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CH.f\;J?TER I 

INTRODUCTION 

./ 

The application of the String :Polygon Me~hod to the analysis of 

straight members was first introduced by Tuma (1) and fully explored 

by Chu (2) and Harvey (3). 

In the.Spring Semester" 19601 Tuma (4) presented the extension 

of the String Polygon The:ory to bent members, fixed-end frames,. 

frames with hinged-encis, and to the derivation of slope deflection 

equations. 

Following this seminar several investigations have been made. 

;Boecker (5) applied the String Polygon to frames with hinged-ends, 

Oden (6) investigated fixed-end frames" and Houser (7) developed the 

slope deflection equations. for bent members~ 

The investi&'ation of members of a variable cross section was 

carried out by Exline (8) and Yu (9). 

The general theory of the String Polygon Method as applied to 

rigid frames we.s proved by Tuma and Oden (10) and the extension. to 

the plastic analysis was made by Ga~ger (11). 

In this thesis the analysis of truss-frames by the String Polygon 

Method is developed anp. the numerical procedure is demonstrated by 

two examples. 

The theories and applications developed are valid for elasto­

static cases only and their extension to plasto- static cases will require 

1 
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additional study. 

The historical background of the String Polygon Method was 

given by Tuma and Odep. (10) and is not repeated here. The following 

presentation is divided into seven parts. 

The nomenclature and the sign convention are shown in the 

first part of the thesis and are fully explained. 

The review of the literature and the principle of conjugation 

are explained in the First Two Chapters. 

The String Polygon expressions for straight solid members and 

truss members are given in Chapters Three and Four. Also the 

definition of the conjugate structure and the application of elastic 

weights are shown in the same Chapter. 

The real contribution presented in this thesis is the develop­

ment of compatability equations which add two new principles to the 

·. theory of the String Polygon Method. 

Finally the application of the theory and the final summary and 

conclusions are shown in the last part of this thesis. 
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CHAPT~R II 

CONJUGAT~ FRAIVJ;E 

2-1. Real Frame 

A rigid frarp.e of variable cross section acted upon by a general 

syste:µi of loads is considered (Fig. 2-1 ) .. 

+y 

® 

( 

X xt 

dx w 
X 

d j I 
... ·z 

Figure 2-1 

Real Frame 

A finite segment ij of this frame is isolat~d {Fig. 2-2) and the 

end shears and moments are calculated. 



A. 
1 

d 

Figure 2-2 

4 

Segment ij of the 
Real Frame 

Bending Moment 
Due to Loads 

Bending Moment 
Due to M. 

1 

Bending Moment 
Due to M. 

J 

Bending Moment Diagrams of Segment'. ij 

...:.. z 

X . x' 

d 

Figure 2-3 

Deflection of the Elastic Curve 

A. 
J 



With notation; 

w x = Intensity of load at x 

The end shears of the segment ij are: 

M. M 
Vi ::: BV i - d1 + ;. 

V. = BV. 
J J 

5 

(2-1) 

The new symbols BV. and BV. represent the end shears of segment ij 
1 J 

due to loads acting on th.at segment only and it may be represented as 

the end shear of the simple beam ij acted on by the corresponding loads. 

The analytical expression~Jor these beam end shears are· 

x' w -dx 
X d 

The shear at a given point of the segment ij is: 

M. M. 
Vx ::: BVx + T + cf 

Where the expression 1 BV is the shear of the simple beam ij 
X 

loaded by the given system of loads: 

BV = BV - Jx w dx 
X i X 

. 0 

The bending moment at the same point·: 

(2-2) 

(2-3) 

(2-4) 

(2-5) 

Similarly as in the previous cases BMx is the bending moment of the 



6 

simple beam loaded by tre corresponding loads· (Fig 2-2): 

BM ::: BV;(x) - Jx w xdx: 
X 1 · X 

0 

(2-6) 

Thus it was shown that the end shears and the bending moments 

at the points can be calculated as functions of the bending moment at 

i and j and of the simple beam ij. 

If now the deformed segment ij is shown in a larger scale 

(Fig. 2-3),, a definite similarity is observed between the moment dia­

gram (Fig. 2-2) and the deformation diagram (Fig. 2-3). 

From Fig. 2-3,. the slope at x· 

A. A. 
0 = BO + -2: + ...J. 

X X d d 

Where BO is the slope of the simple beam ij at x; 
X 

Similarly the deflection of x_· 

(2-7) 

(2-8) 

Where B~ is the deflection of the simple beam ij at x. The similarity 

pf Equations (2-3; 4) with Equations (2-7~ 8) is well apparent and leads 

to the conjugation principle. 
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2-2. Conjugate Frame 

The segment ij of the real frame {Fig. 2-2) is taken. The 

change in slope of an element dx of this finite segment ij due to the 

bending moment M may be cons"idered as a force vector and denoted 
X . 

as an elemental elastic weight: 

= w :,: 
X 

M dx 
X 

EI 
X 

(2-9) 

With the application of the sum of these elastic weights for the segment 

ijJ, the conjugate segment ij is introduced (Fig. 2-4). 

