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PREFACE 

The rising trend of aircraft accidents has necessitated a closer 

look at all aspects of flight safety. One such aspect is the realis­

tic testing of passenger seats and tie-downs. 

Before arriving at any type of solution, it is necessary to study 

carefully &11 dynamic effects acting on the seat and its subject. The 

initial portion of this study summarizes the results of numerous 

crash-impact investigations. The second portion covers the design of 

a loading device for dynamic testing of seats. 

Indebtedness is acknowledged to Professor Raymond Chapel for his 

assistance, guidance and encouragement during the study, and to Doug­

las Aircraft Company, Inc,, whose scholarship assisted materially in 

the M. S. program. I am grateful to my wife whose moral support and 

sacrifice made my advanced studies possible, 
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CHAPTER I 

INTRODUCTION 

Commercial air transportation is being used more and more by the 

traveling public for a mode of conveyance. Concurrently, there is a 

rising trend in airline fatality rate. Official statistics list the 

passenger fatality rate for 1959 at o.68 for each 100 million passenger 

miles, almost twice the 1958 rate of 0.38 and three times the 1957 rate 

of O. 20. 

The objective of aviation safety is twofold. (1) 1 The first is 

the preservation of human life; the second is the preservation of prop­

erly. It should be noted that despite the success in operational safe­

ty that has been achieved through accident prevention efforts, the fact 

. remains that no one can prevent all accidents. Therefore, accepting 

the inevitability of accidents, an effort to improve passenger surviva­

bility is in order. One approach to thts general prob1em is passenger 

seat improvements, since the seat is the restraint in the event of 

crash impact. Typical aircraft seats are shown in Figures i and 2. 

Aircraft passenger seats are presently required to withstand vari­

ous test loads per military or commerciai specifications, (2)(3). 

These loads are applied under static test conditions, but the static 

1 Note: ( ) refers to Selected Bibliography. 
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Figure 1. High Density Seat 



Figure 2. Typical Aircraft Seats 

\.,J 



strength of a seat may give a significantly erroneous indication of its 

ability to resist dynamic loads. There is a great need for the dynamic 

testing of seats and aircraft structures to provide a maximum of pro­

tection and to permit a minimum deterrent to profitable enterprise in 

civil aviation. 

Until recent years, there was no indication of a realistic crite­

rion for a test basis. At least two groups have been actively making 

crash impact studies. One is the NACA Lewis Flight Propulsion Labora­

tory, and the other is the Aviation Crash Injury Research Group at 

Cornell University. 

The crash of an aircraft results in loads on the seats due to the 

deceleration of the aircraft relative to the "seat-man". To define the 

loads which will probab,ly occur on the seat, the following factors must 

be considered: 

1. Pulse magnitude. 

2. Pulse rate of onset. 

3, Pulse duration. 

4. Pulse direction. 

4 

It is essential to realize that not only the crash load varies in magni­

tude, rate of onset, duration and direction in ,ach accident, but time 

also must be considered as a variable. ( 4). 



CHAPTER II 

DEFINING THE LOADS 

A literature survey was made to define the loads which will occur 

on airplane seats, Relationships were needed to show the response of 

the aircraft seats to the dynamic loads which are imposed on the air­

craft. 

According to Preston and Moser (4), simulated crashes of fighter 

and transport aircraft resulted in floor loads, for fighters crashed at 

112 mph at 27° angle of impact, of 40 g's longitudinally and 60 g's. 

normal to the longitudinal axis. Unpressurized transport tests resulted 

in 8 to 16 g's longitudinally and 9 g's normal, with tests at 16° angle 

of impact and speeds to 109 mph. Pressurized transport tests resulted 

in 22 g's longitudinally and 25 to 31 g's normal loads at 27° impact 

angle, 

From simulated airplane crashes, Preston and Pesman (5), show that 

peak maximum longitudinal loads are 20 to 25 g's at crash impact angle 

of 29°. 

Pinke! and Rosenberg (6) suggest an impulse deceleration curve 

using the value of 20 g's for transports having a landing speed of 

180 mph. 

Acker, et al., (7), in an investigation of accelerations in fighter­

airplane crashes, show that re~ultant loads of 60 g's were obtained at 

the airplane c.G. in simulated crashes at an impact ~ngle of 27°. The 
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normal loads exceeded 20 g's, 

Eiband, et al, (8), show that in light-airplane simulated crashes 

at speeds of 42, 47 and 60 mph, the maximum longitudinal decelerations 

were 26 to 33 g's and restraint forces in seat-belt-shoulder harness 

combination exceeded 5800 lbs. (29 g I s for a 200-lb seat occupant). 

