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CHAPTER I 

INTRODUCTION 

During the process of photosynthe~1s. light energy is used by green 

plants to synthesize carbon-containing organic materials from carbon 

dioxide as represented in the illustration; 

CO + 2 H O light" ., CH2o + H O + 02 
2 2 chlorophyll 2 

The light energy h incorporated by chlorophyll into a ... phospho-glycerlc 

acid which is converted into the components o:£ protoplasm. Si.nee one 

gram of oxygen is liberated for approximately each gram of carbohydrate 

produced, a measurement of the oxygen production is an indirect estimate 

of the rate at which energy is stored by photosynthetic processes. The 

rate at which green plants produce carbohydrates ls called primary pro-

ducti vi ty (Odum, 1959). 

A comparative study of the primary productivity in effluent-holding 

ponds at two petroleum refineries was conducted in the summer of 1960. 

In agreement with the refiners, the names of the refineries are not dis

closed here and the refineries studied are referred to as Refinery A and 

Refinery a. Refinery A 1S located in southwestern Oklahoma and Refinery 

Bis located 230 miles to the northeast of Refinery A. 

At Refinery A, there was a series of nine ponds, each separated by 

a submerged pipe (Fi.gure 1). The ponds were arranged so that the water 

going into the end of one pond must travel to the opposite end to enter 

the next. All nine ponds. which the refiners called "Hol~ing Ponds," 
l 
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were approximately five feet in depth •. The last six ponds supported 

algal populations, while the first three did not. These first three ponds 

were characterized by the absence of free oxygen.. .About 37 days was re .. 

quired for the water to travel from the beginning to the end of the pond 

system. 

The effluent at Refinery B passed first through a series of three 

ponds, about 14 feet deep. called "Oil Settling Ponds". The effluent 

then passed to four shallower ponds about five feet deep called "Oxida

tion Ponds 11 (Figure 2). Water flowed from pond to pond through sub

merged pipes. However, in Oxidation Pond Number 3, dikes had been con .. 

structed to separate the pond into four bays. Oxidation Pond Number 4 

was separated into three bays, The first two oil settling ponds did not 

support algal populations and were anaerobic in the sense that they con

tained no free oxygen. Time required for passage of the effluent through 

the entire system was about 60 days. Water level in the ponds and chemi

cal characteristics at each station remained rel~tively constant through

out the period of study at both refineries. 

The refining processes at Refinery A included crude distillation 

with light naphtha specialties, vacuum distillation, catalytic cracking, 

and polymerfzatfon. .At Refinery B, the refining pr<>cesses included crude 

distillation, vacuum distillation, catalytic cracking, HF alkylation, pro

pane deasphalting, and catalytic reforming •. 

Refinery effluents have a high organic matter concentration. Bacte- · 

rial decomposition of organic matter results in the release of carbon 

dioxide. In aquatic situations, the carbon dioxide may be used by algae 

and other plants in the process of photosynthesis. 

The size of any population is influenced by the amount of nutrients 
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available, Waste waters of high organic content such as dpmestic sewage, 

papermill wastes, cannery wastes~ and oil refinery wastes may be expect~ 

ed to support large algal populations. As the quantity of organic mate

rial is decreased by bacterial activity there may be a corresponding de

crease in the available carbon dioxide and in the associated algal popu

lations. 



CHAPTER II 

REVIE.W OF THE LITERATURE 

The first concept of indirect measurement of phytoplankton produc-

tion was advanced by Atkins (1922) of the United Kingdom. He based his 

estimates on the uptake of carbon dioxide from the water. 

Manning and Juday (1941) made observations on the concentration and 

distribution of chlorophyll in several Wisconsin lakes. They estimated 

primary productivity by the oxygen change in Hght-and .. dark bottles and 

car.related the productivity with the amount of chlorophyll present, At 

optimum light intensity it was found that the average productivity rate 

was seven milligrams of oxygen produced per milligram of chlorophyll per 

hour. It is now believed (Odum and Haskin, 1958) that light-and-dark 

bottle measurements are insufficient to determine the community metabolism 

because they measure only the production of the suspended phytoplankton. 

The work of Lindeman (1942) provided the basis for the concept of 

primary productivity. He indicated that a biotic community cannot be 

clearly differentiated from its abiottc environment, and together they 

form an ecosystem. The productivity of each level (producers, primary 

consumers, secondary consumers, decomposers, etc.) was defined as the 

rate at which energy was incorporated. 

Odum and Odum (1955) measured the primary productivity and community 

respiration of a coral reef in the Pacific Ocean. A diurnal rate-of-

change in oxygen concentrations between two stations was used to estimate 

the primary producitvity. The primary productivity estimate of 24 
4 
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gm/M2/day was considered to be high because no correction for diffusion 

was made. It was not until the following year that a method of correct

ing for diffusion was developed (Odum, 1956, 1957a and 1957b). 

