MINIMUM STAGE CALCULATIONS FOR COMPLEX

FRACTIONATORS +

 $\mathbf{B}\mathbf{y}$

RICHARD SIBLEY JOYNER Bachelor of Science Oklahoma State University Stillwater, Oklahoma 1961

Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1961

STATE UNIVERSITY

OCT 10 1961

MINIMUM STAGE CALCULATIONS FOR COMPLEX

FRACTIONATORS

Thesis Approved:

Thesis Adviser

Le

Dean of the Graduate School

472398

ii

PREFACE

A method has been developed for estimating the minimum number of theoretical stages in multifeed, multiproduct distillation columns. In addition to the minimum number of stages the method predicts product compositions, product flow rates and feed and product entry or withdrawal points. The method has been programmed for the IBM 650 Computer although it is well suited to hand calculations. The method was tested by comparison with a simulation of a complex column operating at total reflux. The results of the comparison indicate that the method will give reliable estimates of the performance of a complex column at total reflux.

The author wishes to thank Dr. R. N. Maddox, whose advice and encouragement made this project possible; the staff of the Oklahoma State University Computing Center for their cooperation and assistance; and Continental Oil Company for its fellowship which in part supported this work.

TABLE OF CONTENTS

Chapter	•• ·																									Page
I.	INTRODU	JCTI	ION	•	•	0	0	ø	a	•	•	ø	•	¢	•	a	•	ø	ø	o	•	0	ð	•	Ð	ļ
11.	SURVEY	OF	LI	ref	r A I	U	RE	. •	•			•	•	, .	•	•	•		•		•	•				3
III.	THEORY	•	••	•	•	•	•	•	٠	•	•	٥	o	•	e	•	•	¢	ø	•	ø	ò	¢	e	٥	4
IV.	RESULTS	3	•	•	0	•	•	ø		•	•	•	•	ه	•	•	ø	•	ø	•	•	•	o	ø	ø	
v.	CONCLUS	5101	٧S	•	o	0	٥	o	ø	•	•	¢	•	ø	•	0	٠	ø	٠	Ð	ø	ø	a	•	ø	
LIST OF	F NOMENO	CLAT	FURI	£	•	•	•	•	•	•	•	•	•	•	•		٠	8	e	0	•	٥	۵	•	٠	25
BIBLIOG	GRAPHY	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•		ð	9	ø	٠	0	ø	27
APPENDI	IXA.				•	•			•		٠	٠	•		•	,	•			o	٥	6	÷	0	•	28

LIST OF ILLUSTRATIONS

Figur	e																			Page	
1.	McCabe-Thiele Diagram	¢	ø	÷	•	ø	٩	•	•	•	ð	•	٥	۰	¢	ø	۰	s	¢	5	
2.	Complex Column	٥	•	٠	ø	0	٠	ð	e	a	ø	ø	•	م	0	•	÷	8	9	10	

LIST OF TABLES

Table

I.	Effect of Feed Plate Location on the Distillate Composition at Total Reflux	17
II.	Optimum Feed Plate Location	18
III.	Comparison Between Proposed Method and Plate-by- Plate Calculation for a Complex Column	20
IV.	Comparison Between Proposed Method and Plate-by- Plate Calculation for a Complex Column	22

.

- .

CHAPTER I

INTRODUCTION

The determination of the minimum number of theoretical stages required to achieve a given separation is a useful tool in the design of multicomponent fractional distillation columns. The calculation of the minimum number of theoretical stages provides a fast method of estimating the performance of a proposed column. In a short time, several alternate designs of the column could be evaluated for feasibility before applying more rigorous design techniques such as relaxation methods or plate-to-plate calculations.

Several methods have been suggested for calculating the minimum number of theoretical stages in single feed, two-product columns. The most suitable and most widely accepted short-cut methods are those which were proposed by $\text{Fenske}^{(3)}$ and $\text{Winn}^{(10)}$.

The Fenske⁽³⁾ method relates the minimum number of stages, separation and relative volatility, assuming constant relative volatility throughout the column. The Winn⁽¹⁰⁾ method relates minimum number of stages, separation and two characteristic constants which are functions of the equilibrium distribution ratios (K-values) of the arbitrary key components.

A method for use on multifeed, multiproduct distillation columns has been developed and was tested in this work using an

IBM 650 Computer. A modification of the method has made possible the calculation of the feed entry point.

Although an IBM 650 was used for evaluation of the method in this work, the method is readily adapted to slide rule or desk calculator computation.

CHAPTER II

SURVEY OF LITERATURE

Several methods have been suggested for calculating the performance of a fractionator at total reflux. These may be separated into two general categories; those methods which utilize tray-bytray calculations and those which employ semi-empirical equations.

The first of these types is by far the most difficult and time consuming. Several procedures have been employed in making the tray-by-tray calculations. Amundson and Pontinen⁽¹⁾ perform the tray calculations by solving the heat and material balance equations using matrix techniques. This method requires the solution and inversion of large matrices, thereby rendering the method practically useless for hand calculations. Lyster, et al⁽⁵⁾ make tray calculations utilizing the Theile-Geddes⁽⁸⁾ technique. Their method requires the use of a large computer, although it is well known that the Theile-Geddes⁽⁸⁾ method is easily adapted to hand calculations.

Edmister⁽²⁾ performs the tray calculations using a method based on absorbing and stripping factors.

For any of these tray-by-tray techniques an estimate of the product compositions, total stream flow rates and the number of stages would be extremely helpful.

 $\mathbf{3}$

The second of the general types, semi-empirical equations, has been well received by the Chemical Engineering profession, largely because of the ease by which calculations are made and the reduced time requirements. Since this type of calculation is the basis of this work, it will be treated in greater detail in the Theory Chapter than the first method.

CHAPTER III

THEORY

The operation of a fractionator at total reflux may best be visualized by referring to the classical McCabe-Theile⁽⁶⁾ diagram, Figure I. At total reflux, all of the overhead product is returned to the column and no bottom product is withdrawn. This condition is of theoretical interest only because a column operating at total reflux produces no product and performs no useful function.

Another concept of total reflux is that of considering the column to be of infinite cross-section with finite feed and product streams. Under these circumstances the column is making the desired products from the given feed composition.

From a design standpoint a column operating at total reflux indicates the minimum number of stages required to make a specified separation. Since no overhead product is withdrawn from the column, or the reflux is very much larger than the distillate product, the slope of the operating line, $\frac{L}{L+D}$, is unity and coincides with the diagonal y = x line. With the slope of the operating line equal to one, the step from the operating line to the equilibrium line is a maximum, hence, the smallest number of steps for a given separation.

Referring again to Figure I, it may be seen that the number of stages at total reflux is independent of the composition at which the feed is introduced as well as the condition of the feed

 $\mathbf{4}$

(whether it is a liquid, vapor or a mixture of liquid and vapor). Obviously, the movement of the feed entry point must be confined to any point between the distillate and bottoms product compositions.

Some authors have based their derivations of equations describing column operation at total reflux on constant molal overflow from plate-to-plate. The difference between passing streams on any plate above the feed plate is the distillate and difference below the feed plate is the bottoms product.

0r

V = L + D $\mathbf{L} = \mathbf{V} + \mathbf{B}$

The total reflux condition implies V and L >> D and B so that V = L. Thus, the constant molal overflow assumption is unnecessary.

Fenske⁽³⁾ derived relations to calculate the minimum number of stages in single feed, two product fractionators. Constant relative volatility and constant molal overflow were the basic assumptions. The Fenske equation is derived as follows:

 $y_{LK} = K_{LK} x_{LK}$ $y_{HK} = K_{HK} x_{HK}$

dividing:

$$\frac{y_{LK}}{y_{HK}} = \gamma_{LK-HK} \frac{x_{LK}}{x_{HK}}$$
(1)

Equation (1) may be converted to molar ratios

$$\left(\frac{\mathcal{V}_{LK}}{v}\right) \quad \left(\frac{v}{\mathcal{V}_{HK}}\right) \stackrel{\mathcal{O}}{=} \qquad LK-HK \quad \left(\frac{l_{LK}}{L}\right) \quad \left(\frac{L}{l_{HK}}\right)$$

hence

$$\frac{\mathcal{V}_{LK}}{\mathcal{V}_{HK}} = \mathcal{N}_{LK-HK} \qquad \frac{\mathbf{1}_{LK}}{\mathbf{1}_{HK}} \tag{2}$$

Material balance around the column above the feed gives

$$V_{nLK} = 1_{(n+1) LK} + d_{LK}$$
 (3)

$$\mathcal{V}_{nHK} = \mathbf{1}_{(n+1) HK} + \mathbf{d}_{HK}$$
(4)

At total reflux $\boldsymbol{d}_{\rm LK}$ and $\boldsymbol{d}_{\rm HK}$ are very small when compared to column internal stream flows.

