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' NCMENCLATURE 

i, j, k •• . • Letters designating joints of member 

t~) . . ••• Angle between transformed and basic axis 

Mj ix • · • • • · • · · · 

Kjixx· 

CKjixx 

QjiX I' 

EMj ix, . , • , . 

FMjix· 

XI, y I • 

x, y • 

.• Transformed moment at "j" facing "i" in 
the x direction 

Basic moment at "j" facing "i" in the x' 
direction 

Basic stiffness factorfor span "ji" in 
x' direction 

Basic cl!rry over stiffness factor in x' 
direction 

Transformed stiffness factor 

Transformed carry over stiffness factor 

Basic end slope in the x' direction 

. Transformed end slope 

. Basic fixed end moment 

Basic propped end moment 

, • Transformed fixed end moment 

Vertical shear at "j" facing "i" 

•• Basic coordinates 

Transformed coordinates 
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JMjx 

L . . 

. Length of span "ij" 

Carry over factor from JMix to JMjx 

•• Joint moment at "j" in the x direction 

•••• Starting value for ·JMjx 

• •••• Sununation 
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INTRODUCTION 

The purpose of this thesis is the demonstration of the derivation 

and application of the carry over joint moment method for analysis of 

continuous beams. 

Several efforts are recorded in the literature and the oldest 

method for the analysis of continuous members in space is the method of 

virtual work. For the application of this method no special reference 

is given but it is generally accepted that this method was applied to 

this group of problems in the early part of the century. 

The application of the modern philosophy of structural analysis, 

namely the application of successive approximations, has been reported 

in this country by Ferguson, Lothers, and Michalos (6, 8, 9). After deve

loping the carry over moment method applied to planar frames, Tuma (2) 

extended the application of this method to continuous beams and frames 

in space (4). The derivation presented in the theoretical part of this 

thesis follows closely Tuma's lectures. The writer's contribution is 

the derivation of special formulas for special end conditions, the 

preparation of an example and the calculation of influence values. 

The appendix material dealing with sign conventions and transfor

mation matrices was prepared on the basis of Tuma's paper (1) dealing 

with transformation matrices. Additional references dealing with pipe 

line design (5) and general slope deflection equations (6, 7) are given. 

ix 



CHAPTER I 

STATEMENT OF THE PROBLEM 

A continuous bent ,,member in space is considered. The member lies 

in one plane and is loaded perpendicular to that plane. The supports 

are denoted by 0, 1, 2, 3, ....•. i, j, k, .•••.•. n. The span lengths are 

L1, L2, L3,·······Li, Lj, Lk,·······Ln and the angles between the axes 

of spans and a selected coordinate system are W1, w2, GJ3, ..•..• .Wi, 

Wj', Wk, ••••••• Wn_ 

y 

(Fig. 1-i). 

Fig. 1-1 Continuous Bent Member in Space 

1 

X 
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Vector notation for moments is used and the familiar "right hand 

rule" governs sign convention. Moments related to the principal axes 

of the spans will be referred to as basic moments and are denoted by 

the prime symbol. Moments related to the arbitrarily selected reference 

system are denoted as transformed moments. As the member is loaded 

perpendicular to the plane of the member only the vertical shears (Vz) 

exist and the moment in the vertical direction (Mz) is zero (Fig. 1-2). 

Mjiy' zr /Mjix' 
---,1•~~.,Mjix 

Mkjy' Mkjy Mjky. ,rky ,, 
Mjkx .,.~ ___,.,. 

Mjkx' 

-----Mkjx' 
----~-,.. Mkjx 

"k" 

Mijy(J II j 11 

Mijx ,--. 

Mij/ 
Iii II 

Fig. 1-2 Basic and Transformed Moments 
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The solution of this type of problem in this discussion will be 

by the "Carry Over Moment Method" derived by Tuma. The carry over 

method is a successive approximation which permits the rapid solution 

of a great number of unknowns to any degree of accuracy. It will 

become apparent to the reader that as the number of spans of the 

continuous member increase and consequently the number of unkn~s, 

the solution by the slope deflection method becomes tedious while 

the labor involved in the carry over method is increased very little. 

This type of problem is one of many engineering problems to which the 

carry over method may be applied. 

The '"Transformation Matrix" applied to the analysis of space 

structures, ,as discussed by Tuma, is used extensively in this paper. 

The transformation matrix provides for a systematic transformation of 

moments, forces, slopes, conjugate moments, elastic weights, etc. 

from one coordinate system to another. It , is readily seen that the 

transformation matrix is an invaluable tool in the analysis of space 

structures. 



CHAPTER II 

SLOPE DEFLECTION EQUATIONS AT JOINT "j" 

2-1. Basic Slope Deflection Equations 

The slope deflection equations related to the principal axes of 

the member "ij" at the end "j" may be expressed in terms of the 

stiffness factors, carry over stiffness factors, angular rotations, 

linear displacements, and fixed end moments. Because the supports 

of the member are rigid the linear displacement terms do not appear 

in the slope deflection equations. The same may be said about the 

slope deflection equations for the member "jk" at . the end ,"j". These 

slope deflection equations will be denoted hereafter as the basic 

slope deflection equations and the terms in them will be denoted as 

basic, such as basic stiffness factors, basic fixed end moments, etc. 

The analytic expressions for these equations follow. 

Mjix' = Kjix'9jix' + Cx'Kijx'9ijx' + FMjix' 

Mjiy' = Kjiy 19jiy' + Cy 1Kijy 19ijy' + FMjiy I 

(2-1) 

Mjkx' = Kjkx'9jkx' + Cx•Kkjx'~kjx' + FMjkx' 

Mjky' = Kjky'Qjky' + Cy,Kkjy'9kjy' + FMjky' 

4 
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2-2. Transformation of End Slopes and Moments 

Because each system of basic slope deflection. equations is related 

to a different set of axes, the direct solution of joint equilibrium 

is not possible. It is however possible to state the equilibrium of 

moments about any set of arbitrarily selected axes providing that all 

quantities in all equations are related to this new set of axes. 

In many cases it becomes convenient to select one of the basic 

systems as the reference axes and to transfer the other systems to it. 

In order to make the discussion in this thesis completely general, the 

basic systems for the spans "ji" and "jk" are transferred to a new 

reference system defined by two transformation matrices (Table 2-1 and 

Table 2-2). 

Table 2-1 

x' y' 

X O(jx O(jy 

y (.3jx (djy 

Transformation Matrix 

for Span "ji" 

Table 2-2 

x' y' 

X O(kx O(ky 

y $kx J3ky 

Transformation Matrix 

for Span "jk" 
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The first step in the procedure to relate all quantities of the 

slope deflection equations to the reference axes is to find the basic 

end slopes in terms of the transformed end slopes. This is accomplished 

by use of the transformation matrices for the spans "ji" and "jk" 

(Table 2-1 and Table 2-2). From these tables the basic end slopes in 

terms of the transformed end slopes are: 

gijx' = 9ixo(Jx + 9iy,8jx 

Qijy' = 9ixo<jy + 9iy,3jy 

9jix' = 9jxo<jx + 9jy~jx 

9jiy' = 9 jxO(Jy + 9 jy~jy 

(2-2) 
9jkx' = 9jx°<kx + 9jy~kx 

9jky' = 9j,cO<ky + 9jy~y 

9kjx' = 9kxo<J.oc + 9ky,Bkx 

gkjy' = 9kxO(ky + 9tcyhy 
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The expressions for the basic end slopes are now substituted in 

the basic slope deflection equations. The basic end moments are 

then in terms of basic fixed end moments and transformed end slopes. 