Verduim (1956) computed estimates of primary productivity for Western 

Lake Erie and some Colorado lakes by using standing crop data, that was 

measured in situ, and photosynthetic values obtai~ed under laboratory con

ditions. He obtained values of the same order of magnitude that Manning 

and Juday (1941) obtained on the Wisconsin lakes. Goldman (1960) observed 

lower values in three lakes on the Alaskan Peninsula by using the tagged 

carbon technique. 

Odum (1956) included a summary of the published data that would lend 

itself to the diurnal method of measurement. In less than 25 instances 

in the literature were there adequate data for diurnal rate-of-change anal

yses. All of these values were corrected for diffusion to yield more ac

curate productivity estimates. The highest productivity estimate report

ed occurred in a polluted river in Indiana. It was concluded that organic 

pollution may cause higher primary productivity. 

Odum and Hoskin (1958) reported primary productivity estimates of a 

number of stations on the Texas coast in which the diurnal curve method 

of analyses were used. At one sampling station (Redfish Bay) there was 

some sewage pollution and a higher primary productivity. 

Most of the oxygen measurements made on organically polluted waters 

have been limited to the usual eight-hour (daylight) working day (Bartsch, 

1960) and the low point which may have occurred during the night was not 

detected. Oswald, et al. (1957) defined production in sewage ponds as 

the difference between the maximum and minimum daylight oxygen concentra

tions. This method gave no indication of the oxygen used in respiration 

or of diffusion losses or gains. 



CHAPTER III 

METHODS AND PROCEDURE 

Methods of Coll~~tion and Analysis of Samples 

Collection stations were established at the outlet of each pond and 

bay as shown in Figures 1 and 2o Six series of samples were taken at 

Refinery A and three at Refinery B between May 30 and September l, 1960 

(Tables I and II). Temperature and duplicate oxygen samples were obtain

ed at each station at frequent intervals during a 24 hour periodo Water 

samples for dissolved oxygen analyses were taken with a Kemmerer water 

sampler and immediately fixed by the Alsterburg (Azide) modification of 

the Winkler method (Barnes, 1959). Iodine liberated by the dissolved 

oxygen was measured colorimetrically with a Bausch and Lomb Spectronic 20 

photoelectric colorimeter at a wave length of 450,.millimicrons. The sam

ples were measured soon after being fixed because in warm weather, the 

iodine color begins to fade after about six or seven hours. The milli

grams of dissolved oxygen per liter were determined from a table convert

ing the color measurement to milligrams per liter • 

. Measurement of Community Metabolism 

The procedure outlined by Odum and Hoskin (1958) was followed in the 

measurement of primary productivity. An example of a hypothetical si tua

tion is given in Figure 3. Oxygen concentration and per cent oxygen 

sa.turation at each sample period were plotted against time in hours 

6 
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(Figures 3 and 7 through 20)o 

The rate of oxygen change in milligrams per liter per hour (mg/1/hr) 

was determined from an oxygen concentration curve and plotted (Figures 3 

and 1 through 20)a Diffusion constant (k) in milligrams per liter at 

zero per cent saturation was determined from the rate of change curve and 

per cent saturation curve as follows; 

where 

qm is the rate of change at a predawn period in 
mg/1/hro, 

qe is the rate of change at a post sunset period 
in mg/1/hro I 

Sm is the decimal satura~ion deficit at the time 
of qm, and 

Se is the decimal saturation deficit at the time 
of qe• 

The calculated diffusion constant for Figure 3 was; 

qm -· ~ 
k = S _ 5 , or g:~~ = ~=&~~~)), or g:~~. or about 1.0 mg/1/hr. or 1.0 gram 

m e 

per cubic meter per hour (gm/M3/hr0 ) at O per cent saturation. The satu

ration deficit at each period was multiplied by the diffusion constant 

(k), and the product added or subtracted to the rate-of-change curve to 

correct for diffusion loss or gain. The corrected rate-of-change curve 

then showed the community metabolism which might have resulted had there 

been no diffusion. A diffusion constant (k) of about 1.0 gm/M3/hr. was 

calculated for all of the sampling stations in this study. 

On the corrected rate-of-change curve, the rate of community respira

tion was shown by drawing a line from the dawn point to the lowest point 

at night (Figures 3 and 1 through 20). The amount of respiration in grams 
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per cubic meter per day (gm/M3/day) was determined by measuring the area 

between the respiration line and the zero rate of change line. Community 

respiration is indicated by the stippled area in Figure 3. 

Gross community photosynthesis, including simultaneous respiration, 

is represented in the area indicated by plus marks between the respira

tion line and the daytime hump of the corrected rate-of-change curve. 

The amount of photosynthesis in gm/M3/day was determined by measuring the 

enclosed area. 

Since photosynthes:b: occurs on the basis of area exposed to sunlight, 

it is necessary to convert the community photosynthesis and respiration 

values to surface area. Depth of light penetration (euphotic zone), was 

estimated to be one meter by Secchi disc measurements. Gross community 

photosynthesis in. gm/wr3 /day was multiplied· by the depth of the euphotic 

zone in meters ta :,obtain the :.grossnprimary·,productivity (Pg)· in gm/M2/day. 