Dividing equation (3) by equation (4), gives:

$$\frac{V_{nLK}}{V_{nHK}} = \frac{1_{(n+1)LK}}{1_{(n+1)HK}}$$

Substituting in equation (2) gives

$$\frac{1_{(n+1)LK}}{1_{(n+1)HK}} = \mathcal{A}_{LK-HK} \qquad \frac{1_{nLK}}{1_{nHK}}$$
(5)

Equation (5) relates the ratio of the mols of liquid of the light key and the heavy key components in the liquid on any tray to their ratio on the plate above. If these ratios were obtained from plate 1 through n the result would be

$$\begin{pmatrix} \frac{1}{nLK} \\ 1_{nHK} \end{pmatrix} = \not \sim \begin{pmatrix} n \\ LK-HK \end{pmatrix} \begin{pmatrix} \frac{1}{DLK} \\ 1_{DHK} \end{pmatrix}$$
(6)

Thus, the exponent of \prec is the number of perfect theoretical trays required to make the desired separation. Equation (6) may be rearranged to:

$$\ll \frac{n}{LK-HK} = \left(\frac{d}{b}\right)_{LK} \left(\frac{b}{d}\right)_{IIK}$$
 (7)

Which is the usual form of Fenske's equation.

Winn's relation for calculating the minimum number of stages at total reflux is similar to Fenske's equation. Winn found that if the K-values of two components were plotted on log-log coordinates at various temperatures, an essentially straight line resulted. With this fact and the fact that a straight line on log-log coordinates is expressed analytically by

$$\mathbf{K} = \boldsymbol{\beta} \left(\mathbf{K'} \right)^{\boldsymbol{\Theta}} \tag{8}$$

Where β and Θ are constants, Winn proceeded in a manner similar to Fenske. The resulting equation is

$$\beta \frac{n}{LK-HK} = \left(\frac{x_{D}}{x_{B}}\right) \frac{\varphi}{LK} \left(\frac{x_{B}}{x_{D}}\right)^{\Theta}_{HK}$$

This equation may be rearranged to give

$$\beta \frac{n}{LK-HK} = \left(\frac{d}{b}\right)_{LK} \left(\frac{b}{d}\right)_{HK}^{\Theta} \left(\frac{B}{D}\right)^{1-\Theta}$$
(9)

which is similar to equation (7). β and Θ are determined by writing two equations of the form of (8), one for the temperature at the top of the column and one for the bottom of the column.

$$K_{LK} = \beta (K_{HK})^{\Theta}$$
 at T_D
 $K_{LK} = \beta (K_{HK})^{\Theta}$ at T_B

Solving these equations simultaneously yields Θ . β is determined by back substitution.

The Winn equation does not suffer from the assumption of constant relative volatility. Rather, it is limited only by the reliability of the K-data available, or if equation (8) does not adequately represent the K-value data.

Underwood (9), derived an expression which is similar to that of Fenske and employed the same assumptions.

The Winn equation as it was originally derived was intended for single feed, two product fractionators. If, however, one considers a complex fractionator, Figure II, as being composed of several "sections", one section between each product stream, an expression similar to the Winn equation may be written. The section concept has been used successfully by Edmister⁽²⁾, in absorber calculations and in distillation calculations by absorption factor methods. In the case of an overhead product, a side product and a bottoms product, there would be two sections. The calculations are made from the distillate composition to the side draw composition, that is, calculating over section 1. If we assume equations of the type of (8) to be valid then the equation would be written

$$\beta = \left(\frac{d}{p}\right)_{LK} = \left(\frac{p}{b}\right)_{HK}^{\Theta_1} = \left(\frac{p}{b}\right)_{HK}^{\Theta_1$$

for the section between the distillate and the side product and

$$\beta^{S_{M_{2}}} = \left(\frac{p}{b}\right)_{LK} \left(\frac{b}{p}\right)^{\Theta_{2}}_{HK} \left(\frac{B}{p}\right)^{1-\Theta_{2}}$$
(11)

for the section between the side product and the bottoms product. These equations neglect the location of the feed plate in relation to the side product. As pointed out above, the location of the feed plate and feed condition have no effect on the total number of stages. Therefore, by analogy, the feed plate location should have no effect on the number of stages in a complex fractionator.

To extend the method to more than one side product and/or more than one feed, it is necessary only to write an additional equation of the form of (10) for each additional "section" of the column. Since the location of the feed plate has no effect on the number of stages, it follows that any number of feeds would be treated in the same way. In fact, the feeds may be summed and treated as one feed for calculation purposes. The material balance

$$d + p_1 + p_2 + \cdots + p_n + b = f_1 + f_2 + \cdots + f_n = \leq f_i = f_T$$
 (12)
assumes that each feed will be introduced at the proper point in the
column. The actual location of the feed entries will be considered
later.

The total number of plates required at total reflux is the sum of the number of stages in each section. In addition to the total number of stages, the component distributions in each stream may also be calculated. To calculate the product distributions, equation (10) may be written

$${}^{S}_{M_{1}} = \left(\frac{d}{p} \right) {}^{i} \left(\frac{p}{b} \right) {}^{\Theta_{i}}_{HK} \left(\frac{p}{b} \right) {}^{1-\Theta_{i}}$$
(13)

with the subscript, i, referring to any component, using the heavy key component as a base for the calculation of β_i and Θ_i . A material balance around the column gives:

$$f_{T} = d + b + p_{1} + p_{2} + \dots + p_{n}$$
 (12)

for each component.

Dividing both sides by p_1 (if there are no side products divide by d) gives:

$$\frac{\mathbf{f}_{\mathbf{T}}}{\mathbf{p}_{1}} = \mathbf{1} + \frac{\mathbf{d}}{\mathbf{p}_{1}} + \frac{\mathbf{b}}{\mathbf{p}_{1}} + \frac{\mathbf{p}_{2}}{\mathbf{p}_{1}} + \frac{\mathbf{p}_{3}}{\mathbf{p}_{1}} + \dots + \frac{\mathbf{p}_{n}}{\mathbf{p}_{1}}$$
(14)

The component distribution ratios as calculated by equation (13) will be

$$\frac{d}{p_1}$$
, $\frac{p_1}{p_2}$, $\frac{p_2}{p_3}$, \dots $\frac{p_{n-1}}{p_n}$, $\frac{p_n}{b}$

The ratios may be converted for use in (12) by noting that:

$$\frac{p_2}{p_1} = \frac{1}{p_2} + \frac{p_1}{p_2} + \frac{p_3}{p_1} = \frac{p_2}{p_1} + \frac{p_3}{p_2}$$

rearranging (13) so that

$$p_{1} = \frac{r_{T}}{1 + \frac{d}{p_{1}} + \frac{p_{2}}{p_{1}} + \frac{p_{3}}{p_{1}} + \dots + \frac{p_{n}}{p_{1}} + \frac{b}{p_{1}}}$$
(15)

$$p_{1} = \frac{f_{T}}{1 + \frac{d}{p_{1}} + \frac{p_{2}}{p_{1}} + \left(\frac{p_{2}}{p_{1}}\right) \left(\frac{p_{3}}{p_{2}}\right) + \cdots + \left(\frac{p_{n}}{p_{n-1}}\right) \left(\frac{b}{p_{n}}\right)}$$
(16)
and $d = \left(\frac{d}{p_{1}}\right) p_{1}, \quad p_{2} = \left(\frac{p_{2}}{p_{1}}\right) p_{1}, \quad p_{3} = \left(\frac{p_{3}}{p_{1}}\right) p_{1} \quad \text{etc.}$

For a two product column, (15) reduces to

$$d = \frac{f_{T}}{1 + \frac{b}{d}}$$

To test the utility of the above equations a program for the IBM 650 Computer was written. The equations calculate the minimum number of stages for each section of the column thereby locating the position of the side product streams. Since the feed(s) are summed, it is desirable to determine the position of the feed(s) relative to the product streams.

