By
FRED N. GAUGER
Bachelor of Science Oklahoma State University
Stillwater, Oklahoma 1955

Submitted to the faculty of the Graduate School of the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE
August, 1961

PLASTIC DEFORMATION ANALYSIS OF FRAMES
 AT ULTIMATE LOAD BY THE STRING POLYGON METHOD

PREFACE

In June, 1960, the author attended a National Science Foundation Seminar for Civil Engineering Teachers at Oklahoma State University. The String Polygon Method was introduced as a method of elastic analysis in this seminar.

During the fall semester, the author attended a seminar on plasticity, in which problems of deformation of plastic-elastic beams and frames were discussed. It was at this time that it occurred to the author that the String Polygon Method could be applied, to the deformation analysis of elastic-plastic beams and frames, in a manner which would yield very direct solution.

After consultation with his advisors, the author undertook the writing of this thesis.

The author wishes to express his appreciation to the following individuals who generously gave of their time and talent to aid him during the last two years of graduate study:

To Professor Roger L. Flanders for introducing the theory of plasticity and serving as major advisor.

To Professor Jan J. Tuma, for many hours of instruction and consultation, and for invaluable aid in the literature survey for this thesis.

To Professor R. E. Means for his advice and encouragement.
To Professor James D. Gillespie, and Messrs. J. T. Oden and R. K. Munshi for their friendship and consultation during the period of this study.

To his wife who conscientiously typed the manuscript and assumed many family responsibilities to allow time for study and for her encouragement throughout this period of study.

And to the entire facully and staff of the Department of Civil Engineering for a very enjoyable period of association.
F.N. G.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1-1
II. THEORY OF THE STRING POLYGON $2-1$
2-1 General $2=1$
2-2 Assumptions $2-1$
$2=3$ Geometric Relationships. 2-2
2-4 Elastic Weighta. 2-6
2-5 Plastic Weights 2-10
2-6 Conjugate Reactions $2-10$
2-7 Vector Notation 2-10
2-8 Sign Convention $2=10$
2-9 General Applicatlons. $2-11$
III. MECHANLSM ANGLE RELATIONSHIPS 3-1
$3=1$ General $3-1$
3-2 Example of Single Panel Gable Frame $3=1$
IV. DEFORMATION ANALYSIS OF SINGLE PANEL FRAMES. $4-1$
4-1 General 4-1
4-2 Example of Single Panel Portal Frame. 4-1
4-3 Example of Single Panel Gable Frame 4-5
V. DEFORMATION ANALYSIS OF MULTIPLE PANEL FRAMES $5-1$
5-1. General $5=1$
5-2 Example of a Multiple Panel Gable Frame $5-2$
VI. SUMMARY AND CONCLUZSIONS $6=1$
BIBLIOGRAPHY. $A=1$

LIST OF TABLES

Table		Page
2-1	Load Functions.	$2-13$
4-1	Angular Functions	4-3
4-2	Elastic Weights.	4-3
4-3	Angular Functions	4-7
4-4	Elastic Weights.	4-7
5-1	Angular Functions	5-5
$5-2$	Elastic Weights For Panel 1	5-6
5-3	Elastic Weights For Panel 2	5-6
5-4	Elastic Weights For Panel 3	5-6

LIST OF FIGURES

Figure Page2-2 Idealized moment-curvature relationship.... $\quad 2=1$
$2-3 a$ Closed Polygons $2-2$
$2-3 b$ String Polygon $2-3$
2-4a Beam segments adjacent to point j $2-7$
$2-4 b$ Free bodies $\overline{\mathrm{i} j}$ and $\overline{\mathrm{jk}}$ 2-8
3-2a Gable Frame and Mechanism. $3-2$
$3-2 b$ Conjugate Frame 3-2
3-3a Three Panel Gable Frame and Mechanism 3-3
3-3b Conjugate Panels 1,2 , and 3 3-4
4-2a One Panel Portal Frame 4-2
4-2b Moment Dia.gram 4-2
4-2c Conjugate Frame 4-4
4-3a Single Panel Gable Frame $4-6$
4-3b Moment Diagram 4-6
4-3c Conjugate Frame 4-8
5-2a Three Panel Gable Frame $5-3$
5-2b Binding Moment Diagram 5-4
5-2c Conjugate Panel 1 5-7.
5-2d Conjugate Panel 2 5-8
$5-2 e$ Conjugate Panel 3 5-9

$\begin{aligned} & a, b, c, \\ & 1,2,3 \end{aligned}$	= polygon vertex point designation
$B M_{u}, \mathrm{BM}_{\mathrm{v}}$	$=$ bending moment of simple beam due to loads, at point u, v, respectively
D	$=$ reciprocal of flexural rigidity
E	$=$ modulus of elasticity
F	$=$ ultimate load
$F_{i j}$	$=$ angular flexibility function
G_{ij}	$=$ angular carry over function
h	$=$ vertical dimension
I	$=$ moment of inertia
i, j, k	= general index points
$\begin{aligned} & L_{i}, L_{j} \\ & d_{i}, d_{j} \end{aligned}$	$=$ length of beam segments $i j$ and $j k$ respectively
M_{i}, M_{j}, M_{k}	$=$ bending moment at points $i, j, k, r e-$ spectively
n	$=$ any integer
${\overline{P_{E j}}}$	$=$ elastic weight applied at point j
$\bar{P}_{P_{j}}$	```= plastic weight applied at point j viii```

$\overline{R_{j}}$	$=$ conjugate reaction at point j
$S_{\text {bg }}$	$=$ length between points b and g
$\overline{\mathrm{x}}, \overline{\mathrm{y}}$	$=$ moment arm measured parallel to x, y, axis respectively
α, β	$=$ coefficient of length
$\Delta_{j x}, \Delta_{j y}$	$=$ deflection components of point j, in x and y directions respectively
ϕ_{j}	$=$ the change in the deflection angle of the polygon due to plastic hinge, real hinge and or elastic rotation at any point j
$\phi_{i \underline{i j}}$	= end slope of simple beam segment ij at end
θ_{j}	$=$ the deflection angle of the undeformed closed polygon at any point j
ω	$=$ angle designation
Σ	$=$ summation
${ }^{\top}{ }_{i j}$	$=$ angular load function
$\Sigma \mathrm{M} @-$	= summation of moments of forces or conjugate weights about line i.j

CHAPTER I

INTRODUCTION

The String Polygon probably was conceived by Archimedes, however, it is usually attributed, in its basic form to Varignon, who studied the loaded gtring, and introduced the concept of the polygon of equilibrium. Culmann discarded the material string, and used the polygon of equilibrium as a tool of analysis, thus laying the foundation for the development of graphic atatics as an effective means of analysis.

Mohr (15) represented the elastic curve of a stralght beam as a differential string polygon in connection with his concept of the conjugate beam loaded with differential angle changes known as elastic weights.

The Joint Loads Concept was introduced by Muiler-Breslau (16, 17). In his definition of joint loads, the influence of loads on the elements was neglected and only the influence of moment, shear, and axial force was considered.

By adding the angular load function to the joint load, Tuma (1) generalized the String Polygon Method, and relaked it to the Three Moment Equation. This generalization greatly increases the effectiveness of the me thod, since elements of any length or curvature may be used, with exact results.

Deformation analysis of frames at ultimate load is important. It is the basis of approximate working load deformation analysis. When materlals having a limited rotation capacity are used, the magnitude of plastic rotation is often critical and, therefore, must be determined.

Difficulty arises in the deformation analysis by the commonly used Slope Deflection Method since it is necessary to solve many simultaneous equations and, by trial and error, establish the last hinge to form.

Lee (27) generalized the Conjugate Beam Method, and called it the Conjugate Frame Method. This method provides three independent equations which are identical to the String Polygon equilibrium equations. Lee further recognized that a fourth rational condition is obtained from the direction of plastic hinge rotations of the collapse mechanism. Thus, adequate equations are available and, usually the last hinge to form is obtained by inspection of these equations.

The Conjugate Frame Method is somewhat tedious because of the differential elastic weights, which operate in two coordinate directions and necessitate the computation of moment arms from the centroid of each segment of the moment diagram to the axis of moments for each conjugate moment equation. The sign convention is also two-phased and involved.

The String Polygon Method is an efficient tool of analysis for many structural problems. Recent investigators $(2,3,4,5,6,7,8,9,10$, $11,12,13,14$) have extended the present concept of the String Polygon, to many phases of elastic analysis.

The String Polygon approach simplifies the expression for differential elastic weights by concentrating their effect in the form of joint elastic weights at convenient points, thus eliminating the necessity for computing moment arms for conjugate moments.

The computation of elastic weights is made by substitution into the three moment equation, and is fur ther simplified by means of beam contants which are available, for members of constant or variable cross section. (2, 5, 6, 26.)

The method is applied to plastic structures on the verge of collapse, and is perfectly general as to variation of cross section since this variation is taken into account by proper evaluation of the elastic weights.