Likewise, community respiration CR) was multiplied by the depth to obtain 

respiration in gm/M2/day. 

Measurement of Day-Net Productivity 

The amount of oxygen released during the daylight hours minus simul

taneous community respiration may be called day-net photosynthesis. 

Oswald, et al. (1957) used the day-net )hotosynthesis to estimate the 

photosynthetic production of sewage-oxidation ponds. To determine day

net photosynthesis in gm/M3/day the minimum dissolved oxygen concentra

tion was subtracted from the maximum dissolved oxygen concentration. The 

day-net photosynthesis in gm/M3/day was multiplied by the depth of the 

euphotic zone in meters to obtain day-net productivity in gm/M2/day 

(Table V). 



CHAPTER IV 

RESULTS AND CONCLUSIONS 

Gross Primary Productivity 

No free oxygen was found in the first part of either pond series. 

Toxicity ot the effluent may have prevented the growth of algae. At 

Refinery A, oxygen was first observed in Holding Pond Number 1 after 

about 23 days holding time and the highest primary productivity value 

(23. 38 gm/M2/day) occurred at that point (Table III and Figure 4). At 

Refinery B, gross' primary productivity increased rapidly from a low 

point of 12.28 gm/M2/day in Oil Pond Number 3 at about 16 days holding 

time to a peak of 21.66 gm/M2/day in Oxidation Pond Number 2 at about 

18 days holding time (Table III and Figure 5). 

Gross primary productivity values progressively decreased as the 

water traversed each pond system (Figures 4 and 5). Linear regression 

analyses of gross primary productivity as a function of time in days 

were -0.59 gm/M2/day at Refinery A and -0.32 gm/M2/day at Refinery B. 

The high values which occurred in Bay 1 of Oxidation Pond Number 

4 at about 48 days holding time seem to be out of sequence (Table III 

and Figures 5 and 6) and may be ·connected with the practice of recycling 

about 230,000 gallons per day from this bay bac~ to the refinery for 

cooling processes. It seems more logical to expect that the productivity 

and respiration values leveled off after the end of Oxidation Pond Num

ber 3 at about 37 days holding time. 
9 
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The changes observed in the gross primary productivity in this study 

may be explained by the influence of available nutrients. It may be as-

sumed that bacterial decomposition of organic matter in the refinery ef

fluent added an excess of carbon dioxide to the community which was used 

by algae in photosyqthesis and caused a high gross primary productivity. 

The progressive decrease in productivity may be attributed to the decrease 

in the available carbon dioxide. Bacterial decomposition probably re-

duced the amount of organic material as the water moved from pond to 

pond and less and less carbon dioxide was available for algal photo-

synthesis. 

Gross primary productivity CPg) values reached a maximum of 23.38 

gm/M2/day (Table III). Odum and Hoskin (1958) reported values of 7.0 

to 18.0 gm/M2/day on the grass flats of Redfish Bay, Texas, at a station 

affected by a trea\ed sewage outfall. Odum (1956) estimated gross primary 

productivity at 60.0 gmh12/day in the recovery zone of a polluted stream 

in Indiana. Odum (1956) computed 39.0 gm/M2/day for the polluted River 

Lark, England, from data reported by Butcher,. et al. (1930). Most un

polluted quiet waters yield productivity values of smaller magnitudes. 

Odum and Hoskin (1958) reported midsummer values of 2.18 to 4.52 gm/M2/day 

in a farm pond near Durham, North Carolina, and 2.70 gm/M2/day from Baffin 

Bay, Riviera, Texas. Computations from data reported by Verduin (1956) 

in seven Wisconsin lakes yielded values of 2.85 to 10.40 gm/M2/day. These 

lower production values are comparable to the 7.50 gm/M2/day estimated at 

tpe last sampling station at Refinery B. As the water entered the pond 

system it had characteristics similar to other polluted situations and at 

the end of the system it was approaching an unpolluted condition. 

Efficiency of the algae in converting solar radiation into carbo-

hydrates is summarized in Table IV. Algae, in general, requi!e about 
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118,000 gram~calories of solar radiation to release one mole of oxygen or 

3680 gram-calories to release one gram of oxygen (Oswald, et al., 1957). 

The visible solar radiation was estimated from u. s. Weather Bureau data 

for Ft. Worth, Texas, Oklahoma City, Oklahoma, and Manhattan, Kansas CU. 

s. Weather Bureau, 1960). The efficiency was determined by modifying a 

formula used by Oswald, et al. (1957) for estimating oxygen production 

in sewage oxidation ponds; 

W 02 (gm 02/~/day) = F S/3680. 

To estimate efficiency, this formula may be modified to; 

where 

F = c3680 W 02)100 
10,000 S 

F =percent efficiency, 

W o2 = weight of oxygen in grams per square meter 
per day, 

S = visible solar radiation which penetrates a 
water surface in calories per square centi
meter, and 

10,000 square centimeters= one square meter. 