6 

A load direction spectrum is defined by Hasbrook (9). The princi­

pal crash force zones are-described as within a horizontal arc whose 

sides are 50° to either side of the aircraft's longitudinal axis and 

from 30° &hove to 45° below, the longitudinal axis. It is pointed out 

that loads in excess· of 20 g's may be expected in portions of this spec­

trum in survivable type acJidents. Hasbrook considers that the increase 

of static strength require~ents for seats to 9 g's is not adequate, (3). 

A dynamic test of seats with longitudinal load only is presented 

by Sorin (ld). A hydraulic catapult with a nine-foot stroke propels a 

cart along tracks 200 feet in length. The results show that: 

1, The seats which were mounted facing forward failed completely 

when an average acceleration of 20.2 g's lasting d. 161 seconds 

was applied, 

2. The seat which was mounted in an aft-facing position showed 

serious failure of the back rest when an average acceleration 

of io g's lasting 0.222 seconds was applied, 

3. The seat back was found to deflect from 3.2 to 8.9 inches, 

and the anthropomorphic dumrtiy's buttocks moved horizontally 

2.0 to 4.5 inches, 

Hawkes (11) suggests that the key to improving survival chances is 

in designing the tie-down of passengers and loose equipment up to the 

ultimate load factor of the airframe, since the anatomy 0£ man can 
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withstand impacts greater than the airplane structure. Hawkes (11) 

also points out that unrealistic testing procedures have sometimes made 

it impossible to capitalize on the advantages of a strong floor. 

The simulated crashes, as described in the literature, could not 

be considered as representative of the conditions that would prevail 

with present day airplanes. In most cases, the airplanes were unloaded 

and the: landing speeds were quite low. These conditions would certain­

ly tend to produce conservative crash loads. But even the tests as 

they were recorded show that the forward area of the passenger compart­

ment sustained loads in excess of 20 g's. 

From a standpoint of maximum passenger safety, the seat test loads 

should be specified higher than the 20 g's reconunended by Pinkel and 

Rosenberg (6) and Military Specification (2). There is no way of assur­

ing that any given seat will not be located in the area of high g's. 

An increase in seat strength may perhaps necessitate a slight weight 

increase for the entire aircraft, but in light of achieving greater 

passenger safety, any dissentient would have to answer the question: 

What is human life worth? 

It is extremely dubious that there need be any weight penalty at 

all, because the ultimate in design efficiency has not been reached 

even with the latest seats. 

With a realistic test, the loads should have a different distribu­

tion than for a static test. A significantly different seat response 

should be attained. There should be little or no necessity to increase 

weight but merely redistribute the present material for a better effic­

iency. 

Both of the seat specifications, one by the FAA and the other by 
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the Military, are considered inadequate. Hasbrook (9) states that the 

survivable crash condition parameters found in most survivable trans­

port crashes investigated by AV-CIR are 150 knot impact speed and a re­

sultant crash force angle within an arc ext~nding from 15° above, to 

45° below, the longitud~nal aircraft axis. Referring to Figure 3, if 

an angle of 25° is assumed, the maximum longitudinal acceleration is 

16 g's for an impact speed corrected to 95 mph. 

For simplicity, assume the maximum acceleration resulting from the 

first impact of the airplane to vary directly with the initial momentum 

and thus, with the initial velocity. Based on this assumption, the 

acceleration would be approximately 30 g's for an impact speed corrected 

to 180 mph. More realistic seat tests would be obtained by using an 

ultimate load corresponding to 30 g's in. a direction aloti.g the longitu­

dinal axis of the aircraft and 20 g's normal to the longitudinal axis 

of the aircraft. 

Most transports are capable of withstanding 30-40 g's fuselage 

loading and still maintain an intact cabin, but the human body can with­

stand 45 g's for several hundredths of a second and can withstand 20 

g's vertically. Human tolerance to acceleration loads for various con­

ditions are shown in Figures 4, 5, and 6. (4). 
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Figure 3, Crash Deceleration vs. Angle of Impact 
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CHAPTER III 

APPLICATION OF LOADS 

The requirements for seat strength as found in TSO-C39 and related 

military specifications, consider the horizontal and vertical seat loads 

to be applied separately. 

From a study of the crash data and deceleration rates, it was found 

that the vertical deceleration acts in some combination with the longi­

tudinal deceleration, The decelerations may not peak in phase, but the 

in-phase components may be additive. 

The lon~ltudinal force of the passenger is transmitSed to the seat 

through the safety belt. The belt is generally incliined upward from 

the horizontal, thus the load transmitted to the seat has a vertical 

component. The vertical load component of the crash impact may, there­

fore, increase the total vertical load on the seat, In view of the 

fact that the human tolerance to vertical acceleration is approximately 

20 g's, there is little need to test for loads greater than 20 g's nor­

mal to the longitudinal axis of the aircraft. 

