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NOMENCLATURE

variable in the basic differential equation

distance in horizontal direction, centimeters end feet
distance in vertical direction, centimeters and feet
coefficients in the basic differential equation

time, seconds and hours

numerical approximation to U

increment of x

increment of y

increment of time, t

coefficients of simultaneous equations

intermediate values in solution of simultaneous equetions
temperature, °R

heat capacity, B.t.u./(1b.) (%F)

density, 1b./(ft.0)

thermal conductivity, B.t.u./(hr.) (£t.) (°F)
parameter introduced in working difference equations

flow rate for interior network point, °R, pounds per square
inch and (pounds per square inch)

flow rate, Be.tou./(hr.) (ft.), barrels per day end MCF/day
pressure, atmospheres and pounds per square inch

average viscosity, centipoises

fractional porosity

compressibility factor, 1 and 1
atmospheres pounds per square inch

incremental dimensionless time
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average compressibility factor

h formation thickness, feet
k permeability, darcys and millidarcys
P average reservoir pressure, pounds per square inch
Q flow rate for corner point,(pounds per square inch)2
Ei exponential integral
ry distance from producing well to drawdown point
Po initial pressure, pounds per square inch
FORTRAN PROGRAM SYMBOLS
W 14 x 14 point variable array
KCON 14 x 14 point control array
J subscript denoting positive x-direction
I subscript denoting negative y-direction
Q 8 x 1 flow rate array
MAX meximum number of points in either the I or J direction
ALPHA symbol for the alpha value
POR porosity
Vis viscosity
DELX incremental distance
COE conversion factor
COM compressibility factor
PERM perumeability
TTIME total desired time
TIME cumulative time
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TMAX sub-time total

KDIR symbol denoting the direction in which the calculations
are being made

DELT time increment
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CHAPTER I

INTRODUCTION

It is important in the prediction of the behavior of oil and gas
reservoirs to be able to calculate potential and flow distributions
in the reservoir. Since only a few limited analytical solutions have
been found to solve the second order partial differential equations
which describe these distributions in finite cases, it becomes
necessary to obtain approximate solutions by finite difference
methods .

Since the development of the electronic digital computer, many
such methods have been devised. Because of the large amount of work
involved in solving distribution problems and the high cost of
computing time, it becomes very lmportant to obtain a method which
requires a minimum of work and time. Much attention has been given
to this problem of minimizing the work and time. The slternating-
direction implicit method recently introduced by Peaceman and
Rachford (7) represents one of the best known schemes for solving
potential and flow distribution in two-dimensional systems. The
method is adventageous because it has been proven by Douglas (2) that
the method is stable for any size time step.

Although some applications of the method have been published, a
computer program to solve other problems of this type was not

avallable. The object of this study was to progrem the method on the



IBM 650 Computer for use in solving linearized unsteady-state gas,
coupressible fluid and heat flow problems. After such & program had
been written, it was to be checked by solving a problem which hsd s
known solution. When this had been accomplished, solutions to other

problems could be obtained.



CHAPTER II

PREVIOUS INVESTIGATIONS

Recently, much attention has been given to the solution of
unsteady-state problems by approximate finite difference wethods.
Since this study is concerned with applications of the ealternating
direction implicit method, only those articles which deal with this
method or those directly related to it will be discussed here.

Bruce, et al, (1) developed a stable numerical procedure for
solving the equation for production of gas at constant rates from
linear and radial systems. A digital computer was used to perform
this integration using an implicit form of an approximeting difference
equation. The solutions were coumpared with a laboratory study of
gas depletion in a linear system.

Peaceman and Rachford (7) introduced the alternating-direction
implicit wethod for solving parabolic and elliptic differential
equations. The method was applied to the simplest type of problem,
that of unsteady-state heat flow in a square. Also, the solution of
ILaplace's equation in a square was solved as an example of a steady-
state problem. An analysis was presented that showed the alternating-
direction implicit method to require less work than the best
previously known iterative solution for solving Laplace's equation.

Dougles, Peaceman and Rachford (l4) applied the slternating-

direction implicit method to the problem of unsteady-state gas flow



through porous media for a two dimensional square reservoir. The
square region, containing a perfect gas, was depleted and solutions
at various stages of the depletion were presented in graphical form
in terms of dimensionless parameters.

Douglas and Peaceman (3) solved the heat flow equation in two
dimensions by use of the alternating direction implicit method.
Although all the examples worked were for steady-state condition,
equations were developed for unsteady-state problems and e thorough
discussion of the method was included. Exauples were presented for
heat flow around a corner, a problem involving a radiation boundary
condition, and point heat sources and sinks in an elliptical region.

Douglas and Rachford (5) described a method similar to the
alternating-direction implicit method for solving problems in three
dimensions. The procedure was applicable in predicting flow patterns
and potentials for both the steady- and unsteady-state flow of a

single phase fluid.



CHAPTER IIT

THE MATHEMATICAL METHOD

The alternating-direction implicit method solves differential

equations of the type

2 .
9% . 9% _ , U (3-1)
Ix% 3P ot

The wmethod consists of replacing the continuous derivatives in Fquetion
(3-1) by ratios of finite differences and solving the resulting
difference equations.

To form the required difference equations, an integration net
with mesh widths Ax and Ay, is placed over the two-dimensional
region in which the integration is to be carried out. For convenience,

Ax and Ay are set equal to each other.

One of the second derivatives, for instance, —gxa-g, is replaced by
a second difference in terms of unknown values of U at the time level,
t + At. The other second derivative, -s—ye ; 1s replaced by & second

difference in terms of known values of U at the time level, t. When

this has been done, Equation (3-1) becomes

W(x-AX,y,t+ A1) = H(x,y,t+ At) + W(x+ Ax,y,t+ A1) 4+
(ax)2




W(X,y- Ay,t) = (x,y,t) + W(x,y+Ay,t) = (3-2)
(ay)?

C (W(XQYrt“' At) - W(X:th))
At

where W is the numerical approximation for U.

Equation (3-2) is used for evaluating the unknown values of W at
the time level, t + At, and 1s said to be implicit in the x-direction.
Unknown values of W at the time level, t + 2 At, are found by forming
an equation, similar to Equation (3-2), but implicit in the y-direction.