Robinson and Gilliland⁽⁷⁾ define an optimum intersection ratio, \emptyset , which relates the ratio of the compositions of the key components at the feed plate and the plate above. The ratio, \emptyset , is defined such that the optimum feed plate location is given by

$$\begin{pmatrix} \mathbf{x}_{\mathrm{LK}} \\ \mathbf{x}_{\mathrm{HK}} \end{pmatrix}_{\mathbf{f}} \leq \emptyset \leq \begin{pmatrix} \mathbf{x}_{\mathrm{LK}} \\ \mathbf{x}_{\mathrm{HK}} \end{pmatrix}_{\mathbf{f}+1}$$
(17)

where f+l is the plate above the feed plate. Since the calculations performed to find the minimum number of stages gives product distributions only, the feed plate location must be calculated on the basis of

or

stream compositions rather than stream flow rates. If the ratio to be compared with the feed ratio occurs (n) plates from the feed plate, equation (17) must comply with this stipulation. The Fenske equation indicates a convenient relationship which may be utilized.

Rewriting the Fenske equation for the section above the feed for a simple column gives

This may be arranged so that:

$$\frac{d_{LK}}{d_{HK}} = \swarrow \frac{S_{ME}}{LK - HK} \frac{f_{LK}}{f_{HK}}$$
(18a)

 \mathbf{or}

$$\left(\frac{\mathbf{x}_{\mathbf{LK}}}{\mathbf{x}_{\mathbf{HK}}}\right) = \mathbf{\gamma}_{\mathbf{LK}-\mathbf{HK}}^{\mathbf{S}_{\mathbf{ME}}} \left(\frac{\mathbf{x}_{\mathbf{LK}}}{\mathbf{x}_{\mathbf{HK}}}\right)_{\mathbf{F}}$$
(18b)

Equation (18a) is similar to (17). Since the Winn β is similar to \checkmark , a better relation would be:

$$\left(\frac{\mathbf{x}_{\mathbf{LK}}}{\mathbf{x}_{\mathbf{HK}}}\right)_{\mathbf{D}} = \beta_{\mathbf{E}} \qquad \left(\frac{\mathbf{x}_{\mathbf{LK}}}{\mathbf{x}_{\mathbf{HK}}}\right)_{\mathbf{F}} \qquad (19)$$

The above indicates that the feed should be introduced at a point in the column where the ratio of the key components is equal to their ratio in the feed. Equation (19) provides a method of calculating the number of stages below the top of the column that the feed should be introduced.

For a complex fractionator, the ratio of the key components in each feed may be checked against their ratio in each product stream. For example, consider a single feed, three-product column. The key component ratio in the feed must be less than the ratio in the distillate, and greater than the ratio in the side product, if the feed is to be introduced above the side product. Symbolically:

$$\left(\frac{\mathbf{p}_{\mathbf{LK}}}{\mathbf{p}_{\mathbf{HK}}}\right) \! < \! \left(\frac{\mathbf{f}_{\mathbf{LK}}}{\mathbf{f}_{\mathbf{HK}}}\right) \! < \! \left(\frac{\mathbf{d}_{\mathbf{LK}}}{\mathbf{d}_{\mathbf{HK}}}\right)$$

feed between the side product and distillate (Case 1)

feed below side product (Case 2)

Obviously, the key component ratios in the feed cannot be greater than the ratio in the distillate or less than the ratio in the bottoms. The location of the feed entry in Case 1 would be found by

$$\beta_{1}^{S_{FE}} = \left(\frac{d_{LK}}{d_{HK}} \right) \left(\frac{f_{HK}}{f_{LK}} \right)^{\Theta_{1}} \left(\frac{F}{D} \right)^{1-\Theta_{1}}$$

and in Case 2 by

 $S_{m_1} + S_{FP}$ where S_{FP} is computed from

$$\beta \frac{\mathbf{s}_{\mathbf{FP}}}{2} = \left(\frac{\mathbf{p}_{\mathbf{LK}}}{\mathbf{p}_{\mathbf{HK}}}\right) \left(\frac{\mathbf{f}_{\mathbf{LK}}}{\mathbf{f}_{\mathbf{HK}}}\right)^{\mathbf{\theta}_{2}} \left(\frac{\mathbf{F}}{\mathbf{P}}\right)^{\mathbf{\theta}_{2}}$$
(21)

Similar expressions and procedures apply to more than one feed and more than one side product.

CHAPTER IV

RESULTS

To determine the effect of feed plate location on product composition at total reflux would be extremely difficult using an actual column. However, total reflux may be simulated. The simulation may be accomplished by using a digital computer for which a plate-by-plate calculation program has been written.

It was found using the above simulation, with an internal vapor rate of 10,000 mols/hr, that there was a negligible effect of feed plate location on the distillate composition. This may be seen in the following table:

TABLE I

Effect of Feed Plate Location on the Distillate

Feed Entry Point Plate No., Top Down	Mol Frn Light Key in Distillate	Mol Frn Heavy Key in Distillate
3	0.7559	0.2437
4	0.7552	0.2442
5	0.7552	0.2446
7	0.7554	0.2443

Composition at Total Reflux

The total number of theoretical stages was eleven.

The results of this study indicate that the assumption that the location of the feed had little or no effect on the composition of the products is valid. Consequently, one may assume that the same negligible effect will occur if multiple feeds are summed and treated as one feed when dealing with complex fractionators.

As pointed out in the previous discussion of feed plate location, the feed should be introduced at a point in the column at which the ratio of the compositions of the key components in the feed and at the feed plate are equal.

This assumption was checked using the above simulation procedure with the same system and vapor rate. The results are listed in the following table.

TABLE II

Feed Plate Feed Entry Point Distillate Feed (Plate No., Top Down) f_{LK} ¹LK d_{HK} ^fHK f HK 1.696 3.102 3 1 4 1.255 3.093 1 5 0.932 3.087 1 7 0.522 3.092 1

Optimum Feed Plate Location

As may be seen in Table II, the point at which the ratio of the keys in the feed are equal to the ratio at the feed plate occurs between plates 4 and 5. The feed plate location calculated from equation (19) was 4.35. By analogy, one may assume that the location of more than one feed may also be calculated from equation (19). Tables III and IV show the comparison between two complex fractionators calculated by the method of this work and a plateby-plate calculation procedure. In both cases the total reflux condition was simulated in the plate-by-plate calculations by using a reflux ratio of $(L_0/D) = 99.0$.

The fractionator compared in Table III is a single feed, 3-product column. The column in Table IV is almost the same as the column in Table III except the feed was altered slightly and split into two streams. The side product in both cases was withdrawn as saturated liquid. The feeds in both cases were also saturated liquids. In both examples plates are numbered from the top plate in the column to the reboiler. That is, the top plate is 1 and the reboiler is 14.

These results show that the method of this work may be used to good advantage in the preliminary design of a complex fractionator. The method of calculating the location of feed plates has been shown to be reliable. In both of the cases investigated the new method correctly indicated the trays between which the feeds should be introduced. Until now no total reflux method has been available for evaluating alternate designs of complex fractionators. The new method is fast, easy to use and well suited to hand or desk calculator computations.

TABLE III

Comparison Between Proposed Method and Plate-by-Plate

Calculation for a Complex Column

		T	his Work		Plate-by-Plate						
Comp.	Feed	Distillate	Side-Draw	Bottoms	Distillate	Side-Draw	Bottoms				
C_2	1.38	1.12311	0.25689	0.00000	1.12309	0.25686	0.00003				
C_3	4.25	0.22631	3.89744	0.12625	0.22684	3.89661	0.12655				
iC_4	1.48	0.00035	0.13139	1.34826	0.00036	0.13139	1.34825				
nC ₄	2.10	0.00002	0.02532	2.07466	0.00002	0.02769	2.07229				
iC ₅	1.38	0.00000	0.00006	1.37994	0.00000	0.00016	1.37984				
nC ₅	0.75	0.00000	0.00001	0.74999	0.00000	0.00003	0.74997				
с ₆	2.25	0.00000	0.00000	2.25000	0.00000	0.00000	2.25000				
Totals	13.59	1.34979	4.31111	7.92910	1.35031	4.31274	7.92693				

i.

(Cont.)

TABLE III (Cont.)

