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PREFACE

- In June, 1960, the author attended a National Science Foundation
Seminar for Civil Engineering Teachers at Oklahoma State Univer-
sity. The String Polygon Method was introduced as a method of elas-
tic analysis in this seminar,

During the fall semester, the author attended a seminar on plas-
ticity, in which problems of deformation of plastic-elastic beams and
frames were discussed. It was at this time that it occurred to the
author that the String Polygon Method could be applied, to the deforma-
tion analysis of elastic-plastic beams and frames, in a manner which
would yield very direct solution.

After consultation with his advisors, the author undertook the
writing of this thesis.

The author wishes to express his appreciation to the following indivi-
duals who generously gave of their time and talent to aid him during the
last two years of graduate study:

To Professor Roger L. Flanders for introducing the theory of
plasticity and serving as major advisor.

To Professor Jan J. Tuma, for many hours of instruction.and con-
sultation, and for invaluable aid in the literature survey for this thesis.

To Professor R. E. Means for his advice and encouragement.

To Professor James D. Gillespie, and Messrs. J. T. Oden and
R. K. Munshi for their friendship and consultation during the period of
this study.
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To his wife who conscientiously typed the manuscript and assumed
many family responsibilities to allow time for study and for her encour-
agement throughout this period of study.

And to the entire faculty and staff of the Department of Civil En-

gineering for a very enjoyable period of association.
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NOMENCLATURE

13': 12)1 g‘: = polygon veriex point designation
BM ,BM ‘ = bending moment of simple beam due
u v . .
to loads, at point u, v, respectively
D = reciprocal of flexural rigidity
B = modulus of elasticity
F = ultimate load
Fij = angular flexibility function
Gij ‘ = angular carry over function
h = vertical dimension
I = moment of inertia
1,3,k = general index points
L.,L, ~ s .
173 = length of beam segments ij and jk
di , dj respectively
Mi' M., Mk = bending moment at points i, j,k, re-
J spectively
n = any integer
P_Ej = elastic weight applied at point j
'P;j = plastic weight applied at point j

viii
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i

conjugate reaction at point j

length between points b and g

moment arm measured parallel to
X,y, axis respectively

coefficient of length

deflection components of point j, in
x and y directions respectively

the change in the deflection angle of
the polygon due to plastic hinge, real
hinge and/or elastic rotation at any
point j

end slope of simple beam segment ij
at end i

the deflection angle of the undeformed
closed polygon at any point j

angle designation
summation
angular load function

summation of moments of :Eorces or
conjugate weights about line ij
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CHAPTER I
INTRODUCTION

The String Polygon probably was conceived by Archimedes, however,
it is usually attributed, in its basgic form to Varignon, who studied the
loaded string, and introduced the concept of the polygon of equilibrium.
Culmeann discarded the material string, and used the polygon of equili-
brium as a tool of analysis, thus laying the foundation for the develop-
ment of graphiec statles as an effective means of analysis,

Mohr \(15) represented the elagtic curve of a stralght beam as a

differentlal string polygon in connection with his concept of the conjugate

The Joint l.oads Concept was introduced by Muller-Breslau (16, 17).
In his definition of joint loads, the influence of loads on the elements
wasg neglected and only the influence of moment, shear, and axilal force
was consldered,

By adding the angular load function to the joint load, Tuma (1)
generalized the String Polygon Method, and relaied it to the Three
Moment Equation. This generallization greatly increases the effective-
ness of the me thod, .since elements of any length or curvature may be
used, with exact results.

Deformation analysis of frames at ultimate load is important. It
is the basis of approximate working load deformation analysis. V{;Vhen
materials having a limited rotation capacity are used, the magnitude

of plastic rotation is often critical and, therefore, must be determined.

l_.l
i
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Difficulty arises in the deformation analysis by the commonly used
Slope Deflection Method since it is necessary to solve many simultaneous

equations and, by trial and error,establish the last hinge to form.

/ \Lee(27) generalized the Conjugate Beam Method, and called it the
\COnJug_e:t:e Frame Method. This method provides three independent
equations which are identical to the String Polygon equilibrium equa-
tions. Lee further recognized that a fourth rational condition is ob-
tained from the dir-‘eétion of plastic hinge rotations of the collapse me-
chanism. Thus, adequate equations are available and, usually the last
hinge to form is obtained by inspection of these equations.

The Conjugate Frame Method is somewhat tedious because of the
differential elastic weights, which operate in two coordinate directions
and necessitate the computation of moment arms from the centroid of
each segment of the moment diagram to the axis of moments for each
conjugate moment equation. The sign convention is also two-phased
and involved.

The String Polygon Maeth:od is an efficient tool of analysis for many
structural ‘proble.m:s . .Reé:ent investigators {2, ‘3,‘ 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14) have extended the pr esent concept of the String Polygon,
to many phases of elastic analysis. | | '

, The String Polygon approach simplifies the expression for differen-
tial elastic weights by concentrating their effect in the form of joint
elastic weights at convenient points, thus eliminating the necessity
for computing moment arms for conjugate moments.

The :c(oinpu?tatifon of elastic weights is made by substitution into
the three moment equation, and is fur ther simplified by means of beam
congtants which are available, for members of constant or variable

cross section. {2, 5, 6, 26.)
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The method is appﬁed tc plastic structures on the verge of collapse,
and is perfectly general as to variation of cross section since this varia-
tion is taken into account by proper evaluation of the elastic weighis.

