THE ANALYSIS OF RIGID TRUSS-FRAMES

BY THE STRING POLYGON METHOD

By

YAVUZ 1 . GÖNUULSEN
Bachelor of Science
Robert College
Istanbul, Turkey 1959

Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE
August, 1961

THE ANALYSIS OF RIGID TRUSS-FRAMES

 BY THE STRING POLYGON METHOD

PREFACE

The material presented in this thesis is the a tgrowth of the regular course CIVEN 5A4 lectures delivered by Professor Jan J, Tuma in the Fall, 1960-1961. The literature survey and the general theory recorded in the Introduction were prepared by Professor Tuma (1).

Upon finishing the last requirements of his present program for the degree of Master of Science in Civil Engineering, the writer wishes to acknowledge his indebtedness and gratitude to the following individuals:

To Miss Mary M. Graves, Head, Physical Sciences and Engineering Library, Oklahoma State University, for her noble and magnificient help in obtaining for him a student assistantship in the Library which made this graduate study possible.

To Professor Jan J. Tuma, Head, School of Civil Engineering, Oklahoma State University, not only for introducing to him the possibilities of the application of the String Polygon Method to the analysis of rigid truss-frames, but also his great help, friendship, and guidance throughout the preparation of this thesis.

To Professors R.L. Flanders, D. M. MacAlpine, J.V. Parcher, J.W. Gillespie and Messrs. J.T. Oden and G.D. Houser for their helpful interest and encouragement during the entire academic year.

481117

To Mr. Lee Brown, Graduate Assistant in the Computer Center, Oklahoma State University, for his help in preparing the program for the High Speed Computer.

To Mrs. Mary Jane Walters, Secretary of the School of Civil Engineering, for her excellent work in typing, arranging and checking of this manuscript.

> Y. I. GónUlisen

July 13, 1961
Stillwater, Oklahoma

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION. 1
II. THE CONJUGATE FRAME 3

1. Real Frame 3
2. Conjugate Frame 7
III. THE STRING POLYGON - STRAIGHT MEMBERS 11
3. Conjugate Reaction of a Segment 11
4. Classification of Elastic Weights 13
5. Elasto-static Equations 15
IV. THE STRING POLYGON - TRUSS MEMBERS 17
6. Conjugate Reaction of a Segment 17
V. THE COMPATABILITY EQUATIONS 21
7. Compatability of Slopes 21
8. Compatability of Displacements 22
VI. NUMERICAL PROCEDURE \& APPLICATION 24
9. Procedure 24
10. Single Span Frame (Example No. 1) 25
a. Angular and Linear Functions 25
b. Elastic Weights. 28
c. Elasto-static Equations 29
d. Moment and Force Matrix 29
e. Final Moments and Forces. 29
11. Continuous Frame (Example No. 2) 30
a. Angular and Linear Functions 30
b. Elastic Weights 34
c. Elasto-static Equations 36
d. Moment and Force Matrix 38
e. Final Moments and Forces. 39
VII. SUMMARY AND CONCLUSIONS 40
BIBLIOGRAPHY 42

LIST OF TABLES

Table		Page
4-1	Curved Truss Functions.	20
6-1	Basic Structure $\overline{34}$	27
$6-2$	Basic Structure $\overline{45}$	33
6-3	Angular and Linear Functions	30
6-4	Comparison of Results	39

LIST OF FIGURES

Figure Page
2-1 Real Frame 3
2-2 Segment ij of the Real Frame \& Bending Moment Diagrams of Segment ij 4
2-3 Deflection of the Elastic Curve 4
2-4 Conjugate Segment ij 7
2-5 Relationships Between Real and Conjugate
Segmentsi ij. 10
3-1 Simple Segment ij 11
3-2 Elastic Weights 14
3-3 Isolated Part of Conjugate Frame 15
4-1 Real Truss Segment 18
4-2 Conjugate Truss Segment 18
5-1 Compatability of Slopes and Displacements 23
6-1 Single Panel Truss-Frame 26
a. Real Structure 26
b. Real Basic Structure 26
c. Conjugate Structure 26
6-2 Two-Panel Continuous Truss-Frame 31
a. Real Structure 31
b. Real Basic Structure 32
c. Conjugate Structure 31

NOMENCLATURE

SIGN CONVENTION

For forces and moments:

For axial forces:

For deformations:

For bending moments and shears:

For elastic values:

CHAPTER I

INTRODUCTION

The application of the String Polygon Method to the analysis of straight members was first introduced by Tuma (1) and fully explored by Chu (2) and Harvey (3).

In the Spring Semester, 1960, Tuma (4) presented the extension of the String Polygon Theory to bent members, fixed-end frames, frames with hinged-ends, and to the derivation of slope deflection equations.

Following this seminar several investigations have been made. Boecker (5) applied the String Polygon to frames with hinged-ends, Oden (6) investigated fixed-end frames, and Houser (7) developed the slope deflection equations for bent members.

The investigation of members of a variable cross section was carried out by Exline (8) and Yu (9).

The general theory of the String Polygon Method as applied to rigid frames was proved by Tuma and Oden (10) and the extension to the plastic analysis was made by Gauger (11).

In this thesis the analysis of truss-frames by the String Polygon Method is developed and the numerical procedure is demonstrated by two examples.

The theories and applications developed are valid for elastostatic cases only and their extension to plasto-static cases will require
additional study.
The historical background of the String Polygon Method was given by Tuma and Oden (10) and is not repeated here. The following presentation is divided into seven parts.

The nomenclature and the sign convention are shown in the first part of the thesis and are fully explained.

The review of the literature and the principle of conjugation are explained in the First Two Chapters.

The String Polygon expressions for straight solid members and truss members are given in Chapters Three and Four. Also the definition of the conjugate structure and the application of elastic weights are shown in the same Chapter.

The real contribution presented in this thesis is the development of compatability equations which add two new principles to the theory of the String Polygon Method.

Finally the application of the theory and the final summary and conclusions are shown in the last part of this thesis.

CHAPTER II

CONJUGATE FRAME

2-1. Real Frame

A rigid frame of variable cross section acted upon by a general system of loads is considered (Fig. 2-1).

Figure 2-1
Real Frame

A finite segment ij of this frame is isolated (Fig. 2-2) and the end shears and moments are calculated.