Equation (3-3) gives the necessary equation for the y-direction.

W(x=-AX,y,t+ At) - H(xX,y,t+ At) + W(x+ Ax,y,t+ At)
(ax)?

W(X,y- Ay, t+2 At) = HW(x,y,t+2 At) + W(X,y+ Ay, t424%) . (3.3)

(ay)?

C (W(x,y,t+2 At) - W(x,y,t+ At))
At

It should be noted that the unknown values of W in Equation
(3-2) become the known values of W in Equation (3-3). Also, according
to Douglas (2), At in the y-direction must be equal to the At used
in the x-direction for any one double time step in order for the
method to be stable.

If Ax = Ay and X =C S%.E Equations (3-2) and (3-3) can be

rearranged in the following form, respectively:



In the x-direction
- W(x-&.x;y,t+ at) + (2+0X) W(x,y,t+ At) -
W(x+AX,y,t+ At) = W(x,y-Ay,t) + (¢-2) (3-4)
W(x,y,t) + W(x,y+ay,t)
In the y=-direction
- W(x,y=Ay,t+2 At) + (2+40C) W(x,y,t+2 At) -
W(X,y+ ay,t+2 at) = W(x-Ax,y,t+At) + (¢ -2) (3-5)

W(xX,y,t+ At) + W(x+Ax,y,t+At)

To start the problem, Equation (3-4) is written for each point
in the x-direction preceding from the left of the integration network
going toward the right. This results in the formation of small sets
of simultaneous equations. There will be as many sets of equations
as there are lines in the network in the x-direction. Each set of
equations will have as many unknowns as there are points on the line.
After boundery conditions have been accounted for, these sets of

simultaneous equations can always be arranged as follows:

+ BW, + CW D 2<ign-1 (3-6)

AWy i =8y

Anwn—l + ann = Dn

where n is the number of points per line and A, B, C and D are constant
coefficients.
L. He. Thomas (3) solved these equations by the following non-

iterative technique.



Let
Z = By
A4C
Zy = By - ..21-_.1;1_ 2<ign (3-7)
1-1
and
D
21
Dy = Al
i, § AL 251 2¢ign (3-8)
24
The solution is
W, =G
W,z G, - CiWipq 1<1i<n-1 (3-9)
Z
i

G and Z are computed in order of increasing i, snd W is computed
in order of decreasing i.

After new values of W at time, t + At have been calculated for
the entire network in the x-direction, the procedure outlined above is
repeated in the y-direction at time,t + 2 At. This constitutes one
double time step increasing t by 2 At. A new At can now.be selected
for use in the next double time step. The process is repeated over

and over until a solution for the desired time is obtained.



CHAPTER IV
APPLICATIONS OF THE METHOD

The differential equations describing linearized unsteady-state
gas, heat and single-phase fluid flow through porous media asre very
similar. With the proper modifications, Equation (3-1), can be used
for each type of flow in two dimensions. Also it is possible to have
a point source or sink at each point in the integration network by
making a simple addition to Equation (3-1). For adaptation to
reservoir work, the source would correspond to an injection well and
the sink to a production well.

For heat flow, Equation (3-1) may be modified by making the

substitutions C = Eﬂég_ end U = T. This gives

0% , % _ cpp OT
dx2 oy2 K dt

(4-1)

After substituting finite differences for the derivatives in
Equation (4-1) as was described in Chapter III, working equations
similar to Equations (3-4) and (3-5) are obtained for each mesh point
in the x- and y-direction.

For the x-direction

- T(x=Ax,y,t+At) + (2+ X ) T(x,y,t+ At)
- T(x+ AX,y,t+ At) = T(x,y-Ay,t) + (X -2) (4-2)

T(x,y,t) + T(x,7+AY,t)
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For the y-direction
- T(x,y-Ay,t+2 At) + (240 ) T(x,y,t+2 At)
- T(x,y+Ay,t+2 At) = T(x-Ax,y,t+At) + ( -2) (L-3)

T(x,y,t+ &t) + T(x+Ax,y,t+ At)

2
- %pP gaxg
where o = X ‘It

It remains to form difference equations for the source or sink
points. This can be achieved by assuming linear flow into a small
finite block of unit thickness such as the one shown in Figure 1.

The flow of heat across the right hand face is approximated by

the equation
= Klayol) —m— k-
Q1 (ay ) x5 ( )
Similar equations hold for the other sides of the square. For
Ax = Ay, the total flow into the square would be
q = K(UTy - T, - T, ~ T -T) (4-5)

By letting Q = %, the equation for a heat source at point x,y, which
satisflies steady state conditions, would be
- T(x-Ax,y) - T(x+Ax,y) - T(x,y-Ay)
(4-6)
- T(x,y+Ay) + W(x,y) = Q
Working Equatioms (4-2) and (4-3) are modified in order to converge to
this solution. After modification, they are
For the x-direction
- T(x=-AX,y,t+At) + (2+0C ) T(x,y,t+ At)
- T(x+AX,y,t+At) = Q + T(x,y-Ay,t) + (o< -2) (4=7)

T(X:Y’t) + T(x,y+ Ay,t)
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For the y-direction
- T(x,y-Ay,t+241%) + (2+0C ) T(x,y,t+2 At)
- T(X,y+AY,t+2 At) = Q + T(x-Ax,y,t+ At) + (o -2) (4-8)
T(x,y,t+ At) + T(x+Ax,y,t+ At)

These equations were presented by Douglas and Peacemen (3) and msy be
used for both steady- and unsteady-state heat flow probleuws.

