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CHAPTER I

THE GENERAL TWO-WAY CLASSIFICATION

Theory From the General Linear Hypothesis Model

The primary objective of this investigation is to develop the theory
and methods necessary for the statistical analysis of a design which
will be called the Slipped-Block Design. The basic model for this design
is the same as for the general two-way classification without interaction,
but it has some special properties which simplify the analysis. Since
the Slipped-Block Design is a special case of the general two-way
classification, the definition and description of the design will be de~
layed until the general theory underlying the analysis of the general
two-way classification is developed.

Since the general two~way classification is itself a special case of
the general linear hypothesis model of less than full rank, a few defi-
nitions will be given and some basic theorems stated without proof from

Graybill (1), Then the general two-way classification will be discussed.

DEFINITION 1. The model Y = X + e, where Y is an n x 1 observed

random vector, X is an n x p matrix of known fixed quantities, p is a

p x 1 vector of unknown parameters, and e is an n x 1 random vector,

[t



is called the general linear hypothesis model of less than full rank if
each element of X is either zero or one, and the rank of X is k¢p. The
distributional properties of the vector e are somewhat arbitrary. In
this paper, two cases will be considered:
. . 2
(1) e distributed N (q), o 1)

(2) E(e) = 0, and E(ee') = g-‘?‘:';‘.

DEFINITION 2. A parameter or a function of the parameters is said

to be linearly estimable if there exists a linear combination of the
observations whose expected value is equal to the parameter or func-
tion of the parameters. Unless otherwise specified, when an estimable

function is mentioned, it will be a linearly estimable function.

. 2
THEOREM 1. In the model Y = XB + e, if E(e) = § and Cov (e) = ¢ 1,
then the linear combination C'P is estimable if and only if there exists

a solution for r in the matrix equation X'Xr = C,

‘ 2
THEOREM 2. In the model Y = X + e, if E(e) =0 and Cov (e) = ¢ 1,

then the best linear unbiased estimator of any estimable function C'B

is r'X'Y, where r satisfies the matrix equation X'Xr = C,.

DEFINITION 3. If C is a matrix such that C = (Cl’ CZ’ cee s Cm)’
where Ci is p x 1, then the matrix function C'B is said to be estimable

if each C'B is estimable, fori=1, 2, ... , m.
i

THEOREM 3. In the model Y = X8 + e, Xp and X'Xp are estimable.




THEOREM 4. If CiB, CiB, ..., 'CC'IB are estimable, then any linear

combination of these quantities is estimable.

THEOREM 5. In the model Y = XB+e, if the rank of X is k, then there

are exactly k linearly independent estimable functions. Furthermore,
any estimable function must be a linear combination of the rows of
XB.

THEOREM 6. If C'B is an estimable function, and if r

. N -~ ~
satisfy X'Xr = .C, then riX'Y = r'ZX'Y = C'B = C'B, where the symbol B

1 and T, both

denotes any solution of the normal equations X'Xé =X'Y.

DEFINITION 4. In the model Y = Xf + e, the linear combination of

parameters X ciﬁi is called a contrast if = c, = 0.

DEFINITION 5. A hypothesis Ho is called estimable if there exists
a set of linearly independent estimable functions Cl' B, C-Z'B, oo Cs'[f‘),.

such that.HO is true if and only if CiB = CZ"B = ... = Cs'ﬁ =0,

THEOREM 7. In the model Y = XpB + e, where X is of rank k, the

- 1 . ~ 1 -
quantity o2 = s—— (Y = XB}(Y - XB) = ——— (Y'Y - B'X'Y) is

n-k n =~k
invariant for any B that is a solution of the normal equations X'Xp = X'Y.

~2
n -k
Furthermore, the quantity ( )g ‘ is distributed as chi-square

o

~2 .
with n - k degrees of freedom, and ¢ 1is an unbiased estimate of o .



Y'BY

2
o

THEOREM 8. If Y is distributed N(u, o2I), then is

distributed as a non-central chi-square with k degrees of freedom and

P B
2
20

non~centrality parameter A , where \ = -, if and only if B

ig a symmetric idempotent matrix of rank k.

THEOREM 9. In the model Y = XB + e, the test of the hypothesis

H .

0 Bl = {32 =... =B (q% k), which is equivalent to testing the

q
linearly independent estimable functions Ciﬁ = C'Z?B = ... = 'C"s B =20,

can be carried out as follows:

(1) Obtain any solution to the normal equations X‘Xé =X'Y,
and form R{B) = Y'Y - p'X'Y, where R(B) denotes the
reduction in the sﬁm of squares due to 8.

