

k (j) 

+ !Hex x' dx :: 

j 1k E1x 
0 

7 

The integrals in the above equation have definite and important phy-
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sical interpretations, as explained later. Using the notations defined 

in (d), the equation becomes 

(L) 
Tji + MiGij + MjFji + 

which can be rewritten as 

where 

!Fj = Fji + Fjk 

ITj 
(L) (L) : (L) 

= 'T t Tjk ji 

IT. 
(H) (H) (H) 

= T .. + Tjk J JJ. 

Equation (6) is the general form of the three moment equations for 

a prestressed concrete continuous beam. The constants F, G and T, intro-

duced in Eq. (6), are defined in the following article. 

(d) Angular Flexibilities.Load Functions and Prestress Functions 

The integrals seen above have the following meaning: 



j 9 f (i) (i) 

Gij = X xi dx - End slope of simple beam ij at j due to a -2 
Lj Elx unit couple applied at i 

i 

k f (j) (j) 

Gkj = X X 1 d.x - End slope of simple beam jk at j due to a -
~2 E1x 

unit couple applied at k 
j 

j 

F = f xli-l2 !Ill - End slope of simple beam ij at j due to a 
Lj2 E1x 

-ji 
unit couple applied at j 

i 

k 

Fjk = j(~j:: dx = End slope of simple beam jk at j due to a 

unit couple applied at j 
j 

j 

(L) f (i) (i) 
EM X dx 

End slope of simple beam ij at j due to Tji = X = 
Lj E1x gravity loads 

i 

k J (j) 
(j) 

(L) BM x' dx 
Tjk 

X End slope of simple beam jk at j due to - = -
~ E1x 

gravity loads 
j 
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j 

(H) 
(i) J Hex 

X dx 
Tji = = End slope of simple beam ij at j due 

Lj E1x to prestressing force 
i 

k 

(H) 
(j) f H• 

x• dx 
Tjk - ~ Elx 

- End slope of simple beam jk at j due - -
to prestressed force 

j 

The above interpretations are further clarified by the sketches 

in Fig. ,3. 

The beam functions G's and F's depend only upon the geometry of the 

beam. They are avail.able ready calculated for many connnon cases. The 

load functions T (L) 's are also available calculated for many common 

loading conditions. The prestress functions T(H),s may be different 

for every case. The calculation of T (H) values is discussed in Cha:E>-

ter IV. 

(e) The Three Moment F,guation in Carry-Over Form 

Dividing throughout by LF'j in Equation (6) 

(H) 

r Tj 

LFj 

and rearranging 



M = 1 

©G2 

© 

CD CD 
(a) 

M = 1 

(b) 

(c) 

Elastic Curve 

(d) 

Fig • .3 

Angular Functions 

(a) Carry-Over Values 
(b) Flexibilities 
(c) Load Functions 

F 
jk 

'T" (L) 
jk 

. -- · 

Gkj 

Cable profile 

(d) Prestress Functions 

11 

M = 1 

~G) 

G) 

-- - 1 
I 
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Defining the carry-over functions 

(H) 
(7a), (7b) 

= Starting moment at j 

= Carry-over moment factor, i to j (Sa) 

= Carry-over moment factor, k to j (Sb) 

the equation for Mj becomes 

(9) 

The final bending moment at any support is thus expressed as a func-

tion of external load and the effects of bending moments at its adjacent 

supports. When all the supports are considered together, an iterative 

numerical procedure called the Carry-Over Moment Method can be set up, as 

discussed in the next chapter, to obtain the final bending moments at all 

supports. 



CHAPI'ER III 

CARRY-OVER PRECEDURE 

AND 

MODIFICATIONS FOR SPECIAL END CONDITIONS 

The numerical carry-over precedure can be conveniently presented in 

a tabular form (Fig. 4). 

Support 0 0 0 0 
r's J.;,;.~,J. I I 
m's 

• 

• 

I • M's 

Fig. 4 

A Typical Carry-Over Pattern 

13 
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The starting moments m's are the starting values. The moment at 

every support is carried over to its adjacent supports, on multiplying 

by the carry-over factors. The carry-over factors are always less than 

unity, so the moment f'or each support results in a converging series, 

the total sum of' which is the final moment Mat the support. 

Unit starting values can be used to calculate the influence on oth-

er supports, as shown in the illustrative example. The ef'f'ect of' pre-

stressing load or any other load only, can be found by using the corres-

ponding starting moments. 