M dx 
W '"" X . \;~::x 

M. 
J 

( CD~===============CD ) 
"fl, V. 

l J 

/, 

X X 1 

+z 

d 

Figure 2-4 

Conjugate Segment ij 

The end shears of the segmeilf ij are: . 

Mi Jv.l. 
fJ. = V = BV - -r- · + -1d: 

l i i u 

e. C v. 
J J 

+x 

(2-10) 
' . 
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Where BV. and EV. represent the end shears of the segrrierit ij due to 
1 J :I diagram acting on that segment only and it may be represented as 

the-end shear of the conjugate segment ij acted on by the correspond­
.. M 
mg· EI diagram. The analytical expressions for these conjugate 

beam end shears are: 

(2-11) 

The shear at a given point of segment ij; 

(2-12) 

Where the expression BV x is the shear of the conjugate segment ij 

loaded by the given :I diagram 

Be = BV - f x w dx 
X X X 

0 

(2-13) 

The bending moment at the same point: 

(2-14) 

Similarly as in the previous cases BM is the moment of the conjugate 
X 

segment loaded by the correspondihg :I diagram t 

. ix BA ::: BM = BV. (x) - W xdx 
X X 1 X 

. 0 

(2-15) 

Thus it was shown that the shears (slopes) and the bending mo­

ments (deflections) at a point of the segment are functions of the bend-
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ing moments (deflections) at i and j and of the functions of simple seg­

ment ij. 

From the similarity of Equations (2-3,,, 4) with Equations (2-7 i 8) 

following analogies may be stateq: 

(a) The deformations of the real segment ij are defined by the 

beam functions of the conjugate segment ij (Fig. 2-5). 

(b) The conjugate segment ij is loaded by a series of elemental 

elastic loads (one shown only) acting in the plane zx and 

causing bending about y (EQ~ 2-9). 

(c) The shear of the conjugate segment (EQ. 2-12) is the slope 

of the real segment (EQ. 2-7). 

(d) The bending moment of the conjugate segment (EQ. 2-14) 

is the deflecti.on of the real segment (EQ .• 2-8). 

These relationships are shown graphically in Fig. 2-5. 



10 

! wx 
M. 

~ v~) ~ Real Segment 
x' 

d 

f +v . vx 

v,[ llllllllllllllllllll~IIIIIIIIIII I llllll · ::J +x • 

. 11111111111111~1111111111111 vj 

~IIIIIML 
+x a,[~JAJ 

-z /y 

X X 1 

•x 11111111111111~1111111111111 Jj + X 

{]11111111111111111110011111111111111111 . 

l + e 
+x 

· Figure 2-5 

Real Shear 
(Eq. 2-3) 

Real Bending 
Moment (Eq. 2-5) 

Real Deflection 
(Eq. 2-7, 8) 

Conjugate Segment 

Conjugate Shear 
(Eq. 2-12) 

Con'jugate Bending 
Moment (Eq. 2-14) 

Relationships Between Real and Conjugate Segments ij 



CHAPTER III 

THE STRING POLYGON - STRAIGHT MEMBERS 

3-1. Conjugate Reactions of a segment 

From the relationships between the real and the conjugate frame 

as it was discussed in Chapter II (Arts. 2-1.,, 2-2) the end slopes at i 

and j of a simple segment ij loaded by a general systems of loads 

(Fig. 3-1) may be calculated from the reactions of the equivalent con­

jugate segment ij. 

(/). .. = P .. lJ lJ 

Figure 3-1 

Simple Segment ij 

The algebraic expressions for these end slopes are; 

(/). .. ;:_ M. Fi. + Mj Gji + 'T •• = P .. 
lJ 1 J lJ lJ 

P .. (/). .. = M. F .. + Mi Gij + "'( .. = Jl J Jl Jl Jl 

The notations of these equations follow: 

(3-1) 

M. (or M.) is the bending moment of the simple beam ij at 
1 J 

i(orj). 

11 



Fij (or Fji) is the angular flexibility of the equivalent simple 

beam ij at i (or j) .. 

Gij (or Gji) is the angular carry-over value of the equivalent 

simple beam ij at i (or j ). 

'Tij (or 'Tjl) is the angular load function of the equivalent 

simple .beam ij at i (or j )~ 

12 

The full account of these expressions and definitions of algebraic 

formulas are given elsewhere ( 11). For completeness the most impor­

tant functions are restated in this chapter. 

As shown in Fig. 3-2, the expressions for the total elastic 

weight of segments ij and jk are: 

j 

W.n~Wx 
'J £... 

i 

'rhe respective reactions of the separate'beams are: 

j 

P .. =~W dx 
Jl ~ X .· 

i 

k 

Pjk=Iwxf 
j 

k 

pkj = I wx ~: 
j 

(3-2) 

(3-3) 

where they represent the end .slopes of the respective simple beams . 

. (Fig. 3-2). 



13 

. 3- 2. Classification of Elastic Weights 

Once the relationship between the real and conjugate frames is 

establishedi the question arises as to how the elastic weight should be 

represented. It was shown by Tuma and Oden (10) that there are three 

types of elastic weights. 

a- Elemental Elastic Weights 

b- Segmental Elastic Weights 

c- Joint Elastic Weights 

The application of the elemental elastic weights to the analysis of 

a closed ring is well known under the name of column analogy developed 

by Cross (12) and the application of segmental elastic weights under the 

name of conjugate method was developed by Kinney (13) and Lee (14). 