Equations for finding pressure distributions and flow patterns fo:
compressible fluid flow may be formed by modifying Equation (3-1). If I
is substituted for U and'é—g—E for C, Equation (3-1) describes fluid

flow in two dimensions. These substitutions give

0%p . 9% . jife 9P (4-9)
ax2  Jdy2 kK Jt

where

v
]

= Pressure, atmospheres

x and y = Distance, centimeters
A = Average viscosity, centipoises
¢ = Fractional porosity
- 1
¢ = Compressibility factor, atmospheres

=
]

= Permeability, darcys

t = Time, seconds
Working equations are obtained for each wesh point in the manner
described previously. The classical units in Equation (4L-9) are
converted to practical field units.
For the x-direction
- P(x-AX,y,t+At) + (2+o¢ ) P(x,y,t+ At)
- P(x+ AX,y,t+At) = P(x,y-ay) + (¢ -2) (4-10)

P(x,y,t) + P(x,y+Ay,t)
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For the y-direction
- P(x,y-ay,t+2 At) + (2+oC ) P(x,y,t+2 A1)
- P(x,y+Ay,t4+2 At) = P(x-Ax,y,t+At) + (X -2) (k=11)

P(x,y,t+At) + P(x+ Ax,y,t+ At)

i 2
where oC = 3793‘5k”¢§t(—6x) , or in terms of dimensionless time,

_1.
Aty

The units are

P = Pressure, pounds per square inch
Ax = Distance increment, feet
At = Time increment, hours

1
pounds per square inch

¢ = Compressibility factor,

@ = Fractional porosity
A = Viscosity, centipoises
k = Permeability, millidarcys

For a source point at the point x,y, equations similar to Equa-
tions (4-7) end (4=8) can be developed for fluid flow. These are
For the x-direction
- P(x+ Ax,y,t+ At) + (2+0C ) P(x,y,t+At)
- P(x+ Ax,y,t+At) = Q + P(x,y~-Ay,t) (4=-12)
+ (¢ -2) P(x,y,t) + P(x,y+ay,t)
For the y-direction
- P(x,y-Ay,t+2 At) + (2+40C ) P(x,y,t+2 At)
- P(x,y+Ay,t+2At) = Q + P(x-Ax,y,t+At) (L=13)
+ (¢ =2) P(x,y,t+ Aat) + P(x+ Ax,y,t+ At)

The units are the same as in Equations (4-10) end (L4-11) with Q
equal to }Le’l_'%ﬁﬁ.
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Units for Q are

O
1]

Flow rate, pounds per square inch

=1
"

Viscosity, centipoises

- Flow rate, barrels per day

fie]
]

h = Formation thickness, feet

k = Permeability, millidercys
Equation (3-1) can also be adapted to gas flow problems by

letting U = P2 and C = Egg. The equation then becomes

J%p2 %P2 . g JP2 (4-14)
d x2 dy2 kP dt

which has the same classical units as Equation (4-9). The term, f, is
taken as the average reservoir pressure in atmospheres. This assumption
makes the differential equation linear, thus simplifying the problem.
Dr. Rachford (8) has suggested that such an essumption will cause
considerable error in material balance calculations. He suggests that
unsteady-state gas flow be handled in the manner set forth by Dougles,
Peaceman and Rachford (L4).

It was found, however, that the method which assumes an average
reservoir pressure would check with existing analytical solutions in
which the same assumption was made. This would not necessarily mean
that the method was correct, but it would provide a means of determining
the computer program's validity.

Difference equations are again formulated for each mesh point and
the units are converted to practical field units. This gives

For the x-direction

- Pz(x- AX,Y,t+at) + (X +2) P2(x,y,t+ At)
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" Pe(x+ aAx,y,t+ot) = Pe(x,y-ay,t) (4=15)
+ (X =2) Pe(x,y,t) & Pe(x,y+¢y,t)
For the y-direction
- P(x,y-ay,t+2at) + (o€ +2) P(x,y,t+2 at)
- Pe(x,y+ay,t+2 at) = P2(x-Ax,y,t+ At) (4-16)
+ (¢ =2) P2(x,y,t+ At) + P2(x+ax,y,t+ At)

- 2
where of = 202322 ’jﬁ (8%)° yhich is the reciprocal of
k P (at)

dimensionless time, Aatpe.
The units are

P2 = Pressure?, (pounds per square inch)2

an = Viscosity, centipoises

@ = Fractional porosity
Ox = Distance increment, feet

k = Permeability, millidarcys

P = Average pressure, pounds per square inch
&t = Time increment, hours

For a source at point x,y in gas flow problems, difference equations
can be developed. They are
For the x-direction
- Pz(x-Ax,y,t+ at) + (¢ +2) P2(x,y,t+at)
- Pe(x+Ax,y,t+ At) =Q + P2(x,y-Ay,t) (4-17)
+ (¢ -2) P2(x,y,t) + P2(x,y+ ay,t)
For the y=-direction
- P2(x,y-ay,t+241t) + (€ +2) Pe(x,y,t+2 At)
- Pg(x,y+Ay,t+2 at) = Q + P2(x-ax,y,t+4at) (L4-18)

+ (¢ =2) Pe(x,y,t+At) + Pe(x+Ax,y,t+At)
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The flow rate, Q equals 81930}1£.T q

hk
where
4 = Average viscosity, centipoises
z = Average compressibility factor
T = Reservoir temperature, °R
= Flow rate, MCF/day
h = Formation thickness, feet
k = Permeability, willidarcys

Other terms are defined after Equation (L4-16).

At this point it should be noted that the Q developed in the
foregoing discussion was for an interior network point. For a corner
source point, only one-fourth of Q would be used for the flow rate in
the difference equations, since it is bounded by only one-fourth of the
region in question. Similarily for a side boundary point, one-half of

Q would be used in the difference equations.



CHAPTER V
THE COMPUTER PROGRAM

The alternating~direction implicit method described in Chapter IIT
was programed for the IBM 650 computer using 650 Fortran language. The
program solves the general two dimensional unsteady-state equation in s
rectilinear region having uniform properties. With the proper data
selection, it will solve each of the applications described in
Chapter IV.

Two boundary conditions were incorporated in the program. The
first was, U = Uo’ where Uy is the initial value of U. The other
condition was {%%-: 0, where L is a symbol for distance. The second
condition imposes the restriction of no flow across & boundary line.
The condition, U = U,, may also be met at any point in the region by
choosing the proper data.

A point source may be located at any point in the region if the
particular point is not beign held constant. By data arrangement,
flow rates from the source points may be changed at preselected times.
This provides the program with the ability to handle multiple transient
flow problems in irregular shaped finite regions. As many as eight
different flow rates may be used in any one problem. A given flow rete
can be used at any desired number of points. A positive rate is used
for an injection point and a negative sign is used for a production

point.