The numerical procedure can be carried out to a desired degree of' 

accuracy. The procedure also has a numerical control in as much as all 

final moments computed thus must satisty Equation 9. 

The effect of various conditions of fixity at the end supports of the 

beam is as follows: 

(1) When an outer end is simply supported (Fig. 5(a)) the carry-

over factors between the first inner support to the outer support are 

zero. An externally applied couple at support O may be treated an as ex-

ternal load, to calculate m1• 

(2) When an outer end in fixed (Fig. 5(b)) regular carry-over ex-

ists between the fixed end and the f'irst inner support. In this case, 

however, 

Mo = mo + Ml r10 (10) 

where = _ 7 01 
mo Fol 

(11) 

and (12) 



(3) For an overhanging support (Fig. 5(c)) M1 is calculated £ran 

statics and 

= 0 

-r-1o_=_O_ ic5 
(a) 

(b) 

~-12 

t 
(c) 

Fig. 5 

Effect of End Conditions on 

Carry-Over Factors 

15 



CHAPI'ER IV 

EVALUATION OF 7(H) 1$ - END SLOPF.s 

OF SIMPLE BEAMS DUE TO PRESTRESS 

The prestress functions T (H) ·have been defined in Chapter II as 

follows 

(H) 
T ji 

--

(H) : 
T jk 

-- End slope of simple beam ij at j 

due to prestressing force H. 

End slope of simple beam jk at j 

j 
due to prestressing force H. 

These formulas are convenient to use when ex is defined mathemati­

cally as a function of x. When this is not the case or when the desired 

accuracy permits close approximation, the following methods can be used. 

(a) Equivalent Elastic Load 

The end slopes T (H) 1 s are equal to the reactions of a conjugate 

beam loaded by~ diagram. Considering the beam to be divided in sever­

al small lengths, the equivalent concentrated elastic load at any point 

16 



m can be approximated as shown below (Fig. 6). 

Hem+1 

m-1 m m+l 

~ dx ·r dx 1--l m m+ 

Fig. 6 

Equivalent Concentrated Elastic Load 

at a Point 

Assuming a straight line variation of the He diagram within a 

segment, 

t _g H9m dXzn+l + 1 ' H9m+l <llm+1l 
3 2 3 2 :J 

If dXzn = dXzn+l = dx , 

17 

(14) 
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Using a set of such elastic loads for any span ij, 

-(H) I 
p(H)xt - R - m m 

T ij - -ij (15) 
Lj 

(H) 
-(H) - z: Pm Xm 

T ji = Rji = • 
Lj 

(16) 

(b) Equivalent Real Load 

R. B. B. Moorman ( 1) applied the equation 

w (17) 

to the moment due to prestress and presented the concept of equivalent 

load due to prestress,defined by 

2 
d ex (H) 

H - = w 
dx2 

• (18) 

If e is a mathematically defined function of x, w (H) can be cal­
x 

culated easily. A second degree ~rabolic variation of e has a uni­x 

forml.y distributed load as its equivalent. The effect of the prestress 

moment can, as well, be approximated by a set of equivalent concentrated 

loads acting along the beam. These are evaluated, in terms of the ec-

centricities, under various assl.llllptions. 

Consider the beam to be divided into several small lengths, each 
(H) 

equal to dx. Assl.lllling a linear variation of w over each length, 

(Fig. 7) the equivalent concentrated load to any point mis equal to 
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p~H) 
(H) w(H) dx w(H) dx w(H) dx 

1 wm-l dx f, ,g - m + ~ m +1 m+l - 3 2 3 2 3 2 3 2 

- ~ ( w(H) +, 4 w(H) ... w(H)) - 6 ' m-1 m m+l 

Hem.+1 0m+2 H~+2 

m-2 m-1 m m+l m+2 m-2 m-1 m m+l 
He Diagram He Diagram 

m-2 m-1 m m+l m+2 

V Diagram V Diagram 

m-2 m-1 m m+l m+2 m-2 m-1 m m+l m+2 

w(H) Diagram w(H) Diagram 

Fig. 7 

Equivalent Concentrated Real Load 
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Replacing the w·•s by the second derivative with respect to x of the mo-

ment due to prestress, and using finite defference approximations, 

+ · 6m - 2em:tl + 6m:1:2l 
(dx)2 :J 

• 
• • (19) 

(H) 
The assumption of a linear variation of w within each segment 

corresponds to assuming a third degree parabolic variation of the He 

diagram within a segment. 