In Chapter Two of this thesis, the general theory of the String Polygon method is restated to include the deformation effects of plastic hinges. Chapter Three is devoted to examples, in which the elastic deformation is neglected, thereby providing an alternate method to Instantaneous Centers Method which is commonly used to determine the mechanism angle relationships. Chapter Four is devoted to examples of single bay frames, and Chapter Five is devoted to examples of complex frames. The sixth chapter summarizes and concludes the study.

CHAPTER TI

THEORX OF THE STRING POLYGON

2-1 GENERAL

Important, well-known relationghipg exift between the bate ruled O是 cloned polygon geometry and the baste fules of gtaties.

Under eertain conditong, these relationdhip allow the problem
 of the problems of raters.

2=2 ASSUMTTIONS

1) The termination of elatic conatantag
2) The change in iength of structurd membex ind gmall and may be neglected.
3) The length of plastic tingen is aramiln comparison to the length of members, and may be considered toocedr at a point.
4) The plastic and elagtic angle changes are gmall, and the Sine and Tangent of the angle axe taken as the angle itselt.
5) The structural material is perfectly plastio, and the momentcurvature relationship is as shown in Fig, 2-2.

Moment

Idealized moment-curvature relationship
Fig. 2-2
2-1

2-3 GEOMETRIC RELATIONSHIPS

Consider the frame or structural panel of Fig. $2-3 \mathrm{a}$, which describes the closed polygon $(1,2,3,4,5,1)$, having deflection angles $\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}\right)$.

Under the influence of applied loads, the structure deforms to a new position, on which the points (1, $\left.2^{7}, 3^{4}, 4^{4}, 5,1\right)$ lie. The deformed structure is thus represented by straight lines (string lines) comnec:ing the prime points of the deformed polygon.

From plane geometry, the sum of the deflection angies of the deformed and undeformed polygon are given by equations 2-3a and 2-3b respectively.

$$
\begin{aligned}
& \left(\theta_{1}+\phi_{1}\right)+\left(\theta_{2}+\phi_{2}\right)+\left(\theta_{3}+\phi_{3}\right)+\left(\theta_{4}+\phi_{4}\right)+\left(\theta_{5}+\phi_{5}\right)=2 \pi \quad \text { Eq. } 2-3 \mathrm{a} \\
& \theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}+\theta_{5}=2 \pi
\end{aligned} \quad \text { Eq. } 2-3 \mathrm{~b}
$$

subtracting Eq. 2-3b from Eq. 2-3a yields:

$$
\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}+\phi_{5}=0 \quad \text { Eq. } 2-3 \mathrm{c}
$$

This expression is for a five sided polygon; however, the concepts are perfectiy general: it is therefore evident that:

In the general case of an n-sided closed polygon which undergoes deformation, the algebraic sum of all angle changes must be equal to zero for geometric compatability,
or mathematically:
and is analogous to:

$$
\sum_{n}^{n} \phi_{n}=0
$$

Eq. 2-3d
in the general case of a system of parallel forces, the algebraic sum of all forces must be equal to zero for static equilibrium.

Eq. 2-3e

Fig. 2-3b
String Polygon

Next, consider the string polygon of Fig. 2-3b. The angle between lines $(1,2)$ and $(1,2)$ is ϕ_{1}. Similarly the angle between lines $(2,3)$ and $\left(2^{\prime}, 3^{\prime}\right)$ is $\phi_{1}+\phi_{2}$, etc. For the general case, it is seen that:

The angle between respective original and deformed lines of the polygon, is equal to the sum of the angle changes to the left or right of that line.
which is analogous to:
The internal shear force in a beam or frame is equal to the sum of the forces to the left or right of that point.

The distance between the original and prime points of the string polygon represent the absolute displacement of the respective points of the structure.

The displacement of point 3 due to ϕ_{1}, is $\left(3-3^{\prime \prime}\right)$, and from small angle geometry:

$$
\left(3-3^{\prime \prime}\right)=\phi_{1} \cdot S_{31}
$$

the X component of $\left(3-3^{\prime \prime}\right)$ is:

$$
\left(3-3^{\prime \prime}\right)_{x}=\left(3-3^{\prime \prime}\right) \sin \omega_{1}=\phi_{1} S_{31} \sin \omega_{1}
$$

and the Y component of $\left(3-3^{\prime \prime}\right)$ is

$$
\left(3-3^{\prime \prime}\right)_{y}=\left(3-3^{\prime \prime}\right) \cos \omega_{1}=\phi_{1} S_{31} \cos \omega_{1}
$$

but since $\bar{X}_{31}=S_{31} \cos \omega_{1}$ and $\bar{Y}_{31}=S_{31} \sin \omega_{1}$ the direction components of $\left(3-3^{\prime \prime}\right)$ are:

$$
\begin{aligned}
& \left(3-3^{\prime \prime}\right) x=\phi_{1} \overline{\mathrm{Y}}_{31} \\
& \left(3-3^{\prime \prime}\right) y=\phi_{1} \quad \bar{X}_{31}
\end{aligned}
$$

Similarly the displacement due to ϕ_{2} is $\left(3^{\prime \prime}-3^{\prime}\right)$ and:

$$
\left(3^{\prime \prime}-3^{i}\right)=\phi_{2} \quad S_{32}
$$

the X component of $\left(3^{\prime \prime}-3^{\prime}\right)$ is

$$
\left(3^{\prime \prime}-3^{i}\right)_{x}=\phi_{2} \overline{\mathrm{Y}}_{32}
$$

the Y componer: of $\left(3^{+1}-3^{1}\right)$ is

$$
\left(3^{11}-3^{9}\right)_{y}=6 x_{32}
$$

Superimposing the deformation components dua bo, and ϕ_{Q} :

$$
\Delta_{3 x}=\phi_{1}{ }_{31}+\phi_{2}{ }_{32} \quad \Delta_{3 y}=\phi_{1} X_{31}+\phi_{2} X_{32}
$$

$$
\Delta_{n x}=\sum_{I} \phi_{n} \Psi_{n} \quad \Delta_{n y}=\sum_{n}^{n_{n}} \phi_{n} \chi_{n}
$$

It is then evident that:
The displacement component of any point on the polygons is equal to the sum of the mome nts of the changes in deflection angles of the polygon, about a line passing thru thet point of the original polygon, parallel to the direction of the desired displacement component, of all such angle changes which lie on one side of the displacement line.
which is analogous to:
The bending moment at any point of a beam or frame, is equal to the sum of the moments of forces about that point of the beam or frame, of all forces which lie on one side of the point,

A further analogy may be made since the displacement at any point n is common to both sides of the polygon, therefore, for an n sided poly gon the displacement in any direction z is:
or
therefore:

$$
\begin{aligned}
\Delta_{m z}= & \sum_{\mathrm{I}}^{\mathrm{m}} \phi_{\mathrm{m}} \overline{Z_{m}}=\sum_{\mathrm{n}}^{\mathrm{m}} \phi_{\mathrm{m}} \bar{Z}_{\mathrm{m}} \\
& \sum_{\mathrm{L}}^{n} \phi_{\mathrm{m}} \overline{Z_{m}}=0
\end{aligned}
$$

The algebraic sum of moments of changes in deflection angles of a closed polygon, about any line in the plane of the polygon, must be equal to zero for geometric compatability.
which is analogous to:
The algebraic sum of moments of a system of parallel forces acting on a plane, about any line in that plane, must be equal to zero for static equilibrium.

2-4 ELASTIC WEIGHTS

One of the major advantages of the String Polygon Method is due to the fact that points on the polygon may be selected arbitrarily, from the geometry of the frame, usually at corners, abrupt changes in crosssection, and real or plastic hinges. It is therefore necessary to transfer the effect of elastic defonmation which occurs between these selected points to the points on the polygon. This transformation is accomplished by means of joint elastic weights.

The basic stress analysis of a frame may be accomplished by the elementary theory of plasticity, which reduces most frames to statically determinate ones. Moment diagrams are thus available, from which elastic deformation is determined.

An expression for the joint elastic weight at any point joy be derived by considering the beam segments adjacent to point j, Fig. 2-4a.

The segments ij and jk are straight beam segments, but may have any variation in cross-section and are subjected to general laads and end moments.

From the Fig. 2-4a, it is seen that ϕ_{j} is the change in the deflection angle at point j, and is thus the elastic weight, and

$$
\phi_{j}=\phi_{\mathrm{ji}}+\phi_{\mathrm{jk}}
$$

It is also evident that $\phi_{j i}$ is the end slope of beam segment ij at end j due to moments, and $\phi_{j k}$ is the end slope of beam segment $j k$ at end j due to moments.

Fig. 2-4a
Beam segments adjacent to point j.