17
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A 1k x 14 point grid, denoted by the doubly subseripted variable, W,
comprises the region in which any figure, composed of straight lines in
the vertical and horizontal direction, may be imposed. The boundary of
the figure must be approximated by the grid lines. The conventional
positive x-direction is denoted in the program by an increasing J
value. The conventional negative y-direction is indicated by an
increasing I value. This is shown in Figure 3.

Another 14 x 14 array, denoted by KCON, serves as s control for
each of the points in W. KCON values are subscripted by I and J, as
were the W values.

The general plan of the progresm is to begin with W values at &n
initial time and calculate values of W after some increment of time.
This calculation is made in the J direction by following the methemstiecal
method described in Chapter III. After this calculation has been
completed, the time increment is increased and the calculations are
made again in the I direction. The procedure is repeated until the
desired time has been reached.

A generalized block diagram showing all important steps in the
program is given in Figure 2. Many details were omitted for brevity.
The complete 650 Fortran program is listed in Table I.

The DIMENSION statement (600) reserves 527 locationsin memory for
the variable array, W, the fixed control array, KCON, and an eight
place array for flow rate (Q) velues. Space is also reserved for all
other subscripted variables used in the program.

Statement (601) reads the maximum number of calculation points in

the I direction (M) and the J direction (N). The working variesble array,
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$
I DIMENSION I CHOOSE FLOW RATE |
! ¥
I READ | MA = MA41 |
1 ]
INITIALIZE TEST: KDQ ® O?
| | C |
i 1 Yes
I READ TOTAL DESIRED TIME l
]
T l xuq{ 1 I
READ FLOW RATES
| l TEST: MA B 1t
J No
[ maoommme S ¢ | vee
l [ KL =4 ]
[ COMACTE ALTHA I I
1 I TEST: X OR Y DIRE.TION? J"E‘ .
[ INITIALIZE FOR NEW TIME s‘rsﬂ oot
~Dirsct
T l X-Direct.
A IN X DIRECTION
{-]
Yeou
l CALCULATE CONSTANTS FOR USE
[ TEST FOR SOURCE OR SINK  [Yes IN Y DIRECTION
INo T
JeJ+1
TEST: MADO? I!_. y '
as
1 No 1 { TEST FOR LAST POINT IN LINE l
{]
JEJ4 1]_- ¢ ll’u
1 J TEST TO SEE IF THIS IS FIRST
TEST TO SEE IF THIS IS LAST 5 7o | LINE WITH CALGULATED POINTS
Yo FOINT IN ROW
Yes
Yeon 1
e~ CALCULATE UNKNOWN VALUES
'T{ TEST; KDQ= 01 | )] OF THE VARABLE ON ROW I
a8
No ] ]
1 € £ ] KX 3 0; MA® O I
.“—1 TEST: EDQ ® I7 ] ] ] !
o
] Yes ¢ 1 <] ADD TDE TNCREGNT |
CHANGE NOTATION OF FIRST LINE !
OF CALCULATED POTNTS INVERT ARRAY TO BEGIN
CALCULATION IN
OPFOSITE DIRECTION
FUT CALCULATED VALUES IN ) )
I+ 1 ROW BACK IN ARRAY B 1
TEST T0 SEE IF DESIRED
i I TIME HAS BEEN REACHED Yos
[ CHECK FOR LAST ROW f——¢ l“ﬂ
No
1 TEST T0 SEE IF ANSWERS ARE
CHANGE NOTATION OF NEW TO BE PUNCHED
CALCULATED VALUES IN Ith ROW No AT THIS TIME
[ l Yos
TESTy MA Z OF bre—t—
o ,_| FUNCH ANSWERS J

l Yoa

)

14031

l._

Tos

CHECK FOR LAST ROW I

S

FIG. 2

BLOCK DIAGRAM

l

FUNCH FINAL ANSWERS

oot

l

END

|

FOR COMPUTER PROGRAM
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214
215
2le
217
230
218
219
220
221
222
223
224
22%
226

Joz

OO0 DDCOO0OCOCON=—~CN-O0O 0000000 CCOC o CO-0o0C0OC o000 0COoO00 0000 C OO0 0000000000~ 0000000 CO0 D000 R0

TABLE 1
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THE 650 FORTRAN PROGRAM

DIMENS IONW( 1414 ) s KCONT14p14])
ALL14)sBI14) D151 sCILa) 0211400
GII4)sRELA) KP4 0QIB)0R2114)
READ sMsN

READ s W

READ K CON

READ s MAX
READsPOR W ISDELX+COE s COMsPERM
READTTIME

TIME=040

KDIR=1

KTHEA=]

READ » TMAX

TTIMX=0.0

READQ

READWDELT

ALPHA= (COE®PORMCOM®*V | S*DELX*DE
LX)/ (DELT®PERM)

1=}

J=]

KDa=0

MA=0

DEJI=040
IF(KCONI 1w J)=1001294210523
IF(MA) 949495

Jrdyl

TF(J=IN+1) 1T 2120212
IF(KDQ)11s1102)3
IFLKDQ=1121842140214
DO21TK=1 4N
IFIKCONI I }=100)21642174216
RZIKI=R(K)

CONT INUE

GOTO11

DO221K=1N

IF (KCONILT=1sK)=100)22002219220
Wil=1eK)=R2(K)

CUNTINUE
IFLI=1M+11122341159115
DO226K=1N
IF(KCONT 1K) =100)225,2260225
R2ZIE)=RIK])

CONT INUE

TF(MAN11911495

1=1+1

J=1

IF(I=(M+1) 1792184218
D028K=1+8
IFIKCONLEad)=111-K}#100) 2828,
701

MA=MA+]

DIMAI=0.0

DIMAI=DIMA)+0IK)
1SUB=KCONIT+J)=(11-K)®100
GOTO500

CONTINUE |

15UB=KCONI Tvd)

MA=MA+]

DIMAI=040

IF(KDQ)420+501:420

KDG=1

IFIMA=1)421r421931

KX=J )

GOTO(32033).KDIR

GOTO(S69 349371450 4B80630400866105
117005647007345607307007306306
36045683485, T6080) 1500
GOTO(56 340454 3T794894096395146
61560 TURTOS64T73073073070076,48
0030505660660 639063) 0 15UB
CIMAI==240