The segmental elastic weights may be also represented by reactions 

of each segment. If these reactions are applied on the conjugate frame.,. 

the joint elastic weights are developed. 

The joint elastic weight P. is expressed by the general formula: 
J 

P. == P .. + P.k (3-4) 
J Jl J 

and may be defined as the change of change in slope of the polygonal 

line ijk at j. 

These elastic weights may be used for calculation of bending 

moments at joints and calculation of joint displacements .. This approach 

is called the String Polygon Method. 

The above mentioned three types of elastic weights are 

illustrated in Fig. 3-2. 



+y 

+z 

+z 

+ z· 

+z 

+y 

® 

Figure 3-2 

Elastic Weights 

+x 

·+x 

+x 

+·x 

+x 

Real Frame 
with 

Real Loads 

Conjugate Frame 
with 

14 

Elemental Elastic Weights 

Segmental Conjugate Beams 
with 

Segmental Elastfo Weights 

Conjugate Frame 
with 

Segmental Elastic Weights 

Conjugate Frame 
with 

Joint Elastic Weights 
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3-3. Elasto-.static Equations 

The joint elastic weights represent a new set of force-vectors 

in a stGLte of static equilibrium and equivalent to the initial set of elemen-

tal elastic weights. 

Thus: 

LP. = 0 
J 

(3-5) 

Ipt - 0 (3-6} 

IPjy = 0 (3-7) 

In addition to this any part of the conjugate frame may be iso-

lated and end shears and moments of this isolated part are the deforma-

tions of the real structure at the end respectively. These statements 

are illustrated by Fig. 3-3. 

+z 

M. 
lX 

M. 
1y 

Figure 3-3 

Isolated Part of Conjugate Frame 

P. 
J 

p 
k 



B, 

vi = I pj = l\ 
i. 

B 

M. = ~ P. (y - y.) = Aix. 
lX L_ J 1 

M. 
1y 

i 

(x - x.) = A. 
1 1y 

16 

(3-7a) 

(3-7b) 

(3-7c) 

The extension of the String Polygon Method to the analysis of 

truss members is explained in the following chapter. 
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CHAPTER IV 

THE STRING POLYGON - TRUSS MEMBERS 

4- L Conjugate reactions of a segment 

If a curved truss segment of variable depth with a general 

system of transverse loads is considered as shown in Fig_. 4-1,, the 

end slopes and horizontal displacement of .supports. may be again re-

presented as reactions of a conjugate structure. 

It is well known from the theory of structures that the angle 

chapges of each truss panel may be represented as the elastic weights. 

A typical truss elastic weight Pm applied on the conjugate structure is 

shown in Fig. 4- 2. 

The elastic weight Pm is calculated by means of virtual work 

and the position coordinates of this elastic weight are xm• ym respec­

tively. Such elastic weight can be calculated for each joint of the truss. 

The sum of all elastic weights is the total elastic weight acting on the 

conjugate structure. 

w = Ipm 

The end slope of the real str-u,cture at point i; 

at point ~; ·· 
-· ,- ·Xm. 
Pji::: L Pm L 

The end displacement of the real structure at point i; 

.M c~p y 
ijx L mm 

17 

(4-1) 

(4-2) 

(4-3) 

(4-4) 



M. 
1 

H 

/ 

+y 

X 
m 

+z 

L 
xi 

m 

Figure 4-1 

Real Truss Segment 

/ 
Yi 

----/---
// 

x' m 

Figure 4-2 

Conjugate Truss Segment 
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M. 
J 

+x 

+x 

P .. 
Jl 

If P is evaluated in terms of moments M. and M. 1 horizontal 
m 1 J 

thrust H and:loade;, and if new symbols are introduced, the final form 

for these expressions (Eqs. 4-2., 31 4, ) is obtained. 

(/). .. ::: Mi Fij + M. G .. + HE .. + 'r .. = pij (4-5) 
lJ J Jl lJ lJ 

(/)_ .. n M. F .. + M. G .. + HE .. + 7 .. ¢· P .. (4-6) 
Jl J Jl 1 lJ Jl Jl Jl 

A .. ::: MiEij + M.E .. + H.Oij + -~~ ij =· M .. (4-7) 
lJX J Jl lJX 



The algebraic expressions for the constants are recorded in . 

the T;tl.ble 4- L 

All expressions· in these tables are in terms of the following 

nomenclature; 

BN 
m 

a 
m 

i:: The axial force due to loads . 

