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CHAPTER I
INTRODUCTION

The application of the String Polygon Method to the analysis of
straight members was first introduced by Tuma (1) and fully explored
by Chu (2) and Harvey (3).

In the Spring Semester, 1960, Tuma (4) presented the extension
of the String PolygonTheory to bent members, fixed-end frames,
frames with hinged-ends, and to the derivation of slope deflection
equations.

Following this seminar several investigations have been made.
Boecker (5) applied the String Polygon to frames with hinged-ends,
Oden (6) investigated fixed-end frames, and Houser (7) developed the
slope deflection equations for bent members.

The investigation of members of a variable cross section was
carried out by Exline (8) and Yu {9).

The general theory of the String Polygon Method as applied to
rigid frames was proved by Tuma and Oden {10) and the extension to
the plastic analysis was made by Gauger (11).

In this thesis the analysis of truss-frames by the String Polygon
Method is developed and the numerical procedure is dembnstrated by
two examples.

The theories and applications developed are valid for elasto-
static cases only and their extension to plasto-static cases will require

1



additional study.

The historical background of the String Polygon Method was
given by Tuma and Oden (10) and is not repeated here. The following
presentation is divided into seven parts.

The nomenclature and the sign convention are shown in the
first part of the thesis and are fully explained.

The review of the literature and the principle of conjugation
are explained in the First Two Chapters.

The String Polygon expressions for straight solid members and
truss members are given in Chapters Three and Four. Also the
definition of the conjugate structure and the application of elastic
weights are shown in the same Chapter.

The real contribution presented in this thesis is the develop-
ment of compatability equations which add two new principles to the
" theory of the String Polygon Method.

Finally the application of the theory and the final summary and

conclusions are shown in the last part of this thesis.
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CHAPTER II
CONJUGATE FRAME

2-1, Resl Frame

A rigid frame of variable cross section acted upon by a general

system of loads is considered (Fig. 2-1).

Figure 2-1

Real Frame

A finite segment ij of this frame is isolated (Fig. 2-2) and the

end shears and moments are calculated.
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With notation;

w, = Intensity of load at x

The end shears of the segment ij are:

I

Vi =BV -t g L
| (2-1)
M; M,

V., = BV, - — + —d

j j d d J

The new symbols BVi and BVj represent the end shears of segment ij
due to loads acting on that segment only and it may be represented as
the end shear of the simple beam 1j acted on by the corresponding loads.
The analytical expressions for these beam end shears are-

BV; = Wy T &
i

-

- (2-2)
] X
BVJ = WX —& dx
i .
The shear at a given point of the segment 1j is:
Mi Mj
Ve =By "7 37 (2-3)
Where the expression(BVX is the shear of the simple beam ij
loaded by the given system of loads:
X
BV, = BVi - j W dx , (2-4)
o
The bending moment at the same point:
M, BM, + M, =3 + Mj 3 (2-5)

Similarly as in the previous cases BMX is the bending moment of the



simple beam loaded by the corresponding loads - (Fig 2-2):

X
BM_ = BV:(x) -—f w_xdx (2-6)
p:d i X
o

Thus it was shown that the end shears and the bending moments
at the points can be calculated as functions of the bending moment at
i and j and of the simple beam 1ij.

If now the deformed segment ij is shown in a larger scale
(Fig. 2-3), a definite similarity is observed between the moment dia-
gram (Fig. 2-2) and the deformation diagram (Fig. 2-3).

From Fig. 2-3, the slope at x-

Ai ﬁl
Gx = BBX + d *+ d (2-7)

Where BGX is the slope of the simple beam ij at x:

Similarly the deflection of x:

_ x! A X _
AX“BAX_I.AiT +Aja (2-8)

Where BAX is the deflection of the simple beam ij at x. The similarity
of Equations (2-3, 4) with Equations (2-7, 8) is well apparent and leads

to the conjugation principle.



2-2. Conjugate Frame

The segment ij of the real frame (Fig. 2-2) is taken. The
change in slope of an element dx of this finite segment ij due to the
bending moment Mx may be considered as a force vector and denoted

as an elemental elastic weight:

With the application of the sum of these elastic weights for the segment

1j, the conjugate segment 1j is introduced (Fig. 2-4).

