MINIMUM STAGE CALCULATIONS FOR COMPLEX

FRACTIONATORS :

By
RICHARD SIBLEY JOYNER
Bachelor of Science Oklahoma State University Stillwater, Oklahoma

1961

Submitted to the faculty of the Graduate School of the Oklahoma State University in partial
fulfillment of the requirements
for the degree of
MASTER OF SCIENCE
May, 1961

MINIMUM STAGE CALCULATIONS FOR COMPLEX

FRACTIONATORS

Thesis Approved:

ii
472398

PREFACE

A method has been developed for estimating the minimum number of theoretical stages in multifeed, multiproduct distillation columns. In addition to the minimum number of stages the method predicts product compositions, product flow rates and feed and product entry or withdrawal points. The method has been prow grammed for the IBM 650 Computer although it is well suited to hand calculations. The method was tested by comparison with a simulation of a complex columaperating at total reflum. The results of the comparison indicate that the method will give reliable estimates of the performance of a compler colum at total reflux.

The author wishes to thank Dr. R. N. Maddox, whose advice and encouragement made this project possible; the staff of the oklahoma State University Computing Center for their cooperation and assistance; and Continental Oil Company for its fellowship which in part supported this work.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. SURVEY OF LITERATURE 3
III. THEORY 4
IV. RESULTS
v. CONCLUSIONS
LIST OF NOMENCLATURE 25
BIBLIOGRAPHY 27
APPENDIX A 28

LIST OF ILLUSTRARIONS

Figure Page

1. McCabe-Thiele Diagram 5
2. Complex Colurn 10
LIST OR TABLES
Table
I. Effect of Feed Plate Location on the Distillate Composition at Total Reflux 17
II. Optimum Feed Plate Location 18
III. Comparison Between Proposed Method and Platemby- Plate Calculation for a Complex Column 20
IV. Comparison Between Proposed Method and Plate-by- Plate Calculation for a Complex Column 22

CHAPTER I

INTRODUCTION

The determination of the minimam number of theoretical stages required to achieve a given separation is a useful tool in the design of multicomponent fractional distillation colmms. The calculation of the minimum number of theoretical stages provides a fast method of estimating the performance of a proposed column. In a short time, several alternate designs of the colum could be evaluated for reasibility before applying more rigorous design techniques such as relaxation methods or plate-tomplate calculations.

Several methods have been suggested for calculating the minimum number of theoretical stages in single feed, two-product columns. The most suitable and most widely accepted short-cut methods are those which were proposed by Fenslre ${ }^{(3)}$ and Winn (10).

The Fenske ${ }^{(3)}$ method relates the minimum number of stages, separation and relative volatility, assmang constant relative volatility throughout the column. The Winn (10) method relates minimum number of stages, separation and two characteristic con stants which are functions of the equilibrium distribution ratios (K-values) of the arbitrary ley components.

A method for use on multifeed, multiproduct distillation columns has been developed and was tested in this work usimg an
IBN 650 Computer. A modification of the method has made possible
the calculation of the feed entry point.Although an IBM 650 was used for evaluation of the method inthis work, the method is readily adapted to slide rule or deskcalculator computation.

CHAPTER II

SURVEY OF LITERATURE

Several methods have been suggested for calculating the pera formance of a fractionator at total reflux. These may be separated into two general categories; those methods which utilime tray-bytray calculations and those which employ semimempirical equations.

The first of these types is by far the most difficult and time consuming. Several procedures have been employed in making the tray-by-tray calculations. Amundson and Pontimen (1) perform the tray calculations by solving the heat and material balance equations using matrix techniques. This method requires the solum tion and inversion of large matrices, thereby rendering the method practically useless for hand calculations. Lyster, et al ${ }^{(5)}$ make tray calculations utilizing the Theile-Geddes ${ }^{(8)}$ technique. Their method requires the use of a large computer, although it is well known that the TheilemGeddes (8) method is easily adapled to hand calculations.

Ddmister ${ }^{(2)}$ performs the tray calculations using a method based on absorbing and stripping factors.

For any of these tray-by-tray techniques an estimate of the product compositions, total strean flow rates and the number of stages would be extremely helpful.

The second of the general types, semi-empirical equations, has been well received by the Chemical Engineering profession, largely because of the ease by which calculations are made and the reduced time requirements. Since this type of callalation is the basis of this worlc, it will be treated in greater detail in the Theory Chapter than the f irst method.

CHAPMER III

THEORY

The operation of a fractionator at total reflux may best be visualired by referring to the classical Mccabe-Theile ${ }^{(6)}$ diagram, Figure I. At total reflux, all of the overhead product is returned to the column and no bottom product is withdrawn. This condition is of theoretical interest ondy because a column operating at total reflux produces no product and performs mo useful function.

Another concept of total reflux is that of considering the column to be of infinite cross-section with finite feed and product streams. Under these circumstances the colum is making the desired products from the given feed composition.

From a design standpoint a colum operating at total reflux indicates the minimm number of stages required to make a speciried separation. Since no overhead product is withdrawn from the collum, or the reflus is very much larger than the distillate product, the slope of the operating line, $\frac{L}{L+D}$, is unity and coincides with the diagonal $y=x$ line。 With the slope of the operating line equal to one, the step from the operating line to the equilibrium line is a maximum, hence, the smallest number of steps for a given separation.

Referring again to Figures, it may be seen that the number of stages at total reflux is independent of the composition at which the feed is introduced as well as the condition of the feed

FIGURE I
MCCABE-THIELE DIAGRAM
(whether it is a liquid, vapor or a mixture of liquid and vapor). Obviously, the movement of the feed entry point must be confined to any point between the distillate and bottoms product compositions. Some authors have based their derivations of equations describing column operation at total reflux on constant molal overflow from plate-to-plate. The difference between passing streams on any plate above the feed plate is the distillate and difference below the feed plate is the bottoms product.

Or

$$
\begin{aligned}
& \mathrm{V}=\mathrm{L}+\mathrm{D} \\
& \mathrm{~L}=\mathrm{V}+\mathrm{B}
\end{aligned}
$$

The total reflux condition implies V and $L \gg D$ and B so that $\mathrm{V}=\mathrm{L}$. Thus, the constant molal overflow assumption is unecessary.

Fenske ${ }^{(3)}$ derived relations to calculate the minimum number of stages in single feed, two product fractionators. Constant relative volatility and constant molal overflow were the basic assumptions. The Fenske equation is derived as follows:

$$
\begin{aligned}
& y_{\mathrm{LK}}=\mathrm{K}_{\mathrm{LK}} \mathrm{x}_{\mathrm{LK}} \\
& \mathrm{y}_{\mathrm{HK}}=\mathrm{K}_{\mathrm{HK}} \mathrm{x}_{\mathrm{HK}}
\end{aligned}
$$

dividing:

$$
\begin{equation*}
\frac{y_{L K}}{y_{H K}}=\sigma_{L K-H K} \frac{x_{L K}}{x_{H K}} \tag{1}
\end{equation*}
$$

Equation (1) may be converted to molar ratios
hence

$$
\begin{equation*}
\frac{V_{\mathrm{LK}}}{\tilde{V}_{\mathrm{HK}}}=\gamma_{\mathrm{LK}-\mathrm{HK}} \frac{1_{\mathrm{LK}}}{1_{\mathrm{HIK}}} \tag{2}
\end{equation*}
$$

Material balance around the column above the feed gives

$$
\begin{align*}
& Z_{n L K}=1_{(n+1) L K}+d_{L K} \tag{3}\\
& 7_{n H K}=l_{(n+1)} H K+d_{H K} \tag{4}
\end{align*}
$$

At total reflux $d_{L K}$ and $d_{H K}$ are very small when compared to column internal stream flows.

Dividing equation (3) by equation (4), gives:

$$
\frac{V_{n L K}}{V_{n H K}}=\frac{l_{(n+1) L K}}{l_{(n+1) H K}}
$$

Substituting in equation (2) gives

$$
\begin{equation*}
\frac{1_{(n+1) L K}}{l_{(n+1) H K}}=\alpha_{\mathrm{LK}-\mathrm{HK}} \frac{l_{\mathrm{nLK}}}{1_{\mathrm{nHK}}} \tag{5}
\end{equation*}
$$

Equation (5) relates the ratio of the mols of liquid of the light key and the heavy key components in the liquid on any tray to their ratio on the plate above. If these ratios were obtained from plate I through n the result would be

$$
\begin{equation*}
\left(\frac{1_{\mathrm{nLK}}}{1_{\mathrm{nHK}}}\right)=\alpha_{\mathrm{LK}-\mathrm{HK}}^{\mathrm{n}}\left(\frac{1_{\mathrm{DLK}}}{I_{\mathrm{DHK}}}\right) \tag{6}
\end{equation*}
$$

Thus, the exponent of α is the number of perfect theoretical trays required to make the desired separation. Equation (6) may be rearranged to:

$$
\begin{equation*}
\alpha_{L K-H K}^{n}=\left(\frac{d}{b}\right)_{L K}\left(\frac{b}{d}\right)_{\text {MKK }} \tag{7}
\end{equation*}
$$

Which is the usual form of Fenske's equation.
Winn's relation for calculating the minimun number of stages at total reflux is similar to Fenske's equation. Winn found that if the K-values of two components were plotted on log-log coordinates at various temperatures, an essentially straight lineiresulted. With this fact and the fact that a straight line on log-log coordinates is expressed analytically by

$$
\begin{equation*}
K=\beta\left(\mathbb{K}^{\prime}\right)^{\theta} \tag{8}
\end{equation*}
$$

Where β and θ are constants, Winn proceeded in a manner similar to Fenske. The resulting equation is

$$
\beta_{L K-H K}^{n}=\left(\frac{x_{D}}{x_{B}}\right){ }_{L K}\left(\frac{x_{B}}{x_{D}}\right)_{H K}^{\ominus}
$$

This equation may be rearranged to give

$$
\begin{equation*}
\beta{ }_{\text {LK-HK }}^{n}=\left(\frac{d}{b}\right)_{L K}\left(\frac{b}{a}\right)_{M K}^{\theta}\left(\frac{B}{D}\right)^{1-\theta} \tag{9}
\end{equation*}
$$

which is similar to equation (7). β and θ are determined by writing two equations of the form of (8), one for the temperature at the top of the column and one for the bottom of the column.

$$
\begin{array}{ll}
K_{\mathrm{LK}}=\beta\left(\mathrm{K}_{\mathrm{HK}}\right)^{\theta} & \text { at } \mathrm{T}_{\mathrm{D}} \\
\mathrm{~K}_{\mathrm{LK}}=\beta\left(\mathrm{K}_{\mathrm{HK}}\right)^{\theta} & \text { at } \mathrm{T}_{\mathrm{B}}
\end{array}
$$

Solving these equations simultaneously yields θ. β is determined by back substitution.

The winn equation does not suffer from the assumption of constant relative volatility. Rather, it is limited only by the reliability of the K-data available, or if equation (8) does not adequately represent the K-value data,

Underwood ${ }^{(9)}$, derived an expression which is similar to that of Fenske and employed the same assumptions.