Segment ij of the Real Frame

Bending Moment Due to Loads

Bending Moment Due to M_{i}

Bending Moment Due to M_{j}

Figure 2-2
Bending Moment Diagrams of Segmentij

Figure 2-3
Deflection of the Elastic Curve

With notation;

$$
\mathrm{w}_{\mathrm{x}}=\text { Intensity of load at } \mathrm{x}
$$

The end shears of the segment ij are:

$$
\left.\begin{array}{l}
V_{i}=B V_{i}-\frac{M_{i}}{d}+\frac{M_{j}}{d} \tag{2-1}\\
V_{j}=B V_{j}-\frac{M_{i}}{d}+\frac{M_{j}}{d}
\end{array}\right\}
$$

The new symbols $B V_{i}$ and $B V_{j}$ represent the end shears of segment $i j$ due to loads acting on that segment only and it may be represented as the end shear of the simple beam ij acted on by the corresponding loads. The analytical expressions for these beam end shears are

$$
\begin{align*}
& B V_{i}=\int_{i}^{j} w_{x} \frac{x^{\prime}}{d} d x \\
& B V_{j}=-\int_{i}^{j} w_{x} \frac{x}{d} d x \tag{2-2}
\end{align*}
$$

The shear at a given point of the segment ij is:

$$
\begin{equation*}
V_{x}=B V_{x}+\frac{M_{i}}{d}+\frac{M_{j}}{d} \tag{2-3}
\end{equation*}
$$

Where the expression' $B V_{X}$ is the shear of the simple beam ij loaded by the given system of loads:

$$
\begin{equation*}
B V_{x}=B V_{i}-\int_{0}^{x} w_{x} d x \tag{2-4}
\end{equation*}
$$

The bending moment at the same point:

$$
\begin{equation*}
M_{x}=B M_{x}+M_{i} \frac{x^{\prime}}{d}+M_{j} \frac{x}{d} \tag{2-5}
\end{equation*}
$$

Similarly as in the previous cases BM_{x} is the bending moment of the
simple beam loaded by the corresponding loads: (Fig 2-2):

$$
\begin{equation*}
B M_{x}=B V_{i}(x)-\int_{0}^{x} w_{x} x d x \tag{2-6}
\end{equation*}
$$

Thus it was shown that the end shears and the bending moments at the points can be calculated as functions of the bending moment at i and j and of the simple beam ij.

If now the deformed segment ij is shown in a larger scale (Fig. 2-3), a definite similarity is observed between the moment diagram (Fig. 2-2) and the deformation diagram (Fig. 2-3).

From Fig. 2-3, the slope at x :

$$
\begin{equation*}
\theta_{x}=B \theta_{x}+\frac{\Delta_{i}}{d}+\frac{\Delta_{j}}{d} \tag{2-7}
\end{equation*}
$$

Where $B \theta_{x}$ is the slope of the simple beam ij at x : Similarly the deflection of x :

$$
\begin{equation*}
\Delta_{x}=B \Delta_{x}+\Delta_{i} \frac{x^{\prime}}{d}+\Delta_{j} \frac{x}{d} \tag{2-8}
\end{equation*}
$$

Where $B \Delta_{x}$ is the deflection of the simple beam ij at x. The similarity of Equations $(2-3,4)$ with Equations $(2-7,8)$ is well apparent and leads to the conjugation principle.

2-2. Conjugate Frame

The segment $i j$ of the real frame (Fig. 2-2) is taken. The change in slope of an element $d x$ of this finite segment $i j$ due to the bending moment M_{x} may be considered as a force vector and denoted as an elemental elastic weight:

$$
\begin{equation*}
\mathrm{d} \phi_{\mathrm{x}}=\overline{\mathrm{w}}_{\mathrm{x}}=\frac{\mathrm{M}_{\mathrm{x}} \mathrm{dx}}{\mathrm{ET}_{\mathrm{x}}} \tag{2-9}
\end{equation*}
$$

With the application of the sum of these elastic weights for the segment i.j, the conjugate segment ij is introduced (Fig. 2-4).

Figure 2-4
Conjugate Segment ij

The end shears of the segment ij are:

$$
\left.\begin{array}{l}
\theta_{i}=\overline{\mathrm{V}}_{i}=\overline{\mathrm{BV}}_{i}-\frac{\overline{\mathrm{M}}_{i}}{\mathrm{~d}}+\frac{\overline{\mathrm{M}}_{j}}{\mathrm{~d}} \tag{2-10}\\
\theta_{j}=\overrightarrow{\mathrm{V}}_{j}=\overline{\mathrm{BV}}_{j}-\frac{\overline{\mathrm{M}}_{i}}{\mathrm{~d}}+\frac{\overline{\mathrm{M}}_{j}}{\mathrm{~d}}
\end{array}\right\}
$$

Where $\overline{\mathrm{BV}}_{\mathrm{i}}$ and $\overline{\mathrm{BV}}_{j}$ represent the end shears of the segment $i j$ due to $\frac{M}{\text { EI }}$ diagram acting on that segment only and it may be represented as the end shear of the conjugate segment ij acted on by the corresponding $\frac{M}{E I}$ diagram. The analytical expressions for these conjugate beam end shears are:

$$
\left.\begin{array}{l}
B \theta_{i}=\overline{B V}_{i}=\int_{i}^{j} \bar{W}_{x} \frac{x^{\prime}}{d} d x \tag{2-11}\\
B \theta_{j}=\overline{B V}_{j}=\int_{i}^{j} \bar{W}_{x} \frac{x}{d} d x
\end{array}\right\}
$$

The shear at a given point of segment ij;

$$
\begin{equation*}
\theta_{x}=\bar{V}_{x}=\overline{B V}_{x}+\frac{\bar{M}_{i}}{d}+\frac{\bar{M}_{j}}{d} \tag{2-12}
\end{equation*}
$$

Where the expression $\overline{B V}_{\mathrm{x}}$ is the shear of the conjugate segment ij loaded by the given $\frac{\mathrm{M}}{\mathrm{EI}}$ diagram

$$
\begin{equation*}
\mathrm{B} \theta_{\mathrm{x}}=\overline{\mathrm{BV}}_{\mathrm{x}}-\int_{0}^{\mathrm{x}} \overline{\mathrm{~W}}_{\mathrm{x}} \mathrm{dx} \tag{2-13}
\end{equation*}
$$

The bending moment at the same point:

$$
\begin{equation*}
\Delta_{x}=\bar{M}_{x} \Rightarrow \overline{B M}_{x}+\bar{M}_{i} \frac{x^{\prime}}{d}+\overline{\mathbb{M}}_{j} \frac{x}{d} \tag{2-14}
\end{equation*}
$$

Similarly as in the previous cases $\overline{\mathrm{BM}}_{\mathrm{x}}$ is the moment of the conjugate segment loaded by the corresponding $\frac{\mathrm{M}}{\mathrm{EI}}$ diagram:

$$
\begin{equation*}
B \Delta_{\mathrm{x}}=\overline{\mathrm{BM}}_{\mathrm{x}}=\overline{\mathrm{BV}}_{\mathrm{i}}(\mathrm{x})-\int_{\mathrm{o}}^{\mathrm{x}} \overline{\mathrm{~W}}_{\mathrm{x}} \mathrm{xdx} \tag{2-15}
\end{equation*}
$$

Thus it was shown that the shears (slopes) and the bending moments (deflections) at a point of the segment are functions of the bend-
ing moments (deflections) at i and j and of the functions of simple segment ij.