From anthropometric seating studies, as shown in Figures 7 and 8, 

the load application points as specified in MIL-S-7877 and FAA TSO-C39 

appear to agree closely. These locations are as follows: 

1. A 30-g load acting rearward uniformly distributed and applied 

over an area corresponding to 16 inches of width of the seat 

back with the load C.G, at a point 10.5 inches up from the 

13 
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Configuration 2 
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base of the seat back, The load could occur under three sepa­

rat.e conditions as follows: 

a, Directly to the rear; 

b, Thirty de~rees to the right; 

c. Thirty degrees to the left. 

2. A 20-g down load appl~ed evenly over the seat bottom. 

3, A 30-g load applied to the belt. This load to be applied up­

ward and forward in a single plane which makes an angle of 40° 

with the horizontal, 

4. A 3-g side load applied to the armrest outward or inward per­

pendicular to the armrest in a horizontal plane, The load to 

be applied midway fore and aft on the armrest. 



CHAPTER IV 

DESIGN DEVELOPMENT OF A TESTING UNIT 

TO APPLY LOADS TO THE SEAT 

Several possibilities of a motivation source for applying the 

dynamic loads to a test seat were considered, The motivation sources 

that were investigated are as follows: 

1. Hydraulic Piston 

2. Chemical Catapult 

3. Dropping weight with cables 

4. Electric motor and clutch arrangement 

5, Pneumatic Piston 

The chemical (explosive) catapult has serious disaqvantages in 

that control of the pressure pulse and piston tr.avel are difficult, and 

development cost is likely to be too high, 

The dropping weight with cable system and the electric motor and 

clutch arrangement were eliminated because of possible adverse effects 

due to cable elongation, control of pressure pulse and probable high 

development cost. 

The systems that were considered to have th~ required capacity 

with a low initial cost are the hydraulic (oil) piston and the pneumatic 

(gas) piston, The pneumatic piston system was chosen to take advantage· 

of the compressibility relationships for the charging gas, 

Some of the requirements that need to be met are summarized as 

17 
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follows: 

1. Pulse magnitude should be a maximum of 30 g's. 

2. Pulse should have a sharp front (500 g's per second). 

3. Pulse should be controllable as to magnitude and duration. 

4. Pulse shape should be triangular. 

These requirements are shown by the various curves in Figure 9. 

Use of a pneumatic system is considered to give relatively lower 

cost due to the lack of complexity in design. The pulse magnitude, du­

ration, and shape can be controlled by control of the gas expansion in 

the cylinder. 

For applications on both forward-facing seats and aft-facing seats, 

the piston will need to be operable in a push-pull configuration; and 

in order to get a triangular pulse shape, a quick opening valve will be 

needed. Also the maximum piston travel will have to be approximately 

9.0 inches. (10). 

There are two ways of introducing gas pressure on the piston, One 

way is to use a quick opening valve of proper size to allow rapid en­

trance of the gas into the cylinder, The other way is to allow the gas 

pressure to build up in the cylinder directly on the piston by locking 

the piston rod, 

In the latter method, a definite requirement would be a quick re­

lease for unlocking the piston. 

For either method, a quick opening exhaust valve is required in 

order to obtain the proper pulse shape. It is planned to have the ac­

tion required to open the exhaust valve conveniently timed to the piston 

travel, This would insure the proper valve opening sequence. 

The mass of the piston and rod may or may not be of consequence. 
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Figure 9. Crash Impulses From NACA Tests 
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. Consideration will have to be made of this mass and its effect on the 

pulse shape or on the inertia effect on the seat, The ovetall siie of 

the cylinder and piston should be the determining factor. 

Likewise, the frame of the testing unit will have to be considered 

from the standpoint of deflections as well as stress. The deflections 

of the frame must be kept small in order not to affect the pulse shape. 

The basic components of the testing unit are th~refore: 

1. A suitable frame 

2. A set of pneull\atic 
I 

cylinders 

3, A properly timed system to actuate, the desired sequences 

4. A set of appropriate tie-downs 

5, A section of typical aircraft type flooring 

The proposed complete t~st facility is shown in Figure 10. 
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CHAPTER V 

DESIGN OF PROPOSED LOADING DEVICE 

The design parameters for the. Dynamic Load·Device are as follows: 

1. Pulse magnitude of 30 g's. 

2. Pulse onset of 500 g's per secon.d.· 

3. Pulse duration of 60 miUiseconds. 

4. Pulse shape to be·triangular. 

Thes~ requirements . are· surrnnarized. in Figure 11. 