In Chapter Two of this thesis, the general theory of the String
Polygon method is restated to include the deformation effecis of plastic
hinges. Chapter Three is devoted to examples, in which the elastic
deformation is negiecied, thereby providing an aiternaie method to
Instantaneous Centers Method which is commonly used to determine
the mechanism angle reiationships. Chapter Four is devoted fo ex-
amples of single bay frames, and Chapter Five is devcted to exampies
of compiex frames. The sixih chapter summarizes and concludes the

study.



CHAPTER II
THEORY OF THE STRING POLYGON

2-1 GENERAL

Important, well-known relationships exlet between the basic rules
of cloged polygon geometry arnd the basic rules of statics.

Under certain conditions, these relationships allow the problems
of geometry to be solved by the familiar processes uped in the golution
of the problems of statics.

Planar structural analysis problems, among others, fall within

these conditions if the small deflection theory 18 permingable.

2-2 ASSUMPTIONS

1) The usual assumptions of structural analysls apply to the de-
termination of elastie conatants.

2) The change In length of structural members is small and may
be neglected.

3) The length of plastic hinges is stnall in comparigon to the leﬁgth
of members, and may be consgldered tooccur at a point.

4) The plagtic and elagtic angle changes are small, and the Sine
and Tangent of the angle are taken ag the angle itgelf,

5) The structural material is perfectly plastic, and the moment-

curvature relationship is as shown in Fig, 2-2.

p
Moment

Curvature
Idealized moment-curvature relationship
Fig., 2-2
2-1



2-3 GEOMETRIC RELATIONSHIPS

Consider the frame or structural panel of Fig. 2-3a, which de-
scribes the closed polygon (1,2, 3,4, 5,1}, having deflection angles
(91& 92.& 93*9 4* 95).

~Under the influence of applied loads, the structure deforms to a
new position, on which the points (1, 2!, 37, 4%, 5, 1) lie. The deformed
structure is thus represented by straight lines (string lines) connect-

ing  the prime points of the deformed polygon.

Undeformed

Polygon o ef ormed

e Y/ Polygon

- Closed Polygons

From plane geometry, the sum of the deflection angles of the
deformed and undeformed polygon are given by eqﬁat‘ionsa 2-3a and 2-3b

regpectively.
| (-Qlff@l) {0,y i+ (04D ) + (6,7, ) (95@5) = 27 Eq. 2-3a

) + 0 + 0 + 6 + 6, = 27 Eq. 2-3b

[y

subtracting Eq. 2-3b from Eq. 2-3a yields:

&+ P+ O+ D+ B 0 Fa. 2-3c
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This expression is for a five sided polygon; however, the concepts

are perfectly general. it is fherefore evident that:
in the general case of an n-sided closed polygon which
undergoes deformation, the algebraic sum of all angle
changes must be equal to zero for geometric compata-
bility,

or mathematically: n

Z @, = O | - Eq. 2-3d

and is analogous to: L
in the general case of a system of parallel forces, the
algebraic sum of all forces must be equal to zero for
gtatic equilibrium,

n
or mathematically: ' Z Pn =0 Eq. 2-3e
1

Fig. 2-3b
String Polygon
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Next, consider the string polygoen of Fig. 2-3b. The angle between
lineg (1,2) and (1,2') is (Z)l . Similarly the angle between lines (2, 3) and
(2', 3") is @@y , etc. For the general case, it is seen that:
The angle between respective original and deformed lines
of the polygon, is equal to the sum of the angle changes to
the left or right of that line.

which is analogous to:
The internal shear force in a beam or frame is equal to the
sum of the forces to the left or right of that point.

The distance hetween the original and prime points of the siring
polygon represent the absolute displacement of the respective points
of the structure.

The displacement of point 3 due to @ , is (3~ 3"), and from small
angie geometry:

(3-3") = @) .8y
the X component of (3-3") is:
(3—3")x = (3-3") gin wy = (Zhl 881 sin @
and the Y component of (3-3") is
(3—3”)3‘“ = (3-3") cosw =@ S, cos @

ince' X,, =S, cos Y =8, si
but since X31 31 cos @y and Y31 S31 sin wy

the direction components of (3-3") are:
Mo o <5
(3-3")x =@ Yy
a_ afl - <5
(3-37)y =@y Xgy
Similarly the displacement due to @y is (3"-3") and:
1A q —
(37-37) = @y Sg
the X component of (3"-3") is

(37-3"), =@y Ygy



A%
(92

the Y componer: of (3"-3") ig
3.3y =y R
(37-3 )y % 32

Superimposing the deformation components dus togy . and 0,

. 4T P -
By = @ Yoy vy Vg Bgy = B Lgp + 0y Fgy
In the ‘;er:r}% cage, the deformation fmmp(:fim‘zﬁ%,;% of any point n, ara:
g F il
“nx %—' (-Z)n n “ny %-a T n

It is then evident that:
The displacemernt component of any point on the polygon, is
equal to the sum of the mone nig of the changes in deflection
angles of the polygon, about a iine passing thru that point
of the original polygon, parallel to the direction of the
desired displacement component, of all such angle changes
which lie on éne side of the digplacement line,

which is analogous to:

The bending moment at any point of a beam or frame, iz sgual
to the sum of the moments of forces about that point of the
beam or frame, of all forces which lie on one side of the
point,

A further analogy may be made since the displacement at any peint
n is common to both sides of the polygon, therefore, for an n sided poly-
gon the displacement in any direction z is:

m o mi o
AIIlZ - 1Z®m le‘l = %:Q)m Zm

N DS
B Z =0
therefore: 7tomoom

The algebraic sum of moments of changes in deflection angles
of a closed polygon, about any line in the plane of the polygon,

musgt be equal to zero for geometric compatability.



which is analogous to:
The algebraic sum of moments of a system of parallel forces
acting on a plane, about any line in that plane, must be equal

to zero for static equilibrium.

