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CHAPTER I 

INTRODUCTION 

The addition of ext.ended surfaces, such as fins and 

splines, wh1oh a.re intended to 1noreaee the heat transfer 

through the or1g1na.l surface, 1s usua.lly juet1f1ed when 

the thermal resistance of the original surface 1s large, 

relative to other resistances in the system. In the case 

of tubes with liquids tlow1ng through them, tor instance, 

the thermal resistance due to the liquid may be small, 

relative to the resistance associated with a st111 or mov1rg 

gas surrounding the tubes. The addition ot fins to the 

outsides of the tubes, 1n this case, by providing additional 

surface area, should increase the heat transfer through the 

tubes. 

S1nc-e the temperatures on the tin surface w111 be less 

than temperatures on the original surface been.use of the 

temperature drop 1n the fln material due to heat conduction, 

the hea.t transfer w111 not increase 1n the same proportion 

as the amount of added fin area . An expression. called 

the t1n eff1c1enoy, can be cal.culated to account tor the 

difference 1n temperature between the fine and the or1g1ne.1 

base surface. The concept of f1n efficiency 1s also useful 

1n defining a coeff1e1ent of heat transfer of extended 

surface. 

1 
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It is difficult to estimate the overall coefficient 

of heat transfer between two fluids through a finned tube 

because of the problem of predicting a heat transfer coeffi­

cient over the finned surface of the tube. The heat trans­

fer coefficient over fins is determined from experimental 

tests, where, in most cases, this coefficient is deter­

mined indirectly, such as by subtraction of known thermal 

resistances from the measured overall thermal resistance. 

The purpose of this research was to devise a test 

procedure and means of instrumentation so that the coeffi­

cient of heat transfer over finned tubes could be deter­

mined directly from the experimental measurements and from 

knowledge of the fin efficiency. 



CHAPTER II 

LITERATURE REVIEW 

The earlier work on the conduction heat transfer 

through extended surfaces, especially that work of Murray 

(1) and Douglass (2), was extended by Gardner (3) 1n gener­

alizing the a.na.lyt1ca.l solution for conduction through 

surfaces of various geometries. In addition to assuming 

an isotropic, homogeneous f1n material with constant 

thermal conductivity, Gardner asswned 

(1) a uniform temperature of the sur­
rounding fluid, 

(2) no heat tre.nater through the f1n 
edge, 

{3) the coeff1e1ent of heat transfer 
to be uniform over all fin surface, 

(4) a uniform temperature across the 
root of the t1n, 

(5) there WBB no temperature gradient 
in the fin 1n the axial direction 
of the tube. 

Gardner 's solutions for the f1n ettic1enc1es1 ot many 

different surfaces, in the form ot Bessel functions, were 

also presented 1n a ueetul graph1ca.l form 1n his paper. 

1The eff1c1ency of extended surfaces 1s defined as the ratio 
of the heat actually transferred through the fin surface to 
the heat transfer through the f1n surface had the entire 
eurf.ace of the fin rema,.ned at the temperature o! the fin 
root. 
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P1gure 5 or that paper was used by the present author in 

later caleulat1one. 

Assumption(~) above, by Gardner, which neglects the 

heat transferred through the t1n edge, was necessary only 

to s1mpl1fy the mathematical expression for efficiency. 

Harper and Brown (4) SUfl'.>£;eet that the add1 t1onal heat flux 

through a fictitious suri"ace resulting from an extension 

ot the f1n height will account for neglecting the edge heat 

transfer • 

.Asswnpt.1on (3) concerning a uniform eoeff1c1ent over 

all fln surtac-e 1s tar from being true in practice, pa:rt1-

cularly for c1reumterent1ally finned tubes. Many studies, 

such a.a those of Thompson (5), Lemmon (6), and McAdams (7). 

indicate that there 1a usually a. large variation of the 

foroed convection coeff1c1ant with angle around the tube 

and tin and with radius along a fin. The d1str1but1on 1n 

the magnitude of the coefftc1ent appears to be dependent on 

the Reynolds number of the flow and on the spacing between 

the fins along the tube. 

W1111ame and Katz (8) determined the surface eoeff1c1-

ent for copper and admiralty met al finned tube bundles 

4 

from the value of the overall coefficient which was obta1nel 

by the Wilson plot procedure. Their tests included the use 

of water, glyoer1ne and lube oil as the shell side fluids. 

The reault1ng data were correlated very well by the rela­

tionship 



N - C(M )•65 (N )•375 (~).14 nu - re pr ..JJw 

The values of the oonetant C ranged from 0.115 to 0.182 

depending on the tube arrangement and fin material. 

::reCr1ght (9) measured the surface temperature of a 

single finned tube while using an unguarded electric heat­

ing element to provide for heat fluxes. His data were 

reduced. and compared to that obtained 1n this 1nvest1ga-

t1on. 