From the similarity of Equations (2-3, 4) with Equations (2-7, 8) following analogies may be stated:
(a) The deformations of the real segment ij are defined by the beam functions of the conjugate segment ij (Fig. 2-5).
(b) The conjugate segment ij is loaded by a series of elemental elastic loads (one shown only) acting in the plane $z x$ and causing bending about y (EQ. 2-9).
(c) The shear of the conjugate segment (EQ. 2-12) is the slope of the real segment (EQ* 2-7).
(d) The bending moment of the conjugate segment (EQ. 2-14) is the deflection of the real segment (EQ. 2-8).

These relationships are shown graphically in Fig. 2-5.

Figure 2-5
Relationships Between Real and Conjugate Segments ij

CHAPTER III

THE STRING POLYGON - STRAIGHT MEMBERS

3-1. Conjugate Reactions of a segment

From the relationships between the real and the conjugate frame as it was discussed in Chapter II (Arts. 2-1, 2-2) the end slopes at i and j of a simple segment $i j$ loaded by a general systems of loads (Fig. 3-1) may be calculated from the reactions of the equivalent conjugate segment ij.

Figure 3-1
Simple Segment ij

The algebraic expressions for these end slopes are;

$$
\begin{align*}
& \phi_{i j}=M_{i} F_{i j}+M_{j} G_{j i}+\tau_{i j}=\bar{P}_{i j} \\
& \phi_{j i}=M_{j} F_{j i}+M_{i} G_{i j}+\tau_{j i}=\bar{P}_{j i} \tag{3-1}
\end{align*}
$$

The notations of these equations follow:
M_{i} (or M_{j}) is the bending moment of the simple beam ij at i (or j).
$F_{i j}$ (or $F_{j i}$) is the angular flexibility of the equivalent simple beam ij at i (or j).
$G_{i j}$ (or $G_{j i}$) is the angular carry-over value of the equivalent simple beam ij at i (or j).
$\tau_{i j}$ (or $\tau_{j i}$) is the angular load function of the equivalent slmple beam ij at i (or j).

The full account of these expressions and definitions of algebraic formulas are given elsewhere (11). For completeness the most important functions are restated in this chapter.

As shown in Fig. 3-2, the expressions for the total elastic weight of segments $i j$ and $j k$ are:

$$
\begin{equation*}
\bar{W}_{j}=\sum_{i}^{j} \bar{W}_{x} \quad \bar{W}_{k}=\sum_{j}^{k} \overline{\mathrm{w}}_{\mathrm{x}} \tag{3-2}
\end{equation*}
$$

The respective reactions of the separate beams are:

$$
\begin{array}{ll}
\bar{P}_{i j}=\sum_{i}^{j} \bar{W}_{x} \frac{x^{i}}{d} & \bar{P}_{j k}=\sum_{j}^{k} \bar{W}_{x} \frac{x^{1}}{d} \\
\bar{P}_{j i}=\sum_{i}^{j} \bar{W}_{x} \frac{x}{d} & \bar{P}_{k j}=\sum_{j}^{k} \bar{W}_{x} \frac{x}{d}
\end{array}
$$

where they represent the end slopes of the respective simple beams. (Fig. 3-2)

3-2. Classification of Elastic Weights

Once the relationship between the real and conjugate frames is established, the question arises as to how the elastic weight should be represented. It was shown by Tuma and Oden (10) that there are three types of elastic weights.
a- Elemental Elastic Weights
b-Segmental Elastic Weights
c- Joint Elastic Weights
The application of the elemental elastic weights to the analysis of a closed x ing is well known under the name of column analogy developed by Cross (12) and the application of segmental elastic weights under the name of conjugate method was developed by Kinney (13) and Lee (14). The segmental elastic weights may be also represented by reactions of each segment. If these reactions are applied on the conjugate frame, the joint elastic weights are developed.

The joint elastic weight $\overline{\mathrm{P}}_{\mathrm{j}}$ is expressed by the general formula:

$$
\begin{equation*}
\overline{\mathrm{P}}_{j}=\overline{\mathrm{P}}_{j i}+\overline{\mathrm{P}}_{j k} \tag{3-4}
\end{equation*}
$$

and may be defined as the change of change in slope of the polygonal line ijk at j.

These elastic weights may be used for calculation of bending moments at joints and calculation of joint displacements. . This approach is called the String Polygon Method.

The above mentioned three types of elastic weights are illustrated in Fig. 3-2.

Figure 3-2
Elastic Weights

3-3. Elasto-static Equations

The joint elastic weights represent a new set of force-vectors in a state of static equilibrium and equivalent to the initial set of elemental elastic weights.

Thus:

$$
\begin{align*}
& \sum \overline{\mathrm{P}}_{j}=0 \tag{3-5}\\
& \sum \overline{\mathrm{P}}_{\mathrm{j}} \mathrm{x}=0 \tag{3-6}\\
& \sum \overline{\mathrm{P}}_{\mathrm{j}} \mathrm{y}=0
\end{align*}
$$

In addition to this any part of the conjugate frame may be isolated and end shears and moments of this isolated part are the deformations of the real structure at the end respectively. These statements are illustrated by Fig. 3-3.

Figure 3-3
Isolated Part of Conjugate Frame

$$
\begin{align*}
& \overline{\mathrm{V}}_{i}=\sum_{i}^{B} \overline{\mathrm{P}}_{j}=\theta_{i} \tag{3-7a}\\
& \overline{\mathrm{M}}_{i x}=\sum_{i}^{B} \bar{P}_{j}\left(y-y_{i}\right)=\Delta_{i x} \tag{3-7b}\\
& \overline{\mathrm{M}}_{i y}=\sum_{i}^{B} \bar{P}_{j}\left(x-x_{i}\right)=\Delta_{i y} \tag{3-7c}
\end{align*}
$$

The extension of the String Polygon Method to the analysis of truss members is explained in the following chapter.

CHAPTER IV

THE STRING POLYGON - TRUSS MEMBERS

4-1. Conjugate reactions of a segment

If a curved truss segment of variable depth with a general system of transverse loads is consider ed as shown in Fig. 4-1, the end slopes and horizontal displacement of supports may be again represented as reactions of a conjugate structure.

It is well known from the theory of structures that the angle changes of each truss panel may be represented as the elastic weights. A typical truss elastic weight $\overline{\mathrm{P}}_{\mathrm{m}}$ applied on the conjugate structure is shown in Fig. 4-2.

