# ANALYSIS OF CONTINUOUS BENT MEMBERS <br> LOADED OUT OF PLANE BY THE <br> CARRY OVER JOINT MOMENT METHOD 

By
William H. Childress

Bachelor of Science

Oklahoma State University
1960

Submitted to the faculty of the Graduate School
of the Oklahoma State University
in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

August, 1961

## ANALYSIS OF CONTINUOUS BENT MEMBERS <br> LOADED OUT OF PLANE BY THE CARRY OVER JOINT MOMENT METHOD


ii

## PREFACE

The author wishes to express indebtness and appreciation to the following persons:
To Professor Jan J. Tuma, Head of the School of Civil Engineering, for his sincere guidance in preparation of this thesis, and for his instruction, assistance and advice given to the author throughout his graduate and undergraduate study.
To the faculty of the School of Civil Engineering for their invaluable instruction and assistance.
To Mrs. Sandra Wixson for her patience and careful typing of the manuscript.
To Mr. John Oden for his advice and careful reading of the manuscript.
To Miss Leslie Price for her encouragement.
Finally, to his parents, Mr. and Mrs. Noah F. Childress for their assistance and encouragement throughout the author's graduate and undergraduate study.

W. H. C.

TABLE OF CONTENTS
Chapter Page
I. STATEMENT OF THE PROBLEM ..... 1
II. SLOPE DEFLECTION EQUATIONS AT JOINT "j" ..... 4
2-1. Basic Slope Deflection Equations ..... 4
2-2. Transformation of End Slopes and Moments ..... 5
2-3. Transformed Stiffness Factors, Carry Over Stiffness Factors, and Fixed End Moments ..... 10
III. EQUILIBRIUM EQUATIONS AND CARRY OVER FUNCTIONS ..... 12
3-1. Joint Equilibrium Equations ..... 12
3-2. Joint Moments ..... 13
3-3. Carry Over Functions ..... 14
3-4. Carry Over Joint Moment Equations ..... 15
IV. MODIFIED CARRY OVER FUNCTIONS ..... 16
4-1. Fixed End ..... 16
4-2. Pinned End ..... 18
4-3. Torsional Restraint ..... 21
V. FINAL MOMENTS ..... 24
VI. NUMERICAL PROCEDURE ..... 27
6-1. Outline for Numerical Procedure ..... 27
6-2. Example Problem ..... 29
6-2a. Influence Values. ..... 38
VII. SUMMARY AND CONCLUSIONS ..... 50
REFERENCES ..... 51
APPENDIX ..... 52

## LIST OF TABLES

Table ..... Page
2-1 Transformation Matrix for Span "ji" ..... 5
2-2 Transformation Matrix for Span "jk" ..... 5
2-3 Transformed Stiffness and Carry Over Stiffness Factors ..... 10
2-4 Transformed Fixed End Moments ..... 11
5-1 Transformation of Moments ..... 26
6-1 Transformation for Span "12". ..... 30
6-2 Transformation for Span "34" ..... 30
6-3 Carry Over Procedure ..... 35
6-4 Carry Over Procedure for Unit Starting Value ..... 39
6-5 Carry Over Procedure for Unit Starting Value ..... 40
6-6 Carry Over Procedure for Unit Starting Value ..... 41
6-7 Carry Over Procedure for Unit Starting Value ..... 42
6-8 Joint Moments in Terms of Starting Values ..... 44
6-9 Joint Moments in Terms of Basic End Moments ..... 44
6-10 Transformed Moments in Terms of Joint Moments ..... 45
6-11 Transformed Moments in Terms of Basic Values ..... 45
6-12 Basic End Moments in Terms of Basic Fixed and Propped End Moments ..... 46
Table Page
6-13 Basic Fixed and Propped End Moments ..... 47
6-14 Final Basic End Moments ..... 48
6-15 Final End Shears. ..... 49
A Geometry ..... 53
B Real Forces and Moments ..... 54
C Rotations and Displacements ..... 55
D Cross Sectional Elements ..... 56
E Transformation of Coordinates ..... 57
F Transformation Matrix - Geometry ..... 58
G General Transformation Matrices ..... 59
LIST OF FIGURES
Figure Page
1-1 Continuous Bent Member in Space ..... 1
1-2 Basic and Transformed Moments ..... 2
4-1 Fixed End ..... 16
4-2 Pinned End ..... 18
4-3 Torsional Restraint ..... 21
6-1 Three Span Continuous Bent Member ..... 29

## NOMENCLATURE



```
Lij
rijxx
JM }\mp@subsup{\textrm{jx}}{~}{ . . . . . . . . . Joint moment at " }\textrm{j}\mathrm{ " in the x direction
m
\Sigma . . . . . . . . . . Summation
```


## INTRODUCTION

The purpose of this thesis is the demonstration of the derivation and application of the carry over joint moment method for analysis of continuous beams.

Several efforts are recorded in the literature and the oldest method for the analysis of continuous members in space is the method of virtual work. For the application of this method no special reference is given but it is generally accepted that this method was applied to this group of problems in the early part of the century.

The application of the modern philosophy of structural analysis, namely the application of successive approximations, has been reported in this country by Ferguson, Lothers, and Michalos (6, 8, 9). After developing the carry over moment method applied to planar frames, Tuma (2) extended the application of this method to continuous beams and frames in space (4). The derivation presented in the theoretical part of this thesis follows closely Tuma's lectures. The writer's contribution is the derivation of special formulas for special end conditions, the preparation of an example and the calculation of influence values.

The appendix material dealing with sign conventions and transformation matrices was prepared on the basis of Tuma's paper (1) dealing with transformation matrices. Additional references dealing with pipe line design (5) and general slope deflection equations $(6,7)$ are given.

## CHAPTER I

## STATEMENT OF THE PROBLEM

A continuous bent member in space is considered. The member lies in one plane and is loaded perpendicular to that plane. The supports are denoted by $0,1,2,3, \ldots \ldots . i, j, k, \ldots \ldots . n$. The span lengths are $L_{1}, L_{2}, L_{3}, \ldots \ldots . L_{i}, L_{j}, L_{k}, \ldots . . L_{n}$ and the angles between the axes of spans and a selected coordinate system are $\omega_{1}, \omega_{2}, \omega_{3}, \ldots \ldots \omega_{i}$, $\omega_{j}, \omega_{k}, \ldots \ldots . \omega_{n} \quad$ (Fig. 1-1).


Fig. 1-1 Continuous Bent Member in Space

Vector notation for moments is used and the familiar "right hand rule" governs sign convention. Moments related to the principal axes of the spans will be referred to as basic moments and are denoted by the prime symbol. Moments related to the arbitrarily selected reference system are denoted as transformed moments. As the member is loaded perpendicular to the plane of the member only the vertical shears ( $\mathrm{V}_{\mathrm{z}}$ ) exist and the moment in the vertical direction ( $M_{z}$ ) is zero (Fig. 1-2).


Fig. 1-2 Basic and Transformed Moments

The solution of this type of problem in this discussion will be by the "Carry Over Moment Method" derived by Tuma. The carry over method is a successive approximation which permits the rapid solution of a great number of unknowns to any degree of accuracy. It will become apparent to the reader that as the number of spans of the continuous member increase and consequently the number of unknowns, the solution by the slope deflection method becomes tedious while the labor involved in the carry over method is increased very little. This type of problem is one of many engineering problems to which the carry over method may be applied.

The "Transformation Matrix" applied to the analysis of space structures, as discussed by Tuma, is used extensively in this paper. The transformation matrix provides for a systematic transformation of moments, forces, slopes, conjugate moments, elastic weights, etc. from one coordinate system to another. It is readily seen that the transformation matrix is an invaluable tool in the analysis of space structures.

## SLOPE DEFLECTION EQUATIONS AT JOINT "j"

2-1. Basic Slope Deflection Equations
The slope deflection equations related to the principal axes of the member " $i j$ " at the end " $j$ " may be expressed in terms of the stiffness factors, carry over stiffness factors, angular rotations, linear displacements, and fixed end moments. Because the supports of the member are rigid the linear displacement terms do not appear in the slope deflection equations. The same may be said about the slope deflection equations for the member "jk" at the end " $j$ ". These slope deflection equations will be denoted hereafter as the basic slope deflection equations and the terms in them will be denoted as basic, such as basic stiffness factors, basic fixed end moments, etc. The analytic expressions for these equations follow.

$$
\begin{align*}
& M_{j i x^{\prime}}=K_{j i x}{ }^{\prime} \theta_{j i x} \prime^{\prime}+C_{x} K_{i j x^{\prime}} \theta_{i j x^{\prime}}+F M_{j i x}{ }^{\prime} \\
& M_{j i y^{\prime}}=K_{j i y}{ }^{\prime} \theta_{j i y}{ }^{\prime}+C_{y} K_{i j y}{ }^{\prime} \theta_{i j y} \prime^{\prime}+F M_{j i y}{ }^{\prime}  \tag{2-1}\\
& M_{j k x^{\prime}}=K_{j k x}{ }^{\prime} \theta_{j k x^{\prime}}+C_{x} K_{k j x^{\prime}} \theta_{k j x^{\prime}}+F M_{j k x^{\prime}} \\
& M_{j k y}{ }^{\prime}=K_{j k y}{ }^{\prime} \theta_{j k y}{ }^{\prime}+C_{y} K_{k j y} \theta_{k j y^{\prime}}+F M_{j k y}{ }^{\prime}
\end{align*}
$$

## 2-2. Transformation of End Slopes and Moments

Because each system of basic slope deflection equations is related to a different set of axes, the direct solution of joint equilibrium is not possible. It is however possible to state the equilibrium of moments about any set of arbitrarily selected axes providing that all quantities in all equations are related to this new set of axes.

In many cases it becomes convenient to select one of the basic systems as the reference axes and to transfer the other systems to it. In order to make the discussion in this thesis completely general, the basic systems for the spans " ji " and " jk " are transferred to a new reference system defined by two transformation matrices (Table 2-1 and Table 2-2).