(2-3) 

9jxKjkx 'o<kx + 9jyKjkx '.Skx 
Mjkx' = + FMjkx' 

91cxCx 1Kkjx 'o<kx + QkyCx 1Kkjx :Skx 

Q jxKjky 'o<ky + Q jyKjky '/3ky 
Mjky' = + FMjky' 

9kxCy 'Kkjy 'o<ky + QkyCy 'Kkjy ~ky 
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The second step in the procedure to relate all quantities in the 

slope deflection equations to the reference axes is to find the trans

formed moments in terms of the basic end moments. Again, this is 

accomplished by means of the transformation matrices for the spans 

"ji" and "jk" (Tables 2-1 and 2-2). 

Mjix = Mjix'o<jx + Mjiy 1o<jy 

Mjiy = Mjix'/3jx + Mjiy 1,6'jy 

Mjkx = Mjkx'o(kx + Mjky'o<ky 

Mjky = Mjkx 1,6'kx + MJicy ,pky 

(2-4) 

The expressions for the basic end moments in terms of the basic 

fixed end moments and transformed end slopes (Eq. 2-3) are now sub

stituted in the expressions for the transformed end moments (Eq. 2-4). 

All quantities in the resulting expressions are now related to the 

reference system chosen and solution for the unknown end slopes by 

joint equilibrium is now possible. These expressions are denoted as 

the transformed slope deflection equations (Eq . 2-5). 



9jx(Kjix'o<jx2 + Kjiy'o(Jy2) 

9jy(Kjix'o<jxPjx + Kjiy'o<jyPjy) 

Mjix = 91x(CxKijx'o<jx2 + CyKijy 1o<jy2) 

91y(CxKijx'o<jxPjx + CyKijy'o<jyPjy) 

o<jxFMjix' + ,SjyFMjiy' 

9jx(Kjix'~jxPjx + Kjiy'o<jy~jy) 

9jy(Kjix',Bjx2 + Kjiy'~jy2) 

Mj iy = 91x(CxKijx 'o(Jxi9jx + CyKijy 1°<jyPJy) 

9iy(CxKijx 1,8jx2 + CyKijy',8jy2) 

l:ijxFMjix' +,ejyFMjiy' 

9jx(Kjkx'o<kx2 + Kjky'~ky2) 

9jy(Kjkx 1,:,{kxPlcx + Kjky~kytaky) 

Mjkx = 91cx(CxKkjx 1o<kx2 + CyKkjy 1ci<ky2) 

9ky(CxKkjx lc,(kx~x + CyKkjy 'o<ky,8ky) 

~kxFMjkx I + o<kyFMjky I 

9 jx(Kjkx lo<kx'1oc + Kjky lo(kyi8ky) 

9jy(Kjkx '~kx2 + Kjky '~ky2) 

Mjky = 9kx(CxKkjx lr.kxPkx + CyKkjy ',:,{ky.c9ky) 

9ky(CxKkjx 1,Bkx.2 + CyKkjy 1,Sky2) 

,PkxFMjkx I + .8kyFMjky I 

9 

(2-5) 



2-3. Transformed Stiffness Factors. Carry Over Stiffness Factors, 

and Fixed End Moments 

The coefficients of the end slopes in the transformed slope 

deflection equations (Eq. 2-5) are not merely a collection of alge

braic terms. They are the transformed stiffness factors, carry 

over stiffness factors, and transformed fixed end moments. They 

have definite physical meanings similar to those ex the basic 

stiffness factors, carry over stiffness factors, and basic fixed 

end moments. These transformed values are tabulated below. 

10 

Table 2-3 Transformed Stiffness and Carry over Stiffness Factors 

Kjixx = Kjix'o<jx2 + Kjiy'o(jy2 

Kjiyy = Kjix'.8jx2 + Kjiy',Bjy2 

Kjixy = Kjix'~jxPjx + Kjiy'~jyPjy = Kjiyx 

CKijxx = Cx 1Kijx'~jx2 + Cy•Kijy 1o<jy2 

.CKijyy = Cx 1Kijx 1.Bjx2 + Cy 1Kijy 1,Bjy2 

CKijxy = Cx 1Kijx'~jx~jx + Cy•Kijy'~jy~jy = CKijyx 

Kjkxx = Kjkx 'o(kx2 + Kjky 1ol.k.y2 

Kjkyy = Kjkx '~kx2 + Kjky •/Jky2 

Kjkxy = Kjkx 'o<kx.8k.x + Kjky lo<ky~ky = Kjkyx 

CKkjxx = Cx 1Kkjx 1o<1cx2 + Cy 1Kkjy 'C'(ky2 

CKkjyy = Cx 1Kkjx 1i<31cx2 + Cy 1Kkjy 1,81cy2 

CKkjxy = Cx'Kkjx'~kx~ + Cy'Kkjy'~ky#ky = CKkjyx 



Table 2-4 Transformed Fixed End Moments 

FMjix = FMjix'~jx + FMjiy'~jy 

FMjiy = FMjix 1,.Bjx + FMjiy 1,.Bjy 

FMjkx = FMjkx'~kx + FMjky'~ky 

FMjky = FMjkx 1,8k.x + FMjky ~ky 

Substituting the values given in Table 2-3 and Table 2-4, the 

transformed slope deflection equations are rewritten in a more 

meaningful form below,and these expressions will be used for the 

transformed slope deflection equations hereafter. 

Transformed Slope Deflection Equations: 

(2-6) 

11 



CHAPTER III 

EQUILIBRIUM EQUATIONS AND CARRY OVER FUNCTIONS 

3-1. Joint Equilibrium Equations. 

In order to maintain equilibrium, the summation of moments 

about any set of axes at a joint must be zero. Using the trans-

formed slope deflec~ion equations the solution of joint equilibrium 

is now possible. The sununation of moments at llj" are taken about 

the transformed x and y axes and are stated analytically below. 

Mjix + Mjk.x = 0 

9ixCKijxx + 9jxLKjxx + 9k,xCKkjxx + FMjix 

9iyCKijyx + 9jyLKjyx + 9kyCKkjyx + FMjk.x 

Mjiy + Mjky = 0 

9ixCKijxy + Qjx~Kjxy + Qk.xCKkjxy + FMjiy 

9iyCKijyy + 9jyLKjyy + QkyCKkjyy + FMjky 

= 0 

= 0 

(3-la) 

(3-lb) 

Equations (3-la) and (3-lb) are the slope deflection joint 

equilibrium equations. Each equation is a six slope equation and 

there are two such equations at each joint. These equations may be 

put in matrix form and the matrix solved for the Q's. The end slopes 

may be transformed to the basic end slopes and the substitution of the 

values for the basic end slopes in the basic slope deflection, equations 

will yield the final basic end moments. 

12 



3-2. Joint Moments. 

A new term, the "joint moment'~ is now introduced in the joint 

equilibrium equations in order to put them in the carry over form. 

The "joint moment" is defined as the product of the rotation at a 

joint and the summation of stiffness factors related to the rotation 

at that joint. 