The elastic weight $\overline{\mathrm{P}}_{\mathrm{m}}$ is calculated by means of virtual work and the position coordinates of this elastic weight are x_{m}, y_{m} respectively. Such elastic weight can be calculated for each joint of the truss. The sum of all elastic weights is the total elastic weight acting on the conjugate structure.

$$
\begin{equation*}
\overline{\mathrm{W}}=\sum \overline{\mathrm{P}}_{\mathrm{m}} \tag{4-1}
\end{equation*}
$$

The end slope of the real structure at point i;

$$
\begin{equation*}
\bar{P}_{i j}=\sum \bar{P}_{m} \frac{x_{m}^{\prime}}{L} \tag{4-2}
\end{equation*}
$$

at point j :

$$
\begin{equation*}
\overline{\mathrm{P}}_{j i}=\sum \overline{\mathrm{P}}_{\mathrm{m}} \frac{\mathrm{x}_{\mathrm{m}}}{\mathrm{~L}} \tag{4-3}
\end{equation*}
$$

The end displacement of the real structure at point i:

$$
\begin{equation*}
\overline{\mathrm{M}}_{\mathrm{ijx}}=\sum \overline{\mathrm{P}}_{\mathrm{m}} \mathrm{y}_{\mathrm{m}} \tag{4-4}
\end{equation*}
$$

Figure 4-2
Conjugate Truss Segment
If $\overline{\mathrm{P}}_{\mathrm{m}}$ is evaluated in terms of moments M_{i} and M_{j}, horizontal thrust H andioads, and if new symbols are introduced, the final form for these expressions (Eqs. 4-2, 3, 4,) is obtained.

$$
\begin{align*}
& \phi_{i j}=M_{i} F_{i j}+M_{j} G_{j i}+H E_{i j}+\tau_{i j}=\bar{P}_{i j} \tag{4-5}\\
& \phi_{j i}=M_{j} F_{j i}+M_{i} G_{i j}+H E_{j i}+\tau_{j i}=\bar{P}_{j i} \tag{4-6}\\
& \Delta_{i j x}=M_{i j} E_{i j}+M_{j} E_{j i}+H \Omega_{i j}+E_{i j}=\bar{M}_{i j x} \tag{4-7}
\end{align*}
$$

The algebraic expressions for the constants are recorded in the Table 4-1.

All expressions in these tables are in terms of the following nomenclature;

$$
\begin{aligned}
& \mathrm{BN}_{\mathrm{m}}=\text { The axial force due to loads } \\
& \alpha_{\mathrm{m}}=\text { The axial force due to } \mathrm{M}_{\mathrm{i}}=+1 \\
& \beta_{\mathrm{m}}=\text { The axial force due to } \mathrm{M}_{j}=+1 \\
& \gamma_{\mathrm{m}}=\text { The axial force due to horizontal trust } H=+1 \\
& \mathrm{~d}_{\mathrm{m}}=\text { The length of the bar } \\
& A_{\mathrm{m}}=\text { The area of the cross-section of the bar } \\
& E=\text { ModuIus of elasticity of the bar } \\
& \lambda_{m}=\text { The axial flexibility }
\end{aligned}
$$

where:

$$
\begin{equation*}
\lambda_{\mathrm{m}}=\frac{\mathrm{d}_{\mathrm{m}}}{A_{\mathrm{m}} \mathrm{E}} \tag{4-8}
\end{equation*}
$$

The derivation of these constants is a part of the regular CIVEN 5A4 and reference is made to the lecture notes (15).

CURVED TRUSS FUNCTIONS		Table 4-1
	$\tau_{i j}=\sum_{i}^{j} \mathrm{BN}_{\mathrm{m}} \alpha_{\mathrm{m}} \lambda_{\mathrm{m}}$	The angular displacement load function $\tau_{1 j}$ is the end slope of the simple curved truss i_{j}, at i , due to loads.
	$\tau_{\mathrm{ji}}=\sum_{\mathrm{i}} \mathrm{SN}_{\mathrm{m}} \beta_{\mathrm{m}} \lambda_{\mathrm{m}}$	The angular displacement load function $\tau_{i j}$ is the end slope of the simple curved truss $i j$, at j, due to loads.
	$\epsilon_{1 j}=\sum_{i}^{j} \mathrm{BN}_{\mathrm{m}} \gamma_{\mathrm{m}} \lambda_{\mathrm{m}}$	The linear displacement load function $\epsilon_{i j}$ is the relative horizontal displacement of the ends of the simple curved truss $1 j$ due to loads.
THRUST FUNCTIONS	$\mathrm{E}_{\mathrm{ij}}=\sum_{i} \alpha_{m} \gamma_{m}{ }^{\lambda_{m}}$	The angular-linear (linear-anguiar carry-over value $E_{i j}$ is the end slope (relative horizontal displace ment of the simple curved truss $i j$, at i , due to $\mathrm{H}=1\left(\mathrm{M}_{\mathrm{ij}}=+1\right)$.
	$\mathrm{E}_{\mathrm{ji}}=\sum_{i} \beta_{m} \gamma_{m} \lambda_{m}$	The angular-linear (linear-angular carry-over value $E_{i j}$ is the end slope (relative horizontal displacement) of the simple curved tru $i \mathrm{ij}$, at j , due to $\mathrm{H}=+1\left(\mathrm{M}_{\mathrm{j} 1}=+1\right)$.
	$\Omega_{\mathrm{ij}}=\sum_{i} \gamma_{\mathrm{m}}^{2} \lambda_{\mathrm{m}}$	The linear flexibility if is the re lative horizontal displacement of the simple curved truss $i \mathrm{j}$ due to $\mathrm{H}=+1$.
Left-hand moment functions	$F_{\mathrm{rj}}=\sum_{i^{\prime}}^{j} \alpha_{\mathrm{m}}^{2} \lambda_{\mathrm{m}}$	The angular flexibility $F_{i j}$ is the end slope of the simple curved truss ij_{j} at i , due to $\mathrm{M}_{\mathrm{ij}}{ }^{++1}$.
	$\mathrm{G}_{\mathrm{j} 1}=\sum_{i}^{\mathrm{j}} \alpha_{\mathrm{m}} \beta_{\mathrm{m}} \lambda_{\mathrm{m}}$	The angular carry-over value $G_{1 j}$ is the end slope of the simple curved truss ij^{j}, at j , due to $\mathrm{M}_{\mathrm{ij}}{ }^{=+1}$.
	$\mathrm{E}_{\mathrm{ij}}=\sum_{i}^{j} \alpha_{\mathrm{m}} \gamma_{\mathrm{m}} \lambda_{\mathrm{m}}$	The linear-angular (angular-linear) carry-over value $E_{i j}$ is the end slope (relative horizontal displacement) of the simple curved truss i. at i , due to $\mathrm{M}_{\mathrm{ij}}=+1(\mathrm{H}=+1)$.
RIGHT-HAND MOMENT FUNCTTONS	$\mathrm{F}_{\mathrm{ji}}=\sum_{i}^{j} \beta_{\mathrm{m}}^{2} \lambda_{\mathrm{m}}$	The angular flexibility $F_{i j}$ is the end slope of the simple curved truss ij, at 1 , due to $\mathrm{M}_{\mathrm{ji}}=+1$.
	$a_{1 j}=\sum_{i}^{j} \alpha_{m} \beta_{m} \lambda_{m}$	The angular carry-over value G_{ij} is the end slope of the simple curved truss ij , at i , due to $\mathrm{M}_{\mathrm{ji}}=+1$.
	$E_{j 1}=\sum_{i}^{j} \beta_{m} \gamma_{m} \lambda_{m}$.	