2-4 ELASTIC WEIGHTS

One of the major advantages of the String Polygon Method is due to
the fact that points on the polygon may be selected arbitrarily, from the
geometry of the frame, usually at corners, abrupt changes in cross-
section, and real or plastic hinges. It is therefore necessary to trans-
fer the effect of elastic defon;mation which occurs between these selected
points tc the points on the polygon. This transformation is accomplished
by means of joint elastic weights.

The basic siress analysis of a frame may be accomplished by the
élementary theory of plasticity, which reduces most frames .to gtatically
determinate ones. Moment diagrams are thus available, from which
elastic deformation is determinéd.

An expression for the joint elastic weight at any point j, may be
derived by considering the beam segments‘adjacent to pointj, Fig. 2-4a.
The segments ij and jk are straight beam segments, but may have

any variation in cross-section and are subjected to general loads and

end moments.

From the Fig. 2-4a, it is seen that (Dj is the change in the deflection

angle at point j, and is thus fhe elastic weight, and

. = .. T0. Eq. 2-4a
@J @.Jl (D;]k q
It is also evident that (Dji is the end slope of beam segment ij at end j
due to moments, and (Djk is the end slope of beam segment jk at end j

due to moments.



Deformed
Segments

Fig. 2-4a

Beam segments adjacent to point j,

Taking free bodies of the beam segments, and dividing the moment

diagrams into three parts as shown in Fig, 2-4b, the end slopes of each |

segment may be written using the area-moment relationships, thus:

] . N
@31 = 1VIi f uu'’ du + M uz du + : BMu u du
iJ &% E1 Vi) T ij ¢; Bl
g D k0
2 ’ 1 .
_ 2 gy [E—— BM_ v' dv
M Vv vv v v
ik ¥ Tk v
dencting the integrals by:
- k
! BM,  u du r‘-BMvvidv
i T, ) A EL. Tik J T4 EI
Pooad S Boogd kY
rJ o &
F - u 3d'l_l o F = 'Vu dV
iy J aZE kL) a?Es
] U J Iy k v
A FK
- uu' du G - vv'! dv
ji T i SR By
i o d” EI, JJ 4 EI



Loaded
Segment

Bending
Moment
Due to
Loads

Bending
Moment
Due to M1

Bending
Moment
Due to 1\/[j

BM
u

M Loaded
. k Segment

M;
i

Bending
BM Moment
VDue to

Loads

L Due to M

i

Bending
k Moment
k

Bending
Moment

Fig. 2-4b

Free Bodies ij and jk

v
Due to M.
St j



Eg. 2-4a bécomes:

P @ =M G, + M, ST, + M G, +5 7,
Where TF.=F. +F, and r.=T1., + T,
© it Yk i T Tk

Thus the equation of the joint elastic weight, Eq. 2-4b, is seen to
be identical to the familiar Three Moment Equation. The quantities 7,
F, and G have the folicwing physical interpretation:
is

Angular Load Function T5s L’Tjk)_

the end slope of the simple beams ij (jk) at j due to loads

1 1 PN T4y T s
Angular Flexibility Fji ijL is

Eq. 2-4b

The end slope at j of the simple beam ij (jk) due to unit moment

applied at j.

Angular C.arry—‘;Over Value Gij @kj)  is

the end slope of the simple beam ij (jk) at j due to unit -

moment applied at i (k).

If the cross-section of each member is different but constant between

two joints, the following simplifications are possible:

L,
- ] Ly
i, = - =

ji 3 EIj jk 3 EL,
Gy = TEL Gy = 5 EL

The load functions 'Tji and 'Tj < for the most common load conditions

reduce to the expressions shown in Table 2-1.



2-5 PLASTIC WEIGHTS
- Plastic. weights are defined'as. the changes in the deflection angle
of the polygon due to plastic rotation. Since the points of plastic rota-
tion are known from the collapse mechanism, and are selected to be
points on the poliygon, no transforns tion is necessary.
These plasgtic rotations are taken as redundants, and their varia-

tion is such that geometric compatability is provided.

2-6 CONJUGATE REACTIONS
Conjugate reactions are defined as the changes in deflection angles
of the polygon due to real hinge rotations. Except for the distinguish-

ing symbel, they are treated identically to plastic weights.

2«7 VECTOR NOTATION

8ince the changes in the deflection angles () are analogous to forces;
as has been shown in article 2-3, it is convenient to represent the
angle c:ha;nges by vectors. This is easily accomplished since all angle
changes lie in the plane of the frame, and are, therefore, directly
additive. |

Vectors which represent rotational quanities have a direction per-
- pendicular to the plane of the rotation; thus elastic and plastic weights
will be represented by vectors perpendicular to the plane of the frame

or panel.

2-8 SIGN CONVENTION

Bending moments are piotted on the tension gide of the member;
thus, a moment diagram lying on the inside of the polygon is positive,
and those moments outside are negative for that particular panel.

Elastic weighis will carry the sign of the bending moment.
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Plastic weights for each particular panel are positive if the interior
angle of the polygon at that point is increased and negative if the in-
terior angle is decreased.

Weights which are applied to the conjugate frame are positive up-
ward and negative downward when the frame is drawn in the horizontal

plane.

2-9 GENERAL APPLICATION
- Deformation analysis of single or multiple panel frames, at im-
pending collapse, may be effectively carried out by the String Polygon
Method.

The usual methods of plastic design are used to determine member
sizes and provide the basic geometry of the collapse mechanism.

Plastic hinges, real hinges, and the corners of the frame or panel
are selected as points on the polygon. If it is known in advance that
the deformation of additional points are required, those points may
also be selected as p;)ints on the polygon.