JMix = 9ix~Kixx 

JMiy = QiyLKiyy 

JMjx = 9jx~Kjxx 

JMjy = Qjy:Z::::-KJyy 

JM1cx = 91cxL Kkxx 

JMky = ekyLKkyy 

(3-2) 

The joint moments are now substituted in the joint equilibrium 

equations (3-la) and (3-lb) and the resulting expressions are shown 

below. 

JMjx (3-3a) 

(3-3b) 

13 



14 
II 

\ 

3-3. Carry Over Functions. 

The joint moment equations (3-3a) and (3-3b) are now in carry 

over form. The coefficients of the joint moments are the influences 

they have on the joint moments on the left side of the equations and 

are defined as the carry over values. The summation of fixed end 

moments is defined as the starting value. 

rijxx = CKijxx rkjxx = -~J: 
L_Kixx 

rijyy =-~ rkjyy = CKkj;u 
Kiyy L_Kkyy 

(3-4) 

rijxy = CKijxy rkjxy 
=-~~ '.L_Kixx 

rijyx = CKijyx 
L_Kiyy 

rkjyx = - ~;; 

rjjxy =-~]~ rjjyx = _ ~~1;; 

m:JX = -(FMjix + FMjkx) (3-Sa) 

m3y = -(FMjiy + FMjky) (3-Sb) 
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3-4. Carry Over Joint Moment Equations. 

The substitution of the carry over values (Eq. 3-4) and starting 

values (Eq. 3-5) in the joint moment equations (3-3) yields the joint 

moment equations in their final carry over form. 

JMixrijxx + mjx + JMk.xrkjxx 
JMjx = 

JMiyrijyx + JMjyrjjyx + JM1cy~jyx 

JMixrijxy + JMjxrjjxy + JMkx~jxy 
JMjy = 

JMiyrijyy + mjy + JM1cyrkjyy 

(3-6a) 

(3-6b) 

Two carry over joint moment equations may be written at each 

joint. As will be shown later, the most convenient method of 

solution for the joint moments is by use of a carry over table in 

which the joint moments, their carry over values, and their starting 

values are listed. The joint moments are then approximated in the 

table to the desired accuracy. 



CHAPTER IV 

MODIFIED CARRY ·· OVER FUNCTIONS 

One or more -of the unknown joint moments may be eliminated from 

the carry over joint moment equations if these equations are modified 

to meet the requirements of known conditions at a joint. Three special 

cases are discussed in this chapter; a fixed end, a pinned end, and a 

member restrained against torsion but free to rotate in they' direction. 

4-1. Fixed End. 

Consider the member at "i" fixed in all directions (Fig. 4-1). 

Then both the basic and transformed slopes at "i" are zero. 

Conditions: 

gijx' = 0 

9ijy' = 0 

9jx = 0 

9jy = 0 

y'~ 

Fig. 4-1 Fixed End 

16 
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The basic end slopes at "i" are eliminated and the basic slope 

deflection equations for Mjix' and Mjiy' become: 

Mjix' = 9jix 1Kjix 1 + FMjix' (4-la) 

(4-lb) 

The procedure to find the modified carry over joint moment 

equations is exactly the same as was used to find the general 

equations. The effect on the carry over joint moment equations is 

to eliminate the joint moments at the fixed end. 

(4-2a) 

(4-2b) 
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4-2 Pinned End. 

Consider the member at "i" free to rotate in all directions 

(Fig. 4-2). Then both the basic and transformed moments at "i" are 

zero. 

Conditions: 

Mijx' = 0 

Mijy' = 0 

Mijx = 0 

Mijy = 0 

y'~ 

Fig. 4-2 Pinned End 
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The basic slope deflection equations are written for Mjix' and 

Mjiy1using the basic stiffness and carry over stiffness factors modified 

for a pinned .end. These modified factors should be familiar to the 

reader and are simply stated below. 

K'jix 1 = Kjix•(l-Cx,2) (4-3a) 

K'jiy' = Kjiy 1 (1-Cy• 2) (4-3b) 

EMjix' = FMjix 1 - Cx 1FMijx' (4-4a) 

EMjiy' = FMjiy' - Cy•FMijy' (4-4b) 

The modified basic slope deflection equations are: 

(4-5a) 

Mjiy' = 9jiy•K'jiy' + EMjiy' (4-5b) 
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Again,the same procedure as that used in deriving the general 

expressions is followed. The modified basic factors replace the 

regular basic factors in the determination of the transformed stiff-

ness and carry over stiffness factors. 

K'jixx = K'jix'o<jx2 + K'jiy'D(jy2 

K'jixy = K'jiyx = K'j1x'~jx$jx + K'jiy'o<jy,8jy 

K' K' 2 + K' 2 j iyy = j ix 1,8jx j iy 1,8jy 

EMjix = EMjix'o(Jx + EMjiy'~jy 

EMjiy = EMjix'..ijx + EMjiy',djy 

(4-6) 

(4-7) 

These modified transformed values are used to determine the carry 

over and starting values in the carry over joint moment equations. The 

joint moments at "i" are eliminated and the carry over joint moment 

equations become: 

m' jx + JMjyr 'jjyx 
JMjx = (4-8a) 

(4-8b) 
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4-3. Torsi,onal Restraint, 

Consider the member at "i" fixed in the x' direction and pinned 

in they' direction (Fig. 4-3). Then the rotation in the x' direction 

and the end moment in they' direction at "i" are zero. 

Conditions: 

Mijy' = 0 

gijx' = O 

y'~ 

Fig. 4-3 Torsional Restraint 

This case is simply a combination of the two previous cases and 

the modified basic slope deflection equations are: 

Mjix' = gjix'Kjix' + FMjix' 

Mjiy' = 9jiy 1K'jiy' + EMjiy' 

(4-9a) 

(4-9b) 
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Again,those basic values which were modified are used in place 

of the regular basic values in the general expressions for the trans-

formed values to find the modified transformed stiffness, carry over 

stiffness factors and end moments. 

K"jixx = Kjix'o<jx2 + K'jiy'qJy2 

K"jixy = K"jiyx = Kjix'c>(jx.Bjx + K'jiy'o(jy,6'jy 

K"jiyy = Kjix',8jx2 + K'jiy',8jy2 

FM'jix = FMjix'o(jx + EMjiy'o(jy 

FM'jiy = FMjix',8jx + EMjiy',6'jy 

(4-10) 

(4-11) 

These modified transformed values are used in place of the trans-

formed values (Eq. 3-4 and 3-5) to find the carry over and starting 

values for the carry over joint moment equations. 

(4-12a) 

(4-12b) 
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It will be observed that if the basic slope deflection equations 

are modified to meet the requirements of known end conditions, the 

joint moments at that end are eliminated from the carry over joint 

moment equations. The procedure in calculating the modified transformed 

values is exactly the same as in the general derivation, but those 

basic values which were modified to meet special end conditions are 

used in place of the regular basic values. The modified transformed 

values are used in place of the regular transformed values to calculate 

the modified carry over and starting values. The proper modifications 

to meet the requirements of special end conditions will often greatly 

reduce the numerical calculations involved in the analysis of problems 

of this type. 



CHAPTER V 

FINAL MCMENTS 

The values for the joint moments obtained from the solution of 

the carry over joint moment equations could be used to find the end 

slopes. The values for these end slopes could be substituted in the 

transformed slope d~flection equations to find the transformed moments. 