Tab1e 2-1


Transformation Matrix
for Span "ji"

Table 2-2


Transformation Matrix
for Span "jk"

The first step in the procedure to relate all quantities of the slope deflection equations to the reference axes is to find the basic end slopes in terms of the transformed end slopes. This is accomplished by use of the transformation matrices for the spans " ji " and " jk " (Table 2-1 and Table 2-2). From these tables the basic end slopes in terms of the transformed end slopes are:

$$
\begin{align*}
& \theta_{i j x^{\prime}}=\theta_{i x} \alpha_{j x}+\theta_{i y} \beta_{j x} \\
& \theta_{i j y^{\prime}}=\theta_{i x} \alpha_{j y}+\theta_{i y} \beta_{j y} \\
& \theta_{j i x^{\prime}}=\theta_{j x} \alpha_{j x}+\theta_{j y} \beta_{j x} \\
& \theta_{j i y^{\prime}}=\theta_{j x} \alpha_{j y}+\theta_{j y} \beta_{j y} \\
& \theta_{j k x^{\prime}}=\theta_{j x} \alpha_{k x}+\theta_{j y} \beta_{k x}  \tag{2-2}\\
& \theta_{j k y^{\prime}}=\theta_{j x} \alpha_{k y}+\theta_{j y} \beta_{k y} \\
& \theta_{k j x^{\prime}}=\theta_{k x} \alpha_{k x}+\theta_{k y} \beta k x \\
& \theta_{k j y}=\theta_{k x} \alpha_{k y}+\theta_{k y} \beta_{k y}
\end{align*}
$$

The expressions for the basic end slopes are now substituted in the basic slope deflection equations. The basic end moments are then in terms of basic fixed end moments and transformed end slopes.

$$
\begin{align*}
& M_{j i x^{\prime}}=\begin{array}{l}
\theta_{j x} K_{j i x} \alpha_{j x}+\theta_{j y} K_{j i x^{\prime}} \beta_{j x} \\
\theta_{i x} c_{x} K_{i j x} \alpha_{j x}+\theta_{i y} C_{x} K_{i j x} \beta_{j x}
\end{array}+F M_{j i x^{\prime}} \\
& M_{j i y^{\prime}}=\begin{array}{l}
\theta_{j x} K_{j i y} \alpha_{j y}+\theta_{j y} K_{j i y}{ }^{\prime} \beta_{j y} \\
\theta_{i x} C_{y} K_{i j y}{ }^{\prime} \alpha_{j y}+\theta_{i y} C_{y} K_{i j y} \beta_{j y}
\end{array}+F M_{j i y}{ }^{\prime}  \tag{2-3}\\
& M_{j k x^{\prime}}=\begin{array}{l}
\theta_{j x} K_{j k x} \alpha_{k x}+\theta_{j y K_{j k x} \beta^{\prime} \beta k x} \\
\theta_{k x} C_{x} K_{k j x} \alpha_{k x}+\theta_{k y} C_{x} K_{k j x} \beta_{k x}
\end{array}+F M_{j k x^{\prime}} \\
& M_{j k y}{ }^{\prime}=\begin{array}{l}
\theta_{j x} K_{j k y}{ }^{\prime} \alpha_{k y}+\theta_{j y K_{j k y}}{ }^{\prime} \beta_{k y} \\
\theta_{k x} C_{y} '_{k j y}{ }^{\prime} \alpha_{k y}+\theta_{k y} C_{y} '_{k j y} \beta_{k y}
\end{array}+F M_{j k y}{ }^{\prime}
\end{align*}
$$

The second step in the procedure to relate all quantities in the slope deflection equations to the reference axes is to find the transformed moments in terms of the basic end moments. Again, this is accomplished by means of the transformation matrices for the spans "ji" and "jk" (Tab1es 2-1 and 2-2).

$$
\begin{align*}
& M_{j i x}=M_{j i x}{ }^{\prime} \alpha_{j x}+M_{j i y} \prime \alpha_{j y} \\
& M_{j i y}=M_{j i x^{\prime}} \beta_{j x}+M_{j i y} \beta_{j y}  \tag{2-4}\\
& M_{j k x}=M_{j k x}{ }^{\prime} \alpha_{k x}+M_{j k y} \alpha_{k y} \\
& M_{j k y}=M_{j k x}{ }^{\prime} \beta_{k x}+M_{j k y}{ }^{\prime} \beta_{k y}
\end{align*}
$$

The expressions for the basic end moments in terms of the basic fixed end moments and transformed end slopes (Eq. 2-3) are now substituted in the expressions for the transformed end moments (Eq. 2-4). All quantities in the resulting expressions are now related to the reference system chosen and solution for the unknown end slopes by joint equilibrium is now possible. These expressions are denoted as the transformed slope deflection equations (Eq. 2-5).

$$
\begin{align*}
& \theta_{j x}\left(K_{j i x}{ }^{\prime} \alpha_{j x}{ }^{2}+K_{j i y}{ }^{\prime} \alpha_{j y}{ }^{2}\right) \\
& \theta_{j y}\left(K_{j i x}{ }^{\prime} \alpha_{j x} \beta_{j x}+K_{j i y}{ }^{\prime} \alpha_{j y} \beta_{j y}\right) \\
& M_{j i x}=\theta_{i x}\left(C_{x} K_{i j x}{ }^{\prime} \alpha_{j x}{ }^{2}+C_{y} K_{i j y}{ }^{\prime} \alpha_{j y}{ }^{2}\right) \\
& \theta_{i y}\left(C_{x} K_{i j x}{ }^{\prime} \alpha_{j x} \beta_{j x}+C_{y} K_{i j y}{ }^{\prime} \alpha_{j y} \beta_{j y}\right) \\
& \alpha_{j x} \mathrm{FM}_{j i x}{ }^{\prime}+\beta_{j y} \mathrm{FM}_{j i y}{ }^{\prime} \\
& \theta_{j x}\left(K_{j i x}{ }^{\prime} \alpha_{j x} \beta_{j x}+K_{j i y}{ }^{\prime} \alpha_{j y} \beta_{j y}\right) \\
& \theta_{j y}\left(K_{j i x}{ }^{\prime} \beta_{j x}{ }^{2}+K_{j i y}{ }^{\prime} \beta_{j y}{ }^{2}\right) \\
& M_{j i y}=\theta_{i x}\left(C_{x} K_{i j x}{ }^{\prime} \alpha_{j x} \beta_{j x}+C_{y} K_{i j y}{ }^{\prime} \alpha_{j y} \beta_{j y}\right) \\
& \theta_{i y}\left(C_{x} K_{i j x}{ }^{\prime} \beta_{j x}{ }^{2}+C_{y} K_{i j y}{ }^{\prime} \beta_{j y}{ }^{2}\right) \\
& \beta_{j x} \mathrm{FM}_{\mathrm{jix}}{ }^{\prime}+\beta_{j y} \mathrm{FM}_{j i y}{ }^{\prime} \\
& \theta_{j x}\left(K_{j k x}{ }^{\prime} \alpha_{k x}{ }^{2}+K_{j k y}{ }^{\prime} \alpha_{k y}{ }^{2}\right) \tag{2-5}
\end{align*}
$$

$$
\begin{aligned}
& M_{j k x}=\theta_{k x}\left(C_{x} K_{k j x}{ }^{\prime} \alpha_{k x}{ }^{2}+C_{y} K_{k j y}{ }^{\prime} \alpha_{k y}{ }^{2}\right) \\
& \theta_{\mathrm{ky}}\left(\mathrm{C}_{\mathrm{x}} \mathrm{~K}_{\mathrm{kjx}}{ }^{\alpha_{\mathrm{kx}}} \beta_{\mathrm{kx}}+\mathrm{C}_{\mathrm{y}} \mathrm{~K}_{\mathrm{kjy}}{ }^{\prime}{ }^{\prime}{ }_{\mathrm{k}} \mathrm{k} \beta_{\mathrm{ky}}\right) \\
& \alpha_{k x}{ }^{F M}{ }_{j k x}{ }^{\prime}+\alpha_{k y}{ }^{F M}{ }_{j k y}{ }^{\prime} \\
& \theta_{j x}\left(K_{j k x}{ }^{\prime} \alpha_{k x} \beta_{\mathrm{kx}}+K_{j k y}{ }^{\prime} \alpha_{k y} \beta_{k y}\right) \\
& \theta_{\mathrm{jy}}\left(\mathrm{~K}_{\mathrm{jkx}}{ }^{\prime} \beta_{\mathrm{kx}}{ }^{2}+\mathrm{K}_{\mathrm{jky}}{ }^{\prime} \beta_{\mathrm{ky}}{ }^{2}\right. \text { ) } \\
& M_{j k y}=\theta_{k x}\left(C_{x} K_{k j x} \alpha_{k x} \beta_{k x}+C_{y} K_{k j y}{ }^{\prime} \alpha_{k y} \beta_{k y}\right) \\
& \theta_{\mathrm{ky}}\left(\mathrm{C}_{\mathrm{x}} \mathrm{~K}_{\mathrm{kjx}}{ }^{\prime} \beta_{\mathrm{kx}}{ }^{2}+\mathrm{C}_{\mathrm{y}} \mathrm{~K}_{\mathrm{kjy}}{ }^{\prime} \beta_{\mathrm{ky}}{ }^{2}\right) \\
& \beta_{k x}{ } \mathrm{FM}_{\mathrm{jkx}}{ }^{\prime}+\beta_{\mathrm{ky}} \mathrm{FM}_{\mathrm{jky}}{ }^{\prime}
\end{aligned}
$$

## 2-3. Transformed Stiffness Factors, Carry Over Stiffness Factors,

## and Fixed End Moments

The coefficients of the end slopes in the transformed slope deflection equations (Eq. 2-5) are not merely a collection of algebraic terms. They are the transformed stiffness factors, carry over stiffness factors, and transformed fixed end moments. They have definite physical meanings similar to those of the basic stiffness factors, carry over stiffness factors, and basic fixed end moments. These transformed values are tabulated below.

Table 2-3 Transformed Stiffness and Carry over Stiffness Factors

$$
\begin{aligned}
& K_{j i x x}=K_{j i x}{ }^{\prime} \alpha_{j x}{ }^{2}+K_{j i y}{ }^{\prime} \alpha_{j y}{ }^{2} \\
& K_{j i y y}=K_{j i x}{ }^{\prime} \beta_{j x}{ }^{2}+K_{j i y}{ }^{\prime} \beta_{j y}{ }^{2} \\
& K_{j i x y}=K_{j i x} \alpha_{j x} \beta_{j x}+K_{j i y}{ }_{j} \alpha_{j y} \beta_{j y}=K_{j i y x} \\
& \mathrm{CK}_{i j x x}=\mathrm{C}_{\mathrm{x}} \mathrm{~K}_{\mathrm{i} j \mathrm{x}}{ }^{\prime} \alpha_{j x^{2}}+\mathrm{C}_{\mathrm{y}} \mathrm{~K}_{\mathrm{i} j \mathrm{y}}{ }^{\prime} \alpha_{j y^{2}}{ }^{2} \\
& \mathrm{CK}_{i j y y}=\mathrm{C}_{\mathrm{x}} \mathrm{~K}_{\mathrm{ijx}}{ }^{\prime} \beta_{j \mathrm{x}}{ }^{2}+\mathrm{C}_{\mathrm{y}} \mathrm{~K}_{\mathrm{ijy}}{ }^{\prime} \beta_{j y}{ }^{2} \\
& \mathrm{CK}_{i j x y}=\mathrm{C}_{\mathrm{x}} \mathrm{~K}_{\mathrm{i} j \mathrm{x}}{ }^{\prime} \alpha_{j \mathrm{x}} \beta_{\mathrm{jx}}+\mathrm{C}_{\mathrm{y}} \mathrm{~K}_{\mathrm{i} j \mathrm{y}}{ }^{\prime} \alpha_{j y} \beta_{j y}=\mathrm{CK}_{i j y x} \\
& K_{j k x x}=K_{j k x}{ }^{\prime} \alpha_{k x}{ }^{2}+K_{j k y}{ }^{\prime} \alpha_{k y}{ }^{2} \\
& \mathrm{~K}_{\mathrm{jkyy}}=\mathrm{K}_{\mathrm{jkx}}{ }^{\prime} \beta_{\mathrm{kx}}{ }^{2}+\mathrm{K}_{\mathrm{jky}}{ }^{\prime} \beta_{\mathrm{ky}}{ }^{2} \\
& K_{j k x y}=K_{j k x}{ }^{\prime} \alpha_{k x} \beta_{k x}+K_{j k y}{ }^{\alpha_{k}}{ }_{k y} \beta_{k y}=K_{j k y x} \\
& \mathrm{CK}_{\mathrm{kjxx}}=\mathrm{C}_{\mathrm{x}} \mathrm{~K}_{\mathrm{kjx}}{ }^{\prime} \alpha_{\mathrm{kx}}{ }^{2}+\mathrm{C}_{\mathrm{y}} \mathrm{~K}_{\mathrm{kjy}}{ }^{\prime} \alpha_{\mathrm{ky}}{ }^{2} \\
& \mathrm{CK}_{\mathrm{kjyy}}=\mathrm{C}_{\mathrm{x}} \mathrm{~K}_{\mathrm{kjx}}{ }^{\prime} \beta_{\mathrm{kx}}{ }^{2}+\mathrm{C}_{\mathrm{y}} \mathrm{~K}_{\mathrm{kjy}}{ }^{\prime} \beta_{\mathrm{ky}}{ }^{2} \\
& \mathrm{CK}_{\mathrm{kj}}{ }_{\mathrm{xy}}=\mathrm{C}_{\mathrm{x}} \mathrm{~K}_{\mathrm{kjx}}{ }^{\prime} \alpha_{\mathrm{kx}} \beta_{\mathrm{kx}}+\mathrm{C}_{\mathrm{y}}{ }^{\prime} \mathrm{K}_{\mathrm{kjy}}{ }^{\prime} \alpha_{\mathrm{ky}} \beta_{\mathrm{ky}}=\mathrm{CK}_{\mathrm{kjyx}}
\end{aligned}
$$