The Winn equation as it was originally derived was intended for single feed, two product fractionators. If, however, one considers a complex fractionator, Figure II, as being composed of several "sections", one section between each product stream, an expression similar to the Winn equation may be written. The section concept has been used successfully by $\mathbb{E} d m i s t e r{ }^{(2)}$, in absorber calculations and in distillation calculations by absorption factor methods. In the case of an overhead product, a side product and a bottoms product, there would be two sections. The calculations are made from the distillate composition to the side draw composition, that is, calculating over section 1. If we assume equations of the type of (8) to be valid then the equation would be written

FIGURE 2
COMPLEX COLUMN

$$
\begin{equation*}
\beta^{S_{M_{l}}}=\left(\frac{d}{p}\right) L K \quad\left(\frac{p}{b}\right)^{\theta_{1}}\left(\frac{p}{D}\right)^{1-\theta_{1}} \tag{10}
\end{equation*}
$$

for the section between the distillate and the side product and

$$
\begin{equation*}
\beta^{S_{M_{2}}}=\left(\frac{p}{b}\right) L K \quad\left(\frac{b}{p}\right)^{\theta_{2}} \quad\left(\frac{B}{p}\right)^{1-\theta_{2}} \tag{1I}
\end{equation*}
$$

for the section between the side product and the bottoms product. These equations neglect the location of the feed plate in relation to the side product. As pointed out above, the location of the reed plate and feed condition have no effect on the total number of stages. Therefore, by analogy, the feed plate location should have no effect on the number of stages in a complex fractionator.

To extend the method to more than one side product and/or more than one feed, it is necessary only to write an additional equation of the form of (10) for each additional "section" of the column. Since the location of the feed plate has no effect on the number of stages, it follows that any number of feeds would be treated in the same way. In fact, the feeds may be summed and treated as one feed for calculation purposes. The material balance
$d+p_{1}+p_{2}+\ldots+p_{n}+b=f_{1}+f_{2}+\ldots+f_{n}=\Sigma f_{i}=f_{T}$
assumes that each feed will be introduced at the proper point in the column. The actual location of the feed entries will be considered later.

The total number of plates required at total reflux is the sum of the number of stages in each section. In addition to the total number of stages, the component distributions in each stream may also be calculated. To calculate the product distributions, equation (10)
may be written

$$
\begin{equation*}
\beta_{i}^{S_{M_{l}}}=\left(\frac{d}{p}\right)_{i}\left(\frac{p}{b}\right)_{H K}^{\theta_{i}}\left(\frac{p}{D}\right)^{1-\theta_{i}} \tag{13}
\end{equation*}
$$

with the subscript, i, referring to any component, using the heavy key component as a base for the calculation of β_{i} and θ_{i}. A material balance around the column gives:

$$
\begin{equation*}
f_{r}=d+b+p_{1}+p_{2}+\cdots+p_{n} \tag{12}
\end{equation*}
$$

for each component.
Dividing both sides by p_{1} (if there are no side products divide by d) gives:

$$
\begin{equation*}
\frac{f_{T}}{p_{1}}=1+\frac{d}{p_{1}}+\frac{b}{p_{1}}+\frac{p_{2}}{p_{1}}+\frac{p_{3}}{p_{1}}+\ldots+\frac{p_{n}}{p_{1}} \tag{14}
\end{equation*}
$$

The component distribution ratios as calculated by equation (13) will be

$$
\frac{d}{p_{1}}, \frac{p_{1}}{p_{2}}, \frac{p_{2}}{p_{3}}, \ldots \frac{p_{n-1}}{p_{n}}, \frac{p_{n}}{b}
$$

The ratios may be converted for use in (12) by noting that:

$$
\frac{p_{2}}{p_{1}}=1 / \frac{p_{1}}{p_{2}}, \frac{p_{3}}{p_{1}}=\frac{p_{2}}{p_{1}} \cdot \frac{p_{3}}{p_{2}}
$$

rearranging (13) so that

$$
\begin{equation*}
p_{1}=\frac{f_{T}}{1+\frac{d}{p_{1}}+\frac{p_{2}}{p_{1}}+\frac{p_{3}}{p_{1}}+\ldots+\frac{p_{n}}{p_{1}}+\frac{b}{p_{1}}} \tag{15}
\end{equation*}
$$

or

$$
p_{1}=\frac{f_{T}}{1+\frac{d}{p_{1}}+\frac{p_{2}}{p_{1}}+\left(\frac{p_{2}}{p_{1}}\right)\left(\frac{p_{3}}{p_{2}}\right)+\ldots+\left(\frac{p_{n}}{p_{n-1}}\right)\left(\frac{b}{p_{n}}\right)}
$$

and $d=\left(\frac{d}{p_{1}}\right) p_{1}, \quad p_{2}=\left(\frac{p_{2}}{p_{1}}\right) \quad p_{1}, \quad p_{3}=\left(\frac{p_{3}}{p_{1}}\right) p_{1} \quad$ etc.
For a two product column, (15) reduces to

$$
\mathrm{d}=\frac{\mathrm{f}_{\mathrm{T}}}{\mathrm{l}+\frac{\mathrm{b}}{\mathrm{~d}}}
$$

To test the utility of the above equations a progran for the IBM 650 Computer was written. The equations calculate the minimum number of stages for each section of the colum thereby locating the position of the side product streams. Since the feed(s) are summed, it is desirable to determine the position of the feed(s) relative to the product streams.

Robinson and Gilliland ${ }^{(7)}$ define an optimum intersection ratio, \varnothing, which relates the ratio of the compositions of the key components at the feed plate and the plate above. The ratio, \varnothing, is defined such that the optimum feed plate location is given by

$$
\begin{equation*}
\left(\frac{x_{L K}}{x_{H K}}\right)_{\mathrm{f}} \leq \not \varnothing \leq\left(\frac{\mathrm{x}_{\mathrm{LK}}}{\mathrm{x}_{\mathrm{HK}}}\right)_{\mathrm{f}+\mathrm{l}} \tag{17}
\end{equation*}
$$

where $f+l$ is the plate above the feed plate. Since the calculations performed to find the minimum number of stages gives product distributions only, the feed plate location must be calculated on the basis of
stream compositions rather than strean flow rates. If the ratio to be compared with the feed ratio occurs (n) plates from the feed plate, equation (17) must comply with this stipulationo The Fenske equation indicates a convenient relationship which may be utilized. Rewriting the Fenske equation for the section above the feed for a simple column gives

$$
\begin{aligned}
& \text { where: } \mathcal{S}^{S_{M}}=\text { minimum number of stages in the enriching } \\
& \text { section }
\end{aligned}
$$

This may be arranged so that:

or

$$
\begin{equation*}
\left(\frac{x_{L K}}{x_{H K}}\right)_{D}=\alpha_{M K-H K}^{S_{M E}} \quad\left(\frac{x_{L K}}{x_{W K}}\right)_{W} \tag{18B}
\end{equation*}
$$

Equation (18a) is similar to (17) 。 Since the winn β is similar to α, a better relation would be:

$$
\begin{equation*}
\left(\frac{x_{\mathrm{LK}}}{\mathrm{x}_{\mathrm{HK}}}\right)_{\mathrm{D}}=\beta_{\mathbb{E}}^{S_{M B}}\left(\frac{\mathrm{x}_{\mathrm{LK}}}{\mathrm{x}_{\mathrm{HKK}}}\right)_{\mathrm{F}}^{\theta_{\mathrm{L}}} \tag{19}
\end{equation*}
$$

The above indicates that the feed should be introduced at a point in the column where the ratio of the key components is equal to their ratio in the feed. Equation (19) provides a method of calculating the number of stages below the top of the column that the feed should be introduced.

For a complex fractionator, the ratio of the key components in each feed may be checked against their ratio in each product stream. For example, consider a single feed, threemproduct column. The key component ratio in the feed must be less than the ratio in the distillate, and greater than the ratio in the side product, if the feed is to be introduced above the side product. Symbolically:

$$
\left(\begin{array}{l}
\frac{p_{L K}}{p_{H K}}
\end{array}\right)<\left(\frac{f_{L K}}{f_{H K}}\right)<\left(\frac{d_{L K}}{d_{H K}}\right) \quad \text { feed between the side product }
$$

$$
\left(\frac{f_{\mathrm{LK}}}{f_{\mathrm{HK}}}\right)<\left(\frac{\mathrm{p}_{\mathrm{LK}}}{\mathrm{p}_{\mathrm{HK}}}\right)
$$

feed below side product
(Case 2)
Obviously, the key component ratios in the feed cannot be greater than the ratio in the distillate or less than the ratio in the bottoms. The location of the feed entry in Case l would be found by

$$
\beta_{1}^{S_{\mathrm{FE}}}=\left(\frac{d_{\mathrm{LK}}}{d_{\mathrm{HK}}}\right)\left(\frac{\mathrm{f}_{\mathrm{HK}}}{{ }_{\mathrm{f}_{\mathrm{LK}}}}\right)^{\theta_{1}}\left(\frac{\mathrm{~F}}{\mathrm{D}}\right)^{1-\theta_{1}}
$$

and in Case 2 by

$$
\begin{align*}
& S_{1}+S_{F P} \text { where } S_{F P} \text { is computed from } \\
& \beta_{2} S_{F P}=\left(\frac{p_{L K}}{p_{H K}}\right)\left(\frac{f_{L K}}{f_{H K}}\right)^{\theta_{2}}\left(\frac{F}{P}\right)^{l-\theta_{2}} \tag{21}
\end{align*}
$$

Similar expressions and procedures apply to more than one feed and more than one side product.

CHAPTER IV

RESULTS

To determine the effect of feed plate location on product composition at total reflux would be extremely difficult using an actual column. However, total reflux may be simulated. The simulation may be accomplished by using a digital computer for which a plate-by-plate calculation program has been written.

It was found using the above simulation, with an internal vapor rate of 10,000 mols $/ \mathrm{hr}$, that there was a negligible effect of feed plate location on the distillate composition. This may be seen in the following table:

TABLE I

Effect of Feed Plate Location on the Distillate Composition at Total Reflux

Feed Entry Point Plate No., Top Down

3

4

5

7

Mol Frn Light Key
in Distillate

Mol Frn Heavy Key $\underline{\underline{\text { in Distillate }}}$

$$
0.7559
$$

0.7552
0.7552
0.7554
0.2437
0.2442
0.2446
0.2443

The total number of theoretical stages was eleven.
The results of this study indicate that the assumption that the location of the feed had little or no effect on the composition
of the products is valid. Consequently, one may assume that the same negligible effect will occur if multiple feeds are summed and treated as one feed when dealing with complex fractionators. As pointed out in the previous discussion of reed plate location, the feed should be introduced at a point in the column at which the ratio of the compositions of the key components in the feed and at the feed plate are equal.

This assumption was checked using the above simulation procedure with the same system and vapor rate. The results are listed in the following table.

TABLE II

Optimum Feed Plate Location

Feed Entry Point (Plate Noo, Top Down)	$\begin{gathered} \text { Peed Plate } \\ \frac{f_{L K}}{\mathrm{P}_{\mathrm{HK}}} \end{gathered}$	$\begin{gathered} \text { Distillate } \\ \frac{d_{L K}}{d_{H K}} \end{gathered}$	$\begin{aligned} & \text { Feed } \\ & \frac{f_{I K}}{f_{\text {HK }}} \end{aligned}$
3	1.696	3.102	1
4	1. 255	3.093	1
5	0.932	3.087	1
7	0.522	3.092	1

As may be seen in Table II, the point at which the ratio of the keys in the feed are equal to the ratio at the feed plate occurs between plates 4 and 5. The feed plate location calculated from equation (19) was 4.35. By analogy, one may assume that the location of more than one feed may also be calculaded from equation (19).

Tables III and IV show the comparison between two complex fractionators calculated by the method of this work and a plate-by-plate calculation procedure. In both cases the total reflux condition was simulated in the plate-by-plate calculations by using a reflux ratio of $\left(L_{0} / D\right)=99.0$.

The fractionator compared in Table III is a single feed, 3-product column. The column in Table IV is almost the same as the column in Table III except the feed was altered slightly and split into two streams. The side product in both cases was withdrawn as saturated liquid. The feeds in both cases were also saturated liquids. In both examples plates are numbered from the top plate in the column to the reboiler. That is, the top plate is 1 and the reboiler is 14.