(2) Impose the conditions of the hypbthesis HO (that is, assume

H, is true) on the model Y = XB 4+ to obtain the reduced

0

model Y = Zy + e. Obtain any solution to the reduced

~

normal equations Z'Z'y = Z'Y and form R( v)y= y'Z2'Y.

a1 .‘.~', 1 -
pIX'Y 4y'Z'Y  n-kK is distributed

Yy - XY s

(3) Then the quantity

as a non~-central F-variate with s and n ~ k degrees of
freedom and non-centrality parameter :
As a consequence of the above theorem, the following analysis

of variance table can be written for testing the hypothesis HOZ' [31 = 52

Ogs n -k

= ... =B . The null hypothesis is rejected if
q 85 S



exceeds the tabular value of the F-yariate with s and n.- k degrees of
freedom.
TABLE I

AOV FOR THE GENERAL LINEAR HYPOTHESIS MODEL

Source d.f. S.S. M. S.
Total n Y'Y
R{B) k BIX'Y
R(Y) k -s v'Z'Y
R(BI v) s | BIX'Y - ;'Z‘Y =a_ Qe = giSS
Error n ~k Y'Y - [S’X’Y = E’ss Ems = EZ_S
n -k

The preceding theorem and the analysis of variance table, together

with the definition of the non-central F~distribution, imply that qSS »
. —

o
is distributed as a non-central chi-square with s degrees of freedom
and non~centrality parameter X . Since the expected value of a

non-central chi-square variable is the sum of the degrees of freedom

s +.2\.

#

ss
2

and twice the non-centrality parameter, it follows that E(
o

This result leads to the following theorems:

THEOREM 10. Under the conditions of Theorem 9, the non-centrality

parameter is given by

s[E(a
ms

)] s
> ‘

20 2




The Scalar Model for the General Two-Way Classification

Let the model for the general two-way classification without

interaction be given by
i = 1.’ 2’ ® o v 32 t

o=+ + + i=1, 2, ... b
(1) lek M ’Ti B_] eijk. J 1 Y ’

where Vi is observation number k. in cell ij; u, 7., and 63’ are
i
unknown parameters; and the eijk are random variables with mean
2
zero and variance ¢ . The eijk will be assumed to be normally and

independently distributed for the purposes of interval estimation and

tests of hypotheses. Cell ij contains nij observations, and, if

nij = 0, the cell contains no observations., That is, the observations
. L B "zl‘:m b . t
y.., do not exist. The notation N, = Z n ., N. . = Z n. .,
ijo i. i ij ] . ij
J:l i=]

and N.. = X Z n., will be used.
i

Using this notation, the normal equations for the model in (1)

can be written as

;0 ded i «J
T+ N II+N ; +Zn B. =Y r=1, 2, ... , t
r r. . r. r ] rj j T..
J
: N p+Z o 7 B =Y s=1, 2, ... , b.
BS N‘.s}L . nis Ti+N.sBs .S. >

1

It is assumed that the nij are values such that Ti - 7_1is estimable



for every i +j =1, 2, ... , tand that ﬁi' = B., is estimable for every
J

it # i'=1, 2, ... , b. This assumption leads to the following theorem:

THEOREM 11, If the nij in the model (1) are such that 7, ~ frj and
ﬁi‘ - Bj' are estimable for all i :l: j and all i! + ity then
(a) there are exactly b +t - 1 linearly independent estimable

functions, and

(b) = Ty and T djﬁj are estimable if = c, = zZd, =0.

Proof: It is clear thatthe b +t ~ 1 estimable functions Tl = Ty

= T.3 eecs s T

1773

17Ty Py P By By e s By - By and

Nop+ = Ni. T, + = ijﬁj are linearly independent. There are bit+l
parameters and therefore b + t + 1 equations in the system of normal
equations above. The sum of the t equations for T, is equal to the
equation for p. Also, the sum of the b equations for ﬁs is equal to
the equation for w. Hence there are at least two linearly dependent
equations among the b + t + 1 normal equations.  This, coupled with
Theorem 5 and the fact that there are b + t » 1 linearly independent
estimable functions, implies that the rank of the normél equations is
exactly b+t - 1.

Since the Ll ’Tj are estimable for all i + j» every linear

combination of the '7"i - Tj is estimable in view of Theorem 4. If the

t

expression 2 T, = 'Tj)% s ] =+= i, is considered, then it follows that
. 1 C
j=1



> o= t-1 T __1_(,7-_ - 7.) = (1. = T.). This shows
i t it i i

\]
]
rr]x——'

that T T. is estimable for all i. Therefore, by Theorem 4 again,
= Ci(Ti - 7.) is estimable, but this becomes = c.7, if Zc {5 0. A

similar result follows for = djﬁj. This completes the proof.
A Matrix Model for the General Two~ Way Classification

It may be desirable to use a matrix model rather than the scalar
model given in (i), and such a model is defined by
(2} Y=Xvy + e,
where Y is an N.. x 1 vector of observations, X is an N.. x (b +t + 1)
‘matrix, y is a (b+t+1)x1vector of parameters, and e is an
N.. x 1 vector having multivariate normal distribution with mean {
and covariance matrix 0421., Now partition y so that y' =[x B’ 'T'L
where pisl1x 1, Bisbx 1, and 7 is t x 1. Partition X into [XO X, XZ],
where X 1s N.. x1, X_  is N.. x b, and X_ is N.. x t. Then the model