CHAP TER V

COMPATABILITY EQUATIONS

5-1. Compatability of Slopes

It becomes obvious from the deformation sketch of the truss frame that the angular deformation of the truss at the connection of the truss to the column must be equal to the angular displacement of the string line.

This can be expressed in terms of conjugate structure as the equality of the column conjugate structure shear with the truss conjugate structure shear.

$$
\begin{equation*}
\overline{\mathrm{V}}_{\mathrm{j}}^{\text {(column) }}=\overline{\mathrm{V}}_{\mathrm{ji}}^{\text {(truss) }} \quad \overline{\mathrm{V}}_{\mathrm{j}}^{(\text {column })}=\overline{\mathrm{V}}_{\mathrm{jk}} \text { (truss) } \tag{5-1}
\end{equation*}
$$

The conjugate shear of the column may be easily calculated from the conjugate beam. The shear of the conjugate column corresponding to the rotation of truss;

$$
\begin{equation*}
\overline{\mathrm{V}}_{\mathrm{j}}(\text { column })=\overline{\mathrm{P}}_{o j}+\overline{\mathrm{P}}_{j B} \tag{5-2}
\end{equation*}
$$

The end slope of truss is given by a similar equation (4-2).
A similar procedure is applicable for the adjacent panel and the reversed sign approach has to be observed.

The compatability of slopes statement is illustrated in Fig. 5-1. Where $\overline{\mathrm{P}}_{\mathrm{jB}}$ is the column joint elastic weight at j.

5-2. Compatability of Displacements

In a similar way to the compatability of slopes (Art. 5-1), it is true that the linear deformation of the truss at the connection of the truss to the column must be equal to the linear displacement of the string line on the column.

This can be expressed in terms of the conjugate structure as the equality of the column conjugate structure bending moment (displacement) with the truss conjugate structure bending moment (displacement).

$$
\begin{equation*}
\Delta_{j}^{(\text {column })}=\Delta_{j i}^{(\text {truss })} \quad \Delta_{j}^{(\text {column })}=\Delta_{j k} \text { (truss) } \tag{5-3}
\end{equation*}
$$

The conjugate bending moment (displacement) of the column may be easily calculated from the conjugate beam. The bending moment (displacement) of the conjugate column corresponding to the displacement of the truss:

$$
\begin{equation*}
\Delta_{j}^{(\text {column })}=\overline{\mathrm{P}}_{\mathrm{oj}} \mathrm{f} \tag{5-4}
\end{equation*}
$$

The end displacement of the truss is given by the similar Equation (4-4).

A similar procedure is applicable for the adjacent panel and the reversed sign approach has to be observed.

The compatability of displacements statement together with the compatability of slopes statement is illustrated in Fig. 5-1.

Figure 5-1
Compatability of Slopes and Displacements

CHAPTER VI

NUMERICAL PROCEDURE \& APPLICATION

6-1. Procedure

Two examples illustrate the numerical procedure of analysis by the string polygon method applied to truss-frames.

The first illustrates the application of the string polygon method to the solution of a single panel truss-frame (Fig. 6-1), while the second deals with the solution of a two-panel continuous truss-frame (Fig. 6-2).

First, the basic structure of the truss frame is drawn and the end bending moments and end thrusts are selected as unknowns. Then the moment and force elastic weights in terms of angular and linear functions are developed and applied on the conjugate structure. The moment and force matrix is written in terms of elasto-static equations and the solution of the moment and force matrix yields the values of the reduridants.

In the solution of problems all values are in kips, inches, or kip-inches.

References are made in each example to the equations, and tables used.

6-2. Single Span Frame (Example No. 1)

The unsymmetrical single panel truss-frame is analyzed for the given conditions (Fig. 1-a). The end bending moments and thrusts are taken as the unknowns (Fig. 1-b).

a.) Angular and Linear Functions (1)

Column Members

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{AC}}=\mathrm{F}_{\mathrm{CA}}=\mathrm{F}_{\mathrm{BD}}=\mathrm{F}_{\mathrm{DB}}=\frac{200}{(3)(300) \mathrm{E}}=\frac{.222}{\mathrm{E}} \\
& \mathrm{~F}_{\mathrm{CE}}=\mathrm{F}_{\mathrm{EC}}=\mathrm{F}_{\mathrm{DF}}=\mathrm{F}_{\mathrm{FD}}=\frac{60}{(3)(300) \mathrm{E}}=\frac{.066}{\mathrm{E}} \\
& \mathrm{G}_{\mathrm{AC}}=\mathrm{G}_{\mathrm{CA}}=\mathrm{G}_{\mathrm{BD}}=\mathrm{G}_{\mathrm{DB}}=\frac{200}{(6)(300) \mathrm{E}}=\frac{.111}{\mathrm{E}} \\
& \mathrm{G}_{\mathrm{CE}}=\mathrm{G}_{\mathrm{EC}}=\mathrm{G}_{\mathrm{DF}}=\mathrm{G}_{\mathrm{FD}}=\frac{60}{(6)(300) \mathrm{E}}=\frac{.033}{\mathrm{E}}
\end{aligned}
$$

Truss Members (Table 6-1)

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{CD}}=\frac{.189350}{\mathrm{E}} & \mathrm{~F}_{\mathrm{DC}}=\frac{.189400}{\mathrm{E}} \\
\mathrm{G}_{\mathrm{CD}}=\mathrm{G}_{\mathrm{DC}}=\frac{-.05055}{\mathrm{E}} & \\
\mathrm{E}_{\mathrm{CD}}=\frac{5.001}{\mathrm{E}} & \mathrm{E}_{\mathrm{DC}}=\frac{3.334}{\mathrm{E}} \\
\Omega_{\mathrm{CE}}=\frac{500}{\mathrm{E}} & \\
\tau_{\mathrm{CD}}=\frac{.0250}{\mathrm{E}} & \tau_{\mathrm{DC}}=\frac{16.645}{\mathrm{E}}
\end{array}
$$