= The axial force due to ~ e + 1 

= The axial fore e due to M. = + 1 
J 

19 

'Y = The axial force due to horizontal trust H = + 1 m 

dm .,. The length of the bar 

Am = The area of the cross-section of the bar 

E e Modulus of elasticity of the bar 

A = The axial flexibility m 

where; 
d '\ = m 

"-m AmE (4-8) 

The derivation of these constants is a part of the regular 

CIVEN 5A4 and reference is made to the lecture notes (15). 
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Ii 
CURVED TRUSS FUNCTIONS Table i-1 

LOAD FUNCTIONS j The angular displacement load 

'/",, =I BNmam;\.m 
function Tij is the end slope of the 

lJ simple curved trus_s ij. at i. due 
.,.ji i . to loads. 

j The angula.r displacement load 

.,.ji =I BNm{:lm;\.m 
function T?\.,is the end slope of the 
simple cu ed truss ij. at j. due 

i' to loads. 

l Eij l j The linear displacement. load 
L function Ei' is the relative hori-

Eij =I BNm'YmAm zontal disp1acement of the ends of 
the simple curved truss ij due to i loads·, 

j 
The angular-linear (linear-angular 

THRUST FUNCTIONS carry-over value Eij is the end 

Eij =I am'YmAm slope (relative horizontal displac 
ment)of the simple curved truss ij, 

i at i,due to H=l (M1.=+l), · 
. J 

m j The angular-linear (linear-angular 

Eji =I f:lm'YmAm 
carry-over value E~ is the· end 
slope (relative hori ontal dispiac 

i ment) of the simple curved truss 
ij, at j, due to H=+l (Mj1=+1). 

L 
j The linear flexibility ij is the re 

!\j I2 = 'Y A lative horizontal displacement of mm the simple curved truss ij due to i H=+l. 

LEFT- HAND MOMENT FUNCTIONS j The angular flexibility Fij is the 
Fij ,; I a2 A end slope of the simple curved 

mm truss ij. at i, due to M1/+l. 
Gji l 

j The angular carry-over value Gij 

Gji =I am{:lm;\.m is the .end slope of the simple 
curved truss ij, at j, due to 

i Mit+l. 

j The linear-angular(angular-linear 
L 

Eij =I am'YmAm 
carry-over value EM is ihe end 
slope (relative hori ontal displace-

i ment) of the simple curved truss i · 
at 1. due to M1/+1 (H=+l), 

RIGHT~ HAND MOMENT FUNCTIONS j The angular flexibility F1j is the 

Fji =I /32 A end slope of the. simple curved 
mm truss ij. at i, due to Mj1=+1. 

i 

j The angular carry-over value Gij 
Gij =I am{:lm;\.m is the end slope of the simple 

curved truss ij, at i, due to 
i 

Mji = +1. 

I Eji I j The linear angular(angular-linear) 

L. =I f:lm'YmAm· 
carry-over value Eji is the end 

Eji slope(relative horizontal displace-
ment) of the simple curved truss ii 

i at j, due to M.1=+1 (H=+l). 
. J 



CHAPTER V 

COMPATAB!LITY EQUATIONS 

5-1. Compatability of Slopes 

It becomes obvious from the deformation sketch ofthe truss frame 

that the angular deformation of the truss at the connection of the truss 

to the column must be equal to the angular displacement of the string 

line. 

This can be expressed in terms of conjugate structure as the 

equality of the column conjugate structure shear with the truss conju-

gate structure shear .. 

V. (column) = V .. (truss) 
J Jl 

V. (column) "" V (truss) 
J jk 

(5-1) 

The conjugate shear of the column may be easily calculated 

from the conjugate beam. The shear of the conjugate column corres-

ponding to the rotation of truss; 

V. (column) ;;:i p . + PJ.B 
J OJ 

(5-2) 

The end slope of truss is given by a similar equation (4-2). 

A similar procedure is applicable for the adjacent panel and the 

reversed sign approach has to be observed. 

The compatability of slopes statement is illustrated in Fig. 5- 1. 

Where P .B· is the column joint elastic weight at j. 
J . 
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5-2. Compatability of Displacements 

In a similar way to the compatability of slopes (Art. 5-1 )... it 

is true that the linear deformation of the truss at the connection of the 

truss to the column must be equal to the linear displacement of the 

string line on the column. 

This can be expressed in terms of :the· conjugate structure. as the 

equality of the column conjugate structure bending moment (displace­

ment) with the truss conjugate structure bending moment (displacement). 

A.(column) = A .. (truss) 
J Jl 

A/column) = Ajk(truss) (5_3) 

The conjugate bending moment (displacement) of .the column 

may be easily calculated from the conjugate beam. The bending mo­

ment (displacement) of the conjugate column corresponding to the dis­

placement of the truss: 

A.(column) 1:: ·p . f 
J OJ 

(5-4) 

The end displacement of the truss is given by the ·similar 

Equation (4-4). 

A similar procedure is applicable for the adjacent panel and 

the reversed sign approach has to be observed. 

The compata.bility of displacements· statement' together with the 

compatability of slopes statement is illustrated in Fig. 5-1. 



+y 

-z 

+y 

+z 

+y 

poit 

+ X . 

+x 

PjT 

poj poj Po 

+x 

Figure 5-1 

Compatability of Slopes and Displacements 
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CHAPTER VI 

NUMERICAL PROCEDURE & APPLICATION 

6-1. Procedure 

Two examples illustrate the numerical procedure of analysis 

by the string polygon method applied to truss-frames. 