0 1 2

(2) becomes
M

Y:[XO XlXZI ll:B + e
T
or

(3) Y =X u+X B+ X7+ e,

0 2
It is worthwhile to note that XO is an N,. x 1l vector in which each

element is unity, since p is in every observation. Also, anm xn



matrix all of whose elements are equal to unity will be denoted by
J:ln s or simply by J, if the dimensions are obvious. The X1 matrix
has a column corresponding to each block, and if the observations

are ordered by blocks, then the first column of X1 will have a one

for each observation contained in block 1. That is, the first

t
Z n.. elements will be equal to one, and all other elements in the
i=l 1

first column will be zeroes. The second column of X1 will have zerces

t t

for the first ¥ n., elements, then Z n,
i=l il i=1 12

elements all equal to one,

and the remaining elements will be zeroes. This arrangement continues
+

W

so that all elements of column b are zero except the last = n.,
i=l

elements, and these are all equal to one.

The X2 matrix has a column corresponding to each treatment,

and if the columns are in numerical order corresponding to the

t
treatments, then the first X n,, elements of the first column will
j=1
t
consist of n,, ones followed by zeroes; the next group of X .5

B i=1"

elements will consist of n,, ones followed by zeroes; and this pattern

t

continues so that the last group of X n. elements will have Dy
i=1

ones followed by zeroes. In general, for r >1, column r of X5

r=1

will have zn,

| zeroes followed by n 1 unity elements, and then
. il r
i=1
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t t
z n;; zeroes for the first gro.ﬁp of X no elements. The second
i=r+l i=1
t r=1
group of £ n, 6 elements will have X n_ _ zeroces, thenn _ unity
= i=1 i2 ‘ i=1 i2 r2
t
elements, and finally Z n_z zeroes. This same pattern continues
lpr+l 7
£ rel
so that the last group of Z n,, elements has X n, zZerces, then
i=1 ib ' i=1 ib
t
n _ ones, and finally Z n , zeroes.
rb =il rb

Each element of the vector yu is the scalar p,; the elements of the
vector B are the b block cons“tants, and the elements of 7 are the t
treatment constants. As an-illustration to aid the preceding
description, the-twenty observations in Table II can be represented

in matrix form as shown in Illustration I.

TABLE II

AN EXAMPLE OF THE GENERAL TWO-WAY CLASSIFICA TION

_ Bloqks
6 4 —
3 1 B
‘ ’ - 2 2 0
4 3 4 2 4 2
T t it 1 1 5 3 N =
reatments | 1 . » 1 0
8 7 2 0 3
9 n |
4 8 3
12 6

It is useful to note that in each row of Xl’ there is one and only
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ILLUSTRATION I

MATRICES FOR THE EXAMPLE IN TABLE II

c e 0o 8 5 o o o
—t — — — — — —t —
b — - — — — - —

ey
bt T I e e I e i ka e  a  S R

H
0000000"
t

[

1
1111111“
t

t

B i

o o o o o ©o ©j
f
lllllllllllllllllllllllllll +
]

1
1111111"

— ] [32) <H - —l [3\ ] — [sV] o
_ SR T = R B - H. = . R < T\ T T TS RN T R~ S S
1.1.. — o o on o < < — — o\ s | [N o o (o} N <t Ayl <
’e o o 1) ) o w© © o) 15} o 1) o) o ) ) ) o) ) o
+
— N o — ol o 4|_
i 2 o o = = = =
L i
o o o o o o o o © — — ~—

B N e T TN e

- — — — —
o o o (=] o
o o o o o
— — —~ ~ -




12

g
one el,em_g_#t equa_,l to unity sincé no obse‘»rvat,:ion cail appear in more
than one bi-&?cku The same. thing ig true al::out XZ smce no observation
receive;s r?éire i:han one trgatmént-. Since.» each column of Xl contains
a one for ,éach observation appie-ai;gir;g, in that blocit, it follows that

e

Xl' X1 is ‘d;;aﬂ.gona,l with digg,onal elements e_qua,l to N.j’ the nuxnbehr of
observations in each block. Similarly, X?(Z is diagonal with
df;a.gonal elements Ni. ,.and the matrix X'2X1 =N = [-nij] , where the
nij's are a‘,ns defined in the ﬁfevious s.e.ction. Note further that in the
layout of fé;ble II, the matrix N can be written down directly by
letting the colﬁmﬁﬁs of the N matrix ,cor;§~spond to the columns fqr
blocks in the té,ble, and the rows of the matrix would correspond to
treatments. The number of observations in each ciellb then becomes
an element of N as shown in.Table II.

