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CHAPI'ER I 

INTRODUCTION 

It is important in the prediction of the behavi or of oi l and gas 

reservoirs to be able to calculate potential and flow distribut i ons 

in the reservoir. Since only a few limited analytical solut ions ri.ave 

been found to solve the second order partial differential equations 

which describe these distributions in finite cases, it becomes 

necessary to obtain approximate solutions by finite difference 

methods. 

Since the development of the electronic digital computer, many 

such methods have been devised. Because of the large amount of work 

involved in solving distribution problems end the high cost of 

computing time, it becomes very important to obtain a method which 

requires a minimum of work and time. Much attention has been given 

to this problem of minimizing the work and t i me. The alternati ng

direction implicit method recently introduced by Peeceman and 

Rachford (7) represents one of the best known schemes for solving 

potential end flow distribution in two-dimensional systems. The 

method is advantageous because it bas been proven by Douglas (2) tha t 

the method is stable for any size time step. 

Although some applications of the method have been published, a 

computer program to solve other problems of this type was not 

available. The object of this study was to program the method on the 
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IBM 650 Computer for use in solving linearized unsteady-state gas : 

compressible fluid and heat flow problems. After such a pr ogram had 

been written, it was to be checked by solving a problem which had e 

known solution. When this bed been accomplished , soluti ons to other 

problems could be obtained. 
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CHAPTER II 

PREVIOUS INVESTIGATIONS 

Recently, much attention has been given to the solution of 

unsteady-state problems by approximate finite difference methods. 

Since this study is concerned with applications of the elterneting 

direction implicit method, only those articles which deal with this 

method or those directly related to it will be discussed here. 

Bruce, et al, (1) developed a stable numerical procedure for 

solving the equation for production of gas et constant rates from 

linear end radial systems. A digital computer wes used to perform 

this integration using an implicit form of en approximating difference 

equation. The solutions were compared with a laboratory study of 

gas depletion in a linear system. 

Peecemen and Rachford (7) introduced the alternating-direction 

implicit method for solving parabolic end elliptic differential 

equations. The method was applied to the simplest type of problem, 

that of unsteady-state heat flow in a square. Also, the solution of 

I.aplace's equation in a square was solved as en example of a steady

state problem. An analysis was presented that showed the alternating

direction implicit method to require less work then the best 

previously known iterative solution for solving Laplace's equation. 

Douglas, Peaceman and Rachford (4) applied the alternating

direction implicit method to the problem of unsteady-state gas flow 
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through porous media for a two dimensional square reservoir. The 

square region, containing a perfect gas, was depleted end solutions 

at various stages of the depletion were presented in graphical form 

in terms of dimensionless parameters. 

Douglas and Peaceman (3) solved the heat flow equation in two 

dimensions by use of the alternating direction implicit method. 

Although all the examples worked were for steady-state condition ; 

equations were developed for unsteady-state problems and a thorough 

discussion of the method was included. Examples were presented for 

heat flow around a corner, a problem involving a radiation boundary 

condition, end point heat sources and sinks in an elliptical region. 

Douglas and Rachford (5) described a method similar to the 

alternating-direction implicit method for solving problems in three 

dimensions. The procedure was applicable in predicting flow patterns 

and potentials for both the steady- and unsteady-state flow of a 

single phase fluid. 
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CHAPrER III 

THE MATHEMATICAL METHOD 

The alternating-direction implicit method solves differential 

equations of the type 

a2u c)2u du -+-=C- (3-1) 
dx2 <h2 dt 

The method consists of replacing the continuous derivatives in F.quation 

(3-1) by ratios of finite differences and solving the resulting 

difference equations. 

To form the required difference equations, an integration net 

with mesh widths Ax and Ay, is placed over the two-dimensional 

region in which the integration is to be carried out. For convenience, 

Ax and Ay are set equal to each other. 

One of the second derivatives, for instance, ~~' is replaced by 

a second difference in terms of unknown values of U et the time level, 

t + 6 t. The other d2u second derivative, oY2 , is replaced by a second 

difference in terms of known values of U et the time level, t. When 

this has been done, Equation (3-1) becomes 

W(x- Ax 1y 1t+ At) - z.l(x,y,t+ At) + W(x+ Ax,y,t+ t:.t) + 

( Ax)2 
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W(x,y-c,y,t) - 2-l(x,y,t) + W(x,y+.6.y,t) = 
( .6. y )2 

C ( W ( X , y , t+ .6. t ) - W ( X , y , t ) ) 
At 

where Wis the numerical approximation for u. 
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( 3-2) 

Equation (3-2) is used for evaluating the unknown values of W s t 

the time level, t + .6.t, and is said to be implicit 1n the x-direction . 

Unknown values of Wat the time level, t + 2 .6.t, ere found by forming 

an equation, similar to Equation (3-2), but implicit in they-directi on. 

Equation (3-3) gives the necessary equation for they-direction. 

W(x- .6.x1y1t+ At) - 2-l(x,y,t+ .6.t) + W(x+ .6.x,y,t+ .6.t) + 
( c.x)2 

W(x,y- c,y 1 t+2 .6. t) - 2-l(x,y, t+2 .6. t) + W(x,y+ c. y, t+2 At) 

( .6. y )2 

C (W(x1y,t+2.6.t) -W(x,y,t+.6.t)) 
.6.t 

= 

It should be noted that the unknown values of Win Equation 

( 3-3) 

(3-2) become the known values of Win Equation (3-3). Also, according 

to Douglas (2), .6.t in the y-direction must be equal to the .6.t used 

in the x-direction for any one double time step in order for the 

method to be stable • 

If .6.X : .6.y and 0( = C ( .6.x)2 Equations (3-2) and (3-3) can be .6. t , 

rearranged in the following form, respectively: 



In the x-direction 

- W(x-c.x,y,t+ t:.t) + (2+o<) W(x,y,t+ t:.t) 

W(x+c.x,y,t+ t:.t) = W(x,y-c.y,t) + (Q(.-2) 

W ( X 1 y 1 t ) + W ( X, y+ 6 y , t ) 

In they-direction 

- W(x,y-c.y,t+2t:.t) + (2+o() W(x,y,t+2 c.t) -

W(x,y+Ay,t+2At) = W(x-t:.x,y,t+6t) + (o(-2) 

W(x,y,t+.t..t) + W(x+t:.x,y,t+t:.t) 
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(3-4) 

(3-5) 

To start the problem, Equation (3-4) is written for each point 

in the x-direction preceding from the left of the integration network 

going toward the right. This results in the formation of smell sets 

of simultaneous equations. There will be es many sets of equations 

as there ere lines in the network in the x-direction. Each set of 

equations will have as many unknowns es there ere points on the line. 

After boundary conditions have been accounted for, these sets of 

simultaneous equations cen always be arranged es follows: 

B1W1 + C1W2 : D1 

AiW i-1 + BiW i + ciw i+l : Di 

~Wn-1 + BnWn = Dn 

( 3-6 ) 

where n is the number of points per line end A, B, C end D ere constant 

coefficients. 