Alternatively, a uniform intensity w(H) can as well be assumed with-

in a segment. For this the He diagram assumes a ptrabolic variation of 

second degree within a segment. For this assumption (Fig. 7) 

p(H) : ~ ( w(H) 4- w(H)) 
m 2 m m+-1 

f (H)_v(H) v'H) _ y(H)J = ~ m m-1 + mtl m 
2 

dx dx 

= 1 iv(H) _ v<H)J 
~ Lm+l m-1 

Using the central finite difference approximations: 

(20) 
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Finally for a silnple assumption of linear variation of the He dia-

gram within a segment the equivalent concentrated load at any point m 

can be calculated by evaluating the change of shear produced at mas 

shown in Fig. 8. 

-----------
m-1 m m+l 

i--- dx bs ,,,. dx --, 

H9m_1 

1 P~H) 
H9m+l 

~ nH~CG ~ 
v(m-l)m vm(m-1) Vm(m+l) v(m;-l)m 

1- dx .,, I I- dx ·I 

(m - 1) ( m ) (m + 1) 

Fig. 8 

Equivalent Concentrated Real Load 
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For this case, considering the equilibrium of the isolated segments, 

p(H) : 
m vm(m+l) - Vm(m-1) 

He - He 1 m m-
dx 

(21) 

The equations 14, 19, 20, and 21 are developed for any point within 

the span. They, however, need modification for points near the end of a 

span. For any .span divided into n segments (Fig. 9), the values of PiH) 
through piH) or the values of pf_H) through Pi~i need to be calculated. 

Fig. 9 

A Span Divided in Equal Small Lengths 

The equations for p~H) are modified by calculating the eccentrici­

ties beyond the span on the assumption that the He diagram continues with 

the same rate of change of slope. The results in terms of known 



eccentricities are presented in Table I. 

It may be noted that the positive sign is assigned to P(H) when 
m 

acting in the upward direction. 

TABLE I 

FORMULAS MODIFIED FOR 

SPECIAL CASES 

Modified Formulas \From 
Equation 

-(H) H dx (2e0 t el) Pa • 6El0 
(14) 

-(H) - H dx 
(en-1 + 2 en) p - 6E1n n 

(H} - H (5e - 9e1 + 3e2 + e3) pl - 6dx 0 
(19) 

p(H) - H (en-3 + 3 en-2 - 9en-l + 5 en) - 6dx n-1 

p{H) = .lL (3 e0 - 5 e1 + e2 t e3) 1 4dx 
(20) 

p(H) = .lL (en-3 + en-2 - 5 en-1 + 3 en) n-1 4dx 

23 



The 7(H) values for any span can be calculated as end slopes 

caused by these equivalent loads and end moments due to eccentricities 

at the ends. While using a set of concentrated loads, advantage can be 

taken of the reciprocal relationship between the deflection at a point 

due to a unit end moment and the end slope due to a unit load at that 

point. This procedure is convenient when presented in a tabular form, 

as can be seen from the illustrative example. 

24 



CHAPrER V 

NUMERICAL EXAMPLES 

General Note: 

Two numerical examples are presented to illustrate the Carry-Over 

Moment Method. 

A four-span continuous prestressed concrete beam of variable cross 

section is considered first. The angular beam functions are calculated 

using the method of finite strips. In calculating the load functions and 

the prestress functions, the reciprocal relationship is utilized. The 

use of approximate methods to evaluate the prestress functions is illus­

trated in this example. The carI7-over procedure is shown using the ac­

tual starting moments. 

In Example II, a three-span continuous prestressed concrete beam of 

constant cross section is analyzed. The beam constants and the angular 

functions due to load and prestress are evaluated by the exact formulas. 

In considering various load conditions, the use is illustrated of the 

carry-over procedure for unit starting moments. 

Units of kips, feet and kip-feet are used in both problems. 

25 



26 

Example I 

A four-span continuous symmetrical beam of variable cross-section is 

considered. (Fig. 10). The relative EI values and the prestress eccen­

tricities for points every four feet apart on spans AB and BC are given 

in Tables II (a) and II (b), respectively. The prestressing force is 

250 ks. 