M dx
W ==
X ETX
— __dx —
ML ———_ MJ
S~
® o
VJ I Vj
X x!
I
d
+y
sz
Y
Figure 2-4
Conjugate Segment ij
The end shears of the segment ij are:
. o h
= . = BV. - ..__j.: A i
6, =V, = BV, - g+ 3 |
— — f , (2-10)
v LT ‘
93=Vj=BV -




Where _B_V_i and ﬁ?j represent the end shears of the segment ij due to
%% diagram acting on that segment only and it may be represented as
the- end shear of the conjugate segment ij acted on by the correspond-

ing —1];% diagram. The analytical expregsions for these conjugate

beam end shears are:

3

BQi BV, = W_ == dx
i

i x d
> (2-11)
= BV -ﬁ" o x ‘
BGj = j ° Wx-a-dx
i J
The shear at a given point of segment ij;
- W W

O = Vg = BV, + ¢ + 7 (2-12)

Where the expression 'E'VX is the shear of the conjugate segment ij

loaded by the given % diagram
e L !
B6_ = BV_ - f W_dx 3 (2-13)
x X X
o

The bending moment at the same point:

- AV = x! - X

A, =M = BM_ + M, + M3 (2-14)

Similarly as in the previous cases 'BMX is the moment of the conjugate

segment loaded by the correspondihg —%/I—I diagram:
— —— X
BA, = BM_ = BV, (x) - W xdx (2-15)
X X i X
o

Thus it was shown that the shears (slopes) and the bending mo-

ments (deflections) at a point of the segment are functions of the bend-



ing moments (deflections) at i and j and of the functions of simple seg-
ment ij.
From the similarity of Equations (2-3, 4) with Equations (2-7, 8)
following analogies may be stated:
(a) The deformations of the real segment ij are defined by the
beam functions of the conjugate segment ij (Fig. 2-35).
(b} The conjugate segment ij 1s loaded by a series of elemental
elastic loads (one shown only) acting in the plane zx and
causing bending about y (EQ. 2-9).
(¢) The shear of the conjugate segment (EQ. 2-12) is the slope
of the real segment (EQ. 2-17).
(d) The bending moment of the conjugate segment (EQ. 2-14)
is the deflection of the real segment (EQ. 2-8).

These relationships are shown graphically in Fig. 2-5.
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CHAPTER III

THE STRING POLYGON - STRAIGHT MEMBERS

3-1. Conjugate Reactions of a segment

From the relationships between the real and the conjugate frame
as it was discussed In Chapter II (Arts. 2-1, 2-2) the énd slopes at i
and j of a simple segment ij loaded by a general systems of loads
(Fig.  3-1) may be calculated from the reactions of the equivalent con-

jugate segment ij.

Figure 3-1

Simple Segment ij

The algebraic expressions for these end slopes are;

fl

@y = M Fy, + M, Gy + 75 = P

(3-1)

3}

O..

5 = Mfl Fji + Mi Gij + T,

P..
Ji J1
The notations of these equations follow:

M, (or Mj) is the bending moment of the simple beam ij at

i{or j).

11
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Fij (or Fji) is the angular flexibility of the equivalent simple
beam ij at i (or j).
Gij (or Gji) is the angular carry-over value of the equivalent
simple beam ij at i (or j).
'Tij (or 'Tji) is the angular load function of the equivalent
| simple beam 1ij at i (or j).
The full account of these expressions and definitions of algebraic
formulas are given ejsewhere (11). For completeness the most impor-
tant functions are restated in this chapter.

As shown in Fig. 3-2, the expressions for the total elastic

weight of segments ij and jk are:

] k
Wj SZWX Wk = WX : (3-2)
i j

The respective reactions of the separaté beams are:

=

i k
— - —— ‘X’ —— - !
Py = E: W Pix z x d
i J
(3-3)

i k

= N x = - w5 X

Pii ‘Szwx?f | P ZWX 3
i i

where they represent the end slopes of the respective simple beams.

(Fig. 3-2).



13

3~-2. Clasgification of Elastic Weights

Once the relationship between the real and conjugate frames is
established, the question arises as to how the elastic weight should be
represented. It was shown by Tuma and Oden (10) that there are three
types of elastic weights.

a- Elemental Elastic Weights
b- Segmental Elastic Weights
c- Joint Elastic Weights

The application of the elemental elastic weights to the analysis of
a closed ring is well known under the name of column analogy developed
by Cross (12) and the application of segmental elastic weights under the
name of conjugate method was developed by Kinney (13) and Lee (14).
The segmental elastic weights may be also represented by reactions
of each segment. If these reactions are applied on the conjugate frame,
the joint elastic weights are developed.