By means of Eq. 2-4b, and the moment diagram, the elastic weights
for all selected points on the polygon are computed.

Plastic weights and conjugate reactions are redundant; however,
their sign is known from the collapse mechanism. It is convenient
1o apply these redundants to the conjugate frame in their proper sense,
thereby requiring the solution of the equilibrium equations to yield a
positive sign for the plastic and readl hinge rotations. Only the plastic
weight representing the last hinge to form, when equated to zero, will
yield a positive sign for all of the remaining values.

The conjugate frame is then drawn in the horizontal plane and all
-redundants applied to the conjugate frame in their proper sense,in a

vertical plane.
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Three independent equilibrium equations may then be written for
each panel. It is usually most convenient to take mome nts about three
sides of the conjugate frame, \Kbrief inspection will usually determine
which sides to select for the most simplified equations.j’ Most of the
equilibrium equations will contain only two unknowns each. In many
cases, - eéuating the last hinge to form to zero, will reduce the simul-
taneous equation set to explicit form. The values of plastic and real
hinge rotations are cbtained directly by solving the equilibrium equa-

tions.

1
t is the distance between the original
polygén and the deformed string line polygon. If the deflection of the

originally selected points are required, it is only necessary to deter-

S i S,

mine the conjugate momeni at thati point about a line barallelj:p the

direction of the desired deflection, If the deflection of some inter-

mediate point is required, it is necessary to add the deflection of tb.e,*‘
simple beam segment due to lcads at that point, to the conjugate bend-
ing monent at that same point. The direction of the deflection is deter-

mined rationally.
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Table 2-1 Load Functions

P
L I L
2 l 2
i A& N i
L
_ pL?
Tij T 16 EI .
_ pL? ro= WL
Tji\ - 16 F1 J1 24 EI
P
Lm 1_ L(l - m)
r— W?“
BELE LITT
i N i zfi '
L L -
PL m(1 - m)@ - m) _ pL’
, 3
2 2 7oL
PL'm(l - m") = B
P .
E M
i i ; éfifl ./\,,
=\
L ) - L
2 | ML(3m? - 6m + 2)
ro= PL m(l - m) * T,. = :
i 2Bl ij 6 E1
2 . 2
r = PLm(l-m) r = ML(L - 3m~)
ii 2 EI ji 6 EI




CHAPTER III
MECHANISM ANGLE RELATIONSHIPS

3-1 GENERAL

The elementary theory of plastic design by the mechanism method
requires the relative magnitude of the plastic and réal hinge rotations.
These relationships are quickly and effectively determined by the String
Polygon Method,

In common practice, the effects of elastic deformation are ‘as;umed
to have negligable influence on the relative rotations.. For the”.Str:‘ing
Polygon Method, this assumpiion is equivalent to assuming that the
elastic weights are equal to zero. The redundant plastic weights and
conjugate reactions are placed on the conjugate frame with the same
direction. The direction of rotation is thus indicated by the sign of |
the values. Three independent equilibrium equatic;rls are obtained for
each panel by setting the sum of moments of conjugate weights about
three sides of that panel equal to zero, Three of the four redundants
may then he found in terms of the fourth by solving the equations simul-
taneously.

Examples 3-2 and 3-3 illustrate this procedure for single and mul-
tiple panel frames,

3-2 EXAMPLE OF SINGLE PANEIL GABLE FRAME
The mechanism angle relationships are found for the frame with

the assumed collapse mechanism shown in Fig, 3-2a.%*

¥ This example is worked by the Instantaneous Center Method on
pages 6, 7, of Ref., (29).
3-1
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Gable Frame and Mechanism

Fig, 3-2z

Fig, 3=-2b

Conjugate Frame

18, + 260

400, + 600

= 20@, + 60, +'60q30

By = .90,

=0
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3-3 EXAMPLE OF THREE PANEL GABL‘E' FRAME
The relations between plastic rotations are found for the frame and

assumed mechanism shown in Fig. 3-3a in terms of the rotation at point a.

Fig. 3-3a

Three Panel Gable Frame and Mechanism




Fig. 3-3b
Conjugate Panel 1

The equilibrium equations are:

M@y = BB, FL® + L@,
M@ = h@, +(h+ 2aB;h) 0,
M@y = L, +@-58)LG,

Solving these equations in terms of Q)a:

1
0, = - L o,
+ 2q
Q)d E (1+2QB].)®C =__-(11__:73?2_ ¢a

A taii U
1 - Bl

The equilibrium equations are:

M@y = Bplg®r *+ Lod, + L@y,
M@g- = (b +20f5h) Py + h¢g
Ml = (- By Lyh + Lyd,
Solving:
®f=,_1+2a[31—/31 ¢a

¢ = L+ 2aB; - By) (1+208,)

_1+2a8 -8
= - 1 ¢a
1 ]El
Fig. 3-3c
Conjugate Panel 2

g

T By By)

a

%__ (1+2Q.’Bl_31) (1+2a’82°'32) @a

T BBy

"

- 1+ 2ar[31 - [31) i+ 2&32 - 2) ®
% T-B) U= 5 *
Fig. 3-3d
Conjugate Panel 3
The equilibrium equations are:
Mz = PBglgB+Lg0 *+ L@ = 0
M@ = (b +20B3h)Q +h<,?):| =0
M@r = (L-Ba)Lghy +Lgf = 0
Solving:

¢i = _(1+2Q’81"31)(1+2a’62"82) q)a
TR T Bl BT Py
g - 0208 - ) @+ 208y - ) A+ 2ay)
(1‘[31)(1‘32)(r' 83)
g, =-0F 28 = By) 0+ 2aBy - By) 0+ 308, - By)
(1-‘31)(1-32)(1-53)

a

V-€



CHAPTER IV
DEFORMATION ANALYSIS OF SINGLE PANEL FRAMES

4-1 GENERAL

The deformation analysis of single panel frames may be accom-
plished by means of the String Polygon Method. V{he deformation
analysis begins with known loads; beam sections, the moment dia-
gram, and the -coilapse mechanism, The angular functions are com-
puted and the elastic weights evaluated. The conjugate frame is then
loaded and the equilibrium equations are written by setting the summa-
tion of momepts of the conjugate Weigh’cs.about three sides of the frame
equal to zero; The last hinge to form is found by inspection of the equi-
librium equations. By setting the plastic weight corresponding to the
last hinge to form equal to zero, the three simultaneous equations
are reduced to explicit form and solution is made by direct substitu-
tion. a/I‘he plastic.weights are equal to the plastic rotation of the hinges
measured in radians..

The deflection of any point originaily selected as a point on the
polygon is determined by evaluating the bending moment of the con-

jugate frame at that point.

4-2 EXAMPLE OF SINGLE PANEL PORTAL FRAME
The frame of Fig. 4-2a is analyzed by the String Polygon Method

for plastic rotations at points e and g, and the deflection of points d,

g, e, 1.¥%

¥¥*This example is worked by the Slope Deflection Method on
pages 100, 103, of Ref, (28). The frame was tested to failure and
reported by Schilling, Schutz, and Beedie, Ref. (31).
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Fig. 4-2a

One Panel Portal Frame

An analysis by the elementary theory of plasticity indicates a

collapse load of F = 29, 9 kips for a uniform beam section whose
yield moment is 'Mp = 1925 inch kips, and flexuralrigidity is EI =

80.39 x 105.,

The collapse mechanism is formed by the real hinges at a and h,

and plastic hirges at e and g.

The moment diagram is as shown in Fig. 4-2b.

Ve

11925 s, k.

1528 ft. kop

1925 ft.

Fig. 4-2b
Moment Diagram
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The points a, 4, e, i, g, h, are selected as points on the polygon.
P s Gp @y 1y Hy Oy b

The angular functions ¥, G, and 7 are tabulated as coefficients of

jf in Table 4-1,
TABLE 4-1 PPy
r e N 4\‘}" ’
[ = ) L
Beam ~ - _
Segment | Tij(ji) S50 i3 T
; / “\‘\
ad 40 =% 20 r= 1 +3, 315 +5, 315
de 40 20 0 0
el 20 10 o 0
L =lso
o f
ig 60 30 +59,600 | +47,700
gh 40 20 0 ¢

The elostic weights for each point are determined by means of Eq. 2-4b

in Table 4-2 as coefficients of —;J-"

ET -
i { Z L fr e
TABLE 4-2 \
o P oo x =
Point MiGi.j , Mj‘-Pj M:’ ij 3 .rj o8
a Y 0 -1526(20) +5, 316 | -25,205
d ¢ -1526(80) | +i025(20) - +54 315 | -78,265
e -1526¢20) | +1925(60) | +1858(10} 0 +103, 560
i | +1925(10) | +1858(80) | -1925(20) | +59, 600 | +169, 740
g | +1858(30) | -1925{100) 0o +47,700 | - 89,080
h -1825(20) 0 0 G - 38,500

The conjugate struciure is then as shown Fig. 4-2c.



PPe —P}g
-
oy T)—}—Ele? ?;ili _—:Eig
R, Ry
L/ @T
T PEa Fig, 4-2c ' Pon

Conjugate Frame

The equilibrium equations may then be written by taking moments

of all conjugate forces about three sides of the conjugate frame, thus:

ZM@;H - 120(?;3d +T)—Ee -EA—P}Ii: +—P_]_3g ‘_+ 1::'Pe'“' PPg) =0
Substituting values from Table 4-2: |
P - 10%}975 Eq. 4-2a
-Similarly:
ZM@h—g- =180 By, + 240(Pp +Pp ) + 360(?*"Ed+P"Ea -R)) = 0
Substituting values:
2P, - 3R, = __l%fqgg Eq. 4-2b
and similarly:
SMeg; = 120, - E + Py, +E;) = 0
Substituting values:
' - ® = 83705 Eq. 4-2c

a h EI
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Inspection of Eq. 4-2a, b, c, shows that only ?}e may be equated

to zero, leaving all other redundants equal;to,i;:gsitive val@' There-

fore, ?—i?e must be the last hinge to form.
Equating TSI?e to zero reduces Eq. 4-2a, b, ¢, to explicit form, and
their solution yields:

= . 105,975  _ :
Ppy = —Hr— = -0132 Radians

[t}

= 50,440
EI

- 114,145

TEI

. 0063 Radians

=)

. 0142 Radians

7|
N
i

The deflections may be determined since they are equal to the con-
jugate bending moments. Those deflections which are required are

computed -as follows:

Agy = Agx =M, = M = 120 -Pp.)
=:.___EI____9,079,000 = 1.13 inches

Bey = M, = 120R, -Pgp, - Ppg)

s 18,460, 000 = 2.29 inches
EI . - _.—}

- P, - P_ /g%»uﬁﬁ ? fo -
Phg) - 60Fg,)

A= M = 180R, - Py, N
- 21,500, 000 ?E}OIO, 000 = 2.67 inches
4-3 EXAMPLE OF SINGLE PANEL GABLE FRAME
The horizontal displacements of points b and e, and the plastic ro-
tation of hinges are determined at the instant of collapse for the frame
shown in Fig. 4-3a.
An analysis by the elementary theory of plasticity indicates that for

the ultimate load shown, a uniform section whose yield moment M0

182 ft. kips, is required.
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Single Panel Gable Frame

!
6.67"

The collapse mech_einism is formed by real hinges at a and f, and

plastic hinges at d and e.