F(t) 

Fo 

500g/ sec 
(slope) 

0 I 

30 g 

.06 sec 

Figure· 11. Triangular Impulse 

DESIGN LAYOUTS 

Figure 12 is a layout of the Dynamic Load Device. The proposed 

design for the Variable Area Orifice is shown in Figure 13. The load-

22 
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ing device is operated by first introducing air into the variable area 

orifice cylinder and pressurizing so that there will be a force slight­

ly higher than the force acting to open the variable orifice, plus the 

force acting to open the end orifice. A check valve is used to hold 

the pressure. Air is then introduced to the front side of the piston 

through the back pressure charge inlet until the pressure reaches 562 

psia. Next, the -annular area around the piston is charged to a pres­

sure of 663 psia, The device is thus cocked and ready for firing. 

(Ca\culations for the necessary initial pressures are included in 

later sections of the chapter.) 

The Dynamic Load Device is fired by introducing starting air at 

a higher pressure than the pressure on the front side of the piston. 

A movement of approximately 1/2 inch of the piston allows the air 

charge in the annular chamber to act on the piston head thus acceler-

ating ·the piston. As the piston moves , the air in front of the piston 

is compressed. The pressure rises to a value ,such that the force due 

to the pressure on the front side of the orifice pin piston is greater 

than the opposing force due to the pressure on the back side of the 

piston. This piston will move back causing the air to qischarge, both 

from the main cylinder and from the end orifice. The end orifice is 

to control the rate of movement and serve as a damper for the orifice 

pin, It is anticipated that the actual design of the end orifice will 

depend on experimental developments. 

The variable orifice pin will thus control the pressure on the 

front side of the main piston and thereby control the pressure pulse. 

Once the cylinder piston moves beyond the pressure outlet tube, the 

cylinder is closed and a back pressure is .built up . to cushion the pis­

ton at the end of its travel. 
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THERMODYNAMIC COMPUTATIONS FOR SIZING REQUIREMENTS 

From mechanics, the pressure (P) is 

p = r 
A 

26 

(5-1) 

Since the expansion process is quite rapid, the·assumption is made 

that it is an adiabatic process. The compression process on the front 

side is also assumed to be adiabatic even though there is a mass loss 

through the orifice. 

The fundamental thermodynamic relationship is 

k 
P V = C (5-2) 

with an assumed value of k = 1.4 

then from Equation 5-2 

Pi • P2(~:) l. 
4 (5-3) 

The initial volume (Vi) is equal to the volume of the air charge cham-

her plus the volume in the cy1inder swept by the piston prior to the 

instant the piston is subjected to the accelerating air charge. The 

initial volume will arbitrarily be sized so that the ratio of the ini-

tial volume to the final volume is l:3, If both sides of Equation 5-3 

are multiplied by the area (A), and the pressure is expressed in terms 

of force (F) the relationship of 5-3 reduces to 

(5-4) 

The following conditions are further assumed: 

l, The weight of a single seat is 20 lbs. and the seat occupant 

weight is 170 lbs, 

2. Friction is negligible, 

3, For preliminary sizing computations the gas pressure is 
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assumed to be 650 psi. 

Corresponding toa _force factor of 30 g's, the final force-should 

be: 

F2 = (30)(190) = 5700 lbs, 

Then by Equation 5.:._4, :the initial thrust.force is:· 

Fi= (5700)(3)1. 4 = 26,500 lbs. 

The necessary piston cross-sectional area is: 

A = Fi = 26,500 = 4o. 7 sq. in. 
Pi 650 

. . . 

which corresponds to -a pis ton diam_eter of 7. 2 i~ches. ,' 
.. .. 

__ If an 8 inch diameter is -arbitrarily selected, t_hen the required pres-

sure and force.are determined and corrected to~ccoun_t for atmospheric 

force on the front face of the piston at the. end of the -effectiy,e 

stroke, The final force is 

F2 = 5700 + [ ( 14. 7)(50. 24)] = 6438 lbs, 

Then the initial force will be. -

Fi= (6438)(3)1,4 = 30,000 lbs, 

For a pull type design, a corq:?Ction has to be .made for th_e de;.· 
'. . : : .. ·. . . ' 

creased piston area caused by th~ ·piston rod_; _If a 2-1/2 inch diameter 

rod is assumed, the pressure.will be 

P 30,000· =6'63psia 
2 = (,7854)((8) 2 -(2,5) 2 ] 

CALCUIATIONS FOR VARIABLE AREA ORIFICE_ 

The procedure followed is as follows: 

l, Determine-th~ displacement·from Equation A.:.4 in the Appendix, 

2. Since the end force .·a11d dhplacem~nt are known, a curve may 

. be drawn to show .the relationships betwe.en • thrust and dis-
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placement. The actual curve is plotted by f.irst establishing · 

the final conditions then solving for the-preceding positions, 
. . 