GUTO43

AlMAI==-2.0

GOTO43

AlMAI==1.0

CiMA}==1.0
DIMAI=DIMAI+240%W( 1+ 10d)
GOTO090

CIMA)==2,0

GOTO54

AlMAYI=-240

GOTO54

CiMAY=-1.0

431
107
107
402
108
109
115
759
995
800
801
auz2
116
117
118
119
120
122
123
124
125
126
127
128
129
449
550
450
598
990
990
997
452
132
133
135
138
136

OO O O~ O C OO C 00 O OO0 0000 0CC 0000000000~ C0 000000 C000000C0C0S0C000oOoO0000000C00C0C00D0D0O000

AlMA)==140
DIMAI=DIMAI+2.0%Wi1l=1+J]
607090

AlMA)==1.0

CIMA)==140

GOTO68

CIMA)==2,0

GOTO6H

AlLMA)==240
DIMAI=DIMAY+WI I+1 o J)+WiT=10J])
GOTO90

AlMAI==1,0
DIMAY=D(MA)+WI 1o d+]
GOTO68

CIMA}=2=140
DIMA)I=D(MAI+WITyJ=1)
GOTO6E

AlMA)==1.0
DIMA)=D'(MA)+WI T4 J+1)
GOTO43
DIMA)=DIMAI+WITsd=1]
GOTO41
DIMA)=DIMA)+Wilod+l)
GOTO52

CiMAl==1.0
DEMA)=D(MAI+W( L aJd=1}
GOTO54

BIMA)=ALPHA+2.0
DIMA)=DIMA)+{ALPHA=2.0)%W(1sJ)
JuJe]
IFUJ=(N+1) )T 94400440
IFIKDQ=(1-1))218+218495
201)=B1(1)

DO9EK=2sMA

KMaK-1
Z(K)I=BIKI=(AIK)RCIKM)}/2ZIKM)
Gll)=D(1)/s2(1)
DO102K=2 4MA

KMag=1
GIR)=(DIKI=AIK)I*GIKM)}/ZLK)
NA=KX+MA=1

RINA)=GIMA)

MBamA=~]

DO10TK=1MB

JA=MA-K

NO=EX+JO-1
RINQI=G(JQ)=(CIJQI"RING+1)) /21
Ja)

KX=0

MA=0

GOT09

KTHEA=KTHEA+]

TIME=T IME+DELT
TTIMK=TTIMX+DELT

MZ=N

N=M

M=MZ

GOTO(11T72119)skDIR
KDIR=2

GOT0120

KDIR=1

DO129&1=1sMAX
DO12BE=K 1 1MAX
RIKI=WIKIsK)
KP{K)=KCON(KI k)
WIKIsK)=WlEsETD)
KCONIETaK)=ECONIF K1)
WIKsKI)=RIK)
KLON(ESET)=KP(K)
CONTINUE

IF(TIME=TTIME) 5504452452
GOTO(450 4 ) ykDIR
IFITTIMX-THAX) 652499849598
PUNCH» W
PURCHoALPHA» TTIME s TTIMX» TMAXWD
ELTsKTHEA

GOTO0651
GOTO(132,116)+KDIR
PUNCH W

PUNCH»KCON
PUNCHKTHEASTTIME
GOTO601

END



21

W, is read in memory by statement (602). The control array, KCON, is
read into wemory by statement (603). Selection of KCON control values
will be discussed later. Statement (607) reads the meximum number of
points (MAX) in either the I or J direction. This number equals the
larger of the two numbers M and N. Statement (650) reads the different
variables involved in calculating the ALPHA value discussed in Chapter
IV. For oil and gas field applications, POR is the symbol for porosity,
VIS for viscosity, DELX for incremental distance, COE for conversion
factor, COM for compressibility factor and PERM for permesbility. Units
and values for the various properties and factors are discussed in
Chapter IV.

The total time (TTIME) desired is read by statement (655).
Statements (654) through (3) initialize the following variables to
begin the first time step: TIME is a variable which represents
cumulative time in the program. KDIR denotes the direction in which
the calculations are proceding. For KDIR equal to one, the calculations
are in the J direction. For KDIR equal to two, the calculations are
in the I direction. KTHEA represents the number of times the cal-
culations have been made across the array plus one.

The total time, TTIME, may be sub-divided into parts. Each of
these parts are denoted by TMAX in the progrem. Statement (651) reads
the value of TMAX into wmemory. At the end of each of these sub-times,
the flow rates at each of the source points may be changed. Statement
(996) initializes the cumulative sub-time variasble TTIMX to begin &
new calculation. Flow rates for existing point sources are read by

statement (60L).
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DEIT, the time increment, is read by statement (652). This time
increment is used for one double time step in the calculations, once in
the J direction and once in the I direction. For the program to work
properly, DELT values must be arranged so that twice the summation of
the time increments in any sub-time increment equals the sub-time total
read for TMAX.

Statement (653) calculates AIPHA. Statements (4) through (7)
initialize the variables to start the calculations. The calculations
are started in the upper left corner of the W array. Each point in
the first row of the array is inspected to determine if it is a valid
calculation point by statement (8). Also determined is whether the
point is a source point. If the point is not a calculation point, the
J value of the point is increased by statement (9) and the next point
is inspected. If the point is a valid calculation point but not a
source point, the calculations are routed through statements (29) to
(92). These statements decide what type of point has been encountered
and calculates the proper coefficients for the point. These coefficients
are described in Chapter III. The J value of the point is then
increased and the next point in the row is investigated. If the point
had been a source point, the calculations would have gone through
statements (23) to (92) which makes the additions suggested by
Equations (4-7), (4-12) and (4-17).

When coefficients for the existing calculation points are deter-
mined, the unknown values at each of the points are solved for by
statements (95) to (107). This is done in the manner outlined in

Chapter III.
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When all points in the first row have been examined and all
unknowns are found, the I value is increased and the above procedure
is repeated for the next row. After the entire array has been covered,
the time variables are appropriately increased, and the second part of
the double time step can begin.

In order to use the same equations for the next time step in the
I direction as were used in the J direction, both the W and KCON
arrays were inverted about the dotted diagonal shown in Figure 3.

