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In June• 1960,.. ·the author attended a National Science Foundation 

Seminar for Civil ·Engineering Teachers at Oklahoma State Univer­

sity. The· String Polygon Method was introduced as a method of elas­

tf,c analysis in this seminar. 
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NOMENCLATURE 

= polygon vertex point designation 

= bending moment of simple beam due 
to loads1 at point u~ v ~ respectively 

= reciprocal of flexural rigidity 

c modulus of elasticity 

= ultimate load 

c angular flexibility function 

= angular carry over function 

= vertical dimension 

= moment of inertia 

= general index points 

= length of beam segments ij and jk 
respectively 

= bending moment at points i, j, k, re­
spectively 

= ariy integer 

= elastic weight applied at point j 

= plastic weight applied at point j 

viii 



R. 
J 

x"'y 

e j 

'T,. 
~J 

= conjugate reaction at point j 

= length between points b and g 
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- deflection components of point J,,, in 
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closed polygon at any point j 
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= summation 
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CHAPTER I 

INTRODUCTION 

The String Polygon probably was conceived by Archimedes. however ct 

it is usu!ll,lly attributed.;, in its ,basic for.m to Varignon~ who studied the 

loaded string,- and introduced the concept of the polygon of equilibrium. 

Culmann discarded the matel'ial string,, and used the polygon of equili­

brium as a tool of analysi~c;, thus laying the foundation for the develop­

mtmt of graphic statfoti'l as an effective means of analysis~ 

Mohr (15) :represented the elastic cur.ve of a straight beam as a 

dif'ftrr€lntial string polygon in conn~ction with hi$ concept of the conjugate 

beam loaded with differ€lntial angle change11.1.known ~s ela~tie wdghts. 

The Joint Loads Concept wtul introduced by Muller-Bre:slau . (16., 17). 

In his definition of joint loads" the influence of loads on 'the elements 

was neglected and only the inf'lueµ.ce of moment,. .. shear, and axial force 

was consideredw 

By adding the angular load function to the joint load.,, Tuma (1) 

generalized the String Polygon Method,. and related it to the Three 

Moment Equation. This generalization greatly increases the effective­

ness of the method,. .. since elem,ents of any leRgth or curvature may be 

used,. with exact results. 

Deformation analysis of fraro.es at ultimate load is important. It 

is the basis of approximate working load deformation analysis. ~hen 

materials having a limited rotation capacity are usedc1 the magnitude 

of plastic rotation is often critical andc1 therefore, must be determined. 

1-1 
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DifficuJl'.ty arises in th,e deformation. analysis by the commonly used 

Slope Deflection Meth.od since it is mvecessary fo s,olve many simultanecms 

equations and$ by trial and error"e:stahlish th.,e last hinge to formo 

1f)\Lee (27l generalized the Conjugate Heam Method~ and called it the 
(\<_-.,/:/' --·----~----·-", ___ ._ ...... /' 

Conjugate Fram,e Method. This method provides three independent 

equations which are iden.tfoal to the String Polygon equilibrium equa-

tions. Le,e further reco.grrized tb:at a foudh rational condition is ob-

tained fr,om the direction of plastic hinge rotations of the collapse me-

d.1!.anism. Thus:i' adequate equation:S are avaHable and:$' usually the last 

hinge to form is obtained hy inspectioiil of these equations .. 

'The Conjugate Frame Method is S{Jmewhat tedious ibecau:se of the 

.C::HfferenHal elastic w,eigM:sr> which operate in two coordinate directions 

and :nec,essitate the computation of m,om,en:t arms from the centroid of 

each segm,ent of the moment diagram to the axi:s of moments for each 

con_ju:gate :m.omen.t equation. 'The sign c,onv,en:Hon is also two~phased 

and involved. 

'Th,e String Polygon il.VLethod i,s an efficient tool of analysis for many 

strud:ural prohlems.. Recent investigators (2.;:, 3, 4, 5.;I> 6, 7.;I> 8, 9., lO"" 

n, 12, 13, 14) have extended the pres,e:nt l(}oncept of the String Polygon; 

to m.any ph:ase:s of ,elastic analysis. 

J ·The Striing Poly:gon :approach simplifies the e.:x:pr,es:sion for differen­

tial elastic weights by concentratil1l.g their effect in the form of joint 

elastic weights at convenient points"' thus eliminating the nec·essity 

for computing mom 1ent arm:s for conjugate mom:e;n.it:s. 

The computation of elastic weights is made hy substitution into 

the three mom.,ent equation,. and is further simplified by means of beam 

constants which are available,,. for members of constant or variable 

cross section. !(2.;I> 5, 6,,. 26.} 
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The method is applied to plastic structures on the verge of collapse,. 

and is perfectly general as to variation of cross section since this varia­

tion is taken in.to account by proper evaluation of the elastic weights. 

Jn Chapter Two of this thesis,. the general theory of the String 

Polygon method is restated to include the deformation effects of plastic 

hinges. Chapter Three is devoted to examples,, in which the elastic 

deformation is neglected,, thereby providing an alternate method to 

Instantaneous Centers Method which is commonly used to determine 

the mechanism angle relationships .. Chapter Four is devoted to ex­

amples of single bay frames., and Chapter Five is devoted to examples 

of complex frames. The sixth chapter summarizes and concludes the 

study. 



CHAPT:E:R ll 

TiiEORY OF THE STRING POLYGON 

2-1 GENERAL 

Important,,, well=lmown relationl:lhips exist between the basic :rules 

of clo~ed polrgon geometry and the brulfo rules of stRticl1'l~ 

Under cert&1.in condition~, the~e :rel1:1.tfont:ihip1 ~now th~ problem~ 

of geometry to be 1olved by the fm.miliar promH~l~HH~ uJiH~H1 in th~ ~olution 

of the p:roblfl!m~ of i'lt~tfo9 .. 

Planfl.r ~t:ructu:ral an~ly~ii pro'blemei; 11:mong oth~r~, f1111 within 

the1e conditions if th~ ~,fi'Htll defl~ctkm the~ry i~ ptu:mi~~~bl~. 