	This Work	Plate-By-Plate
T _D	518.098	518.195
$\mathbf{T}_{\mathbf{p}}$	591.913	591.901
т _в	756.757	756.854
Sm 1	3.90041	4-5*
Sm_2	9.53652	9-10*
Sm_{T}	13.43693	14^{+}
s_{FP}	8.28286	8-9*

* Indicates Stream Withdrawn or Feed Between Trays

+ Includes Reboiler, Excludes Total Condenser

5

TABLE IV

Comparison Between Proposed Method and Plate-by-Plate

Calculation for a Complex Column

			T	his Work		Plate-By-Plate					
Comp.	Feed l	Feed 2	Distillate	Side-Draw	Bottoms	Distillate	Side-Draw	Bottoms			
c2	0,92	0.46	1.12312	0.25688	0.0000	1.12310	0.25686	0.00004			
c3	2.95	1.30	0.22683	3.89603	0.12714	0.22683	3.89603	0.12714			
iC4	0.48	1.00	0.00034	0.12662	1.35304	0.00035	0.12663	1.35302			
nC4	1.40	0.70	0.00002	0.02405	2.07593	0.00003	0.03245	2.06752			
iC ₅	0.82	0.46	0.00000	0.00005	1.27995	0.00000	0.00062	1.27938			
nC ₅	0.50	0.25	0.00000	0.00001	0.74999	0.00000	0.00018	0.74982			
с ₆	1.5	0.75	0.00000	0.00000	2.25000	0.00000	0.00000	2.25000			
Totals	8.57	4.92	1.35031	4.30364	7.83605	1.35031	4.31277	7.82691			

(Cont.)

TABLE IV (Cont.)

	This Work	Plate-By-Plate
т _р	518.144	518,192
Tp	591.848	591.927
${}^{\mathrm{T}}{}_{\mathrm{B}}$	756.715	756.627
Sm1	3.89782	4-5*
Sm_2	9.58008	9-10*
${}^{Sm}T$	13.47790	14^{+}
s _{Fp1}	6.89218	6-7*
s_{Fp_2}	9.43945	9-10*

* Indicates Stream Withdrawn or Fed Between Trays

+ Includes Reboiler, Excludes Total Condenser

CHAPTER V

CONCLUSIONS

The new equation for complex fractionators will provide the design engineer with a short, reliable method of estimating the performance of complex columns operating at total reflux. The method will give estimates of the component distributions in the various product streams and the rates of those streams as well as the relative locations of the product and feed streams.

The assumption that the feed streams may be summed and treated as one feed is valid because it was shown that the location of the feed at total reflux had a negligible effect on the composition of the product streams.

The Winn method for representing equilibrium data is probably better than the assumption of constant relative volatility for a section of the column. For either case the proposed method is a preliminary estimate only. For final designs a more rigorous technique such as plate-by-plate calculation must be used.

LIST OF NOMENCLATURE

B - total mols of bottom product stream

D - total mols of distillate product stream

F - total mols of feed stream

K - equilibrium constant, $\frac{y}{x}$

L - total mols of liquid stream

N - number of actual theoretical stages

P - total mols of side stream

S - minimum number of theoretical stages

V - total mols of vapor stream

b - mols of a component in bottom product stream
d - mols of a component in distillate product stream
f - mols of a component in a feed stream
l - mols of a component in a liquid stream
p - mols of a component in a side stream
v - mols of a component in a vapor stream
x - mol fraction of a component in liquid
y - mol fraction of a component in vapor

Greek

$$\swarrow$$
 - relative volatility, $\frac{K_{i}}{K_{R}}$

- β ralative operability in Gilliland equation or a characteristic constant in the Winn equation
- Θ a characteristic constant in the Winn equation or roots in the Underwood equation
- \emptyset roots in the Underwood equation

Subscripts

- B refers to bottom plate in column or bottoms product
- D refers to distillate
- **E** enriching section
- F refers to feed streams or feed plate
- LK light key component
- HK heavy key component

M - minimum

- T refers to top plate in column
- b component in the bottoms product
- d component in the distillate product
- f component in the feed stream or feed plate
- i any component
- m refers to plate in stripping section
- 'n refers to plate in the enriching section

BIBLIOGRAPHY

- Amundson, N. R., and A. J. Pontinen, <u>Ind. Eng. Chem.</u>, <u>50</u>, 730 (1958).
- 2. Edmister, W. C., A.I.Ch.E. Journal, 2, No. 2, 165 (1957).
- 3. Fenske, M. R., Ind. Eng. Chem., 24, No. 5, 482 (1932).
- 4. Gilliland, E. R., Ind. Eng. Chem., 27, 260 (1935).
- 5. Lyster, W. N., S. L. Sullivan, D. S. Billingsby, and C. D. Holland, "High Speed Computing by Use of the Thiele and Geddes Approach to Multicomponent Distillation", presented at the Salt Lake City meeting of the A.I.Ch.E., Salt Lake City, Utah, September, 1958.
- McCabe, W. L., and E. W. Thiele, <u>Ind. Eng. Chem.</u>, <u>17</u>, No. 6
 605 (1925).
- 7. Robinson, C. S., and E. R. Gilliland, "Elements of Fractional Distillation", McGraw-Hill, New York (1950).
- 8. Thiele, E. W., and R. L. Geddes, Ind. Eng. Chem., 25, 289 (1933).
- 9. Underwood, A.J.V., Chem. Eng. Progress, 44, No. 8, 603 (1948).
- 10. Winn, F. W., Petroleum Refiner, 37, No. 5, 216, (1948).

APPENDIX A

28

Î

SUBROUTINES

SR-1,	Punch (PCH)
LDD	n-l
STD	n-1
RAL	P-Pch
LDD	$\operatorname{EXIT} \longrightarrow \operatorname{Pch}$

SR-2,	Block	transfer	(BT)
SET	9040		
LDI	2000		
SET	9040		
STI	4000		

	SR-3,	K-Evaluation	(K-eval)
	SET		
	LDI		
	RAB	n-1	
	STU	т	
(A-1)	RAU	(d _i of K) B	
	FMP	Т	
	FAD	(C _i of K) B	
	FMP	Т	
	FAD	(b _i of K) B	
	FMP	T	
.

FAD	(A i	of	K)	B
NZB	EXI	Г		
SXB-1	Go .	A-1		

	SR-4,	Mol Fraction (MF)
	SET	
	LDI	
	RAB	n-1
	LDD	0
	STD	٤۱ _i
	STD	$\leq \mathcal{V}_{i}$
(A-1)	BMC	(-) A-2 (+) A-3
(A-2)	RAU	(\mathcal{V}_i) b
	FAD	$z \mathcal{V}_i$
	STU	$\leq \mathcal{V}_{i} \rightarrow A-4$
(A-3)	RAU	(1 _i) B
	FAD	٤l _i
	STU	$\leq 1_{i} \rightarrow (A-4)$
(A-4)	NZB	
	SXB-1	
(A-5)	RAB	n-1

(A-6) EMC
(A-7) RAU
(A-7) RAU
(
$$7'$$
) B
FDV
 $2 \bigvee_{i}$
STU
(y_{i}) B \longrightarrow (A-9)
(A-8) RAU
(1_{i}) B
FDV
 $2 1_{i}$
STU
(x_{i}) B \longrightarrow (A-9)
NZB
EXIT
SXB-1 \longrightarrow (A-6)

	SR-5	Bubble Pt Dew Pt. (BP-DP)
	SET	
	LDI	
	LDD	EXIT
	STD	EXIT
	LDD	0
	STD	$\sum_{i=1}^{N} x_{i}$ or $\sum_{i=1}^{N} \frac{y_{i}}{x_{i}}$
(A-10)	STU	т
	RAC	\longrightarrow SR-3 (K-eval)
	RAB	n - 1
(A-1)	RAU	EXIT
	BMI	(-) (A-2) (+) (A-3)

SUBROUTINES (Cont.)