This computation is shown,in the Appendix, ,The displacement 

time .relationships are tabulated in· Table I. Then the corres-

ponding thrust requirements are listed in Table II. 

3, The·thrust·versus displacement curve is shown on the Operation-

al Envelope as Figure 14. For convenience, th~ corresponding 
. . 

thrust-time val~es are tabulated in Table III in the Appendix .. 

4. From Figure -11, the values of the· force factors (g) per .time 

period (,r) are determined. These values are listed in·Table IV 

in the Appendix, 

5, The retarding force (Fd) necessary to give the desired decel-

eration is found from a sulillllation of forces on the piston. 

(5-5) 

where 

\Fb = fo:i;-ce on back side of the piston 

Ff= force on front side of the piston 

Substituting for pressure (P) and area (A), Equation 5·-5 

becomes 

(5-6) 

The corre~ponding.back pressures are calculated and tabulated 

. in Table V in the Appendix, The back pressures values are. 
. . ·. : 

.shown on Figure 14 t.o complete the Theoretical Operational 

Envelope. The resultant load versus time curve is shown as 

. Figure 15, The zero disp.lacement corresponds to. t.he piston. 

·position-when .the· charge ga~. acts• on. :the, piston. · 
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f : 

Figure 14. Operational Envelope 
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Figure 15. Load-Displacement Curve 

6. From the relationship 

k-1 
k 
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and assuming Tfi = 530°R, the corresponding temperature for 

each pressute (Pf) is determined. These values for pressure 

and temperature are shown in Table Vin the Appendix. The 

corresponding values for the critical pressure (Pfc) and 

critical temperature (Tfc) are also tabulated in Table V. 

7. From the thermodynamic relationship for a perfect gas 

P V = WRT ·°(5-7) 

with R = 53.3 

the.weight of the air in the front end of the cylinder may 

be found for each time period ( 1"'). Using the values of pres-

sure and temperature from Table V, the volume may be found as 

follows: 

Assume the maximum stroke of the piston is 10 inches and 



the piston moves 1/2 inch prior to the instant the air charge 

acts on the back of the piston. Since the effective piston 

stroke is 6.96 inches, the volume in the cylinder at the time 

the piston reaches the end of its stroke is 

Ve= [lo - (6.96 + .50)](50.24) = 127.61 cu. in. 

Assume the volume of the disch~rge tube plus the volume in 

the orifice chamber is equal to 40 cu. :in. The volume swept by 

the piston at any time (1"") is 6Vf = Area of front of the pis­

ton times the stroke, Thus, 

6Vf = (Af)(L.,...) = 50. 24. (Ly) 

The volume (Vf at any time('!) is therefore 

Vf = (Ve + 40) + (6. 96) (50, 24) - 6Vf 

which reduces to 

Values of Vf are tabulated in Table VI of the Appendix, 

Solving for the air weight W from Equation 5-7 

PfVf 
W=---

53,3(T£) 

(5-8) 

(5-9) 

Values of Ware tabulated in Table VII in the Appendix. The 

corresponding weight versus time curve is shown in Figure 16. 

8. The slope :: of the weight versus time curve in Figure 16 

is obtained by graphical differentiation at .01 sec time 

intervals. Values for~ are tabulated in Table VIII in the 

Appendix, 

9, Using the Equation A-9 with an assumed value of Cp = .24. the 

required orifice area may be determined at any time ("1""). The 

values are tabulated in Table IX in the Appendix. 
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Figure 16. Cylinder Air Weight vs Time 
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10. From the equation for the area of a circle, the largest dia-

meter required corresponds to the area of.17. 15 sq. in. The 

d = J(4 )if(A) = ~( 4 ) (~. l 5) = 4.67 inches 

The value of d = 4.67 inches is assumed to be the initial 

size for the orifice, 

11. The pin diameters at positions corresponding to the various 

time intervals may be computed from 

dpin=/(4.67)2 - (dreq'd)2 

Values for dpin are shown in Table X in the Appendix. 

CALCULATIONS FOR THE EXHAUST PORT SIZING 

The calculations for exhaust pm:t:~sizing as presented here are in 

the form of a preliminary analysis since they are based on the initial 

flow rate. The final design of the exhaust port should be developed 

in a manner similar to Lichty's (14) analysis for a release (exhaust) 

process. 