These results show that the method of this work may be used to good advantage in the preliminary design of a complex fractionator. The method of calculating the location of feed plates has been shown to be reliable. In both of the cases investigated the new method correctly indicated the trays between which the feeds should be introduced. Until now no total reflux method has been available for evaluating alternate designs of complex fractionators. The new method is fast, easy to use and well suited to hand or desk calculator computations.

TABLE III

Comparison Between Proposed Method and Plate-by-Plate
 Calculation for a Complex Column

		This Work			Plate-by-Plate		
Comp.	Feed	Distillate	Side-Draw	Bottoms	Distillate	Side-Draw	Bottoms
C_{2}	1.38	1.12311	0.25689	0.00000	1.12309	0.25686	0.00003
C_{3}	4.25	0.22631	3.89744	0.12625	0.22684	3.89661	0.12655
iC_{4}	1.48	0.00035	0.13139	1.34826	0.00036	0.13139	1.34825
$n \mathrm{C}_{4}$	2.10	0.00002	0.02532	2.07466	0.00002	0.02769	2.07229
iC_{5}	1.38	0.00000	0.00006	1.37994	0.00000	0.00016	1.37984
nC_{5}	0.75	0.00000	0.00001	0.74999	0.00000	0.00003	0.74997
C_{6}	2.25	0.00000	0.00000	2.25000	0.00000	0.00000	2.25000
Totals	13.59	1.34979	4.31111	7.92910	1.35031	4.31274	7.92693

(Cont.)

TABLE III (Cont.)

	This Work	Plate-By-Plate
T_{D}	518.098	518.195
$\mathrm{~T}_{\mathrm{P}}$	591.913	591.901
$\mathrm{~T}_{\mathrm{B}}$	756.757	756.854
Sm_{1}	3.90041	$4-5^{*}$
Sm_{2}	9.53652	$9-10^{*}$
Sm_{T}	13.43693	14^{+}
S_{FP}	8.28286	$8-9^{*}$

* Indicates Stream Withdrawn or Feed Between Trays
+ Includes Reboiler, Excludes Total Condenser

TABLE IV

Comparison Between Proposed Method and Plate-by-Plate
Calculation for a Complex Column

				This Work			Plate-By-Plate		
Comp.	Feed	1	Feed 2	Distillate	Side-Draw	Bottoms	Distillate	Side-Draw	Bottoms
C_{2}	0.92		0.46	1.12312	0.25688	0.0000	1.12310	0.25686	0.00004
C_{3}	2.95		1.30	0.22683	3.89603	0.12714	0.22683	3.89603	0.12714
iC_{4}	0.48		1.00	0.00034	0.12662	1.35304	0.00035	0.12663	1.35302
nC_{4}	1.40		0.70	0.00002	0.02405	2.07593	0.00003	0.03245	2.06752
iC_{5}	0.82		0.46	0.00000	0.00005	1.27995	0.00000	0.00062	1.27938
nC_{5}	0.50		0.25	0.00000	0.00001	0.74999	0.00000	0.00018	0.74982
C_{6}	1.5		0.75	0.00000	0.00000	2.25000	0.00000	0.00000	2.25000
Totals	8.57		4.92	1.35031	4.30364	7.83605	1.35031	4.31277	7.82691

(Cont.)

TABLE IV (Cont.)

	This Work	Plate-By-Plate
T_{D}	518.144	518.192
$\mathrm{~T}_{\mathrm{P}}$	591.848	591.927
$\mathrm{~T}_{\mathrm{B}}$	756.715	756.627
Sm_{1}	3.89782	$4-5^{*}$
Sm_{2}	9.58008	$9-10^{*}$
Sm_{T}	13.47790	14^{+}
$\mathrm{S}_{\mathrm{FP}_{1}}$	6.89218	$6-7^{*}$
$\mathrm{~S}_{\mathrm{F}_{1}}$	9.43945	$9-10^{*}$

* Indicates Stream Withdrawn or Fed Between Trays
+ Includes Reboiler, Excludes Total Condenser

CHAPTER V

CONCLUSIONS

The new equation for complex fractionators will provide the design engineer with a short, reliable method of estimating the performance of complex columns operating at total reflux. The method will give estimates of the component distributions in the various product streams and the rates of those streams as well as the relative locations of the product and feed streams.

The assumption that the feed streams may be summed and treated as one feed is valid because it was shown that the location of the feed at total reflux had a negligible effect on the composition of the product streams.

The Winn method for representing equilibrium data is probably better than the assumption of constant relative volatility for a section of the column. For either case the proposed method is a preliminary estimate only. For final designs a more rigorous techo nique such as plate-by-plate calculation must be used.

B - total mols of bottom product strean

D - total mols of distillate product stream
F - total mols of feed stream
K - equilibrium constant, $\frac{y}{x}$
L - total mols of inquid stream
N - number of actual theoretical stages
P - total mols of side strean
S - minimum number of theoretical stages
V - total mols of vapor stream
b - mols of a component in bottom product stream
d - mols of a component in distillate product stream
f - mols of a component in a feed stream
1-mols of a component in a liquid stream
$p-m o l s$ of a component in a side stream
v-mols of a component in a vapor stream
x - mol fraction of a component in liquid
y - mol fraction of a component irs vapor

Greek

α-relative volatility, $\frac{\mathrm{K}_{\mathrm{i}}}{\mathrm{K}_{\mathrm{R}}}$
β - ralative operability in Gilliland equation or a characteristic constant in the Winn equation
θ - a characteristic constant in the Winn equation or roots in the Underwood equation
\varnothing - roots in the Underwood equation

Subscripts

B - refers to bottom plate in column or bottoms product
D - refers to distillate
E - enriching section
F - refers to feed streams or feed plate
LK - light key component
HK - heavy key component
M - minimum
T - refers to top plate in column
b - component in the bottoms product
d - component in the distillate product
f - component in the feed stream or feed plate
i - any component
m - refers to plate in stripping section
n - refers to plate in the enriching section

BIBLIOGRAPHY

1. Amundson, N. R., and A. J. Pontinen, Ind. Eng. Chem., 50, 730 (1958).
2. Edmister, W. C., A.I.Ch.E. Journal, 2, No. 2, 165 (1957).
3. Fenske, M. R., Ind. Eng. Chem., 24, No. 5, 482 (1932).
4. Gilliland, E. R., Ind. Eng. Chem., 27, 260 (1935).
5. Lyster, W. N., S. L. Sullivan, D. S. Billingsby, and C. D. Holland, "High Speed Computing by Use of the Thiele and Geddes Approach to Multicomponent Distillation", presented at the Salt Lake City meeting of the A.I.Ch.E., Salt Lake City, Utah, September, 1958.
6. McCabe, W. L., and E. W. Thiele, Ind. Eng. Chem., 17, No. 6 605 (1925).
7. Robinson, C. S., and E. R. Gilliland, "Elements of Fractional Distillation", McGraw-Hill, New York (1950).
8. Thiele, E. W., and R. L. Geddes, Ind. Eng. Chem., 25, 289 (1933).
9. Underwood, A.J.V., Chem. Eng. Progress, 44, No. 8, 603 (1948).
10. Winn, F. W., Petroleum Refiner, 37, No. 5, 216, (1948).

APPENDIX A

SUBROUTINES

```
    SR-1, Punch (PCH)
    LDD n-1
    STD n-1
    RAL P-Pch
    IDD EXIT MPCh
    SR-2, Block tranefer (BT)
    SET 9040
    LDI 2000
    SET }904
STI 4000
SR-3, K-Evaluation (K-eval)
SET
LDI
RAB n-1
STU T
(A-1) RAUS (d
FMP T
FAD (C
FMP T
FAD (biof K) B
FMP T
```

SUBROUTINES (Cont.)

$$
\begin{aligned}
& \text { FAD } \quad\left(A_{i} \text { of } K\right) B \\
& \mathrm{NZB} \rightarrow \text { EXIT } \\
& \text { SXB-1 Go A-1 } \\
& \text { SR-4, Mol Fraction (MF) } \\
& \text { SET } \\
& \text { LDI } \\
& \text { RAB n-1 } \\
& \text { LDD } 0 \\
& \operatorname{STD} \quad \Sigma \mathbf{1}_{\mathbf{i}} \\
& \text { STD } \quad \Sigma \mho_{i} \\
& \text { (A-2) RAU } \quad\left(\mathcal{V}_{i}\right) \text { B } \\
& \text { FAD } \Sigma V_{i} \\
& \mathrm{STU} \quad \sum \Gamma_{i} \rightarrow \mathrm{~A}-4 \\
& (A-3) \operatorname{RAU} \quad\left(l_{i}\right) B \\
& \operatorname{FAD} \quad \sum_{1}{ }_{i} \\
& \mathrm{STU} \quad \sum \mathrm{l}_{\mathrm{i}} \rightarrow(\mathrm{~A}-4) \\
& (\mathrm{A}-4) \mathrm{NZB} \longrightarrow(\mathrm{~A}-5) \\
& \text { SXB-1 } \\
& \text { (} \mathrm{A}-5 \text {) RAB } \mathrm{n}-1
\end{aligned}
$$

subroutinies (Cont.)

(A-6)	BMC	$\begin{array}{ll} (-) & (A-7) \\ (+) & (A-B) \end{array}$
$(A-7)$	RaU	(V) B
	FDV	$\sum V_{i}$
	STiU	$\left(\mathrm{y}_{\mathbf{i}}\right) \mathrm{B} \longrightarrow(\mathrm{A}-9)$
($4-8$)	rau	$\left(1_{i}\right) B$
	FDV	$\sum 1_{i}$
	stu	$\left(x_{i}\right) B \longrightarrow(A-9)$
	N20	EXIT
	SXB-1	$\longrightarrow(A-6)$
	SR-5	Bubble Pt. - Dew Pt. (PP-DP)
	SETT	
	LDI	
	LOD	EXIT
	STD	ENIT
	LDD	0
	52 D	$\sum \mathbb{K}_{i} x_{i} \text { or } \sum \frac{y_{i}}{\mathbb{K}_{i}}$
($\mathrm{A}-10$)	STU	T
	RAC	$\longrightarrow \operatorname{SR}-3$ (K-eval)
	RAB	$\mathrm{n}-1$
($\mathrm{A}-1$)	RAU	EXIT
	WI	$\begin{array}{ll} (-) & (A-2) \\ (+) & \left.(A-)^{2}\right) \end{array}$

suaroumines (Cont.)