(c) Conjugate Structure

Figure 6-1
Single Panel Truss-Frame

$$
\begin{aligned}
& \text { b.) Elastic Weights (Eqs. 3-1, 4-5, 6, 7) } \\
& E \bar{P}_{A C}=M_{A C} F_{A C}+M_{C A} G_{C A} \\
& =.333 X_{1}-44.444 X_{3} \\
& E \bar{P}_{C A}=M_{C A} F_{C A}+M_{A C} G_{A C} \\
& =.333 X_{1}-22.222 X_{3} \\
& E \bar{P}_{B D}=M_{B D} F_{B D}+M_{D B} G_{D B} \\
& =.333 X_{2}-44.444 X_{3} \\
& E \bar{P}_{C E}=M_{C E}{ }^{F}{ }_{C E} \\
& =.066 \mathrm{X}_{1} \\
& E \bar{P}_{D F}=M_{D F} F_{D F} \\
& =.033 \mathrm{X}_{2} \\
& E \bar{P}_{C D}=M_{C D} F_{C D}+M_{D C} G_{D C}+H_{C D} E_{C D}+{ }^{T}{ }_{C D} \\
& =.189350 X_{1}-.05055 X_{2}+5.001 X_{3}+.0250 \\
& E \bar{P}_{D C}=M_{D C} F_{D C}+M_{C D} G_{C D}+H_{D C} E_{D C}+\tau_{D C} \\
& =.189350 X_{2}-.05055 X_{1}+3.334 X_{3}+16.645 \\
& E \bar{M}_{C D}=M_{C D} E_{C D}+M_{D C} E_{D C}+H_{C D} \Omega_{C D} \\
& =5.001 X_{1}+3.334 X_{2}+500 X_{3}
\end{aligned}
$$

c.) Elasto-Static Equations (Eqs. 3-4, 5, 6, 7)

Elastic weights are applied on the conjugate structure as shown in Fig. 1-c.

Static Moment about $\overline{\mathrm{BD}}$

$$
\begin{aligned}
& \left(\overline{\mathrm{P}}_{\mathrm{AC}}+\overline{\mathrm{P}}_{\mathrm{CA}}+\overline{\mathrm{P}}_{\mathrm{CE}}+\overline{\mathrm{P}}_{\mathrm{CD}}\right)(500)=0 \\
& 461.145 \mathrm{X}_{1}-25.315 \mathrm{X}_{2}-31630.000 \mathrm{X}_{3}
\end{aligned}
$$

Static Moment about $\overline{A C}$

$$
\begin{aligned}
& \left(\overline{\mathrm{P}}_{\mathrm{BD}}+\overline{\mathrm{P}}_{\mathrm{DB}}+\overline{\mathrm{P}}_{\mathrm{DF}}+\overline{\mathrm{P}}_{\mathrm{DC}}\right)(500)=0 \\
& 462.000 \mathrm{X}_{2}-25.315 \mathrm{X}_{1}-3163.000 \mathrm{X}_{3}=8320.000=0
\end{aligned}
$$

Static Moment about $\overline{\mathrm{CD}}$

$$
\begin{aligned}
& \left(\overline{\mathrm{P}}_{\mathrm{AC}}+\overline{\mathrm{P}}_{\mathrm{BD}}\right)(200)-\overline{\mathrm{M}}_{\mathrm{CD}}=0 \\
& 61.666+63.333-18277.667=0
\end{aligned}
$$

d.) Moment and Force Matrix

$$
\left[\begin{array}{ccc}
(461.145) & (-25.315) & (-30832.500) \\
(-25.315) & (462.000) & (-31630.000) \\
(61.666) & (63.333) & (-18277.667)
\end{array}\right]\left[\begin{array}{l}
\left(\mathrm{X}_{1}\right) \\
\left(\mathrm{X}_{2}\right) \\
\left(\mathrm{X}_{3}\right)
\end{array}\right]==\left[\begin{array}{lc}
\left(\begin{array}{lc}
-12.320) \\
(-8320.000) \\
(& 0
\end{array}\right)
\end{array}\right]
$$

e.) Final Moments and Forces

The solution of the moment and force matrix yields the following values:

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{CD}}=-10.183 \mathrm{kip}-\mathrm{in} \\
& \mathrm{M}_{\mathrm{DC}}=-27.425 \mathrm{kip}-\mathrm{in} \\
& \mathrm{H}_{\mathrm{CD}}=-0.129 \mathrm{kip}
\end{aligned}
$$

6-3. Continuous Frame (Example No. 2)

The symmetrical two-panel truss-frame is analyzed for the Ioading shown (Fig. 6-2a). The end bending moments and thrusts are selected as the unknowns (Fig. 6-2b).

a.) Angular and Linear Functions

The values of angular and linear truss functions are computed by means of virtual work (Table 6-2) in terms of the new symbols listed in Table 4-1.

The values of the angular and linear functions for the complete structure are shown in Table 6-3.

Example No. 2			Angular and Linear Functions			Table 6-3	
Member		F	G	E	Ω	τ	ϵ
$\sum_{\sum_{n}^{n}}^{n}$	$45=54$ $56=65$	$\begin{aligned} & \frac{.190622}{E} \\ & \frac{190622}{E} \end{aligned}$	$\begin{aligned} & \frac{.092094}{E} \\ & \frac{.0 .92094}{E} \end{aligned}$	$\begin{aligned} & \frac{20.3763}{\mathrm{E}} \\ & \frac{20.3763}{\mathrm{E}} \end{aligned}$	$\begin{aligned} & \frac{3623.16}{E} \\ & \frac{3623.16}{E} \end{aligned}$	$\begin{aligned} & \frac{962.396}{E} \\ & \frac{962.396}{E} \end{aligned}$	$\begin{aligned} & \frac{167817.4}{\mathrm{E}} \\ & \frac{167817.4}{\mathrm{E}} \end{aligned}$
$\begin{aligned} & \text { g } \\ & \underset{3}{3} \\ & \underset{0}{0} \end{aligned}$	$14=41$	$\xrightarrow{.222}$	$\frac{.111}{\mathrm{E}}$	----	----	----	----
	$25=52$	$\frac{.222}{\mathrm{E}}$	$\frac{.111}{\mathrm{E}}$	----	----	----	----
	$36=63$	$\frac{.222}{\mathrm{E}}$	$\frac{-111}{\mathrm{E}}$	----	----	----	----
	$47=74$	$\frac{.066}{\mathrm{E}}$	$\frac{.033}{\mathrm{E}}$	----		-----	----
	$58=85$	$\stackrel{.066}{E}$	$\underline{.033} \mathrm{E}$	----	----	----	----
	$69=96$	$\frac{.066}{\mathrm{E}}$	$\frac{.033}{E}$				--.--

Figure 6-2c
Conjugate Structure

$$
\begin{aligned}
& \begin{array}{l}
X_{1}=M_{45} \\
X_{2}=M_{54} \\
X_{5}=H_{45}=H_{54}
\end{array} \\
& \begin{array}{ll}
A_{T}=A_{B}=1 \text { in }^{2} & X_{3}=M_{56} \\
A_{V}=A_{D}=.5 \text { in }^{2} & X_{5}=M_{65} \\
\because \text { in }_{c}=300 \text { in }^{4} & X_{6}=H_{56}=H_{65}
\end{array}
\end{aligned}
$$