A guarded electric heater similar to the one used 1n 

this 1nvent1gation was used earlier by Snydor (10) in a 

somewhat s1m11a.r fashion. Snyder 's heater replaced, and 

thereby s'1mulatea., a tube 1n a bank of plain tubes in 

erossflOit w1 th air. 

5 



CHAPTER III 

THE THESIS PROBLEM 

The following discussion pertains particularly to the 

circumferentially finned tube which was used 1n this re­

search. A simplified single fin and tube segment is 

represented in Figure 1. The complete finned tube consists 

of many equally spaced fins along its length. 
lr 2 2 

Ar= 2 x nL x 4(Df-De) 

A8 =nD8 L - nLnD8 t 

Ao= Ar+ As 4 Ar 
Ar= nLTTDft 

Fig. 1 Section of Circumferentially Finned Tube. 

The significance of the fin efficiency expression is 

in providing a tool with which to form a logical definition 

of the surface coefficient of heat transfer on extended 

surfaces. Two ways of defining a coefficient are discussed 

here. The mean ooefficient of heat transfer may be defined 

over all extended and base area by 

( 1) 

If equation (1) is written as 

q = ho Ao em (2) 

then em 1s interpreted as the mean temperature excess for 

6 



all surface. The heat transfer may also be written as the 

sum of the heat flows through fin and tube surfaces 

q = Qf + qs = ht At er + hs As es (3) 

Assuming that the heat transfer coefficient 1s the 

same for all tube and fin surfaces, hr= h8 = ho, and that 

the tube surface temper~ture 1s the same as the tin root 

temperature, e8 = 9b, the equation for f1n etf1c1ency is 

,1 = aqtual a, - ht At 9t - ~ - ~ ( 4) 
Qf for er=~ - h-r Ar 9b - 91) - 98 

and equation (3) becomes 

(5) 

If equation (5) 1s multiplied and divided by A0 , 

q = ho Ao ~. (,I!~ + ~>] (6) 

The quantity 1n brackets 1n (6) may be interpreted as 

the mean temperature excess, em, over all outside tube and 

fin surface, as 1n equation (2). 

An alternative procedure 1s to define the quantity 1n 

parenthesis 1n equation (5) as the ef'tect1ve area for heat 

transfer, 

(7) 

This method was used by Williams and Katz (8) and was 

followed by the present author. In other words, the outside 

coeff1c1ent of heat transfer wae det1ned for the finned 

tube a.a 

(8) 



The problem 1n this research was to develop a pro­

cedure for obtaining the measurements needed to oaloulate 

the surface coeff1c1ent for the finned tube from equation 

(8). In equation (8), the total heat transfer q, the mean 

temperature excess of the tube surface, S8 , and the effec­

tive tube area, Ae, are required. 

An electric heater, in tubular form, guarded at the 

ends, was considered ae a su1 t able means or providing for 

heat fluxes which eould be readily controlled and measured . 

Cons1der1ng the relative ease ot instrumentation, 

the mean tube surface temperature wae defined 1n terms of 

t he temperatures a t several stations on the periphery of 

the tube and at the midpoints between the fins. 

The effective area of the tube could be calculated 

when the fin efficiency was determined. The fin efficiency 

was ava1lable from Gardner's solutions, previously dis­

cussed. 

8 



CHAPTER IV 

TEST EQUIPMENT 

The finned tube employed in the experiment was instal­

led in the 14 1n. by 5 1n. test section of a. sheet metal 

duct system, shown in F1gure 2. The test section wae pre­

oecled by a bank or 1 1n. straightening tubes of 1 ft length. 

Following the test section was a transition section and a 

7 ft. length of straight 6 in. nominal diameter pipe in 

which a square-edged or1f1ce, with nange taps, was 1nstal• 

led. A stove p1pe damper was used as a bleed valve for 

regulating the now of a.1r induced by the compressor 

through the test section. 

Finned Tube Deacr1pt1on 

The finned tube was e. model 6K16, supplied through 

the courtesy or the Gr1scom-Ruesel Company. The fins on 

the tube were helically wound at the rate of 8 fins per 

inch of tube length. The tube wa s 3/4 in. o.n. and o.62 
in. I. D. The fins were 13/32 1n. high with a thickness of 

0.014 1n. The tube material was aluminum. T~e tube was 

tested as received f'rom the manufacturer, 1n a. clean eon­

d1t1on, with no surface preparation or any sort. The tube 

we.a cut to a length or about 14 1n. prior to 1nstalla.t1on. 

9 
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Tho Guard-Heater 

Details of the eleotr1aa.1 guarded heater are sho\m 1n 

F1g. 3. The heater 1noludes three separately controlled 

heating circuits: two guard-heater coils, each 4 1n. long, 

and one teat heater coil, 6 in. long. 

Ea.oh heating 0011 was lathe-wound from #26 gage B & s 

chrome! wire stock . The coils were aeeured on short cylin­

drical sect1on.s of 7/32 in. O.D. high-temperature ceramic. 