L. H. Thomas (3) solved these equations by the following non

iterative technique. 
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Let 

(3-7) 

and 

(3-8) 

The solution is 

W : G 
n n 

1~ i~ n-1 (3-9) 

G and Z are computed in order of increasing i, and Wis computed 

in order of decreasing i. 

After new values of W at time, t + At have been calculated for 

the entire network in the x-direction, the procedure outlined above is 

repeated in they-direction at time,t + 2 At. This constitutes one 

double time step increasing t by 2 At. A new At can now ,be .selected 

for use in the next double time step. The process is repeated over 

and over until a solution for the desired time is obtained. 



CHAPl'ER IV 

APPLICATIONS OF THE MEn1HOD 

The differential equations describing linearized unsteady-state 

gas, heat end single-phase fluid flow through porous media are very 

similar. With the proper modifications, Equation (3-1), can be used 

for each type of flow in two dimensions. Also it is possible to have 

a point source or sink et each point in the integration network by 

making a simple addition to Equation ( 3-1). For adaptation to 

reservoir work, the source would correspond to en injection well and 

the sink to a production well. 

For heat flow, Equation (3-1) may be modified by making the 

subs ti tut ions C = C:p f> and U = T. This gives 
K 

After substituting finite differences for the derivatives in 

(4-1) 

Equation (4-1) as was described in Chapter III, working equations 

similar to Equations (3-4) and (3-5) are obtained for each mesh point 

in the x- and y-direction. 

For the x-direction 

- T ( x- .ti. x I y I t+ .ti. t ) + ( 2+ o<. ) T ( x, y, t+ .ti. t ) 

- T(x+.ti.x,y,t+t.t): T(x,y-.ti.y,t) + ( o<.-2) ( 4-2) 

T ( X, y, t ) + T ( X, y+ 6. y, t ) 

9 
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For they-direction 

- T ( x, y- A y, t+2 At ) + ( 2+ 0( ) T ( x, y, t+2 At ) 

- T(x,y+Ay,t+2 At) = T(x-Ax,y,t+ At) + ( ol -2) ( 4-3) 

T(x,y,t+ At)+ T(x+Ax,y,t+ At) 

h rJ : Cpp ( AX)2 
w ere ~ K At 

It remains to form difference equations for the source or sink 

points. This can be achieved by assuming linear flow into a small 

finite block of unit thickness such as the one shown in Figure 1. 

The flow of heat across the right hand face is approximated by 

the equation 

(To - T1) 
ql = K( AY • 1) (4-4) 

AX 

Similar equations hold for the other sides of the square. For 

Ax : Ay, the total flow into the square would be 

q - K( 4T - T - T - T - T4 ) - O 1 2 3 (4-5) 

By letting Q: ~, the equation for a heat source at point x,y, which 
K 

satisfies steady state conditions, would be 

- T(x-Ax,y) - T(x+Ax,y) - T(x,y-Ay) 
( 4-6 ) 

- T ( X, y+ A y ) + 4T ( X, y ) = Q 

Working Equatio'[):l(4-2) and (4-3) are modified in order to converge to 

this solution. After modification, they are 

For the x-direction 

- T(x-Ax,y,t+At) + (2+CX.) T(x,y,t+ At) 

- T ( x+ Ax, y, t+ At ) : Q + T ( x, y- A y, t ) + ( o<:: -2 ) ( 4-7) 

T(x,y,t) + T(x,y+Ay,t) 
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For they-direction 

- T(x,y-.6.y,t+2.6.t) + (2+0() T(x,y,t+2 .6.t) 

- T(x,y+.6.y,t+2 .6.t) : Q + T(x - .6.x,y ,t+ .6.t) + ( ot.. -2) (4-8) 

T(x,y,t+ .6.t) + T(x+.6.x,y,t+ .6.t) 

These equations were presented by Douglas end Peacemen ( 3) and may be 

used for both steady- and unsteady-state heat flow problems. 

Equations for finding pressure distribut ions and flow patterns fo r 

compressible fluid flow may be formed by modifying Equation ( 3-1) . If I 

.U ¢ C is substituted for U end k for c, Equation (3-1) describes flu i d 

flow in two dimensions. These substitutions give 

(4-9) 

where 

P = Pressure, atmospheres 

x end y = Distance, centimeters 

.A.i = Average viscosity, centipoises 

¢ = Fractional porosity 

c = Compressibility factor, 1 
atmospheres 

k =Permeability, · darcys 

t = Time, seconds 

Working equations are obtained for each mesh point in the manner 

described previously . The class i cal units in Equation (4-9) are 

converted to practical field units. 

For the x-direction 

- P(x-L'l.x,y,t+ L'l. t) + (2+oc) P(x , y ,t+ .6.t) 

- P(x+.6.x,y,t+L'l.t) = P(x,y-.6.y) + ( ex: -2) (4-10) 

P(x, y,t) + P(x,y+.6.y,t) 
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For they-direction 

- P(x,y-l:..y,t+2 At)+ (2+cx.) P(x,y,t+2At) 

- P(x,y+Ay,t+2 At): P(x-Ax,y,t+At) + (cx -2) ( 4-11) 

P(x,y,t+At) + P(x+Ax,y,t+At) 

where 0( = 3793 .5 J1¢c ( Ax )2 or in terms of dimensionless t ime , 
k At ' 

1 -Ato 
The units are 

P = Pressure, pounds per square inch 

Ax : Distance increment, feet 

At= Time increment, hours 

l 
c = Compressibility factor, pounds per square inch 

¢=Fractional porosity 

ii: Viscosity, centipoises 

k = Permeability, millidarcys 

For a source point at the point x,y, equations similar to Equa-

tions (4-7) end (4-8) can be developed for fluid flow. These ere 

For the x-direction 

- P(x+Ax,y,t+ At)+ (2+0() P(x,y,t+ll.t) 

- P(x+Ax,y,t+ll.t) = Q + P(x,y-ll.y,t) 

+ ( Ol -2) P(x,y,t) + P(x,y+ll.y,t) 

For they-direction 

- P(x,y-6.y,t+2 6.t) + (2+CX:.) P(x,y,t+2 6.t) 

- P(x,y+6.y,t+26.t): Q + P(x-6.x,y,t+ll.t) 

+ ( ol-2) P(x,y,t+ c..t) + P(x+ll.x,y,t+ 6.t) 

The units are the same as in Equations (4-10) and (4-11) with Q 

equal to l58.5 iiq • 
hk 

( 4-12) 

(4-13) 



Units for Qare 

Q = Flow rate, pounds per square inch 

-JJ. = Viscosity, centipoises 

q = Flow rate, barrels per day 

h: Formation thickness, feet 

k = Permeability, millidarcys 

Equation (3-1) can also be adapted to gas flow problems by 

letting U = P2 and C = ¢t!l. The equation then becomes 
kP 

cJ2p2 + d2p2 = ¢ .ii cJp2 

dx2 dy2 k P d t 

14 

(4-14) 

which has the same classical units as Equation (4-9). The term, P, is 

taken as the average reservoir pressure in atmospheres. This assumption 

makes the differential equation linear, thus simplifying the problem. 