The moment diagram is as shown in Fig. 4-3b.

65 ft. k.

Fig. 4-3b

Moment Diagram




The points a, b, ¢, 4, e, f, are selected as points on the polygon.
The angular functions are tabulaied as coefficients of 1 in
EI
Table 4-3.

The eiastic weights for each point are determined by means of

Eq. 2-4b, and are tabulated as coefficients of 1 in Tabie 4-4.
BI
TABLE 4-3
- Beam G
Segment Fijii) ij{ji) i T
ab 5 2.5 0 0
be 4.71 2. 36 + 88.4 +88.4
cd 3.51 1..76 4+ 65.9 +65.9
de 7.03 3. 51 +659.0 | +659.0
7ef 5 2.5 0 0
TABLE 4-4
Point G..M. F.M, G. .M, T, P,
i =F M, ki 27 | Ej
a 0 0 -2.5x% 91.5 0 -229
b 0 -9.71x 91.5|+2.36 x 65 |+ 88.4 | -646.6
c -2.36 x 91.5 | +8.22 x 65|+.76 x 182 | +154. 3 | +793.0

d +1.76 x 65 +10.54'x 182 |-3.51 x 182 |+724.9 {+2118. 8

e |+3.51x182 |[-12.03 x 182 0  |+659.0| -89i.6

f -2.5 x 182 0 0 0 -455,




The conjugate structure is then as shewn in Fig., 4~3c.

P

Fig. 4-3c

Conjugate Frame

Setting the sum of the moments about three sides equal to zero:

ZM% =0

15 Py, + 25P,  +2L67 (Ph, + Ppy) + 15 (P,, -Ppl)=0

Pe
Substltuting values of elastic welghts:

2,67P,, ~16P, =  2a008.2

d Pe TBI Eqg. 4-3a
pMep = 0
10 PE.C + 20(1—3;3(3 + PPd) }40(1_9jEe 'PPe +PEf +Rf) = 0

Substituting values of elastic weights:

Ppy - 2Pp, +2R; = +177.9

Eqg. 4-3b
El



Dlgs; = o

™ D L < - -+ _ B -
20(Pgy + Ppq) +30 Py, + 40, +Po. -K) =0

Substituting values of plastic weights:

Ppg ~2F_ = -1 5E5§.10 ‘Eq. 4-3c

Inspection of the Eq/’s. 4-3a, b, c, shows that only T’;d may .

be equated to zero, leaving all other redundants positive; therefore,

P

pgq must be the last plastic hinge to form.
Setting T]_S.P;d equal to zero, and solving Eq's. 4-3a, b, c, yields:
_ . 2 2
PPe = 2,844.4 (144 in. ft,”) = 409,590
EI EI
Ry = 7—’%—;’—5 gaam.2, £.2) = 12,110
EX
Ry = 2,933.38 nygin 2, 4.3 = 422,402

Since the conjugate bending mome nt equals the deflection of the

real structure:

~r - (5D v v SR o 1. 3 3
A, =W = 18P, + IBE - 1b%1113. (1728 in. °/ft. °)
= 26.116 x 105 .
. inches.
—Er
A =M_ =15P._  + 15R, = 37,175 (1728 in.°/ ft.J)
ex ex “~ ERe f ——«‘*E—I——— ¢ )

= 64.239, 10°
—Er

-

Where E ig in kips/ in, 2 and I ig in inches4,



CHAPTER V |
DEFORMATION ANALYSIS OF MULTIPLE PANEL FRAMES

5-1 GENERAL

Multiple panel frames may consist of aﬁy number of closed
polygons. Each polygon must obey the pi‘inciples of ciosed polygon
geometry and may be ireated as an individual unit, however each
panel will involve the conjugate reactions and plastic weights as re-
dundants. These redundants are common to adjacent polygons, and
provide the necessary compatibility relationships.

\/g The deformation analysis of mulﬁpie panel frames, as in previ-
ous examples, bégins with known loads, beam sections, the bending
moment diagram, and the collapse mechanism. The angular func-
tions are computéd and the elastic weights are evaluated.

It is noted that elastic Weights-a;re evaluated by Eq. 2-4b which
was derived for the case of only two members intersecting at the
point of application of the elastic weight. In multiple panel frames,
three or more members of’cen intersect at a point, and the end mo-
ments of these members may have different values at the point of
intersection. The fol Iowiné modif‘ied form ofIEq., 2-4b is used in

this case:

Gi' + M..F.. + M., F + M, .G .+=Us

P, = M LB L.
j i Jk™ jk ki kj

Ej i
It should also be noted that elastic and piastic weights which are

common to adjacent panels, according to the sign convention stated

5-1
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in Chapter I, have different signs, depending upon which panel is
being considered. This convention provides for automatic compati-
bility between panels.

Selection of the last hinge to form is more involved in multiple
panel frames than in single panel frames; however, the String Poly-
gon Method offers reasonable advantage over the Slope Deflection
Method. The selection of the last hinge to form before collapse is

best explained in the following exampie.