$$(A-2) RAU (y_i) B$$

$$FDV (K_i) B$$

$$STU (\frac{y_i}{K_i}) B$$

$$FAD \sum \frac{y_i}{K_i}$$

$$FAD \sum \frac{y_i}{K_i} \longrightarrow (A-4)$$

$$(A-3) RAU (x_i) B$$

$$FMP (K_i) B$$

$$STU (K_i x_i) B$$

$$FMP (K_i) B$$

$$STU (K_i x_i) B$$

$$FAD \leq K_i x_i$$

$$STU \sum K_i x_i$$

$$(A-4) NZA \longrightarrow (A-5)$$

$$SXA-1 \longrightarrow (A-1)$$

$$(A-5) RAU 1$$

$$FSB \sum K_i x_i \text{ or } \sum \frac{y_i}{K_i}$$

$$STU 1 - \sum K_i x_i \text{ or } (\Delta)$$

$$RAU Tolerance$$

$$FSM \Delta$$

$$(-) (A-6)$$

$$BMI (-) (A-6)$$

(A-6) RAU EXIT

$$(-) (A-7)$$

BMI (+) (A-8)

$$(A-7) RSU \qquad 1 - \leq \frac{y}{K} \longrightarrow (A-9)$$

$$(A-8) RAU \qquad 1 - \leq K_X$$

$$(A-9) FDV \qquad 7.5$$

FAD $\qquad 1$
FMP $\qquad T \longrightarrow (A-10)$

$$\frac{SR-6, \Theta_{i}}{RAB} = n-1$$

$$STD = EXIT$$

$$(A-1) RAU = (K_{HK})_{T}C$$

$$FDV = (K_{HK})_{B}C$$

$$LDD \longrightarrow \ln X$$

STU
$$\ln \frac{(K_{HK})_T}{(K_{HK})_B}$$

RAU $(K_i)_T B$
FDV $(K_i)_B B$
LDD $\longrightarrow \ln X$

FDV ln
$$\frac{(K_{HK})}{(K_{HK})_B}$$

STU	(0 <mark>1</mark>)	B
NZB	-	EXIT
SXB-1	\longrightarrow	(A-1)

	SR-7,	β _i
	RAB	n-1
	STD	EXIT
(A-1)	RAU	(к _{нк}) с
	LDD	\rightarrow 1n X
	FMP	(O _i) B
	LDD	
	STU	(K _{HK}) ^Θ i
	RAU	(K _i)B
	FDV	(K _{HK}) ⁹ i
· ·	STU	(β _i) Β
	NZB	EXIT
- 1	SXB-1	
		·

SR-8,	Sm			
STD	EXIT			
RAU	d _{LK}	٩.		
FDV	^p LK			

,

 $\left(\frac{d}{p}\right)_{LK}$ STU $\left(\frac{p}{d}\right)_{HK} B$ RAU \longrightarrow ln X LDD (0) C FMP $e^{\mathbf{X}}$ LDD ----> $\left(\frac{p}{d}\right)_{HK}^{\Theta}$ STU RAU 1 (e) C FSB 1-0 STU P D RAU \longrightarrow ln X LDD 1 - 0 $\mathbf{F}\mathbf{M}\mathbf{P}$ ≯e^x LDD 0 $\left(\frac{p}{d}\right)_{HK}$ FMP $\left(\frac{d}{p}\right)_{LK}$ FMP \longrightarrow ln X LDD STU ln X β RAU \rightarrow ln X LDD $\ln \beta$ STU

.

RAU	ln X
FDV	ln ß
STU	S _m → EXIT

$$\begin{array}{c|c} SR-9, \left(\frac{d}{p}\right)_{i} \\ RAB & n-1 \\ STU & EXIT \\ STU & EXIT \\ (A-1) & RAU & \left(\frac{p}{d}\right)_{HK} \\ LDD & \ln X \\ FMP & (\Theta) & B \\ LDD & \longrightarrow e^{X} \\ STU & \left(\frac{p}{d}\right)_{HK}^{\Theta} \\ RAU & \beta \\ LDD & \longrightarrow e^{X} \\ RAU & \beta \\ LDD & \longrightarrow e^{X} \\ STU & \beta^{S_{m}} \\ LDD & \bigoplus e^{X} \\ STU & \beta^{S_{m}} \\ RAU & 1 \\ FSB & (\Theta) & B \\ STU & 1 - \Theta \\ RAU & \frac{p}{D} \\ LDD & \ln X \end{array}$$

FMP 1 **-** 0 \rightarrow e^x LDD $\left(\frac{P}{D}\right)^{1} - \Theta$ STU $\beta^{\mathbf{S_m}}$ RAU $\left(\frac{p}{d}\right)_{HK}^{\Theta}$ FDV $\left(\frac{P}{D}\right)^{1} - \Theta$ FDV STU $\left(\frac{d}{p}\right)_{i}B$ EXIT NZB $SXB-1 \longrightarrow (A-1)$

SR-10, S (Feed Plate Loc.) EXIT STD RAU β \rightarrow ln X LDD ln β STU RAU 1 FSB θ 1 - 0 STU F RAU FDV Р \rightarrow ln X LDD 1 - 0 FMP

 $\text{LDD} \longrightarrow e^{\mathbf{X}}$ $\left(\frac{F}{P}\right)^{1} - \Theta$ STU RAU 1 FDV Rf LDD \longrightarrow ln X FMP θ \rightarrow e^x LDD R p \mathbf{FMP} $\left(\frac{F}{P}\right)^{1} - \Theta$ FMP LDD \longrightarrow ln X $\ln \beta \longrightarrow EXIT$ FDV

	RAL	n
	SRT	1
	SLO	.1
	STL	(n-1) ₁
	SRT	4
	STL	(n-1) ₂
	RAL	$(n-1)_{1}$
	RAA	10
(A-1)	LDD	
	SDA	
	NZA	(A-2)
	SXA-1	(A-1)
(A-2)	RAL	No. of Sections
	SRT	1
	SLO	.1
	STL	Ns-1
	RAL	No. of Feeds
	SRT	1
	SL0	.1
	STL	N _{F-1}
	SET	

	LDI	Float Loop
	RAC	250
	RAA	n - 1
	SET	
(A-5)	LDI	K's & F's
	RAB	$(A-3) \longrightarrow$ Float
(A-3)	SET	
	STI	Floated Data
	NZC	\longrightarrow (A-4)
	SXC-S	$0 \rightarrow (A-5)$
(A-4)	RAA	No. of Key Nos (NK _i)
(A-7)	RAL	(NK _i) A
	SRT	5
	STL	(NK _i) A
	NZA	(A-6)
	SXA-1	(A-7)
(A-6)	RAA	Input
	SET	
	LDI	Input Data
	RAB	
	SET	
	STI	Floated Input
	LDD	P-Pch
	STD	P-Pch
	RAC	\longrightarrow Pch

	LDD	P-Pch
	STD	P-Pch
	RAC	\longrightarrow Pch
	RAU	(p _i) _{HK}
	NZU	(A-8)
	FDV	(a) _{HK}
	STU	→ (A-9)
(A-8)	RAU	(b) _{HK}
	FDV	(d) _{HK}
	STU	$\left(\frac{b}{d}\right)_{HK} \longrightarrow READ$
(A-9)	RAU	(p ₂) _{HK}
	NZU	
	FDV	(p ₁) _{HK}
	STU	$(\frac{p_2}{p_1}) _{HK} (A-11)$
(A-10)	RAU	(ь) _{НК}
	FDV	(p ₁) _{HK}
	STU	$(\frac{b}{p_1}) READ$
(A-11)	RAU	(p ₃) _{HK}
	NZU	(A-12)

FDV
$$(P_2)_{HK}$$
STU $(\frac{P_3}{P_2})_{HK} \longrightarrow (A-13)$ (A-12)RAU $(b)_{HK}$ FDV $(P_2)_{HK}$ STU $(\frac{b}{P_2})_{HK} \longrightarrow READ$ (A-13)RAU $(b)_{HK}$ FDV $(P_3)_{HK}$ STU $(\frac{b}{P_3})_{HK} \longrightarrow READ$ (A-14)RAA19(A-14)RAU $(f_1)_1A$ FAD $(f_1)_2A$ FAD $(f_1)_3A$ STU $(\geq f_1) A$ NZA $---\rightarrow (A-15)$ SXA-1 $--\rightarrow (A-14)$ (A-15)RAURAA T_b RAC $-\rightarrow K-Eva1$ RAALoc K_b

RAB	Loc ₂ K _b
RAC	\longrightarrow BT
RAU	$\mathbf{r}^{\mathbf{p}_{3}}$
NZU	(A-16)
RAC	> K-Eval
RAA	Loc K p3
RAB	$^{\rm Loc}2^{\rm K}p^3$
RAC	→ BT
LDD	^{HK} 4
RAC	HK ₄
LDD	→ 0
SET	
STI	θ ₄
RAA	loc K _T
RAB	Loc ₂ K _T
RAC	> BT
RAU	$^{\mathrm{T}}\mathrm{p2}$
RAC	──→ K-Eval
LDD	нкз
RAC	HK ₃
LDD	→ 0
SET	

.