The joint elastic weight 13j is expressed by the general formula:

P. = P.. + P.
j ji ik

(3-4)
and may be defined as the change of change in slope of the polygon.al
line ijk at j.

These elastic weights may be uged for calculation of bending
moments at joints and calculation of joint digplacements. . This approach
is called the String Polygon Method. |

The above mentioned three types of elastic weights are

illustrated in Fig. 3-2.
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.
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3-3. Elasto-static Equations

The joint elastic weights represent a new set of force-vectors
in a state of static equilibrium and equivalent to the initial set of elemen-
tal elastic weights.

Thus:

zulsj = 0 (3-95)
zwﬁjx = 0 , (3-6)
E“ﬁjy = 0 . (3-17)

In addition to this any part of the conjugate frame may be iso-
lated and end shears and moments of this isolated part are the deforma-
tions of the real structure at the end respectively, These statements

are illustrated by Fig. 3-3.

Figure 3-3

IsolatedPart of Conjugate Frame
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B
V. =2 F =6 (3-Ta)
i -] i
i
1 B
MiX = z PJ (y - yl) = AZLX (3-7b)
i
B
Miy = Z Pj (x - Xi) = Aiy (3-7c)
l‘

The extension of the String Polygon Method to the analysis of

truss members is explained in the following chapter.



CHAPTER IV

THE STRING POLYGON - TRUSS MEMBERS

4-1. Conjugate reactions of a segment

If a curved truss segment of variable depth with a general
system of transverse loads Is consider ed as shown in Fig. 4-1, the
end slopes and horizontal displacement of supports may be again re-
vpresented as reactions of a conjugate structure.

It is well known from the theory of Structures that the angle
chapges of each truss panel may be represented as the elastic weights.
A typical truss elastic weight ?m applied on the conjugdte structure is
shown in Fig. 4;2.

The elastic weight ?rn is calculated by means of virtual work
and the position coordinates of this elastic weight are X5 Y, Tespec-
tively. Such elastic weight can be calculated for each joint of the truss.
The sum of all elastic weights is the total elastic weight acting on the
conjugate structure.

W = Z"ﬁm | | (4-1)

The end slope of the real structure at point i;

X’
3 - = m _

Pij ~Z Pm ————L (4-2)
at point J :

— -— Xm

ST ' s
The end displacement of the real structure at point i;

Mijx = z Pm Im (4-4)

17
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M. M,
1 J
H + x
Figure 4-1
tz Real Truss Segment
tz Yy
P
m
/
-/
//
Ym _
— + x
2 ST IY
N m /
P.. P..
Yo i
Figure 4-2

Conjugate Truss Segment

If T’-”‘m is evaluated in terms of moments Mi and Mj’ horizontal
thrust H and loads, and if new symbols are introduced, the final form

for these expressions (Eqs. 4-2, 3, 4, ) is obtained.

O.. = M.F.. + M.G., + HE.. + 7.. = P, (4-5)
1 171j ] 1 1] 1j 1]
G. = M,F.., + M. G,, + HE,, + 7., = P (4-86)
Ji N 171j Ji Ji J
Aijx = MiEij + Mj Eji + H.()ij +‘;,.e‘ij = MijX (4-7)
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The algebraic expressions for the constants are recorded in .
the Table 4-1.

All expressions in these tables are in terms of the following
nomenclature;

BN = The axial force due to loads.

m
« = The axial force due tb 1\@ = 4+ 1
m .
Brn = The axial force due to Mj = 4+ 1
Ym ° The axial force due to horizontal trust H = + 1
drn = The length of the bar
Am = The area of the cross-section of the bar
E = Modulus of elasticity of the bar
?Lm = The axial flexibility
where;
drn
?Lm = “-8)
Am®

The derivation of these constants is a part of the regular

CIVEN 5A4 and reference is made to the lecture notes (15).
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CURVED TRUSS FUNCTIONS

i i
Table ﬁ;— 1

- LOAD FUNCTIONS

ij

The angular displacement load
function 7y; is the end slope of the
simple curved truss ij, at i, due

1 to loads.

mm m

The angular displacement load
function 7y; is the end slope of the
simple cux‘] ed truss ij, at j, due
to loads.

The linear displacement. load
function €4; is the relative hori-
zontal displacement of the ends of
the simple curved truss ij due to
loads.