The following two relationships also must hold since there are N..

observations and each row of X, and XZ has only one element equal to

1

unity while the others are zeroes:

b __N.. 1, .1
= =7J
(a) XIJI J1 .and Jb X1 N..
(4)
; t - N. - 1 ' _
() X, 3, =73 and J X)= I

b
With these relations, (3) can be written'as Y = X"I(J1 p+ B) +'O_X2'r + e,

b .
~8ince XlJi TR Xop. Now if a = Jkl)p + B, the model becomes

(5) Y=X,0+X

1 2'r+e,

and thenormal equations X 'X% = X'Y can be written as
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Ix [x 1 el Tx
1| ¥ %] e X

<
g

<
XIZ

Upon performing the indicated multiplication, .the expression above

becomes
' 'YX o X 7 o= %
(6) X1 1® + X1X2'T XIY
and
) a X! T = !
(7) XZXla + XZXZ'T .XZY.

Note that Xi X1 has an inverse since it .is diagonal with non-~zero

elements on the diagonal since every block contains at least one
observation.
If equation (6) is solved for 'a in terms of ; , the solution

~ ~1 -~
= (XX 'Y - X'X_ T
o = (X]X)) (XY - XX, 7)

is obtained. If this result is substituted in (7), then

X 1 - v oo X! - N Z o=
X, 1[(X1X1) (XY - X)X 7)] + X X7 =X

or

-1 ! . 1 1 ' = )
Xl) XIXZ-] T = XZY - X2X1(X X.) XY.

1

X 1 "<zt :
XZXI_(Xlxl) X1X2 and

(8) 1%3%, - X% (X

If it .is now agreed to let A = X'Z’X2

-1
- !X v |
q [x2 X2X1(X1X1) Xl

{9) AT =q,

] Y, then (8) can be written as

and this is a system of t equations in t unknowns.
In order to solve the system (9), it will be helpful to determine
its rank. The symbol r(B) will be used to denote the rank of a .~

matrix: B. First, the following lemma will be proved:
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LEMMA 1. The sum of the t rows of A is q)]é » Or equivalently,

1
JtA = ¢11: . A similar result holds for the columns since A is symmetric.

1 1 -1
Y : -— 2 ] l ‘I
Proof; Since J A JtXZXZ JtXZX (X1 1) 1X2’ it follows from
1 1 1 1y
4) th - - X (XX
(4) that T =0, X = I, K B XX,
S Th X, - (30X (X 'X)
TYNL. 2 b1 1 2
1 1
=J X_ - J XX

This completes the proof of the lemma.

THEOREM 12. The rank of the matrix A is t - 1.

_1?__1:_9_(3? By Theorem 1l and the as s_umptionimmediately preceding. it
with regard to the estimability of T, - Tj, there are t - 1 linearly
independent estimable functions of the T These functions must come
from the system AT = q. Therefore r(A) is atleastt - 1. In view of
the preceding lemma, r(A) is at mostt - 1. Hence it follows that
r(A) is exactly t = 1. This completes the proof.

Before proceeding with the solution of the system AT = g, some
more useful relationships will be derived. First of all, referring
back to equation (8), if G' is defined by G' = XZ' (X1 1) 1X1':

then (8) can be written as

(10) G'X,7 = G'Y.
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-]
H ver, b = ! - U ! n'dl
owever, note that G X1 X2X1 X2X1(X1X1) Xle, or

1 = t - 1 -
G'X, = XX, - XX 6.

Hence it~f611~ows readily that

| -1 -1 <
] e | ro 2 1 4 - ) 4 = ) =
G'G = [ X} XX, (X/X,) xlj[x2 X (X/X)"XX,] = G'X, = A,

and therefore (10) can be written as
(11) G‘»G%:“" = G'Y,
which is the same system as A?.‘-‘L q.

Since th“é rank of the system AT = qist -1, one additioné.i
restriction caﬁ be imposed on the ;i in order to obtain a unique
solution. One condition that is useful to- impoéé is = ;-i = 0, This

) 1 A 1t o~
can be written Jt"r = 0, so that the systems Ar=q and (A +t Jt)'r =q
have exactly the same solution when this restriction is used. The

1~ -
restriction Jt'r = 0 and the equations A T = q can be combined in the

form
. X _
A J'l T q_1
(12) v =
1
J 0 Z 0 ,
t L
_ 4+ 4L
and if A* is defined by
: t |
A Jl
A¥* =
1 .
Jt 0 s

it is necessary to show that A* is non-singular. However, a more
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general theorem will be proved.to cover the use of any non-estimable
function of the "ri as an additional restriction to solve the system
AT = q. Let X ir = 0, where X *7is.a non-estimable function of

the T If the vector \'= (A, \

LMoo )\t), then = )\i‘% 0, for if

z )\i = 0, N'T is an estimable function by Theorem Il. If the matrix

_A1 is defined by

the following theorem can be proved:

THEOREM 13. The (t +1) x (t + 1) matrix A.1 is non=-singular.