Figure 6-2b

Basic Structure

Two-Panel Continuous Truss-Frame

$$
\begin{aligned}
& \text { b.) Elastic Weights (Eqs. 3-1, 4-5, 6, 7) } \\
& E \bar{P}_{45}=M_{45} F_{45}+M_{54} G_{54}+H_{45} E_{45}+\tau_{45} \\
& =.190622 X_{1}+092094 X_{2}+20.3763 X_{5}+962.396 \\
& E \bar{P}_{54}=M_{54} F_{54}+M_{45} G_{45}+H_{54} E_{54}+{ }_{54} \\
& =.190622 X_{2}+.092094 X_{1}+20.3763 X_{5}+962.396 \\
& E \bar{M}_{45}=M_{45} E_{45}+M_{54} \mathrm{E}_{54}+\mathrm{H}_{45} \Omega_{45}+\epsilon_{45} \\
& =20.3763 X_{1}+20.3763 X_{2}+3623.16 X_{5}+167817.40 \\
& E \bar{P}_{56}=M_{56} F_{56}+M_{65} G_{65}+H_{56} E_{56}+\tau_{56} \\
& =-.190622 X_{3}-092094 X_{4}-20.3763 X_{6}-962.396 \\
& E \bar{P}_{65}=M_{65} F_{65}+H_{56} G_{56}+H_{65} E_{65}+\tau_{65} \\
& =-.190622 X_{4}-.092094-20.3763 X_{6}-962.396 \\
& E \bar{M}_{56}=M_{56} \mathrm{E}_{56}+\mathrm{M}_{65} \mathrm{E}_{56}+\mathrm{H}_{65} \Omega_{56}+\epsilon_{56} \\
& =-20.37 .63 X_{3}-20.3763 X_{4}-3623.16 X_{6}-167817.40
\end{aligned}
$$

$$
\begin{aligned}
& E \bar{P}_{14}=M_{14} F_{14}+M_{41} G_{41}=.333 X_{1}-44.444 X_{5}-637.140 \\
& E \bar{P}_{41}=M_{41} F_{41}+M_{14} G_{14}=.333 X_{1}-22.222 X_{5}-348.540 \\
& E \bar{P}_{47}=M_{47} F_{47}=.066 X_{1}-12.00 \\
& * E \bar{P}_{25}=M_{25} F_{25}+M_{52} G_{52}=.333 X_{2}-.333 X_{3}-44.444 X_{5}+44.44 X_{6} \\
& * E \bar{P}_{52}=M_{52} F_{52}+M_{25} G_{25}=.333 X_{2}-.333 X_{3}-22.222 X_{5}-22.222 X_{6} \\
& * E \bar{P}_{58}=M_{58} F_{58}=.066 X_{2}-.066 X_{3} \\
& E \bar{P}_{36}=M_{36} F_{36}+M_{63} G_{63}=44.444 X_{6}-.333 X_{4} \\
& E \bar{P}_{63}=M_{63} F_{63}+M_{36} G_{36}=22.222 X_{6}-.333 X_{6} \\
& E \bar{P}_{69}=M_{69} F_{69}=-.033 X_{4}
\end{aligned}
$$

* Positive for Ieft-hand panel, Negative for right-hand paneI.
c) Elasto-Static Equations (Eq. 3-4, 5, 6, 7) Elastic weights are applied on the conjugate structure as shown in Fig. 6-2e.

Panel 1
Static Moment about $\overline{25}$

$$
\left(\overline{\mathrm{P}}_{14}+\overline{\mathrm{P}}_{41}+\overline{\mathrm{P}}_{47}+\overline{\mathrm{P}}_{45}\right)(600)=0
$$

1. $553.992 X_{1}+55.254 X_{2}-27773.820 X_{5}-21174=0$

Static Moment about $\overline{14}$

```
    \(\left(\overline{\mathrm{P}}_{25}+\overline{\mathrm{P}}_{52}+\overline{\mathrm{P}}_{58}+\overline{\mathrm{P}}_{54}\right)(600) \doteq 0\)
2. \(55.254 X_{1}+553.992 X_{2}-439.620 X_{3}-27773.820 X_{5}+39999.600 X_{6}+577437=0\)
```

Static Moment about $\overline{45}$

$$
\left(\overline{\mathrm{P}}_{14}+\overline{\mathrm{P}}_{25}\right)(200)-\left(\overline{\mathrm{M}}_{45}\right)=0
$$

3. $46.290 X_{1}+46.290 X_{2}-66.666 X_{3}-21400.760 X_{5}+8888.800 X_{6}-295245=0$

Pane 12

Static Moment about $\overline{36}$

$$
\left(\overline{\mathrm{P}}_{25}+\overline{\mathrm{P}}_{52}+\overline{\mathrm{P}}_{58}+\overline{\mathrm{P}}_{56}\right) \quad(600)=0
$$

4. $-439620 X_{2}+553.992 X_{3}+55254 X_{4}+39999.600 X_{5}-27773.820 X_{6}+577437=0$

Static Moment about $\overline{25}$

$$
\left(\overline{\mathrm{P}}_{36}+\overline{\mathrm{P}}_{63}+\overline{\mathrm{P}}_{69}+\overline{\mathrm{P}}_{65}\right)(600)=0
$$

5. $55.254 X_{3}+553.992 X_{4}-27773.820+577437=0$

Static Moment about $\overline{56}$

$$
\left(\overline{\mathrm{P}}_{25}+\overline{\mathrm{P}}_{36}\right)(200)-\left(\overline{\mathrm{M}}_{56}\right)=0
$$

6. $66.666 X_{2}-46.290 X_{3}-46.290 X_{4}-8888.800 X_{5}+21400.760 X_{6}+167817=0$
d.) Moment and Force Matrix

e.) Final Moments and Forces

The moment and force matrix is solved by high speed computer and the results are compared in Table 6-4 to those found by the virtual work method.

Example No. 2	COMPARISON OF RESULTS	Table 6-4
Redundant	Virtual Work.	String Polygon
$\mathrm{X}_{1}=\mathrm{M}_{34}$	$-758.50 \mathrm{kip}-\mathrm{in}$.	$-759.77 \mathrm{kip}-\mathrm{in}$.
$\mathrm{X}_{2}=\mathrm{M}_{43}$	$-2588.77 \mathrm{kip}-\mathrm{in}$.	$-2587.85 \mathrm{kip-in}$.
$\mathrm{X}_{3}=\mathrm{M}_{45}$	$-2262.97 \mathrm{kip}-\mathrm{in}$.	$-2262.42 \mathrm{kip}-\mathrm{in}$.
$\mathrm{X}_{4}=\mathrm{M}_{54}$	$-1670.12 \mathrm{kip}-\mathrm{in}$.	$-1670.82 \mathrm{kip}-\mathrm{in}$.
$\mathrm{X}_{5}=\mathrm{H}_{34}$	-21.07 kips	-21.07 kips
$\mathrm{X}_{6}=\mathrm{H}_{56}$	-17.04 kips	-17.04 kips

CHAPTER VII

SUMMMARY AND CONCLUSION

The extension of the String Polygon Method to the analysis of rigid truss-frames having straight, bent, or curved members is presented in this thesis.