Taking free bodies of the beam segments, and dividing the moment diagrams into three parts as shown in Fig. 2-4b, the end slopes of each segment may be written using the area-moment relationships, thus:

$$
\begin{aligned}
& \phi_{j i}=M_{i} \int_{i}^{j} \frac{u u^{\gamma} d u}{d_{j}^{2} E I_{u}}+M_{j_{i}} \int^{j} \frac{u^{2} d u}{d_{j}^{2} E I_{u}}+\int_{i}^{j} \frac{B M_{u} u d u}{d_{j} E I_{u}}
\end{aligned}
$$

denoting the integrals by:

$$
\begin{aligned}
& \tau_{j i}=\int_{i}^{j} \frac{\mathrm{BM}_{u} u d u}{d_{j} E T_{u}} \\
& \tau_{j k}=\int_{j}^{k} \frac{\operatorname{BM}_{v} v^{8} d v}{d_{k} E E_{v}} \\
& F_{j i}=\int_{i}^{j} \frac{u^{2} d u}{d_{j}^{2} E I_{u}} \\
& F_{j k}=\int_{j}^{d z} \frac{v^{v^{2}} d v}{d_{k}^{2} E I v} \\
& G_{j i}=\int_{i}^{j}-\frac{u u^{i} d u}{d_{j}^{2} E I_{u}} \\
& G_{j k}=\int_{j}^{k} \frac{v v^{\prime} d v}{d_{k}^{2} E I v}
\end{aligned}
$$

Free Bodies $\overline{\mathrm{ij}}$ and $\overline{\mathrm{jk}}$

Eq. 2-4a becomes:

Where

$$
\overline{P_{E j}}=\phi_{j}=M_{i} G_{i j}+M_{j} \Sigma F_{j}+M_{k} G_{k j}+\Sigma \tau_{j}
$$

$$
\Sigma F_{j}=F_{j i}+F_{j k} \quad \text { and } \quad \Sigma \tau_{j}=\tau_{j i}+\tau_{j k}
$$

Eq. $2-4 b$

Thus the equation of the joint elastic weight, Eq. $2-4 \mathrm{~b}$, is seen to be identical to the familiar Three Moment Equation. The quantities τ_{*} F, and G have the following physical interpretation:

Angular Load Function $\tau_{j i}\left(\tau_{j k}\right)$ is
the end slope of the simple beams ij (jk) at j due to loads
Angular Flexibility $\mathrm{F}_{\mathrm{ji}} \underline{(F}_{\mathrm{jk}}$) is
The end slope at j of the simple beam $i j(j k)$ due to unit moment applied at j.

Angular Carry-Over Value $G_{i j}\left(G_{k j}\right)$ is

 the end slope of the simple beam $i j$ ($j k$) at j due to unit moment applied at i, (k).If the cross-section of each member is different but constant between two joints, the follow ing simplifications are possible:

$$
\begin{array}{ll}
F_{j i}=\frac{L_{j}}{3 E I_{j}} & F_{j k}=\frac{L_{k}}{3 E I_{k}} \\
G_{i j}=\frac{L_{j}}{6 E_{j}} & G_{k j}=\frac{L_{k}}{6 E I_{j}}
\end{array}
$$

The load functions $\tau_{j i}$ and $\tau_{j k}$ for the most common load conditions reduce to the expressions shown in Table 2-1.

2-5 PLASTIC WEIGHTS

Plastic. weights are definedas the changes in the deflection angle of the polygon due to plastic rotation. Since the points of plastic rotation are known from the collapse mechanism, and are selected to be points on the polygon, no transforma tion is necessary.

These plastic rotations are taken as redundants, and their variation is such that geometric compatability is provided.

2-6 CONJUGATE REACTIONS

Conjugate reactions are defined as the changes in deflection angles of the polygon due to real hinge rotations. Except for the distinguish ing symbol, they are treated identically to plastic weights.

2-7. VECTOR NOTATTON

Shace the changes in the deflection angles \emptyset are analogous to forces, as has been shown in article $2-3$, it is convenient to represent the angle changes by vectors. This is eastily accomplished since all angle changes lie in the plane of the frame, and are, therefore, directly additive.

Vectors which represent rotational quanities have a direction perpendicular to the plane of the rotation; thus elastic and plastic weights will be represented by vectors perpendicular to the plane of the frame or panel.

2-8 SLGN CONVENTION

Bending moments are plotted on the tension side of the member; thus, a moment diagram lying on the inside of the polygon is positive, and those mome nts outside are negative for that particular panel.

Elastic weights will carry the sign of the bending moment.

Plastic weights for each particular panel are positive if the interior angle of the polygon at that point is increased and negative if the interior angle is decreased.

Weights which are applied to the conjugate frame are positive upward and negative downward when the frame is drawn in the horizontal plane.

2-9 GENERAL APPLICATION

Deformation analysis of single or multiple panel frames, at impending collapse, may be effectively carried out by the String Polygon Method.

The usual methods of plastic design are used to determine member sizes and provide the basic geometry of the collapse mechanism.

Plastic hinges, real hinges, and the corners of the frame or panel are selected as points on the polygon. If it is known in advance that the deformation of additional points are required, those points may also be selected as points on the polygon.

By means of Eq. 2-4b, and the moment diagram, the elastic weights for all selected points on the polygon are computed.

Plastic weights and conjugate reactions are redundant; however, their sign is known from the collapse mechanism. It is convenient to apply these redundants to the conjugate frame in their proper sense, thereby requiring the solution of the equilibrium equations to yield a positive sign for the plastic and real hinge rotations. Only the plastic weight representing the last hinge to form, when equated to zero, will yield a positive sign for all of the remaining values.

The conjugate frame is then drawn in the horizontal plane and all redundants applied to the conjugate frame in their proper sense, in a vertical plane.

Three independent equilibrium equations may then be written for each panel. It is usually most convenient to take moments about three sides of the conjugate frame. A brief inspection will usually determine which sides to seliect for the most simplified equations./ Most of the equilibrium equations will contain only two unknowns each. In many cases, equating the last hinge to form to zero, will reduce the simultaneous equation set to explicit form. The values of plastic and real hinge rotations are obtained directly by solving the equilibrium equations.

Wheh orved dythetime
The conjugate bending moment is the distance between the originai polygon and the deformed string line polygon. If the deflection of the originally selected points are required it is only necessary to determine the conjugate moment at that point about a line parallel to the direction of the desired deflection. If the deflection of some intermediate point is required, it is necessary to add the deflection of the simple beam segment due to lca ds at that point, to the conjugate bending morent at that same point. The direction of the deflection is determined rationally.

CHAPTER III

MECHANISM ANGEE RELATIONSHIPS

3-1 GENERAL

The elementary theory of plastic design by the mechanism method requires the relative magnitude of the plastic and real binge rotations. These relationships are quicky y and effectively determined by the String Polygon Method.

In common practice, the effects of elastic deformation are assumed to have negligable influence on the relative rotations. For the String Polygon Method, this assumption is equivalent to assuming that the elastic weights are equal to zero. The redundant plastic weights and conjugate reactions are placed on the conjugate frame with the same direction. The direction of rotation is thus indicated by the sign of the values. Three independent equilibrim equations are obtained for each panel by setting the sum of moments of conjugate weights about three sides of that panel equal to zero. Three of the four redundants may then be found in terms of the four th by solving the equations simultaneously.

Examples 3-2 and 3-3 illustrate this procedure for single and multiple panel. frames.

3-2 EXAIVPLE OF SINGLE PANEL GABLE FRAME

The mechanism angle relationships are found for the frame with the assumed collapse mechanism shown in Fig。 3-2a.*

* This example is worked by the Instantaneous Center Method on pages 6, 7, of Ref. (29).

Gable Frame and Mechanism

Fig. 3-26
Conjugate Frame

$$
\begin{array}{ll}
\sum M @ \overline{a e}=18 \phi_{b}+26 \phi_{3} & =0 \\
\sum M @ \overline{a b}=40 \phi_{3}+60 \phi_{e} & =0 \\
\sum M @ \overline{e d}=20 \phi_{3}+60 \phi_{a}+60 \phi_{b}=0
\end{array}
$$

Solution of these equations in terms of ϕ_{a} yield:
$\phi_{\mathrm{b}}=-1.3 \phi_{\mathrm{a}}$
$\phi_{3}={ }^{-9} \phi_{\mathrm{a}}$
$\phi_{\mathrm{e}}=-.6 \phi_{\mathrm{a}}$

3-3 EXAMPLE OF THREE PANEL GABLE FRAME

The relations between plastic rotations are found for the frame and assumed mechanism shown in Fig. 3-3a in terms of the rotation at point a.