Proof: If the matrix A is written as

——

 a A
1 12
A =
A ,
AZ]_ 22
where 311 iglxl, AlZ islx (t -1), A21 is the transpose of AlZ’ and

AZZ is (t = 1) x (t -~ 1), then since the rows and columns of A sum to
zero by Lemma 1, it follows that the sum of any t - 1 rows (columns)
is equal to the remaining row (column).  Therefore, the matrices

below all have the same rank. ' This is indicated by the equivalence

symbol,

=

Ma A'H\ _‘o cb‘ ¢ﬁ

11 12

21 © 22 21 22 S22
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Now A2 is non-singular since r(A) =t - 1, for if r(AZZ) were

2
less than t ~ 1, an additional row and column dependency could be
found, and this would make r(A) less than t - 1. This would contradict

Theorem 12. Hence r{(A_ ,)) =t -1, and IAZZI + 0.

22
The following matrices are equivalent with respect to rank for

the same reasons used previously. Let A% denote the lastt =1

elements of N. Then

2 A x| |o 0 sx. | [o 0 z{j
11 12 1 i i
A = | A NE|~|A_ A x#| o~ A
1 Ao 22 | 21 22 9 22 M
)\ )\ skl 0 )\ )\ st O Z ,\“ . }L siet 0
1 1 i
L —_ A . L —

Now let B denote the last matrix above, and if ]B] is expanded in

terms of elements of the first row, then

B = (-1, =
=N, N

If the reduced determinant is expanded in terms of the first column,

then since 3 \. is now in row t, the result is
i

(z)\i? lAZZ! #0 since IAZZl 0.

Therefore A,1 is non~singular since B is non-singular and A1 is

equivalent.to B with regard to rank., Hence the rank of A1 is t + 1.



This completes the proof.

- Suppose now that Al

where B11 is t x ¢, BlZ is t

is written as

U

Bll

BZl

B

B

[P

12

22

p—

x 1, B_, is the transpose of B__, and B

21

-is 1x 1. Then consider the system

A

>\l

—

which can now be written as

A0

1N T

0 zZ
By B2
Bo B2

12 22

Performing the indicated multiplication gives the solution Z = 0 and

;: Buq, so that the following theorems can be proved:

 THEOREM 14. (a) '1321 = Bizj:(zxi)'lgr
(b) B,, ‘= 0
() A'B =10
(d) BuA B Bn
() AB__ =

11

idempotent matrix of rank t -~ 1.

a1 1 :
I - (X)) A3, and AB

1
t

11

is a symmetric



. -1
Proof: Since A A  ~ =1, it follows that

™
A M 1By B2 L 9
A0 By B2 ﬁ L

and if the multiplication is performed and the corresponding elements
equated, the following equations must hold::

(1) AB..+\AB :.It

11 21

(2) AB12 +XB,, = )
(3) MB =B\ = 0
(4) MB,, =1

. 1 1
‘Proof of (a): Multiply (1) above by Jt to obtain JtAB

11
. 1 ' . -11
and since JtA = from Lemmal, B21 = Z?\i) Jt . It follows that

21

-1t =11

- = B! = (,
B, = (= )\i) Jl anq therefore B, B12 (E)\i) Jt .
| , ’ 1 L l
Proof of (b): Multiply (2) by Jt to obtain JtAB12 + Jt)\'BZZ =0, but

. 1 : =
since JtA =0, and T X, 0, it follows that B,, = 0.

Proof of (c): This is (3) above.

Proof of (d): Multiply (1) by B1 j on the left to obtain BllABll +

: = 0 . 5 =B
BBy, =By, but from (3), Bh ={, so that B, AB,

11 1 1’

Proof of (e): Since B21 = ( Z‘,)\i) l.]'t s substituting for B 1 in (1) gives

2

19

JI 1
+ =
,th ‘Tt’.
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AB‘1

-1 1 -1 1
l+(2 )\i) )\.Jt =1, or AB,. =1~ (= )\i) )\J’t . Hence- it follows

11

' , . -1 .1 -1 1 -1 .1
that (ABll')(ABll) =1 - 2(= )\i) )\Jt + (= )\i) )\Jt =1 - (Z Xi) )\Jt .
Therefore ABll = BllA is a symmetric idempotent matrix. Since the

rank of an idempotent matrix is equal to its trace, it follows that

_ -1 .1
r(fABll) = trace [AB11] = trace [It - (= xi) KJt ]
-1 1
= trace [It] - (= ) trace .[Jt A
=t ") A =t -1
=t-(=Zr) (Z ) =t-L
This completes the proof of the theorem.

-1t
COROLLARY 14.1 The matrix A +¢ 1Jt is non~singular with inverse

lto B.. + t"lJt
equa 11 ¢

1

-1t - -
Proofs The system (A +t Jt) T = q is equivalent to AT = q if the

restriction = ’Fi-:: 0 is imposed. This means )\':1: = 0, where X\ =‘J1 .
-1t ’
Therefore AB.. =1 ~t J, , and now it is noted that

11 t
=1t R -1t =1t =2 t .t
v 1 = . t
(A +t Jt)(B11+t Jt) ABH+t AJt+t ‘TtB11+ JtJt s
nc L 1 = 1 IS
but since A.Jt =0 and x B11 = Jt B11 = ¢ , it follows that
-1t -1t -t ’ et
(A+t J)B +t T) =T <t ;rt+q> + 0+t Jo=1 .