2 = 2 ASSUMPTION'S 

1) The Uitml 11tM'.1umpt1on~ of ~trucittrtitl ~n~lyi:l~ ripply to the d~= 

term1n~t1on of el~ijHC ~~ru1t0,r..tt!jj. 

2) The ohfinge in l(m.gth of struerturrd nrnmber~ i~ sm~11 ~nd may 

be neglected. 

3) The length of plastic h:l.nges is small in comparism1 to the length 

of members., a.nd may be considered to occur at a point. 

4) The plastfo and elastk angle ehanges are small,. and the Sine 

and Tangent of the angle are taken as the angle itself. 

5) 'I'he structural material is perfectly plastic'" and the moment-· 

curvature relationship is as shown in Fig. 2-2. 

Mp v·--
Moment 

1£-~~~~~~~--~~~-

Curvature 

Idealized mo:r.nent··curvatu.re rt~latior.tship 

Fig. 2·-2 

2 -1 
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2-3 GEOMETRIC RELATIONSHIPS 

Consider the frame or structural panel of F'ig. 2-3a" which de-

scribes the closed polygon (1; 2J 3,; 4" 5, l;" having deflection angles 

. Under the influence of a:pplied loads, the struc·~ure deforms to a 

new position;f on which the pojnts (1,, 2\ 3\, 4 1'" 5,, 1) lie. The deformed 

structure is thus represented by straight lines (string lines) connect-

ing · the prime points of the deformed polygon. 

Undeformed 
Polygon e. .. 

/@ , "' Fig. 2·-3a 

~/ Closed Polygons 

Deformed 
Polygon 

From plane geometry,.,. the sum of tb.edef1ect:ion angles of the 

deformed and undeformed polygon are given by equations 2-3a and 2-3b 

respectively. 

+ e 3 + 

subtracting Eq. 2-3b from Eq,. 2-3a yields: 

Eq. 2-3a 

Eq. 2- 3b 

... 0 Eq. 2- 3c 
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This expression is for a five sided polygon; however. the concepts 

a::re perfectly gener:a.1: It is fuerefo:re·evident fhat: 

Tn the general case of a.n n=sided dosed polygon which 

undergoes deformation, the algebraic sum of all angle 

cha.nges must be equal to zero for geometric compata-

bility, 

or mathematically: n 

0 

and is analogous to: 

in the general case of a system of parallel forces., the 

algebraic sum of all forces .must he equal to zero for 

static equilibriumJ, rt 

or mathematically: I p 
n 

c.: 0 
Eq. 2-3e 

ly 31 

l 

I l 

l / /~ "'3-:;; 
I / 1 

(;.)• 

l - I l 
I --f/J1 ' I/' 

Fig. 2-3b 

String Polygon 

X 
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Next,, consider the string polygon of Fig., 2-3b. The angle between 

line!:} (1.,.2) and (1.2 1) is ct>1 • Similarly the angle between lines (2.,. 3) and 

(2' ... 3') is ¢i+¢.2 :;- etc. For the general case.,, it is seen that: 

The angle between respective original and deformed lines 

of the polygon; is equal to the sum of the angle changes to 

the left or right of that line. 

which is analogous to: 

The internal shear force in a beam or frame is equal to the 

sum of the forces to the left or right of that point. 

The distance between the original and prime points of the string 

polygon represent the absolute displacement of the respective points 

of the structure. 

The displacement of point 3 due to ~., is (3- 311 ), and from small 

angle geometry: 

(3- 3") = ¢J_ s31 

the X component of (3-3 11 ) is: 

(3- 311 )x = (3- 311 ) sin w1 :c:: ~ s31 sin w1 

and the Y component of (3- 3") is 

(3-3 11 ) = (3-3 11 ) cos w1 = rh S cos w 
y ~ 31 1 

but sincei x 31 = S"Sl cos w1 and Y31 = s31 sin w1 

the direction components of (3-3") are: 

(3- 3" )x ,,. ¢J_ y:31 

(3-3")y =(2\ X.31 

Similarly the displacement due to~ is (3"·-3 1 ) and: 

(3"-3 1 ) = ¢.2 s32 

the X component of (3"- 31) is 

(3"- 3 ')x = ¢2 Y32 



the Y componer/; of (3tt-3') iE';J 

Superimposing the d~formation components due to¢. ,$< and <t12-
J-

As = (/)1 ~1 + ,t,._ ··v'l'2 -..x .... , ~l, y A3y = ¢J:.X°"31 + ~ x-32 

In t.h.e g~r1®!'1\± case.i' the defor1:1:s..Hrm compog,$nt~l* of any point n_" fu~ri~ 

A ~I¢.Y a ="·4 ¢.T nx 1 n n ny ~ n n 

It is then evident that: 

The displacement component of any po:int on the polygon"' is 

equal to the sum of the mo:rm nts of the changes in deflection 

angles of the polygon .. about a line passing thru that point 

of the original polygon.; parallel to the direction of the 

desired displacement component. of all such angle changes 

which lie on one side of the displacement line. 

which is analogous to: 

The bending moment at any point of a beam or framei is equal 

to the sum of the moments of forces about that point of the 

beam or frame) of all forces which lie on one side of the 

point. 

A further analogy may be made since the displacement at any point 

n is common to both sides of the polygon .. therefore_. for an n sided poly­

gon the displacement in any direction z is: 
m m 

Amz = f-Jt>m 2 m !':: ~ q)m zm 

or n 

therefore: 
L 0. z = o 
1 m m · 

The algebraic sum of moments of changes in deflection angles 

of a closed polygon;;- about any line in the plane of the polygon$< 

must be equal to zero for geometric compatability. 
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which is analogous to: 

The algebraic sum of moments of a system of parallel forces 

acting on a plane, about any line in that plane;;. must be equal 

to zero for static equilibrium. 

2-4 ELASTIC WEIGHTS 

One of the major advantages of the String Polygon Method is due to 

the fact that points on the polygon may be selected arbitrarily"' from the 

geometry of the frame;;. usually at corners~ abrupt changes in cross-

section, and real or plastic hinges. It is therefore necessary to trans-

fer the effect of elastic defon)!nation which occurs between these selected 

points to the points on the polygon. This transformation is accomplished 

by means of joint elastic weights. 