(A-2)	rav	$\left(\mathrm{y}_{\mathbf{i}}\right) \mathrm{B}$
	PDV	$\left(K_{i}\right) \mathbb{B}^{\text {b }}$
	S'TU	$\left(\frac{\mathbb{Y}_{i}}{\mathbb{K}_{i}}\right) \mathrm{B}$
	FAD	$\sum \frac{y_{i}}{K_{i}}$
	8 TU	$\sum \frac{y_{i}}{K_{i}} \rightarrow(A-4)$
(A-3)	rav	$\left(x_{i}\right) B$
	FHP	$\left(K_{i}\right){ }^{\text {a }}$
	STU	$\left(\mathbb{K}_{i} \mathrm{X}_{\mathbf{i}}\right){ }^{\text {B }}$
	FAD	$\sum \mathbb{K}_{\mathbf{i}} \mathrm{x}_{\mathrm{i}}$
	STU	$\sum \mathbb{K}_{i}{ }^{\text {X }}{ }_{i}$
($\mathrm{A}-4.4$	N2iA	$\longrightarrow(4-5)$
	gma-I	$\longrightarrow(\mathbb{A}-1)$
($A-5$)	RAU	1
	FSB	$\sum \mathbb{K}_{i} \mathbb{x}_{i} \text { or } \sum \frac{y_{i}}{\mathbb{K}_{i}}$
	STU	$1-\sum \mathbb{K}_{\mathbf{i}} \mathrm{K}_{\mathbf{i}}$ or (Δ)
	RAU	Tolerance
	ESM	Δ
		(-) (A-6)
	BMI	(+) eXIT

$$
\begin{aligned}
& \text { (A-6) RAU EXIT } \\
& \text { (-) }(A-7) \\
& \text { BMI (+) (A-8) } \\
& (A-7) \mathrm{RSO} \quad 1-\sum \frac{y}{K} \rightarrow(A-9) \\
& \text { (A-8) RAU } 1-\sum K x \\
& \text { (A-9) FDV } 7.5 \\
& \text { FAD } 1 \\
& \text { FMP } \quad \mathrm{T} \rightarrow(\mathrm{~A}-10) \\
& \underline{S R-6, \theta_{i}} \\
& \text { RAB n-1 } \\
& \text { STD EXIT } \\
& \text { (} \mathrm{A}-1 \text {) RAU } \quad\left(\mathrm{K}_{\mathrm{HK}} \mathrm{~T}^{\mathrm{T}} \mathrm{C}\right. \\
& \operatorname{FDV} \quad\left(K_{H K}\right)_{B} C \\
& \text { LDD } \longrightarrow \ln X \\
& \text { STU } \ln \frac{\left(\mathrm{K}_{\mathrm{HK}}\right)_{T}}{\left(\mathrm{~K}_{\mathrm{HK}}\right)_{\mathrm{B}}} \\
& \operatorname{RAU} \quad\left(\mathbb{K}_{i}\right) T^{B} \\
& \operatorname{FDV} \quad\left(K_{i}\right)_{B}^{B} \\
& \text { LDD } \longrightarrow \ln x \\
& \text { FDV } \ln \frac{\left(\mathrm{K}_{\mathrm{HK}}\right)_{T}}{\left(\mathrm{~K}_{\mathrm{HK}}\right)_{\mathrm{B}}}
\end{aligned}
$$

SUBROUTINES (Cont.)
$\operatorname{STU} \quad\left(\theta_{i}^{\prime}\right) \mathrm{B}$
$\mathrm{NZB} \longrightarrow \operatorname{EXIT}$
$\mathrm{SXB}-1 \longrightarrow(A-1)$

$\operatorname{SR-7,} \beta_{i}$	
RAB	$\mathrm{n-1}$
STD	EXIT

$$
(A-1) \operatorname{RAU} \quad\left(K_{H K}\right) C
$$

$$
\operatorname{LDD} \quad \longrightarrow \ln X
$$

FMP $\quad\left(\theta_{i}\right) B$
$L D D \quad \longrightarrow e^{x}$
$\operatorname{stU} \quad\left(K_{H K}\right)^{\theta}{ }_{i}$
$\operatorname{RAU} \quad\left(K_{i}\right) B$
FDV $\quad\left(K_{H K}\right)^{\theta}{ }_{i}$
$\operatorname{STU} \quad\left(\beta_{i}\right) B$
NZB EXIT
$\mathrm{SXB}-1 \rightarrow(\mathrm{~A}-1)$

SR-8, S_{m}
STD EXIT
RAU d_{LK}
FDV p_{LK}

SUBROUTINES (Cont.)

STU	$\left(\frac{\mathrm{d}}{\mathrm{p}}\right)_{\mathrm{LK}}$
RAU	$\left(\frac{\mathrm{p}}{\mathrm{d}}\right)_{H K}{ }^{\text {B }}$
LDD	$\longrightarrow \ln X$
FMP	(θ) C
LDD	$\longrightarrow e^{x}$
STU	$\left(\frac{p}{d}\right)_{H K}^{\theta}$
RAU	1
FSB	(θ) C
STU	1-9
RAU	$\frac{\mathrm{P}}{\mathrm{D}}$
LDD	$\longrightarrow \ln X$
FMP	$1-\theta$
LDD	$\longrightarrow e^{x}$
FMP	$\left(\frac{p}{d}\right)_{H K}^{\theta}$
FMP	$\left(\frac{\mathrm{d}}{\mathrm{p}}\right)_{\mathrm{LK}}$
LDD	$\longrightarrow \ln X$
STU	$\ln X$
RAU	β
LDD	$\longrightarrow \ln X$
STU	$\ln \beta$

SUBROUTINES (Cont.)

RAU	$\ln X$	
FDV	$\ln \beta$	
STU	$S_{m} \longrightarrow$	EXIT

$\underline{S R-9,\left(\frac{d}{p}\right)_{i}}$

RAB $\mathrm{n}-1$
STU EXIT
(A-1) RAU $\quad\left(\frac{\mathrm{P}}{\mathrm{d}}\right)_{\text {HK }}$
LDD $\ln X$
FMP (θ) B
LDD $\longrightarrow e^{x}$
$\operatorname{STU} \quad\left(\frac{\mathrm{p}}{\mathrm{d}}{ }^{\ominus}{ }_{\mathrm{HK}}\right.$
$\operatorname{RAU} \beta$
$\operatorname{LDD} \longrightarrow \ln X$
FMP $\quad S_{m}$
LDD $\longrightarrow e^{x}$
STU $\beta^{\mathrm{S}_{\mathrm{m}}}$
RAU 1
FSB (θ) B
STU 1 - θ
RAU $\frac{\mathrm{P}}{\mathrm{D}}$
LDD $\ln \mathrm{X}$

```
FMP l - - 
LDD }\longrightarrow\mp@subsup{e}{}{\mathbf{x}
STU (\frac{P}{D}}\mp@subsup{)}{}{l-0
RAU }\quad\mp@subsup{\beta}{}{\mp@subsup{S}{m}{m}
FDV (\frac{p}{d})}\mp@subsup{}{\mathrm{ HK}}{0
FDV (\frac{P}{D}}\mp@subsup{)}{}{l-0
STU (\frac{d}{P})}\mp@subsup{}{i}{}\mp@subsup{}{}{B
NZB EXIT
SXB-1 }\longrightarrow(\textrm{A}-1
SR-10, S (Feed Plate Loc.)
STD EXIT
RAU \beta
LDD }->\quad\operatorname{ln}
STU ln }
RAU 1
FSB e
STU l - e
RAU F
FDV P
LDD }\longrightarrow\operatorname{ln}
FMP 1 - - 
```

LDD $\longrightarrow e^{\mathbf{x}}$
$\operatorname{STU}\left(\frac{\mathrm{F}}{\mathrm{P}}\right)^{1-\theta}$
RAU 1
FDV Rf
LDD $\longrightarrow \ln X$
FMP $\quad \theta$
$L D D \longrightarrow e^{x}$
$\operatorname{FMP} \quad R_{p}$
FMP $\quad\left(\frac{\mathrm{F}}{\mathrm{P}}\right)^{1-\theta}$
$\operatorname{LDD} \longrightarrow \ln X$
FDV $\quad \ln \beta \rightarrow \mathbb{E X I T}$

MAIN PROGRAM

```
    RAL n
    SRT 1
    SLO .l
    STL (n-1) 1
    SRT 4
    STL (n-1)}
    RAL (n-1)
    RAA 10
(A-1) LDD
    SDA
    NZA (A-2)
    SXA-1 (A-1)
(A-2) RAL No. of Sections
    SRT 1
    SLO .l
    STL N
    RAL No. of Feeds
    SRT 1
    SLO . }
    STL N
SET
```


MAIN PROGRAM (Cont.)

```
    LDI Float Loop
    RAC 250
    RAA n - l
    SET
    (A-5) LDI 䟚's & E's
    RAB (A-3) }->\mathrm{ Float
    (A-3) SET
    STI Floated Data
    NZC }\longrightarrow\mathrm{ (A-4)
    SXC-SO }->\mathrm{ (A-5)
(A-4) RAA No. of Key Nos (NK
(A-7) RAL (NK ) A
    SRT 5
    STL (NK ) A
    NZA (A-6)
    SKA-1 (A-7)
(A-6) RAA Input
    SET
    LDI Input Data
    RAB \longrightarrowFloat
    SNT
    STI Floated Input
    LDD P-Pch
    STD P-Pch
    RAC}\longrightarrow\textrm{Pch
```

MAIN PMROGRAR (Cont.)

$$
\begin{aligned}
& \text { LDD P-Pch } \\
& \text { STD } \quad \mathrm{P}-\mathrm{Fl} \\
& \mathrm{RAC} \quad \longrightarrow \mathrm{Pch} \\
& \operatorname{maU} \quad\left(p_{i}\right)_{H K} \\
& \mathrm{NQU}(A-\mathrm{B}) \\
& \text { THV (a) MK } \\
& \mathrm{STU} \longrightarrow(\mathrm{~A}-9) \\
& (A-8) \operatorname{FAU} \quad(b)_{\text {HKK }} \\
& \text { WDV (d) MK } \\
& \operatorname{sTU} \quad\left(\frac{b}{d}\right)_{H K} \rightarrow \operatorname{READ} \\
& (A-9) \operatorname{RAU} \quad\left(P_{2}\right) H_{K} \\
& \mathrm{NCU} \quad \longrightarrow(A-10) \\
& \text { FDV } \quad\left(p_{1}\right)_{\text {HK }} \\
& \text { STU } \quad\left(\frac{P_{2}}{P_{1}}\right) \underset{H L_{1}}{\longrightarrow} \quad(A-11) \\
& (A-10) R A U \quad(b)_{H K} \\
& \operatorname{HOV} \quad\left(\mathrm{P}_{1}\right)_{H K} \\
& \mathrm{STH} \quad\left(\frac{b}{\mathrm{P}_{1}}\right) \longrightarrow \mathrm{HK} \\
& (A-11) \operatorname{RAU} \quad\left(p_{3}\right) \text { IKK } \\
& \mathrm{NZU} \quad \longrightarrow(A-12)
\end{aligned}
$$

MAIN PROGRAM (Cont.)

	FIDV	$\left(\mathrm{p}_{2}\right) \mathrm{HK}$
	SIU	$\left(\frac{p_{p_{3}}}{p_{2}}\right) \longrightarrow(\mathrm{A}-13)$
($\mathrm{A}-12$)	RAU	$(\mathrm{b})_{\text {HK }}$
	FIDV	$\left(p_{2}\right)_{\text {HK }}$
	STU	$\left(\frac{b}{p_{2}}\right) \quad \longrightarrow \mathrm{MEAD}$
($\mathrm{A}-13$)	RaU	(b) HK
	FDV	$\left(p_{3}\right)_{\text {L }}$
	STU	$\left(\frac{\mathrm{b}}{\mathrm{p}_{3}}\right) \longrightarrow \mathrm{HE} \mathrm{KED}$
	RAA	19
($\mathrm{A}-14$)	RAU	$\left(f_{i}\right){ }_{1}{ }^{\text {a }}$
	PAD	$\left(f_{i}\right)_{2}{ }^{\text {a }}$
	FAD	$\left({ }^{(1)}\right)^{\text {a }}$
	STU	$\left(\sum f_{i}\right){ }_{\text {a }}$
	NZA	$\longrightarrow(\mathrm{A}-15)$
	SXA-1	$\longrightarrow(A-14)$
($\mathrm{A}-15$)	RaU	T_{b}
	RAC	$\longrightarrow \mathrm{K}-\mathrm{eval}$
	RAA	Loc K_{b}

MAIN PROGRAM (Cont.)

RAB	$\mathrm{Lom}_{2} \mathrm{~K} \mathrm{~b}$
RAC	$\longrightarrow \mathrm{BT}$
RAU	$\mathrm{T}_{\mathrm{p} 3}$
NZU	(A-16)
RAC	\longrightarrow K-Eval
RAA	Loc $K_{p 3}$
RAB	$\mathrm{Loc}_{2} \mathrm{~K}_{\mathrm{p} 3}$
RAC	$\longrightarrow \mathrm{BT}^{\prime}$
LDD	HK_{4}
RaC	HHK_{4}
LDD	$\longrightarrow \theta$
SET	
STI	θ_{4}
RAA	loc K_{T}
RAB	${ }^{\text {Loc }}{ }_{2} \mathrm{~K}_{\mathrm{T}}$
RAC	$\longrightarrow \mathrm{BT}$
RaU	$\mathrm{T}_{\mathrm{p} 2}$
RAC	\longrightarrow K-Eval
LDD	HK_{3}
RAC	HK_{3}
LDD	$\longrightarrow \theta$
SET	

MAIN PROGRAN (Cont.)