Maximum efficif;mcies of 3; 53 per cent at Refinery A and 3. 60 per 

cent at Refinery B were observed at points of highest productivity (Table··. 

IV). Dorris, et al. (in press) reported efficiency values of 0.5 to 1.5 

per cent in refinery effluent holding ponds in Oklahoma. Oswald, et al. 

(1957) reported efficiency values of about 1.0 to 8.0 per cent in shallow 

sewage oxidation ponds in a pilot-plant study in California. Day-net 

oxygen production values were used to determine the efficiency values by 

both authors and did not take into consideration respiration or diffusion 

losses. In the present study, more realistic efficiencies were estimated 

using gross primary productivity values. 
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Community Respiration 

Community respiration is composed of the combined oxygen uptake of 

living organisms present in the water and the decay and decomposition of 

the organic matter suspended in the water or settled on the bottom. In 

a community with a small amount of organic matter, productivity may ex. 

ceed community respiration, but if there is a large amount of organic 

matter, community respiration may exceed productivity. 

The large spring at Silver Springs, Florida, is an example of a com

munity in which there is an excess of productivity over community respira

tion (Odum, 1957a). The community respiration and organic matter concen

tration were relatively low at the beginning of the spring system. As 

the water moved downstream an increase in community respiration was ac

companied by an increase in the concentration of organic matter. Gross 

primary productivity increased downstream at a slower rate than did the 

community respiration, and the values approached each other at the lower 

end of the stream. Community respiration was not great enough to utilize 

all of the newly created organic matter and the excess was carried down

stream and gradually increased in quantity. The concentration at any 

point downstream was an aggregate of the excess occurring there plus the 

inflow from upstream. When there is a progressive increase in organic 

matter concentration in a lake it is said to be undergoing eutrophica

tion (Welch, 1952). Possibly this term might be applied to Silver Springs. 

The present study reports an ex1;1mple in which community respiration 

exceeded gross primary productivity at every sampling station CT.able III 

and Figures 4 and 5). Community respiration exceeded gross primary pro

ductivity because the respiration processes utiliz~d more organic matter 

than was produced by the green plants. This higher respiratory·· rate was 



possible because of the steady inflow of organic matter as refinery 

e ffluen t , 

Analysis of regression of community respiration as a function of 

time in days showed a progressive decrease in the rate of respiration 
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as the water traversed each pond system (Figures 4 and 5). The regres

sion values were -0. 76 gm/M2/day at Refinery A and -0. 41 gm/M2/day at 

Refinery B. The progressive decline in community respiration indicated 

a progressive reduction in the concentration of organic matter. In both 

series of refinery ponds community respiration approached gross primary 

productivity at or near the end of the system (Table III), indicating 

that a balance between the two processes was being attained. Community 

respiration values at the last sampling stations of the two pond systems 

in this study were 15.72 gm/M2/day at Refinery A and 8.52 gm/M2/day at 

Refinery Bas compared to 29.00 and 25. 76 gm/M2/day respectively at the 

beginning (Table III). Community respiration values in most natural 

waters are 1. 6 to 8. 5 gmfn,12/day (Odum and Hoskin, 1958). The addition 

of organic substances to an aquatic community may have a permanent affect 

on the metabolism of the community, resulting in a higher level at which 

stabilization occurs. 

Conclusions on community res pi ration were affected by the assumptions 

involved in the location of the respiration line on a rate-of-change curve 

(Figures 3 and 7 through 20). When drawing the respiration line one as

sumes that community respiration occurs at a uniform rate throughout the 

day and night. This assumption is probably not true but since it is im

possible to measure respiration during the period of photosynthesis one 

must assume a straight line. At best the respiration line was produced 

arbitrarily. 
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Day-Net Productivity 

Oxygen productions commonly reported from sewage-oxidation ponds are 

actually estimates of day-net productivity. Day-net productivity is the 

difference between the daily maximum and minimum dissolved oxygen con

centrations. Since respiration and diffusion occur simultaneously with 

oxygen production, day-net values do not measure the oxygen that is lost. 

Failure to include oxygen lost from the community leads to erroneous pro

ductivity conclusions. Productivity measurements by diurnal rate-of

change curves (Figures 7 through 20) yield a more realistic value because 

they include community respiration and can be corrected for diffusion. 

Discussion of day-net productivity is presented here for a compari

son of values obtained in this study to production in sewage-oxidation 

ponds. Oswald, et al. (1957) reported day-net values of 12.4 to 19. 7 

gm/M2/day in sewage-oxidation ponds that were 36 inches deep. Values ob

tained in this study were 2, 60 to 9. 60 gm/M2/day (Table V). It appears 

that sewage-oxidation ponds are higher in day-net productivity. 

Day-net productivity values in both refinery-pond systems progres

sively decreased as the water moved from pond to pond (Figure 6). Linear 

regression values for the daily reduction were -0. 24 gm/M2/day at Refinery 

A and -0.17 gm/M2/day at Refinery B. Bacterial reduction of the nutrient 

source probably accounts for the progressive decrease in productivity 

shown in Figure 6. 