The basic stress analysis of a frame may be accomplished by the 

elementary theory of plasticity;;. which reduces most frames to statically 

determinate ones. Moment diagrams are thus available;;. from which 

elastic deformation is determined. 

An expression for the joint elastic weight at any point j"' may be 

derived by considering the beam segments adjacent to point j, Fig. 2-4a. 

The segments ij and jk are straight beam segments; but may have 

any variation in cross-section and are subjected to general loads and 

end rr1oments. 

From the Fig. 2-4a;;. it is seen that <J)j is the £h}lUg_g_jp.JlJ.,..~Ld£.,.:Q.g(\tign 

angle at point j,i, and is thus the elastic weight~ and 

(/) . 
J 

= rA + rA 
'f./ ji 'Pjk Eq. 2-4a 

It is also evident that(/)_ .. is the end slope of beam segment ij at end j 
Jl 

due to moments" and <J)jk is the end slope of beam segin:ent jk at end j 

due to moments. 



CD 

® 

Deformed 
Segments 
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Fig. 2-4a 

Beam segments adjacent to point j. 

Taking free bodies of the beam segmeil.ts,1 and dividing the moment 

diagrams into three part~ as shown in Fig. 2-4b,. the end slopes of each 

segment may be written using the area-mom13nt relationships.,, thus: 

Mi Jj uu' du 

i d2. EI 
J u 

Jk 2 
v 1 dv 

Mj d2 . EI 
j k V 

denoting the integrals by: 

'"ii - i r ~M~: du 
1 2'. 

F _ u .,du 
.. - 2 

Jl "11·· 1· .• d~u~:: 
Gji -d~.2,,,__E_I __ 

J u 

r. 2 ;J BM d 
+ u du J . u u u 

Mji d2. El + i dj EIU 
J u. 

+ M fvvt dv +. f BMv v' dv 
k. J .:d2 EI. . dk EI 
J . k V J V 

k 

't.k 
I BMv v' dv 

. -
~ EI J 

j f 2 V 

F.k = v 1 dv 
. J 

j . dk2 Elv 

Gjk = if vv' dv 

d 2 EI k V 



Loaded 
Segment 

Bending 
Moment 
Due to 
Loads 

Bending 
Moment 
Due to :Mi 

Bending 
Moment 
Due to Mj 

2 • ,' , , •u: . '®)Mj 

- ·------·-BM 
u -:--'--+--~-1----_:::::..._~J±)--:~~:~--: - -_ 

~~----/ 

M.u 
J 

.---.-
Loaded 
Segment 

Benqing 
BM Moment 

vnue to 
Loaqs 

' 
' 

Bending 
Moment 
Due to Mk 

Lj=9~-, 22£L_~ 
M. 

Bending 

~-~l~tv1 ~:~~tM. 
k J J 

L. T-·-·- I Lk 
J 

Fig. 2-4b 

Free Bodies ij and jk t..:> 

00 
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Eq. 2-4a b~cor.ries~ 

Where E Fj = Fji + Fjk and E 'Tj = 'Tji + 'Tjk 
Eq. 2-4b 

Thus the equation of the joint elastic weight.,. Eq. 2-4b, is seen to 

be identical to the familiar Three Moment Equation. The quantities 'T,, 

F, and G have the followi~1g physical interpretation: 

Angular Load Function 'T .• ('T.k) is - . Jl - J -

the end slope of the simple beams ij (jk) at j due to loads 

Angular Flexibility F .. (F .k) is 
Jl-J -

The end slope at j of the simple beam ij (jk) due to unit moment 

applied at j. 

Angular Carry"':Over Value Gij _{Qkj) is 

the end slope of the simple beam ij (jk) at j due·· to :unit 

moment applied at L (k). 

If the cross-section of each member is different but constant between 

two joints,. the follO\iV' ing simplifications are possible: 

L. 
Lk J 

F .. = 3EI. F.l Jl J C = 
J 3 Elk 

L. Lk 
J 

G .. = Gkj = 
lJ 6 EI. 6 EI. 

J J 

The load functions 'T .• and 'T .k for the most common load conditions 
Jl J 

reduce to the expressions shown in Table 2-1. 
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2-5 PLASTIC WEIGHTS 

Plastic: .weights are defined., as:the changes in the deflection angle 

of the polygon due to plast:Lc rotation. Since the pojnts of plastic rota-

tion are known from the collapse mechanism~ and are selected to be 

points on the polygon,, no transforrm. tion is necessary. 

These plastic rotations are taken as redundants, and their varia-

tion is such that geometric compatability is provided. 

2-6 CONJUGATE REACTIONS 

Conjugate reactions are defined as the changes in deflection angles 

of the polygon due to real hinge rotations. Except for the distinguish-

ing symbol.,. they are treated :identically to plastic weights. 

:~""1 VECTOR NOTATION 

Stnee the changes :in the deflection angles -(/J are analogous to forces# 

as has been shown in article 2-3.,. it is convenient to represent the 

angle changes by vectors. This is easily accomplished since all angle 

changes lie in the plane of the frame, and are,. therefore,., directly 

additive. 
. 

Vectors which represent rotational quanities have a direction per-

pendicular to the plan-e of the rotation; thus elastic and plastic weights 

will be represented by vectors perpendicular to the plane of the frame 

or panel. 

2-8 SIGN CONVENTION 

Bending moments are plotted on the tension side of the member; 

thus.,. a moment diagram lying on the inside of the polygon is positive,.,. 

and those moments outside are negative for that particular panel. 

Elastic weights will carry the sign of the bending moment .. 
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Plastic weights for each particular panel are positive if the interior 

angle of the polygon at that point is increased and negative if the in­

terior angle is decreased. 

Weights which are applied to the conjugate frame are positive up­

ward and negative downward when the frame is drawn in the horizontal 

plane. 

2- 9 GENERAL APPLICATION 

·- - Defermation analysiJ:, of single or multiple panel frames, at im­

pending collapse.,. may be effectively carried out by the String Polygon 

Method. 

The usual methods of plastic design are used to determine member 

sizes and provide the basic geometry of the collapse mechanism. 