This completes the proof,

THEOREM 15.- If the restriction \! ; = 0 is used in order to solve

-~ - "1 .
the system AT = q, then E(7) =7 - (& Ki) A(Te )
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Proof; First note that E(q) = E(G'Y) = E[G* (MJi\T” + Xlﬁ F X, )],
or E(q) = E(G'X,7 + G'e) since G'Jlf” =0 and G'X1 =§ . Now since
G'X, = A and E(G'e) = G'[E(e)] = ¢ , it follows that E(q) = Ar.

2

Hence E(T) = E(Bllq) = BllE(q) = BHA.T, but from Theorem 14, DHA

-~

- 1 1 1 =1
equals I -~ (Z )\ i) )\J‘t ; so that E(7) =[I -~ (= Ki) th]T =T = (Z)\.i) M7

This completes the proof.

It has now been shown that if the system AT = q is solved by
imposing the restriction AT = 0, where \'T is any non-estimable
function of the T-i’ then the solution is always ; = Bqu and E(Tr) is
always 7 -~ (& xi)ml NGO R

Since the covariance matrix of T is needed in order to determine

confidence intervals on 3 CiTi’ where Z‘, c:i = 0, the following theorem

will now be proved:

- 2
THEOREM .16.- Under the conditions of Theorem 15, Cov (1) = ¢ Bll'

~

Proof: Cov (1) = E[7 = E(T)][T ~ E(T)]*

i

i

E[B..q -~ E )[B..q = !
‘E[Bnq (Bllq)][Buq E(Bnq)]‘

H

= B, Elq - E(q)][q - E(q)]“Bli
= Bll[COV(q)]Bu.

Since q = G'Y from equation (10), it follows that
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Cov (q) = Cov (G'Y) = E[G'Y - E(G'Y)][G'Y - E(G'Y)]"

Now _E(G'Y)»"= E[G‘(X at X, 7+ e)l, ’but'Gin = Q), and E(e) :'Q),sojti’lat

1 2
E(G'Y) =G'X,7. This means that
G'Y - E(G'Y) = G'(Xja + X, 7T +e) - G'K,7 = G'e,

and therefore it follows that
Cov (q) = E[(G'e)(G )]
= G'[E(ee")]G
= G'(c2I)G

2

= ¢2G'G = ¢°A,

But this means

~ 2 2
Cov (1) = ‘U.BHABII = Bll’

.from (d) of Theorem 14. This completes the proof.

A 2
Note now that the covariance matrixof v is & 'Bll’ and the inverse

: ~1_t ~1_t . g s .
of At t J‘t is B, + t ».It . However; in determining the variances of

11

the estimates of treatment differencesy say Var (Ti - 'rj), it does not

matter if o'-‘ZB11 or o (Bli + t 1Jt' ) is used in the formula

. /\ L~ © am . -~ - -~ - ~ -
Var ('r‘i - 'rj) = Var ’(';ri’- Te) F Va_r'(Tj -T.) -2 Co,v[(v'i - T, ('rj -~ 7)]s

\ -1t
because the contributions from t Jt add to zero.

Test of the Hypothesis Hy: Ty STy F e ¢

]
-

If it is desired to test the hypo,thesis Hyt 7 =7, =eee =7,



and construct an analysis of variance table from which this test can
be pe_rforme-d,, it is best to make use of Theorem 9. This theorem
states that for the general linear hypothesis model ¥ = X + e,
R(B) = 'X'Y, where F'} is any solution to the normal equations
X'XB = X'Y.
The original matrix model for the general two~-way classification
was ¥ =X v+ e, and this was rewritten as Y = Xla + X_ 7+ e, with

2

the normal equations being

12

It then follows that R({ y) = R(a, T) ='aOXiY + 'rdX‘ZY, where a, and o

are any solution to the above normal equations. Since (Xin) -1 exists,

it follows that &0 X'X Xl Y - X '7' ) from the first normal equation,

. and therefore

R(a, 7) = (Y'X, - 70X XX )XY + 12Xy

271 1 072
-1
= ¥ ¥ -t ¥ |4 T 11
YX XX XlY »roxle( 1X1) X Y+TOX2Y
‘ -1
= Y‘Xl(Xixl) XiY + 7"' [X'Y X 1(X‘X )~ X'Y IE

Since G'Y = g, the coefficient of ;b above is q. It follows that

XX )XY + 7.