It would be more desirable, however, to have the expressions for the 

transformed moments in terms of the joint moments. The values for 

the joint moments could then be used directly to find the final trans-

formed moments. Substituting the expressions for the end slopes in 

terms of the joint moments (Eq. 3-2) in the transformed slope deflection 

eqvations,the final transformed moments b~come: 

(Eq. 5-1) Final Moments in Terms of Joint Moments 

24 
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The coefficients of the joint moments (Eq. 5-1) are the carry 

over values (Eq. 3-4) and the distribution factors similar ·toc,those . 

used in the moment distribution method. The expressions for the final 

transformed moments may be rewritten using these values as: 
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For design purposes it is easier to work with the basic moments 

instead of the transformed moments. The basic moments are easily found 

by use of the transformation matrix. (Table 5-1) 

Table 5-1 

Transformation of Moments 

Mx• My• 

Mx o(jx o<jy 

My {3jx {ijy 

(5-3) 

Another way to determine the basic moments would be to find the 

transformed end slopes from the joint .moments, transform them to the 

basic end slopes and substitute the basic end slopes in the basic slope 

deflection equations. 



CHAPTER VI 

NUMERICAL PROCEDURE 

A systematic procedure for analysis will be outlined in the first 

part of this chapter. An example problem will be analyzed following 

the outlined procedure in the second part of this chapter. 

6-1. Outline for Numerical Procedure 

a. Transformation Matrices. 

A reference system is selected and transformation 

matrices for each span are established. 

b. Basic Stiffness and Carry Over Stiffness Factors. 

The basic values are calculated from the properties 

of the spans. They may be either relative or actual values. 

c. Transformed Stiffness and Carry Over Stiffness Factors. 

The transformed values are calculated from Table 2-3. 

Modified basic values are used in place of regular values in 

this table as they occur. 

d. Carry Over Factors. 

The carry over factors are calculated from Eq. 3-4. 

27 



e. Basic End Moments. 

The basic fixed end moments are calculated and 

modified as required. 

f. Transformed End Moments. 

28 

The transformed end moments are calculated from Table 

2-4. Modified basic end moments are used for regular basic 

end moments as they occur. 

g. Starting Values. 

The starting values are calculated from Eq. 3-5. 

h. Carry Over Procedure. 

The joint moments, their carry over factors, and their 

starting values are listed in a table. The starting values 

are multiplied by their carry over factors and the resulting 

values are "carried over" to the joint moment to which the 

carry over factors apply. This procedure is repeated until 

the desired accuracy is obtained. Convergence occurs more 

rapidly if modified starting values are used as will be shown 

in the. example. 

i. Final Moments. 

The final transformed moments may be calculated from 

the joint moments by use of Eq. 5-2 and transformed to the 

basic moments. Another method would be to find the transformed 

end slopes (Eq. 3-2), transform them to the basic end slopes,and 

substitute the basic end slopes in the basic slope deflection 

equations. 
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6-2. Example Problem. 

A three span continuous bent member is considered. It is 

simply supported except at the ends it is restrained against torsion. 

Each span is of constant cross section. It will be analyzed for a 

uniform lateral load and influence values will be calculated. All 

dimensions are in feet, all moments are in kip-feet, and all forces 

are in kips, unless otherwise stated. 

y 

A~I· ==6=o· ==~ 
/ ~'2" \ 

1o;O 

--------. .. x 

"1" 114 II 

Fig. 6-1 Three Span Continuous Bent Member 
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a. Transformation Matrix. 

The principal axes of span "23" coincide with the selected 

transformed axes and no transformation is necessary for this span. 

The transformation matrices for spans "12" and "34" are shown below, 

w 2 = 30° lJ 4 = .;,.40° 
1 1 

o<2x = 0.8660 o(4x = 0.7660 

Ii 2x = 0.5000 /34x = -0.6428 

~2y = -0.5000 o<4y = 0. 6428 

P2y = 0,8600 /14y = 0.7660 

x' y' x' y' 

X .8660 -.5000 X .7660 .6428 

y .5000 .8660 y - • 6428 .7660 

Table 6-1 Table 6-2 

Transformation Matrix Transformation Matrix 

for for 

Span "12" Span "34" 
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b. Basic Stiffness and Carry Over Stiffness Factors. 

Relative values of basic stiffness and carry over stiffness 

factors are shown. The basic values are modified as required to 

conform to known end conditions (4-3). 

K1zx 1 = Kzlx' = 1.0 

K12y' = Kzly' = 10.0 

Kz3x' K3zx 1 = 1.4 

Kz3y' = K3zy 1 = 12.0 

K34x' = K43x' = 0.8 

K34y• = l<t.3y I = 7.0 

ex' = -1.0 

(For All Spans) 
Cy' = 0.5 

K'zly' 
2 7 .50 = 10.0(l".',5 ) = 

K'34y' = 2 7.0(1-.5) = 5. 25 



c. Transformed Stiffness and Carry Over Stiffness Factors, 

The transformed values are calculated from Table 2-3. The 

modified basic values (K' 2ly' and K134y•) are used in place of the 

regular basic values. 

Ki121xx = 1.0(.8660/ + 7.5(-.5000)2 = 2.6250 

K"2lyy = 1.0(.5000)2 + 7 .5(.8660) 2 = 5.8750 

K"2lxy = K"2lyx = 1.0(.8660)(.5000) + 7.5(-.5000)(.8660) = -2.8145 

K23xx = K32xx = 1.4 

K23yy = K3 2yy = 12.0 

K23xy = K23yx = K32xy = K32yx = 0 

CK23xx = CK32xx = -1(1.4) = -1.4 

CK23yy = CK32yy = .5(12.0) = 6.0 

CK23xy = CK23yx = CK32xy = CK32yx = O 

K" = .8(.7660>2 + 5.25( . 6428/ = 2.6387 34xx 

K"34yy = .8(-.6428) 2 + 5.25(.7660) 2 = 3.4110 

K1134xy = K"34yx = .8(.7660)( .. . 6428) + 5.25(.6428)(.7660) = 2.1911 

,LK2xx = 4.0250 

_LK2yy = 17.8750 

21<2xy = -2.8145 

,LK2yx = -2.8145 

_LK3xx = 4 .0387 

_LK3yy = 15 .4110 

ll3xy = 2 .1911 

LKJyx = 2.1911 

32 
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d. Carry Over Factors, 

The carry over factors are calculated from Eq. 3-4 and are shown 

below. 

r22xy = -2.8145 = +o.6993 
4.0250 

r22yx = - -2.8145 = +o.1575 
17.8750 

r = -1.4 = +o.3466 32xx - 4.0387 

r32yy = +6.0 = -0.3893 
15 .4110 

r32xy = 0 

r32yx = O 

r33xy = +2.1911 = -0.5425 
4.0387 

r = +3.1911 = -0 .1422 33yx - 15 .4110 

r23xx = - -1.4 = +o.3478 
4.0250 

r23yy = +6.0 = -0.3357 
17.8750 

r23xy = 0 

r23yx = 0 
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e, Basic Fixed and Propped End Moments, 

Consider a uniform load of one kip per foot on all spans, 

FM= wL2 
12 

FM21x' = FM23x• = FM32x 1 = FM34x• = 0 

EM2ly' = +402 = +200 kip-ft. 
8 

FM23y' = -602 = -300 kip-ft, 
12 

FM32y' = +602 = +300 kipT-ft. 
12 

EM34y• = ~Jo2 = -112.5 kip-ft, 
8 

EM= wL2 
8 

f.. g, Transformed End Moments and Starting Values. 