5-2 EXAMPLE OF A MULTIPLE PANEL GABLE FRAME

The plastic and real hin ge rotations and lateral defiections at
the top of the‘columns are determined for the frame shown in
Fig. 5-2a,

The agssumed ultimate loads are shown on the frame. The beam
and column segmen’cé are constant section between joints. The three
sizes of beams are indicated by moments of inertia Il, Iz, I3. The

assumed values of Mp, E, and I are as follows:

M. = 3041t kips 1, = 13,824 in.*

i

M_ = 530 ft. kips I, = 31,6570 "
) _

M_ = 760 ft. kips I, = 49,628 in.?
p3 ‘

E = 3 x 103 kip‘s/in.2

The corresponding flexural rigidity constants are denoted by:

1 P
D, bl 2.411 x 10
D =-: _ <= 1.053 x 10”8
9 Eiz
1 -8
D, =—— = _672 x 10
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Fig. 5-2b

Bending Moment Diagram
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The collapse me chani'srxi ig shown in Fig, 5-2a and the correspond-
ing bending moment diagram is shown in Fig. 5-2b.
The angular functions F, G, and T are tabulated in Table 5-1. For

convenience all of the angular functions are written in terms of Dl‘

TABLE 5-1 Angular Functions

Bean}:Segmentv [ Fi]%(ji) | Gl%Jl) Ti]%(ji)_
ij . 1 1. 1
1, 2 | 2.9 | 1.45 0
2, 3 3.04 1 1.'52 0
3, 4 3. 04 | 1,52 0
4, 5 . 6.08 | 3. 04 | #3665
5, 6 6. 66 3.33 0
5, T 2. 50 1, 25 | 0
7, 8 2.50 1.25 0
8, 9 5. 00 2.50 | + 3530
9,10 | 2.01 | 1.45 ‘ 0
9,11 5.7 | 2. 64 ‘ 0

11,12 | 5.27 | 2.64 | 0
12,13 | 10, 54 5. 27 | + 2625
13,14 | 6. 66 | 3.33 | 0

The elastic weights, for each of the points on the polygon, are tabu-
lated for each panel in Tables 5-2,3,4. The value D1 is common to all

terms and is omitted from the tables.



TABLE 5-2 Elastic Weights for Panel 1
Point M.G.. M.ZF, M, G, . T, P_.
i7ij T kkj <7 Ej

1 0 0 - 392 0 - 392
2 0 - 1606 + 805 0 - 799
3 - 410 + 3222 + 337 0 + 3149
4 + 806 + 2024 - 1611 + 2665 | + 3884
5 + 675 - 3222 0 + 2665 | + 118
6 0 0 0 0 0
TABLE 5-3 Elastic Weights for Panel 2
Point MiG i MiZFj MkGij ST. P Ej
6 0 0 0 0 0

5 0 - 1325. + 950 0 - 375

7 - 663 + 3800 + 327 0 + 3464

8 + 950 + 1965 - 1900 + 3530 | + 4545

- 3800 _

9 + 655 - 1536 0 + 3530 | - 1151
10 - 765 0 0 0 - 1765
TABLE 5-4 Elastic Weights for Panel 3
Point M.G .. M.2F. M, G, . T. P..

i7y4j i3 k "kj Z7j Ej
_ e e———]
10 0 0 + 766 0 + 766
+ 1536
9 0 1223 + 802 0 +115

11 - 612 + 3204 + 5524 0 + 3146

12 + 803 + 3320 -'1602 + 2625 | + 5146

13 + 1106 - 5229 0 + 2625 - 1498
14 -1012 0 0 0 - 1012
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Fig. B-2¢

Conjugate Panel One

The equilibrium equations for Panel One are:

E’I@l; 6

= 20(Pg, + P

E5 -+ PP5) +26((PE3 + PP3) + 32 PE4

Pps - L3Ppy = +9,627D; Eq. 5-2a

E/{@_5F = 80(Pp; *Pgy + By) +60(PL, +PL ) +40P, = 0

4R; - 3P,,; = +12,451D, Eq. 5-2b
T1-\')1@—— z 20(Prn, +PL,) +40P_,, +80P...~P_ . +P__+R_ )=
1R E3 ~TP3 E4 E5 ~P5 " ES 6

4P, - 4Ry -Ppy = +1,389 D, Eq. 5-2¢

=

0



Fig. 5-2d

Conjugate Panel Two

The eqiiilibrium equations for:Panel Two are:

Ew@s,i“o = 20y + Prg - Ppg) + 30y +Ppq) +40Ppg =0
2Phg - 3Pp, = +25,520 D, Eq. 5-2d

E\/x@——o = 100 + Prg - B g) + 15, +Pp) +50 g, =0

9.1
4Ry - 3P,, = +17,982 D, Eq. 5-2e

| E’I@?TG— = 25(Py +#Ppy) +50(PRg) + 0Py + Pryg = Ppg + Ryg) = 0
4Ly - 4Ry, -Pp, = +4,890 D, Eq. 5-2f



Fig. 5-2e

EConjugate Panel Three
The equilibrium equations for Panel Three are:

- as 5 - =3 - P =
ZM@l'o',“1‘4" 20(Ppg * Pryg = Ppyg) +25(Pgy ¥ Ppy) + 30 Py = 0
2Pp, - 2.5 PL, = +22,537 D Eq. 5-2g
——— = P+ P - P_ P -P. + R, =
ZM@Q”,.&O 1P gyt Ppyy) + 30(Pgp) + 60(P g + Py - Ppyg +Ryy) 3

4 Pis ~ 4R—1 - PPll = 4 3,398 D1 Eq. 5-2h

E’I@l“‘s,u‘ = 30(Ppgyp) + 45(PRyy ¥ Ppyy) ¥+ 60(Ppg + PRyg = Ryg) = 0

- 3P,y = +27,222 D Eq. 5-2i



The equations 5-2a through 5-2i are nine equilibrium equations
which describe the relationship between all plastic and real hinges.
Simuitaneous solution cannot be performed , however, until a tenth
relationé(hip is obtained since ten unknown values are present.