Plastic hinges, real hinges, and the corners of the frame or panel 

are selected as points on the polygon. If it is known in advance that 

the deformation of additional points are required, those points may 

also be selected as points on the polygon. 

By means of Eq. 2-4b, and the moment diagram, the elastic weights 

for all selected points on the polygon are computed. 

Plastic weights and conjugate reactions are redundant; however, 

their sign is known from the collapse mechanism. It is convenient 

to apply these redundants to the conjugate frame in their proper sense, 

thereby requiring the solution of the equilibrium equations to yield a 

positive sign for the plastic and real hinge rotations. Only the plastic 

weight representing the last hinge to form, when equated to zero, will 

yield a positive sign for all of the remaining values. 

The conjugate frame is then drawn in the horizontal plane and all 

redundants applied to the conjugate frame in their proper sense,in a 

verticaj. plane. 
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Three independent equilibrium equations may then be written for 

each panel. It is usually most convenient to take moments about three 

sides of the conjugate fra..'Tie. J. brief inspection will usually determine 

which sides to select for the most simplified equations.) Most of the 

-'6qllilibrium equations will contain only two unknowns each.. In many 

cases .. equating the last hinge to form to zero.,. will reduce the simul-

taneous equation set to explicit form. The values of plastic ar..d real 

hinge rotations are dJ tained directly by solving the equiiibrium equa-

tions • ~·- \1,i1\1«c.e)>, 1~·yc,~,'/J._,J.r:/~'':.tiu-v.l 
The conjugate !?~~~~KE.1.C)~~t is the distance between the origb.al 

polygon and the deformed stri.qg line polygon. If the deflection of the 

originally selected points are required.., it is only necessary to deter"'." 
,..-.,.-------------=-----··-- ~-------~.,..----~i 

mine the conjugate moment at that point about a line parallel ~e 1'-"'-~~ 
-.... ·,~,.......-. ___ __..~·· .... ;. .. --~ ··--... 1 

direction of the desired deflection. cir the deflection of some inter, ,J{fi~ 
·'"" ----... __ .. ---- ---.,--.····-. --· - -- --- ~· -- _..,._ -- ·-~. ----· 

mediate point is required .. it is necessary to add thf deflection of the.' 
·-. "··· _____ __.. 

··-,.-. ........... . 

simple bea'.rn segment due to leads at that p<:>int.,, _)o the conjugate bend­

ing mone nt at that same point. The direction of the deflection is deter-

mined rationally. 

'--..., 
./ 
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, 

Table 2-1 Load Functions 

-

p 
L L 
2 2 

ill w Ji • r l I I I 11 l ~ 
i .Ll L ~j 

T L 

PL2 'T . . = wL 3 

'T .. = lJ 24 EI 
lJ 16 EI 

PL2 3 
'T .. = wL 

'T \ = 
Jl 16 EI Jl 24 EI 

p 
Lm L(l - m) 

. ' ~--. ., --TTr-:r--r--,._ 
i l. s: L ~ j i L~ L ~j 

L I L 
-

2 pL3 
'T . . = PL m(l - m H2 - m) 'T .. = 
lJ 6 EI lJ 45 EI 

2 2 · 72L3 PL m(l - m...::...L 'T .. = 7 .. = 360 EI .11 6 EI Jl 

p p 

Lm _ Lm 1-
Lm L(l - m} 

' I ,~ 1 I 

ES i 
,. .. 

~ .i it L ~ L. :r L I L 
~ . 

2 
~ ML(3m 2 

- Gm + 2) 
'T . . = PL m(l - m) 'T .. = -

l,] 2 EI lJ 6 EI 

2 2 
T .. = PL m(l - m) T .. = ML(l - 3m ) 

.11 2 EI Jl 6 EI 
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MECHANISM ANGLE REL.4.. TIONSHIPS 

3-1 GENERAL 

The elementary theory of plastic design by the mechanism method 

requires the relative magnitude of the plastic and real hinge rotations. 

These relationships are quickly and effectively determined by the String 

Polygon Method. 
- -.-.-~ 

In common. practice> the effects of elastic deformation are assumed 

to have negligable influence on the relative rotations. For the String 

Polygon Method.<> this assu.mptfon is equivalent to assuming that the 

elastic weights are equal to zero. The redundant plastic weights and 

conjugate reactions are placed on the conjugate frame with. the same 

direction. The direction of rotation is thus in.dicated by the sign of 

the values. Three independent equilibrium equations are obtained for 

each panel by setting the sum of moments of conjugate weights about 

three sides of that panel equal to zero. Three of the four redunda.nts 

may then be found in terms of the fourth by solving the equations simul-· 

taneously. 

Examples 3-2 and 8-3 illustrate thia procedure for single and mul-

tiple panel frames. 

3-2 EXAMPLE OF SINGLE PANEL GABLE FRAME 

The mechanism angle relationships are found for the frame with 

the assumed collapse mechanism shown in Fig. 3-2a. * 

* This example is worked by the Instantaneous Center Method on 
pf,1.ges 6~ 7#< of Ref. (29). 

3 -~ 1 
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Fig. 3-2a 

Gable Frame and JVIechanism 

Fig. 3-2b 

Conjugate F!·a1ne 

~I@ ae = 16~ + 26<,b3 = 0 

~@ ab "' 40('A3 + 60<:De-· = O 

)M@ ed = 20ep3 + 60(/). + 60~ ::,, 0 
L~ a D 

Solution of these equations in terms cf. _¢a yield: 

3- 2 

rt,. = - 6 r1\ 
'Pe • 'Pa 
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3-3 EXAMPLE OF THREE PANEL GABLE FRAME 

The relations between plastic rotations are found for the frame and 

assumed mechanism shown in Fig. 3-3a in terms of the rotation at point a. 