From Eq. (3-5) and Table 2-4 the starting values and transformed 

end moments are: 

FM' 2lx = -.5000(200) = -100 kip-ft. 

FM 1 21y = ,8660(200) = 173.2 kip-ft, 

FM23x = 0 

FM23y = -300 kip-ft. 

FM32x = O 

FM32y = +300 kip-ft. 

FM'34x = .6428(-112.5) = -72.3 kip-ft. 

FM 134y = .7660(-112.5) = -86.2 kip-ft. 

m2x = +100 kip-ft. 

m2y = +126.8 kip-ft. 

m3x = +72.3 kip-ft. 

m3y = -213.8 kip-ft. 



h. Carry Over Procedure. 

Table 6-3 

JM2x JM3x JM2v JM3v 
.3478---,.+r--,3466 -.3357 , ~ -.3893 
• 6993 ~ ~ .1575 

- . 5425 ~ ,. - .1422 
_ l _QO .()_---;,,--7_2 ._3 __ ....,._1_.:l_b._ 8~ -:21:3_. ~ - --- ___ 
~ ?_5_.J~------ ----+----- - ----- -- -----1----~3~9. 2 -- - --

20. 0 -42.5 -
------------------- --------- ---- - --- - ----- -----+--.,-------t 

145.1 50.5 _ .. _ 11.5,P -295.5 
>- . 42.0 101.5 

_3 2 .1~---_ _____ 9 __ 2 ..... s ______ 2...,1 __ 6 ..... s...__ _ __ -72. 7 _ 
~L.. 1 _i;.n 2 

f,f, 2 23 . 0 4 7 ·-=-8 - -----t-_-_.1"""2'""'2 ..... 9..._--f 
17.5 46.3 

- -·· -

t----=14.0 .---4 .... o ......... 5 __ .,._ ___ 9 __ 4 __ • __ 1_~--------___ -:3-l,_6 _ ___ __ ___ 
.___.li.;.L..i;.,,.-~8---f.--------- ------- - - ----- ------ _ .-22.0 
____ 2 ... :8_. ..... 8 ____ 1=_0=-· Q_ _io. 9 -53.6 

7.6 20.1 
_ __ 6.1 __ --+--17"-1..:1"6'----+--4:.::1:..:.·~0-~ ____ __::13.8 -- _ 

n c; __ -9. 5 
1?.6 ___ 4.4 _ 9.1 -23.3 

2 . 7 
2.~ 
5, c; 

3.3, 8.8 
7.7 17.9 -6.0 

-- -4 2 
l. 9 _ 4. Q __ _ -1--....;-;..,i1.wn ... _2---1 
1.5 3.8 

________ ]. . 2 3 . 4 7 • 8 '."_? • 6 
1 2 --- - -------- -1.8 

1-----2 ___ 4_1------•JL_ ___ 1_. 7 ___ ----+---..... 4 __ .4 ___ ---i 
n 1. 7 

>--------·---c;- ---t-__ 1...._.4 __ +-_..,;;3~ ..... 4_-t---- ---=1 ._l ____ _ 
.5 -8 1-----------1 

- - --

1.0 .3 .7 -1 9 
3 7 -t-------i-------~ .. ------ --- -·--

-- . 2 __ - t--_. . ._..6'--+---=lu•.;;:.4 _ _. - _____ -: ,5_ 
-.3 ? 

.1 ______ • 3 __ -+ __ -...... .,_8_-1 
1 1 .1. _ ______ 2 ___ ,._ _____ 6 ___ __ 

·- __ - _,l_ ______ _ 

1 - 1 
2 I .1 _ .. ,- .1 -- .. 3 

___________ .,___.n ___ ,..._ ___ ,_-1-- ----- ---- ---- ---
0 .... 
n 
0 

----------·-1 ______ 2 _ _______ ~ __ , 1_ 

n 
- 1 
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i. Final Basic Moments, 

From Eq. (3-2) the transformed end slopes are: 

92x = 262.2 = 65.413 
4.0250 

93x s 236.3 = 58.509 
4~0387 

Q 
2y = 509.7 = 28.515 

17.8750 

93y = -513.0 = -33.288 
15 .4110 

From Transformation Matrix: 

92lx' = 65.413(.8660) + 28.515(.5000) = 70.905 

Q21y' = 65.413(-.5000) + 28.515(.8660) = -8.013 

Q23X I = 65 .413 

Q23y' = 28.515 

932x' = 58.509 

Q32y' = -33.288 

Q34x' = 58.509(.7660) - 33.288(-.6428) = 66.215 

Q34y' = 58.509(.6428) - 33.288(.7660) = 12.111 
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Substituting the values for the basic end slopes in the basic 

slopes deflection equations the final basic end moments are: 

Ml2y' = 0 

M12x' = -1(1.0)(70.905) = -70.9 

M21x' = (1,0)(70 ~~05) = +70.9 

M2ly' = 7.50(-8.013) + 200 = +139.9 

M23x' = 1.4(65.413) - 1(1.4)(58.509) = +9"7 

M23y' = 12.0(28.515) + .5(12.0)(-33.288) - 300 = -157.6 

M32x' = 1.4(58.509) - 1(1.4)(65.413) = -9.7 

M32y' = 12.0(-33.288) + .5(12.0)(28.515) + 300 = +71.6 

M34x• = .8(66.215) = +53.0 

M34y• = 5.25(12.111) - 112.5 = -48.9 

~3x' = -1(.8)(66.215) = -53.0 

M43y• = 0 

37 
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6-2a. Influence Values. 

Influence values for the moments and shears at each joint will 

be calculated for a one pound load moving across the continuous bent 

member. The influence values will be calculated at the tenth points 

of each span. The carry over procedure will be done for a starting 

moment of · unity for each joint moment. The actual joint moments are 

then found by multiplying the joint moments due to unit starting values 

by the actual starting values. The final transformed and basic end 

moments are found as outlined (6-1). The shears at the joints are 

calculated by statics. 
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Table 6-4 Carry Over Table for m2x = 1.0000 

JM2x .TM'lx .JM2v .1M1v 

. 'lli. 78 , ~ . 'lli.nn - 'l'l57 ... , -.3RQ3 

.6993 - ~ .1575 
-.5425 ~ -- .1422 

1.0000 0 __ ____ o --- I 0 I .. ·····----···--··- · 
. 3478 0 - --· ·· ·-·· ··- --· ···---·r ······ 

0 .6993 -·-- ·-· ------- -----··· 

.1205 .3478 .6993 -· - • 2348_ -

.1101 -.1887 - - - · · 

.2306 .0802 .1649 - .4235 -- - c---- - -

.0602 .1612 
··-··· -----··-- ... - -

.0487 ··----· --- .1404 .3261 - .1095 ··-· r-----·--

.0514 -.0762 ----- - ·-------
.• 1001 _.03~~ -- ---- . • 01_n -.1857 

~ -------·---·· .0264 .0693 - -- - - ----- --

~ .02:U .0609 .1416 ·- ~ .0475_ -
.0223 -.0330 .. 

. 0434 . 01 Ii 1 • ..o.J.1.3 -.080'i 
0114 .0303 

~ .Jl.092 O?n"> On16 -.0201 ··-
OOQ7 - 01la.l.a. ---- --- --~--- ---- - ---------- .. 