(13) Ria,7) = Y'X (XX ) XY + 7

Under the hypothesis H, let 7, = v‘*rz Fee. =T, = 7%, where 7% is



!

a scalar. Then the model Y = Xlg' + -X27 + e becomes

t .o , .
Y = Xla + XZJ1 7% + e, and since XZJ; = J‘lN s this can be written

N.. b
as Y = Xlo. + ’T*Jl + e. If it is recalled that a = p.Jl + B and that

b N..
XlJ1 = Jl » it is then possible to write

b
Y = Xl(p + 'r”‘)J1 + Xlﬁ teorY = Xl[(p, + 7*"‘).]']1D + Bl + e.

‘ b
Now let o™ = (pu + 7'*).]'1 + B, so that the reduced model can be written

as Y = Xlo.* + e, and a* and a are not the same unless 7. = 0 for all i.
. i

For the model under Ho, Y = X.a* + e, the normal equations are

1

Xina* = XiY, so that 4% = (Xin)'IXiY, and therefore

x %) X1y,

¥y = JHIY! -
R(a*) =4 X1Y Y'Xl( 1% 1

From the general linear hypothesis, R('rla) = R(a, 7) - R(a*), so

-

that reference to (13) gives R('rla) = 'rbq. Since T is any solution to

0

the system A:i: = q, it follows that ;O = Buq. Then R('r'lo.) = q'Buq,

so that the following analysis of variance table can be written in

s T, = = a6 = K
order to test Ho 1 'r2 Tt :

24
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TABLE III

AOV FOR THE GENERAL TWO-WAY CLASSIFICA TION

Source d,f. S.S.
Total N.. Y'y
‘ =1
P 1 ¥ ¥ (=

Ria, 7) b+t-1 Y Xl(X IX];) X 1‘{ +q Bllq

R(a*) b Y'X (X'X.)"IX'Y

A | 1
- 2]
R(’Tla) t -1 e} Bllq
-1
- - ; 'Y o ot - ¥ t ] -
Error N.. =b =t +1 Y'Y - g Buq Y Xl(Xlxl) X 1Y Ess
Consider now that since q =G'Y, then q"Buq is Y'GBHG'Y,' and
v 1 = 3 t t - 3t -
note that (GB,;G')(GB,G') = G'B|;G'GB,,G' = G'B;AB,,G = G'B,,G,
. . 2
so that G'BHG is idempotent. Since Y ~ N{(p*, o I), where
. N.. .
pk = HJI + Xlﬁ + Xz'r, it follows from Theorem 8 that
.1 1 1
¢'Bpd ,Y GBllG Y is distributed as a non-central chi-square
2 2
o o

with degrees of freedom equal to r(GB,,G') and non=-centrality

11

parameter A = ”*‘GBHG'H*
2
2o

. Since GBllG' is idempotent, its rank is equal to its trace so that

r(GB..G') = trace GB

Vo= tr: ! =
" G race G CrB11 trace AB

s and AB__ has

11 11 11

rank t ~ 1 by virtue of Theorem 14.
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2 .l . : d : N. .
= (1 4 BIX! 15'q Gt N '
Now 20 \ ,(p.J'N. ' + B X1 + T XZ)GB_llG (|.LJ1 + X1[3 + Xz'r), but

iLogag, G,JN.

N. | = ¢ s and also (_':}V‘X1 =‘¢ » S0 that

2 :
20 N = T"XZGBHG'XZT. However; C‘r'X2 = A, and since A is

: 2
symmetric, XéG = A also. It then follows that Z2¢ N = T7"AB.. AT,

11
. ~1_t < e L~ o
but since AB11 =I1-t Jt when the restriction T+, = 0 is imposed, the
- i
. 2 = . 1
expression for 200 N becomes 7'(I - t .Tt YA = 7AT, since Jt'A =9 .

. y 2 R S
If HO is true, then le‘z Ty = ., Tt =T% 2o A = 'r’x.]‘tAJlfr"‘ = d? »

.. q'B

and 4 14 has a central chi-square distribution with £ - 1 degrees
2
o

of freedom. From Theorem 9

¥
q Bllq

N.. =b-t+1

E t-1
ss

has a non<central F~distriBution witht ~land N.. - b -t + l‘

A
TAT | This

2
20

degrees of freedom and non-centrality parameter \ =
becomes a central F-distribution if and only if H, is true.

Confidence Intervals

' t
If reference is made to Theorem 15, and A\ isl chosen to be J'l ’

which is equivalent to solving the system (A + t-l.]': )'; = q under the

. s - ~ t - - t
restriction ZTi =0, then E(T) =T ~ ¢ ~~('T.)J1 or E(r) =7 = (’7’.)J1 .
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~. - . .th AT
It follows that E(”ri) =T, - (t.) if the i~ element of E(7) is chosen.

Reference to Theorem 16 gives the result that if b—ij is any element of

1 - : . = =
B11 under the restriction Jt'T = 0, then o"zbij :_Cov[('r'i - T.)s (7?/— 7.)]

If the variance of the estimate of any two treatment differences is
desired, it can be obtained as indicated in the section on the matrix
model for the general two-way classification.