THRUST FUNCTIONS

The angular-linear (linear-angular]

carry-over value Ejyj is the end
slope (relative horizontal displace;
ment)of the simple curved truss ij,
at i,due to H=1 (Mij=+1)'

The angular-linear (linear-angular
carry-over value Ej; is the end
slope (relative horizontal displace
ment) of the simple curved truss
ij, at j, due to H=+1 (Mji=+1)'

The linear flexibility {; is the re-
lative horizontal displacement of
the simple curved truss ij due to
H=+1,

The angular flexibility Fy; is the
end slope of the simple ciurved
truss ij, at i, due to M1j=+l.

The angular carry-over value Gij
is the end slope of the simple
curved truss 1j, at j, due to
Mij=+1'

-| The linear-angular{angular-linear

carry-over value Ej; is the end
slope (relative horiJontal displace-
ment) of the simple curved truss ij
at i, due to Mij=+l (H=+1).

The angular flexibility Fij is the -
end slope of the simple curved
trusse ij, at i, due to Mj1=+1'

The angular carry-over value Gij
is the end slope of the simple

curved truss ij, at i, due to

Mji = +1,

The linear angular(angular-linear)
carry-over value Ejj is the end

slope(relative horiZontal displace-
ment) of the simple curved trussij

at j, due to Mji=+1 (H=+1).




CHAPTER V
COMPATABILITY EQUATIONS

5-1. Compatability of Slopes

It becomes obvious from the deformation sketch ofthe truss frame
that the angular deformation of the truss at the connection of the truss
to the column must be equal to the angular displacement of the string
line.

This can be expressed in terms of conjugate structure as the
equality of the column cénjugate structure shear with the truss conju-
gate structure shear.

v‘(column) - -v‘.(truss) v(eolumn) = T (truss)

. 5-1
J ji i jk (5-1)

The conjugate shear of the column may be easily calculated
from the conjugate beam. The shear of the conjugate column corres-

ponding to the rotation of iruss;

= {column = =
Vj( ) = Poj + PjB (5-2)

The end slope of truss is given by a similar equation (4-2).

A similar procedure is applicable for the adjacent panel and the
reversed sign approach has to be observed.

The compatability of slopes statement is illustrated in Fig. 5-1.

Where P..

iB is the column joint elastic weight at j.

21
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5-2. Compatability of Displacements

In a similar way to the compatability of slopes (Art. 5-1), it
is true that the linear deformation of the truss at the connection of the
truss to the column must be equal to the linear displacement of the
string line on the column.

This can be expressed in terms of the conjugate structure as the
equality of the column conjugate structure bending moment (displace-
ment) with the truss conjugate structure bending moment (displacement).

A (column) A’ji(trUSS) p (column) _ ,  (truss) (5-3)

] ] jk
The conjugate bending moment (displacement) of the column
may be easily calculated from the conjugate beam. The bending mo-
ment (displacement) of the conjugate column corresponding to the dis-

placement of the truss:

ol

pfeolumn) o B g (5-4)
j o]

The end displacement of the truss is given by the similar
Equation (4-4).

A similar procedure is applicable for the adjacent panel and
the reversed sign approach has to be observed.

The compatability of displacements statement.together with the

compatability of slopes statement is illustrated in Fig. 5-1,



+y

/o
/

Compatability of Slopes and Displacements

Figure 5-1
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CHAPTER VI

NUMERICAL PROCEDURE & APPLICATION

6-1., Procedure

Two examples illustrate the numerical procedure of analysis
by the string polygon method applied to truss-frames.

The first illustrates the application of the string polygon
method to the solution of a single panel truss-frame {(Fig. 6-1),
while the second deals with the solution of a two-panel contir}uous
truss-frame (Fig. 6-2).

First, the basic structure of the truss frame is drawn and
the end bending moments and end thrusts are:selected as unknowns.
Then the moment and force elastic weights in terms of angular and
linear functions are developed and applied on the conjugate structure.
The moment and force matrix is written in terms of elasto-static
equations and the solution of the moment and force matrix yields the
values of the reduridants.

In the solution of problems ail values are in kips, inches, or
kip-inches.