OlAQ _._O_Q66 __ ___ _ ___ .fil3. 7 ____ ... - .03"'1 
nnr:.n 01 'l? ---------·-···--- .. 

f-·- __ .0040 ... 01Hi O?'-Q - .1l.0.9D. ·-· . 
OOla.? - OOn'l ----- -·--·-

OOA? 0028 .0060 -.01'i'l 
------ - - · --· 

.0022 .0057 --·-

_ .0017 OO'iO .0117 ·- -.003~-- . 
.0018 -.0027 
00'.\5 .0012 .0026 -.0066 

.OOOQ .002li. ... 

~ .O_QP7 .0021 .0050 - .0017 
0008 - .0011 
0015 .0005- .0011 -.0028 

.0004 0010 
t-----------

~ • .9.Q.03 .0009 .0021 - ._0007 
0003 ' - nnni; 

·--··------·-- -·-··-

.0006 ._QQ02 
· ··- ·-

_ .0004__ - .0012 
- ------- · .0002 .0004 ... 

~ -Q.0_0_1_ .0004 --. . 0008 - • OQQ.3__ ___ 
.nnn1 ·-------·-··-- -.0002 
.0002 ·--·· -· 0..001: --- ·· if . 0002 ______ - none; 

···--
0001 .0001 

- ---·· ---· ·-------
f- -

O __ _ .0001 .0003 ·- -.0001 _ 
0 

- - ·-··· - nnn1_ 
0 ___ Q_ ______ - · . .ooru. _ ___ - nnn? 

0 n ·· ··-------- ·· -
n nnn, ----· -- --------· - ·-- -----. -- -

1.4060 0.5957 1.2755 -.7514 
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Table 6-5 Carry Over Table for m3x = 1.0000 

JM2x JM3x JM2v JM3v 
.3478 , .3466 --33'i7 - .3893 
.6993 - . .1575 

- - 'i42'i r - 1L..22 
0 .• - ---····· 1.0000 0 .. - ____ o . . . 

.3466 0 
0 --- - i;t..? i; 

--· ·· - - --- . --- -····- - ··-· --- . -- --

-3466 __ _ • U _05 ____ - ------- .2112 - - i;t.. 2 i; 
.0771 2421 --- ----- ·- ---- -- - · - - ----- -

._ __ .0685 .1976 .4535 _ _ - .rr2_2 _____ 
.0714 ---·--·- --··· ... --- --- ----- . -.1072 
.1399 -- -- .0487 -- -· .. ··--- -

.1010 ______ -.2594 
.0369 .0978 -··- - ----------- ----

. . . 0297 . . .0856 .1988 - .06_67 ___ 
• 0313 - .0464 
.0610 .0212_ -- _ .J)440 - .1131 

_ 01 n 1 f'IL..27 .. --- --- ------ ... ~ - . -------- ---·--_ _ .0129 _____ ni7't .f'IA67 . • 0291 
.0117 ------ ·-- - ----·--· .0202 
O?.;n .illl9..3 _.Jl.12_2 - .f'l493 

nn7n Ol~n ------------- ··· ·-· --- ---·- . 

-- .0056_ .OH,3 .n~78 ----- ~. 0127 
-Of'lli.f'I - nns:u:i 

. -· ------···· ---- ----- - ·- ···--~---- ____ ,. ___ 

01]6 .illl.4Q ____ ~ ---·0084 -- - n,?1 c; 

--- .0031 _OQ81 
-·-··· - ---

.0025 
t------------· ·--- .0071 .0165 -.0055 __ 

.0026 .. - -----·--- -.0039 

.0051 .0018 • 003_7_ ___ -.0094 --·-------

J-.... ----
.0013 .0036 ----- - ----· - - · 

___. OOP,. ___ .0031 .0073 - .0025 
.0011 - _f'IO] 7 

.... ···-··· -·- -·-- ------·-----· 
.0022 .0008 .0016 - - .. - -.0042 

----- .. .0006 .OOl'i --
.0005 .0014 ,0031 - ,_Qfil_Q___ - --------· ---------

.0005 -.0008 

.0010 ____ .0003 --- '-' 00_0_7_ ____ - 0018 
.0003 0007 ---- ·- --··· ·-··· 

.0002 .0006 .0014 - .0005 ___ 

.0002 
·-··· -- ---·--·-- --· - -.0003 

.0004 .0001 .OOQ~ -.oooA ·-----· 

"-· -- .0001 _onn3 
---

1----- · 
.0001 . - .0002 .0006 ~ _rum__i ___ ---
.0001 ···---·-·--·· - ---- · - f'l()01 -- ... -- . · -- --··· -----·--
.0002 .0001 ---- ________ • Q.00 l ___ - 0001 

0 _nno1 
·-·-··----- -- -- - -----------

~ - ---· -- 0 .. -.. -- .0001 _0002 ___ :". .0.001 _____ 
0 - f'lf'l()l 

· ··-- -·· ···- -------·-·------· 
0 - 000? 

n (1(1(11 

'iQ46 1 ".1./,Q~ Af'lli.f'I _, no?i; 



Table 6-6 Carry Over Table for m2y = 1.0000 

JM2x JM3x JM2v JM3v 
.3478 , , .34661 - .3357 · - - .3893 
.6993 -

_____ o _ _ 
0 -------~----. 

• 1575 
.1575 

• .1575 
-.5425 ~ - 1422 

1------0 __ ~...;1_._o_o_oo ___ -+···-----·-- -- o ____ _ 
--- - -+-------+·- _ -.3357 _ _ 

0 
.0548 __ .1307 _ __ 1--_-...;,•,_..33 __ 5 __ 7_-t 
.0478 .1101 t----= ................ -+----=..::.:.;;r..;..---t-·· · . . --··-- -·· --· -

___ • .0.3.5...6 ______ t---=-·--1.o .. 2_.:6 ___ ...,_ __ . ._2 ... 4 .... o18_-t-_ - • 0808 
.0379 __________ ______ _,_ ___ -........ n1 ... i.,i:;.._.:7...._-t 
.0735 .0256 .05.'.U -----1---.... 1=3....,65...__-t 

.015_6 
0165 

___ . 0068 . 
nn12 
n1t..n 

.0194 .0514 
--=·--0 ..... 4;;;..50....._ ____ .=l0..._4;;.;:;5 ____ ~ . 0.351 ___ _ 

-.0244 
.0112 ___ ···c-·---- ·0232 .. -·-·---· -__ o ___ i;q,i;_ .... 

• ooi:ti:; 0224 
__ ... n1 .... 1Q.._7....__--+-__ ...._._ nt.. ..... 2-,f.. ____ -_.fil5_3 _ 

··------- >---·----;------......... o,..._,n.._17._--+ 
. • 004 9 ___ ,___ .filfil __ -t-_-......... n .... , ? ........ f..n----1 

_ ____ _ ... i---__. ... 01 .... 01.._':\17....__--+-__ _.. n1......_.0QA______________ _ ___ _ __ _ 
>-- _ _ • 0030 ___ _ -1---~ nn1Aw.w...'-_....___.~ 01., lQ"-1 q"---+---=-- • 0067_ 

0031 - nnt..1 
.onf..1 __ .O.Q.2.1 .... ···- _ .0.044 ___ __ ...,__-__ 011.._1t.. __ 

1---- -· -·---·----· -·· 1--__........_.nn11...,,i6.__--1--"""··0~1n~t...1_-+ .. ·-·· -· ____ .. 
~ • 0013 ----- -~-£.lnLW.,,ln1 ':\:.L.... '--1---£.lo.u.1n1.1,1i:t:1.1--7--1 ___ "."_. 0029 __ _ 

nn1l.. _ nn?n 
..,_.....w.w..:1...-----1~-- ···-· -----·----1------+-~-II-W----I 

.0027 . • OOQ~_ -- ------ .001L _...._._-_.._oo4~9___. 