The first illustrates the application of the string polygon 

method to the solution of a single panel truss-frame (Fig. 6-1)., 

while the second deals with the solution of a two-panel continuous 

truss-frame (Fig. 6-2). 

First, the basic structure of the truss frame is drawn and 

the end bending moments and end thrusts are selected as unknowns. 

Then the moment and force elastic weights in terms of angular and 

linear functions are developed and applied on the conjugate structure. 

The moment and force matrix is written in terms of elasto-static 

equations and the solution of the moment and force n'iatrix yields the 

values of the reduri.dants. 

In the solution of problems all values are in kips., inches, or 

kip-inches. 

References are made in each example to the equations., and 

tables used. 

24 
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6-2. Single Span Frame (Example No. 1) 

The unsymmetrical single pane-I truss-frame is analyzed for 

the given conditions (Fig. 1-a). The end bending moments and thrusts 

are taken as the unknowns (Fig. 1-b ). 

a. ) Angular and Linear Functions (1) 

Column Members 

FAC FCA = FBD FDB 
200 . 222 

= ::: = ::: 
(3)(300)E E 

FCE FEC FDF FFD 
::: 60 • 066 -· = ::: = (3)(300)E --,--

GAC GCA GBD GDB 
200 . 111 

= = = = = 
(6 )(300)E --,--

GCE GEC GDF GFD 
60 .033 ::: = = = (6 )(300)E = ~ 

Truss Members (Table 6-1) 

Fen = .189350 
FDC = .189400 

E E 

Gen = Gnc = -.05055 
E 

ECD ::: 
5.001 

Enc = 3.334 
E E 

.n 500 
::: 
~ CE 

::: •. 0250 
= 16.645 

'TCD E 'TDC E 
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Figure 6-l 
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Example No. 1 Basic Structure 34 Table 6-1 

x1 60 I 1. Ok ------ t x2 60 

,1~x,]o" 
x, I . ,, 

30011 l l~ 20011 3 
T T------ --, 

Bending Moment 
Due to X 1 = 1. 0 

Bending Moment 
Due to x 2 = 1. o 

~ 

I =-
T3::::: -- -----1. 0 0.4 0 

0 

~­-=::---77Tl 
o. 6 1. 0 

--~--iii!JII;;; .... Bending Moment Bending Moment 

I I I 
Due to Loads Due to x 3 = 1. 0 

.,. .... 
0 120 0 60 60 60 

m I .>c a /3m 'Ym BN a 2 .>c /32 .>c am/3m.>cm am 'YmAm /3m 'YmAm 
2 .>c BN a .>c BN mf3m.>cm m m m m m mm 'Ym m mm m 

TI ~ I 300 -.0066 -.0100 0 -2.000 • 013350 . 030000 +.020010 0 0 0 +4.002 +6.000 

200 -.0066 -.0100 0 -2.000 . 008900 • 020000 +.013340 0 0 0 +2.668 +4.000 

1 300 +.0166 ' 0 +1. 000 0 . 083200 0 0 +5. 001 0 300 0 0 

BI 2 200 0 +.0166 +1. 000 0 0 .055500 0 0 +3 . 334 200 0 0 

1 6 12 -.0102 +.0102 0 +2.040 • 063600 • 063600 - . 063600 0 0 0 -12.734 +12.7 34 

DI 2 418 +.0070 -.0070 0 +2.090 • 020300 . 020300 -.020300 0 0 0 + 6.089 - 6.089 
' 

VI 1 I 120 I 0 I 0 I 0 I -1. ooo 1 0 I 0 I 0 I 0 0 0 0 0 

I 
• 189350 I .189400 _ I - .050550 5.001 3. 334 500 I _. 025 \ _ 16.645 

- ------ I N) 

-J 



b.) Elastic Weights (Eqs. 3-11 4-5,. 6,. 7) 

EJ:lAc = MAC F AC + MCA GCA 

= . 333 x 1 - 44. 444 x 3 

EPCA = MCA FCA + MAC GAC 

= • 333 x 1 - 22. 222 x 3 

EPBD = MBD FBD + MDB GDB 

= . 333 x 2 - 44. 444 x 3 

EPCE = MCE FCE 

= • 066 x 1 

EPDF C MDF FDF 

= . 033 x 2 

EPcn = Mqn FCD + MDC GDC + Hen ECD + ,,.CD 

= . 189350 x 1 - . 05055 x 2 + 5. 001 x 3 + . 0250 

EPDC = MDC FDC + MCD Gen + HDC Enc + 'TDC 

= . 189350 x2 "." .05055 x 1 + 3. 334 x 3 + 16.645 

EMcn = MCD ECD + MDC Enc + Hennen 

= 5. 001 x 1 + 3. 334 x2 + 500 x 3 

28 
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e.) Elasto ... Statiri Equations (Eqs. 3-4~ 5jl 6~ 7) 

Elastic weights are applied on the conjugate structure as 

shown in Fig. 1-c. 