References are made in each example to the equations, and

tables used,

24
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6-2. Single Span Frame (Example No. 1)
The unsymmetrical single panel truss-frame is analyzed for
the given conditions (Fig. l1-a). The end bending moments and thrusts

are taken as the unknowns (Fig. 1-b).

a.) Angular and Linear Functions (1)

Column Members

Fac ® Fca ™ Fep * Fp ~ ’(3‘5(2‘?90(20‘*)@ - A
Feeg ™ Frce © for © frp :'@Rﬁ%ﬁﬁ - 5
Gac * Cca =vGBD = Cpp =;E§£%GE - gt
Geg ™ Cgc * Gpp T Gyp © @mg&nE -

Truss Members (Table 6-1)

. 189350 . 189400
Fep = 71— Fpe = 7w
_ ~. 05055
Gep = Gpc B
5,001 _3.334
Ecp © Ebc * 7
0 - 800
CE B
T = - 0250 = M
CD E ™DC B
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iy ' l 1. 0¥
@h _____________ [~ = : @ 60” . 2
© i | o Ap=Ag=lin
I i
I | —
; | . AV—AD 5in
! | 200 v B
-z ; ] I =300in
i 1( ¢
1B
cl A® L
300" 200"
! +x
(a) Real Structure
J ,
iy . L 1. ok
Ol=—==— —= =—| D
X3 X3
QL B
+x
(b) Basic Real Structure
P P
l Per DB
+z - Pop P t?DF
+y CA -
e r-—
c =
4 © Mop gy ®
AC BD
@ ®
+ x

{c) Conjugate Structure

Figure 6-1

Single Panel Truss—f'rame



Example No, 1

Basic Structure 34

Table 6-1

Xy & Ok Xy
E0 50 Bending Moment
AR Due to X, = 1.0
Xy X, 60"
60 60
P — ——
X3 X3 Bending Moment
300" 200" Due to Xz = 1.0
I T
i _ pmMoment | peag omen
e g Due to X, = 1.0
- . =N
0 120 0 60 60 60
BN 2 2 2
= >Lrﬂ “m Bm Tm m % *m P *m am’gmlm amvm)‘m JBrﬂ"'m Yrm*m BqumRm BNmﬁm'\m
T 300 |-.0066 |-.0100 -2.000 . 013350 .030000 | +.020010 0 0 0 +4, 002 +6. 000
2 200 |-.0066 |-.0100 -2.000 . 008900 .020000 | +.013340 0 0 0 +2, 668 +4, 000
300 |+.0166 0 +1, 000 0 . 083200 0 0 +5. 001 0 300 0 0
e 2 200 0 +.0166 +1. 000 0 0 . 055500 0 0 +3. 334 200 0 0
1 612 |[-.0102 |+.0102 0 +2.040 | , 063600 . 063600 | -.063600 0 0 -12.734 +12.734
o 418 |+.0070 |[-.0070 0 +2.090 | .020300 .020300 | -.020300 0 0 + 6.089 - 6.089
Vil 1 120 0 0 0 -1.000 0 0 0 0 0 0 0 0
.189350 . 189400 | -.050550 5,001 3.334 500 . 025 16. 645

Le
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.) Elastic Weights (Eqgs. 3-1, 4-5, 6, T7)
MacFac T Mea Gea

(333X, - 44.444X,

Map Fep T Mpac Gac

(333X, - 22.222 X,

Mgp Fep * Mpp “pp

(333X, - 44.444 X,

Meg Feg

. 066 X

Mpp Fpp

L033 X,

Mep Fep * Mpe “pe * Hep Eep * Tep
.189350 X, - .05055X, + 5.001 X + .0250
Mpe Fpe * Mep Gep + Hpe Epe + Tpe
.189350 X, -.05055 X, + 3.334X, + 16.645
Mep Eep + Mpe Epe + HepQep

5.001 X

+ 3. 334X2 + 500X

1 3

28
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c. ) Elasto-Static Equations (Eqs. 3-4, 5, 6, T7)

Elastic weights are applied on the conjugate structure as

shown in Fig. 1-c.

Static Moment about BD

P + P + P + Pap) (500) = 0

AC CA CE
461, 145 X1 - 25.315X2 - 31630.000X3
Static Moment about AC
Ppp + Ppp + Ppp *+ Ppo) (500) = 0
462.000X2 - 25.315X1 - 3163.000X3 = 8320.000 = O
Static Moment about CD
Ppc + Ppp) (200) - My = 0

61.666 + 63.333 - 18277.667 = 0

d.) Moment and Force Matrix

(461.145 ) (- 25.315) (-30832.500) [xX,| [- 12.320)
(- 25.315 ) ( 462.000) (-31630.000) [(X,)= [(-8320.000)
( 61.666 ) ( 63.333) (-18277.667) [X,f | O )

e.) Final Moments and Forces

The solution of the moment and force matrix yields the

following values:

M'CD = - 10,183 kip-in“.'
MDC = - 27,425 kip-in,
Hop = - 0.129 kip



6-3.