This was accomplished by statements (120) to (129).

Statement (L449) checks to see if the desired time (TTIME) has
been reached. If it has, W and KCON are punched by statements (132)
and (133). Statement (135) punches KTHEA and TTIME. Control is then
referred back to statement (601) to begin an entirely new problem.

If the desired time has not been reached, calculations for the
second part of the double time step begin in the I direction.

When the complete double time step has been finished, statement
(449) again checks to see if the desired time has been reached. If it
has, the answers described previously are punched. If the desired time
has not been reached, statement (450) checks to see if the desired
value for sub-time, TMAX, has been reached. If it has not, a new
time increment, DELT, is read by statement (652) and calculations
begin on the next double time step.

If TMAX has been reached, statement (998) punches the W array and
statement (990) punches ALPHA, TTIME, TTIMX, TMAX, DELT and KTHEA,.
TTIMX should be equal to TMAX at this time.

Statement (997) sends the program to statement (651) which reads



TABLE 11
POINT CONTROLS

il POINT CONDITION

1 Point i¢ & common point in both X= and Y=direotion,

2 Point 1s an outer upper left side corner point and is & reflection point
in both I= and Y=-direction.

] Point 4s an outer upper right side corner point and is a refleotion point
in both I= and Y-direotlon,

4 Point is an outer lower left side ocormer point and is a refleotion point
in both X= and Y-direotion,

] Point is an outer lower right side cormer point and is a reflection point
in both X~ and Yedirsotion,.

L] Point is a refleotion point on the left side in the X-direotlon and a
roflection point on the top line in the Yedireotion,

7 Point is a refleotion point on the top line in the Xedirection and a
reflection point on the left side in the Y=direotlon.

8 Point is a refleotion point on the right side in the Xedireotion and bottom
reflection point in the Y=direotlon,

9 Point is a reflection point on the bottom in the Xedirection and right side
reflootion point in the Y=direotionm,

10 Point ia preceded by a constant in the X=direotion and not in Y=dirsotion,

1 Point ia prtnod;ﬁ by & constant in the Yedireotion mnd not in the
X=direation.

12 Point ia preceded by a constant in both directions,

13 Point is followed by s oconstant in the X-direotion and not in the
Yedireotion.

u Foint is followed by s constant in the Y-direotion and not in the
Xedireotion,

15 Point is followed by a constant in both the X- and Y=directiom,

18 Point 4s preceded by a constant in the Xedireotion and followed by a
constant in the Y~directionm,

17 Point is preceded by a oconstant in the Yedirection and followed by a
oconstant in the X=direction,

18 Point is & reflection point on the left side in the X=direotion mnd a
refleotion point on the top line in the Yedireotion, The point is
proceded by a constant in the Yedireotion and not in the X-direotion,

19 Point is a reflection point on the left side in the X-direotion and m
reflection point on the top line in the Yedirection., The point is
followed by a constant in the Yedireotion and not in the X=direotion,

20 Point 4s & reflection point on the right side in the Xedirection and
bottom refleotion point in the Y=direotion. The point is preceded by
& oonstant in the Y=direotion and not the X~direotiom,

21 Point is & refleotion polnt on the right side in the X-directlon and
bottom reflection peint in the Y=direotion. FPolnt is followed by a
oonstant in the Yedireotiom and not im the X-directiom,

22 Point is a reflection point on the bottom in the X-directlon and right
side refleotion point in the Yedirection. Polnt is preceded by a constant
in the X=direction and not in the Yedirection,

23 Point is a reflection point on the bottom in the X~direotion and right
side reflection polnt in the Y=direotlon, The point is followsd by a
constant in the X-direoction and not in the Yedireotiom.

24 Point is & reflection point on the top line in the X-dirsotion and a
refleotion polnt on the left side in the Y=direotion, FPolnt is preceded
by a oonatant in the X-direotion and not in the Y-directiom,

26 Point is a refleotion point on the top line in the X=direotion and a

100

reflection point on the left side in the Y=direotion, The polint is
followsd by a eonstant in the X-direction and not in the Y-direction,

Point is a constant or does not enter inte the oalculations,
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a new value of TMAX. Statement (604) reads new values of flow rates,
and statement (652) reads a new value of DELT to begin calculations on
a new double time step.

It is adventageous when handling & configuration which doesn't
require the full 14 x 14 array to place the configuration in the upper
left corner of the array. The maximum number of points used in either
the J or I direction should be determined and tabulated as MAX. This
will speed the calculations since the entire 14 x 14 array will not
have to be scanned.

Data input for the program is made up by first determining the
maximum number of points used in any column in the I direction. This
number is tabulated as M. Then the maximum nuwber of points used in
any row in the J direction is tabulated as N. M and N are punched on
the same data card in fixed point form.

Initial values for the variable array, W, are punched into data
cards in floating point form. The first two date cards contain W
values for the extreme left column of the array. The second two date
cards contain W values for the second column of the array, etc.

KCON values are determined by looking at each point in the W array
and assigning a KCON number to it. These numbers along with the
corresponding point conditions are tabulated in Table II.

A KCON number of 100 was assigned to constant points and other
points that do not enter into the calculations. The boundary
condition, {%%-= 0, leads to the situation involving fictitious
reflection points along the boundary in question. This and other

conditions are illustrated in Figure 3.
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For source points, KCON numbers are modified by edding a constent
to the number determined from Table II. If the first value in the Q
array is to be used as a flow rate, 1,000 is added to the KCON number.
This is decreased by 100 for each succeeding Q value. For exaumple, to
use the eighth Q value, 300 would be added to the KCON value.

Values for KCON are read in memory in fixed point form in the
manner previously described for W values.

On the next data card, the value for MAX is punched in fixed point
form. This is followed by a card punched with floating point values for
the properties and factors: POR, VIS, DELX, COE, COM, and PERM.

Next, the total time (TTIME) desired is punched in floating point
form in the next data card. This is followed by a card punched with
the value for the first sub-time total, TMAX. Two cards with Q values
follow. The first card contains seven flow rates while the second
contains one.