Static Moment about BD 

(PAC + p CA + p CE + pen> (SOO) = O 

461.145X 1 - 25.315X2 - 31630.000X3 

Static Moment about AC 

(PBD + PDB + PDF + Pnc> (500) = 0 

462. ooo x 2 - 25. 315 x 1 - 3163. ooo x 3 = 8320. ooo = o 

Static Moment about CD 

(PAC + PBD) (200) - Men = 0 

61. 666 + 63. 333 - 18277. 667 = 0 

d •. ) Moment and Force Matrix 

( 461.145 ) (- 25. 315) (-30832. 500} (X~) (- 12. 320) 

(- 25 .• 315 ) ( 462. 000) (-31630. 000) (-8320. 000) 

( 61. 666 ) ( 6 3. 333) (-18277. 667) ( 0 ) . 

e.) Final Moments and Forces 

The solution of the moment and force matrix yields the 

following values: 

Men = - 10. 183 kip-in. 

MDC = - 27. 425 kip-in. 

= - o. 129 kip 
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6-3. Continuous Frame (Example No. 2) 

The symmetrical two-panel truss-frame is analyzed for the 

loading shown (Fig. 6-2a). The end bending moments and thrusts are 

selected as the unknowns (Fig. 6-2h). 

a .. ) Angular and Linear Functions 

The values of angular and linear truss functions are computed by 

means of virtual work (Table 6-2) in terms of the new symbols listed 

in Table 4-1. 

The values of the angular and linear £unctions for the complete 

structure are shown in Table 6-3. 

Example No. 2 Angular and. Table 6-3 ,, Linear Functions 

Member F G E .n. T € 

l1.) • 190622 • 092094 20.3763 3623 .. 16 962.396 167817.4 rn 45 ::54 
:::i E E E E E E 
t 56 = 65 • 19062.2 .• 0.92094 20.3763 3623. 16 962.396 167817.4 

E E E E E ,I!; 

14 =· 41 • 222 • 111 
Jr ~ ---- ---- ---- ----

25 = 52 
• 222 ~ 111 
Jr Jr ---- ---- ---- ----

s:: 36 = 63 
• 222 • 111 
Jr Ir -·--- ---- -·--- ----

§ 
'6 

47 = 74 
• 066 • 033 

C) 
~ ,- ---- ----. ---- ----· 

58 = 85 • 066 • 033 
Jr Jr ---- ---- ---- ---·-

69 = 96 • 066 • 03·3 
~ Jr ---- ---- ---- ----

-

I 
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x1 
60 

3k 

10k 

k 

r t r r r 5k 

·1 x2 
,_ 60 -
X5 

(j) 
X X -X ® 

G)~ X5 

1 \o; -x JB 60 

0m . s 6 II® 

x3 
60 

x6@) 

X 4 
60 

lfk 5k 
....__j X4 

60 .. 
x6 

Iii® 
x6 

® 

j 600" j 600" j 

Xl = M45 A =A =1 in.2 
T B X3 = M56 

X2 = M54 . Ay=An=· 5 in.2 X5 = M65 

X5 = H45 = H54 
.. ff 300 .. 4 .. ,. = 1n 

:C X6 = H56 = H65 

Figure 6-2b 

Basic Structure 

Two-Panel Continuous Truss-Frame 
t.:I 
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Example No. 2 Basic Structure 45 

m 

P. 
0 
f-< 

~ 
0 
f-< 
f-< 
0 
P1 

.:i 
<,: 
z 
0 
l'.l 
;S 
r'.1 

.:i 

.,,: 
-8 

f-< 
0: 
"1 
:,. 

1 

2 

3 

4 

5 

6 

1 

2 

3 

4 

5 

6 

. . 

4000 4500 4000 

o~O 

Bending Moment 
Due to Loads 

~ ~. 

--= = =·-:C:: -- , 167 
Due to x1 = 1. 0 

--------- 0 

1.000 

~ ~( 0 -------- ' 