Table 2-4 Transformed Fixed End Moments

$$
\begin{aligned}
& F M_{j i x}=F M_{j i x} \alpha_{j x}+F M_{j i y}{ }^{\prime} \alpha_{j y} \\
& F M_{j i y}=F M_{j i x} \beta_{j x}+F M_{j i y} \beta_{j y} \\
& F M_{j k x}=F M_{j k x} \alpha_{k x}+F M_{j k y}{ }^{\prime} \alpha_{k y} \\
& F M_{j k y}=F M_{j k x} \beta_{k x}+F M_{j k y} \beta_{k y}
\end{aligned}
$$

Substituting the values given in Table 2-3 and Table 2-4, the transformed slope deflection equations are rewritten in a more meaningful form below, and these expressions will be used for the transformed slope deflection equations hereafter.

## Transformed Slope Deflection Equations:

$M_{j i x}=\theta_{j x} K_{j i x x}+\theta_{j y} K_{j i y x}+\theta_{i x} C K_{i j x x}+\theta_{i y} \mathrm{CK}_{i j y x}+\mathrm{FM}_{j i x}$
$M_{j i y}=\theta_{j x} \mathrm{~K}_{\mathrm{jixy}}+\theta_{\mathrm{jy}} \mathrm{K}_{\mathrm{j} i \mathrm{yy}}+\theta_{\mathrm{ix}} \mathrm{CK}_{\mathrm{ijxy}}+\theta_{\mathrm{iy}} \mathrm{CK}_{\mathrm{ijyy}}+\mathrm{FM}_{\mathrm{jiy}}$
$M_{j k x}=\theta_{j x} K_{j k x x}+\theta_{j y} \mathrm{~K}_{j k y x}+\theta_{k x} C_{k j x x}+\theta_{k y} C_{k j y x}+\mathrm{FM}_{j k x}$
$M_{j k y}=\theta_{j x} \mathrm{~K}_{\mathrm{jkxy}}+\theta_{\mathrm{jy}} \mathrm{K}_{\mathrm{jkyy}}+\theta_{\mathrm{kx}} \mathrm{CK}_{\mathrm{kjxy}}+\theta_{\mathrm{ky}} \mathrm{CK}_{\mathrm{kjyy}}+\mathrm{FM}_{\mathrm{jky}}$

## EQUILIBRIUM EQUATIONS AND CARRY OVER FUNCTIONS

3-1. Joint Equilibrium Equations.

In order to maintain equilibrium, the summation of moments about any set of axes at a joint must be zero. Using the transformed slope deflection equations the solution of joint equilibrium is now possible. The summation of moments at " $j$ " are taken about the transformed $x$ and $y$ axes and are stated analytically below.

$$
\begin{array}{r}
M_{j i x}+M_{j k x}=0 \\
\theta_{i x} C K_{i j x x}+\theta_{j x} \sum K_{j x x}+\theta_{k x} C K_{k j x x}+F M_{j i x}=0 \\
\theta_{i y} C K_{i j y x}+\theta_{j y} \sum K_{j y x}+\theta_{k y} C K_{k j y x}+F M_{j k x}  \tag{3-1a}\\
\\
M_{j i y}+M_{j k y}=0 \\
\theta_{i x} C K_{i j x y}+\theta_{j x} \sum K_{j x y}+\theta_{k x} C K_{k j x y}+F M_{j i y}=0 \\
\theta_{i y} C K_{i j y y}+\theta_{j y} \sum K_{j y y}+\theta_{k y} C K_{k j y y}+F M_{j k y}=
\end{array}
$$

Equations (3-1a) and (3-1b) are the slope deflection joint equilibrium equations. Each equation is a six slope equation and there are two such equations at each joint. These equations may be put in matrix form and the matrix solved for the $\theta^{\prime}$ s. The end slopes may be transformed to the basic end slopes and the substitution of the values for the basic end slopes in the basic slope deflection equations will yield the final basic end moments.

A new term, the "joint moment", is now introduced in the joint equilibrium equations in order to put them in the carry over form. The "joint moment" is defined as the product of the rotation at a joint and the summation of stiffness factors related to the rotation at that joint.

$$
\begin{align*}
& J M_{i x}=\theta_{i x} \sum K_{i x x} \\
& J M_{i y}=\theta_{i y} \sum K_{i y y} \\
& J M_{j x}=\theta_{j x} \sum K_{j x x}  \tag{3-2}\\
& J M_{j y}=\theta_{j y} \sum K_{j y y} \\
& J M_{k x}=\theta_{k x} \sum K_{k x x} \\
& J M_{k y}=\theta_{k y} \sum K_{k y y}
\end{align*}
$$

The joint moments are now substituted in the joint equilibrium equations (3-1a) and (3-1b) and the resulting expressions are shown below.

$$
\begin{align*}
& J M_{i x}\left(-\frac{C K_{i j x x}}{\sum K_{i x x}}\right)+\left(-\sum \mathrm{FM}_{j x}\right)+J M_{k x}\left(-\frac{C K_{k j x x}}{\sum K_{k x x}}\right)  \tag{3-3a}\\
& J M_{i y}\left(-\frac{C K_{i j y x}}{\sum K_{i y y}}\right)+J M_{j y}\left(-\frac{\sum K_{j y x}}{\sum K_{j y y}}\right)+J M_{k y}\left(-\frac{C K_{k j y x}}{\sum K_{k y y}}\right) \\
& J M_{i x}\left(-\frac{C K_{i j x y}}{\sum K_{i x x}}\right)+J M_{j x}\left(-\frac{\sum K_{j x y}}{\sum K_{j x x}}\right)+J M_{k x}\left(-\frac{C K_{k j x y}}{\sum K_{k x x}}\right)  \tag{3-3b}\\
& J M_{i y}\left(-\frac{C K_{i j y y}}{\sum K_{i y y}}\right)+\left(-\sum \mathrm{FM}_{j y}\right)+J M_{k y}\left(-\frac{C K_{k j y y}}{\sum K_{k y y}}\right)
\end{align*}
$$

3-3. Carry Over Functions.

The joint moment equations (3-3a) and (3-3b) are now in carry over form. The coefficients of the joint moments are the influences they have on the joint moments on the left side of the equations and are defined as the carry over values. The summation of fixed end moments is defined as the starting value.

$$
\begin{equation*}
m_{j x}=-(F M j i x+F M j k x) \tag{3-5a}
\end{equation*}
$$

$$
\begin{equation*}
m_{j y}=-(F M j i y+F M j k y) \tag{3-5b}
\end{equation*}
$$

$$
\begin{align*}
& r_{i j x x}=-\frac{\text { CKijxx }}{\sum K i x x} \\
& r_{k j x x}=-\frac{\text { CKkjxx }}{\sum K k x x} \\
& r_{\text {ijyy }}=-\frac{\text { CKijyy }}{\sum \text { Kiyy }} \\
& \mathbf{r}_{\text {kjyy }}=-\frac{\text { CKkjyy }}{\sum \text { Kkyy }} \\
& r_{i j x y}=-\frac{\text { CKijxy }}{\sum K i x x} \tag{3-4}
\end{align*}
$$

$$
\begin{aligned}
& r_{\text {ijyx }}=-\frac{\text { CKijyx }}{\sum K i y y} \\
& \begin{aligned}
r_{k j x y} & =-\frac{\text { CKkjxy }}{\sum_{K k x x}} \\
r_{k j y x} & =-\frac{C_{k j, j y x}}{\sum_{K k y y}} \\
r_{j j y x} & =-\sum_{\sum_{K j y y y}}^{\sum K j y x}
\end{aligned} \\
& r_{j j x y}=-\frac{\sum_{K j x y}}{\sum K j x x} \\
& \text { (3-4) }
\end{aligned}
$$

3-4. Carry Over Joint Moment Equations.

The substitution of the carry over values (Eq. 3-4) and starting values (Eq. 3-5) in the joint moment equations (3-3) yields the joint moment equations in their final carry over form.

$$
\begin{align*}
& J M_{j x}=\begin{array}{l}
J M_{i x} r_{i j x x}+m_{j x}+J M_{k x} r_{k j x x} \\
J M_{i y} r_{i j y x}+J M_{j y} r_{j j y x}+J M_{k y} r_{k j y x} \\
J M_{j y}=J M_{i x} r_{i j x y}+J M_{j x} r_{j j x y}+J M_{k x} r_{k j x y} \\
J M_{i y} r_{i j y y}+m_{j y}+J M_{k y} r_{k j y y}
\end{array}, \tag{3-6a}
\end{align*}
$$

Two carry over joint moment equations may be written at each joint. As will be shown later, the most convenient method of solution for the joint moments is by use of a carry over table in which the joint moments, their carry over values, and their starting values are listed. The joint moments are then approximated in the table to the desired accuracy.

CHAPTER IV

## MODIFIED CARRY OVER FUNCTIONS

One or more of the unknown joint moments may be eliminated from the carry over joint moment equations if these equations are modified to meet the requirements of known conditions at a joint. Three special cases are discussed in this chapter; a fixed end, a pinned end, and a member restrained against torsion but free to rotate in the $y^{\prime}$ direction.

4-1. Fixed End.