.0006 
_nnnf.. 
.0012 

.0007 . 0019 1------.:....;a..;;..:;..:..._+----="""'-=----t-- -- -----· --··· _ _.. __ o __ o 1 __ 6 ______ • o __ o.._3 .... 8 _____ . '.'°. • o_o 1:L 
__ ___ ___ __ ----1--=-~Ml,Llnnn.lJ....q--1 

• 0_004 -- • 0009'--·- +---......... 010,...2 ... 2.__--t 
--· ··· __ _ -----1----nn,n""11.'---+--.... n-nni.w....A~ 
_ .0002 ______ ......... -J ......... 000...,11...._-+-_ ........ 01..._011,..1...._---1·-___ -:- .O_QQ6 __ 

.0003 - nont.. _..._...=----- .... ·--- --·--- --··--------1--~..w.M~--l-
_ nnni:; • 0.00.2-___ __ • 0.004 _ __ t--_-.... o ....... n1 .... o....__-i 

-····-------· ... -·-""0.¥.010..,.1.._--+-_ .... o...,,o ........ 01..._ ..... .. .. ______ _ 
>-- -- .QOQ_l .. -··~"~"1~n1._.+,-_.w.01nw.¥-Cn1_-t-- __ - .0002 __ . 
........... --nnn""', 1.....___.,___ --·----· __ . _ .. __ - non? 
..,__.,--000~2.___. .. _ • 0.0.01 __ - ---- , oo.0_ 2...._-i-___;;-;.a.n""-111.11,nni;;i_L..--t 

o onn1 -- ··------··-- ...... · l---~----l~-a.ll~ ..... --1----·- ··-·-·--· --
~ - - Q _____ . ·l--_............,0010 .... 11._--+-_ ......... 010.......,0,':\._--t -.OOOL 

0 - nno1 
0 O .0001 -.000? 

t----'o..__--+-__ o...__---1·---···· -·--···- ··----· 
0 0001 

~1...--·~28~7~8------~·~1=82=3 __ _._ __ 1~.4=2=6=1_..__-~.-57-'7-'8 ___ _ 
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Table 6-7 Carry Over Table for m3y = 1.0000 

JM2x JM3x JM2y JM3v 
I 

.3478 - - .3466 -.3357 , - - .3893 

.6993 - , .1575 
- .5425 - - - .1422 

0 ___ o _ ___ ~_ - -- 0 ---- 1.0000 
_ _ L__ __ 0 - . 3893 

- .1422 0 ---·-·---·-----·--- -·- ·· ----··-···---
- . 0493 -.1422 -.3893 . . 1307 ·--· ··-·-1-----· 

-.0613 .0771 
- .1106 -- - .• 0385 - .Q~Q9 .2078 

- -· -.0295 - .0773 
...,....:_.0?_36 -.0680 -.1582 _._Q.5_31_ 

-.0249 .0369 
-.0485 - _._ 01~2__ __ ~ !03~0 .0900 

- .0128 -.0339 ·--------
- ~ -010~--- - .0297 - .0689 ____ .0231 _ 

-.0109 .0161 ---··- -- ----
-.0212 - _.0074 ___ ~ -0153 .0392 

-.0056 -.0148 - ------
-.Q045 --· .. - .0130 - .0291 .0098 
- .0046 .0071 ··-· ·--------- -- ·· - ·---------

- .0091 ·- - .0032 ____ '- . - .0066 .0169 
-.0024 -.0064 -···-- ----- -- - ·-- -- - --·- ---·--

_: .QOJ.9 -.0056 -.0130 .0044 
<.0020 .0010 
-.0039 - . OOlt._ - _.0029 .0074 

- .0011 -.0022 ------- -
-.0009 -.0025 -.0056 .0019 . -
-.0009 .0014 ··-- - ---·---· · ·· ·--- ... ---·----- - ----
-.0018 -.0006 __ 

~ 
- . 0013 .0033 

-.0005 - .0013 ----·-- -
,........:._.0004 _____ - .0011 -.0026 ._0009_ 

-.0004 .0006 
-.0008 - .OOQ_L _ __ L__ ___ "'._.0006 .0015 

-.0002 -.0006 
_ :__._Q_002 __ -.0005 - .0012 . 0004 

-.0002 0003 ·- -----
-.0004 _-_.0001 ___ --- - .OQ03 0007 

--·---- -.0001 -.0003 ·-----

- .0001 ___ -.0002 -.0006 .. ooo_z_ __ 
-.0001 .0001 
-.0002 _...::_._0001 -.0001 0003 

~ - -·· 0 -.0001 
... ---_o --- . - ---- -.0001 -.0002 . nno, 

0 nnn1 - ~-
0 ____ _Q __ .. --~ •. O.OQl nnn? 

···--

0 0 ----
----------- 0 -.0001 ------ -

-.1965 -.2630 -.6688 1.3673 



Actual Starting Values: 

m"zx = -(FM'21x + FM23x) 

m"2y = -(FM'21y + FM23y) 

m" 3x = -(FM32x + FM'34x) 

m" 3y = -(FM32y + FM'34y) 

Actual Starting Values in Terms of Basic End Moments: 

m"zx = -EM21y ·~2y = +. 5000 EM21y, 

m" 2y 

m" 3x 

m" 3y 

= -EM34y'o(4y = -.6428EM34y' 
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From Tables 6-4, 6-5, 6-6, and 6-7 the joint moments are found 

in terms of the actual starting values. 

Table 6-8 

Joint Moments in Terms of Starting Values 

··m" ·· ·2x m" 3x m" 2y m" 3y 

JM2x 1.4060 .5946 .2878 - .1965 

JM2y 1.2755 .8060 1.4261 -.6688 

JM3x .5957 1.3493 .1823 -.2630 

JM3y -.7514 -1.0025 -.5778 1.3673 

Table 6-9 

Joint Moments in Terms of Basic End Moments 

EM21y I FM23y' FM32y 1 EM34y' 

JM2x .4538 -.2878 .1965 -.2317 

JM2y -.5973 -1.4261 .6688 -.0058 

. J>l3x .1400 -.1823 .2630 -.6659 

JM3y .1247 .5778 -1.3673 - .4029 

--·- .. ·--~ - ---
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Table 6-10 

Transformed Moments in Terms of Joint Moments 

JM2x · JM3x JM2v JM3v 
M21x .6522 -.1575 - .5EM21v' 
M23x .3478 -.3466 
M32x -.3478 .3466 .. 
M34x .6534 .1422 • 6428EMJ4y I 
M2ly -.6993 .3287 .8660EM2ly' 
M23v .6713 .3893 FM23v' 
M32v .3357 . 7787 F'Ml2v' 
M34v . .5425 .2213 .7660EM34v' 