Discussion 

Adverse effects may occur when effluents containing high algal popu

lations are dumped into receiving streams. If the algae continue to live, 

their respiratory processes may place excessive burdens upon the oxygen 
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content of the receiving stream. If the algae die, their decomposition 

will require oxygen. Either alternative may have undesirable effects on 

the strea~ biota. Since algal activity decreased as holding time increased 

in the effluent-holding ponds, it may be presumed that there was also a 

. reduction in algal populations. Opservations supported this hypothesis, 

In other words, the algal populations were reduced to the point where they 

would probably have little u~desirable effect on the receiving $tream. 



CHAPTER V 

SUMMARY 

1. A study was made to estimate the primary productivity due to 

algal photosynthesis in the effluent-holding ponds of two oil refineries. 

2. The productivity estimates were made from diurnal changes in 

oxygen concentrations. 

3. Linear regression of gross primary productivity and community 

respiration on holding time showed a progressive decrease in both pro-

ductivity and respiration as the water traveled from pond to pond. 

4. Gross primary productivity decreas~d from 23.38 gm/M2/day to 

14,20 gm/M2/day at Refinery A and from 21.66 gm/M2/day to 7,50 gm/M2/day 

at Refinery B. 

5. Community respiration Qecreased from 29.00 gm/M2/day to 15.72 

gm/M2/day at. Refinery A and from 25. 76 gm/M2/day to. 8.52 gm/M2/day at 
. . .:, ·. . . . •, .. -~- . .· .• . . . :. . .- . . ~.: .:_ ·_ . ·. . 

Refinery B. 

6. Community respiration exceeded gross primary productivity at 

every sampling station. 

7. The gross primary productivity and community respiration values 

approached each other near the end of the pond system indicating that 

stabilization was being attained. 

8. Efficiency of the algae to convert solar radiation to carbohy

drates was estimated to be 1.0 to 3.60 per cent. 

16 
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TABLE I 

THE DISSOLVED OXYGEN CONCENTRATION IN MG/LITEn AND THE 
PER CENT SATURATION AT REFINERY A 

Sampling date 6:00am 11 :OOam l:0012m 3:0012m 5:0012m 7:0012m 6:00am 
Holding Pond #1 

June 9, 1960 0.86 5.90 8.60 
I 

10.10 9,20 0.86 A _ _,_.,.. 

B 0.80 5.10 9.50 10. 40 10.40 0, 80 
June 19, 1960 A 1. 35 4.00 6.80 7.20 8.30 8.30 1.35 

B 1. 42 3.90 6.60 7. 40 8.30 8.30 1.35 
June 28, 1960 A 0.72 4.60 8.00 10.40 10.10 10. 40 0.72 

B 0.86 5.10 7.40 10.10 9.20 10. 40 0.86 
July 8, 1960 A o.oo 5.10 8.60 10.70 11.70 11.30 1. 70 

B o.oo 4.00 9.80 11.00 11.00 10. 70 1.42 
July 27, 1960 A 0.80 5.00 7.60 11. 70 11.00 0.80 

B 0.86 4.50 8.00 11. 70 11.00 0.86 
Aug. 6-, 1960 A o.oo 2.90 8,60 8. 90 9.50 o.oo 

B o.oo 3.20 7140 7180 9.20 11 80 o.oo 
Average 0.64 4.44 8.08 9.40 10.07 9.89 0.89 
% saturation 5 60 105 120 130 128 11 

June 9, 1960 A o.oo 
Holding Pond #2 

3.00 4.90 5.90 6.40 o.oo 
B o.oo 2.90 5.00 5.40 5.90 o.oo 

June 19, 1960 A o.oo 2.17 5.40 8.00 9.20 5. 70 o.oo 
B o.oo 2.30 4.70 8.60 5.60 o.oo 

June 28, 1960 A o.oo 5.40 6.40 6.80 8.30 6.40 o.oo 
B o.oo 4.70 6.40 6.40 8.30 6.20 o.oo 

July 8, 1960 A o.oo 1.00 9.50 8.30 6.20 o.oo 
B o.oo 3.48 7.20 8,30 8.00 6.60 o.oo 

July 27, 1960 A o.oo 1. 78 5.60 8.00 7.00 o.oo 
B o.oo 1. 70 5.60 8.30 7.00 0,00 

Aug. 6, 1960 A o.oo 4. 90 9.20 10.10 9. 50 4,20 o.oo 
B o.oo 5.70 8.90 10140 8!90 4160 0100 

Average o.oo 3.46 6.36 7.84 8.54 5.98 o.oo 
% saturation 0 45 85 101 110 80 0 

Holding Pond #3 
June 9, 1960 A o.oo 7.00 9.20 9.20 10.10 o.oo 

B o.oo 6.60 9.20 10.10 10. 40 o.oo 
June 19, 1960 A 1.80 3.40 6.00 6.80 7.20 7.20 1.80 