Consider the member at "i" fixed in all directions (Fig. 4-1).
Then both the basic and transformed slopes at "i" are zero.

Conditions:

$$
\begin{aligned}
& \theta_{i j x^{\prime}}=0 \\
& \theta_{\mathrm{ijy}}=0 \\
& \theta_{\mathrm{jx}}=0 \\
& \theta_{\mathrm{jy}}=0
\end{aligned}
$$



Fig. 4-1 Fixed End

The basic end slopes at " $i$ " are eliminated and the basic slope deflection equations for $\mathrm{M}_{\mathrm{jix}}$ ' and $\mathrm{M}_{\mathrm{jiy}}$ ' become:

$$
\begin{align*}
& M_{j i x^{\prime}}=\theta_{j i x} K_{j i x^{\prime}}+F M_{j i x^{\prime}}  \tag{4-1a}\\
& M_{j i y^{\prime}}=\theta_{j i y} K_{j i y^{\prime}}+F M_{j i y^{\prime}} \tag{4-1b}
\end{align*}
$$

The procedure to find the modified carry over joint moment equations is exactly the same as was used to find the general equations. The effect on the carry over joint moment equations is to eliminate the joint moments at the fixed end.

$$
\begin{align*}
& J M_{j x}=\begin{array}{l}
m_{j x}+J M_{k x} r_{k j x x} \\
J_{j y} r_{j j y x}+J M_{k y} r_{k j y x}
\end{array}  \tag{4-2a}\\
& J M_{j y}=J_{j x} r_{j j x y}+J M_{k x} r_{k j x y}  \tag{4-2b}\\
& m_{j y}+J M_{k y} r_{k j y y}
\end{align*}
$$

## 4-2. Pinned End.

## Consider the member at " $i$ " free to rotate in all directions

 (Fig. 4-2). Then both the basic and transformed moments at "i" are zero.Conditions:
$M_{i j x^{\prime}}=0$
$M_{i j y}{ }^{\prime}=0$
$M_{i j x}=0$
$M_{i j y}=0$


Fig. 4-2 Pinned End

The basic slope deflection equations are written for $M_{j i x}$ and $M_{\text {jiy }}$ using the basic stiffness and carry over stiffness factors modified for a pinned end. These modified factors should be familiar to the reader and are simply stated below.

$$
\begin{equation*}
(4-4 a) \tag{4-4a}
\end{equation*}
$$

The modified basic slope deflection equations are:

$$
\begin{align*}
& M_{j i x}{ }^{\prime}=\theta_{j i x} K^{\prime} j i x{ }^{\prime}+E M_{j i x}  \tag{4-5a}\\
& M_{j i y^{\prime}}=\theta_{j i y} K^{\prime}{ }_{j i y}{ }^{\prime}+E M_{j i y} \prime \tag{4-5b}
\end{align*}
$$

$$
\begin{align*}
& K^{\prime}{ }_{j i x}{ }^{\prime}=K_{j i x}{ }^{\prime}\left(1-C_{x}{ }^{\prime}{ }^{2}\right)  \tag{4-3a}\\
& K^{\prime}{ }^{\prime} y^{\prime}{ }^{\prime}=K_{\text {jiy }}{ }^{\prime}\left(1-\mathrm{C}_{\mathrm{y}}{ }^{\prime}{ }^{2}\right)  \tag{4-3b}\\
& E M_{j i x}{ }^{\prime}=F M_{j i x}{ }^{\prime}-C_{x}{ }^{\prime} M_{i j x}{ }^{\prime} \\
& E M_{j i y} \prime=\mathrm{FM}_{j i y}{ }^{\prime}-\mathrm{C}_{\mathrm{y}}{ }^{\prime} \mathrm{FM}_{i j y}{ }^{\prime} \tag{4-4b}
\end{align*}
$$

Again, the same procedure as that used in deriving the general expressions is followe. The modified basic factors replace the regular basic factors in the determination of the transformed stiffness and carry over stiffness factors.

$$
\begin{align*}
& K_{j i x x}^{\prime}=K^{\prime} j_{j i x}^{\prime} \alpha_{j x}{ }^{2}+K^{\prime}{ }_{j i y}{ }^{\prime} \alpha_{j y}{ }^{2} \\
& K^{\prime}{ }_{j i x y}=K^{\prime}{ }_{j i y x}=K^{\prime}{ }_{j i x} \alpha_{j x} \beta_{j x}+K^{\prime}{ }_{j i y} \alpha_{j y} \beta_{j y}  \tag{4-6}\\
& K^{\prime}{ }_{j i y y}=K^{\prime}{ }_{j i x} \beta_{j x}{ }^{2}+K^{\prime}{ }_{j i y} \beta_{j y}{ }^{2} \\
& E M_{j i x}=E M_{j i x} \alpha_{j x}+E M_{j i y} \alpha_{j y} \\
& E M_{j i y}=E M_{j i x} \beta_{j x}+E M_{j i y} \beta_{j y}
\end{align*}
$$

These modified transformed values are used to determine the carry over and starting values in the carry over joint moment equations. The joint moments at " $i$ " are eliminated and the carry over joint moment equations become:

$$
\begin{align*}
& J M_{j x}=\begin{array}{l}
m^{\prime}{ }_{j x}+J M_{j y} r^{\prime} j j y x \\
J M_{k x} r_{k j x x}+J M_{k y} r_{k j y x}
\end{array}  \tag{4-8a}\\
& J M_{j y}=\begin{array}{l}
J M_{j x} r^{\prime} j j x y+J M_{k x} r_{k j x y} \\
m_{j y}^{\prime}+J M_{k y} r_{k j y y}
\end{array} \tag{4-8b}
\end{align*}
$$

Consider the member at " $i$ " fixed in the $x$ ' direction and pinned in the $y^{\prime}$ direction (Fig, 4-3). Then the rotation in the $x^{\prime}$ direction and the end moment in the $y^{\prime}$ direction at " $i$ " are zero.

Conditions:
$M_{i j y}{ }^{\prime}=0$
$\theta_{i j X^{\prime}}=0$


Fig. 4-3 Torsional Restraint

This case is simply a combination of the two previous cases and the modified basic slope deflection equations are:

$$
\begin{align*}
& M_{j i x}{ }^{\prime}=\theta_{j i x} K_{j i x}{ }^{\prime}+F M_{j i x}{ }^{\prime}  \tag{4-9a}\\
& M_{j i y^{\prime}}=\theta_{j i y^{\prime}} K^{\prime}{ }_{j i y}{ }^{\prime}+E M_{j i y} \tag{4-9b}
\end{align*}
$$

Again, those basic values which were modified are used in place of the regular basic values in the general expressions for the transformed values to find the modified transformed stiffness, carry over stiffness factors and end moments.

$$
\begin{align*}
& K_{j i x x}=K_{j i x} \alpha_{j x}{ }^{2}+K^{\prime}{ }_{j i y} \alpha_{j y}{ }^{2} \\
& K^{\prime \prime}{ }_{j i x y}=K^{\prime \prime}{ }_{j i y x}=K_{j i x} \alpha_{j x} \beta_{j x}+K^{\prime}{ }_{j i y} \alpha_{j y} \beta_{j y}  \tag{4-10}\\
& K^{\prime \prime}{ }_{j i y y}=K_{j i x} \beta_{j x}{ }^{2}+K^{\prime}{ }_{j i y} \beta_{j y}{ }^{2} \\
& F M^{\prime}{ }_{j i x}=F M_{j i x} \alpha_{j x}+E M_{j i y} \alpha_{j y}  \tag{4-11}\\
& F M^{\prime}{ }_{j i y}=F M_{j i x} \beta_{j x}+E M_{j i y} \beta_{j y}
\end{align*}
$$

These modified transformed values are used in place of the transformed values (Eq. 3-4 and 3-5) to find the carry over and starting values for the carry over joint moment equations.

$$
\begin{align*}
& J M_{j x}=\begin{array}{l}
m^{\prime \prime}{ }_{j x}+J M_{k x} r_{k j x x} \\
J M_{j y} r^{\prime \prime}{ }_{j j y x}+J M_{k y} r_{k j y x}
\end{array}  \tag{4-12a}\\
& J M_{j y}=\begin{array}{l}
J M_{j x} r^{\prime \prime}{ }_{j j x y}+J M_{k x} r_{k j x y} \\
m_{j y}+J M_{k y} r_{k j y y}
\end{array} \tag{4-12b}
\end{align*}
$$

It will be observed that if the basic slope deflection equations are modified to meet the requirements of known end conditions, the joint moments at that end are eliminated from the carry over joint moment equations. The procedure in calculating the modified transformed values is exactly the same as in the general derivation, but those basic values which were modified to meet special end conditions are used in place of the regular basic values. The modified transformed values are used in place of the regular transformed values to calculate the modified carry over and starting values. The proper modifications to meet the requirements of special end conditions will often greatly reduce the numerical calculations involved in the analysis of problems of this type.

## CHAPTER V

FINAL MOMENTS

The values for the joint moments obtained from the solution of the carry over joint moment equations could be used to find the end slopes. The values for these end slopes could be substituted in the transformed slope deflection equations to find the transformed moments. It would be more desirable, however, to have the expressions for the transformed moments in terms of the joint moments. The values for the joint moments could then be used directly to find the final transformed moments. Substituting the expressions for the end slopes in terms of the joint moments (Eq. 3-2) in the transformed slope deflection equations, the final transformed moments become:


$$
M_{j i y}=J_{j x} \frac{K_{j i x y}}{\sum K_{j x x}}+J M_{j y} \frac{K_{j i y y}}{\sum K_{j y y}}+J M_{i x} \frac{C K_{i j x y}}{\sum K_{i x x}}+J M_{i y} \frac{C K_{i j y y}}{\sum K_{i y y}}+F M_{j i y}
$$

$$
M_{j k x}=J M_{j x} \frac{K_{j k x x}}{\sum K_{j x x}}+J M_{j y} \frac{K_{j k y x}}{\sum K_{j y y}}+J M_{k x} \frac{C K_{k j x x}}{\sum K_{k x x}}+J M_{k y} \frac{C K_{k j y x}}{\sum K_{k y y}}+F M_{j k x}
$$

$$
M_{j k y}=J M_{j x} \frac{K_{j k x y}}{\sum K_{j x x}}+J M_{j y} \frac{K_{j k y y}}{\sum K_{j y y}}+J M_{k x} \frac{C K_{k j x y}}{\sum K_{k x x}}+J M_{k y} \frac{C K_{k j y y}}{\sum K_{k y y}}+F M_{j k y}
$$

(Eq. 5-1) Final Moments in Terms of Joint Moments

The coefficients of the joint moments (Eq. 5-1) are the carry over values (Eq. 3-4) and the distribution factors similar to those used in the moment distribution method. The expressions for the final transformed moments may be rewritten using these values as:

$$
\begin{align*}
& M_{j i x}=J M_{j x} D_{j i x x}+J M_{j y} D_{j i y x}+J M_{i x} r_{i j x x}+J M_{i y} r_{i j y x}+F M_{j i x}  \tag{5-2a}\\
& M_{j i y}=J M_{j x} D_{j i x y}+J M_{j y} D_{j i y y}+J M_{i x} r_{i j x y}+J M_{i y} r_{i j y y}+F M_{j i y} \tag{5-2b}
\end{align*}
$$

$$
\begin{equation*}
M_{j k x}=J M_{j x} D_{j k x x}+J M_{j y} D_{j k y x}+J M_{k x} r_{k j x x}+J M_{k y} r_{k j y x}+F M_{j k x} \tag{5-2c}
\end{equation*}
$$

$$
\begin{equation*}
M_{j k y}=J M_{j x} D_{j k x y}+J M_{j y} D_{j k y y}+J M_{k x} r_{k j x y}+J M_{k y} r_{k j y y}+F M_{j k y} \tag{5-2d}
\end{equation*}
$$

For design purposes it is easier to work with the basic moments instead of the transformed moments. The basic moments are easily found by use of the transformation matrix. (Table 5-1)

Table 5-1
Transformation of Moments


$$
\begin{align*}
& M_{j x^{\prime}}=M_{x} \alpha_{j x}+M_{y} \beta_{j x} \\
& M_{j y}{ }^{\prime}=M_{x} \alpha_{j y}+M_{y} \beta_{j y} \tag{5-3}
\end{align*}
$$

Another way to determine the basic moments would be to find the transformed end slopes from the joint moments, transform them to the basic end slopes and substitute the basic end slopes in the basic slope deflection equations.