Fig. 3-3b
Conjugate Panel 1
The equilibrium equations are:

$$
\begin{aligned}
& \mathrm{M@}=\beta_{1} L_{1} \phi_{\mathrm{c}}+L_{1} \phi_{\mathrm{d}}+L_{1} \phi_{\mathrm{e}}=0 \\
& \mathrm{M@}=\mathrm{ae} \\
& \mathrm{M}_{\mathrm{d}}+\left(\mathrm{h}+2 \alpha \beta_{1} \mathrm{~h}\right) \phi_{\mathrm{c}}=0 \\
& \mathrm{M@}=\mathrm{L}_{1} \phi_{\mathrm{ed}}+\left(1-\beta_{1}\right) L_{1} \phi_{\mathrm{c}}=0
\end{aligned}
$$

Solving these equations in terms of ϕ_{a} :
$\left.\phi_{c}=-\frac{1}{1-\beta_{1}}\right) \phi_{a}$
$\phi_{\mathrm{d}}=-\left(1+2 \alpha \beta_{1}\right) \phi_{\mathrm{c}}=\frac{\left(1+2 \alpha \beta_{1}\right)}{1-\beta_{1}} \quad \phi_{\mathrm{a}}$
$\phi_{e}=-\beta_{1} \phi_{c}-\phi_{d}=-\frac{\left(1+2 \alpha \beta_{1}\right)}{1-\beta_{1}} \phi_{a}$

Fig. 3-3c Conjugate Panel 2
The equilibrium equations are:

$$
\begin{aligned}
& \text { M@ed }=\beta_{2} L_{2} \phi_{f}+L_{2} \phi_{\mathrm{g}}+L_{2} \phi_{\mathrm{h}}=0 \\
& \mathrm{M@}_{\overline{\text { eh }}}=\left(\mathrm{h}+2 \alpha \beta_{2} \mathrm{~h}\right) \phi_{\mathrm{f}}+\mathrm{h} \phi_{\mathrm{g}}=0 \\
& \mathrm{M@}_{\mathrm{gh}}=\left(1-\beta_{2}\right) L_{2} \phi_{\mathrm{f}}+L_{2} \phi_{\mathrm{e}}=0
\end{aligned}
$$

Solving:

$$
\begin{aligned}
& \phi_{\mathrm{f}}=-\frac{1+2 \alpha \beta_{1}-\beta_{1}}{\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)} \phi_{\mathrm{a}} \\
& \phi_{\mathrm{g}}=\frac{\left(1+2 \alpha \beta_{1}-\beta_{1}\right)\left(1+2 \alpha \beta_{2}\right)}{\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)} \phi_{\mathrm{a}} \\
& \phi_{\mathrm{h}}=-\frac{\left(1+2 \alpha \beta_{1}-\beta_{1}\right)\left(1+2 \alpha \beta_{2}-\beta_{2}\right)}{\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)} \phi_{\mathrm{a}}
\end{aligned}
$$

Fig. 3-3d
Conjugate Panel 3
The equitibrium equations are:

$$
\begin{aligned}
& M @_{\mathrm{hg}}=\beta_{3} L_{3} \phi_{1}+L_{3} \phi_{j}+L_{3} \phi_{k}=0 \\
& M @_{\mathrm{hk}}=\left(\mathrm{h}+2 \alpha \beta_{3} \mathrm{~h}\right) \phi_{1}+\mathrm{h} \phi_{j}=0 \\
& M @_{\mathrm{kj}}=\left(1-\beta_{3}\right) L_{3} \phi_{1}+L_{3} \phi_{\mathrm{h}}=0
\end{aligned}
$$

Solving:
$\phi_{1}=-\frac{\left(1+2 \alpha \beta_{1}-\beta_{1}\right)\left(1+2 \alpha \beta_{2}-\beta_{2}\right)}{\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)\left(1-\beta_{3}\right)} \phi_{\mathbf{a}}$
$\phi_{\mathrm{j}}=\frac{\left(1+2 \alpha \beta_{1}-\beta_{1}\right)\left(1+2 \alpha \beta_{2}-\beta_{2}\right)\left(1+2 \alpha \beta_{3}\right)}{\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)\left(I-\beta_{3}\right)} \phi_{a}$
$\phi_{k}=-\frac{\left(1+2 \alpha \beta_{1}-\beta_{1}\right)\left(1+2 \alpha \beta_{2}-\beta_{2}\right)\left(1+2 \alpha \beta_{3}-\beta_{3}\right)}{\left(1-\beta_{1}\right)\left(1-\beta_{2}\right)\left(1-\beta_{3}\right)} \phi_{a}$

CHAPTER IV

DEFORMATION ANALYSIS OF SINGLE PANEL FRAMES

4-1 GENERAL,

The deformation analysis of single panel frames may be accomplished by means of the String Polygon Method. The deformation analysis begins with known loads; beam sections, the moment diagram, and the collapse mechanism. The argglar functions are computed and the elastic weights evaluated. The conjugate frame is then loaded and the equilibrium equations are written by setting the summation of moments of the conjugate weights about three sides of the frame equal to zero. The last hirge to form is found by inspection of the equilibrium equations. By setting the plastic weight corresponding to the last hinge to form equal to zero, the three simultaneous equations are reduced to explicit form and solution is made by direct substitution. The plastic weights are equal to the plastic rotation of the hinges measured in radians.

The deflection of any point originally selected as a point on the polygon is determined by evaluating the bending moment of the conjugate frame at that point.

4-2 EXAMIPLE OF SINGLE PANEL PORTAL FRAME

The frame of Fig. 4-2a is analyzed by the String Polygon Method for plastic rotations at points e and g_{A} and the deflection of points d_{s} g, e, $i_{0} * *$

[^0]

Fig. 4-2a

One Panel Portall Frame

An analysis by tine elementary theory of plasticity indicates a collapse load of $F=29.9$ kips for a uniform beam section whose yield moment is $M_{p}=1925$ inch kips, and flexuralrigidity is $E I=$ 80.39×10^{5}.

The collapse mechanism is formed by the real hinges at a and h, and plastic hirges at e and g.

The moment diagram is as shown in Fig, 4-2b.

The points $a_{s} d_{s} z_{2} i_{s} g_{0} h_{2}$ are selected as points on the polygon. The angular fuactions $F_{s} G$, and τ are tabulated as coefficients of $\frac{1}{\text { EI }}$ in Ta'ole 4-1.

TABLE 4-1

$$
\begin{gathered}
P-2-13 \\
L=120^{\prime \prime} *
\end{gathered}
$$

Beam Segment	$\mathrm{F}_{\underline{i j}(\mathrm{j} j}$	$\mathcal{G}_{i j}(j i)$	$\tau_{i j}$	${ }^{\text {T }}$ j
ad	$40=2$	$20 \cdot \frac{2}{6}$	$+5,315$	$+5,315$
de	40	20	0	0
ei	20	10	$L=180$	0
i.g	60	30	$+59,600$	$+47.700$
gh	40	20	0	0

The elastic weights for each point are determined by means of Eq. $2-4 \mathrm{~b}$ in Table 4-2 as coefficients of $\frac{1}{\mathrm{EI}}$.
Regenc.

TABLE 4-2

Point	$M_{i} G_{i j}$	$M_{j} \Sigma_{j}$	$M_{k_{k}} G_{Y_{j}}$	\sum_{j}^{T}	$\bar{P}_{E_{j}}$
a	0	0	$-1526(20)$	$+5,315$	$-25,205$
d	0	$-1526(80)$	$+1025(20)$	$+5,315$	$-78,265$
e	$-1526(20)$	$+1925(60)$	$+1858(10)$	0	$+103,560$
3	$+1925(10)$	$+1858(80)$	$-1925(30)$	$+59,600$	$+169,740$
g	$+1.858(30)$	$-1925(100)$	0	$+47,700$	$-89,060$
n	$-1925(20)$	0	0	0	$-38,500$

The conjugate structure is then as shown Fig. 4-2c.

The equilibrium equations may then be written by taking moments
of all conjugate forces about three sides of the conjugate frame, thus:

Substituting values from Table 4-2:

$$
\underset{\text { plation }}{ }-\overline{\mathrm{P}}_{\mathrm{Pe}}-\overline{\mathrm{P}}_{\mathrm{Pg}}=-\frac{105,975}{\mathrm{EI}}
$$

Similarly:
$\sum M_{\overline{h g}}=180{\overline{P_{E i}}}^{@_{E}}+240\left(\overline{P_{E e}}+{\overline{P_{P e}}}\right)+360\left(\overline{P_{E d}}+{\overline{P_{E a}}}-\overline{R_{a}}\right)=0$

Substituting values:

$$
2 \overline{\mathrm{P}}_{\mathrm{Pe}}-3 \overline{\mathrm{R}}_{\mathrm{a}}=-\frac{151,320}{\mathrm{EI}}
$$

and similarly:

$$
\sum M_{\overline{d g}}=120\left(\bar{P}_{E a}-\overline{R_{a}}+{\overline{P_{E h}}}+\overline{R_{h}}\right)=0
$$

Substituting values:

$$
\overline{R_{a}}-\overline{R_{h}}=-\frac{63,705}{E I}
$$

Inspection of Eq. 4-2a, b, c, shows that only $\overline{\mathbf{P}_{P e}}$ may be equated to zero, leaving all other redundants equal to positive values Therefore, $\overline{\mathrm{P}}_{\mathrm{Pe}}$ must be the Iast hinge to form.