20 k 

I-

1- 401 

1.2 k/ft. 40 k 40 k 

·201 

-I ~ . 201 
•I. 20•. ~,. 20' 

·I 

-I - 60• 60• ·I 

Fig. 10 

A Four-Span Continuous Prestressed Concrete Beam of 

Variable Cross Section •. 

401 :--f 

G) 
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TABLE II (a) 

DATA FOR SPAN AB 

EI e EI e EI e m ins m ins m ins 

0 1.00 o.oo 4 1.00 - 9.60 8 1.93 + 5.00 

1 1.00 -3.60 5 1.00 -10.00 9 3.36 +14.00 

2 1.00 -6.40 6 1.00 - 8.67 10 5.42 +19.00 
' 

3 1.00 -8.40 7 1.00 -4.67 - - -

TABLE II (b) 

DATA FOR SPAN BC 

EI e m EI e m ins ins 

o, 15 5.42 +19.00 4, 11 2.82 - 5.20 

1, 14 4.42 +16.lO 5, 10 2.82 -10.00 

2, 13 3.56 
_, 

+ 9.90 6, 9 2.82 -13.20 
' 

3, 12 2.82 + 1.20 7, 8 2.82 -14.80 
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1. Angular Beam Constants 

The calculations for the angular flexibilities and carry-over values 

are shown in tabular form in Tables III (a) and III (b) for spans AB and 

BC, respectively. The method of conjugate beam is used to find the end 

slopes. The deflection of the elastic curve due to the applied unit mo­

ment are entered in the last columns as M values. By the reciprocal re­
x 

lationship these are the end slopes due to a unit load applied at the 

corresponding points. From the tables 

FBA = FDE = + 8.63 
EI 

= IFn = + 15.085 
El 

12.910 
EI 

2. Carry-Over Factors 

• + 

- 3.396 -- -0.26~ - rDC • - 12.910 ~ 

= - 3.396 • -0.225 
15.085 

6.455 
EI 



0 1 2 

cJ 
I I 

I I 
I I 1· 
I 

I 

M --X 

m ~ 
L 

0 o.o 

1 0.1 

2 0.2 

3 0.3 

4 0.4 

5 0.5 

6 o.6 

7 0.7 

8 o.8 

9 0.9 

10 1.0 

TABLE III (a) 

ANGULAR FUNCTIONS - SPAN AB 

3 4 5 6 7 8 
I I I I I I 

I.Ax 1=4ft I I I I 
I I I I I I 

40' 

~ 
PX = X dx 

FBA • L , L~' 

M = 1 k-ft 

9 

=))0 
I 

I 
I I 

I 

I 

l Pxt 

dx EI 
PX EI P ~ EI ~ EI El XL 

X 

4.00 o.oo o.oo 00.00 . 

4.00 0.40 0.04 24.12 

4.00 0.80 0.16 46.68 

4.00 1.20 0.36 66.04 

4.00 1.60 0.64 80.60 

4.00 2.00 1.00 88.76 

4.00 2.40 1.44 88.92 

4.00 2.80 1.96 79.48 

2.07 1.66 1.33 58.84 

1.19 1.07 0.96 31.56 

0.74 0.74 0.74 o.oo 

~ 8.63 
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m 

0 

l 

2 

3 

I,_ 

'5 

6 

7 
g 

9 , () 

11 

12 

11 
, J. 

1'5 

0 1 2 

0k~ 
I 

! I I 

I 

I 
I 

M = ~ X L , 

~ 
L 

3 
I 

I 
I 

TABLE III (b) 

ANGULAR FUNCTIONS - SPAN BC 

4 5 6 7 8 9 10 11 
I I I I I I I I 

I I b.xl4h I· I I 
' I ' I ' I 

I 

60' 

.30 

12 13 l=h 1 k-f1 
I I 

:1© I I 
' 

I I 

I 
I 

P =~SL 
X L E1x , 

-r- X FcB - Px 1, [ - x• ~c. Px L 

x' S!...ll p EI P ~ EI - x• :r M EI p - E 
L EI X xL XL X 

X 

.ooo 1.000 0.740 0.000 0.000 0.000 0.000· 

.067 .911 0.900 0.060 0.001,. 0.0'56 13.584 

.111 .867 1.120 o. 1/,9 0.020 0.129 26.928 

.200 .800 LJ.18 0.28l. 0.0'57 0.227 39.676 

.267 .711 l .l.18 0.379 0.101 0.278 51.288 

. 111 .667 1.1. 18 O.l.72 0.1'57 0.11'5 61.381,. 
. • I.()() .600 1_1._18 o.'567 0.227 0- 1/.0 69.592 
.l._67 .'511 l-1,18 0.662 o.10Q o. ':It;~ 75.'512 

.'511 .l.67 1 /.18 0.?'56 0.1.01 0. ':It;':! ?8.821. 