The heater leads were brought out the end of the heater 

a ssembly through holes a.long the centers of the ceramic 

sections. Aesembly was completed by pos1t1on1ng the heater 

core 1n a cylindrloal copper sheath of o.60 in. o.n. ana 

7/16 1n. I.D. and f1111115 the a.nnular apa ce be-tween the 

co.re and shea th with a. high-temperature plastic porcelain 

cement. A spa cer of cer,a.m1e cement was bu11 t up on the 

center O·f the heater core before assembly into the sheath 

to provide for centering the cor·e. 

Pre11:n1na.ry tests with t h1e heater showed that the 

ree1 sts.nce of the test heater coll wa s 36 ohms and of the 

guard hea.ters, 27 ohms each. The surface of the copper 

sheath oxidized badly nt h1e;h temper atures, neceae1tat1ng 

pol1sh1ng of the heater surfe;ce after each t est. Because 

of the close spacing of the hoater 0011 s ., short c1rcui t 

fe.1luree occurred with the first two heaters which were 

constructed . A t hird heater, which wae u sed succeasfUlly 

t t 



in these tests, failed. 1n a similar way when additional 

tests were attempted. 

12_ 

The effect of different degrees of contact of the 

heater with the 1na1de finned tube walls was briefly in­

vestigated.. The heater was rota ted about 90° for suoceeslve 

tests without che.nging 1ts axi al position in the tube. The 

average surface temperature men.aurements recorded for the 

different heater positions differed from each other by less 

t han 3°F. .After a. high tempera.ture test of the heater 

when installed in the f1nned tube, 1 t was often a,_fficult 

to remove t he bee.tar from the tube, apparently due to oxida­

tion of the hea t er surface. The build-up of oxide on the 

heater surfa ce might h e.Ve been sufficient to eff'ect1 v-aly 

h sea l 1-' the ga.p between t he hea t er and t ube surfaces, al­

though this effect wae not investigated beyond the cursory 

steps taken above. 

Instrumentation 

The centra.l 6 in. of the finned tube was considered 

to be t he test soct1on of t he tube and t he central coil of 

t he heater wa s aligned a ccord1ngly,. Thermocouples were 

a ffixed to the tube only on and near the teat section, as 

illustrn.ted in F:tg. J+. Thermocouples 1 t hrough 8 were 

attached, consecutively, about 5/8 1n.· apart along the tube 

a.xi s anc1 900 npart a.round the tube circumfer ence .. Et1ch 

Ther mocouple junction was atta ched, as naa.rly a e possible, 

midway between adjacent fins. 



.All thermocouples were made from iron-oonsta.ntan 1/30 

B. & s. gage wire manufactured by Leeds and. Northrup 

Company. The thermocouple junctions were made by electro­

welding under oil so as to form unoxidized beads. 

The circuits of thermocouples 1 through 8 on the tube 

surface were connected so tha t measurements of the average 

emf could be made 1n parallel or the individual emfs could 

bo :11ea.sured separ ately. Therefore, the junctions of these 

thermocouples were electrically insulated from the tube. 

Insulation of the junctions from one another was achieved 

by applying two conte of high-temperature va.rn1ah to the 

.1unct1on bead a and ad.joining w1re and then cementing the 

beads into 1/32 1n. die.meter drilled holes on the eurface 

of the tube with plastic porcelain cement. The cement 

thickness on the thermocouple junction bends was on the 

order of 0 .01 1n. The thermocouple leads were wrapped a.t 

least one complete turn around the tube base e.nd were 

brought away from the tube on the downstream side. 

The circuit for thermocouple measurements 1s shown 1n 

Fig . 5. The circuit wa s made so that mea.aurements or the 

tiverage tube temperature were accomplished normally w1 th 

t he thermocouples 1n parallel. In order to compare t he 

average of measurements from single thermocouples, t he 

circuit coul d also be sw1 tched to n serh1s c1rcui t. The 

r equlred common junctions for t he par allel t her mocouple 

o1rcu1 t were formed by the uee of bottles of mercury . All 

13 
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Fig. 5 Heater and Thermocouple C1rou1ta 
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poai ti ve lea ds were 1naert.ed. in one bottle of mercury, ~.11 

negative l eads 1n another . Removal of a.11 leads from the 

mercury returned the circuit to a series circuit for mea sure­

ments fro '.n the 1nd1v1dual thermocouples . Once the leads 

were removed from the mercury, however, care had to be 

taken to remove t he h1gh resistance oxide film that formed 

on the portion of the t her· :iocouple leads t hat had been 1.n 

contact w1 th t he mercury before the leads we1"'e replaced 1n 

the mercury. 

In pre11m1nary t e sts, the average of tube temperatures 

measured singly wa s, w1 thin t.he a ccura.cy of mea surement, 

the same as the single mea surement in par allel of the 

average tube tampernture. For the actua.1 tests~ only the 

par allel c1rcu1t was used . 