Dr. Rachford (8) has suggested that such an assumption will cause 

considerable error in material balance calculations. He suggests that 

unsteady-state gas flow be handled in the manner set forth by Douglas, 

Peaceman and Rachford (4). 

It was found, however, that the method which assumes an average 

reservoir pressure would check with existing analytical solutions in 

which the same assumption was made. This would not necessarily mean 

that the method was correct, but it would provide a means of determining 

the computer program's validity. 

Difference equations are again formulated for each mesh point and 

the units are converted to practical field units. This gives 

For the x-direction 

- P2(x-6.x,y,t+.6.t) + (o<. +2) P2(x,y,t+ 6.t) 



- P2(x+Ax,y,t+ ti.t) : P2(x,y-.o.y,t) 

+ ( o('.-2) P2(x,y,t) + P2(x,y+ti.y,t) 

For they-direction 

- P2(x,y-Ay,t+2 At)+ (o( +2) p2(x,y,t+2 At) 

- P2 ( X, y+ 6 y, t+2 l:. t ) : p2 ( X- A X, y, t+ 6 t ) 

+ (o<. -2) P2(x,y,t+At) + P2(x+.o.x,y,t+At) 

where ~ = 3793.5 ~¢ ( l:lx)2 which is the reciprocal of 
k P ( 6t) 

dimensionless time, .O.'ti)• 

The units are 

P2 : Pressure2, (pounds per square inch)2 

J.l = Viscosity, centipoises 

¢ = Fractional porosity 

6x : Distance increment, feet 

k : Permeability, millidarcys 

P = Average pressure, pounds per square inch 

At = Time increment, hours 

15 

( 4-15) 

(4-16) 

For a source at point x,y in gas flow problems, difference equations 

can be developed. They are 

For the x-direction 

- P2(x-Ax,y,t+At) + ( o{ +2) P2(x,y,t+At) 

- P2(x+Ax,y,t+At) = Q + P2(x,y-Ay,t) ( 4-17) 

+ (ol-2) P2(x,y,t) + P2(x,y+Ay,t) 

For they-direction 

- P2(x,y-Ay,t+2At) + (~+2) P2(x,y,t+2At) 

- p2(x,y+Ay,t+2At) = Q + P2(x-Ax,y,t+~t) (4-18) 

+ ( o,c: -2) P2(x,y,t+At) + P2(x+Ax,y,t+At) 



The flow rate, Q equals 8,930 .ii z T 9 
hk 

where 

ji = Average viscosity, centipoises 

z = Average compressibility facto r 

T = Reservoir temperature, OR 

q : Flow rate, MCF /day 

h = Formation thickness, feet 

k = Permeability, millidarcys 

Other terms are defined after Equation (4-16). 

At this point it should be noted that the Q developed in the 

16 

foregoing discussion was for en interior network point. For a corner 

source point, only one-fourth of Q would be used for the flow rate in 

the difference equations, since it is bounded by only one-fourth of the 

region in question. Similarily for a side boundary point, one-half of 

Q would be used in the difference equations. 



CHAPl'ER V 

THE COMPUTER PROGRAM 

The alternating-direction implicit method described in Chapter III 

was programed for the IBM 650 computer using 650 Fortran language. The 

program solves the general two dimensional unsteady-state equation in a 

rectilinear region having uniform properties. With the proper data 

selection, it will solve each of the applications described in 

Chapter IV. 

Two boundary conditions were incorporated in the program. The 

first was, U = U0 , where U0 is the initial value of u. The other 

dU condition was JL: o, where Lis a symbol for distance. The second 

condition imposes the restriction of no flow across a boundary line. 

The condition, U = u0 , may also be met at any point in the region by 

choosing the proper data. 

A point source may be located at any point in the region if the 

particular point is not beign held constant. By data arrangement, 

flow rates from the source points may be changed at preselected times. 

This provides the program with the ability to handle multiple transient 
. . , . .. : 

flow problems in irregular shaped finite regions. As many as eight 

different flow rates may be used in any one problem. A given flow rate 

can be used at any desired number of points. A positive rate is used 

for an injection point and a negative sign is used for a production 

point. 

17 
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A 14 x 14 point grid, denoted by the doubly subscripted variable, W, 

comprises the region in which any figure, composed of straight lines in 

the vertical and horizontal direction, may be imposed. The boundary of 

the figure must be approximated by the grid lines. The conventional 

positive x-direction is denoted in the program by an increasing J 

value. The conventional negative y-direction is indicated by an 

increasing I value. This is shown in Figure 3. 

Another 14 x 14 array, denoted by KCON, serves as a control for 

each of the points in W. KCON values are subscripted by I and J , as 

were the W values. 

The general plan of the program is to begin with W values at an 

initial time and calculate values of Wafter some increment of time. 

This calculation is made in the J direction by following the mathematical 

method described in Chapter III. After this calculation has been 

completed, the time increment is increased and the calculations are 

made again in the I direction. The procedure is repeated until the 

desired time has been reached. 

A generalized block diagram showing all important steps in the 

program is given in Figure 2. Many details were omitted for brevity . 

The complete 650 Fortran program is listed in Table I. 

The DIMENSION statement (600) reserves 527 locations in memory for 

the variable array, w, the fixed control array, KCON, and an eight 

place array for flow rate (Q) values. Space is also reserved for all 

other subscripted variables used in the program. 

Statement (601) reads the maximum number of calculation points in 

the I direction (M) and the J direction (N). The working variable array , 
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TABLE I 

THE 650 FORTRAN PROGRAM 

600 DI MENS IONW 114,1411KCON 1141141, 52 0 AIMAl•-1,0 
6ll0 All41,Bll41,D11511Cll411Zll411 54 0 DIMA!•D1MAl+2,0•Wll-l,JI 
600 c; 1 14 1 , R 1 14 1 , KP 1 14 1 , o I e 1 , R 21 14 1 · 55 0 G0T090 
6Ul 0 R[AD,M,N 56 0 AIMAl•-1,0 
60 2 0 READ,W 57 0 CIMA!s-1,0 
603 0 READ1KCON 59 0 GOT068 
607 0 READ,MAX 63 0 CIMAl•-2,0 
65 0 0 READ,POR,VIS,DELX,COE,COM,PERM 65 0 GOT068 
655 0 READ,TTIME 66 0 AIMAl•-2,0 
654 0 TIME•O, O 68 0 DIMAl•DIMAl+WI l+l,Jl+WI 1-1,JI 
200 0 KDIR=l 69 0 GO T090 