.600 .1.00 1.1.18 o.851 0.'511 O. ~J.O 79.120 

.66? .~11 l /. 18 O.OJ.6 0.611 0-~1'5 75.980 

.?11 .26? 1.1.18 1.019 0.762 0.278 69.056 

.800 .200 1.1.18 1.111. 0.907 0.227 57.976 

.867 .111 1.120 0.971 0.81.2 0.129 1.2.360 

.911 .067 0.900 0.81,.0 o. 781.. o.o'56 22.860 

1.000 .ooo o. 71,.0 o. 71,.0 o. 71,.0 0.000 0.000 

r 6.455 3 • .396 
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3. Load Functions 

The end slopes due to loads are calculated using the influence values 

given in Tables III (a) and III (b). The distributed load on span BC is 

replaced by equivalent concentrated loads placed at every four-foot dis-

tance. Thus 

T(L) 
BA = + 1772.2 

El . 

T(L) = T(L) = + J668.o 
BC CB El 

T(L) = T(L) = + 2~2~.6 
CD DC El 

T(L) - 0 -DE 

4. Prestress Functions 

The end slopes T (H)' s are evaluated using the approximate methods 

discussed in Chapter IV. Tables IV (a) and IV (b) show P~HJalues, calcu­

lated using Equations (19), (20), and (21) for spans AB and BC, respec­

tively. 6x = r.4 ft. 

Using these values of P~H) and the moments due to the eccentrici­

ties at ends of simple spans AB and BC, T(H) values are calculated. 

These T(H) values and an additional value for each span, obtained by 

using Equation (141 are entered in Table V. 

Tables IV (a), IV (b), and V are worked out to show the comparative 

results under various approximations. 

For the purpose of this example, values obtained by using Equation 

(20) are taken and the calculations completed. 



m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

TABLE IV (a) 

EQUIVALENT CONCENTRATED LOADS DUE TO 

PRFSTR.F.SS - SPAN AB 

p{H) 
m 

using 

Eq. (19) Eq. (20) 

+ 4.167 + 4.167 

+ 4.167 + 3.646 

+ 4.167 + 4.167 

+ 4.974 + 5.378 

+ 9.019 + 9.023 

+15.694 +16.589 

+21.424 +17.370 

- o.877 + 0.430 

-17.943 -16.497 

32 

Eq. (21) 

+ 4.167 

+ 4.167 

+ 4.167 

+ 4.167 

+ 9.010 

+13.906 

+29.531 

- 3.490 

-20.833 



Using 

Eq. (19) 

Eq. (20) 

Eq. (21) 

Eq. (14) 

m 

1, 14 

2, 13 

3, 12 

4, 11 

5, 10 

6, 9 

7, 8 

TABLE IV (b) 

EQUIVALENT CONCENTRATED LOADS DUE TO 

PRESTRESS - SPAN BC 

p(H) 
m 

using 

Eq. (19) Eq. (20) 

-16.493 -16.146 

- 9.549 - 7.812 

+ 7.205 + 4.818 

+ 8.941 + 9.245 

+ 8.333 + 8.333 

+ 8 • .3.33 + 8.3.3.3 

+ 8.3.3.3 + 8.33.3 

TABLE V 

T(H) VALUES BY VARIOUS METHOrB 

33 

Eq.(21) 