C') 
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Fig. 3-3b 

Conjugate Panel 1 

The equilibrium equations are: 

M~ /llLl</.)c + Ll;t>d + Ll</.)e = O 

M®a.e 

M®ect 

h</.)d + (h + 2a/l1h) (/Jc 

Ll</.)a + (l - /:\) Ll(/Jc 

Solving these equations in terms of (/Ja: 

</.)c " - LJ,r,-l (/Ja 
1 

</) = - (1 + 2af3 ) ¢ = (1 + 2a/ll) ¢ 
d 1 C l-/3l a 

</.) ,. _ /l (/) _ ¢ " _ (1 + 2af31l ¢ 
e I c d a 

1 - ll1 

= 0 

0 

(/Jf 

(/) = 1 + 2a/l - 131 (/), 
e l-/3i a 

Fig. 3-3c 

Conjugate Panel 2 

The equilibrium equations are: 

M®ecf 

M@eh 

M~ 

Solving: 

/l2L2</Jf + L2</)g + L2c/Jii 

(h + 2£l'/32h) (/Jf + h(/Jg 

(1 - /l2) L2(/Jf + L2(/Je 

1 + 2a/ll - ll1 
(/Jf" ~ (l - /31)(1- 13;1 </.)a 

(/) = (1 + 2a/l1 - /31) (1 + 2a/l2 ) </J. 
g (-l,./31}(1-/32) a 

c/Jii = _ (1 + 2a/l1 - /31) (1 + 2a/l2 - /32 ) </J. 

(1 - Sil ti - /32 l a 

<l>g 

0 

0 

0 

<t>i 

(1 + 2a/l1 - 131) (1 + 2af32 -

(1- l\l (1- .B2l 
Fig. 3-3d 

Conjugate Panel 3 

The equilibrium equations are: 

M@\g = /l3L3c/Ji_ + L3</.)j + L3<t\c • 0 

"'3 

M®nfc " (h + 2af33h) ¢i_ + h</.)j .. 0. 

M~ = - (1 - /l3) L3c/Ji_ + L3<t\i • 0 

Solving: 

c/Ji. = _ (1 + 2a/l1 - 131) (1 + 2a,B2 - /32 ) <1>a, 

(l - J3i) (l - /32) (l - /33) 

(/)_ ,. (1 + 2a/l1 - !3i) (I+ 2a/l2 - /32 ) (1 + 2a,B 3) <1>a, 

J (l - J3i) (l- 132> (1- /33) 

</>ic = _(1 + 2a,B1 - 131) (1 + 2a/l2 - /32 ) (1 + 2a/l3 - 133) 

(1- .Bi> (l - .82) (l - /33) </.)a 

c.:, 
I 

i,p.. 



CHAPTER IV 

DEFORMATION ANALYSIS OF SINGLE PANEL FRAMES 

4-1 GENERAL 

The deformation analysis of sing!~ panel frames may be accom­

plished by means of the String Polygon Method. ~e deformation 

analysis begins with known loads~ beam sections~ the moment dia-

gram, and the -collapse rnechanismo The angular functions are com-

puted and the elastic weights evalµated. The conjugate frame is then 

loaded and the equilibrium equations are written by setting the summa-

tion of moments of the conjugate weights about three sides of the frame 

equal to zero. The last hinge to form is found by inspection of the equi-

librium equations.. By setting the plastic weight corresponding to the 

last hinge to form equal to zero.., the three simultaneous equations 

are re7ced to explicit form and solution is made by direct substitu­

tion. JThe plastic weights are equal to the plastic rotation of the hinges 

measured in radians .. 

The deflection of any point originally selected as a point on the 

polygon is determined by evaluating the bending moment of the con·-

jugate frame at that poinL 

4-2 EXAMPLE OF SJ.NGLE PANEL PORTAL FRAME 

The frame of Fig. 4-2a is analyzed by the String Polygon Method 

for plastic rotations at points e and gJ> and the deflection of points d,. 

. ** g,. e.,, 1. 

* *This example is worked by the Slope Deflection Method on 
pages 100,. 103.,. of Ref. (28). The frame was tested to failure and 
reported by Schillingi, Schutz;c and Beedle-* Ref. (31). 

4-1 
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b 

a h 

f"'" · 1 

·r---------3_6_0_'_' _________ __...,~ 

Fig. 4-2a 

One Panel Portal Frame 

An analysis by the elern.enta.ry theory of plasticity indicates a 

collapse load of F ::: 29. 9 kips for a uniform beam section whose 

yield moment is M ~ 1925 inch kips~ and flexural rigidity is 1'.i! = 
p 

5 
80. 39 X 10 • 

The collapse mechanism is formed by the real hinges at a and h,. 

and plastic hir:ges at e and g. 

The moment diagram is a.s shown in Fig. 4-2b. 

1526 ft. /f 

19 25 fl. k. 

?. 

192 5 ft·.::~~:~~:~:.:~:~-=-~ ~:~17 92 ft. k. 

1858 ft. k. 

Fig. 4=2b 

Moment Diagram 
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'rl-2e points ac/) d.!> e.1> ii) g 11 h;i> are selected as points on the polygon. 

The angular functions F ;9- G.., and 1· are tal:iulated as coefficients of 

1 
EI in Table 4--1. 

TABLE 4-1 

-
Beam. 

Segn1.er:.t 

ad 
-

de 

ei 

ig 

gh 

Fij(ji) I 

40 "' 

40 

20 I 
60 

-

40 

("'< 'L. / \.:,ij (ji) 'T .. 
lJ ! Jl 

L \\ 
20 "1··5.!> 315 +Ei" 315 

20 0 0 

10 0 /-' 0 
L :::cl,l:,O 

f 
+47$ 100 I 30 

I 
+59,600 

~~ ·1 
20 0 0 I 

I 

The el8.stic wei.ghts fo:r each point are detei~mined by means of Eq. 2-4b 

in Table 4- 2 as coefficients of ~"!- • 

TABLE ,i-2 . . ·\,,, 
····-.... ,,\ 

, 
/' ,· 

I . / \ ·:, 
/ 

'Point Tu'.L G .. M.!_F'. MkC\,:j !._'Tj I>Ej 1 lJ J J 

a 0 0 -1526(20) +5:1)- 315 -25,1) 205 

d 0 -rn~rn(BO) +1825(20) +5j 315 -'78.9 265 
I 

.e -1526(20) +1925(60) +1858(10) 0 +103\1), 560 

.; +1925(10) +1858(80) -1925(30) +59j600 +16911\ 740 ,)_ 

------- ·-

1- 89,060 g +1858(30) -1925(100) 0 +47~700 

-1825(20),-
I 

h 0 0 0 I- 38,1). 500 I 

The conjugate structure is fhen as shown Fig. 4-2c. 