3 0 KTHEA=l 70 0 Al MA I <-1,0 
651 0 READ, IMAX 7 I 0 DIMAl•DIMAl+WI 1,J+ll 
996 0 TTIMX=O,O 72 0 GOT068 
6U4 0 READ,Q 73 0 CIMAl•-1,0 
652 0 READ,D ELT 74 0 DIMAl•DIMAl+WI 1,J-il 
653 0 ALPHA=ICOE•POR•COM•VIS*DELX•DE 75 0 GOT068 
653 1 LXI/IDELT•PERMI 76 0 AIMAl•-1,0 

4 0 I= I 77 0 DIMAl•D'IMAl+WI I 1J+ll 
5 0 J• 1 78 0 GOT043 

202 0 KDO= O 80 0 DIMAl•DIMAl+WI 1,J-11 
6 0 MA•O 81 0 GOT04 l 
7 0 DIJl•O,O 83 0 DIMAl•DIMAl+WI I ,J+ll 
8 0 IFIKCONIJ,Jl-100129,210123 84 0 GOT052 

210 0 If IMAl9,9,95 85 0 CIMAl•-1,0 
9 0 J•J+l 86 0 DIMAl•OIMAl+Wll,J-11 

10 0 IF I J- IN+ 11 I 7, 2 12, 212· 87 0 GOT054 
212 0 IF I K DO l 11 ,I I , 2 I 3 90 0 B1MA)•ALPHA+2,0 
213 0 lflKOQ-11218,214,214 91 n DIMA)•DIMAl+IALPHA-2,0l*Wll,JI 
214 0 D02l7K•l,N 92 0 J•J+i 
215 0 IF I KCONI I ,K 1-1001216, 217,216 93 0 JFIJ-IN+ll 17,440,440 
216 0 R2 I KI •RIK I 440 0 IFIKD0-11-111218,218,95 
217 0 CONTINUE 95 0 21 11 •B 11 I 
230 0 GOTO! I 96 0 D098K•2,MA 
218 0 0022!K•l ,N 97 0 KM•K-1 
219 0 IF IKCONI J-l,Kl-1001220,2211220 98 0 Z I KI •BI K 1-1 A I K I• C I KM I I/ Z I KM I 
220 0 WI 1-!,Kl=R21KI 99 0 GI ll•D(ll/ZI II 
221 0 CONTINUE 100 0 D0!02K•2,MA 
22 2 0 lfll-lM+lll223,ll5,ll5 10 l 0 KM•K-1 
223 0 D0226K=l 1N 102 0 GI Kl•IDIKI-AIKl*GIKMI l/ZIKI 
224 0 IFIKCONI l,Kl-100)22512261225 430 0 NA•Kx+MA-1 
225 0 R21Kl•RIKI ) OJ 0 RINAl=GIMAI 
?26 0 CONTINUE 104 0 MB•MA-1 
227 0 IF I MA I 11 , 11, 95 j o5 0 D0!07K•l ,MB 

11 0 I• I+ I 106 0 JQ•MA-K 
12 0 J• i 431 0 NO•KX+J0-1 
13 0 lfll-lM+ll 17,218,218 107 0 RINO)•GIJOI-ICIJOJ•RINO+ill/ZI 
23 0 D028K=l,B 107 I JOI 
24 0 IFIKCONll,Jl-111-Ki•I00l281281 402 0 KX =0 
24 I 701 108 0 MAi::Q 

70 I 0 MA=MA+ I !09 0 GOT09 
702 0 OIMAl=O,O 115 0 KTHEA•KTHEA+l 

25 0 D(MAl=DIMAl+OIKI 799 0 TIME•TIME+DELT 
2b 0 ISUB=KCONI l ,Jl-111-Kl•IOO 995 0 TTIMX•TTIMX•DELT 
27 0 GOT0500 800 0 MZ=N 
28 0 CONTINUE . 801 0 N=M 
29 0 ISUO•KCONI I ,JI 802 0 M=MZ 
30 0 MA•MA+l 116 0 GOTO I 11 7 , 11 9 I , K DJ R 

499 0 DIMA)•O,O 11 7 0 KO lfl•2 
500 0 Jf1KD0l4201501,420 118 0 GOT0120 
501 0 KOO = I 119 0 KDIR=l 
420 0 IFIMA-114211'• 2 \ 131 120 0 D0129KJ•l1MAX 
421 0 KX=J 12 2 0 D0l28K•Kl ,MAX 

3 J 0 GOTOl 32,331,KDIR 123 0 RIKl•WIKl,KI 
32 0 GOTOl5613413714514B163,4016615 124 0 KPIKl•KCON(Kl, KI 
32 l 1170,561 70 173,56,73,70,73,63,6 }25 0 WIKI ,Kl•WIK,KI I 
32 2 J,b6t66t 8J ,85t 76,BO)tl5UB 126 0 KCON(Kl,Kl•KCONI K,Kll 
33 0 GOTOl56,34145137,48140,6315!,6 12 7 0 WIK,Kl)•RIKI 33 I 6,56,70170,56173173,7317017b,8 128 0 KCONIK1Kll•KPIK) 
33 2 018J1U5,6616b,6316Jl1JSUB 129 0 CONTINUE 
34 0 CIMAl=-2,0 449 0 lflT!ME-TTIMEl550,452,452 
36 0 GOT043 550 0 GOT01450,1,1 ,KDlll 
37 0 AIMAl•-2,0 450 0 If lTTIMX-TMAXlb5 2 1998,998 
39 0 GOT043 998 0 PUNCH,W 
40 0 Al MAI •-1,0 990 0 PUNCH,ALPHA1TTIME,TTIMX1TMAX1D 
41 0 CIMAl=-1,0 990 I ELT,KTHEA 
43 0 DIMAl=DIMAl+2,0•W(l+l1JI 997 0 GOTOb5! 
44 0 GOT090 452 0 GOTOll121ll6l,KDIR 
45 0 CIMA)•-2,0 132 0 PUNCH,W 
47 0 GOT054 133 0 PUNCH,KCON 
46 0 AIMAl•-2,0 135 0 PUNCH,KTHEA,TTIME 
50 0 GOT0>4 138 0 GOT0601 
51 0 CIMAl=-1,0 J 36 0 END 
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W, is read in memory by statement (602). The control array, KCON, is 

read into memory by statement (603). Selection of KCON control values 

will be discussed later. Statement (607) reads the maximum number of 

points (MAX) in either the I or J direction. This number equals the 

larger of the two numbers Mand N. Statement (650) reads the different 

variables involved in calculating the ALPHA value discussed in Chapter 

IV. For oil and gas field applications, POR is the symbol for porosity , 

VIS for viscosity, DELX for incremental distance, COE for conversion 

factor, COM for compressibility factor end PERM for permeability. Units 

and values for the various properties end factors ere discussed in 

Chapter IV. 

The total time (TTIME) desired is read by statement (655). 