## CHAPTER VI

## NUMERICAL PROCEDURE

A systematic procedure for analysis will be outlined in the first part of this chapter. An example problem will be analyzed following the outlined procedure in the second part of this chapter.

6-1. Outline for Numerical Procedure.
a. Transformation Matrices.

A reference system is selected and transformation
matrices for each span are established.
b. Basic Stiffness and Carry Over Stiffness Factors.

The basic values are calculated from the properties
of the spans. They may be either relative or actual values.
c. Transformed Stiffness and Carry Over Stiffness Factors.

The transformed values are calculated from Table 2-3.

Modified basic values are used in place of regular values in this table as they occur.
d. Carry Over Factors.

The carry over factors are calculated from Eq. 3-4.
d. Basic End Moments.

The basic fixed end moments are calculated and modified as required.
f. Transformed End Moments.

The transformed end moments are calculated from Table 2-4. Modified basic end moments are used for regular basic end moments as they occur.
g. Starting Values.

The starting values are calculated from Eq. 3-5.
h. Carry Over Procedure.

The joint moments, their carry over factors, and their starting values are listed in a table. The starting values are multiplied by their carry over factors and the resulting values are "carried over" to the joint moment to which the carry over factors apply. This procedure is repeated until the desired accuracy is obtained. Convergence occurs more rapidly if modified starting values are used as will be shown in the example.
i. Final Moments.

The final transformed moments may be calculated from the joint moments by use of Eq. 5-2 and transformed to the basic moments. Another method would be to find the transformed end slopes (Eq. 3-2), transform them to the basic end slopes, and substitute the basic end slopes in the basic slope deflection equations.

6-2. Example Problem.

A three span continuous bent member is considered. It is simply supported except at the ends it is restrained against torsion. Each span is of constant cross section. It will be analyzed for a uniform lateral load and influence values will be calculated. All dimensions are in feet, all moments are in kip-feet, and all forces are in kips, unless otherwise stated.


Fig. 6-1 Three Span Continuous Bent Member

## a. Transformation Matrix.

The principal axes of span " 23 " coincide with the selected transformed axes and no transformation is necessary for this span. The transformation matrices for spans "12" and "34" are shown below.

$$
\begin{aligned}
& \omega_{12}=30^{\circ} \\
& \alpha_{2 x}=0.8660 \\
& \beta_{2 x}=0.5000 \\
& \alpha_{2 y}=-0.5000 \\
& \beta_{2 y}=0.8600
\end{aligned}
$$

$$
\begin{aligned}
\omega_{1} 4 & =-40^{\circ} \\
\alpha_{4 x} & =0.7660 \\
\beta_{4 x} & =-0.6428 \\
\alpha_{4 y} & =0.6428 \\
\beta_{4 y} & =0.7660
\end{aligned}
$$



Table 6-1
Transformation Matrix

## for

Span "12"


Tab1e 6-2
Transformation Matrix

> for

Span "34"
b. Basic Stiffness and Carry Over Stiffness Factors.

Relative values of basic stiffness and carry over stiffness factors are shown. The basic values are modified as required to conform to known end conditions (4-3).

$$
\begin{aligned}
& \mathrm{K}_{12 x^{\prime}}=\mathrm{K}_{21 x^{\prime}}=1.0 \\
& \mathrm{~K}_{12 y^{\prime}}=\mathrm{K}_{21 y^{\prime}}=10.0 \\
& \mathrm{~K}_{23 x^{\prime}}=\mathrm{K}_{32 x^{\prime}}=1.4 \\
& \mathrm{~K}_{23 y^{\prime}}=\mathrm{K}_{32 y^{\prime}}=12.0 \\
& \mathrm{~K}_{34 x^{\prime}}=\mathrm{K}_{43 x^{\prime}}=0.8 \\
& \mathrm{~K}_{34 y^{\prime}}=\mathrm{K}_{43 y^{\prime}}=7.0 \\
& \mathrm{C}_{x^{\prime}}=-1.0 \\
& \mathrm{C}_{y^{\prime}}=0.5 \\
& \mathrm{~K}^{\prime} 21 y^{\prime}=10.0\left(1-.5^{2}\right)=7.50 \\
& \mathrm{~K}^{\prime} 34 y^{\prime}=7.0\left(1-.5^{2}\right)=5.25
\end{aligned}
$$

The transformed values are calculated from Table 2-3. The modified basic values ( $\mathrm{K}^{\prime} 21 \mathrm{y}^{\prime}$ and $\mathrm{K}^{\prime} 34 \mathrm{y}^{\prime}$ ) are used in place of the regular basic values.

$$
\begin{aligned}
& K_{21 x x}^{\prime \prime}=1.0(.8660)^{2}+7.5(-.5000)^{2}=2.6250 \\
& K^{\prime \prime} 21 \mathrm{yy}=1.0(.5000)^{2}+7.5(.8660)^{2}=5.8750 \\
& K^{\prime \prime}{ }_{21 x y}=K^{\prime \prime}{ }_{21 y x}=1.0(.8660)(.5000)+7.5(-.5000)(.8660)=-2.8145 \\
& K_{23 x x}=K_{32 x x}=1.4 \\
& K_{23 y y}=K_{32 y y}=12.0 \\
& K_{23 x y}=K_{23 y x}=K_{32 x y}=K_{32 y x}=0 \\
& \mathrm{CK}_{23 \mathrm{xx}}=\mathrm{CK}_{32 \mathrm{xx}}=-1(1.4)=-1.4 \\
& \mathrm{CK}_{23 y y}=\mathrm{CK}_{32 \mathrm{yy}}=.5(12.0)=6.0 \\
& \mathrm{CK}_{23 \mathrm{xy}}=\mathrm{CK}_{23 \mathrm{yx}}=\mathrm{CK}_{32 \mathrm{xy}}=\mathrm{CK}_{32 \mathrm{yx}}=0 \\
& \mathrm{~K}_{34 \mathrm{xx}}^{\prime \prime}=.8(.7660)^{2}+5.25(.6428)^{2}=2.6387 \\
& \mathrm{~K}^{\prime \prime} 34 \mathrm{yy}=.8(-.6428)^{2}+5.25(.7660)^{2}=3.4110 \\
& K_{34 x y}^{\prime \prime}=K_{34 y x}^{\prime \prime}=.8(.7660)(-.6428)+5.25(.6428)(.7660)=2.1911 \\
& \sum K_{2 x x}=4.0250 \\
& \sum \mathrm{~K}_{2 \mathrm{yy}}=17.8750 \\
& \sum K_{2 x y}=-2.8145 \\
& \sum K_{2 y x}=-2.8145 \\
& \sum \mathrm{~K}_{3 \mathrm{xx}}=4.0387 \\
& \sum \mathrm{~K}_{3 \mathrm{yy}}=15.4110 \\
& \sum K_{3 x y}=2.1911 \\
& \sum K_{3 y x}=2.1911
\end{aligned}
$$

## d. Carry Over Factors.

The carry over factors are calculated from Eq. 3-4 and are shown be1ow.

$$
\begin{aligned}
& r_{22 x y}=-\frac{-2.8145}{4.0250}=+0.6993 \\
& r_{22 y x}=-\frac{-2.8145}{17.8750}=+0.1575 \\
& r_{32 x x}=-\frac{-1.4}{4.0387}=+0.3466 \\
& r_{32 y y}=-\frac{+6.0}{15.4110}=-0.3893 \\
& r_{32 x y}=0 \\
& r_{32 y x}=0 \\
& r_{33 x y}=-\frac{+2.1911}{4.0387}=-0.5425 \\
& r_{33 y x}=-\frac{+3.1911}{15.4110}=-0.1422 \\
& r_{23 x x}=-\frac{-1.4}{4.0250}=+0.3478 \\
& r_{23 y y}=-\frac{+6.0}{17.8750}=-0.3357 \\
& r_{23 y x}=0
\end{aligned}
$$

## e. Basic Fixed and Propped End Moments.

Consider a uniform load of one kip per foot on all spans.

$$
\mathrm{FM}=\frac{\mathrm{wL}}{}{ }^{2}
$$

$$
\mathrm{EM}=\frac{\mathrm{wL}}{}{ }^{2}
$$

$\mathrm{FM}_{21 \mathrm{x}^{\prime}}=\mathrm{FM}_{23 \mathrm{x}^{\prime}}=\mathrm{FM}_{32 \mathrm{x}^{\prime}}=\mathrm{FM}_{34 \mathrm{x}^{\prime}}=0$
$\mathrm{EM}_{21 \mathrm{y}^{\prime}}=\frac{+40^{2}}{8}=+200 \mathrm{kip}-\mathrm{ft}$.
$\mathrm{FM}_{23 y^{\prime}}=\frac{-60^{2}}{12}=-300 \mathrm{kip}-\mathrm{ft}$.
$\mathrm{FM}_{32 \mathrm{y}^{\prime}}=\frac{+60^{2}}{12}=+300 \mathrm{kip}-\mathrm{ft}$.
$\mathrm{EM}_{34 \mathrm{y}^{\prime}}=\frac{-30^{2}}{8}=-112.5 \mathrm{kip}-\mathrm{ft}$.
f., g. Transformed End Moments and Starting Values.