Ther :nocou:pl es wer e al so 1n!!t all ed 1n the a1r stream at 

t,he entrance section of the duct nnd in the o.ir stream at 

damper valve scct1on for determining tempera tures before and 

after the test section, respectively . 

A Leeds and Northrup potentiometer, model no . 8662, a 

calibrated standar d mercury thermometer, and a.nice ba th 

were used for all t hermocouple mee.surernents . 

v~.rhtble power trans formers of O to 140 volt r ange 

were used to control the power supplied to the test end 

gua.r d hea t ers. The electr1ca.l power to t he t eat het>.t er wa s 

mensured w1.th a portable i nduction test watt-hour meter, 

type J-3, manufactured by the Sangamo Electric Company. 

Power c1rcu1 ts for the heater are shown 1n F1g . 5 . 



CH1\PTER V 

TFST PROCEDURE 

With the desired flow ra.te of air established, as 1nd1-

CD.ted by the or1:f1ce mnnometer, the vol t ases of the gua.rd 

heaters were a.dJusted until differential thermocouple pairs , 

9 nna 10 (Fig . 4) 1nd1ce.ted a temperature difference of 

1°F between the guard nna the test secM.ons of the tube. 

Balancing of the guard heaters required about 10 to 15 min­

utes. When t he above condition was ae.t1sf1ed and when spot 

checks on tube tempergturea 1nd1ca ted A. reasonably atev.dy 

condition , the test was begun. 

Temperature and mrtnomctar readings were recorded every 

5 minutes . The count on the watt-hour meter was recorded 

at the beg1:r..n1ng and end of each test, which was of 15 

m1nutee duration, e. s timed w1 th a stop watch . 

The barometric pressure was constant a.t 29. 15 1n. He; . 

and the 1ce bath t empers.ttu•e was constant e.t 32 .o°F for 

all tests. 

Tho t1:ne r equired to R_tta.1n steadiness 111 the air 

flo w !:'tnd 1n temperatures between successive test rune was 

about 15 t.o 20 rn1nute s, depend ing pr1mar1ly on the speEd 

with which t he guard heaters could be bnl anced . 

Test runs a.t thirteen dlfferent tube Reynolds numbers 

16 



were conducted, the Reynolds numbers ranging from 1980 to 

11,600. 

Test measurements are sho~m in TABLE I . 

17 



Test T1.ms 
r;o . 

min . 

1 0 

5 

10 

15 

-
2 0 

5 

10 

15 

3 0 

5 

10 

15 

4 0 

5 

10 

15 
. 

TABLE I 

TEST )1EflfiUREr,Ut;MTS FRQ t.1 HEAT TRANSF}:R 
STUDI ES OF A Sl NGLii: FU!NED TUBE 

w-h AP2 A P-1 T 
:net er 

s 

rev. 1n.H2o 1n. H2C l'il\1' 

o.oo o.;o o.oo 8.33 

0 .30 o.oo 8.41 

0 . 30 o.oo a . 57 

98.1 2 o. :;o o.oo 8 .44 

o.oo 0 . 10 - 0 . 05 6 . 1.3 

0.70 -0.05 6. 47 

0 .10 - 0 . 05 6 . 40 

96 . 88 0.70 -0 . 05 6.51 

o.oo 1.10 - 0 .10 5. 61 

1.10 - 0 .10 5. 6 1 

1.10 -0 .10 5.70 

97.60 1.10 - 0 .10 5.72 
~ 

o.oo 1.62 - -0 . 15 5 . 14 

1.6~ -o . t5 5.1 2 

1.62 - 0 .1 5 5.1 3 

98. 25 t . 62 -0 .1 5 5 . 't7 

18 

Tu Td 

::nv !f?V 

1 .. 58 1.n1 

1.56 1.88 

1.56 1.86 

1.56 1.85 

1. 56 t. 83 

1. 56 1. 84 

1.57 1.82 

1.57 1.8:, 

1.55 1.75 

1.57 1.a.o 

1. 58 1.78 

1.57 1.78 

1. 56 1. 62 

1.49 1.57 

1. li9 1.57 

1.115 1 . 6li 
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TABLE I (Continued) 