Due to x 2 = 1. O 

d ;\ " /3m 'Ym BN 
Ill m m m 

' - -
10~. 00 102, 00 -. 01593 -. 00319 - , 51000 - 47. 820 

102, 00 102, 00 -.01458 - . 00728 -1. 16500 - 87,430 

102. 00 102, 00 -. 01275 - , 01275 -2. 04000 -114. 730 

102, 00 102, 00 -. 01275 . -. 01275 02, 04000 -114. 730 

102, 00 102, 00 -,00728 - , 01458 -1.16500 - 87. 430 

102, 00 102, 00 -. 00319 - , 01593 - , 51000 - 47. 820 

103. 50 103, 50 +.01725 0 +I. 03500 0 

103, 50 103, 50 +,01617 +. 00324 +I. 55200 + 48. 520 

103, 50 103, 50 +. 01479 +, 00739 +2. 21800 + 88. 710 

10:l, 50 103. 50 +,00739 +. 01479 +2, 21800 + 88. 710 

103, 50 103, 50 +. 00324 +. 01617 +1. 55200 + 48. 520 

103. 50 103, 50 0 +,01725 +1. 03500 0 

1 . 105, 35 210, 70 - , 00110 +, 00.330 + , 52700 + 49, 24 

2 103, 50 207. 00 c, 00138 +. 00415 + . 66600 + 40, 19 

3 102, 00 204. 00 -. 00183 +, 00547 + .87500 + 27, 30 

4 ·f02. 00 204. 00 +, 00547 - , 00183 + , 87500 + 27. 30 

5 103, 50 207. 00 +. 00415 -. 00138 + . 66600 + 40, 19 

6' 105, 35 210. 70 +, 00330 -. 00110 + , 52700 + 49. 24 

0 ( 

l 53. 33 106, 66 +, 00063 -. 00188 - , 30200 - 28. 08 
Q 

2 46, 67 93, 34 +,00071 ,- , 0,0240 - , 34300 - 21. 40 

3 40, 00 80, 00 +. 00500 +. 00500 + , 80000 + 35, 00 

4 46. 67 93. 34 - . 00240 +,00071 - . 34300 - 21. 40 

5 53, 33 106, 66 -. 00188 +. 00063 - ,30200 - 28. 08 

6 

Due to X 5 = 1. 0 

Top Chord 

Due to x5 = 1. O 

Bottom Cho.rd 

"2 X 
mm "m/3m\n 

, 025884 +,005183 

,021683 +.010826 

., 016581 +.016581 

, 016581 +. 016581 

, 005406 +, 010826 

• 001038 +. 005183 

, 030798 0 

, 027062 +. 005422 

, 022640 +.011312 

, 005652 +, 011312 

,001087 +, 005422 

0 0 

, 000255 -. 000765 

. 000394 - , 001185 

, 00068 3 -,002042 

. 0060!4 -,002042 

,003565 -. 001185 

, 002295 •, 000765 

, 000042 -. 000126 

, 000047 -. 000159 

, 002000 +. 002000 

, 000538 -. 000159 

, 000377 -. 000126 

• 190622 +, 092094 
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Table 6-2 • . 

80. 00 

120 

~" 

0 m'YmAm r;;,xm BN " X m mil 
BN m'Ym\1 

+ , 828700 26.530 ft 2,4B7,GO 

+l. 732500 138,680 +130, 022 f+lO, 398, 20 

+2, 653500 424,448 +140,206 +23, 248. 80 

+2, 653500 424 , 448 +149, 206 +23, 248. 80 

+ . 865100 138. 680 + 64. 922 +10. 3D8; 20 

+ , 165900 26,530 + 15,560 + 2,487.60 

+l. 847800 110,870 0 0 

+2. 597400 249. 300 + 81. 203 + 7,77:l.OO 

+3. 395200 509. 170 +135, 794 +20, 36•1. 50 

+l, 696500 509, 170 + 67,851 +20, 36-l, 50 

+ , 520400 249. 300 + 16. 27 l +7,773.DO 

0 110,870 0 0 

- . 122100 58. 520 - 1 l. 412 + 5,467.60 

- , 190000 91. 540 - 11. 480 + 5,532.30 

- . 326700 156.180 - 10, 192 + 5,893. ll) 

- , 976400 156, 180 + 30,463 + 5,893, 10 

- , 571300 91. 540 + 34. 525 + 5,532, 30 

- , 366400 58,520 + 34. 237 + 5,467, 60 

- , 020900 9. 730 - 1,887 + 932, 60 

- ,022700 10, 980 - 1. 418 + LBS. 10 

+ • 320000 51. 200 + 1,400 + 2,240.00 

-. ,068500 10. 980 + 4. 794 + 685. 10 

- . 062400 9,730 + 5. 631 + 932. 60 

+20, 376300 3,623, 16.0 962, 396 167,817.40 



b.) Elastic Weights {Eqs. 3-1, 4-5.,. 6, 7) 

EP45 = M45 F 45 + M-54 G54 + H45 E45 + 'T 45 

= . 190622 x 1 + 092094 x 2 + 20. 3763 x 5 + 962. 396 

EP5.4 "' M54 F 54 + M45 G45 + H54 E54 + '1'54 

= . 190622 x 2 + . 092094 x 1 + 20. 3763 x 5 + 962. 396 

EM45 "" M45 E45 + M54 E54 + H45..0.45 + €45 

- 20. 3763 x 1 + 20. 3763 x 2 + 3623. 16 x 5 + 167817. 40 

EP56 :: M56 F56 + M65 G65 + H56 E56 + 7'56 

= -. 190622 x 3 - 092094 x 4 - 20. 3763 x 6 - 962. 396 

EP 65 = M65 F 65 + H56 G56 + H65 E65 + 7'65 

= -. 190622 x 4 - . 092094 - 20. 3763 x 6 - 962. 396 

EM56 = M56 E56 + M65 E56 + H65..(l56 + e:56 

= -20. 37.63 x 3 - 20. 3763 x 4 - 3623. 16 x 6 - 167817. 40 
C,,lj 

i,I:,,. 