A means of establishing compatability of slopes and displacements at the connection of the truss to the column is established.

The theory presented in this thesis is illustrated by two numerical examples. Truss-frames are analyzed by the String Polygon Method and by the Virtual Work Method, and the results are compared.

The String Polygon Method offers the following advantages:
a. The application of the differential elastic weights is simplified by concentrating their effect at the joints in the form of joint elastic weights.
b. The conjugate structure offers a physical model for the analyst.
c. Elasto-static equations compatable with the deformation of the real structure are obtained from the conjugate structure.

The elasto-static equations combined with the equations of static equilibrium offer the necessary conditions for analyzing a rigid truss-frame.

The application of the String Polygon Method offers numerical
controls and yields theoretically exact results. The necessary computations are more direct and easier organized than for most conventional methods.

A SELECTED BIBLIOGRAPHY

1. Tuma, Jan J., "Carry-over Procedures Applied to Civil Engineering Problems," Lecture Notes, C. E. 620Seminar, Oklahoma State University, Stillwater, Spring, 1959.
2. Chu, Shih L., "Beam Constants by the String Polygon Method," M. S. Thesis, Oklahoma State University, Stillwater, Surnmer, 1959.
3. Harvey, John T., "Analysis of Fixed-End Frames with Bent Members by the String Polygon and Carry-Over Method," M. S. Thesis, Oklahoma State University, Stillwater, Summer, 1960.
4. Tuma, Jan J., "Carry-Over Procedures Applied to Civil Engineering Problems," Lecture Notes, C. E. 620 Seminar, Oklahoma State University, Stillwater, Spring, 1960.
5. Boecker, Henry C., "Analysis of Pinned-End Frames by the String Polygon Method," M.S. Thesis, Oklahoma State University, Stillwater, Summer 1960.
6. Oden, John T., "Analysis of Fixed-End Frames with Bent Members by the String Polygon Method, " M.S. Thesis, Oklahoma State University, Stillwater, Summer, 1960.
7. Houser, G. D., "Slope Deflection Equations for Symmetrical Bent Members by the String Polygon Method, " M. S. Thesis, Oklahoma State University, Stillwater, (in preparation).
8. Exline, J.W., "String Polygon Constant for Members with Sudden Change in Section, "M.S. Thesis, Oklahoma State University, Stillwater, (in preparation).
9. Yu, H. S. , "Analysis of Wedge Frames with Bent Members by the String Polygon Method," M.S. Thesis, Oklahoma State University, Stillwater, (in preparation).
10. Tuma, Jan J., and Oden, John T., "Analysis of Rigid Frames with Straight Members by the String Polygon Method," Report, presented at the joint meeting of the Texas and Oklahoma Sections of ASCE, Dallas, September, 1960.
11. Wu, Chien M., "The General String Polygon," M. S. Thesis, Oklahoma State University, Stillwater, Summer 1960.
12. Cross, Hardy and N.D. Morgan, Continuous Frames of Reinforced Concrete, New York, 1945, pp. 26-76.
13. Kinney, J. Sterling, Indeterminate Structural Analysis, Addison-Wesley Co., Reading, Mass., 1957.
14. Lee, S. L., "The Conjugate Frame Method and Its Application in the Elastic and Plastic Theories of Structures," J. Franklin Inst., Vol. 266, No. 3, pp. 207-22, 1958.
15. Tuma, Jan J. , "Civen 5A4 - Theory of Structures III" Lecture Notes, Oklahoma State University, Stillwater, Fall, 1960.
16. Maydayag, Angel F., "Deflection of Airplane Wings by the String Polygon Method," Seminar Report, Oklahoma State University, Stillwater, Spring, 1960,
17. Ramey, J.D., "Elastic Weights for Trusses by the String Polygon Method," M.S. Thesis, Oklahoma State University, Stillwater, (in preparation).
18. Biezeno, C.B., and Grammel, R., "Elastic Problems of Single Machine Elements," tr., Engineering Dynamics, Vol. II, M. L. Meyer, Blackie and Son, Limited, Glasgow, 1956. pp. 2-8.
19. Mohr, O., "Behandlung der Elastischen Als Seillinie," Zeitschr D. Architekt. u. Ing. Vereins Zu, Hannover, 1868.
20. Muller-Breslau, H. F. B., "Beitrag Zur Theorie Des Fachwerks," Zeitschr D. Architekt. u. Ing., Hannover, 1885, pp. 31, 418.
"
21. Muller-Breslau, H. F. B., Die Graphische Statik Der Baukonstruktionen, Vol. II, Part 2, 2nd Ed., Leipzig, 1925, pp. 337-365.
22. Wanke, J., Zur Berechnung Der Formanderungen Vollwandiger Tragwerke, Der Stahlbau, 1939, No. 23, 24.
23. Chmelka, F., "Naherung Formeln," Der Stahibau, 1940, No.
24. Chmelka, F., "Naherung Formeln, " Der Stahlbau, 1940, No.
$23,24$. -
25. - Maugh, Lawrence C. . 'Statically Indeterminate Structures," John Wiley \& Sons, Inc. . Chapman \& Hall, Limited, London.
26. Tuma, Jan J., "Analysis of Continuous Trusses by Carry-Over Moments," School of Civil Engineering Research Publication, Oklahoma State University, No. 114, June, 1960.
27. Leontovich, V., Frames and Arches, McGraw-Hill Book Co., Inc., New York, N.Y., 1959, pp. 222, 241-243.
28. Guldan, R., Die Cross-Methode, Springer-veriag, Wien, 1955, pp. 131-138.
29. Michalos, J., Theory of Structural Analysis and Design, New York, 1958, pp. 20-37.
30. Kaufmann, W., Statik Der Tragwerke, 4th Ed., Berlin, 1957, pp. 144-153.

VITA
 Yavuz I. Gönừsen

Candidate for the degree of
Master of Science

Thesis: THE ANALYSIS OF RIGID TRUSS-FRAMES BY THE STRING POLYGON METHOD

Major Field: Civil Engineering
Biographical:
Personal Data: Born August 2, 1936, in Izmir, Turkey, the son of Muharrem and Ulviye Göntisen.

Education: Graduated from Commercial High School, Izmir, Turkey, in June 1951. Received the degree of Bachelor of Science in Civil Engineering from Robert College, Civil Engineering School, Istanbul, Turkey, June, 1959. Completed the requirements for the Master of Science degree in August, 1961.

Professional Experience: Civil Engineer for the U. S. Army Corps of Engineers, Incirlik Air Base, Adana, Turkey, June through November, 1959.