Statements (654) through (3) initialize the following variables to 

begin the first time step: TIME is a variable which represents 

cumulative time in the program. KDIR denotes the direction in which 

the calculations are preceding. For KDIR equal to one, the calculations 

are in the J direction. For KDIR equal to two, the calculations are 

in the I direction. KTHEA represents the number of times the cal

culations have been made across the array plus one. 

The total time, TTIME, may be sub-divided into parts. Each of 

these parts are denoted by TMAX in the program. Statement (651) reads 

the value of TMAX into memory. At the end of each of these sub-times, 

the flow rates at each of the source points may be changed. Statement 

(996) initializes the cumulative sub-time variable TTIMX to begin a 

new calculation. Flow rates for existing point sources are reed by 

statement (604). 
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DELT, the time increment, is reed by statement (652). This time 

increment is used for one double time step in the calculations, once in 

the J direction end once in the I direction. For the program to work 

properly, DELT values must be arranged so that twice the summation of 

the time increments in any sub-time increment equals the sub-time total 

reed for TMAX. 

Statement (653) calculates ALPHA. Statements (4) through (7) 

initialize the variables to start the calculations. The calculations 

ere started in the upper left corner of the W errey. Each point in 

the first row of the array is inspected to determine if it is e valid 

calculation point by statement (8). Also determined is whether the 

point is e source point. If the point is note calculation point, the 

J value of the point is increased by statement (9) end the next point 

is inspected. If the point is a valid calculation point but note 

source point, the calculations ere routed through statements (29) to 

(92). These statements .decide what type of point has been encountered 

end calculates the proper coefficients for the point. These coefficients 

ere described in Chapter III. The J value of the point is then 

increased and the next point in the row is investigated. If the point 

had been a source point, the calculations would have gone through 

statements (23) to (92) which makes the additions suggested by 

Equations (4-7), (4-12) end (4-17). 

When coefficients for the existing calculation points ere deter

mined, the unknown values et each of the points ere solved for by 

statements (95) to (107). This is done in the manner outlined in 

Chapter III • 



When all points in the first row have been examined and all 

unknowns are found, the I value is increased and the above procedure 
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is repeated for the next row. After the entire array has been covered, 

the time variables are appropriately increased, and the second pert of 

the double time step can begin. 

In order to use the same equations for the next time step in the 

I direction as were used in the J direction, both the Wand KCON 

arrays were inverted about the dotted diagonal shown in Figure 3. 

This was accomplished by statements (120) to (129). 

Statement (449) checks to see if the desired time (TTIME) hes 

been reached. If it has, Wend KCON ere punched by statements (132) 

and (133). Statement (135) punches KTHEA end TTIME. Control is then 

referred back to statement (601) to begin en entirely new problem. 

If the desired time has not been reached, calculations for the 

second part of the double time step begin in the I direction. 

When the complete double time step has been finished, statement 

(449) again checks to see if the desired time hes been reached. If it 

has, the answers described previously are punched. If the desired time 

has not been reached, statement (450) checks to see if the desired 

value for sub-time, TMAX, has been reached. If it hes not, a new 

time increment, DELT, is read by statement (652) and calculations 

begin on the next double time step. 

If TMAX has been reached, statement (998) punches the W array end 

statement (990) punches ALPHA, TTIME, TTIMX, TMAX, DELT and KTHEA. 

TTIMX should be equal to TMAX et this time. 

Statement (997) sends the program to statement (651) which reads 
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TABLE II 

POINT CONTROLS 

l'OIHT COlll>ITIOI 

Point 11 a 00-,11 point in both l• and T-dir1otlo11. 

Point 11 an _outer upper hit dde oornor point and h a retloot1011 point 
in. both x .. and T-dir1ot1011. 

Point la an outer upper right dde oornor point and la a retleot1on point 
111 both l• and T•cllreotlon. 

Point 11 an outer lower lett dde corner point and le a rethotion point 
ln both l• and T-dlreotlono 

Poillt la an outer lower right 1lde oorner point and 11 a rotleotion point 
1n both l• and T-cll reotlo110 

Point la a rothotlo11 poillt 011 the hit aide ln the l-cllrootlon and a 
rotleotlon point on the top line 111 the T-dlrootlon. 

Point la a retleotlo11 point on the top line ln tho l•direotlon 1114 a 
rethotlo11 point 011 th• loft dde 111 th• Y-direot1on. 

Point la a rotleotlon poli:lt on the right 1lde 1n the l•dlreotion and bottom 
retleotlon point in the Y•dlr1otlo11. 

Point la a refl1otlo11 poillt on tho botto11 111 the X-dlreotlo11 and right 11de 
rotlootlo11 point 1n the Y•cllreotlo11. 

Poillt le preceded by a oon1tant iii the X-dlreotlon and not 111 Y-dlrootion. 

Point la preceded by a ooa1tant in the Y•dlrootlon and not ln the 
X -dlreotlon. 

PolDt le preoeded by a 00111tant ln both dlrootio111 • 

PolDt la followed by a 00111tant ln the X•dlreotlon and not ill thl 
Y-dlreotlo11. 

Point i• followed by a oonetant ln the T•cllreotlo11 and not in the 
X-dlr•Otlon. 

Point 11 followed by a 00111tant in both the X• and T-dlreotlono 

Poillt la preoeded by a oon1tant ln tho X-dlreotlo11 and tollowod by a 
oonetant in tho Y-dlrootion0 

Point l• preceded by a oonetant in tho Y•dlreotlon and followed by a 
00111tant li:I tho l-dl reotlo11e 

Point 11 a rotlootlon point on the hit old• in the X-dlreotlo11 and a 
rothotlon poillt on the top 11111 ln the Y•direotlon. fhe point 11 
prooeded by a 00111tant li:I the Y-c!lreotlon and not ill the X-c!ireotlo110 

Polllt la a reflootlon point on tho left •id• ln the l•dlrootlon and a 
rethotio11 point 011 the top line ill tho Y•dl rootion. Th• point h 
followed by a oon1tant in th, T-diroot1on and not in tho X•dirootion. 

Point 11 a rotleotion point on tho right lid• in tho X•dirootion and 
bottom rofhotio11 point 111 the T-dlreotio11. The point 11 pr1ood1d by 
a 00111tant ill the Y•dlrootio11 and not tho X-direotiono 

Poli:lt h a rothotlon point on tho right lldl lo tho l-direotlon and 
botto• retleotlon point in tho T•direotlon, Point la followed by a 
oonetant in th• T-clireotlon and not in tho X•dlreotion. 

Point 11 a rethotion point on the botto• in the l•dirootion and right 
aide reflection polllt in the Y•direotion, Point 11 prooeded by a o<ll•tant 
111 the X•dlrootlo11 and not in the T•dirootlon. 