STI	θ_{3}
RAA	Loc K
RAB	$\mathrm{Loc}_{2}{ }^{\mathrm{K}}$
rac	$\longrightarrow \operatorname{BT}$
RAU	$\mathrm{T}_{\mathrm{P}_{1}}$
RAC	$\longrightarrow \mathrm{K}-$ Eval
LDD	HK_{2}
RAC	HKK_{2}
LDD	$\longrightarrow \theta$
SET	
STI	θ_{2}
RAA	Lock
RAB	$\mathrm{LoC}_{2} \mathrm{~K}$
RAC	$\longrightarrow \mathrm{BT}^{\prime}$
RaU	T_{d}
RAC	\longrightarrow K-Eval
LDD	HK_{1}
RAC	FHK_{1}
LDD	$\longrightarrow \theta$
SET	
STI	θ_{1}
RAU	$\mathrm{T}_{\mathrm{p}_{1}}$
RAC	$\longrightarrow \mathrm{K}-\mathrm{Eval}$

MAIN PROGRAM (Cont.)

```
SET
LDI }\mp@subsup{}{|}{1
LDD 眎1
RAC HK
LDD }\longrightarrow
SET
STI }\mp@subsup{\beta}{1}{
RAV T Tp2
RAC }\longrightarrow\textrm{K}\mathrm{ -Eval
SET
LDI }\mp@subsup{0}{2}{
LDD HK
RAC HK
LDD }\longrightarrow
SET
SII }\mp@subsup{\beta}{2}{
RAU T T 
RAC \longrightarrow K-Eval
SET
LDI }\mp@subsup{0}{3}{
LDD HKK
RAC HK
LDD \longrightarrow\beta
```

MAIN PROGRAM (Cont.)

SET
STI $\quad \beta_{3}$
$\operatorname{RAU} \quad T_{b}$
$\mathrm{RAC} \longrightarrow \quad \longrightarrow \quad \mathrm{K}$-Eval
SET
LDI $\quad \theta_{4}$
LDD HK_{4}
$\mathrm{RAC} \quad \mathrm{HK}_{4}$
LDD $\longrightarrow \beta$
SET
$\mathrm{STI} \longrightarrow \beta_{4}$
LDD 1
STD $\quad \mathbf{P}$
STD D
LDD $\quad d_{\text {LK }}$
STD $\quad d_{\text {LK }}$
$\operatorname{RAU} \quad\left(\mathrm{p}_{1}\right){ }_{\mathrm{LK}}$
$\mathrm{NZU} \longrightarrow(\mathrm{A}-16)$
$\operatorname{STU} \quad\left(p_{1}\right)_{\text {LK }}$
(A-20) RAA $\operatorname{loc} \theta_{1}$
$\operatorname{RAB} \quad \mathbf{l o c}_{2} \theta_{1}$
$\mathrm{RAC} \longrightarrow \mathrm{BT}$

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \text { RAA } \quad \text { loc } \beta_{1} \\
& \text { RAB } \quad \operatorname{loc}_{2}{ }^{\beta} \\
& \mathrm{RAC} \longrightarrow \mathrm{BT} \\
& \text { LOD Section No. } \\
& \text { RAB Section No. } \\
& \text { LDD } \mathrm{HK}_{1} \\
& \mathrm{RAC} \mathrm{HK}_{1} \\
& \mathrm{LDD} \longrightarrow \mathrm{~S}_{\mathrm{m}} \\
& \mathrm{STU} \quad \mathrm{Sm}_{\mathrm{I}} \\
& \text { RAU (} \left.p_{1}\right)_{\text {LK }} \\
& \mathrm{NZU} \longrightarrow(\mathrm{~A}-19) \\
& \text { STU } \quad\left(p_{1}\right) \text { LK } \\
& \operatorname{RAU} \quad\left(p_{2}\right){ }_{L K} \\
& \mathrm{NZU} \longrightarrow(\mathbb{A}-17) \\
& \text { (A-21) STU } \quad\left(p_{2}\right)_{L K} \\
& \text { RAA loc } \theta_{2} \\
& \operatorname{RAB} \quad \mathrm{loC}_{2} \theta_{2} \\
& \mathrm{RAC} \longrightarrow \mathrm{BT} \\
& \text { RAA } \operatorname{loc} \beta_{2} \\
& \text { RAB } \quad \operatorname{loc}_{2} \beta_{2} \\
& \mathrm{RAC} \longrightarrow B T \\
& \text { LDD Section No. } \\
& \text { RAB Section No. }
\end{aligned}
$$

MAIN PORGRAM (Cont.)
$\operatorname{LDD} \quad \mathrm{HK}_{2}$
$\mathrm{RAC} \quad \mathrm{HK}_{2}$
LDD $\longrightarrow S_{m}$
STU $\quad \mathrm{S}_{\mathrm{rn} 2}$
RAU $\quad\left(\mathrm{p}_{2}\right)_{\mathrm{LK}}$
$\mathrm{NZU} \longrightarrow(\mathrm{A}-19)$
$\operatorname{STU} \quad\left(p_{2}\right)_{\text {LK }}$
$\operatorname{RAU} \quad\left(p_{3}\right)_{\text {LK }}$
$\mathrm{NZU} \longrightarrow(\mathrm{A}-18)$
$(\mathrm{A}-22) \mathrm{STU} \quad\left(\mathrm{p}_{3}\right)_{\mathrm{LK}}$
RAA $\operatorname{loc} \theta_{3}$
RAB $\quad \mathrm{loC}_{2} \theta_{3}$
$\mathrm{RAC} \longrightarrow \mathrm{BT}$
RAA loc β_{3}
RAB $\quad \mathrm{loc}_{2}{ }^{\beta}{ }_{3}$
$\mathrm{RAC} \longrightarrow \mathrm{BT}$
LDD Section No.
RAB Section No.
LDD $\quad \mathrm{HK}_{3}$
RAC HK_{3}
LDD $\longrightarrow \mathrm{S}_{\mathrm{m}}$
STU

MAIN PROGRAM (Cont.)

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \text { (A-18) RAU (b) LK } \\
& \text { STU } \quad(b)_{L K} \quad(A-22) \\
& \text { (A-19) RAA loc } \theta_{1} \\
& \mathrm{RAB} \quad \mathrm{loc}_{2}{ }^{\theta}{ }_{1} \\
& \mathrm{RAC} \longrightarrow \mathrm{BT} \\
& \text { RAA loc } \beta_{1} \\
& \mathrm{RAB} \quad \mathrm{loc}_{2} \beta_{1} \\
& \mathrm{RAC} \longrightarrow \mathrm{BT} \\
& \text { LDD Section No. } \\
& \text { RAC Section No. } \\
& \text { LDD } \quad \mathrm{S}_{\mathrm{ml}} \\
& \text { STD } \quad S_{m l} \\
& \operatorname{LDD} \longrightarrow\left(\frac{\mathrm{~d}}{\mathrm{p}}\right)_{\mathbf{i}} \\
& \text { RAA } \operatorname{loc}\left({\frac{\mathrm{d}}{\mathrm{p}_{1}}}_{\mathrm{l}}^{\mathrm{i}}\right. \text {) } \\
& \operatorname{RAB} \quad \operatorname{loC}_{2}\left(\frac{\mathrm{~d}}{\mathrm{p}_{1}}\right)_{i} \\
& \mathrm{RAC} \longrightarrow \mathrm{BT} \\
& \text { RAU } \quad S_{m 2} \\
& \mathrm{NZU} \longrightarrow(\mathrm{~A}-23) \\
& \text { (A-27) STU } \quad S_{m 2} \\
& \text { RAA } \operatorname{loc} \theta_{2}
\end{aligned}
$$

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \operatorname{RAB} \quad{ }^{\mathrm{loC}} 2_{2} \theta_{2} \\
& \mathrm{RAC} \longrightarrow \mathrm{BT} \\
& \text { RAA loc } \beta_{2} \\
& \text { RAB } \quad l o c_{2} \beta_{2} \\
& \mathrm{RAC} \longrightarrow \mathrm{BT} \\
& \text { LDD Section No. } \\
& \text { RAC Section No. } \\
& \operatorname{LDD} \longrightarrow\left(\frac{\mathrm{d}}{\mathrm{p}}\right)_{\mathbf{i}} \\
& \text { RAA } \quad \operatorname{loc}\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)_{i} \\
& \text { RAB } \operatorname{loc}_{2}\left(\frac{p_{1}}{p_{2}}\right)_{i} \\
& \mathrm{RAC} \longrightarrow \mathrm{BT} \\
& \text { RAU } \quad S_{m 3} \\
& \mathrm{NZU} \longrightarrow(\mathrm{~A}-24) \\
& \text { (A-28) STU } \mathrm{S}_{\mathrm{m} 3} \\
& \text { RAA } \quad \operatorname{loc} \theta_{3} \\
& \text { RAB } \quad \operatorname{loC}_{2} \theta_{3} \\
& \mathrm{RAC} \longrightarrow \mathrm{BT} \\
& \text { RAA loc } \beta_{3} \\
& \operatorname{RAB} \quad \mathrm{loc}_{2} \beta_{3} \\
& \mathrm{RAC} \longrightarrow \mathrm{BT}
\end{aligned}
$$

LDD Section No.
RAC Section No.
$\mathrm{LDD} \longrightarrow\left(\frac{\mathrm{d}}{\mathrm{p}}\right)_{\mathrm{i}}$
$\operatorname{RAA} \operatorname{loc}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{3}}\right)_{\mathrm{i}}$
$\operatorname{RAB} \quad \operatorname{loc}_{2}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{3}}\right)$ i
$\mathrm{RAC} \longrightarrow \mathrm{BT}$
$\operatorname{RAU} \quad \mathrm{S}_{\mathrm{m} 4}$
$\mathrm{NZU} \longrightarrow(\mathrm{A}-25)$
(A-29) STU $S_{m 4}$
RAA $\operatorname{loc} \theta_{4}$
RAB $\quad l o c_{2} \theta_{4}$
$\mathrm{RAC} \longrightarrow \mathrm{BT}$
RAA $\operatorname{loc} \beta_{4}$
$\mathrm{RAB} \quad \mathrm{loc}_{2} \beta_{4}$
$\mathrm{RAC} \longrightarrow \mathrm{BT}$
LDD Section No.
RAC Section No.
$\operatorname{LDD} \longrightarrow\left(\frac{\mathrm{d}}{\mathrm{p}}\right)_{\mathbf{i}}$
RAA loc $\left(\frac{\mathrm{p}_{3}}{\mathrm{~b}}\right)_{\mathrm{i}}$

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \mathrm{RAB} \quad \operatorname{loc}_{2}\left(\frac{\mathrm{p}_{3}}{\mathrm{~b}}\right)_{i} \\
& \mathrm{RAC} \longrightarrow \mathrm{BT} \longrightarrow(\mathrm{~A}-26) \\
& (\mathrm{A}-23) \operatorname{LDD} \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} \\
& \text { STD } \longrightarrow(\mathrm{A}-27) \\
& \text { (A-24) LDD } \frac{p_{3}}{p_{2}} \\
& \text { STD } \longrightarrow(\mathrm{A}-28) \\
& \text { (} \mathrm{A}-25 \text {) LDD } \frac{\mathrm{B}}{\mathrm{p}_{3}} \\
& \mathrm{STD} \longrightarrow(\mathrm{~A}-29) \\
& \text { RAB n - } 1 \\
& \text { (A-26) RAU } 1 \\
& \operatorname{FAD} \quad \frac{\mathrm{~d}}{\mathrm{p}_{1}} \\
& \text { STU } \quad 1+\frac{d}{p_{1}} \\
& \text { RAU } \quad S_{m 2} \\
& \mathrm{NZU} \longrightarrow(\mathrm{~A}-3 \mathrm{O}) \\
& \text { RAU } 1 \\
& \operatorname{FDV} \quad\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)_{\mathrm{i}}{ }^{B} \\
& \operatorname{STU} \quad\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)_{i} \\
& \text { RAU } \quad S_{m}
\end{aligned}
$$