Equating $\overline{\mathbf{P}}_{\mathrm{Pe}}$ to zero reduces Eq. 4-2a, b, c, to explicit form, and their solution yields:

$$
\begin{aligned}
& {\overline{P_{P g}}}^{P^{\prime}}=\frac{105,975}{E I}=.0132 \text { Radians } \\
& \overline{\mathrm{R}_{\mathrm{a}}}=\frac{50,440}{\mathrm{EI}}=.0063 \text { Radians } \\
& \overline{\mathrm{R}_{\mathrm{h}}}=\frac{114,145}{\mathrm{EI}}=.0142 \text { Radians }
\end{aligned}
$$

The deflections may be determined since they are equal to the conjugate bending moments. Those deflections which are required are computed as follows:

$$
\begin{aligned}
& \Delta_{d x}=\Delta_{g x}={\overline{M_{d}}}_{d}={\overline{M_{g}}}_{g}=120\left(\overline{R_{a}}-\overline{\mathrm{P}}_{\mathrm{Ea}}\right) \\
& =\frac{9,070,000}{\mathrm{EI}}=1.13 \text { inches } \\
& \Delta_{e y}=\overline{\mathrm{M}}_{\mathrm{e}}=120\left(\overline{\mathrm{R}}_{\mathrm{a}}-\overline{\mathrm{P}}_{\mathrm{Ea}}-{\overline{\mathrm{P}_{\mathrm{Ed}}}}\right) \\
& =\frac{18,460,000}{\mathrm{EI}}=2.29 \text { inches } \\
& \Delta_{i y}={\overline{M_{i}}}^{i}=180\left(\overline{R_{a}}-{\overline{P_{E a}}}-{\overline{P_{E d}}}\right)-60\left({\overline{P_{E e}}}\right) \quad \text { Suse } \rho_{0}=0 \\
& =\frac{21,500,000}{E I}=2.67 \text { inches }
\end{aligned}
$$

4-3 EXAMPLE OF SINGLE PANEL GABLE FRAME

The horizontal displacements of points b and e, and the plastic rotation of hinges are determined at the instant of collapse for the frame shown in Fig. 4-3a.

An analysis by the elementary theory of plasticity indicates that for the ultimate load shown, a uniform section whose yield moment $M_{0}=$ 182 ft . kips, is required.

The collapse mechanism is formed by real hinges at a and f_{s} and plastic hinges at d and e.

The moment diagram is as shown in Fig. 4-3b.

Fig. 4-3b
Moment Diagram

The points a, b, c, d, e, f, are selected as points on the polygon. The angular functions are tabulated as coefficients of $\frac{1}{\operatorname{En}}$ in Table 4-3.

The elastic weights for each point are determined by means of Eq. 2-4b, and are tabulated as coefficients of 1 in Tabie 4-4.

TABLE 4-3

Beam Segment	$F_{i j(j i)}$	$G_{i j(j i)}$	$T_{i j}$	$T_{j i}$
ab	5	2.5	0	0
bc	4.7 i	2.36	+88.4	+88.4
cd	3.51	1.76	+65.9	+65.9
de	7.03	3.51	+659.0	+659.0
ef	5	4.5	0	0

TABLE 4-4

Point	$\mathrm{G}_{\mathrm{ij}} \mathrm{M}_{\mathrm{i}}$	$\sum \mathrm{F}_{\mathrm{j}} \mathrm{M}_{\mathrm{j}}$	$\mathrm{G}_{\mathrm{Kj}} \mathrm{M}_{\mathrm{j}}$	\sum_{j}	$\overline{\mathrm{P}}_{\mathrm{Ej}}$
a	0	0	-2.5×91.5	0	-229
b	0	-9.71×91.5	$+2.36 \times 65$	+88.4	-646.6
c	-2.36×91.5	$+8.22 \times 65$	$+1.76 \times 182$	+154.3	+793.0
d	$+1.76 \times 65$	$+10.54 \times 182$	-3.51×182	+724.9	+2118.8
e	$+3.51 \times 182$	-12.03×182	0	+659.0	-891.6
f	-2.5×182	0	0	0	-455.

The conjugate structure is then as shown in Fig. 4-3c.

Fig. 4-3c
Conjugate Frame
Setting the sum of the moments about three sides equal to zero:
$\sum \mathrm{MQ}_{\mathrm{af}}=0$
$15 \overline{\mathrm{P}}_{\mathrm{Eb}}+25 \overline{\mathrm{P}}_{\mathrm{Ec}}+21.67\left(\overline{\mathrm{P}}_{\mathrm{Ed}}+\overline{\mathrm{P}}_{\mathrm{Pd}}\right)+15\left(\overline{\mathrm{P}}_{\mathrm{Ee}}-{\overline{\mathrm{P}_{\mathrm{Pe}}}}\right)=0$
Substituting values of elastic weights:
21. $67 \overline{\mathrm{P}}_{\mathrm{Pd}}-15 \overline{\mathrm{P}}_{\mathrm{Pe}}=\frac{-42,666.4}{\mathrm{EI}} \quad$ Eq. $4-3 \mathrm{a}$

$$
\begin{aligned}
& \sum \mathrm{M}_{\mathrm{ab}}=0 \\
& 10 \overline{\mathrm{P}}_{\mathrm{Ec}}+20\left(\overline{\mathrm{P}}_{\mathrm{Ed}}+{\overline{P_{P d}}}\right)+40\left(\overline{\mathrm{P}}_{\mathrm{Ee}}-{\overline{P_{P e}}}+{\overline{P_{E f}}}+{\overline{R_{f}}}\right)=0
\end{aligned}
$$

Substituting values of elastic weights:

$$
\overline{\mathbf{P}}_{\mathrm{Pd}}-2 \overline{\mathrm{P}}_{\mathrm{Pe}}+2 \overline{\mathrm{R}}_{\mathrm{f}}=\frac{+177.9}{\overline{\mathrm{I}}}
$$

Eq. $4-3 b$
$\sum \mathrm{MQQ}=0$
$20\left(\overline{\bar{P}_{E d}}+{\overline{P_{P d}}}\right)+30 \overline{\mathrm{P}}_{\mathrm{Ec}}+40\left(\overline{\mathrm{P}_{\mathrm{Eb}}}+\overline{\mathrm{P}}_{\mathrm{Ea}}-\overline{\mathrm{R}_{\mathrm{a}}}\right)=0$

Substituting values of plastic weights:
${\overline{P_{P d}}}-2 \overline{R_{a}}=-\frac{1.557 .10}{E I}$
Eq. $4-3 \mathrm{c}$

Inspection of the Eq's. 4-3a, b, c, shows that only $\bar{P}_{P d}$ may be equated to zeros $_{3}$ leaving all other redundant positive; therefore, $\overline{\mathrm{P}}_{\mathrm{Pd}}$ must be the last plastic hinge to form.

Setting $\overline{\bar{P}_{\mathrm{P}}}$ equal to zero, and solving Eq's. 4-3a, b, c, yields:
$\overline{\mathrm{P}}_{\mathrm{Pe}}=\frac{2,844.4}{\mathrm{EI}}\left(144 \mathrm{in} .{ }^{2} / \mathrm{ft}_{*}{ }^{2}\right)=\frac{409_{,} 590}{\mathrm{EI}}$

$$
\begin{aligned}
& \overline{R_{a}}=\frac{778.55}{\mathrm{EI}}\left(144 \mathrm{in} .^{2} / \mathrm{ft}^{2}\right)=\frac{112,110}{\mathrm{EI}} \\
& \overline{R_{\mathrm{f}}}=\frac{2,933.35}{\mathrm{EI}}\left(144 \mathrm{in} .^{2} / \mathrm{ft}^{2}\right)^{2}=\frac{422,402}{\mathrm{EI}}
\end{aligned}
$$

Since the conjugate bending mome nt equals the deflection of the real structure:

$$
\begin{aligned}
& \Delta_{\mathrm{bx}}={\overline{\mathrm{M}_{\mathrm{bx}}}}=15 \overline{\mathrm{P}}_{\mathrm{Ea}}+15 \overline{\mathrm{R}}_{\mathrm{a}}=\frac{15, \frac{113 .}{\mathrm{EI}}\left(1728 \mathrm{in} .^{3} / \mathrm{ft}^{3}\right)}{} \\
&=\frac{26.116 \times 10^{6}}{\mathrm{EI}} \text { inches. } \\
& \Delta_{\mathrm{ex}}=\overline{\mathrm{M}}_{\mathrm{ex}}=15 \overline{\mathrm{P}}_{\mathrm{Ee}}+15 \overline{\mathrm{R}}_{\mathrm{f}}=\frac{37,175}{\mathrm{EI}}\left(1728 \mathrm{in} .3 / \mathrm{ft}^{3}\right) \\
&=\frac{64.239 .10^{6}}{\mathrm{EI}}
\end{aligned}
$$

Where E is in kips/ in. ${ }^{2}$ and I is in inches ${ }^{4}$.