B 3.10 5.00 6.20 7.20 7.40 
June 28, 1960 A 0.13 2.31 4.10 6.20 8.60 7.60 0.13 

B 0.56 2.24 4.10 5.90 8.00 7.60 0.56 
July 8, 1960 A 0,24 3.28 6.00 9.20 e.oo 7.40 0.32 

B o.oo 2.90 6.80 9.20 8.20 7.80 0.29 
July 27, 1960 A o.oo 3.80 6.80 11.00 8.00 o.oo 

B o.oo 4.00 6.80 10.-70 8.60 o.oo 
Aug. 6, 1960 A o.oo 3,28 8.60 9.80 11.00 8.00 o.oo 

B o.oo 2.65 1.20 9.50 10.10 o.oo 
Average 0.25 3. 71 6.65 8.21 9.00 8.19 0,28 
% saturation 3 50 85 105 115 105 3 
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TABLE I {Continued) 

SamQling date 6:00am 11 ;OOam l:OOQm 3:00Qm 5:00Qm 7:00Qm 6:00am 
Holding Pond #4 

June 9, 1960 A 1.10 4.10 5.40 6.20 6.80 1.10 
B 1.05 4.10 5.90 6.20 7.20 1.05 

June 19, 1960 A I.OS 3.40 4.90 6.00 7.40 7.80 1.05 
B 1.05 3.28 4. 70 7.00 7. 40 7.40 1.05 

June 28. 1960 A 0.32 3.20 5.30 6.20 7.60 7.20 0.32 
B 0.29 3.28 5.60 5.90 7.60 7.20 0.29 

July 8, 1960 A 0.62 2.00 3.40 6.40 7.40 8.30 I.OS 
B 0.32 I. 78 3.28 6.00 6.60 7.80 I. 42 

July 27, 1960 A 0.42 3.60 6.40 IO.IO 10.10 0.42 
B 0.50 3.60 6.40 9.20 9.50 0.50 

Aug. 6, 1960 A o.oo 3.28 6.00 7.40 6.00 4.10 o.oo 
B o.oo 2!46 5.40 6.40 6.80 3!80 o.oo 

Average 0.56 3.17 5.22 6.37 7.61 7.27 0.69 
% saturation 7 40 66 70 99 95 8 

June 9, 1960 A 0.86 
Holqing Pond •s 

4.00 4.60 5.00 6.00 0.86 
B 0.86 3!90 4.50 5.40 5.70 0.86 

June 19, 1960 A 2. 72 5.00 7.40 9. 50 11.70 10.10 2.72 
B 2.65 5.70 7.60 8.90 11. 70 2.65 

June 28, 1960 A 0.29 2.24 3.09 4. 60 6.00 5.40 0.29 
B 0.29 2.31 3.28 4.90 6.00 5.40 0.29 

July 27, 1960 A 1.05 3.80 7.60 10.40 11.70 1.05 
B 1.10 4.20 7.40 10.10 11. 70 1.10 

Aug. 6, 1960 A o.oo 3.00 4.20 6. 20 6.20 6.20 o.oo 
B o.oo 3.20 4!70 6!40 7140 5.00 o.oo 

Average 0.98 3. 74 5.44 6.36 8.69 7,47 0.98 
% saturation 13 48 70 82 113 97 13 

Holding Pond #6 
June 9, 1960 A 6.00 7.60 10. 70 11.30 11.30 6.00 

B 6.00 7.60 9.20 11.00 10.70 6.00 
June 19, 1960 A 5.10 9.50 9.50 9.50 5.10 

B 5.10 9. 50 9.50 10.10 9,50 5.10 
July 27, 1960 A 4. 70 4.70 8.00 8.00 9.80 4.70 

B 5.10 4.40 7.80 8. 30 9.80 5.10 
Aug. 6, 1960 A 5.60 7.00 9.20 10.40 11.70 9.80 4. 70 

B 5230 7.40 9120 IO.IO 11. 30 -: 10. 70 4. 50 
Average 5.36 6.45 9.14 10. 30 9.82 10.23 5.15 
% saturation 65 85 120 135 126 132 67 

---- indicates missing data 
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TABLE II 

THE DISSOLVED OXYGEN CONCENTRATION IN MG/LITER AND nIE 
PER CENT SATURATION AT REFINERY B 

Sam12ling date 6:00am 11:00am l:OO[!m 3:00Qm 5:00[!m 7:0012m 6:00am 
Oil Pond 3 

July 12, 1960 A 3.40 6.60 7.40 8.90 9.50 8.00 3.40 
B 3.20 6.60 7.80 8.60 8.90 8.90 3.20 

Aug. 22, 1960 A 0.00 4.40 6.40 5.60 8.00 4.10 o.oo 
B 0!00 6140 51 70 7!80 4.70 o.oo 

Average 1. 65 5,87 7.00 7.20 8.55 6.43 1. 65 
% saturation 20 76 90 93 112 83 20 

Oxidation Pond 2 
June 22, 1960 A 1.10 6.00 7.20 10.40 9.20 9.50 1. 10 

B 1.00 5.40 6,80 9.80 9.50 9.20 1.00 
July 12, 1960 A 2.90 6.40 7.80 9. 50 9.80 9.20 2.90 