Fig. 4-2c 

Conjugate Frame 

PEg 

The equilibrium equations may then be written by taking moments 

of all conjugate forces about three si.des of the conjugate frame~ thus: 

Substituting values from Table 4-2: 

Similarly: 

Substituting values: 

and similarly: 

Substituting values: 

= 105> 975 
EI 

2 P _ 3 R = _ 15lt 320 
Pe a EI . 

= 63.,_ 705 
- EI 

Eq. 4-2a 

= 0 

Eq. 4-2b 

Eq. 4-2c 
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Inspection of Eq. 4-2a_. b,, c~ shows that only PPe may he equated 

to zero, leaving all other redundants equal 'to€sitF-~ There­

fore., Ppe must be the last hinge-to form. 

Equating PPe to zero reducE:S Eq. 4-2a, b.,. c,. to explicit form,. and 

their solution yields: 

pp= -g 
105_. 975 

EI = • 0132 Radians 

Ra = 50.440 = • 0063 Radians 
El 

R; = 114,145 = • 0142 Radians 
h El 

The deflections may be determined since they are equal to the con­

jtlgate bending moments. Those deflections which are required are 

computed as follows: 

Adx = Agx = M = l20(Ra - PEa) g __ _ 

..: , 9, 07o. odb 
- EI 

A = M = l20(R ey e a 

~-. 18# 460~ 000 
El 

= 1 .. 13 inches 

- PEa - ~d) 

= 2. 29 inches 

Aiy = -'IV\ = 180~ - ~a - PEd) - 60(PEe) 

= 2.67 inches 

4-3 EXAMPLE OF SINGLE PANEL GABLE FRAME 

The horizontal displacements of points b and e.,. and the plastic ro-

tation of hinges are determined at the instant of collapse for the frame 

shown in Fig. -4-3a. 

An analysis by the elementary theory of plasticity indicates that for 

the ultimate load shown .• a uniform section whose yield moment M = 
0 

182 ft. kips, is required. 
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J_® / 
8@ 51 -. 0 = 401 

Fig. 4-3a 

Single Panel Gable Frame 

4- 6 

I 
I 

I 
I 

6 .. 6'7' 

The collapse mechanism is formed by real hinges at a and f~ and 

plastic hinges at d and e .. 

The moment diagr;:i.m is as shown in Fig. 4- 3b. 

65 ft. k. 

Fig .. 4-3b 

Moment Diagram 
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The points a, b; c,- fl-• e,. f,._ are selected as points on the polygon. 
i 

The angular functions are tabulated as coefficients of 1 in 
EI 

· Table 4-3. 

The elastic weights for each point are determined by mea.IiS of 

Eq. 2-4b,,, and are tabulated as coefficients of .1 in Table 4-4 .. 
EI 

TABLE 4-3 

Beam 
Segment Fij(ji) Gij(ji) 'T •• 

lJ 'Tji 

ab 5 2.5 0 0 

be 4. 71 ~.36 + 88.4 + 88.4 

cd 3. 51 1 •. 76 + 65. 9 + 65. 9 

de 7.03 =i. 51 +659 .. 0 +659.0 

ef 5 i. 5 0 0 . 

' 

TABLE 4-4 

Point G .. M. ~F.M. Gk.M. ~.,.j PEj lJ l J J J J 

a 0 0 -2.5x~l.5 0 -229 

b 0 -9~ 7l X 91 0 5 +2.36 X 65 + 88.4 -646.6 

C -2. 36 X 91. 5 + 8. 22" X 65 +l. 76 X 182 +154. 3 +793.0 

d +l. 76 X 65 +10. 54·:x: 182 -3. 51 X 182 +724.9 +2118. 8 

e +3. 51 X 182 -12. 03 x 182 0 +659 .. 0 -891. 6 

f -2.5 x.182 0 0 0 -4-55. 
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The conjugate structure is then as shown in Fig. 4-3c. 

PPd 

PEc 

PEa PEf 
Fig. 4-3c 

Conjugate Frame 

Setting the sum of the moments about three sides equal to zero: 

2¥C%J. ::: 0 

15 ~b + 25 ~c + 21. 6'7 ~d + Pi>a> + 15 ~e - ppe> = 0 

Substituting values of elastic weights: 

~M®=.:- = 0 
~ ah 

- 42,. 666. 4 
EI Eq. 4-3a 

10 PEc + 20~d + Ppa) + 40~e - Ppe + PEf + Rf) = 0 

Substituting value.s of elastic weights: 

e + 177.,9 
E!': 

Eq. 4',,,3h 



Substituting values of plastic weights: 

- 2R 
a 

-1,557.10 
EI 

4- 9 

- R) = o a 

Inspection of the Eq/s. 4-3a:, b., cJ< shows that only PPd may. 

be equated to zero.1> leaving all other redundants positive; thereforeJ 

PPd must he the last plastic hinge to form. 

Setting !i?d equal to zero, and solving Eq!s. 4-3a, b, c, yields: 

PPe = 2~ 844. 4 (144 in. 3, ft. 2 ) ::: 409# 590 
EI EI 

::: 422; 402 
EI 

Since the conjugate bending moire nt equals the deflection of the 

real structure: 

A M = 15P + 15 R --bx ::: -·ox Ea a 

= M ex 

n 26.ll6x106 
EI 

inches .. 

= 15 PEe + 15 Rf 

6 
= 64. 239. 10 

EI 

37,,,175 
EI 

Where E is in kips/ ino 2 d I . . . h 4 an 1s 1n me es . 

(1728 in. 3/ ft. 3) 



CH.APTERV 

DEFORMATION ANALYSIS OF MULTIPLE :PANEL FRAMES 

5-1 GENERAL 

Multiple panel frames may consist of an.y number of closed 

polygons. Each polygon mm;;t obey the principles of ciosed polygon 

geometry and may be treated as an individual unit, however each 

panel will involve the conjugate reactions and plastic weights as re-

dundants. These redundants are common to adjacent polygons:,, and 

provide the necessary compatibility relationships. 