Point la a retleotion poli:lt 011 tho bottom lo tho X-dlrootlo11 and right 
llde rotleotlon point 111 the T•direotlon. Tho point 11 tollowod by a 
00111tant in the X-dlreotion and not ln the Y-dlrootlono 

Point la a refhotion polllt on th• top line ln the lt•dlreotion and a 
rofleotlon point 011 the lett 1ld1 in the Y•dirootlon, Poillt 1a preooded 
by a oonatant 111 the l•dlreotlon and not ln the Y•dlrectlon, 

Point la a reflection point on the t op line in the X•direotlon and a 
reflection point on tho loft aide in the Y•dlrootion. The point ii 
followed by a oon1tant in the X•direotlo11 and not in the Y•dlr1ctio11, 

Point ii a 00111tant or doll not mter into th• oaloulatlona. 

24 
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a new value of TMAX. Statement (6o4) reads new values of flow rates, 

and statement (652) reads a new value of DELT to begin calculations on 

a new double time step. 

It is advantageous when handling a configuration which doesn ' t 

require the full 14 x 14 array to place the configuration in the upper 

left corner of the array. The maximum number of points used in either 

the J or I direction should be determined and tabulated es MA.X. This 

will speed the calculations since the entire 14 x 14 array will not 

have to be scanned. 

Data input for the program is made up by first determining the 

maximum number of points used in any column in the I direction. This 

number is tabulated as M. Then the maximum number of points used in 

any row in the J direction is tabulated es N. Mend N ere punched on 

the same data card in fixed point form. 

Initial values for the variable array, W, ere punched into date 

cards in floating point form. The first two date cards contain W 

values for the extreme left column of the array. The second two date 

cards contain W values for the second column of the array, etc. 

KCON values are determined by looking et each point in the W array 

and assigning a KCON number to it. These numbers along with the 

corresponding point conditions are tabulated in Table II. 

A KCON number of 100 was assigned to constant points and other 

points that do not enter into the calculations. The boundary 

condition, ~U = O, leads to the situation involving fictitious 
dL , 

reflection points along the boundary in question. This end other 

conditions are illustrated in Figure 3. 



27 

For source points, KCON numbers ere modified by adding e constant 

to the number determined from Table II. If the first value in the Q 

array is to be us~d as a flow rate, 1,000 is added to the KCON number. 

This is decreased by 100 for each succeeding Q value. For example, to 

use the eighth Q value, 300 would be added to the KCON value. 

Values for KCON are read in memory in fixed point form in the 

manner previously described for W values. 

On the next data card, the value for MAX is punched in fixed point 

form. This is followed by a card punched with floating point values for 

the properties and factors: POR, VIS, DELX, COE, COM, end PERM. 

Next, the total time ('!'TIME) desired is punched in floating point 

form in the next date card. This is followed by a card punched with 

the value for the first sub-time total, TMAX. Two cards with Q values 

follow. The first card contains seven flow rates while the second 

contains one. 

Following this, comes cards with time increments, DELT. Twice 

the sum of the time increments should equal the value reed in for TMAX. 

This is followed by cycles of TMAX, Q and DELT until the total desired 

time is reached. 

When each sub-total time, TMAX, is reached, values for Wat that 

cumulative time level will be punched. These W values will have the 

same arrangement es the original date input. Values for ALPHA, '!'TIME, 

TTIMX, TMAX, DELTA, and KTHEA are also punched. 

~hen the total desired time TTIME has been reached, the W array 

will be punched followed by KCON array, KTHEA end '!'TIME. 



CRAPrER VI 

APPLICATION OF THE COMPUTER PROGRAM 

The following unsteady-state gas flow problem will illustra t e the 

use and also check the validity of the computer program. 

A one-mile square portion of a natural gas reservoir exists at an 

initial uniform pressure of 480 psis. The reservoir is characterized 

by the following physical properties: 

Permeability, k = 20 millidarcys 

Porosity,¢ - 0.10 -
Viscosity, .ll 0.012 centipoises 

Average pressure, p - 400 psis -
Formation thickness, h - 60 feet -
Compressibility factor, - 0.95 z -
Temperature, T - 550 °R -

Producing wells have been drilled at each of the corners of the 

square. Each well is produced at the rate of 400 MCF per day for 

20,000 hours. 

It is desired to calculate a pressure drawdown curve for a 

point at the center of the square reservoir during this flow period. 

For the computer solution, the problem was reduced by symmetry to 

-that of only one well at the upper left corner of the square producing 

28 
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at four times the rate previously described for the four wells, or 

16,000 MCF per day. 

The upper left quarter of the square is covered by a 14 x 14 net 

corresponding to the W array described in Chapter v. The lower right 

corner of the array becomes the point for which the drawdown is to be 

found. 
'• ·,., 

KCON values are selected for each point in the W array from Table 

II. 

The flow rate, Q, at the upper left point of the array is deter-

mined in the manner described in Chapter IV. The point in question 

is a corner point; therefore, 

Q-: g,_: 8,930.u z T q 
4 4hk 

Q - 8,930 (0.012) (0.95) (550) (400) -
4 (60) ( 20) 

(6-1) 

18,664 psia2 

The other variables involved in the calculations are determined 

and are punched in data cards. Data format is shown in Table III. 

A time increment of 10 hours was used to start the problem. This 

was increased by a factor of approximately 1.2 for each succeeding 

double time step. 

Answers for the problem were punched at pre-determined times. 

One set of answers is given in Table IV for 190 hours of flow. 

To check the computer results, Horner's (6) point source 

solution for an infinite reservoir was used to calculate a similar 

drawdown at the point in question. 
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TABLE I II 