CHAPTER V

DEFORMATION ANALYSIS OF MULTIPLE PANEL FRAMES

5-1 GENERAL

Multiple panel frames may consist of any number of closed polygons. Each polygon must obey the principles of ciosed polygon geometry and may be treated as an individual unit, however each panel will involve the conjugate reactions and plastic weights as redundants. These redundants are common to adjacent polygons, and provide the necessary compatibility relationships.

The deformation analysis of multiple panel frames, as in previous examples, begins with known loads, beam sections, the bending moment diagram, and the collapse mechanism. The angular functions are computed and the elastic weights are evaluated.

It is noted that elastic weights are evaluated by Eq. $2-4 b$ which was derived for the case of only two members intersecting at the point of application of the elastic weight. In multiple panel frames, three or more members often intersect at a point, and the end moments of these members may have different values at the point of intersection. The following modified form of Eq. 2-4b is used in this case:

$$
\bar{P}_{E j}=M_{i j} G_{i j}+M_{j i} F_{j i}+M_{j k} F_{j k}+M_{k j} G_{k j}+\Sigma T_{s}
$$

It should also be noted that elastic and plastic weights which are common to adjacent panels, according to the sign convention stated

$$
5-1
$$

in Chapter II, have different signs, depending upon which panel is being considered. This convention provides for automatic compatibility between panels.

Selection of the last hinge to form is more involved in multiple panel frames than in single panel frames; however, the String Polygon Method offers reasonable advantage over the Slope Deflection Method. The selection of the last hinge to form before collapse is best expiained in the following exampie.

5-2 EXAMPLE OF A MULTIPLE PANEL GABLE FRAME
The plastic and real hinge rotations and lateral deflections at the top of the columns are determined for the frame shown in Fig. 5-2a,

The assumed ultimate loads are shown on the frame. The beam and column segments are constant section between joints. The three sizes of beams are indicated by moments of inertia I_{1}, I_{2}, I_{3}. The assumed values of M_{p}, E, and I are as follows:

$$
\begin{aligned}
M_{p_{2}}=304 \mathrm{ft.kips} & I_{1}=13.824 \mathrm{in} .4 \\
M_{p_{2}}=530 \mathrm{ft} . \mathrm{kips} & I_{2}=31.657 \mathrm{in} .4 \\
M_{p_{3}}=760 \mathrm{ft} . \mathrm{kips} & I_{3}=49.628 \mathrm{in} .4 \\
& E=3 \times 10^{3} \mathrm{kips} / \mathrm{in}^{2} .
\end{aligned}
$$

The corresponding flexural rigidity constants are denoted by:

$$
\begin{aligned}
& \mathrm{D}_{1}=\frac{1}{\mathrm{EI}}=2.411 \times 10^{-8} \\
& \mathrm{D}_{2}=\frac{1}{\mathrm{EI}_{2}}=1.053 \times 10^{-8} \\
& \mathrm{D}_{3}=\frac{1}{\mathrm{EI}_{3}}=.672 \times 10^{-8}
\end{aligned}
$$

Fig. 5-2a
Three Panel Gable Frame

Fig. 5-2b
Bending Moment Diagram

The collapse mechanism is shown in Fig, 5-2a and the corresponding bending moment diagram is shown in Fig. 5-2b.

The angular functions F, G, and τ are tabulated in Table 5-1. For convenience all of the angular functions are written in terms of D_{1}.

TABLE 5-1 Angular Functions

$\underset{\text { ij }}{\text { Beami }}$ Segment	$\frac{F_{i j(j i)}}{D_{1}}$	$\frac{G_{i j(j i)}}{D_{1}}$	$\frac{\tau_{i j(j i)}}{D_{l}}$
1,2	2.91	1.45	0
2, 3	3.04	1. 52	0
3, 4	3.04	1. 52	0
4, 5	6.08	3.04	+2665
5. 6	6.66	3.33	0
5, 7	2.50	1.25	0
7, 8	2. 50	1. 25	0
8,9	5.00	2.50	$+3530$
9,10	2.91	1. 45	0
9.11	5.27	2.64	0
11, 12	5.27	2.64	0
12,13	10. 54	5.27	$+2625$
13,14	6. 66	3.33	0

The elastic weights, for each of the points on the polygon, are tabulated for each panel in Tables $5-2,3,4$. The value D_{1} is common to all terms and is omitted from the tables.

TABLE 5-2 Elastic Weights for Panel 1

Point	$M_{i} G_{i j}$	$M_{j} \Sigma F_{j}$	$M_{k} G_{k j}$	\sum_{j}	$P_{E_{j}}$
1	0	0	-392	0	-392
2	0	-1606	+805	0	-799
3	-410	+3222	+337	0	+3149
4	+806	+2024	-1611	+2665	+3884
5	0	-375	0	0	+2665
6	0	0	0	0	

TABLE 5-3 Elastic Weights for Panel 2

Point	$M_{i} G_{i j}$	$M_{i} \Sigma F_{j}$	$M_{k} G_{i j}$	$\Sigma \tau_{j}$	$\bar{P}_{E_{j}}$
6	0	0	0	0	0
5	0	-1325	+950	0	-375
7	-663	+3800	+327	0	+3464
8	+950	+1965	-1900	+3530	+4545
9	+655	-3800	0	+3530	-1151
10	-765	0	0	0	-765

TABLE 5-4 Elastic Weights for Panel 3

Point	$M_{i} G_{i j}$	$M_{j} \Sigma F_{j}$	$M_{k} G_{k j}$	Σ_{j}	\bar{P}_{Ej}
10	0	0	+766	0	+766
9	0	+1536			
-1223	+802	0	+1115		
11	-612	+3204	+554	0	+3146
12	+803	+3320	-1602	+2625	+5146
13	+1106	-5229	0	+2625	-1498
14	-1012	0	0	0	-1012

$$
5-7
$$

Fig. 5-2c
Conjugate Panel One
The equilibrium equations for Panel One are:

$$
{\overline{P_{P}}}-1.3 \overline{\mathrm{P}}_{\mathrm{P} 3}=+9,627 \mathrm{D}_{1}
$$

$$
\text { Eq. } 5-2 \mathrm{a}
$$

$$
\sum_{\mathrm{M}}^{5} @_{56}=80\left(\overline{\mathrm{P}_{\mathrm{E} 1}}+{\overline{\mathrm{P}_{\mathrm{E} 2}}}^{\mathrm{R}_{1}}\right)+60\left(\overline{\mathrm{P}_{\mathrm{E} 3}}+\overline{\mathrm{P}_{\mathrm{P} 3}}\right)+40{\overline{\mathrm{P}_{\mathrm{E} 4}}}=0
$$

$$
4 \overline{R_{1}}-3 \overline{P_{P 3}}=+12,451 \mathrm{D}_{1}
$$

Eq. 5-2b

$$
\sum \mathrm{M} @_{12}=20\left(\overline{\mathrm{P}_{\mathrm{E} 3}}+\widetilde{\mathrm{P}}_{\mathrm{P} 3}\right)+40 \overline{\mathrm{P}}_{\mathrm{E} 4}+80\left(\overline{\mathrm{P}_{\mathrm{E} 5}}-{\overline{P_{P}}}+\overline{\mathrm{P}}_{\mathrm{E} 6}+\overline{\mathrm{R}_{6}}\right)=0
$$

$$
4 \overline{\mathrm{P}}_{\mathrm{P} 5}-4 \overline{\mathrm{R}}_{6}-{\overline{P_{P}}}=+11,389 \mathrm{D}_{1}
$$

Eq. 5-2c

Fig. 5-2d
Conjugate Panel Two
The equilibrium equations for Panel Two are:

$$
\begin{aligned}
\sum_{\mathrm{M} @}^{\overline{6,10}}= & 20\left(\overline{\mathrm{P}_{\mathrm{E} 5}}+\overline{\mathrm{P}}_{\mathrm{E} 9}-{\left.\overline{\mathrm{P}_{\mathrm{P} 9}}\right)+30\left(\overline{\overline{\mathrm{P}}_{\mathrm{E} 7}}+\overline{\mathrm{P}}_{\mathrm{P} 7}\right)+40{\overline{\mathrm{P}_{\mathrm{E} 8}}}=0} \begin{array}{rl}
& 2 \overline{\mathrm{P}}_{\mathrm{P} 9}-3{\overline{\mathrm{P}_{\mathrm{P} 7}}}=+25,520 \mathrm{D}_{1}
\end{array} \quad \text { Eq. } 5-2 \mathrm{~d}\right.
\end{aligned}
$$

$$
4 \overline{R_{6}}-3{\overline{P_{P 7}}}^{P_{7}}=+17,982 D_{1}
$$

Eq. 5-2e

$$
4 \overline{\mathrm{P}}_{\mathrm{P} 9}-4 \overline{\mathrm{R}}_{10}-\overline{\mathrm{P}}_{\mathrm{P} 7}=\div 4,890 \mathrm{D}_{1}
$$