Following this, comes cards with time increments, DELT. Twice
the sum of the time increments should equal the value read in for TMAX.
This 1s followed by cycles of TMAX, Q and DELT until the total desired
time is reached.

When each sub=total time, TMAX, is reached, values for W at that
cumnulative time level will be punched. These W values will have the
same arrangement as the original data input. Values for ALPHA, TTIME,
TTIMX, TMAX, DELTA, and KTHEA are also punched.

When the total desired time TTIME has been reached, the W array

will be punched followed by KCON array, KTHEA and TTIME.



CHAPTER VI

APPLICATION COF THE COMPUTER PROGRAM

The following unsteady-state gas flow problem will illustrate the
use and also check the validity of the computer program.

A one-mile square portion of a natural gas reservoir exists at an
initial uniform pressure of 480 psia. The reservoir is cheracterized

by the following physical properties:

1

Permeability, k 20 millidarcys

Porosity, § 0.10

Viacosity,.ﬁ 0,012 centipoises

Average pressure, P = 40O psis
Formation thickness, h = 60 feet
Compressibility factor, z = 0.95
Tewperature, T = 550 °R

Producing wells have been drilled at each of the corners of the
square. Each well is produced at the rate of 40O MCF per day for
20,000 hours.

It is desired to calculate a pressure drawdown curve for a
point at the center of the square reservoir during this flow period.

For the computer solution, the problem was reduced by symmetry to

that of only one well at the upper left corner of the square produging

28
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at four times the rate previously described for the four wells, or
16,000 MCF per day.

The upper left quarter of the square is covered by a 14 x 14 net
corresponding to the W array described in Chapter V. The lower right
corner of the array becomes the point for which the drawdown is to be
found. .

KCON values are selected for each point in the W array from Table
II.

The flow rate, 5, at the upper left point of the array is deter-

mined in the manner described in Chapter IV. The point in question

is & corner point; therefore,

= .Q-8,930L2zTq
R R (6-1)

y = 8,930 (0.012) (0.95) (550) (400) = 2
Q T (50) (30) 18,664 psis

The other variables involved in the calculations are determined
and are punched in date cards. Data formast is shown in Table III.

A time increment of 10 hours was used to start the problem. This
was Increased by a factor of approximately 1.2 for each succeeding
double time step.

Answers for the problem were punched at pre-determined times.

One set of answers is given in Table IV for 190 hours of flow.

To check the cowputer results, Horner's (6) point source

solution for an infinite reservoir was used to calculate a similar

drawdown at the point in question.
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14+
W ARRAY
230400C056+
2304000056+
23040U00C56+
2354000056+
2304000056+
235400LUbkY
2304000056+
2304000056
2306 ULDLE AT
2354000056+
2304000056+
23040C00Y6+
2304000756+
233400006+
23340000564
FAa400G0LEE+
2304U00L56+
235400 LU56
2304U00U56+
234000080+
2308005056
2304000056
2304000056+
23064000056+
2304000056+
2304LC0ub e
2304000056
230haULuushy

KON
1uu2+

MAX

POR
1000000050+
TTIME
2030000059
THMAX
1980000053
] FLOW
1866400055+
L1+

DELT
5000CC0O051+
6000000051+
7000000051+
EQODOOQOS 1+
1000000052,
120U000052+
1400000052+
1700600052+
2000000052+

N

la+
INITIAL
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2334000056+
2304000056+
2304000056+
230LC0V056
2304000056+
2304000056+
2304000056+
23042000564+
2304000056+
23LLL00U56+
2306UdIUSE+
204000056+
2L UILLE 6+
23U0600u056+
2306000056+
2304000056+
23064000056+
2704000056+
2304000056+
21040007156+
2304000056+
2304000056+

CONTROL

6+
bt
14

1+
1+
1+
1+
1+
1+
1+

1+
1+

1+
1+
1+
1+
1+
1+
1+
1+
1+
1+
1+
1+
B+
B+

VIE
1200000069 ¢+

RATES

VALUES

2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2305000056+
2304000056+
2306000056+
2304000056+
2304000056+
2104000056+
2304000056+
2304000056+
23054000056+
2204000056+
2304000056+
2306000L56+
2304000056+
23064000056+
2304000056+
2304000056+
2304000056+
230400005R+
2304001056+
2304000056+
2304000056+
2304000056+
2304000056+

ARRAY
&+
6+
1+
1+
1+
1+
1+
1+
1+
1+

DELX
20030800053+

51+

TABLE
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DATA FORMAT

2304000056+
2304000056+
2304000056+
2304000056+
230400005%6+
2304000056+
2304000056+
23040000564+
2304000056+
23040000596+
2304000056+
2304000056+
2304000056+
23040000564+
23040000564+
2304000056+
2304000056+
230AH000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+

COE
3793500054+

51+

2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000058+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
23040000%6+

b+
&+
1+
1+
1+
1+
1+
1+
1+
1+

1+
1+
1+
1+
1+

1+
1+
1+
1+
1+

1+
1+
1+
B+
a+

COM
2500000068+

2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+

6+

1+
1+

1+
1+

1+
1+
1+
1+
1+
1+
i*
1+
1+
1+
1+
1+
1+

1+

1+
1+

B+
B+

PERM
2000000052+

b1+

2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+
2304000056+

51+
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W ARRAY

2212297856+
2302372356+
22586005586+
2302449856+
2278506756+
2302656456+
2288981656+
2302931656+
2295102556+
2303214656+
2298808656+
2303462256+
2301047856+
2303654856+
2302372356+
2303791156+
2303131756+
2303880256+
2303551756+
2303934656+
23037749564
2303965656+
2303887856+
2303982356+
2303939056+
2303990056+
2303953956+
2303992456+

ALPHA
1173371851+

2258600656+
2303131956+
2270935756+
2303170256+
22824332567
2303274556+
2290479456+
2303416256+
2295759556+
2303565256+
2299121856+
2303698556+
2301202956+
2303804156+
2302449956+
2303880456+
2303170356+
2303930856+
2303570656+
2303961956+
2303784056+
2303979956+
23036892256+
2303989656+
2303941456+
2303994156+
2303955756+
2303995556+