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \mathrm{NZU} \quad \longrightarrow \quad(\mathrm{~A}-31) \\
& \text { RAU } 1 \\
& \text { FDV } \quad\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{3}}\right)_{\mathrm{i}} \mathrm{~B} \\
& \operatorname{srd} \quad\left(\frac{\mathrm{P}_{3}}{\mathrm{p}_{2}}{ }_{\mathrm{i}}\right. \\
& \operatorname{RAU} \quad S_{m 4} \\
& \mathrm{NZU} \longrightarrow(\mathrm{~A}-32) \\
& \text { RAU }\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)_{i} \\
& \operatorname{FMP} \quad\left(\frac{\mathrm{P}_{3}}{p_{2}}{ }_{\mathrm{i}}\right. \\
& \operatorname{STU} \quad\left(\frac{\mathrm{p}_{3}}{\mathrm{p}_{1}}\right)_{\mathrm{i}} \\
& \operatorname{FDV} \quad\left(\frac{\mathrm{p}_{3}}{\mathrm{~b}}\right)_{\mathrm{i}}{ }^{B} \\
& \operatorname{STU} \quad\left(\frac{\mathrm{~b}}{\mathrm{p}_{1}}\right)_{i} \\
& \operatorname{FAD} \quad\left(\frac{\mathrm{p}_{3}}{\mathrm{p}_{1}}\right)_{i} \\
& \operatorname{FAD} \quad\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)_{i} \\
& \text { PAD } \quad 1+\frac{d}{p_{1}} \\
& \text { STU } \sum \\
& \operatorname{RAU} \quad\left(f_{i}\right) B
\end{aligned}
$$

HAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \text { FDV } \Sigma \\
& \text { STU } \\
& \left(p_{1}\right){ }_{i} \longrightarrow(A-33) \\
& (A-30) \operatorname{RAU}\left(f_{i}\right) B \\
& \text { FDV } \quad 1+\frac{d}{p_{1}} \\
& \text { STU } \quad\left(b_{i}\right) B \\
& \operatorname{RSU}\left(b_{i}\right) B \\
& \text { FAD } \quad\left(f_{i}\right) B \\
& \operatorname{STU} \quad d_{i} \longrightarrow(A-33) \\
& (A-31) \operatorname{RAU} 1+\frac{d}{p_{1}} \\
& \text { FAD } \frac{b}{p_{1}} \\
& \text { STU } \Sigma \\
& \text { RAU (} \left.\mathbf{f}_{\mathbf{i}}\right) \quad B \\
& \text { FDV } \sum \\
& \operatorname{STU} \quad\left(p_{1}\right){ }_{i}{ }^{B} \\
& \operatorname{RAU} \quad\left(\frac{b}{\mathrm{P}_{1}}\right) \\
& \operatorname{FMP} \quad\left(\mathrm{p}_{1}\right)_{i} \mathrm{~B} \\
& \operatorname{STU}\left(b_{i}\right) B \\
& \operatorname{RAU} \quad\left(\frac{d}{p_{1}}\right)_{i} B \\
& \text { FMP } \quad\left(P_{1}\right){ }_{i} B
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{STU} \quad\left(\mathrm{~d}_{\mathbf{i}}\right) \mathrm{B} \longrightarrow(\mathrm{~A}-33) \\
& (\mathrm{A}-3 \mathbf{2}) \mathrm{RAU} \quad\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right) \\
& \text { FMP } \quad\left(\frac{b}{p_{2}}\right) \\
& \operatorname{STU}\left(\frac{\mathrm{b}}{\mathrm{p}_{1}}\right) \\
& \text { FAD } \quad\left(\frac{p_{2}}{p_{1}}\right) \\
& \text { FAD } \quad 1+\frac{\mathrm{d}}{\mathrm{p}_{1}} \\
& \text { STU } \Sigma \\
& \operatorname{RAU} \quad\left(f_{i}\right) B \\
& \text { TVV } \Sigma \\
& \operatorname{STU} \quad\left(p_{1}\right){ }_{i}{ }^{B} \\
& \text { RAU (} \frac{\mathrm{b}}{\mathrm{p}_{1}} \text {) } \\
& \text { FMP } \quad\left(p_{1}\right){ }_{i}{ }^{B} \\
& \operatorname{STU} \quad\left(\mathrm{~b}_{\mathbf{i}}\right) \mathrm{B} \\
& \text { RAU } \\
& \text { FMP } \\
& \left(\frac{\mathrm{d}}{\mathrm{p}_{1}}\right) B \\
& \text { FMP } \quad\left(\mathrm{p}_{1}\right){ }_{i} \\
& \operatorname{STU} \quad\left(d_{i}\right) B
\end{aligned}
$$

```
MAIN PROGRAM (Cont.)
```

```
(A-33) NZB (A-34)
    SXB-1 }\longrightarrow(\textrm{A}-26
(A-34) RAA loc d
    RAB loce
    RAC}\longrightarrow\textrm{BT
    RSC }->\textrm{MF
    RAU T
    RSC }\quad->\quad\textrm{DP
    LDD T T
    STD T T
    RAU P
    NZU \longrightarrow(A-35)
    RAA loc pl
    RAB loce}\mp@subsup{2}{1}{}\mp@subsup{p}{1}{
    RAC}\longrightarrow\textrm{BT
    RAC}\longrightarrow\textrm{MF
    RAU T T [P1
    RAC }\longrightarrow\mp@subsup{\textrm{BP}}{}{P
    LDD T T 
    STD T T 
    RAU P
    NZU \longrightarrow(A-35)
```

MAIN PROGRAM (Cont.)

> RAA loc p_{2}
> RAB $\quad \mathrm{loc}_{2} \mathrm{p}_{2}$
> $\mathrm{RAC} \longrightarrow \mathrm{BT}$
> $\mathrm{RAC} \longrightarrow \mathrm{MF}$
> $\operatorname{RAU} \quad \mathrm{T}_{\mathrm{p}_{2}}$
> $\mathrm{RAC} \longrightarrow \mathrm{BP}$
> LDD T
> $\operatorname{STD} \quad \mathrm{~T}_{\mathrm{p}_{2}}$
> RAU $\quad \mathrm{p}_{3}$
> $\mathrm{NZU} \longrightarrow(\mathrm{A}-35)$
> RAA loc P_{3}
> RAB $\quad \operatorname{loc}_{2} \mathrm{P}_{3}$
> $\mathrm{RAC} \longrightarrow \mathrm{BT}$
> $\mathrm{RAC} \longrightarrow \mathrm{MF}$
> $\operatorname{RAU} \quad \mathrm{T}_{\mathrm{p}}$
> $\mathrm{RAC} \longrightarrow \mathrm{BP}^{\mathrm{P}}$
> $\operatorname{LDD} \quad \mathrm{T}_{\mathrm{p}}$
> $\mathrm{STD} \quad \mathrm{T}_{\mathrm{p}}$
> (A-35) RAA loc b
> RAB $\quad l o c_{2}{ }^{b}$
> $\mathrm{RAC} \longrightarrow \mathrm{BT}$

MAIN PROGRAM (Cont.)

	RAC	$\longrightarrow \mathrm{MF}$
	RAU	T_{b}
	RAC	$\longrightarrow \mathrm{BP}$
	LDD	Tb
	STD	T ${ }_{\text {b }}$
	RAA	4
($\mathrm{A}-38$)	RaU	$\left(\mathrm{T}_{\mathrm{d}_{1}}\right) \mathrm{A}$
	FSB	$\left(\mathrm{T}_{\mathrm{d}_{2}}\right) \mathrm{A}$
	STU	ΔT
	RAU	tolerance
	FSM	ΔT
	BMI	$\rightarrow(A-36)$
	NZA	(A-37)
	SXA-1	($\mathrm{A}-38$)
($A-37$)	LDD	D
	STD	D
	LDD	p_{1}
	STD	p_{1}
	LDD	p_{2}
	STD	p_{2}
	LDD	p_{3}
	STD	P_{3}

MAIN PROGRAM (Cont.)

LDD	B
S'TU	B
LDD	$\mathrm{P}-\mathrm{Pch}$
STD	P-Pch
RAC	$\longrightarrow \mathrm{Pch}$
LDD	0
STD	0
RAL	P-Pch
LDD	$\longrightarrow \mathrm{Pch}$
LDD	T_{d}
STD	T_{d}
LDD	$\mathrm{T}_{\mathrm{p}_{1}}$
STD	$\mathrm{T}_{\mathrm{p}_{1}}$
LDD	$\mathrm{r}_{\mathrm{p}_{2}}$
STD	$\mathrm{T}_{\mathrm{p}_{2}}$
LDD	$\mathrm{T}_{\mathrm{p}_{3}}$
STD	$\mathrm{T}_{\mathrm{p}_{3}}$
LDD	T_{b}
STD	T_{b}
LDD	0
STD	0

MAIN PROGRAM (Cont.)

> RAL P-Pch
> $\mathrm{LDD} \rightarrow \mathrm{Pch} \longrightarrow 1 \mathrm{oad}$
> LDD L_{1}
> $\operatorname{RAC} \quad \mathrm{LK}_{1}$
> LDD $\quad \mathrm{HK}_{1}$
> RAA HK_{1}
> $\operatorname{RAU}\left(\mathrm{~d}_{\mathbf{i}}\right) \mathrm{C}$
> FIDV $\left(d_{i}\right) A$
> $s \mathrm{TU}$
> $\operatorname{RAU} \quad\left(\mathbf{f}_{\mathbf{i}}\right)_{1} \mathrm{C}$
> $\operatorname{FDV} \quad\left(\mathrm{f}_{\mathrm{i}}\right){ }_{1} \mathrm{~A}$
> $\operatorname{STU} \quad\left(\frac{\mathrm{f}_{\mathrm{LK}}}{\mathrm{f}_{\mathrm{HK}}}\right)$
> $\operatorname{RAU} \quad\left(\mathrm{f}_{\mathbf{i}}\right)_{2} \mathrm{C}$
> $\mathrm{Na} \mathrm{U} \longrightarrow(A-39)$
> $\operatorname{FDV} \quad\left(\mathrm{f}_{\mathbf{i}}\right)_{2}^{A}$
> STU
> $\left(\frac{\mathrm{f}_{\mathrm{LK}}}{\mathrm{f}_{\mathrm{HK}}}\right)_{2}$
> $\operatorname{RAU} \quad\left(\mathrm{f}_{\mathbf{i}}\right) \mathbf{3}^{\mathrm{C}}$
> $\mathrm{NZU} \longrightarrow(\mathrm{A}-39)$
> $\operatorname{FDV} \quad\left(f_{i}\right) 3^{A}$
sTu
(A-39) RAU LK_{2}
$\mathrm{NZU} \longrightarrow(\mathrm{A}-40)$
$\mathrm{RAC} \mathrm{LK}_{2}$