The accelerating air charge behind the piston expands from the 

initial pressure of 663 psia to (P2 ) at the end of the effective stroke. 

The pressure (P2) may be found from Equation A-5. 

(663) (1/3)L 4 = 142.5 psia 

Assume the cylinder evacuation time is 10 milliseconds. The volume of 

the chamber is 

Vol.= Volinitial + Volswept 

The·temperature is: 

k-.1 
k 

157.3 + (45.3)(6.96) = 471.5 in3 
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The critical pressure is: 

p = 
C (P2) (.528) = (142.5) (.528) = 75.3 psi a 

The critical temperature is: 

~) k-1 .286 
T = T ~Pc) T = (341.5) = 284.5°R 

C 2 ~ 

From the Perfect Gas Equation 
\ 

P V = W R T 

the specific volume may be found-from 

~ = R/ = (53. 3) 94 1. 5) = . 886 cu ft per lb 
( 142. 5 ) ( 144) 

The critical specific volume is 

The air weight is ~ 

w = 
p V­
R T 

(1_42.5) __ (144) ____ 471.5 = 
:= (50. 3) (341. 5 )- (1728) 

The weight flow per unit time is 

W = ·?g~ = 30.8 lb per sec 

By Equation A-9 

A= 30.8 

1,40 cu ft per lb 

.308 lb 

= (30.8) (1.4) (.001205) = .052 sq ft= 7.48 sq in 

In order to reduce the gas force acting on the valve, four ports 

will be used, the sum of the areas to be equal to _the total area re-

quired. The-area of each port is thus 

7.48 
A= - 4~ = l.87 sq in 

The force on each valve is then 

Fv = (142,5) (l.87) = 266 lbs 

Solving for the corresponding diameter of the orifice 
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d=p;f= 2.38 = 1.545 inches 

MACHINE.DESIGN COMPUTATIONS 

The required wall thickness (t) is determined as follows: 

Assuming a thin wall cylinder, the hoop stress (s) is given by 

where 

s = Pd 
N 

P = pressure in the cylinder, psi 

d = internal diameter of the cylinder, in 

t = wall thickness of the cylinder, in 

(5-10) 

35 

For a typical heat treated aircraft quality steel, use a yield strength 

of 180,000 psi. With a safety of factor of 4, the design stress (Sa) 

is 

Sa= 1804000 = 45,000 psi 

Then, solving for the 

Pd 

necessary wall 

( 663) ( 8) 
thickness by Equation 5-10 

.059 in t = 2sa = (2) (45,000) = 

To facilitate machining of the "long" bore the wall thickness will be 

assumed to be 0.25 inches in this preliminary design. 

PISTON ROD DESIGN 

The piston rod design is based on Figure 5-2 in the ANC 5 (1942 

edition) for the following conditions: 

1. Piston rod length equal to 12 inches. 

2. Design load equal to 26,500 lbs, 

3, End fixity coefficient equal to 1. 

The solution is by, trial and error. After several trials, a 



positive margin of safety of .045 is given for a 24 ST Tube with a wall 

thickness of . 083 inches and an .. outside diameter of 2. 5 inches. The 

low margin of safety is used for the piston rod design.since the piston 

rod is a component of the moving system. 

CALCULATIONS FOR CYLINDER HEAD THICKNESS 

The cylinder head thickness was calculated assuming the head to 

be a simply supported circular flat plate with a circular hole. The 

equation for the thickness is given by Roark (13) as 

where 

Therefore 

f ={4mSaZ~2 - b2~ [a4(3m+l) + b4(m-l) -4ma2b2 

. -4 ( m+ 1) a2b2 ln ~ J . 

t = head thickness, inches 

m = reciprocal of Poisson's ratio 

P = pressure in the cylinder, psia 

St= design stress, psi 

a= radius of cylinder, inches 

b = radius of cut out for piston rod, inches 

t 2 (3) (1500) (0.3) r 
= (4) (25000) ( 16 - 1. 268) L( 256 ) ( 10· 99) + ( 1. 6) (233) 

- (4) (3.33) (16) (1.268) - (4) (4.33) (16) (1.268)· 

ln 1.i25] 

t = 1. 4 inches 

EFFECT OF PARAMETER CHANGES 

As may be seen from Figure 14, any change in the pressure on 
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either side of the piston may be made in order to vary the shape of 

the pulse wave, likewise any change in the,accelerated weight will vary 

the pulse shape. The more pronounced effect is given by a change of 

the pressure on the front side of the piston. Should the device be 

used in another application, there may be a need to redesign the vari­

able orifice·since this is the controlling device for obtaining the 

desired pressure form. 