TTIME
2000000055+

TABLE IV

ANSWER FORMAT

2278506656+
23035518%6+
2282433156+
2303570656+
2288279256+
2303622156+
2293425256+
2303693256+
2297265556+
2303769156+
2299900256+
2303838356+
2301605556+
2303893956+
2302656356+
2303934756+
2303274356+
2303961956+
2303622056+
2303979056+
2303808956+
2303988856+
2303904256+
2303994156+
2303947856+
2303996756+
2303960356+
2303997456+

TTIMX
1980000053+

22BB981656+
2303775056+
2290479456+
23031784056+
2293425356+
2303809056+
2296472056+
2303843956+
2299000556+
2303881656+
2300862556+
2303916456+
2302126756+
2303944656+
2302931756+
2303965756+
2303416156+
2303979656+
23036931564
2303988856+
2303843756+
2303994056+
2303921256+
2303996856+
2303956856+
2303998256+
2303967256+
2303998656+

THAX
1980000053+

2295102756+
2303887756+
2295759456+
2303B920%6+
2297265656
2303904256+
2299000456+
2303921356+
2300561056+
2303939956+
2301780856+
2303957356+
2302646056+
2303971556+
2303214756+
2303982256+
2303565256+
2303989556+
2303769256+
2303994256+
2303861556+
2303996856+
2303940056+
2303998356+
2303966956+
2303999056+
2303974856+
2303999356+

DELT
2000000052+

2298808756+
2303939156+
2299121756+
2303941456+
2299900456+
23039478564
2300862550+
2303957056+
2301780856+
2303966956+
2302533556+
2303976456+
2303087456+
2303984256+
2303462356+
2303990156+
23030678456+
2303996156+
2303838356+
2303996756+
2303916456+
2303998256+
2303957356+
2303999066+
2303976356+
2303999556+
2303981956+
2303999656+

KTHEA
19+

2301047856+
2303953856+
£301202956+
23039556456+
2301605856+
2303960356+
2302126856+
2303967256+
2302645956+
2303974756+
2203087556+
23099681956+
2303422556+
2303987856+
2303654956+
2303992456+
2303804156+
2309995456+
2303894056+
2303997556+
2303944756+
2303998656+
2303971656+
2303999266+
23039841564
2303999656+
2303987956+
2303999756+
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The equation used was

o0 4
P2 :P02+ E W24 0 z T qu( -a ¢r1 . ) (6_2)
e Ohk 4(2.634 x 10-%) x B

where
P = Drawdown pressure at the point in question, pounds per
square inch
Py = Initial pressure, pounds per square inch
n = Viscosity, centipoises
Z = Compressibility factor
T <= Temperature, °R
q = Flow rate, MCF/Day
h = Formation thickness, feet

Permeability, millidarcy's

=
]

= Fractional porosity

r = Distance from the producing well to the point in
question, feet

P Average reservoir pressure, pounds per square inch

Ei = Symbol for exponential integral

To obtain a pressure drawdown comparable to the one calculated by
the numerical solution for & finite reservoir, Equation (6-2) would have
to be evaluated for an Infinite number of wells spaced around the
desired point in the manner used for the finite case. This would
result in an infinite array of producing wells spaced at one-mile
intervals.

For an approximation, thirty-six producing wells were included in
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the summation indicated in Equation (6-2). Figure 4 shows the
comparison between the two methods of calculation. Until approximately
10,000 hours of production was reached, the two methods produced the
same drawdown at the central point. After 10,000 hours, some difference
appeared in the two methods with the analytical method giving less
drawdown than the numerical solution. This was caused by including
only a finite number of wells when using Equation (6-2). It was

felt that by including a sufficient number of wells in Equation (6-2),

the two solutions would be identical for all practical purposes.



CHAPTER VII

SUMMARY AND CONCLUSIONS

The purpose of this study was to provide a working IBM 650
computer program that would calculate potential and flow distribu-
tions for unsteady-state heat, compressible fluid and linearized
gas flow problems in two dimensions.

By using the alternating-direction implicit numerical method,

a program for solving these types of unsteady problems was obtained.
The program was checked by comparing the numerical solution with a
known analytical solution for a pressure drawdown at the center
point of a square gas reservoir having uniform properties. The

two methods compared favorable as was shown in Figure 4.

Two boundary conditlions were incorporated in the program; that
of a constant boundary value and that of no flow across the boundary.
Point sources or sinks may be located at any point in the region if
the point is not being held constant. The program will handle
multiple transient flow problems in irregular shaped finite regioms.

The unsteady-state gas flow problem was solved by making the
differential equation describing the flow, linear. This was
accomplished by assuming an average pressure for the entire reservoir.
This assumption would perhaps cause appreciable error in the cal-

culations. It is felt, however, that the solution that was presented
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is as accurate as existing analytical solutions in which the same

average pressure assumption is made.

calculations presented in Chapter VI.

This was substantiated by the
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CHAPTER VIII

RECOMMENDATIONS FOR FUTURE STUDY

The computer program presented in this study could be used to
investigate wany interesting problems encountered in compressible
fluid and gas flow in uniform reservoirs.

One such problem would be that of determining if existing
spacing of producing wells is adequate to sufficiently drain the
reservoir in a reasonable length of time. The effects of infill
drilling could also be determined.

Potential and flow distributions due to producing at unequal
rates at 8 number of wells in a finite reservoir could be obtained.

The effect that a neighboring producing well would have on a
well's build-up curve could be studied.

It might be possible to trace an entire field's production
history in order to determine desired unknown reservoir parameters.

Dr. Rachford (8) has suggested an improvement in the programing
technique presented in this study. He proposes that a basic region
be defined and at every point in the region, values for permeability
in both the x~- and the y-direction be read as variables. This would
meke it possible to treat cases in which non-uniformity occurs, such

as, variable permeability in the x- and y-directions.
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For reflection boundaries, he suggests that the permeability be
set equal to zero instead of resorting to fictitious reflection points
as was done in this study. Although this would increase the computer
time required, since calculations would have to be made over the
entire basic region, it is said to eliminate certain unstable
conditions sometimes encountered when reflection points are used.

The program for non-uniform conditions could be used to study
the wany effects of non-uniform conditions which certainly exist in
the actual reservoir. In particular, potential and flow distributions

might be obtained for horizontally fractured systmes.
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