B 3.50 6.40 7.80 9. 50 9. 50 10.40 3. 50 
Aug. 22, 1960 A o.oo 8.60 13.20 12.80 10.40 11.70 o.oo 

B o.oo 8100 12.40 12.80 9.20 11.70 o.oo 
Average 1. 42 6.80 9.20 10.80 9.60 10,28 1.42 
% saturation 18 88 120 145 125 135 18 

Oxidation Pond 3i Bail 
June 22, 1960 A 0.40 6.40 9. 50 10.40 10. 70 p.oo o. 40 

B 0.30 5.90 9.20 10. 40 10. 70 11.00 0.30 
July 12, 1960 A 6.80 7.60 9.80 8.30 

B 8.oo 9.20 8.60 7.40 
Aug. 22, 1960 A o.oo 3.90 7.40 8.00 8. 30 o.oo 

B o.oo 3.90 7.20 8100 9.20 1.40 0100 
Average 0.18 5.82 8.18 9. 30 9.50 9.02 0.18 
% saturation 2 75 106 120 125 118 2 

Oxidation Pond 3i Bai 2 
June 22, 1960 A 4.00 5.60 9.20 9. 50 7.20 

B 4.20 3.40 5.60 8.90 7.60 4.20 
July 12, 1960 A 4. 70 6.00 7.20 9.20 7.40 4.70 

B 4.40 5.40 7.00 1.00 8.60 6.60 4.40 
Aug. 22, 1960 A 1.80 5.60 7.40 8.60 8.60 7.60 1.60 

B 1. 80 51 10 6.40 7.60 81 30 7.40 1. 50 
Average 3.38 4.92 6.40 7.92 a.es 7.30 3.28 
% saturation 44 64 83 103 116 95 42 

June 22, 1960 A 1.70 
Oxidation Pond 3i Bai 3 

11.00 11.00 11.00 11.00 1. 70 
B 1.50 e. 30 9.50 9.80 10.10 10.70 1. 50 

July 12, 1960 A 4.10 5.10 5.30 5.60 6.00 6.00 4.10 
B 4.00 5.90 5.60 5.90 4.00 

Aug. 22, 1960 A 0.00 2.00 4.20 5.60 6.40 4.50 1.40 
B o.oo 2.00 3.80 51 40 6.60 4. 70 1.40 

Average 1. 88 4.66 6.57 7.48 8.02 7.13 2.35 
% saturation 24 60 85 98 105 92 30 
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TABLE II (Continued) 

Sam~ling date 6i00am 11:00am 1:00~m 3:00~m 5iOO~m 7:00~m 6j00am 
Oxidation Pond 3i Bay 4 

June 22, 1960 A 5.90 4.20 5.60 7.00 8.60 6.00 5.90 
B 4.90 4.10 5.40 7.00 9.20 6.00 4.90 

July 12, 1960 A 3, 50 4.20 4.60 5. 70 5.40 3.50 3.50 
B 3.50 3.90 4.20 5.30 4.50 4.10 3.50 

Aug. 22, 1960 A o.oo 2.90 4.00 4. 50 3.90 4.50 o.oo 
B o.oo 2!80 3150 4100 3!90 4!50 o.oo 

Average 2.97 3.68 4.55 5.58 5.92 4.77 2.97 
% saturation 40 48 60 73 77 63 40 

Oxidation Pond 4i Bay 1 
I 

June 22, 1960 A 0.13 6.80 7.80 10.20 9.20 0.13 
. B 0.13 6.60 8.oo 8.90 9.00 9.80 0.13 

Aug. 22, 1960 A 5.60 8.30 10.10 9.80 9.50 10.40 5,30 
B 61 00 8130 10! 10 9.80 10.40 10!10 5!90 

Average 2.97 7. 50 9.00 9.50 9. 78 9.88 2.87 
% saturation 40 98 117 124 128 130 37 

Oxidation Pond 4i Bay 3 
June 22, 1960 A 2.72 2.65 5.10 6.00 6.00 5.90 2.72 

B 2.46 5.00 5.90 6.00 
Aug. 22, 1960 A 7.40 10.10 9.80 10.70 10.40 10. 40 8.00 

B 8.00 9.50 9.50 10.10 10!40 9. 50 7!00 
Average 6.04 6.18 7.35 8.18 8.20 8.60 5.91 
% saturation 78 80 96 107 107 112 76 

---- indicates missing data 



TABLE III 

SUMMARY OF THE COMMUNITY METABOLISM DETERMINED FROM DIURNAL RATE 
OF CHANGE CURVES (FIGURES 7 TO 20). THE GROSS PRIMARY 

PRODUCTIVITY (Pg~ AND COMMUNITY RESPIRATION 
CR) VALUES ARE IN GM/M2/DAY, 

24 

Calculated Days 
Station Pg R Holding Time 

Refinery A 
Pond I 23.38 29.00 21.4 
J,>ond 2 15.94 26.78 23,5 
Pond 3 19.78 30,20 26,2 
Pond 4 16.46 27.42 30.4 
Pond 5 15.90 26.18 33.5 
Pond 6 14,20 15.72 37,0 