The use of several variable orifices was considered, but no thermo­

dynamic analysis was attempted. 

From the design standpoint, the main cylinder should have two or 

three small openings in place of one large opening. The final design 

of the device should be made on the basis of at least two orifices. 

It is anticipated that the final design of the variable orifice would 

need substantial experimental development. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

This report has discussed the dynamic ·forces acting on an aircraft 

during a crash impact. The importance of these forces on the aircraft 

seat is established on the basis of achieving passenger safety through 

dynamic testing of the seat. It is r.ecoumended that more adequate and 

up-to-date information on crash forces be gathered and presented in a 

statistical probability display for better usefulness. 

The theoretical design of a pneumatic device for performing dynam­

ic seat tests has been presented along with a discussion of the problem 

of formulating design criteria. It is recommended that a test device 

be built and tested, for there is certainly adequate justification for 

testing seats dynamically. 

At this time, seats with energy absorbing devices are coming into 

use but adequate seat testing is still not being used. A device, as 

presented here, would give a realistic test for all seats and maybe 

more lives could be , saved. 
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APPENDIX 

DERIVATION OF DISPLACEMENT-TIME RELATIONSHIP 

By definition, the velocity (U) is 

d LJ -= (a) dt (A-1) 

with 

a= acceleration 

Based on Figure 11, the desired acceleration is 

a= Kt 
Substituting in Equation A-1 and integrating 

U -= K_it dt :. :~£2 (A-2) 

By definition the displacement (L) is 

d L = ( U) dt (A-3) 

Substituting for the velocity from Equation A-2 and integrating 

L = Kft2 dt = 
2 0 

(A-4) 

Values for piston displacement versus time are shown in Table I: The 

computations were based on a value for K = 500 g, 

TABLE I 

DISPLACEMENT VERSUS TIME 

L 'T 
ft in sec 

0.0027 0.032 0.01 

0.0215 0.258 0.02 

0.072 0.869 0.03 

0. 172 2.067 0.04 

0.336 4.03 0.05 

0. 58 6.96 0.06 
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THERMODYNAMIC REIATIONSHIPS 

The applicable basic thermodynamic relationships for a Perfect 

Gas are 

(A-5) 

(A-6) 

For a volume ratid (V 2/V 1) = 3) and with a stroke (L = 6. 96) the 

volume ratio in terms of piston stroke is 

x + 6;96 = 3 = ·x 

where 

X = piston stroke corresponding to equivalent initial volume. 

Solving 

X·= 3, 48 inches 

The volume for unit length of stroke is 

V = = 

The general expression for volume is g:ilven by 

V = v1 + (45.3)1 (A-8) 

The initial volume, which must be·sized into the design, is 

V1 = (45.3)(3.48) = 157,5 in3 

Solving Equation A-8 for various displacements 

L = 1.00, V = 202.8 in3 

L .= 2.00, V = 248. 1 in3 

L ·= 3.00, V = 293.4 in3 
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L ,= 4.oo, V= 338.2 in3 

L= 5.00, V = 384.o in3 

L= 6.00, V= 429.3 in3 

L= 6. 96, V= 471.5 in3 

Other computations based on the basic thermodynamic relationships 

are -shown in Tables II::,_ III:; IV::,_ V, VIi VII, VIII. 

TABLE -II 

PRESSURE AND THRUST VERSUS DISPIACEMENT 
BY EQUATION A-6 

L pt:! Fb 
in psi lb 

1._00 - .462.._0 20,900 

- -2.00 _349. o 15,800 

3.00 276.0 12,500 

4.00 226.5 10,250 

5.00 189.5 8,580 

6.oo 161. 8 7,320 

9.96 142.5 6,438 
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TABLE -III 

.--x;::S 

THRUS'r'·FQR -VARIOUS TIMES (~) 

"( Fb 
sec lb 

o.oo 30,000 

0.01 29,800 

0.02 26,800 

0.03 21,700 

0.04 15,250 

0.05 10,200 

0.06 6,438 

TABLE IV 

FORCE Fl\OTOR_ ( g) REQUIRED PER TIME PERIOD ( 1') 