/ The deformation analysis of multiple panel frames:,, as in previ-

ous examples:,, begins with known loads:,, beam sections:,, the bending 

moment diagram~ and the collapse mechanism. The angular func-

tions are computed and the elastic weights are evaluated. 

It is noted that elastic weights· are evaluated by Eq. 2-4b which 

was derived for the case of only two members intersecting at the 

point of application of the elastic weight. m multiple panel frames:,, 

three or more members often intersect at a point,, and the end mo-

ril~nts of these members may have different values at the point of 

intersection. The fol lowing modified form of Eq. 2-4b is used in 

this case: 

PEJ. = M .. q. .. + M .. F .. + M.kF.k + MkJ.GkJ . ..,-~ 'T:s lJ lJ Jl Jl J. J 

It should also be noted that elastic and plastic weights which are 

common to adjacent panels:,, according to the sign convention ~tated 

5- 1 
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in Chapter II; have different signs~ depending upon which panel is 

being considered. This convention provides for automatic compati-

bility between panels. 

Selection of the last hinge to form is more involved in multiple 

panel frames than in single panel frames; however; the String Poly-

gon Method offers reasonable advantage over the Slope Deflection 

Method. The selection of the last hinge to form before collapse is 

best explained in the following example. 

5-2 EXAMPLE OF A MULTJPLE PANEL GABLE FRAME 

The plastic and real hinge rotations and lateral deflections at 

the top of the columns are determined for the frame shown in 

Fig. 5-2a. 

The assumed ultimate loads are shown on the frame. The beam 

and column segments are constant section between joints. The three 

sizes of beams are indicated by moments of inertia Ip Iv ! 3. The 

assumed values of M ; E~ and I are as follows: p . . 

M 304 ft. kips Ir 13,,824 in. 4 
::: :: 

P·i ... 

M 530 ft. kips 12 3b 657 in. 
4 

:!: :; 

P2 

M 760 ft. kips I3 49,628: in. 4 - "' 
P3 

E - 3 X 10 3 kips/ in. 2 

The corresponding flexural rigidity constants are denoted by: 

DI 
1 2 .• 411 10- 8 

- E\ = X 

D 
1 1. 053 10- 8 

- EI2 
::: X 

2 

1 10-8 
D3 --- ::: • 672 X EI3 
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The collapse me chanisrn is shown in Fig. 5-2a and the correspond-

ing bending moment diagram is shown in Fig. 5-2b. 

The angular functions F, G, and T are tabulated in Table 5-l. For 

convenience all of the angular functions are written in terms of D1. 

TABLE 5-1 Angular Functions 
,, 

F ij(ji) G. ·c) - ,I 'T •. ( .. ) 

Beam $egment lJJl --_ lJJl~ 

ij Dl Dl -- Dl 

1, 2 2. 91 1.45 
'I 

0 

T 
! 

2, 3 3.04 1.52 0 
I 

' 
I 

3.,. 4 ' 
3. 04 :, '1. 52 0 

,_ 
' 

' ,f-··:2°665 4.,, 5 6. 08 
:I 

3 .. 04 

5, 6 6.66 3.33 0 

' 
: 

5,. 7 2.50 1~ 25 0 

7, 8 2o. 50 l. 25 0 

,8~ 9 5. 00 2.50 + 3530 

9 10 
I 2. f)l 1. 45 0 

'~ 

9, 11 5.~7 2.64 0 

11 ... 12 5.27 
:1 

2.64 0 
I 

' 

12_..13 10. 54 5.27 + 2625 
I 

]3_..14 6. 66 3.33 I 0 

The elastic weights, for each of the points on the polygon.,. are tabu-

lated for each panel in Tables 5-2.,. 3, 4. The value D1 is common to all 

terms and is omitted from the tables. 
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TABLE 5-2 Elastic Weights for Panell 

Point M.G .. 
1 lJ 

M.~F. 
J J MkGkj L.,.j Pi:j 

1 0 0 - 392 0 - 392 

2 0 - 1606 + 805 0 - 799 

3 - 410 + 3222 + 337 0 + 3149 

4 · + 806 + 2024 - 1611 + 2665 + 3884 

5 + 675 - 3222 0 + 2665 + 118 

6 0 0 0 0 0 

TABLE 5-3 Elastic Weights for Panel 2 

Point M.G .. M.z.F. MG .. L 'Tj I PEj 1 lJ 1 J k lJ 

6 0 0 0 0 0 

5 0 - 1325. + 950 0 - 375 

7 - 663 + 3800 + 327 0 + 3464 

8 + 950 + 1965 - 1900 + 3530 + 4545 

- 3800 
9 + 655 - 1536 

0 + 3530 - 1151 

10 - 765 0 0 0 - 765 

TABLE 5-4 Elastic Weights for Panel 3 

Point M.G 
1 ij MlFj MkGkj :E. 'T. 

J PEj 

10 0 0 + 766 0 + 766 

+ 1536 
9 0 - 1223 + 802 0 + 1115 

11 - 612 + 3204 + 554 0 + 3146 

12 + 803 + 3320 - 1602 + 2625 + 5146 

13 + 1106 - 5229 0 + 2625 - 1498 

14 - 1012 0 0 0 - 1012 



PE3 

Fig. 5-2c 

Conjugate Panel One 

The equilibrium equations for Panel One are: 

PE4 

R.6 

Pp 5 . - 1. 3 Pp3 ~ + 9,627 n1 

5- 7 

® 
PE5 

Eq. 5-2a 

Eq. 5-2b 

Eq. 5-2c 
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® 

Fig. 5-2d 

Conjugate Panel T'-..vo 

The equilibrium equations fo'.t"~Panel Two are: 

2 Ppg - 3 Pp7 == + 25~520 n1 Eq. 5-2d 

Eq. 5-2e 

4 Ppg - 4 R10 - PP'1 == + 4,?890 D1 Eq. 5-2f 



Pi>n @ 
PP13 

PE12 

PE13 

@ 

f PE14 
Fig. 5-2e 

Conjugate Panel Three 

The equilibrium equations for Panel Three are: 

2 Pp13 - 2. 5 PPll = + 22J, 537 D{ Eq. 5-2g 

Eq. 5-2h 

4 R10 - 3 f pn = + 27,222 n1 Eq. 5-2i 
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The equations 5-2a through 5-2i are nine equilibrium equations 

which describe the relationship between all plastic and real hinges. 