Eq. 5-2f

Fig. 5-2e
Conjugate Panel Three

The equilibrium equations for Panel Three are:

$$
\begin{aligned}
& 2 \overline{\mathrm{P}}_{\mathrm{PI} 3}-2.5 \overline{\mathrm{P}}_{\mathrm{PII}}=+22,537 \mathrm{D}_{1} \\
& \text { Eq. 5-2g } \\
& \sum \mathrm{M} @ \overline{9}_{s 10}=15\left(\overline{\mathrm{P}}_{\mathrm{E} 11}+\overline{\mathrm{P}}_{\mathrm{P} 11}\right)+30\left({\overline{\mathrm{P}_{\mathrm{E} 12}}}\right)+60\left(\overline{\mathrm{P}}_{\mathrm{El3}}+\overline{\mathrm{P}}_{\mathrm{E} 14}-{\overline{\mathrm{P}_{\mathrm{P} 13}}}+\overline{\mathrm{R}}_{14}\right)=0 \\
& 4 \overline{\mathrm{P}}_{\mathrm{Pl} 3}-4 \overline{\mathrm{R}}_{14}-\overline{\mathrm{P}}_{\mathrm{P} 11}=+3,398 \mathrm{D}_{1} \\
& \text { Eq. } 5-2 h \\
& \sum \mathrm{M} @_{1} \overline{3,14}=30\left(\overline{\mathrm{P}}_{\mathrm{E} 12}\right)+45\left(\overline{\mathrm{P}}_{\mathrm{E} 11}+\overline{\mathrm{P}}_{\mathrm{P} 11}\right)+60\left(\overline{\mathrm{P}}_{\mathrm{E} 9}+\overline{\mathrm{P}}_{\mathrm{E} 10}-\overline{\mathrm{R}}_{10}\right)=0 \\
& 4{\overline{R_{10}}}-3 \bar{P}_{P 11}=+27,222 \mathrm{D}_{1} \\
& \text { Eq. 5-2i }
\end{aligned}
$$

The equations $5-2$ a through $5-2 i$ are nine equilibrium equations which describe the relationship between all plastic and real hinges. Simultaneous solution cannot be performed, however, until a tenth relationship is obtained since ten unknown values are present.

The tenth relationship is obtained by determining the last plastic hinge to form, and equating the respective plastic weight to zero.

As in previous examples, the smallest value of rotation (plastic weight) in each panel is determined by inspection of the equilibrium equations for each respective panel.

Thus, in Panel 1, $\overline{\mathrm{P}}_{\mathrm{P} 3}$ is least. In Panel 2, $\overline{\mathrm{P}}_{\mathrm{P} 7}$ is least, and in Panel 3, $\overline{\mathbf{P}}_{\mathbf{P}} 11$ is least.

By eliminating $\overline{\mathrm{P}}_{\mathrm{P} 5}$ from Eq. $5+2 \mathrm{a}$ and 5-2c:

$$
\overline{R_{6}}=6,780 \mathrm{D}_{1}+1.05 \overline{\mathrm{P}}_{\mathrm{P} 3}
$$

and, from Eq. 5-2e:

$$
\overline{R_{6}}=4,495 \mathrm{D}_{1}+.75 \overline{\mathrm{P}_{\mathrm{P} 7}}
$$

and by equating these two expressions:

$$
1.05{\overline{P_{P}}}^{P_{1}}=-2,285 \mathrm{D}_{1}+.75 \overline{\mathrm{P}}_{\mathrm{P} 7}
$$

Eq. 5-2j

If $\overline{\mathrm{P}}_{\mathrm{P} 7}=0, \overline{\mathrm{P}}_{\mathrm{P} 3}$ is negative; therefore, the value of $\overline{\mathrm{P}}_{\mathrm{P} 3}$ is less than that of $\overline{\mathrm{P}_{\mathrm{P}}}$.

$$
\overline{\mathrm{R}_{10}}=15,346 \mathrm{D}_{1}+1.75{\overline{\mathrm{P}_{\mathrm{P} 3}}}
$$

and from Eq. 5-2i:

$$
\overline{R_{10}}=6,805 \mathrm{D}_{1}+.75 \bar{P}_{P_{11}}
$$

and by equating these two expressions:

$$
\text { 1. } 75 \overline{\mathrm{P}}_{\mathrm{P} 3}=-8,541 \mathrm{D}_{1}+3 \overline{\mathrm{P}}_{11} \quad \text { Eq. } 5-2 \mathrm{k}
$$

If $\overline{\mathrm{P}}_{\mathrm{P} 11}=0, \overline{\mathrm{P}}_{\mathrm{P} 3}$ is negative; therefore, the value of $\overline{\mathrm{P}}_{\mathrm{P} 3}$ is less than that of $\overline{\mathrm{P}}_{\mathrm{PII}}$.

It has been shown that $\overline{\mathrm{P}}_{\mathrm{P}} 3$ has a value less than any of the other five plastic weights and, therefore, represents the last hinge to form before collapse.

Equating $\overline{\mathrm{P}}_{\mathrm{P} 3}$ to zero, the numbered equations may be solved by substitution. Thus from:

Eq. $5-2 \mathrm{a}$

$$
\overline{\mathbf{P}}_{\mathbf{P} 5}=+9,627 \mathrm{D}_{\mathbf{I}}
$$

Eq: 5-2b
$\overline{\mathrm{R}_{1}}=+3,113 \mathrm{D}_{1}$
Eq. $5-2 \mathrm{c}$
$\overline{\mathrm{R}_{6}}=+6,780 \mathrm{D}_{1}$
Eq. 5-2j
$\overline{\mathrm{P}}_{\mathrm{P} 7}=+3,047 \mathrm{D}_{\mathrm{I}}$
Eq. 5-2d
${\overline{P_{P}} 9}=+i 7,330 D_{1}$
Eq. 5-2f
$\bar{R}_{10}=+15,346 D_{1}$
Eq. 5-2i
$\overline{\mathrm{P}}_{\mathrm{P} 11}=+1.387 \mathrm{D}_{1}$
Eq. 5-2g
$\overline{\mathrm{P}}_{\mathrm{PI} 3}=+25.5,50 \mathrm{D}_{\mathrm{I}}$
Eq. 5-2h
$\overline{\mathrm{R}_{14}}=+21_{s} 806 \mathrm{D}_{1}$

The units of these values are not consistent and will be revised later.
The values computed for the plastic weights and conjugate reactions are all positive, which indicates that the last hinge to form was selected correctly.

An independent check on the values of the plastic weights and conjugate reactions is obtained by equating the algebraic sum of all conjugate weights in each panel to zero, and varifying the equaiity.

The lateral defiections at the points $2,5,9,13$, are as follows:

$$
\begin{aligned}
& \Delta_{2 \mathrm{x}}=\overline{\mathrm{M}}_{2 \mathrm{x}}=\left(\overline{\mathrm{P}}_{\mathrm{E} 1}+\overline{\mathrm{R}_{1}}\right)(20)=70,100 \mathrm{D}_{1} \\
& \Delta_{5 \mathrm{x}}=\overline{\mathrm{M}}_{5 \mathrm{x}}=\left(\overline{\mathrm{P}}_{\mathrm{E} 6}+\overline{\mathrm{R}}_{6}\right)(20)=135,600 \mathrm{D}_{1} \\
& \Delta_{9 \mathrm{x}}=\overline{\mathrm{M}}_{9 \mathrm{x}}=\left(\overline{\mathrm{P}}_{\mathrm{E} 10}+\overline{\mathrm{R}}_{10}\right)(20)=322,222 \mathrm{D}_{1} \\
& \Delta_{13 \mathrm{x}}=\overline{\mathrm{M}}_{13 \mathrm{x}}=\left(\overline{\mathrm{P}}_{\mathrm{E} 14}+\overline{\mathrm{R}}_{14}\right)(20)=415,883 \mathrm{D}_{\mathrm{I}}
\end{aligned}
$$

The units of these values are not consistent and will be revised later.