.1',sec F ( g) Fd = LF (gli x Eeight ( 190 lbsil 

o.oo 0 0 

0.01 5 950 

0.02 10 1900 

0.03 15 2850 

o.o4 20 3800 

0.05 25 4750 

0.06 30 5700 
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TABLE V 

THRUST (Ff) AND PRESSURE (Pf) FROM EQUATION 5-5 AND 5-6 

'T' Ff pf Pfc Tt Tfc 
sec· lb psia °R °R 

0.00 30,000 598.0 316.0 530 520.0 

0.01 28,850 574.o 303.0 524 514.o 

0.02 24,900 496.0 262.0 503\ 493.0 

0.03 18,850 375/5-: .. · 19$.5 464 456.0 

0.04 11,450 228.0 .· 120.5 403 396. o 

0.05 5,450 108. 5 57.4 326 320.0 

0.06 738 14.7 14.7 184 180.5 

TABLE VI 

CYLINDER VOLUME IN FRONT OF PISTON AT TIME ( '() 
BY EQUATION 5 -8 

1' L AVf Vf Vt 

sec in in3 in3 in3 

0.00 0.000 o.oo 517. 61 . 2995 

o. 01 0.032 1. 61 516.00 . 2950 

0.02 0.258 12.98 504.63 • 2920 

0.03 0.869 43.60 474.01 . 2750 

0.04 2.067 104.oo 413.61 . 2390 

0.05 4.030 202.50 315. 11 . 1825 

0.06 6.960 350.00 167. 61 .0969 
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TABLE VII 

AIR WEIGHT AT'TIME (,r) BY EQUATION 5-9 

'I w v; 
sec lb ft3/lb 

0.00 0.913 0.329 

0.01 0.875 0,337 

0.02 0.779 0.375 

0.03 0.601 o.457 

0.04 0.366 0.654 

0.05 0.164 1. 114 

0.06 0.021 4. 600. 

TABLE VIII 

WEIGHT FLOW RATE AT TIME (-r) 
'I' dW lb 

sec -=-dt sec 

0.01 7,33 

0.02 15. 00 

0.03 23.10 

0.04 25.90 

0.05 18.30 

0.06 10.00 
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DERIVATION OF THE·EQUATIONFOR THE VARIABLE AREA ORIFICE 

From the general energy equation, the velocity in the-orifice·is 

given by 

Assuming the air corresponds to a Perfect Gas the change in enthalpy 

is 

h - h = C (l\T) 1 2 p 

Since the initial velocity is small it may be neglected. Then the 

equation for the velocity reduces to 

Which can be expressed in terms of pressure·as 

l Pc ) Js.::.!.\c.-I 
U = ~c:. 9 J Cp T, ( 1 - Pt 

The weight rate of flow :~ is 

dW = UA with v = specific volume cu ft per lb 
dt v~ 

Substituting for vc from the pressure relationship 

I 

Ve = 111 (~ )-k 

and solving for the area A 
I 

dW ( R:)-"'it: A _ Crr) v, 1!r." 
u 

Then substituting for the velocity, the expression for area becomes 

( n }_J_[ I J A - dW V t1: I<. 
- dt I A I . [ (_ Pc)k~I] 

29JCp T. 1-\R k 
(A-9) 



Computations for the required orifice-area at various time intervals 

are shown in Table IX. The values for the diameter of the pin are 

· shown in Table X, 

sec 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

dW 
cit 

lb/sec 

7,33 

15, 00 

23. 10 

25.90 

18.30 

10.00 

TABLE IX 

REQUIRED ORIFICE AREA 

:~ ~~1/k ~j¥ 
524 

503 

464 

403 

326 

184 

1. 579 

II 

II 

II 

II 

1.579 

TABLE X 

..:, 833 

II 

II 

II 

II 

-.833 

0.337 

9.375 

o.457 

0.654 

1, 114 

4.600 

A 

ft2 

0.00381 

0.00880 

0.01725 

0.02970 

0.03980 

o. 11950 

CROSS;-SECTIONAL DIA. OF PIN FOR VARIABLE AREA ORIFICE 

~ (dreqd)2 1 8 (d )2 d . 
sec in4 2 • ~~4 reqd . lri~ 
0.01 

0.02 

0.03 

0.04 

0,05 

0.06 

0.70 

1. 62 

3,19 

5.42 

7.31 

21. 85 

21. 15 

20.23 

18.66 

16.43 

14. 54 

0.00 

4.60 

4.49 

4.40 

4.06 

3,81 

o.oo 
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DETERMINATION OF AIR CHARGE IN FRONT OF PISTON 

Since the piston moves 1/2 in before being subjected to the 

·accelerating air charge, the determination of the initial pressure 

in front of the piston must consider the slight pressure rise due to 

the piston travel. From Figure 15 at ,r = O, F d = O. 

Equation (5-6) becomes 

then 

Initially with the piston in the full back position the pressure 

From Table VI at 'f = o, Vf = 517.61 in3. The volume swept by the piston 

moving 1/2 in is V = 50. 2!} ( b) = 25, 12 in3. Then 

vfl == 517.61 + 25.12 - 542.73 in3 

therefore 

562 psia 
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