Continuous Frame (Example No. 2)

30

The symmetrical two-panel truss-frame is analyzed for the

loading shown (Fig. 6-2a). The end bending moments and thrusts are

selected as the unknowng (Fig. 6-2b).

a.) Angular and Linear Functions

The values of angular and linear truss functions are computed by

meang of virtual work (Table 6-2) in terms of the new symbols listed

in Table 4-1,

The values of the angular and linear functions for the complete

structure are shown in Table 6-3,

Angular and
Exgmple No. 2 Linear Functions Table 6-3
Member F G E 0 T €
a 45 = 54 . 190622 | .002004| 20,3763} 3623.16| 962,396|1678117.
£ BE E E E E E
H | 56 =g5] +190622| ,092094| 20.3763| 3623, 16| 962.396|167817.4
E E E B E E
14 = 41 .2E22 *{Ell ———— ———— ———— ———
925 = 52 -2E212 -lElll —_——— R ———— S
222 111
o | 36 =63 . . ———- ——— —— S
g E E
=
o
V| 47 =74 '0E66 "9;’3 ———— ——— - ————
58 = 85 ‘OE66 -Oé’?’ ———— _——— ———— ———
69 = 96 °0E66 .033 ——- —— —— ————




7 00"] 100" | 100" | 100" | 100" |L00"™
T T T ¥ v

600"

600" -
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Figure 6-2a

Real‘ Structure

+y

Figure 6- 2¢

Conjugate Structure



600" : 600"

Xy = Myg Ap=Ag=lin Xg = Mgg

X, = Mg, A ALS 5 in? X, = Mg

X, = Hyp = Hg, © §_=300 in* X, = Hgo = Hep
Figure 6-2b

Basic Structure

(4

Two-Panel Continuous Truss-Frame
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Example No. 2.

- _,B_é;sic Structure 45 L .

Table

6-2

.
h
40 X
T % -
L
- X,
0
N LI
T
X

100"

100"

100"

|

600"