Multiplying, the plastic weight and conjugate reaction values: which were computed, by $144 \mathrm{in} .{ }^{2} / \mathrm{ft} .{ }^{2}$ to make the units consistent, and substituting the value of D_{1}, the final hinge rotations are:

$$
\begin{aligned}
& \overline{\mathrm{P}}_{\mathrm{P} 5}=.0334 \text { radians } \quad \overline{\mathrm{P}}_{\mathrm{P} 9}=.0602 \text { radians } \\
& \overline{R_{1}}=.0108 \text { radians } \quad \bar{R}_{10}=.0533 \text { radians } \\
& \overline{R_{6}}=.0235 \text { radians } \quad{\overline{P_{P 11}}}=.0395 \text { radians } \\
& {\overline{P_{P}}}=.0106 \text { radians } \quad \bar{P}_{\mathrm{P} 13}=.0885 \text { radians } \\
& \overline{R_{14}}=.0757 \text { radians }
\end{aligned}
$$

Multiplying the deflection values which were computed by 1728
in. ${ }^{3} / \mathrm{ft} .{ }^{3}$ to make units consistent, and substituting the vaiue of $\mathrm{D}_{1}{ }^{*}$
the final deflections are:

$$
\begin{array}{ll}
\Delta_{2 x}=2.92 \mathrm{in} . & \Delta_{9 x}=13.42 \mathrm{in} \\
\Delta_{5 x}=5.65 \mathrm{in} . & \Delta_{13 x}=17.33 \mathrm{in}
\end{array}
$$

CHAPTER VI

SUMMARY AND CONCLUSIONS

The deformation analysis of planar frames under ultimate load by the String Polygon Method is presented in this thesis.

The points of major significance found in this study may be summarized as follows:

1. Closed polygons which undergo small deformation are the basic units of the analysis, and any planar frames may be considered as either one or a system of closed polygons.
2. The vertices of the polygons may be selected at convenent points on the frame, and all elastic deformations, plastic deformations and real hinge rotations are considered to act at the se selected points.
3. A form of the three moment equation is used to transfer the effect of elastic deformation which occurs between the vertices; to the vertices of the polygon.
4. The angle changes are considered as vectors applied at the vertex where it occurs, and in a direction perpendicular to the plane of the frame.
5. Geometrical compatability is required by the conjugate equlibrium equations, which are written in terms of the redundants.
6. The last hinge to form in a single panel frame may always be determined by rational analysis of the equlibrium equations. In multiple panel frames the number of possibilities for the last hinge to form is reduced by rational analysis to correspond to the number of panels in the system. A process is provided to further determine which of the remaining hinges is actually the last to form.
7. Plastic and real hinge rotations are obtained directly from the solution of the conjugate equlibrium equations. The deflections of previously selected points are determined by computing the conjugate bending moment at that point. Intermediate deflections maybe determined by computing the conjugate bending moment at the point and adding the deflection of the simple beam segment due to loads at that same point.

The String Polygon Method makes available three conjugate equlibrium equations for each panel of the frame. These equations are written in terms of plastic and real hinge rotations.

Since the equations are free of deflection terms, the number of redundants; and therefore, the number of simultaneous equations needed for solution is greatly reduced from that required by the Slope Deflection Method。

The conjugate equlibrium equations may be written, such that, the last hinge to form in the system before final collapse, is determined by rational analysis and simple algebraic manipulation.

A SELECTED BIBLIOGRAPHY

1. Tuma, Jan J., "Carry-Over Procedures Applied to Civil Engineering Problems," Lecture Notes, C.E. 620 - Seminar, Oklahoma State University, Stillwater, Spring 1959, 1960.
2. Chu, Shih L., "Beam Constants by the String Polygon Method," M.S. Thesis, Oklahoma State University, Stillwater, Summer, 1959.
3. Maydayag, Angel F., "Deflection of Airplane Wings by the String Polygon Method, "Seminar Report, Oklahoma State University, Stillwater, Spring, 1960.
4. Harvey, John $W_{\text {. }}$ "Column--Beams by the String Polygon and CarryOver Method, "M.S. Thesis, Oklahoma State University, Stillwater, Summer, 1960.
5. Oden, John T., "Analysis of Fixed-End Frames with Bent Members by the Siring Polygon Method, "M. S. Thesis, Oklahoma State University, Stillwater, Summer, 1960 .
6. Boecker, Henry C., "Analysis of Pinned-End Frames by the String Polygon Method," M. S. Thesis, Oklahoma State University, Stillwater, Summer, 1.960 .
7. Exline, J. W., "String Polygon Constants for Members with Sudden Change in Section," M. S. Thesis, Oklahoma State University, Stillwater, Summer, 1961.
8. Wu, Chien M., "The General String Polygon," M. S. Thesis, Oklahoma State University, Stillwater, Summer, 1960.
9. Houser, G. D., "Slope Defiection Equations for Bent Members by the String Polygon Method," M. S. Thesis, Oklahoma State University, Stillwater, (in preparation).
10. Kallaby, J. C. "Analysis of Rigid Truss Frames with Straight Members by the String Polygon Method," M. S. Thesis, Oklahoma State University, Stillwater, (in preparation).
11. Ramey, J. D., "Elastic Weights for Trusses by the String Polygon Polygon Method," M. S. Thesis, Okiahoma State University, Stillwater. (in preparation).
12. Tuma, J. J., "Analysis of Rigid Truss Frames with Curved Members by the String Polygon Method," Research Bulletin, OklaState University, Stillwater, (in preparation).
13. Gonulsen, Y. I., "Analysis of Rigid Truss Frames with Bent Members by the String Polygon Method, "M. S. Thesis, Oklahoma State University, Stillwater, (in preparation).
14. Yu, H. S., "Analysis of Wedge Frames with Bent Members by the String Polygon Method, "M. S. Thesis, Oklahoma State University, Stillwater, (in preparation).
15. Mohr, O., "Behandlung der Elastischen Als Seillinie," Zeitschr D. Architekt. u. Ing. Vereins $\mathrm{Zu}_{\text {, }}$ Hannover, 1868.
16. MUller-Breslau, H. F. B., Die Graphische Statik Der Baukonstruktionen, Vol, II, Part 2, 2nd Ed., Leipzig, 1925, pp. 337-365.
17. M甘ller-Brealau, H. F. B., "Bietrag Zuer Theorie Des Fachwerks," Zeitschr D. Architekt. u. Ing. , Hannover, 1885, pp. 31, 418.
18. Wanke, J., "Zur Berechnung Der Formanderungen Vollwandiger Tragwerke," Der Stahlbau, 1939, No. 23, 24.
19. Chmelka, F., "Naherung Formeln," Der Stahlbau, 1940, No. 23, 24.
20. Biezeno, C. B., and Grammel, R., "Elastic Problems of Single Machine Elements, "tr., Engineering Dynamics, Vol. II, M. L. Meyer, Blackie and Son, Limited, Glasgow, 1956, pp. 2-8.
21. Kaufmann, W., Statik Der Tragwerke, 4th Ed., Berlin, 1957, pp. 144-153.
22. Cross, Hardy, and Morgan, N. D., Continuous Frames of Reinforced Concrete, John WiIey and Sonc, IVew York, 1945, pp. 26-76.
23. Michalos, J. Theory of Structural Analysis and Design, Ronald Company, New York, 1958, pp. 20-37.
24. Guldan, R., "Die Cross-Methode," Springer-Verlag, Wien, 1955, pp. 131-138.
25. Kinney, J. Sterling, Indeterminate Structural Analysis, AddisonWesley Co., Reading, Mass., 1957.
26. Lassley, T. Io, "Beam Constants by High Speed Computers," M. S. Thesis, Oklahoma State University, Stillwater, 1959.
27. Lee, S. L., "The Conjugate Frame Method and Its Application in the Elastic and Plastic Theories of Structures, " J. Franklin Inst., Vol. 266, No. 3, pp. 207-22, 1958.
28. Hodge, Philip G., Jr. Plastic Andiyeis ol Structures, MeGraw Hill Book Co. New York, 195g.
29. Amertcan Institute of Steel Construetion, Inc. (pub,), Plastic Design in Steel, AISC, New York. 1959°
30. Lee, S. L. "Discussion. "in regard to "Progress in Plastic Design," by Jacques Heyman in Placticity. Proceedings of the Second Symposium on Naval Structural Mechanics. Pergamon Press, New York 1960.
 havior of Welded Single-Span Frames under Combined Loading, " Welding Journal Research, Suppl. $35,234 s=2525,1956$.
31. Beedle; L. S., Plastic Design of Steel Frames, John Wiley and Sons Co. New York 1958.

VITA
Fred Newton Gauger
Candidate for the Degree of
Master of Science

Thesis: PLASTIC DEFORMATHON ANALYSIS OF FRAMES AT UKTMIATE LOAD BY TEE STRING POLYGON METHOD

Major Field: Civil Engineering
Biographical:
Personal Data: Born in Clinton, Oklahoma, January 21, 1931, the son of Fred R. and Carrie E. Gauger.

Education: Received the Bachelor of Science degree in Civil Engineering from Oklahoma State University, Stillwater, Oklahoma, in 1955.

Experience: Structural engineer for Roof Structures, Twe., St. Louis, Missouri, from May, 1957 whtil September, 1959. Instructor, civil engineering, at Oklahoma State University for 2 years.

Organizations: Professional Engineer-in-Training and a member of Chi Epsilon.

[^0]: **This example is worked by the Slope Deflection Method on pages 100,103 s of Ref. (28). The frame was tested to failure and reported by Schilling, Schutz, and Beedie ${ }_{\text {s }}$ Ref. (31).