Tent T1me lil-h tt. r 2 A Pt T Tu T 
no. meter s d 

m1n. rev. 1n. 1120 1n. H20 mv f.:V mv 

5 0 2 . 13 -0. 15 ll-. 68 1.27 1.45 

c:; .., 2.13 - 0 .1 5 -4 .72 1 .• 28 1 .lt-3 

10 2.13 -0 .1 5 4 . 67 1.28 1.45 

1 t; -· 98. 38 2 .13 - 0 . 15 ,-. . 67 1.28 1.45 

6 0 o.oo 2. 67 -0. 25 Ji .38 1.28 1.1~2 

5 2.87 - 0 . 25 4. 40 1.30 1.44 

10 2.87 -0.25 l+ . ·M? l.30 1.4Lt 

15 97 tW . -..) 2. 67 -0 . 25 4. 40 1.31 1.46 

7 " \.) o.oo 3. 52 -0. 35 li . 2,4 1.32 1.40 

h 
,.I 

3 !".'.'? 
• _,,r j.,,,. -o 7,5 . .,, 1~ '~5 ., . 1 -x.., • • u :. 1. 42 

10 ~ t""! ., •.. ) ;;; -0. 35 J.i . 21 1.33 t . 40 

15 98. 00 3. 52 ... 0 . 35 l1t . 23 t . 33 1.43 

8 0 o.oo 4. 35 - 0 . 40 4 . 09 1.,36 1.43 

5 4. 35 -o.40 4 .10 1.311, 1.lt4 

to 4. 35 -o.40 Ji..11 1.35 1.43 

15 98 . 32 4.35 - 0 . 40 4-.1 2 1.36 1.li6 

9 0 o.oo 5. 30 - 0 . 50 ~. 13 1 . 51 1.56 

... 
? 5. 30 - 0 .50 4 .14 1 • 5"J 1.59 

10 5. 30 -o.so 14 .1 5 1.49 1.57 

15 96 . 89 5. 30 - 0 . 50 1 • • 15 1.52 1.58 
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TABLE I (Continued) 

•rest ·r1me w-h A P2 AP ftl Tu 'I'd 
No . meter 1 ;ts 

m1n. rev. in. H2o 1n. H20 mr mv mv 
~ 

tO 0 00. 00 £ . li5 -0 . 60 3. 94 1.52 1.60 

~ .... 6.1+~- - 0 . 60 ., 9" ..l • ·' ,:. 1,.53 1 . 6,,.") 

1" , J c .. ~s --o. 60 3 . 91 L, 51 1. 58 

1 c; 95. 70 6. 1i5 -a .co ~ ,..., .... 1. 5 1 1. 59 ·"' J . ,.>C. 

11 0 o.oo 7 l···· • 1'::) - 0.75 3. 80 1.49 1.52 

5 7 . 45 -0 .75 3 ?o a l.A. '.so 1.55 

10 7. 45 -0 .. 75 3,.79 t .so 1. 58 

15 95. 32 1.1+5 - 0.15 3.75 1.5 1 1.55 

1,... 
"-~ 0 o.oo 8 . 65 - 0 . 85 3 . 63 t · '-c.-9 1. 54 

C., 
~' 

,, r. c-,J .• u :.; --0 . 85 3. 5£ t . 11-9 1. S1~ 

10 8. G5 -o. D5 3. 59 1 . 50 1. 58 

15 95. 20 8. -G5 .. 0 . 85 3. 63 1. 50 1. 52 

13 0 10 . 20 -1.00 3 . 54 1.5-0 1.52 

5 10 . 20 -1.00 j A . • 5 ' 1.50 ,.55 

10 to . 20 -1.00 3.53 1.50 1.55 

15 95. 38 10. 20 - 1. 00 3 .53 1.50 1.56 



CHAPTER VI 

SAMPLE CALCULATIONS 

The following sample calculations a.re from the d.ata 

for Test 1, Table I. 

Temperatures 

The emf-temperature iron constantan thermocouple 

tables in the National _B_u_r_e_au_ g! .s~t.an_d_a_r_d......,s Circular 561 (12) 

were used to obtain all temperatures from emf read1nr.s or 

averages of emf readings, where appropriate . 

Alr Properties 

All properties of air were obtained from Table II-2, 

Elements 2.t Heat Tra.nafer (13). At an average air tempera­

ture of 92 . 5°F, 

k = 0.0153 B/hr ft F 

)) = o.633 rt2/hr 

jJ = 0.0455 lbn/hr ft 

Npr = 0.712 

and at the surface temperature of the tube, 316°F, 

~w= 0.586 lbn/hr ft. 

21 
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Velocity 

The volumetric flow of air through the orifice was 

determined by the method outlined in~ Orifice Meter (14). 

l'he following terminology 1s defined on page 36. 

Qh: C'v'hw X pf 

Pr = 14.29 ps1e. 