Refinery B 
Oil Pond 3 12,88 21.60 16.4 
Oxidation Pond 2 21.66 .25. 76 17.9 
Oxidation Pond 3 

Bay I 19.92 26.88 20.0 
Bay 2 10.44 17~62 26.0 
Bay 3 11. 24 19.12 31.0 
Bay 4 6,00 16.42 37.0 

Oxidation Pond 3 
Bay 1 15.08 17.36 48,0 
Bay 3 7,50 8.52 60. 4 



TABLE IV 

THE PER CENT EFFICIENCY OF THE ABILITY OF ALGAE IN OIL 
REFINERY PONDS TO CONVERT VISIBLE SOLAR 

RADIATION INTO CARBOHYDRATES 

25 

Station 
Gross 

Productivity 
GM/M2/Day 

Per Cent 
Efficiency 

(F) 

Refinery A 
Pond I 
Pond 2 
Pond 3 
Pond 4 
Pond 5 
Pond 6 

Average 

Refinery B 
Oil Pond 3 
Oxidation Pond 2 
Oxidation Pond 3 

Bay 1 
Bay 2 
Bay 3 
Bay 4 

Oxidation Pond 4 
Bar 1 
Bay 2 

Average 

Estimated solar radiation : 

Refinery A: 

23.38 
15.94 
19.78 
16,46 
15.90 
14.20 

12.28 
21.66 

19.92 
10.44 
11. 24 
6.00 

15.08 
7.50 

Total radiation = 653 gram-calories per square centimeter. 
Visible radiation= 243 gram-calories per square centimeter. 

Refinery B: 
Total radiation = 594 gram-calories per square centimeter. 
Visible radiation = 221 gram-calories per square centimeter. 

3.53 
2.41 
2.99 
2.49 
2. 40 
2.14. 

2.66 

2.04 
3.60 

3.31 
1. 73 
1.87 
1.00 

2.50 
,l. 24 

2.16 



TABLE V 

DAY-NET PRODUCfIVITY AS CALCULATED FROM DAILY MAXIMUM 
AND MINIMUM OXYGEN CONCENTRATIONS 

26 

Sampling Calculated Days Maximum Minimum Productivity 
GM/M2/Day• Stations Holding Tfme Mg/L Mq/L 

Refinery A 
Holding Pond •I 21. 4 10'·.07 0.64 9.43 
Holding Pond #2 23.5 8.54 o.oo 8.54 
Holding Pond #3 26.2 9.00 o.25 e.15 
Holding Pond #4 30. 4 7.61 0.56 7.05 
Holding Pond #5 33.5 8.69 0.98 7. 71 
Holding Pond •6 37.0 10.30 5,36 4.94 

Refinery B 
Oil Pond #3 16.4 8.55 1.65 6.90 
Oxidation Pond #2 17.9 10,80 1.42 9.38 
Oxidation Pond •3 

Bay I 20.0 9.50 0.18 9.32 
Bay 2 26.0 8.85 3,38 5.47 
Bay 3 31.0 8.02 1.88 6.14 
Bay 4 37.0 s.92 2.97 2.95 

Oxidation Pond #4 
Bay I 48.0 9.88 2.97 6.91 
Bay 3 60. 4 8.(>0 6.04 2.56 

*Euphotic zone (depth of light penetration) estimated at one meter at 
all stations. 
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time) at Refinery A. In the uppermost curve, the vertical lines 
indicate the range, the middle horizontal marks'indicate the mean, 
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most curve. 
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Figure 15: Diurnal oxygen curve for Bay 1 of Oxidation Pond #3 (20.0 
days holding time) at Refinery B. See Figure 7 for the explanation 
of the uppermost curve. 
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Figure 16: Diurnal oxygen curve for Bay 2 of Oxidation Pond ~3 (26.0 
days holding time) at Refinery B. See Figure 7 for the explanation 
of the uppermost curve. 
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Figure 17: Diurnal oxygen curve for Bay 3 of Oxidation Pond #3 (31.0 
day~ holding time) at Refinery B. See Figure 7 for the explanation 
of the uppermost curve. 
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Figure 18: Diurnal oxygen curve for Bay 4 of Oxidation Pond u3 (37.0 
days holding· time)· at Refinery B. See Figure 7 for t.he explanation 
of the uppermost curve. 
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Figure 19: Diurnal oxygen curve for Bay 1 of Oxidation Pond #4 (48.0 
days holding time) at Refinery B. See Figure 7 for the explanation 
of the uppermost curve. 
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Figure 20: Diurnal oxygen curve for Bay 3 of Oxidation Pond #4 ·(60.4 
days holding time) at Refinery B. See Figure 7 for the explanation 
of the uppermost curve. 
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