From Eq. (3-5) and Table 2-4 the starting values and transformed end moments are:

$$
\begin{array}{l|l}
\mathrm{FM}^{\prime}{ }_{21 \mathrm{x}}=-.5000(200)=-100 \mathrm{kip}-\mathrm{ft} . & \\
\mathrm{FM}^{\prime}{ }_{21 \mathrm{y}}=.8660(200)=173.2 \mathrm{kip}-\mathrm{ft} . & \mathrm{m}_{2 \mathrm{x}}=+100 \mathrm{kip}-\mathrm{ft} . \\
\mathrm{FM}_{23 \mathrm{x}}=0 & \mathrm{~m}_{2 y}=+126.8 \mathrm{kip}-\mathrm{ft} . \\
\mathrm{FM}_{23 y}=-300 \mathrm{kip} . \mathrm{ft} . & \mathrm{m}_{3 \mathrm{x}}=+72.3 \mathrm{kip}-\mathrm{ft} . \\
\mathrm{FM}_{32 \mathrm{x}}=0 & \mathrm{~m}_{3 y}=-213.8 \mathrm{kip} . \mathrm{ft} . \\
\mathrm{FM}_{32 y}=+300 \mathrm{kip}-\mathrm{ft} . &
\end{array}
$$

$$
F M^{\prime} 34 \mathrm{x}=.6428(-112.5)=-72.3 \mathrm{kip}-\mathrm{ft} .
$$

$$
\mathrm{FM}_{34 \mathrm{y}}=.7660(-112.5)=-86.2 \mathrm{kip}-\mathrm{ft} .
$$

h. Carry Over Procedure.

Table 6-3


## i. Final Basic Moments.

From Eq. (3-2) the transformed end slopes are:
$\theta_{2 x}=\frac{262.2}{4.0250}=65.413$
$\theta_{3 x}=\frac{236.3}{4.0387}=58.509$
$\theta_{2 \mathrm{y}}=\frac{509.7}{17.8750}=28.515$
$\theta_{3 y}=\frac{-513.0}{15.4110}=-33.288$

From Transformation Matrix:

$$
\begin{aligned}
& \theta_{21 x^{\prime}}=65.413(.8660)+28.515(.5000)=70.905 \\
& \theta_{21 y^{\prime}}=65.413(-.5000)+28.515(.8660)=-8.013 \\
& \theta_{23 x^{\prime}}=65.413 \\
& \theta_{23 y^{\prime}}=28.515 \\
& \theta_{32 x^{\prime}}=58.509 \\
& \theta_{32 y^{\prime}}=-33.288 \\
& \theta_{34 x^{\prime}}=58.509(.7660)-33.288(-.6428)=66.215 \\
& \theta_{34 y^{\prime}}=58.509(.6428)-33.288(.7660)=12.111
\end{aligned}
$$

Substituting the values for the basic end slopes in the basic slopes deflection equations the final basic end moments are:

$$
\begin{aligned}
& M_{12 y^{\prime}}=0 \\
& M_{12 x^{\prime}}=-1(1.0)(70.905)=-70.9 \\
& M_{21 x^{\prime}}=(1.0)(70.905)=+70.9 \\
& M_{21 y^{\prime}}=7.50(-8.013)+200=+139.9 \\
& M_{23 x^{\prime}}=1.4(65.413)-1(1.4)(58.509)=+9.7 \\
& M_{23 y^{\prime}}=12.0(28.515)+.5(12.0)(-33.288)-300=-157.6 \\
& M_{32 x^{\prime}}=1.4(58.509)-1(1.4)(65.413)=-9.7 \\
& M_{32 y^{\prime}}=12.0(-33.288)+.5(12.0)(28.515)+300=+71.6 \\
& M_{34 x^{\prime}}=.8(66.215)=+53.0 \\
& M_{34 y^{\prime}}=5.25(12.111)-112.5=-48.9 \\
& M_{43 x^{\prime}}=-1(.8)(66.215)=-53.0 \\
& M_{43 y^{\prime}}=0
\end{aligned}
$$

6-2a. Influence Values.

Influence values for the moments and shears at each joint will be calculated for a one pound load moving across the continuous bent member. The influence values will be calculated at the tenth points of each span. The carry over procedure will be done for a starting moment of unity for each joint moment. The actual joint moments are then found by multiplying the joint moments due to unit starting values by the actual starting values. The final transformed and basic end moments are found as outlined (6-1). The shears at the joints are calculated by statics.

Table 6-4 Carry Over Table for $m_{2 x}=1.0000$


Table 6-5 Carry Over Table for $m_{3 x}=1.0000$


Table 6-6 Carry Over Table for $m_{2 y}=1.0000$


Table 6-7 Carry Over Table for $m_{3 y}=1.0000$

| JM2x | JM3x | JM2y | JM3y |
| :---: | :---: | :---: | :---: |
| . 3478 | . 3466 | -. 3357 | -. 3893 |
| $.6993=$ |  | -. 1575 |  |
|  | -. $5425=$ |  | 二-. 1422 |
| 0 | 0 | 0 | 1.0000 |
|  | 0 | -. 3893 |  |
|  | -. 1422 | 0 |  |
| -. 0493 | -. 1422 | -. 3893 | . 1307 |
| -. 0613 |  |  | 0771 |
| -. 1106 | -. 0385 | -. 0809 | 2078 |
|  | -. 0295 | -. 0773 |  |
| -. 0236 | -. 0680 | -. 1582 | . 0531 |
| -. 0249 |  |  | . 0369 |
| -. 0485 | -. 0169 | -. 0350 | . 0900 |
|  | -. 0128 | -. 0339 |  |
| -. 0103 | -. 0297 | -. 0689 | . 0231 |
| -. 0109 |  |  | . 0161 |
| -. 0212 | -. 0074 | -. 0153 | . 0392 |
|  | -. 0056 | -. 0148 |  |
| -. 0045 | -. 0130 | -. 0291 | . 0098 |
| -. 0046 |  |  | . 0071 |
| -. 0091 | -. 0032 | -. 0066 | . 0169 |
|  | -. 0024 | -. 0064 |  |
| -. 0019 | -. 0056 | -. 0130 | . 0044 |
| -. 0020 |  |  | 0030 |
| -. 0039 | -. 0014 | -. 0029 | . 0074 |
|  | -. 0011 | -. 0027 |  |
| -. 0009 | -. 0025 | -. 0056 | . 0019 |
| -. 0009 |  |  | . 0014 |
| -. 0018 | -. 0006 | -. 0013 | 0033 |
|  | -. 0005 | -. 0013 |  |
| -. 0004 | -. 0011 | -. 0026 | . 0009 |
| -. 0004 |  |  | . 0006 |
| -. 0008 | -. 0003 | -. 0006 | . 0015 |
|  | -. 0002 | -. 0006 |  |
| -. 0002 | -. 0005 | -. 0012 | . 0004 |
| -. 0002 |  |  | . 0003 |
| -. 0004 | -. 0001 | -. 0003 | 0007 |
|  | -. 0001 | -. 0003 |  |
| -. 0001 | -. 0002 | -. 0006 | . 0002 |
| -. 0001 |  |  | . 0001 |
| -. 0002 | -. 0001 | -. 0001 | . 0003 |
|  | 0 | -. 0001 |  |
| 0 | -. 0001 | -. 0002 | . 0001 |
| 0 |  |  | 0001 |
| 0 | 0 | -. 0001 | 0002 |
|  | 0 | 0 |  |
|  | 0 | -. 0001 |  |
| -. 1965 | -. 2630 | -. 6688 | 1.3673 |

## Actual Starting Values:

$$
\begin{aligned}
& m^{\prime \prime} 2 x=-\left(\mathrm{FM}^{\prime} 21 x+\mathrm{FM}_{23 x}\right) \\
& \mathrm{m}^{\prime \prime} 2 \mathrm{y}=-\left(\mathrm{FM}^{\prime} 21 \mathrm{y}+\mathrm{FM}_{23 y}\right) \\
& \mathrm{m}^{\prime \prime} 3 \mathrm{x}=-\left(\mathrm{FM}_{32 \mathrm{x}}+\mathrm{FM}^{\prime} 34 \mathrm{x}\right) \\
& \mathrm{m}^{\prime \prime} 3 \mathrm{y}=-\left(\mathrm{FM}_{32 y}+\mathrm{FM}^{\prime} 34 \mathrm{y}\right)
\end{aligned}
$$

Actual Starting Values in Terms of Basic End Moments:

$$
\begin{aligned}
& \mathrm{m}_{2 \mathrm{x}}=-\mathrm{EM}_{21 \mathrm{y}}{ }^{\prime} \alpha_{2 y}=+.5000 \mathrm{EM}_{21 y^{\prime}} \\
& \mathrm{m}^{\prime \prime} \mathrm{y}_{\mathrm{y}}=-\left(\mathrm{EM}_{21 \mathrm{y}}{ }^{\prime} \beta_{2 \mathrm{y}}+\mathrm{FM}_{23 \mathrm{y}} \mathrm{I}^{\prime}\right)=-.8660 \mathrm{EM}_{21 \mathrm{y}}{ }^{\prime}-\mathrm{FM}_{23 y}{ }^{\prime} \\
& \mathrm{m}_{3 \mathrm{x}}=-\mathrm{EM}_{34 \mathrm{y}} \text { ' } \alpha_{4 y}=-.6428 \mathrm{EM}_{34 y} \text { ' } \\
& m^{\prime \prime} 3 y=-\left(\mathrm{FM}_{32 y^{\prime}}+\mathrm{EM}_{34 \mathrm{y}}{ }^{\prime} \beta 4 \mathrm{y}\right)=-\mathrm{FM}_{32 \mathrm{y}^{\prime}}-.76600 \mathrm{EM}_{34} \mathrm{y}^{\prime}
\end{aligned}
$$

From Tables $6-4,6-5,6-6$, and $6-7$ the joint moments are found in terms of the actual starting values.

Table 6-8

## Joint Moments in Terms of Starting Values

|  | $\mathrm{m}_{2 \mathrm{x}}$ | $\mathrm{m}_{3 \mathrm{x}}$ | $\mathrm{m}_{2 \mathrm{y}}$ | $\mathrm{m}^{\prime \prime} 3 \mathrm{y}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{JM}_{2 \mathrm{x}}$ | 1.4060 | .5946 | .2878 | -.1965 |
| $\mathrm{JM}_{2 \mathrm{y}}$ | 1.2755 | .8060 | 1.4261 | -.6688 |
| $\mathrm{JM}_{3 \mathrm{x}}$ | .5957 | 1.3493 | .1823 | -.2630 |
| $\mathrm{JM}_{3 \mathrm{y}}$ | -.7514 | -1.0025 | -.5778 | 1.3673 |

Tab1e 6-9
Joint Moments in Terms of Basic End Moments

|  | $\mathrm{EM}_{21 \mathrm{y}}{ }^{\prime}$ | $\mathrm{FM}_{23 y}{ }^{\prime}$ | $\mathrm{FM}_{32} \mathrm{y}^{\prime}$ | $\mathrm{EM}_{34 \mathrm{y}}{ }^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{JM}_{2 \mathrm{x}}$ | .4538 | -.2878 | .1965 | -.2317 |
| $\mathrm{JM}_{2 \mathrm{y}}$ | -.5973 | -1.4261 | .6688 | -.0058 |
| $\mathrm{JM}_{3 \mathrm{x}}$ | .1400 | -.1823 | .2630 | -.6659 |
| $\mathrm{JM}_{3 y}$ | .1247 | .5778 | -1.3673 | -.4029 |