Simultaneous solution cannot be performed , however, until a tenth 
.I 

relationship is obtained since ten unknown values are present. 

\ The tenth relationship is obtained by determining the last plastic 

\hinge to form.,. and equating the respective plastic weight to zero. 

As in previous examples,,. ~rmgl&§!J_y~l~.,!:l ~t,,r.ot~tio~}ast_3:: 

weight) in each panel is determined by inspection of the equilibrium 

equations for each respective panel. 

Thus, in Panel 1, Pp 3 is least. In Panel 2.,. Pp7 is least.,. and 

in Panel 3., PPll is least. 

By eliminating PPS from Eq. 5 ... 2,a and 5-2c: 

and.; from Eq. 5-2e: 

and by equating these two expressions: 

Eq. 5-2j 

If Pp 7 = 0,,, Ppg is negative; ther~fore"" the value of Pi, 3 is less 

than that of PP7. 

Eliminating ?pg and Pi,7 from Eq. 5 .. 2f., d~ j.., yields: 

and from Eq. 5-2i: 
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and by equating these two expressions: 

1. 7 5 Pp 3 ~" - 8,, 541 D1 + 3 PH Eq. 5-2k 

If PPU °" 01 Pp 3 is negative; therefore$ the value of Pp 3 is less 

than that of PPil. 

It has been shown that PP 3 has a value less than any of the other 

five plastic weights and 1 therefore, represents the last hinge to form 

before collapse. 

Equating Pp 3 to zero, the numbered equations may be solved by 

s'tlbstituti:on. Thus from: 

Eq. 5-2a Pp5 -~ + 9,, 627 DI 

Eq: 5-2b Rl - + 3,113 Dl 

Eq. 5-2c R6 ·- + 61 780 D1 

Eq. 5-2j Pp7 - + 3,047 DI 

Eq. 5-2d Ppg ::: +17,, 330 D1 

Eq. 5-2f RTO - +15, 346 D 1 

Eq. 5-2i p ::: +11, 387 DI PH 

Eq. 5-2g PP13 '", +2 5.,, 5.02 DI 
' 

Eq. 5-2h R14 ::: +21, 806 DI 

The units of these values are not consistent and will be revised later. 

The values computed for the plastic weights and conjugate reactions 

are all positive"" which indicates that the last hinge to form was selected 

correctly. 
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.An indep-endent check on the values of the plastic weights and con­

jugate reactions is obtained by equating the algebraic sum of all con­

jugate weights in each panel to zero~ and varifying the equality. 

The lateral deflections at the points 2, 5-,. 9.,;13# are as follows: 

A~x = ~x 
::: 

~l + ·R1) (20) = 701-100 D1 

A5x = M ::: 
~6 + R 6) (20) = 135# 600 D1 5x 

Agx = Mgx = (P ElO + R10) (20) = 322# 222 D1 

Ai3x = 1V\3x::: (P El4 + R14) (20) = 415,. 883 D1 

The units of these values are not consistent and will be revised 

later. 

Multiplying, the plastic weight and conjugate reaction values. 

which were compute4by 144 in. 2/ ft. 2 to make the units consistent, 

and substituting the value of D1 , the final hinge rotations are: 

Pp5 ::: • 0334 radians PP9 
::: • 06 02 radians 

Rl ::: . 0108 radians RlO = . 0533 radians 

R6 C . 02 35 radians PPll = . 0395 radians 

Pp7 = . 0106 radians PP13 
::: . 0885 radians 

R14 = • 075'7 radians 

Multiplying the d~flection values which were computed by 1728 

in. 3/ft. 3 to make units consistent,. and substituting the value of D1, 
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the final deflections are: 

A2x = 2 .. 92 in. A9x = 13. 42 in. 

A 5x = 5. 65 in .. Al3x 
::: 17. 33 in. 

,, 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The deformation analysis of planar feames under ultimate load 

by the String Polygon Method is presented in this thesis. 

The points of major significance found in this study may be 

summarized as follows: 

1. Closed polygons which undergo small deformation are the 

basic units of the analysis, and any planar frames may be considered 

as either one or a system of closed polygons. 

2. The vertices of the polygons may be selected at convenent 

points on the frame, and all elastic deformations, plastic deforma­

tions and real hinge rotations are considered to act at these selected 

points. 

3. A form of the three moment equation is used to transfer the 

effect of elastic deformation which occ:urs between the vertices, to 

the vertices of the polygon, 

4. The angle changes are considered as vectors applied at the 

vertex where it occurs, and in a direction perpendicular to the plane 

of the frame. 

5. Geometrical compatabilit:y is required by the conjugate 

equlibrium equations~ which are written in terms of the redundants. 
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6. The last hinge to form in a single panel frame may always 

be determined by rational analysis of the equHbrium equations. ln 

multiple panel frames the number of possibilities for the last hinge 

to form is reduced by rational analysis to correspond to the number 

of panels in the system. A process is provided to .further determine 

which of the remaining hinges is actually the last to form. 

7. Plastic and real hinge rotations are obtained directly from 

the solution of the conjugate equlibrium equations. The deflections 

of previously selected points are determined by computing the conjugate 

bending moment at that point. Intermediate deflections maybe determined 

by computing the conjugate bending moment at the point and adding the 

deflection of the simple beam segment due to loads at that same point. 

The String Polygon Method makes available three conjugate 

equlibrium equations for each pane 1 of the frame. These equations 

are written in terms of plastic and real hinge rotations. 

Since the equations are free of deflection te.rms~ the nu-mber of 

redundants; and therefore~ the number of simultaneous equations 

needed for solution is greatly reduced from that requi.red by the Slope 

Deflection Method. 

The conjugate equlibrium equations may be w:dtten, such th.at, 

the last hinge to form in the system before final collapse •. is determined 

by rationa 1 analysis and simple algebraic manipulation. 
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