1 Thé tenth relationship is obtained by determining the last plastic
3

%hinge to form, and equating the respective plastic weight to zero.

As in previous examples, the smallest value of rotation (plastic

weight) in each panel is determined by inspection of the equilibrium
equations for each respective panel.

Thus, in Panell, P_,. is least. In Panel 2, P_, is least, and

P3 P17
in Panel 3, P;l\l is least.
By eliminating ’151:,5 from Eq. 5~2a and 5-2c:
R6 = 6,780 Dl +1.05 PP3

and, from Eq. 5-2e:

Rg = 4,495 D1+ .75 PP7

and by equating these two expressions:

3

1.05 By, = - 2,285 D) + .76 B,

b Eq. 5-2j
If ?157 =0, “15-%,3 is negative; thergfore, the value of f’}s is less

than that of PPT.

Eliminating Py g and '13=P7 from Eq. 5-2f, d,j, yields:

P
?{?0. = 15,846 D, +1, 75 ?'1;3

and from Eq. 5-21i:
Ry, = 6,808D, + .75P,,



and by equating these two expressions:

L75P,, = -8,541D +3F Eq. 5-2k
If —;11 = 0, ?},3 is negative; therefore, the value of-T’_P3 is less
than that ‘of PPIl'

It has been shown that ?,;,3

five plastic weights and, therefore, represents the last hinge to form

ha& a value less than any of the other

before coliapse.

Equan':ingf’_lz,3 to zero, the numbered equations may be solved by

substitution. Thus from:

Eq. 5-2a Phy = +9,627 D
Eq. 5-2b R, = +3,13 D,
Eq. 5-2c R, = 6,780 D,
Eq. 5-2j P,, =+3,047D
Eq. 5-2d P, = 7,330 D
Eq. 5-2f Ry, = 5,346 D
Eq. 5-2i Po,, = 1,387 D
Eq. 5-2g P—PIS = f25.,}5.02 D,
Eq. 5-2h R;; = +21, 806 D,

The units of these values are not consistent and will be revised later.
The values computed for the plastic weights and conjugate reactions
are all positive, which indicates that the last hinge to form was selected

correctly.
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-An independent check on the values of the plastic weights and con-
jugate reactions is obtained by equating the algebraic sum of all con-
jugate weights in each panel t{o zero, and varifying the equality.

The lateral defiections at the points 2,5, 9,13, are as follows:

Bg. = My = (13:,31 +R;) (20) = 70,,100 D,
A, = M = (Pp, *+Tg) (20) = 135,600 D,
Doy = Mo, = Pryo+Fjg) (20)= 322,222 D,
Ay = Mg = Pyt Ry, (20)= 415,883 Dy

r.I‘he units of these values are not consisten’c and will be revised
later.

Multiplying, the plastic weight and conjugate reaction values.
which were computed, by 144 in. 2/ ft. 2 to make the units consistent,

and substituting the value of DT » the final hinge rotations are:

P—i35 =, 0334 radians ?}9 = . 0602 radians

R—l . 0108 radians RIO = . 0533 radians

R_6 = 0235 radians ?}11 = 0395 radians

.P_P’? = . 0106 radians P—PB = . 0885 radians
Tqél = 0757 radians

Mulitiplying the déﬂéct’ion values which were computed by 1728

in. 3/ ft. 3 to make uni'Es consistent, and substituting the valiue of Dl’



the final deflections are:

A = 2,902 in.

2x

Ox

13x

i

it

13. 42 in.

17. 33 in.



CHAPTER VI
SUMMARY AND CONCLUSIONS

The deformation analysis of planar frames under ultimate load
by the String Polygon Method is presented in this thesis,

The points of major significance found in this study may be
summarized as follows:

1. Closed polygons which undergo small deformation are the
basic units of the analysis, and any planar frames may be considered
as either one or a system of closed polygouns.

2. The vertices of the polygons may be selected at convenent
points on the frame, and all elastic deformations, plastic deforma-
tions and real hinge rotations are considered to act at these selected
points.

3. A form of the three moment equation is used to transfer the
effect of elastic deformation which occurs between the vertices, to
the vertices of the polygon,

4. The angle changes are considered as vectors applied at the
vertex where it occurs, and in a direction perpendicular to the plane
of the frame.

5. Geometrical compatability is required by the conjugsate

equlibrium equations, which are writiten in terms of the redundants.



6. The last hinge to form in a single panel frarﬁe may always
be determined by rational analysis of the equlibrium equations. In
multiple panel frames the number of poss‘ib"ilitieﬁ for the last hinge
to form is reduced by rational analysis to correspond to the number
of panels in the system. A process is provided to further determine
which of the remaining hinges is actually the last to form.

7. Plastic and real hinge rotations are obtained directly from
the solution of the conjugate equlibrium equations. The deiflections
of previously selected points are determined by computing the conjugate
bending moment at that point. Intermediate deflections maybe determined
by computing the conjugate bending moment at the point and adding the
deflection of the simple beam segment due to loads at that same point.

The String Polygon Method makes available three conjugate
equlibrium equations for each panel of the frame. These equations
are written in terms of plastic and real hinge rotations.

Since the equations are free of deflection terms, the number of
redundants; and therefore, the number of simultaneous equations
needed for solution is greatly reduced from that required by tile Slope
Deflection Method.,

The conjugate equlibrium equations may be written, such that,
the last hinge to form in the system before final collapse, is determined

by rational analysis and simple algebraic manipulation.
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