STI	θ3	
RAA	Loc H	ζ
RAB	Loc ₂ I	K
RAC		BT
RAU	\mathbf{p}_{1}	
RAC	>	K-Eval
LDD	HK_2	
RAC	HK_2	
LDD	\rightarrow	θ
SET		
STI	θ_2	
RAA	LocK	
RAB	Loc ₂ F	Σ.
RAC	\longrightarrow	BT
RAU	T _d	
RAC	\rightarrow	K-Eval
LDD	HK 1	
RAC	HKı	
LDD	\rightarrow	θ
SET		
STI	9 ₁	
RAU	т р	
RAC	-	K-Eval

SET LDI Θ1 ^{HK}1 LDD HK₁ RAC LDD *→* β SET β 1 STI RAV T_{p2} RAC \longrightarrow K-Eval SET θ₂ LDI HK2 LDD HK_{2} RAC LDD $\longrightarrow \beta$ SET $^{\beta}$ 2 \mathbf{STI} RAU $^{\mathrm{T}}\mathrm{p3}$ RAC \longrightarrow K-Eval SET 9₃ LDI $^{\rm HK}$ 3 LDD RAC $^{\rm HK}$ 3 LDD

SET STI β_3 т_b RAU \longrightarrow K-Eval RAC SET 9₄ LDI HK4 LDD HK4 RAC LDD β \rightarrow SET STI \rightarrow β_4 LDD 1 STD Р STD D d_{LK} LDD d_{LK} STD (p₁)_{LK} RAU → (A-16) NZU $(p_1)_{LK}$ STU loc 0₁ (A-20) RAA $\log_2 \theta_1$ RAB RAC → BT

	RAA	loc ^β l
	RAB	$\log_2^{\beta} 1$
	RAC	> BT
	LDD	Section No.
	RAB	Section No.
	LDD	HK1
	RAC	HK1
	LDD	$\longrightarrow s_m$
	STU	Sm ₁
	RAU	(p ₁) _{LK}
	NZU	→ (A-19)
	STU	(p ₁) _{LK}
	RAU	(p ₂) _{LK}
	NZU	·→ (A-17)
(A-21)	STU	(p ₂) _{LK}
	RAA	loc θ_2
	RAB	$\log_2 \theta_2$
	RAC	\longrightarrow BT
	RAA	loc β_2
	RAB	$\log_2 \beta_2$
	RAC	\longrightarrow BT
	LDD	Section No.
	RAB	Section No.

LDD
$$HK_2$$

RAC HK_2
LDD $\longrightarrow S_m$
STU S_m2
RAU $(P_2)_{LK}$
NZU $\longrightarrow (A-19)$
STU $(P_2)_{LK}$
RAU $(P_3)_{LK}$
RAU $(P_3)_{LK}$
RAU $(P_3)_{LK}$
RAU $(P_3)_{LK}$
RAU $(P_3)_{LK}$
RAU $(D_3)_{LK}$
RAA $10c \ \theta_3$
RAB $10c_2 \ \theta_3$
RAB $10c_2 \ \theta_3$
RAC $\longrightarrow BT$
RAA $10c \ \beta_3$
RAC $\longrightarrow BT$
LDD Section No.
RAB Section No.
LDD HK_3
RAC HK_3
LDD $\longrightarrow S_m$
STU S_m3

$$\begin{array}{cccc} \operatorname{RAU} & \left(\operatorname{P_{3}}\right)_{\mathrm{LK}} \\ \operatorname{NZU} & \longrightarrow & (\operatorname{A-19}) \\ \operatorname{STU} & \left(\operatorname{P_{3}}\right)_{\mathrm{LK}} \\ \operatorname{LDD} & \left(\operatorname{b}\right)_{\mathrm{LK}} \\ \operatorname{LDD} & \left(\operatorname{b}\right)_{\mathrm{LK}} \\ \operatorname{STU} & \left(\operatorname{b}\right)_{\mathrm{LK}} \\ \operatorname{RAA} & \operatorname{loc} \Theta_{4} \\ \operatorname{RAB} & \operatorname{loc}_{2} \Theta_{4} \\ \operatorname{RAC} & \longrightarrow & \operatorname{BT} \\ \operatorname{RAA} & \operatorname{loc} \beta_{4} \\ \operatorname{RAB} & \operatorname{loc}_{2} \beta_{4} \\ \operatorname{RAC} & \longrightarrow & \operatorname{BT} \\ \operatorname{LDD} & \operatorname{Section} & \operatorname{No.} \\ \operatorname{LDD} & \operatorname{Section} & \operatorname{No.} \\ \operatorname{LDD} & \operatorname{HK}_{4} \\ \operatorname{RAC} & \operatorname{HK}_{4} \\ \operatorname{LDD} & \longrightarrow & \operatorname{S}_{m} \\ \operatorname{STU} & \operatorname{S}_{m4} \longrightarrow & (\operatorname{A-2}) \\ (\operatorname{A-16}) & \operatorname{RAU} & \left(\operatorname{b}\right)_{\mathrm{LK}} \longrightarrow & (\operatorname{A-20}) \\ (\operatorname{A-17}) & \operatorname{RAU} & \left(\operatorname{b}\right)_{\mathrm{LK}} \longrightarrow & (\operatorname{A-21}) \end{array}$$

,

(A-18)	RAU	(b) _{LK}
	STU	$(b)_{LK} \rightarrow (A-22)$
(A-19)	RAA	loc 9 ₁
	RAB	$10c_2 \theta_1$
	RAC	\longrightarrow BT
	RAA	loc β_1
	RAB	$\log_2 \beta_1$
	RAC	\rightarrow BT
	LDD	Section No.
	RAC	Section No.
	LDD	S _{ml}
	STD	S _{ml}
	LDD	$\longrightarrow \left(\frac{d}{p}\right)_{i}$
	RAA	loc $(\frac{d}{p_1})$
·	RAB	$\log_2 \left(\frac{d}{p_1}\right)$
	RAC	\longrightarrow BT
	RAU	S _{m2}
	NZU	\longrightarrow (A-23)
(A-27)	STU	S _{m2}
	RAA	loc θ_2

ş

LDD Section No. RAC Section No. $LDD \longrightarrow (\frac{d}{p})_i$ loc $(\frac{p_2}{p_3})$ RAA $\log_2 \left(\frac{p_2}{p_3}\right)_i$ RAB \longrightarrow BT RAC s_{m4} RAU \longrightarrow (A-25) NZU (A-29) STU S_{m4} loc θ_4 RAA 100₂ 0₄ RAB \longrightarrow BT RAC loc β_4 RAA $\log_2 \beta_4$ RAB \longrightarrow BT RAC Section No. LDD RAC Section No. $\longrightarrow (\frac{d}{p})_{\mathbf{i}}$ LDD RAA loc $(\frac{p_3}{b})$ i

RAB $10c_2 \left(\frac{p_3}{b}\right)_i$ RAC \longrightarrow BT \longrightarrow (A-26) $\frac{p_2}{p_1}$ (A-23) LDD STD \longrightarrow (A-27) $\frac{p_3}{p_2}$ (A-24) LDD $STD \longrightarrow (A-28)$ $\frac{B}{P_3}$ (A-25) LDD ←→ (A-29) STD RAB n - 1 (A-26) RAU 1 <u>d</u> p₁ FAD $1 + \frac{d}{p_1}$ STU S_{m2} RAU → (A-30) NZU 1 RAU $(\frac{p_1}{p_2})_i B$ FDV $(\frac{p_2}{p_1})_i$ STU s m3 RAU

$$\begin{array}{cccc} \operatorname{NZU} & \longrightarrow & (\operatorname{A}-\operatorname{31}) \\ \operatorname{RAU} & 1 \\ & & & & & \\ \operatorname{FDV} & \left(\frac{\operatorname{P}_2}{\operatorname{P}_3}\right)_i \operatorname{B} \\ & & & & \\ \operatorname{STU} & \left(\frac{\operatorname{P}_3}{\operatorname{P}_2}\right)_i \\ & & & & & \\ \operatorname{RAU} & & & & \\ \operatorname{NZU} & \longrightarrow & (\operatorname{A}-\operatorname{32}) \\ & & & & & \\ \operatorname{RAU} & \left(\frac{\operatorname{P}_2}{\operatorname{P}_1}\right)_i \\ & & & & & \\ \operatorname{FMP} & \left(\frac{\operatorname{P}_3}{\operatorname{P}_2}\right)_i \\ & & & & & \\ \operatorname{STU} & \left(\frac{\operatorname{P}_3}{\operatorname{P}_1}\right)_i \\ & & & & & \\ \operatorname{FDV} & \left(\frac{\operatorname{P}_3}{\operatorname{P}_1}\right)_i \\ & & & & & \\ \operatorname{FAD} & \left(\frac{\operatorname{P}_2}{\operatorname{P}_1}\right)_i \\ & & & & & \\ \operatorname{FAD} & \left(\frac{\operatorname{P}_2}{\operatorname{P}_1}\right)_i \\ & & & & & \\ \operatorname{FAD} & 1 & + & & \\ & & & & \\ \operatorname{RAU} & \left(\operatorname{r}_i\right) & \operatorname{B} \end{array}$$