-17.187 

-13.021 

+11.979 

+ 8.333 

+ 8.333 

+ 8 • .3.3.3 

+ 8.33.3 

T~) - SPAN AB ·T(i!L~ 'T(H) . 
·. BC - CB - SPAN BC 

Due To Due To Due To Due To 
p(H) End Total p(H) End Total 
m Moments m Moments 

-4252 +.3416 -836 -4187 +3899 -288 

-4140 +3416 - 724 -4123 +3899 -224· 

-4427 +3416 -1011 -4.314 +.3899 -415 

- - -1089 - - -544 

All Values to be Divided by EI 



'JJdt 
El 

T(H) = 
BC 

T(H) : T(H) : 
CB CD ~ 

El 

5. Total Starting Moments 

L T(L) + (H) ~-----B __ _ 
L FB 

[T~L) + (H) 
m =------

C I Fe 

L T(L) + (H) 
~=---P---

L FD 

. - 4495,2 = 
15.085 - 298.0 kip. rt • 

: - 8714,6 • - 675.0 kip. ft. 
12.910 

= - 4546,6 : - 301.4 kip. ft. 
15.085 

6. Carry-Over Procedure (Please see the carry-over table on the 
next page) 

Numerical Control 

M = -298.o -0.225 (-586.5) = -166.0 o.k. 
B 

MC - -675.o -0.263 (-166.0 - 169.4) II: -586.8 o.k. -

~ = -301.4 -0.225 (-586.5) • -169.4 o.k. 

34 



35 

Joint B C D 

r -0.26 -0.22 -0.22 -0.26 

m -29S.o -675.0 -301.4 
+ 78.4 
± 79.3 
-517.3 

+116.4 +116.4 

- 30.6 
- 30.6 
- 61,2 

+ 13.8 + 13.8 

- 3.6 
- 3.6 - 7,2 

+ 1.6 + 1.6 

- 0.4 - 0.4 
+ 0.2 - o.s + 0.2 

r•M -166.0 -586.5 -169.4 

7. Final Moments 

From the Carry-Over Table the final moments at the supports are 

MB - -166.0 kip. rt. -
MC = -586.5 kip. ft. 

MD = -169.4 kip. ft. 
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Example II 

A three-span continuous prestressed concrete symmetrical beam 

(Fig.11 ) of constant cross-section is analyzed for all possible com-

binations of given loadings that produce maximum and minimum bending 

moments in the spans. The prestressing cable profile is shown in Fig. 12 

The intensities of the loads are 

w(g) = o.6 k/ft. 

w(D) = o.B k/ft. 

w(L) • o.6 k/ft. 

The prestressing force is 

cJi 
I .... 

Ho = 660 kips 

Hn = 528 kips 

©~ 
60 1 -I ~ 

(self weight) 

(slab load) 

(live load) 

0~ 
80 1 .. 1-... 

Fig. 11 

A Continuous Three-Span Beam 

of Constant Cross Section 

1c~ 
60 1 •I 
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1. Angular Flexibilities 

j 

·J ~ 
3EI 

i 

• 
FBA = FCD = 60 20 • • 

3EI EI 

FBC = FCB - so 26.67 - 3EI EI 

LFB = 'Fe = 46.6? 
EI 

2. Angular Carry-Over Values 

i 

3. Carry-Over Factors 

XX I dX • 2:..1. 
12 EI 6EI 

j 

= so - ~ 
6EI - EI 

-- - 1~ ~~ -- 0 286 ~ -. 
46.6? 

= -~ = 
46.6? 

- o.2S6 

)8 
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4. Carry-Over Procedure 

For mB = + 1.000 For me : + 1.000 

Joint B C B C 

r -o.2S6 -0.2S6 -0.2S6 -0.2S6 

m +1.000 +1.000 
'-. 

" v-0.2S6 -0.2S6 
/ 

+O.OS2 "- +o.OS2 
'-. 

-0.023 -0.023 
JI'.,. 

+0.007 +0.007 

" "' -0.002 -0.002 

M +1.0S9 -0.311 -0.311 +l.OS9 

Numerical control 

MB : + 1.000 - 0.2S6 (-0.311) = + 1.0S9 = MC 
B C 

~ = o.o - 0.2S6 (+1.0S6) = -0.311 

5. Final Moments in Terms of the Starting Moments 

6. Actual Starting Moments 

-T(H) _ T(H) _ JB HeJC"W' 
BA - CD - . LEix 

A 
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7 (Hn) : _ ~ 
CB EI 

The 'T I s due to uniformly distributed load on a span is calculated 

using 'Tij = 

tered in Table VI. 