DATA FORMAT 

.. N 
14+ 14+ 

w ARRAY INITIAL VALUES 
2304 0 00056+ 2304000056+ 2304000056+ 2304000056+ 2304000056+ 2304000056+ 2304000056+ 
23040000'>6+ 2304000 05 6+ 2304000056+ 2304000056+ 2304000056+ 2304000056+ 2304000056+ 
2304 U00C56+ 21 0400005 6+ 2304000056+ 2304000056+ 2304000056+ 2304000056+ 2304000056+ 
23;,;4QQ0056t 23 0 40 00056 + 2304000056+ 2304000056+ 2304000056+ 2304000056+ 2304000056+ 
2304000056+ 23 0 4000056 + 2 304000056+ 2 3 04000056+ 2304000056+ 2304000056+ 2304000056+ 
z3:i4 uo;.,u5 6+ 23 C! 4 000056 + 2304J0 00 56+ 2304000056+ 2304000056+ 2304000056+ 2304000056+ 
23:)4UOU056 + 23 J 4U00056+ 23 0 4000056+ 2304000056+ 2304000056+ 2304000056+ 2304000056+ 
230t.i :.: OC 0 56+ 23 0 ,. 0 00056 + 23040000 56+ 2 3040000 56 + 23040000!i6+ 2304000056+ 2304000056+ 
23 .J 4 UGOV)6+ 2304 000 056+ 2304000056+ 2304000056+ 2304000056+ 2304000056+ 2304000056+ 
23 ~ 40CO V'J 6+ 23 V4 000056t 230'•00 00 56+ 2304 00 0 0 56+ 23 0 40000 56+ 2304000056+ 2304000056+ 
23:J40000~6 + 2~ 0 4 0 00 0 56+ 2304000056+ 2304000 G5 6+ 23040000 5 6+ 2304000056+ 2304000056+ 
23 U40C OCi'j6 + 230 4 0000 56+ 23 04000056+ 2304000 (.1 56+ 2304000056+ 2304000056+ 2304000056+ 
23 01100()';5 6+ 2~ 0 40000 56+ 2'0400 0C5 6+ 230400005 6+ 23040000 5 6+ 2304000056+ 2304000056+ 
23) 4 JOOOS 6+ 2, 0 4 ::000 56+ 230400 () 056 + 2304000056 + 2304000056+ 2304000056+ 2304000056+ 
,?3)4 1JUOO':i 6+ 2304 0000 56+ 230 4000056 + 2304000 0 56+ 23 0 40000 56+ 2104000056+ 2304000056+ 
2 3:it.i U(10 G? 6+ 230 4 0000 56+ 230 400 00 56+ 2304000 U56+ 2304000056+ 2304000056+ 2304000056+ 
23;) 4 U0o056 + l30 4 UOO U56+ 230400 0 C56+ 2304000056+ 2304000056+ 2304000056+ 2304000056+ 
2 3 :.' 4..; 0(.. ;.:5 6+ 230 4 000056+ 230 400 00 56+ 2:i o,,000 0 56+ 23 0400005 6+ 2304000056+ 2304000056+ 
23 ·J 4U 0llvl; 6+ 2 '\0 4 000 0 56+ 230 40U 00 56+ 230t,QUOU~6+ 2304000056+ 2304000056+ 2304000056+ 
23,Jt, CQJJ::.. 6-+- 23U 4 00c05 c+ 2304000 05 6+ 2304000056+ 2304000056+ 2304000056+ 2301,000056+ 
23u,. uo ::.;01;:i6+ 230 4000 0 56+ 23 04000056+ 2304000056+ 23040000 5 6+ 2304000056+ 2304000056+ 
z3 :.i ,. 0 0 ;.., u'J6 + 2'040000 56+ 230 400 0056 + 2304000 0 56+ 2304000056+ 2304000056+ 2304000056+ 
?30 4 000056 + 2104000 0!) 6+ 230 4000056+ 2304000056+ 2304000056+ 2304000056+ 2304000056+ 
2 3· J4 0000 'i6+ 2)0 4 0 000 ~6+ 230 40 00 056+ 2304 000 0 56+ 2304000056+ 2304000056+ 2304000056+ 
23,) 4 00005 6+ 2,0,.0000 56+ 2304000056 + 2304000 0'> 6+ 2304000056+ 2304000056+ 23 0400005 6+ 
?!0 4 CC00?6 + :? 1 04GU(H) 56 + 210Lt0 00G5 6+ 2104000 8 56+ 2304000056+ 2304000056+ 2304000056+ 
2304LJO •.J(J~)6 + 2 ] 040 000 56+ 2304000056 + 2304000056+ 2304000056+ 2304000056+ 2304000056+ 
:?3Gl1'JUvi.J~ 6+ 23 0 4 0000? 6+ 230 400 00 56+ 2.304000056 + 23040000',6+ 230400005 6+ 2304000056+ 

KCON CONTROL ARRAY 
l UU 2+ 6+ 6+ 6+ 6+ 6+ 6+ 

6+ 6+ 6+ 6+ 6+ 6+ 4+ 
7+ J t J + l+ l+ J+ l+ 
J+ J+ l+ J+ J+ I+ 9+ 
7+ l+ J+ I+ l+ I+ I+ 
I+ I+ I+ l+ l+ l+ 9+ 
7+ l+ l+ l+ l+ l+ l+ 
l+ I+ I+ l+ l+ l+ 'l+ 
7+ l+ l+ l+ l+ l+ I+ 
I+ 1 + I+ I+ l+ l+ 9+ 
7+ I+ l+ I+ l+ l+ l+ 
I+ I+ l+ l+ l+ l+ 9+ 
7+ l+ l+ l+ l+ I+ l+ 
1 + l+ 1 + l+ l+ I+ 9+ 
7+ l+ I+ l+ l+ l+ l+ 
1 + l+ l+ l+ l+ l+ 9+ 
7+ l+ l+ I+ l+ l+ l+ 
I+ I+ l+ l+ l+ I+ 9+ 
7+ l+ I+ l+ l+ l+ I+ 
I+ l+ I+ l+ l+ l+ 9+ 
H l+ l+ I+ l+ I+ I+ 
I+ I+ I+ l+ l+ l+ 9+ 
7+ l+ I+ I+ l+ I+ I+ 
I+ I+ I+ l+ l+ l+ 9+ 
7+ I+ l+ l+ l+ I+ l+ 
I+ I+ l+ l+ l+ I+ 9+ 
3+ 8+ B+ 8+ 8+ B+ B+ 
B+ 8+ 8+ 8+ B+ B+ 5+ 

MAX 
14+ 

POR V I f, DELX COE COM PERM 
I 00000005 0 + 12 ouo oo o 4 iJ + 20 3080 00 S3+ 3 793 '>0 0054+ 25 00000048 + 2000000 052+ 

TTIME 
NOU0 0 00 5 ',t 

TMAX 
J 980 000 05 3+ 

Q FLOW RATES 
J8b640uo5 5+ S I+ 51+ '> I+ SI+ 5l t 5)+ 

, I+ 
OELT 

500 0C 00051+ 
6000 000051+ 
70000000 5 1 + 
80000 00 0~ 1+ 
1oooo ooo s 2, 
!20 UU0 0 052 + 
14000 0005 2 + 
1700 00 00 5 2+ 
2000000052+ 
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TABLE IV 