FDV
$$\Sigma$$

STU $(p_1)_i \longrightarrow (A-33)$
(A-30) RAU (f_i) B
FDV $1 + \frac{d}{p_1}$
STU (b_i) B
RSU (b_i) B
FAD (f_i) B
STU $d_i \longrightarrow (A-33)$
(A-31) RAU $1 + \frac{d}{p_1}$
STU Σ
RAU (f_i) B
FDV Σ
STU $(p_1)_i$ B
RAU $(\frac{b}{p_1})$
FMP $(p_1)_i$ B
RAU $(\frac{d}{p_1})_i$ B
RAU $(\frac{d}{p_1})_i$ B
FMP $(p_1)_i$ B

STU
$$(d_i) \ B \longrightarrow (A-33)$$

 $(A-32) \ RAU$ $(\frac{P_2}{P_1})$
FMP $(\frac{b}{P_2})$
STU $(\frac{b}{P_1})$
FAD $(\frac{P_2}{P_1})$
FAD $1 + \frac{d}{P_1}$
STU Σ
RAU $(f_i) \ B$
FDV Σ
STU $(p_1)_i \ B$
RAU $(\frac{b}{P_1})$
FMP $(p_1)_i \ B$
RAU $(\frac{P_2}{P_1})$
FMP $(p_1)_i \ B$
RAU $(\frac{P_2}{P_1})$
FMP $(p_1)_i \ B$
STU $(p_2)_i \ B$
RAU $(\frac{d_1}{P_1}) \ B$
FMP $(p_1)_i$

(A-33) NZB (A-34) $SXB-1 \longrightarrow (A-26)$ (A-34) RAA loc d RAB loc_2 d \rightarrow BT RAC RSC \rightarrow MF T d RAU \rightarrow DP RSC LDD T d STD T_d RAU р 1 \longrightarrow (A-35) NZU loc p_l RAA $10c_2^{p_1}$ RAB \longrightarrow BT RAC RAC \longrightarrow MF т_{р1} RAU \rightarrow BP RAC ^тр₁ LDD т_р1 STD ^р2 RAU → (A-35) NZU

	RAA	loc p ₂
	RAB	loc2p2
	RAC	\longrightarrow BT
	RAC	\rightarrow MF
	RAU	Tp2
	RAC	\rightarrow BP
	LDD	Tp2
	STD	Tp2
	RAU	p ₃
	NZU	→ (A-35)
	RAA	loc P ₃
	RAB	loc2p3
	RAC	\longrightarrow BT
	RAC	\longrightarrow MF
	RAU	T _{p3}
	RAC	\longrightarrow BP
	LDD	Tp3
	STD	Tp3
(A-35)	RAA	loc b
	RAB	loc ₂ b
	RAC	\rightarrow BT

 $RAC \longrightarrow MF$ $RAU - T_b$ \longrightarrow BP RAC LDD Т_b STD т_b RAA 4 (T_{d_1}) A (A-38) RAU (T_{d2}) A FSB STU $\Delta \mathbf{\hat{r}}$ tolerance RAU $\Delta \mathbf{T}$ FSM → (A-36) BMI (A-37) NZA SXA-1 (A-38) (A-37) LDD D STD D LDD p₁ р₁ STD LDD \mathbf{p}_2 \mathbf{STD} P_2 р₃ LDD \mathbf{P}_{3} STD

LDD	В		
STU	в		
LDD	P-Pch		
STD	P-Pc	h	
RAC	\rightarrow	Pch	
LDD	0		
STD	0.		
RAL	P-Pc	h	
LDD	\rightarrow	Pch	
LDD	T d		
STD	T d		
LDD	т р		
STD	т _р		
LÐD	^т _{р2}		
STD	τ _{p2}		
LDD	Tp3		
STD	т р ₃		
LDD	T _b	I	
STD	т _ь		
LÐÐ	0		
STD	0		

RAL P-Pch \rightarrow Pch \rightarrow load LDD LDD LKl LK₁ RAC нк LDD HK 1 RAA (d_i) C RAU (d_i) A FDV $(rac{d_{LK}}{d_{HK}})$ STU (f_i)₁C RAU $(f_i)_1^A$ FDV $(\frac{\mathbf{f}_{\mathrm{LK}}}{\mathbf{f}_{\mathrm{HK}}})$ STU (f_i)₂C RAÚ \rightarrow (A-39) NZU (f₁)₂A \mathbf{FDV} $(\frac{f_{LK}}{f_{HK}})_{2}$ STU (f_i)₃C RAU \longrightarrow (A-39) NZU $(f_i)_3^A$ FDV

STU
$$(\frac{f_{LK}}{f_{HK}})_{HK}$$

(A-39) RAU LK_2
NZU \longrightarrow (A-40)
RAC LK_2
LDD HK_2
RAA HK_2
RAA HK_2
RAU $(p_i)_1C$
FDV $(p_i)_1A$
STU $(\frac{p_{LK}}{p_{HK}})_1$
RAU $(f_i)_1C$
FDV $(f_i)_1A$
STU $(\frac{f_{LK}}{f_{HK}})_1$
RAU $(f_i)_2C$
NZU \longrightarrow (A-41)
FDV $(f_i)_3A$

STU
$$(\frac{f_{LK}}{f_{HK}})_3$$

(A-41) RAU LK_3
NZU \longrightarrow (A-40)
RAC LK_3
LDD HK_3
RAA HK_3
RAA HK_3
RAU $(p_1)_2C$
FDV $(p_1)_2A$
STU $(\frac{p_{LK}}{p_{HK}})_2$
RAU $(f_1)_1C$
FDV $(f_1)_1A$
STU $(\frac{f_{LK}}{f_{HK}})_1$
RAU $(f_1)_2C$
NZU \longrightarrow (A-42)
FDV $(f_1)_3A$
STU $(\frac{f_{LK}}{f_{HK}})_2$

$$\begin{array}{cccc} \mathrm{STU} & (\frac{\mathbf{f}_{\mathrm{LK}}}{\mathbf{f}_{\mathrm{HK}}})_{3} \\ (\mathrm{A}-42) & \mathrm{RAU} & \mathrm{LK}_{4} \\ & \mathrm{NZU} & \longrightarrow & (\mathrm{A}-40) \\ & \mathrm{RAC} & \mathrm{LK}_{4} \\ & \mathrm{LDD} & \mathrm{HK}_{4} \\ & \mathrm{RAA} & \mathrm{HK}_{4} \\ & \mathrm{RAA} & \mathrm{HK}_{4} \\ & \mathrm{RAU} & (\mathbf{p}_{1})_{3}\mathbf{C} \\ & \mathrm{FDV} & (\mathbf{p}_{1})_{3}\mathbf{A} \\ & \mathrm{STU} & (\frac{\mathbf{p}_{\mathrm{LK}}}{\mathbf{p}_{\mathrm{HK}}})_{3} \\ & \mathrm{RAU} & (\mathbf{f}_{1})_{1}\mathbf{C} \\ & \mathrm{FDV} & (\mathbf{f}_{1})_{1}\mathbf{A} \\ & \mathrm{STU} & (\frac{\mathbf{f}_{\mathrm{LK}}}{\mathbf{f}_{\mathrm{HK}}}) \\ & \mathrm{RAU} & (\mathbf{f}_{1})_{2}\mathbf{C} \\ & \mathrm{NZU} & \longrightarrow & (\mathrm{A}-40) \\ & \mathrm{FDV} & (\mathbf{f}_{1})_{2}\mathbf{A} \\ & \mathrm{STU} & (\frac{\mathbf{f}_{\mathrm{LK}}}{\mathbf{f}_{\mathrm{HK}}} \\ & \mathrm{STU} & (\frac{\mathbf{f}_{\mathrm{LK}}}{\mathbf{f}_{\mathrm{HK}}} \\ & \mathrm{RAU} & (\mathbf{f}_{1})_{2}\mathbf{C} \\ & \mathrm{NZU} & \longrightarrow & (\mathrm{A}-40) \\ & \mathrm{FDV} & (\mathbf{f}_{1})_{3}\mathbf{C} \\ & \mathrm{NZU} & \longrightarrow & (\mathrm{A}-40) \\ & \mathrm{FDV} & (\mathbf{f}_{1})_{3}\mathbf{A} \end{array}$$