'T Due To 

w(g) 

w 
(D) 

w 
(L) 

HO 

H n 

= wL1 , for w(g), w(D), w(L) and all results en-
24EI 

TABLE VI 

'T 'S DUE TO LOADS AND PRESTRESS 

'TBA = 'TCD 'TBC = 'TCB 

~ + 12800 
+ EI El 

+ 7200 
EI 

+ 17067 
EI 

+~ EI 
+ 12800 

EI 

+ 464.44 -~ 
EI EI 

+ 371.55 -~ 
EI EI 

The actual starting moments are now computed for the following con-

ditions of loading: 
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Condition (a): 
(g) 

w and H0 for all spans 

Condition (b): 
(g) (D) ·· (L) 

w , w , I H on all spans and w .: on spans AB and BC 

Condition (c): w(g), w(D)' Hon all spans and w(L) on span BC only 

Condition (d): w(g) ./D) ., , Hon all spans and w(L) on span CD only 

Condition (e): (g) W(D) w , , Hon all spans and w(L) on spans AB and CD. 

Using the appropriate values of [T's and rF•s,the starting moments 

are computed and recorded in Table VII, 

TABLE VII 

STARTING MCMENTS FOR VARIOUS 

CONDITIONS OF LOADING 

Condition mB me 
of using using 

Loading Ho Rn Ho Hn 

(a) - 29.3.9 - .31.3.1 - 29.3.9 - .31.3.l 

(b) -120.3.9 -1223.l -1oss.1 -1107 • .3 

(c) -1oss.1 -1107.3 -1oss.1 -1107 • .3 

(d) - Sl.3.9 - s.33.1 - 929.7 - 948.9 

(e) - 929.7 - 94S.9 - 929.7 - 948.9 

7. Final Moments 

The final moments at Band Care computed using these starting mo­

ments and the results are shown in TableVlII. '!he purpose,for which these 

conditions of loading are useful~is also indicated in the table. 



= ..1.. [Static moment of the He diagraml 
LEI on AB about A .J 

= + 0.7037 H 
EI 

• (H0 ) = (H0 ) = 464.44 
• • TBA T CD El 

' (Hn) : T(Hn) : 371. 55 
TBA CD El 

(H) 
TBC 

• . . 

C 

T(H) = J Hexx'dx 
CB IEI 

B 

: .J_ 1Static nioment of the HeJ 
LEI Ldiagram on BC about C 

= Ei ~ (Area of the He diagram on BC~ 

= :1 ~3)(8.75)(5~5) + (40)(6J5> 

.,. (~)(.31.25)( 18J5>] 

= - 7.50 H 
EI 



Condition ~ 
of using 

loading Ho H n 

(a) -228.7 -243.6 

(b) -972.6 -987 .6 

(c) -846.5 -861.5 

(d) -597.2 -612.1 

(e) -723.3 -738.2 

TABIE VIII 

FINAL MOMENTS 'BAND »c 

MC 
using 

Ho Hn 

-228.7 -243.6 

-810.5 -825.5 

-846.5 -861.5 

-759.3 -774.3 

-723.3 -738.2 

To Be Used 
for 

Computing 

Stresses before loading 

Maximum negative ~ 

Maximum positive moment 
in span BC 

Minimum positive moment 
in spans AB and CD 

Minimum negative M 
B 

Minimum positive moment 
in span BC 

Maximum positi ve moment 
in spans AB and CD 

t; 



CHAPI'ER VI 

SUMMARY AND CONCLUSIONS 

A method of analysis of prestressed concrete continuous beams, us­

ing the Carry-Over Moment Method, is presented in this thesis. 

The relation between the final bending moments at any three consec­

utive supports is established in terms of the functions of given loads, 

prestress data and angular beam functions. The angular flexibilities, 

carry~over values, load functions and prestress functions are defined, 

and their physical meaning is explained. 

The actual carry-over procedure is explained as a numerical proce­

dure of successive approximation that can be carried out to a desired 

degree of accuracy. Basically, in this case, it solves a set of three 

moment equations by an iterative process. 

The Carry-Over Method, originated by Prof. Jan J. Tuma, obviously 

finds a great advantage over the conventional methods for the analysis 

of continuous beams. The superiority is further amplified in cases in­

volving large numbers of spans where a direct solution of a set of si­

multaneous equations would be highly cumbersau.e. The carry-over factors 

are usually small, and since there is only one column for the values of 

the moment at each support, the carry-over tables are compact. The pro­

cedure is simple and has good physical meaning. 

By virtue of the angular flexibilities and load functions being 

readily available for many common cases, and in light of all methods 

44 
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discussed in this thesis to evaluate the prestress functions, the ap­

plication of the Carry-Over Moment Method to the analysis of prestressed 

concrete continuous beams should be found easily adaptable. 
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