1\, = 0 .30 in. H20 

c• = Fb x Fr x Y1 x Fpb x Ftb x Ftr x F8 x Fpv 

01 : 3711.4 X 1.0175 X 0.9998 X 1.0008 X 1.0481 X 0.9680 X 

1.000 X 1.000: 3845 

Qh = c• Vhw x Pr = 3845 vo.30 x 14.29 = 7970 cfh 

Teat section area, A= 5 x 14/144 = o.486 sq ft 

V = QJ/60 x A= 7960/60 x o.486 = 273 fpm 

Heat Transfer through Test Section 

q = (Meter constant, w-h/rev) (rev, of meter) {3,413 B/w-h) 
time of test, hr. 

q = (0,6) (98, 12) (3:41~) = 804 B/hr 
0.25 

Finned Tube Area.s 

Fin area, At= Tt'/4(Dr2 - D82) X 2 X n x L 

Ar = lt"/4(1,752 - ~4t52) X 2 X 8 X 6 = 1.31 sq ft 

Tube area.As = 1T D8L - nL TTD8 t 

As = TT (0.75) (6) - fil(6}1T (0.75} (o,014)_0.0875 sq ft 
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Fin edge area, Ar = TTDftLn 

Ar 1T(1 175) .(0*014) (6) (8) sq ft 144 = 0.0257 

Total finned tube area, Ao= Ar+ As+ Ar 

Ao= 1.31 + 0.0875 + 0.0257 = 1.423 sq ft 

Fin Efficiency and Heat Transfer Coefficient 

Fig. 5 of Reference 3, for a fin diameter to tube dia­

meter ratio of 2.34 is shown in Fig. 6. 

1.0 

o.B 

o.6 
p 

0.4 

0.2 

0 

Fig. 6. 

"' \ 
\ 

\ 
\ 

' ~ 
" ~ 
~ ....__ 

----- ---wV~o kt 
0 1.0 2.0 3 .o 4.0 5.0 

Gardner's Solution for Fin Eff1c1enoy for a Fin to 
Tube Diameter Ratio of 2.34 
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The tr1a.l-and-error solution for fin eff'1c1ency, fJ, 

and the hea,t transfer coefficient, h0 , is obta ined by a ssum­

ing a value for eff1c1enoy, calculating h0 from 

ho - a 
- 08 (A# + ~48 ) 

and then calculating the par ~~eter w'lih;, to obtain a new Vfr 
value for the f1n eff1c1ency from Fi g . 6. 

Assume fJ = O. 90 

ho - g 
. - 9 B ( Ar ~ + As) = 804 = 

229(1.334 X 0.90 + 0.0875) 

Par ameter w~ = o.5/12'{2 x 2.73 x 12 = o.256 
ir 124 X 0.014 

From F1g . 6, fJ = 0.97 

he,= 229(1.334 ~06.97 + 0.0875) = 2.54 B/hr rt2 F 

Parameter w, ~ = 0.5/12 v2 I 21~4 X ,2 = 0.248 v~ 124 X 0.014 

From Fig. 6, fJ = 0.97, unchanged. 

Equivalent Tube Di ameter 

The equivalent tube die.meter is defined as the dia­

meter of a pla in tube having the same inside diameter and 

weight a s tha t of the finned tube. 

weight of plain tube of De= weight of finned tube of Dr 
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De = yf8) (0.014) (1.752 - 0.752) + 0.752 /12 = 0.0765 ft 

D1mens1onless Groups for Equation (9) 

Nusselt number, Nnu = hokDe = (2 .54)(0.0765) = 12.7 
0.0153 

V De (273 x 60)(0.0765) 
Reynold.a number, Nre =-=;;-:::: o.li3'.3 = 1980 

V1ecoe1ty correction, ( ~J-0 • 14 = <8:g~~~)-0 • 14 = 1.036 

(Nnu) (Npr>-o. 315 Cj5J-0 • 14 = (12.7)(1.136)(1.036) = 14 .• 9 

The calculated results for Tests 1 through 13 are 

shown 1n TABLE II. 



Test Ta. Ts 
No • or OF 

1 92 . 5 31 6 
,,., 

91.5 251 r,_ 

3 90 . 5 225 

4 86 . 0 208 

5 80 . 0 192 

h .. , 80. 5 1 P':!t '-./.,1 

7 80 . 5 178 

~3 8 1.5 173 

9 86 . 0 174 

10 f"\~.s, ·"'-t:, f • u 167 

11 86 . 0 163 

12 85 . 5 156 

13 85 . 5 154 

TABLE II 

CALCULAT f.:D RE:DtJLTS P'!?OM HE.AT TRANSFER STUD!Ji:S 
ON A SINGLE FI NNE:D TUDE 

e y 
B/1'-..r °1t2 F 

fJ N Nnu (~J-· 14 s dii Op• fpm d1m dim d1m 

229 273 2. 54 . 97 1980 12 . 7 1.036 

164 1i15 :, . 60 . 9 li 3020 1s.o 1. 027 

138 520 4. 30 . 93 3780 2 1.5 1.023 

124 633 4 . 88 . 93 1~680 24 . 6 1 . 021 

11 5 718 5.29 . 93 5320 26 . 8 1. 020 

105 833 5.71 . 92 6270 28 . 9 1.0 19 

99 923 6.03 . 92 6950 30 . 6 1.01 8 

93 1050 6 . 53 . 91 7880 33 .1 1. 0 17 

39 11 38 6.75 . 91 8420 34. o 1.0 16 

81 1253 7.35 . 90 9250 37. 0 1.0 15 

78 131.~2 7.65 . 90 9950 38. 5 1.01 4 

71 14.l15 a .1i3 . 89 10700 42 . 4 1 . 0 13 

69 1565 8 . 69 . 89 11 600 43.7 1.012 

(Nnu > (Np1~ )·•375t ifwt·· 'Q. 
d1m 

11+ . 9 

2 1.0 

25 . 0 

28 . 5 

.lt .o 
33 . l~ 

31: ..,. ;i . ;, 

38 . 2 

39 . 2 

42 . 6 

44 . 3 

48 . 7 

50 . ?. 