EP 14- = M 14 F 14 + M 41 G41 = . 333 x 1 - 44. 444 x 5 - 637. 140 

EP 41 = M41 F 41 + M14 G14 = • 333 xl - 22. 222 x5 - 348.540 

El5 = M · · F = --06-6 X -
47 47 47 · 1 12.00 

*EP25 = M25 F 25 + M52 G52 = • 333 x2 - .333 X3 - 44. 444 X5 + 44. 44 x6 

* EP 52 = M52 F 52 + M25 G25 = • 333X2 - • 333 x3 - 22. 222 X5 - 22. 222 x6 

*EP53 = M58 F53 ~ • 066 X 2 -. 066X3 

EP 36 = IVJ 36 F 36 + M 63 G 63 r: 44. 444 x6 - - . 333 44 

EP 63 = M63 F 63 + M36 G36 = 22. 222 x6 - • 333 x6 

EP69 :i: M 69 F 69 :: -.033X4 

* Positive for left-hand panel., 
Negative for right-hand panel. 

"" 01 



c) Elasto-Static Equations (Eq. 3-4,. 5. 6, 7) 

Elastic weights are applied on the conjugate structure as shown in-Fig. 6-,2c_ 

Panel 1 

Static Moment about 25 

(P 14 + p 41 + p 47 + p 45) <600 > = O 

1. 553. 992 x 1 + 55. 254 x 2 - 27773. 820 x 5 - 21174 = o 

Static Moment about 14 

(P25 + P52 + p58 + P54) (500) <= O 

2. 55. 254 x 1 + 553. 992 x 2 - 439. 620 x 3 - 27773. 820 x 5 + 39999. 600 x 6 + 577437 = o 

Static Moment about 45 

(P 14 + p 25) (200) - (M45) = 0 

3. 46. 290 x 1 + 46. 290 x 2 - 66. 666 x 3 - 21400. 760 x 5 + 8888. aoo x 6 - 295245 = o 

c..:> 
0:, 



Panel 2 

Static Moment about 36 

(P25 + p52 + p58 + p56) (600) :.: O 

4. -439620 x2 + 553. 992 x 3 + 55254 x 4 + 39999. 660 x 5 - 27773. 320 x 6 + 577437 = o 

Static Moment about 25 

(P 36 + l\3 + p 69 + p 65) (600) = O 

5. 55. 254 x 3 + 553. 992 x 4 - 27773. 820 + 577 437 :a 0 

Static Moment about 56 

(P25 + p36) (200) - (M56) = 0 

6. 66. 666 X 2 - 46. 290 X 3 - 46. 290 X 4 - 8888. 800 x 5 + 21400. 760 x 6 + 167817 = 0 

w 
-.J 



d.) Mom~nt and Force Matrix 

( 553. 992 ) ( 55.254) ( 0 ) ( 0- ) (-27773. 820) ( 0 >I ICX:1 > 

( 55.254} ( 559.992) (-439.620} ( 0 } (-27773.820) ( 39994.601 l(X2} 

( -46. 290 } ( 46.290 l (- 66.666} ( 0 } (-21400. 760} ( 8888.80~ ICX:3> 

( 0 } (-439. 620 ) ( 553. 992 ) ( - 55. 254 ) ( 39999. 600) (-27J73. 82)1-1 CX:4) 

( 0 ) ( 0 ) ( 55,254} ( 553. 992) ( 0 ) (-27773. 82)1 I CX:5> 

( 0 ) ( 66,666 ) (- 46. 290 ) (- 46. 290 ) (- 8888. 800) ( 21400. 76}1 I CX6> 

( 2117 4. 

( -577437. } 

( 2 95245. ) 

= 
( -577437., >I 

( -577437. } 

( -167817. ) 

c:,., 
00 



e. ) Final Moments and Forces 

The moment and force matrix is solved by high $peed computer and the' results are 

compared in Table 6-4 to those found by the virtual work method. 

Example No. 2 COMPARISON OF RESULTS Table 6-4 

·Redundant Virtual Work String Polygon 

-x = M34 - 758. 50 kip-in. - 759. 77 kip-in. . 1 

x2 = M43 -2588. 77 kip-in. -2587. 85 kip-in. 

x3 = M45 -2262. 97 kip-in. -2262. 42 kip-in. 

X4 = M54 -1670. 12 kip-in. -1670. 82 kip-in. 

X5 = H34 21. 07 kips· . 21. 07 kips - -
" 

x6 = H56 17. 04 kips 17. 04 kips - -

~ 

C.:> 
co 



CHAPTER VII 

SUMMARY AND CONCLUSlON 

The extension of the String Polygon Method to the analysis of 

rigid truss-frames· having straight, bent. or curved members is pre­

sented in this thesis., 

A means of establishing compatability of slopes and displace­

ments at the connection of the truss to the column is established. 

The theory presented in this thesis is illustrated by two numeri­

cal examples. Truss-frames are analyzed by the String Polygon 

Method and by the Virtual Work Method, and the results are compared. 

The String Polygon Method offers the following advantages: 

a. The application of the differential elastic weights is 

simplified by concentrating their effect at the joints in 

the form of' joint elastic weights. 

b. The conjugate structure offer.s a physical model for the 

analyst. 

c. Elasto-static equations compatable' with the defor·mation 

of the real structure are obtained from the conjugate 

structure .• 

The elasto-static equations combined with the equations of 

static equilibrium offer the necessary conditions for analyzing a rigid 

truss-frame. 

The application of the String Polygon Method offers numerical 

40 
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controls and yields theoretically exact results.. The necessary compu­

tations are more direct and easier organized than for most conventional 

methods. 
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