Due toXl = 1,0

Due toX, = 1.0

Bending Moment | Due to X
Due to Loads

Top Cho

Due to X

Bottom Chord

80, 00

5 = 1.0
rd
80
= 60
5 = 1.0

120

GO

m llm )‘m “m Bm 7m BNm amkm amﬂmkm am’ymkm ’Ym)‘m BNm"mAI BNU\’Ym)‘n
\
1 ]102,00}102,00|-,01593 -.00319 {- 51000 | - 47.820 | ,025884 +.005183 | + .828700f 26.530 H 2,487, 60
2 [102,004102,00)~.01458 -.00728 [-1.16500 | ~ 87.430 | .021683 +.010826 | +1.732500] 138,680 +130, 022 110, 398, 20
% 3 |102,00/(102,00]}-,01275 -, 01275 [-2.04000 | -114,730 | . 016581 +.016581 .| +2,653500) 424, 448 +149, 206 [+23, 248, 80
E 4 {102.00]102,00]-.01275 |.-.01275 [-2,04000 { -114,730 | , 016581 +, 016581 | +2,653500 ‘424,448 +149, 206 23, 248. 80
5 [102,00{102,00]~-,00728 -.01458 |~1,16500 | - 87.430 |, 005406 +,010826 | + .865100 »138.680 + 64,922 J+10, 398720
6 {102,00]102,00(-.00319 -,01593 |- ,51000 | - 47,820 | ,001038 +,005183 | + .165900] -26,530 + 15,560 [+ 2,487.60
1 1103.50| 103,50 +, 01725 0 +1, 03500 0 , 030798 ) 0 +1.847800( 110,870 0 0
_ 2 (103,50 103,50+, 01617 +.00324 [+1, 55200 | + 48,520 | , 027062 +.005422 | +2.597400| 249, 300 + 81,203 [+ 7,773.90
é 3 |103,50} 103,50+, 01479 +, 00739 |+2,21800 | + 88.710 . 022640 +.011312 | +3.395200( 509, 170 +135, 794 [+20, 364. 50
§ 4.1103,50(103,50|+.00739 +, 01479 |+2,21800 | + 88,710 | , 005652 +,011312 | +1,696500( 509,170 + 67,851 |+20, 364, 50
5 [ 103,50 103.50 | +, 00324 +.01617 {+1,55200 | + 48.520 [ . 001087 +,005422 | + ,520400} 249, 300 + 16,271 1+ 7,773,900
6 1103,50) 103,50 0 +,01725 |+1, 03500 0 0 0 0 110,870 0 0
17105,35({210,70| -, 00110 +,00330 |+ . 52700 + 49,24 . 000255 -.000765 | - .122100] 58,520 - 11,412 |+ 5,487, 60
1| 2 {103.504207.00 -. 00138 +, 00415 [+ .66600 | + 40,19 . 000394, -,001185 | -',190000{ 91,540 - 11,480 |+ 5,532, 30
g 3 |102,00| 204, 00 —.v00183 +.00547 |+ ,87500 | + 27, 30 . 000683 -.002042 | - ,326700} 156..180 - 10,192 |+ 5,893.10
g 4 |02, 00| 204. 00| +. 00547 -.00183 |+ .3‘7500 + 27, 30 . 006014 -.002042 | - ,976400) 156,180 + 30.463 |+ 5,893, 10
. 5 1103,50} 207,00 +, 00415 -.00138 |+ .66600 | + 40,19 . 003565 -.001185 § - ,571300( 81,540 + 34.525 |+ 5,532, 30
6 1105,35|210.70]| +, 00330 -,00110 |+ ,52700 | + 49,24 . 002285 ~, 0007685 | ~ , 366400 58,520 + 34,237 {+ 5,467.60
0 /]
1 53, 33| 106, 66 O+,00063 ~-.00188 |- .30200 - 28,08 . 000042 -,000126 | - . 020900 9.730 - 1,887 1+ 942, 60
S 2 46,67 03,34| +.00071 ‘—.0’02.40 - ,34300| ~ 21,40 .60004‘7 —.000159‘ ~ .022700{ 10,980 [.- 1,418 |+ 85, 10
E 3 40, 00| 80,00 +.00500 +, 06500 + .80060 + 35,00 . 002000 +,002000 [ + , 320000 51.200 + 1,400 i+ 2,240,00
E 4 46,67 93, 34| -.00240 +.00071{~ .34300[ - 21,40 . 000638 -.000159 | -.,068500{ 10.980 + 4,794 |+ 685.10
5 53.33]| 106,66 -.00188 +, 00063 |- , 30200 - 28.08 . 000377 -.000126'[ - .062400 9,730 + 5,631 |+ 932, 60
6
. 190622 +,002094 |+20, 376300(3,623. 160 962,396 (167,817.40




b.) Elastic Weights (Egs. 3-1, 4-5, 6, T)

EP 5 = Myg Fyg + Mg, Ggy + Hyg Eyg + 744
= .190622 X, + 092094 X, + 20.3763 X, + 962.396
EPgy = Mgy Foy + Mg Gyg + Hgy BEgy + 754

= ,190622 X2 + .092094X1 + 20,3763 X5 + 962, 396

= Myg Egg + Mg, Egy + HygOlyp + ¢

45 45

= 20.3763X, + 20.3763X, + 3623.16 X, + 167817.40
EPge = Mgg Fgg + Mgy Geg + Hyg Egp + 75

= -. 190622 X, - 092094 X, - 20.3763X_ - 962.396
EPgg = Mgg Fgg + Hgg Ggg + Hgg Egp + 764

= - 190622 X, - .092094 - 20.3763 X, - 962.306
EMge = Mgg Egg + Mgg Egg + HeoQdgo + egg

= -20,3763X, - 20.3763X, - 3623.16 X, - 167817.40
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=
d
i
=
o
-+

M,, G .333X, - 44,444 X_. -

14 14~ 14 41 Y41 1 5
EP,, = M, Fyp + My Gy = 333X - 22,222,
EP,; = My, F,p, = 066X, - 12.00
¥EPgp = Myg Fog + Mgy Ggy = 333X, 3
¥EPgy = Mgy Fpy + Myg Goo = .333X, -.333X, - 22,222 X
*EPq = Mgg Feo = . 066 X,- 066X,
EP,. = Mas Fgo + Mgy G = 44.444X. - 333X,
EPgy = Mgy Foo + Mgs Goo = 22.222X, - .333X,
EPgy = Mg Fog = -.033X,

* Poslitive for left-hand panel,
Negative for right-hand panel.