ANSWER FORMAT 

W ARRAY 
2212297856+ 2258600656+ 2278506656+ 22 88981656+ 2295102756+ 2298808756+ 2J01047856+ 
2302372356+ 2303131956+ 23035518~6+ 21037750?6+ 2303887756+ 230:l9391<;6+ 230]953856+ 
2258600556+ 2270935756+ 2282433156+ 2290479456+ 2295759456+ 2299121756+ ,3012 02956+ 
2302449856+ 2303170256+ 23035 70656+ 2303784056+ 2303892056+ 2303941456+ 230.>955 456+ 
2278506756+ 2282433256+ 2288279256+ 2293425356+ 2297265656+ 22999004'>6+ 230 160 5 856+ 
2302656456+ 2303274556+ 2303622156+ 2303809056+ 23039042 56 + 2303947856+ 2303960356+ 
2288981656+ 2290479456+ 2293425256+ 2296472056+ 2299000456+ 2300862556+ 2302 126 856 + 
2302931656+ 2303416256+ 2303693256+ 2303843956+ 2303921306+ 2303957056+ 230396 72 56 + 
22951025!>6+ 2295759556+ 2297265556+ 2299000556+ 23005610 56 + 2301780856+ 2302645956 + 
2303214656+ 2303565256+ 2303769156+ 2]03881656+ 2303939956+ 2303966956+ 230397 4756+ 
2298808656+ 2299121856+ 2299900256+ 2300862556+ 23017808%+ 2302533556+ 2 'l030U 7556+ 
2303462256+ 2303698556+ 2303838)56+ 23039 1645 6+ 2303957356+ 2303976456+ 230'.198 195 6+ 
23010478 56+ 2301202956+ 2301605556+ 2302126756+ 2302646056+ 230'J087456+ 2301422556• 
2303654856+ 2303 804156+ 2303893956+ 2303944656+ 2303971556+ 2303984256+ 2303987856+ 
2302372356+ 2302449956+ 2302656356+ 2302931756+ 2303214756+ 2303462356+ 2301654956 + 
23037911 5 6+ 2303880456+ 2303934 756+ 2303965756+ 2303982256+ 2303990156+ 2303992 456+ 
2303131756+ 2303170356+ 2303274356+ 2303416156+ 2303565256 + 23036984%+ 2 303804156+ 
2303880256+ 2303930856+ 2303961956+ 2303979&56+ 2303989556+ 2303994156+ 230'!995406+ 
23035517 56+ 230357065 6+ 2303622056+ 2303693156+ 2303769256+ 2303838356+ 2303894056+ 
230 39 34656• 2303961956+ 2303979056+ 2303988856+ 2303994256+ 2303996756+ 2 303997556+ 
2303774956+ 2303784056+ 2303808956+ 2303843756• 23038815>6+ 2303916456• 2303944756+ 
2303965656+ 2303979956+ 2303988856+ 23039911056+ 2303996856+ 23039982 56+ 2303998656 + 
2303887856+ 2 30 3 8 n 2 5 6+ 2303904256+ 23039212~6+ 23039400>6+ 2303957356+ 23039 71656+ 
2303982356+ 2303989656+ 2303994156+ 2303996856+ no3998356+ 2303999056+ 23039 9 9256+ 
2303939056+ 2303941456+ 2303947856+ 2303956856+ 2303966956+ 2303976356+ 2303984156i-
2303990056+ 2303994156+ 2303996756+ 2 3039982 56 + 2303999056+ 2303999556+ 23039996 56+ 
2303953956+ 2303955756+ 2303960356+ 2303967256+ 2303974856+ 2303981956+ 2303987956+ 
2303992456+ 2303995556+ 2303997456+ 2303998656+ 2303999356+ 2303999656+ 2303999 756 + 

ALPHA TT !ME TTIMX TMAX DEL T KTHEA 
1173371851+ 2000000055+ 1980000053+ 1980000053+ 2000000052+ 19+ 
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The equation used was 

1424.iizTqEi( -ii¢r12 ) 
2hk 4(2.634 X 10-4) k p 

( 6-2) 

where 

P : Drawdown pressure at the point in question, pounds per 
square inch 

P0 - Initial pressure, pounds per square inch 

}J. : Viscosity, centipoises 

z : Compressibility factor 

T : Temperature, °R 

q = Flow rate, MCF /Day 

h : Formation thickness, feet 

k : Permeability, millidarcy's 

¢ = Fractional porosity 

r = Distance from the producing well to the point in 
question, feet 

P = Average reservoir pressure, pounds per square inch 

Ei: Symbol for exponential integral 

To obtain a pressure drawdown comparable to the one calculated by 

the numerical solution for a finite reservoir, Equation (6-2) would have 

to be evaluated for an infinite number of wells spaced around the 

desired point in the manner used for the finite case. This would 

result in an infinite array of producing wells spaced et one-mile 

intervals. 

For an approximation, thirty-six producing wells were included in 
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the summation indicated in Equation (6-2). Figure 4 shows the 

comparison between the two methods of calculation. Until approximately 

10,000 hours of production was reached, the two methods produced the 

same drawdown at the central point. After 10,000 hours, some difference 

appeared in the two methods with the analytical method giving less 

drawdown than the numerical solution. This was caused by including 
+ 

only a finite number of wells when using Equation (6-2). It was 

felt that by including a sufficient number of wells in Equation (6-2), 

the two solutions would be identical for all practical purposes. 



CHAPJ.'ER VII 

SUMMARY AND CONCLUSIONS 

The purpose of this study was to provide a working IBM 650 

computer program that would calculate potential and flow di str i bu

tions for unsteady-state heat, compressible fluid and linearized 

gas flow problems in two dimensions. 

By using the alternating-direction implicit numerical method, 

a program for solving these types of unsteady problems was obtained. 

The program was checked by comparing the numerical solution with a 

known analytical solution for a pressure drawdown at the center 

point of a square gas reservoir having uniform properties. The 

two methods compared favorable as was shown in Figure 4. 

Two boundary conditions were incorporated in the program; that 

of a constant boundary value and that of no flow across the boundary. 

Point sources or sinks may be located at any point in the region if 

the point is not being held constant. The program will handle 

multiple transient flow problems in irregular shaped finite regions. 

The unsteady-state gas flow problem was solved by making the 

differential equation describing the flow, linear. This was 

accomplished by assuming an average pressure for the entire reservoir. 

This assumption would perhaps cause appreciable error in the cal

culations. It is felt, however, that the solution that was presented 
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is as accurate as existing analytical solutions in which the same 

average pressure assumption is made. This was substantiated by the 

calculations presented in Chapter VI. 



CHAPTER VIII 

RECOMMENDATIONS FOR FUTURE STUDY 

The computer program presented in this study could be used to 

investigate many interesting problems encountered in compressible 

fluid and gas flow in uniform reservoirs. 

One such problem would be that of determining if existing 

spacing of producing wells is adequate to sufficiently drain the 

reservoir in a reasonable length of time. The effects of infill 

drilling could also be determined. 

Potential and flow distributions due to producing et unequal 

rates at a number of wells in e finite reservoir could be obtained. 

The effect that a neighboring producing well would have on a 

well's build-up curve could be studied. 

It might be possible to trace an entire field's production 

history in order to determine desired unknown reservoir parameters. 

Dr. Rachford (8) bas suggested an improvement in the programing 

technique presented in this study. He proposes that a basic region 

be defined and at every point in the region, values for permeability 

in both the x- and they-direction be read as variables. This would 

make it possible to treat cases in which non-uniformity occurs, such 

as, variable permeability in the x- and y-directions. 
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For reflection boundaries, he suggests that the permeability be 

set equal to zero instead of resorting to fictitious reflection points 

as was done in this study. Although this would increase the computer 

time required, since calculations would have to be made over the 

entire basic region, it is said to eliminate certain unstable 

conditions sometimes encountered when reflection points are used. 

The program for non-uniform conditions could be used to study 

the many effects of non-uniform conditions which certainly exist in 

the actual reservoir. In particular, potential and flow distributions 

might be obtained for horizontally fractured systmes. 
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