Table 6-10
Transformed Moments in Terms of Joint Moments

|  | JM2x | JM3x | JM2y | JM3y |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M21x | . 6522 |  | -. 1575 |  | $-.5 \mathrm{EM} 21 \mathrm{y}^{\prime}$ |
| M23x | . 3478 | -. 3466 |  |  |  |
| M32x | -. 3478 | . 3466 |  |  |  |
| M34x |  | . 6534 |  | . 1422 | . $6428 \mathrm{EM} 34 \mathrm{y}^{\prime}$ |
| M21y | -. 6993 |  | . 3287 |  | .8660kM $21 \mathrm{y}^{\prime}$ |
| M23y |  |  | . 6713 | . 3893 | FM23y |
| M32y |  |  | . 3357 | . 7787 | FM32y |
| M34y |  | . 5425 |  | 2213 | .7660EM34y ${ }^{\prime}$ |

Table 6-11
Transformed Moments in Terms of Basic Values

|  | EM21y | FM23y | FM32y | EM34y |
| :---: | :---: | :---: | :---: | :---: |
| M21x | -.1093 | .0369 | .0229 | -.1502 |
| M23x | .1093 | -.0369 | -.0229 | .1502 |
| M32x | -.1093 | .0369 | .0229 | -.1502 |
| M34x | .1093 | -.0369 | -.0229 | .1502 |
| M21y | .3524 | -.2676 | .0833 | .1608 |
| M23y | -.3524 | .2676 | -.0833 | -.1608 |
| M32y | -.1034 | .0288 | .1598 | -.3156 |
| M34y | .1034 | .0288 | -.1598 | .3156 |

From Transformation Matrices:

$$
\begin{aligned}
& M_{21 x^{\prime}}=.8660 M_{21 x}+.5000 M_{21 y} \\
& M_{23 x^{\prime}}=M_{23 x} \\
& M_{32 x^{\prime}}=M_{32 x} \\
& M_{34 x^{\prime}}=.7660 M_{34 x}-.6428 M_{34 y} \\
& M_{21 y^{\prime}}=-.5000 M_{21 x}+.8660 M_{21 y} \\
& M_{23 y^{\prime}}=M_{23 y} \\
& M_{32 y^{\prime}}=M_{32 y} \\
& M_{34 y^{\prime}}=.6428 M_{34 x}+.7660 M_{34 y}
\end{aligned}
$$

Table 6-12 Basic End Moments in Terms of Basic Fixed and Propped End Moments

|  | $\mathrm{EM}_{21 y^{\prime}}$ | $\mathrm{FM}_{23 y}{ }^{\prime}$ | $\mathrm{FM}_{32 y^{\prime}}$ | $\mathrm{EM}_{34 y^{\prime}}$ |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{M}_{21 \mathrm{x}^{\prime}}$ | .081 | -.102 | .061 | -.050 |
| $\mathrm{M}_{23 \mathrm{x}^{\prime}}$ | .109 | -.037 | -.023 | .150 |
| $\mathrm{M}_{32 \mathrm{x}^{\prime}}$ | -.109 | .037 | .023 | -.150 |
| $\mathrm{M}_{34 \mathrm{x}^{\prime}}$ | .017 | -.046 | .085 | -.088 |
| $\mathrm{M}_{21 y^{\prime}}$ | .360 | -.250 | .061 | .214 |
| $\mathrm{M}_{23 y^{\prime}}$ | -.352 | .268 | -.083 | -.161 |
| $\mathrm{M}_{32 y^{\prime}}$ | -.103 | -.029 | .160 | -.316 |
| $\mathrm{M}_{34 y^{\prime}}$ | .149 | -.002 | -.137 | .338 |

Table 6-13
Basic Fixed and Propped End Moments

| n | $\mathrm{EM}_{21 \mathrm{y}^{\prime}}$ | $\mathrm{FM}_{23 \mathrm{y}}{ }^{\prime}$ | $\mathrm{FM}_{32} \mathrm{y}^{\prime}$ | $\mathrm{EM}_{34}{ }^{\prime}{ }^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0 | 0 | 0 | 0 |
| . 1 | 1.980 | -4.860 | 0.540 | -2.565 |
| . 2 | 3.840 | -7.680 | 1.920 | -4.320 |
| . 3 | 5.464 | -8.820 | 3.780 | -5.355 |
| . 4 | 6.720 | -8.640 | 5.760 | -5.760 |
| . 5 | 7.500 | -7.500 | 7.500 | -5.625 |
| . 6 | 7.680 | -5.760 | 8.640 | -5.040 |
| . 7 | 7.140 | -3.780 | 8.820 | -4.098 |
| . 8 | 5.760 | -1.920 | 7.680 | -2.880 |
| . 9 | 3.420 | -0.540 | 4.860 | -1.485 |
| 1.0 | 0 | 0 | 0 | 0 |

Table 6-14
Final Basic End Moments

| n | $\begin{aligned} & \mathrm{M}_{12 \mathrm{x}^{\prime} \&}-\mathrm{M}_{21 \mathrm{x}^{\prime}} . \end{aligned}$ | $\begin{gathered} M_{32 x^{\prime}} \& \\ -M_{23 x^{\prime}} \end{gathered}$ | $\begin{array}{\|l} \text { M }_{3} 4 x^{\prime} \& \\ -M_{43} \end{array}$ | $\mathrm{M}_{21} \mathrm{y}^{\prime}$ | $\mathrm{M}_{23 \mathrm{y}}{ }^{\prime}$ | $\mathrm{M}_{32} \mathrm{y}^{\prime}$ | M34y ${ }^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| . 1 | -. 160 | -. 216 | . 034 | . 713 | -. 698 | -. 205 | 295 |
| . 2 | -. 311 | -. 420 | . 065 | 1.382 | -1.353 | -. 397 | . 572 |
| . 3 | -. 443 | -. 497 | . 093 | 1.967 | -1.926 | -. 565 | . 814 |
| . 4 | -. 544 | -. 735 | . 114 | 2.419 | -2.368 | -. 695 | 1.001 |
| . 5 | -. 608 | -. 820 | . 128 | 2.700 | -2.643 | -. 776 | 1.118 |
| . 6 | -. 622 | -. 839 | . 131 | 2.765 | -2.706 | -. 794 | 1.144 |
| . 7 | -. 578 | -. 780 | . 121 | 2.570 | -2.516 | -. 738 | 1.064 |
| . 8 | -. 467 | -. 630 | . 098 | 2.074 | -2.023 | -. 596 | . 858 |
| . 9 | -. 277 | -. 374 | . 058 | 1.231 | -1.205 | -. 354 | . 510 |
| 2.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| . 1 | -. 529 | -. 167 | . 270 | 1.248 | -1.346 | . 226 | -. 064 |
| 2 | -. 900 | -. 239 | . 516 | 2.037 | -2.215 | . 528 | -. 248 |
| . 3 | -1.131 | -. 239 | . 727 | 2.436 | -2.675 | . 858 | -. 500 |
| . 4 | -1.232 | -. 187 | . 887 | 2.511 | -2.792 | 1.169 | -. 772 |
| . 5 | -1.223 | -. 105 | . 983 | 2.333 | -2.632 | 1.415 | -1.013 |
| . 6 | -1.115 | -. 015 | . 999 | 1.967 | -2.261 | 1.547 | -1.172 |
| . 7 | -. 924 | . 063 | . 924 | 1.483 | -1.746 | 1.518 | -1.200 |
| . 8 | -. 664 | . 105 | . 741 | . 948 | -1.154 | 1.283 | -1.048 |
| . 9 | -. 351 | . 091 | . 438 | . 431 | -. 549 | . 792 | -. 665 |
| 3.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| . 1 | -. 128 | . 385 | . 226 | -. 549 | . 413 | . 810 | -. 867 |
| . 2 | -. 216 | . 649 | . 380 | -. 924 | . 695 | 1.363 | -1.460 |
| . 3 | -. 268 | . 804 | . 471 | -1.146 | . 861 | 1.690 | -1.810 |
| . 4 | -. 288 | . 865 | . 507 | -1.233 | . 926 | 1.818 | -1.947 |
| . 5 | -. 281 | . 845 | . 495 | -1.204 | . 905 | 1.775 | -1.901 |
| . 6 | -. 252 | . 757 | . 444 | -1.079 | . 810 | 1.591 | -1.704 |
| . 7 | -. 205 | . 616 | . 361 | -. 877 | . 659 | 1.293 | -1.385 |
| . 8 | -. 144 | . 433 | . 253 | -. 616 | . 463 | . 909 | -. 973 |
| . 9 | -. 074 | 223 | . 131 | -. 318 | 239 | . 469 | -. 502 |
| 4.0 | 0 | 0 | 0 | 0 | 0 | , | 0 |

Table 6-15
Final End Shears

| Sta. | V12z | V21z | V23z | V32z | V34z | V43z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.0 | 1.000 | 0 | 0 | 0 | 0 | 0 |
| .1 | .882 | .118 | .015 | -.015 | -.010 | .010 |
| .2 | .765 | .235 | .029 | -.029 | -.019 | .019 |
| .3 | .651 | .349 | .042 | -.042 | -.027 | .027 |
| .4 | .540 | .460 | .051 | -.051 | -.033 | .033 |
| .5 | .432 | .568 | .057 | -.057 | -.037 | .037 |
| .6 | .331 | .669 | .058 | -.058 | -.038 | .038 |
| .7 | .236 | .764 | .054 | -.054 | -.035 | .035 |
| .8 | .148 | .852 | .044 | -.044 | -.020 | .029 |
| .9 | .069 | .931 | .026 | -.026 | -.017 | .017 |
| 2.0 | 0 | 1.000 | 0 | 0 | 0 | 0 |
| .1 | -.031 | .031 | 0 | .919 | .000 | .081 |
| .2 | -.051 | .051 | .828 | .172 | .002 | -.002 |
| .3 | -.061 | .061 | .730 | .270 | .017 | -.008 |
| .4 | -.063 | .063 | .627 | .373 | .026 | -.017 |
| .5 | -.058 | .058 | .520 | .480 | .034 | -.034 |
| .6 | -.049 | .049 | .412 | .588 | .039 | -.039 |
| .7 | -.037 | .037 | .304 | .696 | .040 | -.040 |
| .8 | -.024 | .024 | .198 | .802 | .035 | -.035 |
| .9 | -.011 | .011 | .096 | .904 | .022 | -.022 |
| 3.0 | 0 | 0 | 0 | 1.000 | 0 |  |
| .1 | .014 | -.014 | -.020 | .020 | .929 | .071 |
| .2 | .023 | -.023 | -.034 | .034 | .849 | .151 |
| .3 | .029 | -.029 | -.043 | .043 | .760 | .240 |
| .4 | .031 | -.031 | -.046 | .046 | .665 | .335 |
| .5 | .030 | -.030 | -.045 | .045 | .563 | .437 |
| .6 | .027 | -.027 | -.040 | .040 | .457 | .543 |
| .7 | .022 | -.022 | -.033 | .033 | .346 | .654 |
| .8 | .015 | -.015 | -.023 | .023 | .232 | .768 |
| .9 | .008 | -.008 | -.012 | .012 | .117 | .883 |
| 4.0 | 0 | 0 | 0 | 0 | 0 | 1.000 |

## CHAPTER VII

SUMMARY AND CONCLUSIONS

In this study the general procedure for the analysis of continuous bent members in one plane loaded perpendicular to that plane by the "Carry Over Method," is presented. This thesis may be extended for the analysis of continuous bent members not in one plane.