LDD HK_{2}
$\mathrm{RAA} \quad \mathrm{HK}_{2}$
$\operatorname{RAU} \quad\left(p_{i}\right){ }_{1} C$
$\operatorname{FDV} \quad\left(p_{i}\right) 1^{A}$
STU $\quad\left(\frac{{ }^{\mathrm{P}_{\mathrm{LK}}}}{\mathrm{P}_{\mathrm{HK}}}\right)$
$\operatorname{RAU} \quad\left(f_{i}\right){ }_{1}$
$\operatorname{HDV} \quad\left(f_{i}\right){ }_{1} A$
$\operatorname{STU} \quad\left(\frac{f_{L K}}{f_{H K}}\right)_{i}$
$\operatorname{RAU} \quad\left(\mathbf{f}_{\mathbf{i}}\right){ }_{2} \mathrm{C}$
$\mathrm{NZU} \quad \longrightarrow(\mathrm{A}-4 \mathrm{I})$
$\operatorname{TDV} \quad\left(f_{i}\right) 2^{A}$

STU
$\operatorname{RAU} \quad\left(f_{i}\right){ }_{3} \mathrm{C}$
$\mathrm{NRU} \rightarrow(\mathrm{A}-4 \mathrm{I})$
FDV $\quad\left(f_{i}\right) z^{A}$

MAIN PROGRAM (Cont.)
$\operatorname{STU} \quad\left(\frac{\mathrm{f}_{\mathrm{LK}}}{\mathrm{f}_{\mathrm{HK}}}\right)_{3}$
(A-41) RAU LK_{3}
$\begin{array}{lll}\text { NZU } & \rightarrow & (\mathrm{A}-40) \\ \mathrm{RAC} & \mathrm{LK}_{3} & \\ \text { LDD } & \mathrm{HK}_{3} & \end{array}$
RAA $\quad \mathrm{HK}_{3}$
$\operatorname{RAU} \quad\left(\mathrm{p}_{\mathrm{i}}\right){ }_{2}^{\mathrm{C}}$
FDV $\quad\left(p_{i}\right) 2^{A}$
STU $\quad\left(\frac{\mathrm{p}_{\mathrm{LK}}}{\mathrm{p}_{\mathrm{HK}}}\right)_{2}$
$\operatorname{RaU} \quad\left(f_{i}\right){ }_{1}$
FDV $\quad\left(f_{i}\right)_{1} A$
SṪU $\quad\left(\frac{{ }_{\text {LK }}}{f_{\text {WK }}}\right)_{1}$
$\operatorname{RAU} \quad\left(\mathrm{f}_{\mathrm{i}}\right)_{2}^{C}$
$\mathrm{NZU} \quad \longrightarrow(\mathrm{A}-42)$
$\operatorname{FDV} \quad\left(f_{i}\right){ }_{2}{ }^{A}$
$\operatorname{STU} \quad\left(\frac{\mathbf{f}_{\mathrm{LK}}}{\mathbf{f}_{\mathrm{HK}}}\right)_{2}$
$\operatorname{RAU} \quad\left(f_{i}\right){ }_{3}$
$\mathrm{N} 2 \mathrm{U} \quad \longrightarrow(\mathrm{A}-42)$
$\operatorname{rDV} \quad\left(f_{i}\right) 3^{A}$

MAIN PROGRAM (Cont.)
$\operatorname{STU} \quad\left(\frac{\mathrm{f}_{\mathrm{LK}}}{\mathrm{f}_{\mathrm{HK}}}\right)_{3}$

$$
\begin{array}{rll}
(\mathrm{A}-42) & \mathrm{RAU} & \mathrm{LK}_{4} \\
& & \\
\mathrm{NZU} & \longrightarrow & (\mathrm{~A}-40) \\
\mathrm{RAC} & \mathrm{LK}_{4} & \\
& \mathrm{LDD}_{4} & \mathrm{HK}_{4}
\end{array}
$$

$\mathrm{RAA} \quad \mathrm{HK}_{4}$
$\operatorname{RAU} \quad\left(p_{i}\right){ }_{3}^{C}$
FDV $\quad\left(p_{i}\right) 3^{A}$
$\operatorname{sTU}\left(\frac{\mathrm{p}_{\mathrm{LK}}}{\mathrm{p}_{\mathrm{HK}}}\right)_{3}$
$\operatorname{RAU} \quad\left(f_{i}\right){ }_{1}$ C
$\operatorname{FDV} \quad\left(f_{i}\right){ }_{1} A$
STU $\quad\left(\frac{\mathrm{f}_{\mathrm{LK}}}{\mathrm{f}_{\mathrm{HK}}}\right)_{1}$
$\operatorname{RAU} \quad\left(f_{i}\right){ }_{2}^{C}$
$\mathrm{NZU} \longrightarrow(\mathrm{A}-4 \mathrm{O})$
$\operatorname{FDV} \quad\left(f_{i}\right){ }_{2}$
$\operatorname{STU} \quad\left(\frac{\mathbf{f}_{\mathrm{LK}}}{\mathrm{f}_{\mathrm{HK}}}\right)_{2}$
rad $\quad\left(f_{i}\right){ }_{3}{ }^{C}$
$\mathrm{N} 2 \mathrm{U} \longrightarrow(\mathrm{A}-4 \mathrm{O})$
FDV $\quad\left(f_{i}\right) 3^{A}$

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \operatorname{STU} \quad \stackrel{\mathbf{f}_{\mathrm{LK}}}{\mathrm{f}_{\mathrm{HK}} \quad 3} \\
& \text { (A-40) RAU }\left(\operatorname{Rf}_{1}\right)_{2} \\
& \operatorname{FSB} \quad R p_{1} \\
& \mathrm{BMI} \longrightarrow(A-43) \\
& \operatorname{RAU} \quad\left(\mathrm{Rf}_{1}\right)_{3} \\
& \mathrm{FSB} \quad \mathrm{Rp}_{2} \\
& \mathrm{BNI} \longrightarrow(\mathrm{~A}-44) \\
& \operatorname{RAU} \quad\left(\mathrm{Rf}_{1}\right)_{4} \\
& \operatorname{FSB} \quad \mathrm{Rp}_{3} \\
& \mathrm{BMI} \longrightarrow(\mathrm{~A}-45) \text { or }(\mathrm{A}-46) \\
& \text { (A-43) LDD } \mathrm{LK}_{1} \\
& \text { RAC } \quad \mathrm{LK}_{1} \\
& \operatorname{LDD} \quad\left(\beta_{1}\right) \mathrm{C} \\
& \operatorname{sTD} \quad\left(\beta_{1}\right) \mathrm{C} \\
& \operatorname{LDD}\left(\theta_{1}\right) \mathrm{C} \\
& \operatorname{sTD} \quad\left(\theta_{1}\right) \mathrm{C} \\
& \operatorname{LDD} \quad \mathrm{~F}_{1} \\
& 3 T D \quad F_{1} \\
& \text { LDD D } \\
& \text { STD D }
\end{aligned}
$$

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \operatorname{LDD} \quad \mathbb{R}_{\mathrm{d}} \\
& \text { STD } \quad R_{d} \\
& \operatorname{LDD} \quad\left(\mathrm{Rf}_{1}\right)_{1} \\
& \operatorname{STD}\left(\mathrm{Rf}_{1}\right)_{1} \\
& \mathrm{LDD} \longrightarrow \mathrm{~S} \\
& \text { STU } \mathrm{S}_{11} \longrightarrow(\mathrm{~A}-47) \\
& \text { (} \mathrm{A}-44 \text {) } \mathrm{LDD} \mathrm{LK}_{2} \\
& \operatorname{RAC} \mathrm{LK}_{2} \\
& \operatorname{LDD} \quad\left(\beta_{2}\right) C \\
& \operatorname{STD}\left(\beta_{2}\right) C \\
& \operatorname{LDD}\left(\theta_{2}\right) \mathrm{C} \\
& \operatorname{sTp}\left(\theta_{2}\right) C \\
& \operatorname{LDD} F_{1} \\
& \operatorname{STD} \quad \mathrm{~F}_{1} \\
& \operatorname{LDD} \quad p_{1} \\
& \operatorname{STD} \mathrm{p}_{1} \\
& \text { LDD } \mathrm{Rp}_{1} \\
& \operatorname{STD} R_{1} \\
& \operatorname{LDD}\left(\mathrm{Rf}_{1}\right)_{2} \\
& \operatorname{STD} \quad\left(\mathrm{Rf}_{1}\right)_{2}
\end{aligned}
$$

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \text { LDD } \longrightarrow \mathrm{S} \\
& \text { STU } \mathrm{S}_{21} \longrightarrow(\mathrm{~A}-47) \\
& \text { (A-45) LDD } \mathrm{LK}_{3} \\
& \operatorname{RAC} \quad \mathrm{LK}_{3} \\
& \operatorname{LDD} \quad\left(\beta_{3}\right) \mathrm{C} \\
& \operatorname{STD} \quad\left(\beta_{3}\right) \mathrm{C} \\
& \text { LDD } \quad\left(\theta_{3}\right) \mathrm{C} \\
& \operatorname{STD} \quad\left(\theta_{3}\right) C \\
& \begin{array}{ll}
\text { LDD } & F_{1}
\end{array} \\
& \operatorname{STD} \quad \mathrm{~F}_{1} \\
& \text { LDD } \quad p_{2} \\
& \text { STD } \quad \mathrm{p}_{2} \\
& \text { LDD } \quad \mathrm{Rp}_{2} \\
& \operatorname{STD} \quad \mathrm{Rp}_{2} \\
& \text { LDD } \quad\left(\mathrm{Rf}_{1}\right)_{3} \\
& \text { STD } \quad\left(\operatorname{Rf}_{1}\right)_{3} \\
& \text { LDD } \longrightarrow \mathrm{S} \\
& \mathrm{STU} \quad \mathrm{~S}_{31} \longrightarrow(\mathrm{~A}-47) \\
& \text { (A-46) LDD } \mathrm{LK}_{4} \\
& \text { RAC } \quad \mathrm{LK}_{4} \\
& \operatorname{LDD} \quad\left(\beta_{4}\right) \mathrm{C}
\end{aligned}
$$

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \operatorname{STD} \quad\left(\beta_{4}\right) \mathrm{C} \\
& \operatorname{LDD} \quad\left(\theta_{4}\right) \mathrm{C} \\
& \operatorname{STD} \quad\left(\theta_{4}\right) \mathrm{C} \\
& \begin{array}{ll}
\operatorname{LDD} & \mathrm{F}_{1}
\end{array} \\
& \begin{array}{ll}
\operatorname{STD} & \mathrm{F}_{1}
\end{array} \\
& \text { LDD } \quad \mathrm{p}_{3} \\
& \text { STD } \quad p_{3} \\
& \text { LDD } \quad \mathrm{Rp}_{3} \\
& \text { STD } \quad \mathrm{Rp}_{3} \\
& \operatorname{LDD} \quad\left(\mathrm{Rf}_{1}\right) 4 \\
& \operatorname{STD} \quad\left(\mathrm{Rf}_{1}\right)_{4} \\
& \text { LDD } \longrightarrow \mathrm{S} \\
& \text { STU } \quad S_{41} \\
& (\mathrm{~A}-47) \mathrm{RAU} \quad\left(\mathrm{Rf}_{2}\right)_{2} \\
& \mathrm{NZU} \quad \rightarrow(\mathrm{~A}-57) \\
& \text { FSB } \quad \mathrm{Rp}_{1} \\
& B M I \longrightarrow(A-48) \\
& \operatorname{RAU} \quad\left(\mathrm{Rf}_{2}\right)_{3} \\
& \text { FSB } \quad R_{p_{2}} \\
& \mathrm{BMI} \longrightarrow(\mathrm{~A}-49) \\
& \operatorname{RAU} \quad\left(\mathrm{Rf}_{2}\right)_{4}
\end{aligned}
$$