!\) 
O'\ 



CHAPTER VII 

HESULTS AND COMI'ARISONS WITH OTHER INVESTIGATORS 

The results were expressed and compared with results of 

other investigators by use of the equation 

(~De)= c(v :e) .65 ("i"'' ).375 ( ~J 14 (9) 

which was sugg ested by Williams and Katz (8). In equation 

(9) De 1s the equivalent dia.meter of the finned tube defined 

as the diameter of a plain tube having the same inside dia­

meter D.nd the same weight of metal as the finned tube. V is 

the face veloc1 ty a,t the tube. All properties of the shell 

aide fluid, air, are taken at the mean temperature of the air , 

before and after the tube, w1 th the exception of.).Jw, taken 

·at the surface temperature of the tube. The coefficient 

ho 1s the same as that coefficient defined by equation (8). 

The calculated data from this experiment are shown 1n 

Table II. The coordinates for the plotted data were the 

Reynolds number,~, as abscissa , aa shown in Fig . 7. The 

straight line which appears to best flt the plotted data has 

a slope of o .65, which correepond.s to the exponent of the 

Reynolds number in equation (9). The value of the coeffici­

ent C in equation (9) wa s determined from th1s straight line 
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to be 0.115. The straight line fits the test results to 

w1 th1n about 5 per cent, 1n the worst cti ses. 

The results 1n F1g. 7 are also plotted in Fig. 8 with 

the reaul ts of Williams a.nd Katz a.nd of .McCr1ght (9). 

Some details coneern1ng these tests are summarized 1n TABLE 

III. 

TABLE III 

FINNED TUBE MATERIALS 

Invest1- Curve Value of Tube(s) Tube Est. Fin 
gator no.on C 1n material eff1e1ency 

F1S1'1 egn !12 ~ 

Williams, (a) O. t l i3 50 tubes admiralty 85 
Katz 0.735 OD 

Williams, (b) 0. 115 114 tubes copper 95 
Katz 0 .1~86 OD 

W1111a.me, {c) 0.182 40 tubes a.dmiralty 85 
Ktc:1.tz 0.620 OD 

McCr1e;ht (d) 0.187 one tube oupro- 65 
0.625 OD nickel 

Burley (e) 0.115 one tube a luminum 90 
0.750 OD 

Williams and Katz correlated measurements on bundles 

of plain and finned tubes. The ooe:ff1c1ent ho 1n their 

investigations was determined. from the outside thermal 

resistance found by the Wilson plot procedure. 
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The measurements of McCright were determined from a 

single finned tube with the use of an unguarded electric 

heater and with measurements of the tube surface temperature . 
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McCr1ght • e original do.ta have been put 1n the form of equa.­

t1on (9) by the present author. 

Referring to Fig. B, the author ' s da.ta. fit curve (b) 

for the copper tube bundle of W1111a.ms an d Katz with the 

same value of C, 0.115, as a coefficient in equation (9). 

Also MoCr1ght 1 s data compare favorably with curve (c) for 

the e.dm1ral ty metal tube bundle of Williams and Katz . 

One might suspect a correlat1on 1n the above cases on the 

basis of the fin eff1e1encies, which are near each other. 

However, curves (a ) and (c) by Williams and Katz ar·e ea.ch 

for admiralty tubes of about the sa.'!le eff!c1ency, but of 

el1.ghtly different tube bundle arra.nge~ents, and the curves 

differ from one another by about 30 per cent. 
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CHAPTER VIII 

DISCUSSION 

The results for the single finned tube studied estab­

lished that the heat transfer coefficient 1s proportional 

to the velocity to the 0.65 power, which 1s in agreement 

with the results of other 1nvest1gators o1ted. An agree­

ment 1n the magnitude of the coefficients was not estab­

lised. 

Fund_amentally, there a.ppe8.r to be two reasons why 

results of finned tube 1nvest1gat1ons have not been corre­

lated entirely successfully. First, a mathemat1ca.l.ly­

der1ved fin efficiency expression baaed on highly e1mpl1fy-

1ng a ssumptions, such as a uniform surface coefficient and 

surrounding temperature, 1s never entirely correct because 

the assumptions are not satisfied in pra.ctice. The degree 

of applicab111ty of such an expression 1s always uncertain 

in a particular application. Secondly, s1mpl1f1ed f1n 

efficiency expressions do not lend themselves well to exper­

imental npp11ca.t1ons because the temperature terms resulting 

in the efficiency expressions are not thoee temperatures 

which are readily obtainable experimentally. 