The presented procedure is adequate for application in engineering practice. It is suggested that the carry over procedure be used when the number of unknowns reaches four or more.

1. Tuma, Jan J. "Elastic Weights in Space by Transformation Matrices," Proceedings, American Society of Civil Engineers, (in preparation).
2. Tuma, Jan J. "Analysis of Continuous Beams by Carry Over Moments," Proceedings, American Society of Civil Engineers, Vol. 84, No. 1762, September 1958.
3. Tuma, Jan J. Influence Lines for Frames with Constant Moment of Inertia and Sidesway Prevented, Oklahoma State University Engineering Experiment Station Bulletin, No. 85, November 1952.
4. Tuma, Jan J. "Continuous Bent Members in Space." Lecture Notes, C.E. 5B4, Space Structures, Oklahoma State University, Spring 1960.
5. M. W. Kellogg Co. Design of Piping Systems, New York: John Wiley and Sons, Inc., 1956, 2nd. Ed., pp. 115-197.
6. Michalos, James. Theory of Structural Analysis and Design, New York: Ronald Press Co., 1958.
7. Parce1, J. I. and Moorman, R. B. B., Analysis of Statically Indeterminate Structures, New York: John Wiley and Sons, Inc., 1955.
8. Lothers, John E. Torsion in Steel Spandrel Girders, Oklahoma State University Engineering Experiment Station Publication No. 70.
9. Ferguson, Phil M. "Analysis of Three Dimensional Beam and Girder Framing," Journal, American Concrete Institute, Vol. 22, September, 1950.

## APPENDIX


#### Abstract

The application of the transformation matrix to the analysis of space structures is discussed by Tuma (1). Several tables from his paper are shown in this appendix. The tables are for a completely general space structure and apply equally well to the structure in one plane discussed in this thesis. In the case discussed in this thesis the " $z$ " terms simply vanish from the general transformation matrices. $" \omega_{2}$ " and $" \omega_{3}$ " are zero and are used as such in the determination of the transformation matrices (Table F).







| Transformation of Coordinates Table E |  |  |
| :---: | :---: | :---: |
|  <br> Rotation $\omega_{1}$ |  |  <br> Rotation $\omega_{3}$ |
| $\begin{aligned} & \mathrm{x}=\mathrm{x}_{1} \cos \omega_{1}-\mathrm{y}_{1} \sin \omega_{1} \\ & \mathrm{y}=\mathrm{x}_{1} \sin \omega_{1}+\mathrm{y}_{1} \cos \omega_{1} \\ & \mathrm{z}=\mathrm{z}_{1} \end{aligned}$ | $\begin{aligned} & x_{1}=x_{2} \cos \omega_{2}+z_{2} \sin \omega_{2} \\ & y_{1}=y_{2} \\ & z_{1}=-x_{2} \sin \omega_{2}+z_{2} \cos \omega_{2} \end{aligned}$ | $\begin{aligned} & x_{2}=x_{3} \\ & y_{2}=y_{3} \cos \omega_{3}-z_{3} \sin \omega_{3} \\ & z_{2}=y_{3} \sin \omega_{3}+z_{3} \cos \omega_{3} \end{aligned}$ |
| $\begin{aligned} & x_{1}=x \cos \omega_{1}+y \sin \omega_{1} \\ & y_{1}=-x \sin \omega_{1}+y \cos \omega_{1} \\ & z_{1}=z \end{aligned}$ | $\begin{aligned} & x_{2}-x_{1} \cos ब_{2}-z_{1} \sin \omega_{2} \\ & y_{2}=y_{1} \\ & z_{2}=x_{1} \sin \omega_{2}+z_{1} \cos \omega_{2} \end{aligned}$ | $\begin{aligned} & x_{3}=x_{2} \\ & y_{3}=y_{2} \cos \omega_{3}+z_{2} \sin \omega_{3} \\ & z_{3}=-y_{2} \sin \omega_{3}+z_{2} \cos \omega_{3} \end{aligned}$ |


| Transformation Matrix --- Geometry --- Table F |  |  |
| :---: | :---: | :---: |
| $\begin{aligned} \alpha_{x}= & \cos \omega_{1} \cos \omega_{2} \\ \alpha_{y}= & -\sin \omega_{1} \cos \omega_{3} \\ & +\cos \omega_{1} \sin \omega_{2} \sin \omega_{3} \\ \alpha_{z}= & \sin \omega_{1} \sin \omega_{3} \\ & +\cos \omega_{1} \sin \omega_{2} \cos \omega_{3} \end{aligned}$ | $\begin{aligned} \beta_{x}= & \sin \omega_{1} \cos \omega_{2} \\ \beta_{y}= & \cos \omega_{1} \cos \omega_{3} \\ & +\sin \omega_{1} \sin \omega_{2} \sin \omega_{3} \\ \beta_{z}= & -\cos \omega_{1} \sin \omega_{3} \\ & +\sin \omega_{1} \sin \omega_{2} \cos \omega_{3} \end{aligned}$ | $\begin{aligned} & \gamma_{x}=-\sin \omega_{2} \\ & \gamma_{y}=\cos \omega_{2} \sin \omega_{3} \\ & \gamma_{z}=\cos \omega_{2} \cos \omega_{3} \end{aligned}$ |
| $\begin{aligned} & x=x^{\prime} \alpha_{x}+y^{\prime} \alpha_{y}+z^{\prime} \alpha_{z} \\ & y=x^{\prime} \beta_{x}+y^{\prime} \beta_{y}+z^{\prime} \beta_{z} \\ & z=x^{\prime} \gamma_{x}+y^{\prime} \gamma_{y}+z^{\prime} \gamma_{z} \end{aligned}$ |  $x^{\prime}$ $y^{\prime}$ $z^{\prime}$ <br> $x$ $\alpha_{x}$ $\alpha_{y}$ $\alpha_{z}$ <br> $y$ $\beta_{x}$ $\beta_{y}$ $\beta_{z}$ <br> $z$ $\gamma_{x}$ $\gamma_{y}$ $\gamma_{z}$ <br> Transformation Matrix | $\begin{aligned} & x^{\prime}=x \alpha_{x}+y \beta_{x}+z \gamma_{x} \\ & y^{\prime}=x \alpha_{y}+y \beta_{y}+z \gamma y \\ & z^{\prime}=x \alpha_{z}+y \beta_{z}+z \gamma_{z} \end{aligned}$ |


| General Transformation Matrices Table G |  |  |
| :---: | :---: | :---: |
|   $\mathrm{x}^{\prime}$ $\mathrm{y}^{\prime}$ <br> $\mathrm{z}^{\prime}$    <br> x $\alpha_{x}$ $\alpha_{y}$ $\alpha_{z}$ <br> y $\beta_{x}$ $\beta_{y}$ $\beta_{z}$ <br> z $\gamma_{x}$ $\gamma_{y}$ $\gamma_{z}$ <br>     <br> Coordinates    |  $\theta_{x}$ $\theta_{y}$ $\theta_{z^{\prime}}$ <br> $\theta_{x}$ $\alpha_{x}$ $\alpha_{y}$ $\alpha_{z}$ <br> $\theta_{y}$ $\beta_{x}$ $\beta_{y}$ $\beta_{z}$ <br> $\theta_{z}$ $\gamma_{x}$ $\gamma_{y}$ $\gamma_{z}$ |  $\Delta_{x^{\prime}}$ $\Delta_{y}^{\prime}$ $\Delta_{z}^{\prime}$ <br> $\Delta_{x}$ $\alpha_{x}$ $\alpha_{y}$ $\alpha_{z}$ <br> $\Delta_{y}$ $\beta_{x}$ $\beta_{y}$ $\beta_{z}$ <br> $\Delta_{z}$ $\gamma_{x}$ $\gamma_{y}$ $\gamma_{z}$ |
|  $P_{x}^{\prime}$ $P_{y}^{\prime}$ $P_{z}^{\prime}$ <br> $P_{x}$ $\alpha_{x}$ $\alpha_{y}$ $\alpha_{z}$ <br> $P_{y}$ $\beta_{x}$ $\beta_{y}$ $\beta_{z}$ <br> $P_{z}$ $\gamma_{x}$ $\gamma_{y}$ $\gamma_{z}$ <br> Real Loads    |  |  $M_{x}^{\prime}$ $M_{y}^{\prime}$ $M_{z}^{\prime}$ <br> $M_{x}$ $\alpha_{x}$ $\alpha_{y}$ $\alpha_{z}$ <br> $M_{y}$ $\beta_{x}$ $\beta_{y}$ $\beta_{z}$ <br> $M_{z}$ $\gamma_{x}$ $\gamma_{y}$ $\gamma_{z}$ <br> Real Moments |
|  |  $\overline{Q_{x}^{\prime}}$ $\overline{Q_{y}}$ $\overline{Q_{z}^{\prime}}$       <br> $\overline{Q_{x}}$ $\alpha_{x}$ $\alpha_{y}$ $\alpha_{z}$       <br> $\overline{Q_{y}}$ $\beta_{x}$ $\beta_{y}$ $\beta_{z}$       <br> $\overline{Q_{z}}$ $\gamma_{x}$ $\gamma_{y}$ $\gamma_{z}$       <br>           |  $\bar{M}_{x^{\prime}}$ $\overline{M_{y}^{\prime}}$ <br> $\overline{M_{z}}$  <br> $\overline{M_{x}}$ $\alpha_{x}$ <br> $\alpha_{y}$ $\alpha_{z}$ <br> $\overline{M_{y}}$ $\beta_{x}$ <br> $\beta_{y}$ $\beta_{z}$ <br> $\overline{M_{z}}$ $\gamma_{x}$ <br> $\gamma_{y}$ $\gamma_{z}$ |

VITA

William H. Childress<br>Candidate for the Degree of<br>Master of Science

Thesis: ANALYSIS OF CONTINUOUS BENT MEMBERS LOADED OUT OF PLANE BY THE CARRY OVER JOINT MOMENT METHOD

Major Field: Civil Engineering
Biographical:
Persona1 Data: Born in Glasgow, Montana, June 24, 1937, the son of Noah and Bonilee Childress.

Education: Graduated from Sallisaw High School, Sallisaw, Oklahoma, in May 1955. Entered Oklahoma State University in September 1956 having spent one semester at United States Military Academy, West Point, New York and one semester at Northeastern State Teachers' College, Tahlequah, Ok1ahoma. Completed the requirements for the degree of Bachelor of Science, January 1960, and received the degree in June 1960. Completed the requirements for the degree of Master of Science in July 1961.

Professional Experience: Employed by the U.S. Army Corps of Engineers, 1956 to present time as surveyor, inspector, and engineering aid. Employed by Oklahoma State University as graduate assistant, 1959 to 1961. Presently a Associate Member of the American Society of Civil Engineers.