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \text { FSB } \quad \mathrm{Rp}_{3} \\
& \text { BMI } \longrightarrow(\mathrm{A}-50) \text { or (} \mathrm{A}-51 \text {) } \\
& \text { (A-48) LDD } \mathrm{LK}_{1} \\
& \text { RAC } \mathrm{LK}_{1} \\
& \operatorname{LDD} \quad\left(\beta_{1}\right) C \\
& \operatorname{STD} \quad\left(\beta_{1}\right) \mathrm{C} \\
& \operatorname{LDD} \quad\left(\theta_{4}\right) \mathrm{C} \\
& \operatorname{STD} \quad\left(\theta_{4}\right) \mathrm{C} \\
& \operatorname{LDD} \quad \mathrm{~F}_{2} \\
& \operatorname{STD} \quad \mathrm{~F}_{2} \\
& \text { LDD D } \\
& \text { STD D } \\
& \text { LDD } \quad \mathbb{R}_{\mathrm{d}} \\
& \text { STD } \quad R_{d} \\
& \operatorname{LDD} \quad\left(\mathrm{Rf}_{2}\right)_{1} \\
& \operatorname{STD} \quad\left(\mathrm{Rf}_{2}\right)_{1} \\
& \text { LDD } \longrightarrow \mathrm{S} \\
& \mathrm{STU} \quad \mathrm{~S}_{12} \rightarrow \quad(\mathrm{~A}-52) \\
& \text { (A-49) } \mathrm{LDD}^{\mathrm{LK}} 2 \\
& \mathrm{RAC} \quad \mathrm{LK}_{2} \\
& \text { LDD } \quad\left(\beta_{2}\right) \mathrm{C}
\end{aligned}
$$

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \operatorname{STD} \quad\left(\beta_{2}\right) C \\
& \text { LDD } \quad\left(\theta_{2}\right) \mathrm{C} \\
& \operatorname{STD} \quad\left(\theta_{2}\right) \mathrm{C} \\
& \operatorname{LDD} \quad \mathrm{~F}_{2} \\
& \operatorname{STD} \quad \mathrm{~F}_{2} \\
& \text { LDD } \quad \mathrm{p}_{1} \\
& \text { STD } \quad \mathrm{p}_{1} \\
& \text { LDD } \quad \mathrm{Rp}_{1} \\
& \operatorname{STD} \quad \mathrm{Rp}_{1} \\
& \operatorname{LDD} \quad\left(\mathrm{Rf}_{2}\right)_{2} \\
& \text { STD } \quad\left(\mathrm{Rf}_{2}\right)_{2} \\
& \text { LDD } \longrightarrow \mathrm{S} \\
& \text { STU } \quad \mathrm{S}_{22} \longrightarrow \quad(\mathrm{~A}-52) \\
& \text { (A-50) LDD } \mathrm{LK}_{3} \\
& \operatorname{RAC} \quad \mathrm{LK}_{3} \\
& \operatorname{LDD} \quad\left(\beta_{3}\right) \mathrm{C} \\
& \text { STD } \quad\left(\beta_{3}\right) C \\
& \text { LDD } \quad\left(\theta_{3}\right) \mathrm{C} \\
& \operatorname{std} \quad\left(\theta_{3}\right) C \\
& \begin{array}{ll}
\text { LDD } & F_{2}
\end{array} \\
& \text { STD } \quad \mathrm{F}_{2} \\
& \text { LDD } \quad \mathrm{p}_{2}
\end{aligned}
$$

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \operatorname{STD} \quad \mathrm{p}_{2} \\
& \text { LDD } \quad \mathrm{Rp}_{2} \\
& \text { STD } \quad \mathrm{Rp}_{2} \\
& \operatorname{LDD} \quad\left(\mathbb{R f}_{2}\right)_{3} \\
& \operatorname{STD} \quad\left(\mathrm{Rf}_{2}\right)_{3} \\
& \text { LDD } \quad \longrightarrow \mathrm{S} \\
& \mathrm{STU} \mathrm{~S}_{32} \longrightarrow(\mathrm{~A}-52) \\
& \text { (A-51) LDD } \mathrm{LK}_{4} \\
& \mathrm{RAC} \quad \mathrm{LK}_{4} \\
& \operatorname{LDD} \quad\left(\beta_{4}\right) \mathrm{C} \\
& \operatorname{STD} \quad\left(\beta_{4}\right) \mathrm{C} \\
& \operatorname{LDD} \quad\left(\theta_{4}\right) \mathrm{C} \\
& \operatorname{STD} \quad\left(\theta_{4}\right) \mathrm{C} \\
& \text { LDD } \quad \mathrm{F}_{2} \\
& \text { STD } \quad \mathrm{F}_{2} \\
& \operatorname{LDD} \quad \mathrm{p}_{3} \\
& \text { STD } \quad p_{3} \\
& \text { LDD } \quad \mathrm{Rp}_{3} \\
& \operatorname{STD} \quad \mathrm{Rp}_{3} \\
& \operatorname{LDD} \quad\left(\mathrm{Rf}_{2}\right)_{4} \\
& \operatorname{STD} \quad\left(\mathrm{Rf}_{2}\right)_{4}
\end{aligned}
$$

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \mathrm{LDD} \longrightarrow \mathrm{~S} \\
& \text { STU } \quad \mathrm{S}_{42} \\
& (\mathrm{~A}-52) \mathrm{RAU} \quad\left(\mathrm{Rf}_{3}\right)_{2} \\
& \text { NZU (A-57) } \\
& \text { FSB } \quad \mathrm{Rp}_{1} \\
& \mathrm{BMI} \longrightarrow(\mathrm{~A}-53) \\
& \operatorname{RAU} \quad\left(\mathrm{Rf}_{3}\right)_{3} \\
& \operatorname{FSB} \quad \mathrm{Rp}_{2} \\
& \mathrm{BMI} \longrightarrow(\mathrm{~A}-54) \\
& \operatorname{RAU} \quad\left(\mathrm{Rf}_{3}\right)_{4} \\
& \text { FSB } \quad \mathrm{Rp}_{3} \\
& \text { BMI } \rightarrow(A-55) \text { or (A-56) } \\
& \text { (A-53) LDD } \mathrm{LK}_{1} \\
& \operatorname{RAC} \quad \mathrm{LK}_{1} \\
& \operatorname{LDD} \quad\left(\beta_{1}\right) \mathrm{C} \\
& \operatorname{sTD} \quad\left(\beta_{1}\right) \mathrm{C} \\
& \text { LDD } \quad\left(\theta_{1}\right) \mathrm{C} \\
& \operatorname{STD} \quad\left(\theta_{1}\right) \mathrm{C} \\
& \text { LDD } \quad F_{3} \\
& \operatorname{STD} \quad \mathrm{~F}_{3} \\
& \text { LDD D }
\end{aligned}
$$

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \text { STD D } \\
& \text { LDD } \quad R_{d} \\
& \text { STD } \quad R_{d} \\
& \operatorname{LDD} \quad\left(\mathrm{Rf}_{3}\right)_{1} \\
& \operatorname{STD} \quad\left(\mathrm{Rf}_{3}\right)_{1} \\
& \text { LDD } \longrightarrow \mathrm{S} \\
& \text { STU } \mathrm{S}_{13} \longrightarrow(\mathrm{~A}-57) \\
& \text { (A-54) LDD } \mathrm{LK}_{2} \\
& \operatorname{RAC} \quad \mathrm{LK}_{2} \\
& \operatorname{LDD} \quad\left(\beta_{2}\right) \mathrm{C} \\
& \operatorname{STD} \quad\left(\beta_{2}\right) C \\
& \text { LDD } \quad\left(\theta_{2}\right) \mathrm{C} \\
& \operatorname{STD} \quad\left(\theta_{2}\right) \mathrm{C} \\
& \begin{array}{ll}
\text { LDD } & F_{3}
\end{array} \\
& \operatorname{STD} \quad F_{3} \\
& \text { LDD } \quad p_{1} \\
& \text { STD } \quad \mathrm{p}_{1} \\
& \text { LDD } \quad \mathrm{Rp}_{1} \\
& \mathrm{STD} \quad \mathrm{Rp}_{1} \\
& \text { LDD } \quad\left(\mathrm{Rf}_{3}\right)_{2} \\
& \operatorname{STD} \quad\left(\mathrm{Rf}_{2}\right)_{2}
\end{aligned}
$$

MAIN PROGRAM (Cont.)

$$
\begin{aligned}
& \text { LDD S } \\
& \text { STU } \quad \mathrm{S}_{23} \quad(\mathrm{~A}-57) \\
& \text { (A-55) LDD } \mathrm{LK}_{3} \\
& \operatorname{RAC} \quad \mathrm{LK}_{3} \\
& \operatorname{LDD} \quad\left(\beta_{3}\right) \mathrm{C} \\
& \operatorname{STD} \quad\left(\beta_{3}\right) \mathrm{C} \\
& \text { LDD } \quad\left(\theta_{3}\right) \mathrm{C} \\
& \operatorname{STD} \quad\left(\theta_{3}\right) C \\
& \begin{array}{ll}
\text { LDD } & F_{3}
\end{array} \\
& \text { STD } \quad \mathrm{F}_{3} \\
& \text { LDD } \quad \mathrm{P}_{2} \\
& \text { STD } \quad p_{2} \\
& \text { LDD } \quad \mathrm{Rp}_{2} \\
& \operatorname{STD} \quad \mathrm{Rp}_{2} \\
& \operatorname{LDD} \quad\left(\mathrm{Rf}_{3}\right)_{3} \\
& \operatorname{STD} \quad\left(\mathrm{Rf}_{3}\right)_{3} \\
& \mathrm{LDD} \quad \longrightarrow \mathrm{~S} \\
& \text { STD } \mathrm{S}_{33} \longrightarrow(\mathrm{~A}-57) \\
& \text { (A-56) LDD } \mathrm{LK}_{4} \\
& \operatorname{RAC} \quad \mathrm{LK}_{4} \\
& \operatorname{LDD} \quad\left(\beta_{4}\right) \mathrm{C} \\
& \operatorname{STD} \quad\left(\beta_{4}\right) \mathrm{C}
\end{aligned}
$$

MAIN PROGRAM (Cont.)

	LDD	$\left(\theta_{4}\right) \mathrm{C}$
	STD	$\left(\theta_{4}\right) \mathrm{C}$
	LDD	F_{3}
	STD	F_{3}
	LDD	p_{3}
	STD	\mathbf{p}_{3}
	LDD	Rp_{3}
	STD	Rp_{3}
	LDD	$\left(\mathrm{Rf}_{3}\right)_{4}$
	STD	$\left(\mathrm{Rf}_{3}\right)_{4}$
	LDD	$\longrightarrow \mathrm{S}$
	STU	S_{43}
($A-57$)	LDD	0
	STD	0
	RAU	$\mathrm{P}-\mathrm{Pch}$
	LDD	$\longrightarrow \mathrm{Pch}$
	LDD	0
	STD	0
	RAL	P-Pch
	LDD	$\longrightarrow \mathrm{Pch}$
		HALT

HALT

VITA

> Richard Sibley Joyner
> Candidate for the Degree of
> Master of Science

Thesis: MINIMUM STAGE CALCULATIONS FOR COMPLEX FRACTIONATORS
Major Field: Chemical Engineering
Biographical:
Personal Data: Born in Guthrie, Oklahoma, December 7, 1932, the son of Walthall R. and Marjorie P. Joyner.

Education: Attended elementary, secondary and high school in
Guthrie, Oklahoma, graduated from Guthrie High School; received the Bachelor of Science degree from Oklahoma State University in May, 1957; completed requirements for Master of Science degree in May, 1961. Membership in scholarly or professional societies includes Sigma Tau and the American Institute of Chemical Engineers.

Professional experience: Process Engineer for Texas Eastman
Company, Longview, Texas from June, 1957 to August, 1959;
Process Engineer for Phillips Petroleum Company from
June, 1960 to September, 1960.