Table 6-11 

Transformed Moments in Terms of Basic Values 

EM21v' FM23v' FM32v' EM34v' 
M21x -.1093 .0369 .0229 -.1502 
M23x .1093 -.0369 -.0229 .1502 
M32x -.1093 .0369 .0229 -.1502 
M34x .1093 -.0369 -.0229 .1502 
M21v .352.4 -.2676 .0833 .1608 
M23v - .3524 .2676 -.0833 -.1608 
M32v -.1034 .0288 .1598 -.3156 
M34v .1034 .0288 -.1598 .3156 
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From Transformation Matrices: 

M21x 1 = • 8660M21x + .5000M21y 

M23x' = M23x 

M32x' = M32x 

M34x• = .7660M34x - .6428M34y 

M2ly' = - A5000M21x + .8660M2ly 

M23y• = M23y 

M32y 1 = M32y 

M34y• = .6428M34x + .7660M34y 

Table 6-12 Basic End Moments in Terms of Basic Fixed and Propped End Moments 

EM21y I FM23y I FM32y I EM34y• 

M21x 1 .081 -.102 .061 -.050 

Mz3x' .109 -.037 - .023 .150 

M32x 1 -.109 .037 .023 -.150 

M34x• .017 -.046 .085 -.088 

M21y 1 .360 -.250 .061 .214 

M23y• -.352 .268 -.083 -.161 

M32y 1 -.103 - .029 .160 -.316 

M34y' .149 -.002 -.137 .338 

-
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Table 6-13 

Basic Fixed and Propped End Moments 

., 

n EM21y I FM23y• FM32y 1 EM34y' 

0.0 0 0 0 0 

.1 1.980 -4.860 0.540 -2.565 

.2 3.840 -7.680 1.920 -4.320 

.3 5 .464 -8.820 3.780 -5.355 

.4 6. 720 -8.640 5.760 -5.760 

.5 7.500 -7.500 7.500 -5.625 

.6 7.680 -5.760 8.640 -5.040 

.7 7.140 -3.780 8.820 -4 .098 

.8 5.760 -1.920 7.680 -2.880 

.9 3.420 -0.540 4.860 -1.485 

1.0 0 0 0 0 
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Table 6-14 

Final Basic End Moments 

n M12x ,& M32x 1& M34x 1& 
M21y 1 M23y• M32y 1 M34y• 

-M21x' -M23x' -Mz.3X I 

1.0 0 0 0 0 0 0 0 
.1 -.160 -.216 .034 .713 - .698 -.205 .295 
.2 -.311 -.420 .065 1.382 -1.353 -.397 .572 
.3 -.443 -.497 .093 1.967 -1.926 - .565 .814 
.4 -.544 -.735 . 114 2.419 -2.368 - .695 1.001 
.5 -.608 -.820 .128 2.700 -2.643 -. 776 1.118 
.6 -.622 -.839 .131 2.765 -2.706 -.794 1.144 
.7 -.578 -.780 .121 2.570 -2.516 -.738 1.064 
.8 -.467 -.630 .098 2.074 -2.023 - .596 .858 
.9 -.277 -.374 , .058 1.231 -1.205 -.354 .510 

2.0 0 0 0 0 0 0 0 
e o 1 - .529 -.167 .270 1.248 -1.346 .226 - .064 
.2 -.900 -.239 . . 516 2.037 -2.215 .528 - .248 
.3 -1.131 -.239 , • 727 2.436 -2.675 .858 -.500 
.4 -1.232 -.187 .887 2.511 -2. 792 1.169 -.772 
.5 -1. 223 -.105 .983 2.333 -2.632 1.415 -1.013 
.6 -1.115 -.015 .999 1.967 -2.261 1.547 -1.172 
.7 - .924 .063 .924 1.483 -1. 746 1.518 -1.200 
.8 -.664 .105 .741 .948 -1.154 1.283 -1.048 
.9 -.351 .091 .438 .431 -.549 .792 -.665 

3.0 0 0 0 0 0 0 0 
.. 1 -.128 .385 .226 -.549 .413 .810 -.867 
.2 -.216 .649 . 380 - .924 . 695 1.363 -,l .460 
.3 - . 268 .804 .471 -1.146 . 861 1.690 -1.810 
.4 -.288 .865 .507 -1.233 .926 1.818 -1.947 
.5 -.281 . 845 .495 - 1. 204 .905 1.775 -1 .901 
.6 -.252 .757 .444 -1.079 .810 1.591 -1.704 
.7 -.205 . 616 .361 - . 877 .659 1.293 -1.385 
.8 -.144 .433 .253 -.616 .463 .909 -.973 
.9 -.074 .223 .131 -.318 .239 .469 -.502 

4.0 0 0 0 0 0 0 0 
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Table 6-15 

Final End Shears 

Sta. Vl2z V2lz V23z V32z V34z V43z 
1.0 1.000 0 0 0 0 0 

.1 .882 .118 .015 -.015 -.010 .010 

.2 . 765 .235 .029 - .029 -.019 .019 

.3 . 651 .349 .042 -.042 - .027 .027 

.4 .540 .460 .051 -.051 -.033 .033 

.5 .432 .568 .057 -.057 -.037 .037 

.6 .331 .669 .058 -.058 -.038 .038 

.7 .236 • 764 .054 -.054 -.035 .035 

.8 .148 .852 .044 -.044 -.020 . 029 

.9 .069 .931 . 026 -.026 - .017 .017 

2.0 0 ~ ~ 0 0 0 

.1 -.031 .031 • 919 .081 .002 -.002 

.2 -.051 .051 .828 .172 . 008 -.008 

.3 -.061 .061 • 730 .270 . 017 -.017 

.4 - .063 .063 .627 .373 .026 - .026 

.5 -.058 .058 .520 .480 .034 -.034 

.6 -.049 .049 .412 .588 .039 -.039 

.7 -.037 .037 . 304 .696 .040 -.040 

.8 - .024 .024 .198 .802 .035 -.035 

.9 -.011 .011 .096 .904 .022 - . 022 

3.0 0 0 0 ~ ~ 0 

.1 .014 -.014 - .020 .020 .929 .071 

.2 .023 -.023 -.034 .034 . 849 .151 

.3 .029 - .029 -.043 .043 .760 .240 

.4 .031 -.031 -.046 .046 .665 .335 

.5 .030 -.030 -.045 .045 .563 .437 

.6 .027 -.027 - . 040 .040 .457 .543 

.7 .022 -.022 - . 033 .033 .346 .654 

.8 .015 -.015 -.023 .023 .232 .768 

.9 .008 -.008 -.012 .012 .117 .883 
4.0 0 0 0 0 0 1.000 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

In this study the general procedure for the analysis of continuous 

bent members in one plane loaded perpendicular to that plane by the 

"Carry Over Method," is presented. 1'his thesis may be extended for the 

analysis of continuous bent members not in one plane. 

The presented procedure is adequate for application in engineering 

practice. It is suggested that t he carry over procedure be -used when 

the number of unknowns reaches f our or more. 

so 
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APPENDIX 

The application of the transformation matrix to the analysis 

of space structu~es is discussed by Tuma (1). Several tables from 

his paper are shown in this appendix. The tables are for a com

pletely general space structure and apply equally well to the 

structure in one plane discussed in this thesis. In the case 

discussed in this thesis the "z" terms simply vanish from the general 

transformation matrices. 11 W211 and 11w 311 are zero and are used as 

such in the determination of the transformation matrices (Table F) . 
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Cross Sectional Elements Table D 
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Transformation Matrix --- Geometry --- Table F 
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