Since, for some finned tube geometries, 1t would be 

desirable to instrument the tube on the baee surface 
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between the fins. the following concept of fin eff'1c1ency 

suggests itself. rr. in developing the relationship for 

the heat transfer, discussed 1n CHAPTER II, the tube base 

a.nd fin root temperatures had not been assumed to be equal, 

then the expression for the fin eff1c1ency, equation (4), 

would remain 

If this were combined with equation (3) 

q = hr Ar ef + hs As es 

then the heat transfer coefficient could be defined a.a 

ho=-----------------
Ge c, t Ar + A8 ) 
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The quantity 9i::/98 times, suggests that such a modified 

"eff1c1en.c.y'' term might be uaei'Ul to simplify the experi­

mental determination of heat transfer eoeff1e1ents on fin­

ned tubes. Such a solution for efficiency would necessitate 

e, three-d1mens1onel. a.na.lys1s for the he.at conduction of the 

fin and. tube system together. 

For the tests 1n this 1nvestigat1on, the accuracy of 

the measured data. depends on the accuracy of determining 

the hee.t tre.nsfer through the test section, a.nd on the 

accuracy of the tempera ture measurements of the tube sur­

f e,ce. That the power loss from the ma in heater coil wa s 

indeed the r adial heat flux through the test aect1on of the 

tube wae assumed primarily because this heater coil was 



aligned w1th the test section. The temperature difference 

measured by the differential thermocouples at the ends of 

the test aect1on on the tube was held, by controlling the 

gua.rdheatere, to 1°F or lees during the experiments, but 

this temperature difference ls of the same order ot magni­

tude as the estimated temperature drop radially through the 

base of the finned tube. 

The accuracy of the tempera ture measurements was 

believed to be on the order of about 1 per cent. However, 

the temperatures which were measured were assumed to be the 

same a s temperatures at the fin base, which is not true. 

The fins were sp&ced at 8 :f'1na per inch which corresponds 

to a distance of 0.125 1n. between successive fins. Thermo­

couples were installed approximately midway between fins. or 

0.0625 in. from the f1n base. For the aluminum tube of 

high thermal conductivity used in this 1nvestiga t1on the 

difference 1n t .emperatures at the station measured and a t 

the fin base was probably quite small. For poorer conduct­

ing tubes. of wider fin spacing, this temperature d1f:f'erenee 

mi ght be considerable. 

The tube surface thermocouple lead wires, which were 

wound once or more around the tube and trailed in the air 

stream, interfered. to some unknown extent w1 th the normal 

flow around the tube. 

The correction in Gardner's efficiency term due to 

neglecting the fin edge area was 1nvest1gated . The 
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correction lofas on the order of one to two per cent, but the 

correction wa.s not made ( 11 ) • The correction to the f1n 

area of the tube due to the fins being helically wound was 

not made, s1nce this 001 .. rection 1s less than one tenth of 

one per cent (9). 



CH.APTER I X 

SUMfill,.ARY 

A heat transfer coeff1c1ent for a finned tube was de-

fined 1n terms of the radial. heat flux through a test 

section of the tube, the average tempera ture of the base 

surface, and the effective arsa of the tube which depended 

on the fin eff1c1ency . An eleotr1c heater was manufacturecl. 

and, in use, was aligned inside the finned tube so that 

guard heating elements would reduce or el1m1nate the heat 

fluxes away from the teat section of the tube • 

.A series of thirteen teats was conducted with the 

heated tube 1n an induced flow of air, with the tube Rey­

nolds numbers r anging from 1980 to 11.600. Results compared 

ae.t1sfactor1ly to those of other 1nvest1gators w1 th the re­

l a t1onah1p 

Nnu::: 0 . 115 Nre·65 Npr.375 (~ •• } 14 

Additional studies of the conatruct1on and. use of a 

guard-heater should be performed, espec1ally regard1ll{5 the 

effects of the l a clr of uniform contact between the heater 

and tube surfa.cee. A ref1nement of the surface temperature 

measurements, in wh1ch thermocouple lead wires interfere 

wl th the flow around the tube, should be c·ons1derad. i\. 

def1n1t1on of the hea t transfer coefficient 1n terms of 
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a ?nod1f1ed notion of the fin efficiency is suggested, so 

tha t the measured tube ba se tempera ture could be employed 

correctly in t his de:f'1n1tion. 

Advantages of the test equipment are a1mpl1city and 

low cost, and ea se and speed of use 1n testing . The 

results of th1s investigation, while inconclusive because 

of the limited number of tests, appear to be good. The 

pr1nc1pa.l disadvantage 1a the requirement for instrumenta­

tion for surface temperature measurements on 1nd1v1dual 

tubes. 
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