-333X, - 44.444X_ + 44.44X_

22,222 X

Ge



c) Elasto-Static Equations (Eq. 3-4, 5, 6, T)

Elastic weights are applied on the conjugate structure as shown in Fig. 6-2¢,

Panel 1

Static Moment about 25

By, + Py + Py + Py (600) = 0

47

1. 553.992X. + 55,254 X, - 27773.820X. - 21174 = 0

1 2 5

Static Moment about 14

(1525 + ?52 + '}‘358 + ?54) (600) = 0

2. 55.254 X, + 553.992X, - 439.620X, - 27773.820 X_

9 3 + 39999.600 X, + bBT7T7437

1 5 6

Static Moment about 45

Py, + Pyg) (200) - (My,) = 0

- 66.666 X, - 21400.760X,_ + 8888.800 X, - 295245 =

3. 46.290 X 3 5 6

+ 46.290 X

1 2

]

9¢



Panel 2

Static Moment about 36

4&

25 52 58

-439620 X, + 553.992 X

Static Moment about 25

5.

(P3g * FPgs ™ Py

(Pgg *+ Py + Pgg + Pge) (600) = 0

3

+ Pgg) (600) = 0

55.254 X3 + 553. 992 X4 - 27773.820 + 577437 =

Static Moment about 56

6.

(Pgg + Pgg)

66. 666 X2 - 46.290X

(200) - (M

3

56) = O

- 46,290 X4 - 8888.800X

+ 55254X, + 39999. 600 X

5

0

)

- 27773.820 X6 + 577437

+ 21400.760X. + 167817 =

6

1

LE



d.) Moment and Force Matrix

( 553.992 ) ( 55.254 ) (0

( 55.254 ) ( 553.992 ) (-439.620
( 451290 ) ( 46.290 ) (- 66.666
( 0 ) (-439.62Q ) ( 553.992

( 0 ) ( 0 ) ( 55.254

—
[w)

) ( 66.666 ) (- 46.290

) (0 ) (-27773.820) ( 0

) ( 0 )y (-27773.820) ( 39994.

) ( 0 ) (-21400.760) ( 8888.

) ( 55.254 ) ( 39999.600) (-27773.

) (553.992 ) ( 0 ) (-27773

) (- 46.290 ) (- 8888.800) ( 21400.

. 82)

60)

g0y

82 )

76_)1

>

i 21174,

( -577437.
( 295245,
( -577437.
( -577431.

( -167817.

=

[ —

8¢



e.) Final Moments and Forces

The moment and force matrix is solved by high speed computer and the results are

compared in Table 6-4 to those found by the virtual work method.

Example No, 2

COMPARISON OF RESULTS

‘Table 6-4

String Polygon

Redundant Virtual Work.

X, = Mg, - 758.50 kip-in. - 759.77 kip-in,
X, = Myg -2588. 77 kip-in., -2587. 85 kip-in.
X, = M, -2262. 97 kip-in. ~2262. 42 kip-in.
Xy = Mg, -1670. 12 kip-in. -1670. 82 kip-in.
Xy = Hyy - 21,07 kips’ - 21.07 kips
X, = Hgg - 17.04 kips - 17.04 kips

6€



CHAPTER VII
SUMMARY AND CONCLTUSION

The extension of the String Polygon Method to the analysis of
rigid truss-frames having straight, bent, or curved members is pre-
sented in this thesis.

A means of establishing compatability of slopes and displace-
mentg at the connection of the truss to the column is established.

The theory presented in this thesis is illustrated by two numeri-
cal examples. Truss-frames are analyzed by the String Polygon
Method and by the Virtual Work Method, and the results are compared.

The String Polygon Method offers the following advantages:

a. The application of the differential elastic weights is
simplified by concentrating their effect at the joints in
the form of joint elastic welghts.

b. The conjugate structure offers a physical model for the
analyst.

c. Elasto-static equations compatable with the deformation
of the real structure are obtained from the conjugate‘
structure,

The elasto-static equations combined with the equations of
static equilibrium offer the necessary conditions for analyzing a rigid
truss-frame.

The application of the String Polygon Method offers numerical’

40
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controls and yields theoretically exact results. The necessary compu-
tations are more direct and easier organized than for most conventional

methods.
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