STU
$$(\frac{f_{LK}}{f_{HK}})_{3}$$

(A-40) RAU $(Rf_{1})_{2}$
FSB Rp_{1}
BMI \longrightarrow (A-43)
RAU $(Rf_{1})_{3}$
FSB Rp_{2}
BMI \longrightarrow (A-44)
RAU $(Rf_{1})_{4}$
FSB Rp_{3}
BMI \longrightarrow (A-45) or (A-46)
(A-43) LDD LK_{1}
RAC LK_{1}
LDD $(\beta_{1})_{C}$
STD $(\beta_{1})C$
LDD $(\Theta_{1})C$
STD $(\Theta_{1})C$
STD $(\Theta_{1})C$
LDD F_{1}
STD F_{1}
LDD D
STD D
LDD
$$R_d$$

STD R_d
LDD $(Rf_1)_1$
STD $(Rf_1)_1$
LDD $\longrightarrow S$
STU $S_{11} \longrightarrow (A-47)$
(A-44) LDD LK_2
RAC LK_2
LDD $(\beta_2)C$
STD $(\beta_2)C$
STD $(\beta_2)C$
STD $(\beta_2)C$
STD $(\beta_2)C$
STD $(\beta_2)C$
LDD F_1
STD F_1
LDD F_1
STD F_1
LDD p_1
STD p_1
LDD Rp_1
STD Rp_1
LDD $(Rf_1)_2$
STD $(Rf_1)_2$

$$LDD \longrightarrow S$$

$$STU S_{21} \longrightarrow (A-47)$$

$$(A-45) LDD LK_{3}$$

$$RAC LK_{3}$$

$$LDD (\beta_{3})C$$

$$STD (\beta_{3})C$$

$$LDD (\theta_{3})C$$

$$STD (\theta_{3})C$$

$$LDD F_{1}$$

$$STD F_{1}$$

$$LDD F_{2}$$

$$STD P_{2}$$

$$LDD RP_{2}$$

$$STD RP_{2}$$

$$LDD RP_{2}$$

$$STD RP_{2}$$

$$LDD (Rf_{1})_{3}$$

$$STD (Rf_{1})_{3}$$

$$STU S_{31} \longrightarrow (A-47)$$

$$(A-46) LDD LK_{4}$$

$$RAC LK_{4}$$

$$LDD (\beta_{4})C$$

 $(\beta_4)C$ STD (0₄)C LDD (0₄)C STD F₁ LDD F1 STD LDD p_3 STD p_3 $^{Rp}3$ LDD $^{Rp}3$ STD $(Rf_1)_4$ LDD $(Rf_1)_4$ STD \longrightarrow s LDD STU s 41 $(Rf_2)_2$ (A-47) RAU \rightarrow (A-57) NZU FSB Rp₁ BMI $(Rf_2)_3$ RAU $^{Rp}2$ FSB \rightarrow (A-49) BMI $(Rf_{2})_{4}$ RAU

FSB Rp_3 \longrightarrow (A-50) or (A-51) BMI (A-48) LDD LK 1 RAC (β₁)C LDD (β₁)C STD $(\Theta_4)C$ LDD (0₄)C STD **F**2 LDD $\mathbf{F}_{\mathbf{2}}$ STD LDD D STD D $\mathbb{R}^{\mathbf{R}}$ d LDD R d STD $(Rf_{2})_{1}$ LDD $(Rf_2)_1$ STD \rightarrow s LDD $s_{12} \rightarrow (A-52)$ STU (A-49) LDD $\frac{LK}{2}$ $\frac{LK}{2}$ RAC (β₂)C LDD

(β₂)C STD (0₂)C LDD $(\boldsymbol{\theta}_2)$ C STD F_2 LDD STD F_2 LDD **p**₁ STD p_1 LDD Rp₁ ^{Rp}1 \mathbf{STD} $(Rf_2)_2$ LDÐ $(\mathbf{Rf}_2)_2$ STD \longrightarrow s LDD $s_{22} \rightarrow (A-52)$ STU LK3 (A-50) LDD LK3 RAC (β₃)C LDD (β₃)C STD (0₃)c LDD (0₃)C STD F_2 LDD STD F_2 LDD \mathbf{p}_2

	STD	P2	
	LDD	Rp ₂	
	STD	Rp ₂	
	LDD	$(Rf_2)_3$	
	STD	$(Rf_2)_3$	
	LDD	\rightarrow s	
	STU	$s_{32} \longrightarrow (A-5)$	2)
(A-51)	LDD	LK ₄	
	RAC	LK4	
	LDD	(β ₄)C	
	STD	(β ₄)C	
	LDD	(0 ₄)C	
	STD	(0 ₄)C	
	LDD	F ₂	
	STD	F ₂	
	LDD	p ₃	
	STD	P ₃	
	LDD	Rp_3	
	STD	Rp ₃	
	LDD	$(Rf_2)_4$	
	STD	$(Rf_2)_4$	

LDD
$$\longrightarrow$$
 S
STU S_{42}
(A-52) RAU $(Rf_3)_2$
NZU (A-57)
FSB Rp_1
BMI \longrightarrow (A-53)
RAU $(Rf_3)_3$
FSB Rp_2
BMI \longrightarrow (A-54)
RAU $(Rf_3)_4$
FSB Rp_3
BMI \longrightarrow (A-55) or (A-56)
(A-53) LDD LK_1
RAC LK_1
LDD $(\beta_1)C$
STD $(\beta_1)C$
LDD $(\Theta_1)C$
STD $(\Theta_1)C$
LDD F_3
STD F_3
LDD D

	LDD	S	
	STU	s_{23}	(A-57)
(A-55)	LDD	$^{LK}3$	
	RAC	LK3	
	LDD	(β ₃)C	
	STD	(β ₃)C	
	LDD	(03)C	
	STD	(0 ₃)C	
	LDD	F ₃	
	STD	\mathbf{F}_{3}	
	LDD	^p 2	
	STD	P2	
	LDD	Rp_2	
	STD	Rp_2	
	LDD	$(Rf_3)_3$	
	STD	$(Rf_3)_3$	
	LDD	\rightarrow s	
	STD	$s_{33} \longrightarrow$	(A-57)
(A-56)	LDD	LK4	
	RAC	LK4	
	LDD	(_{β4})c	
	STD	(β ₄)C	

	LDD	(0 ₄)C
	STD	(0 ₄)C
	LDD	F ₃
	STD	F ₃
	LDD	p ₃
	STD	^p 3
	LDD	$^{Rp}3$
	STD	$^{Rp}3$
	LDD	$(\mathbf{Rf}_3)_4$
	STD	$(\mathbf{Rf}_3)_4$
	LDD	→ s
	STU	s ₄₃
(A-57)	LDD	0
	STD	0
	RAŲ	P-Pch
	LDD	\longrightarrow Pch
	LDÐ	0
	STD	0
	RAL	P-Pch
	LDD	\longrightarrow Pch

HALT

VITA

Richard Sibley Joyner

Candidate for the Degree of

Master of Science

Thesis: MINIMUM STAGE CALCULATIONS FOR COMPLEX FRACTIONATORS

Major Field: Chemical Engineering

Biographical:

Personal Data: Born in Guthrie, Oklahoma, December 7, 1932, the son of Walthall R. and Marjorie P. Joyner.

- Education: Attended elementary, secondary and high school in Guthrie, Oklahoma, graduated from Guthrie High School; received the Bachelor of Science degree from Oklahoma State University in May, 1957; completed requirements for Master of Science degree in May, 1961. Membership in scholarly or professional societies includes Sigma Tau and the American Institute of Chemical Engineers.
- Professional experience: Process Engineer for Texas Eastman Company, Longview, Texas from June, 1957 to August, 1959; Process Engineer for Phillips Petroleum Company from June, 1960 to September, 1960.