If it is desired to set a confidence interval on 3 €Ty thep 'it, is

noted that = ci('ri - ;,) = 3 S since X% c, = 0 for all estimable

- 2
functions. Therefore = c.T, is distributed N[ = .75 T I Cic“bij]i
. : L1 j

and

~ is distributed N{0, 1).

If reference is made to Table III and the discussion following it,

E
it is evident that v =  ss is distributed as chi-square with

2
o

N.. = b =t +1degrees of freedom and is independent of u. It follows

that
v
Ne.o = b =t+1
has Student's t-distribution with N.. - b -t +1 degrees of freedom.
Since N bssu ] is the error mean square, it will be

denoted by Ems , and therefore a 1 - o confidence interval on X ST
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is given by

(14) = c.(T. - '77.) -C< Z‘ciT. < Z)ci('ri - T.).+ C,

where C = ta/Z\l E o Z;cicjbij’ and ta/z. is the tabular value of
Student's t with N,. ~ b ~ t + 1 degrees of freedom for the desired
value of a.

Another value of \ which gives some very useful results in the
solution of the system AT = qgis \N* =(0, 0, oo 5 0y 1, Oy sca 5 O}

where the one occurs as the sth element of A!, This is imposing the

restriction that ;S = 0 on the system AT = q. For this value of A

1 -
Theorems 14 and 15 state that BllA =1~ A Jt, "so that E(7) = BllA

]. 'AI )
becomes 7 - \NJ,T. Hence E(7,)=T, -7 _ .
t i i s

It is evident that the restriction ;s = 0 is equivalent in actual

. . th ' ; .th
~practice to deleting the s row and column of A, the s element of
7 and g in the system AT = g, and then solving the system of t =1
equations in t - 1 unknowns, A%k 7= %% | However, the results of
Theorems 14, 15, and 16 hold in general for any non-estimable
condition on the T e Therefore for the condition described above,

-

2 s s
Cov {7)= o B,, is such that if b;J is any element of Bll under the

11

. . ‘ - 2 Lo o, /\
restriction 7_ = 0, then ¢ b** = Cov[(r, ~ T )s (T, =~ 7_)] . If the
8 ij i S j S
variance of the estimate of any two treatment differences is desired,

then the same procedure described before can be used.
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Setting confidence intervals on a linear combination of the T

say = €Ty 0 follows as in the previous case. Since only contrasts are

* . ) /\ -~ -~
estimable, it follows that == ci-(Ti - 'rs) = CiTi . Therefore I CiTi

2 S
is distributed N[= c.7,, ¢ 3 c.,c b¥¥*], and
i'd i ij

Z ¢, T, -~ ZC,T,
i'i i

o‘\!E c.c b
171

is distributed N(0, 1). Since the distributional properties remain the
same regardless of the \ that.is used, the desired 1 - a confidence

interval is given by

/’\ /\
- - £ -
(15) = Ci('Ti 'TS) -D £ CiTi .5 cli(T-i - TS) + D,

where D =t \/E b C_C.bikfk
Q,/Z ms 1] 1]



CHAPTER 1I

THE GENERAL SLIPPED-BLOCK DESIGN
Definition and Notation

The General Slipped-Block Design will be defined as a special case
of the general two-way classification without interaction. The
correspondence between the notation used in Chapter I for the general
two-~way classification and the notatipn for the General Slipped-Block
Design is given below along with some new notation:
{1) The number of blocks is b.
{2) The number of treatments is t.
(3) N.j = kj.is the number of observations in block. j, where
j=1, 2, voo , b, and nij is 0 or 1 for all i and j.

(4) Ni. =, is the number of observations on treatment i, where
i=l, 2, ... 5 t.

{5) The symbol qu denotes the number of treatments common
to block p and block q. The number qu will be called the
overlap, and it is defined only for p <« d.

{6) "The symbol qu-de_notes the positive difference between the

number of the first treatment in block q and the number of

30
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the first treatment in block p. The number 'qu will be
called the slip, and it is defined only for p < q.
The preceding notation leads to the following us eful,relationships':v

(7) k for‘j:lgzgo-a,b"l

2w, , _+s8, |
IR TN 2 N T B Wt
b-1

8 t= s, .. ,.+k
(8) j=1SJ,J+1 b

The following restrictions must hold in order for a general two-way

classification to be called a Slipped-Block Design:

9 W > for i = 2e ove b -

( ) j’ Jll -_1 J 1’ ? ? 1
O s, . = ]. fOl‘ i = ]. 2 s e b - 1

(l ) J, J’l = J 14 ? H |

Property (9) above is necessary in order to satisfy the assumption
immediately preceding Theorem ll. Property (10) is the feature which
gives the Slipped-Block Design its name, since it requires‘the-firs‘ft
treatment in block (j+1) to have a higher number than the first
treatment in block j. This is equivalent to '*slipping'' block j down in
the statistical layout in order to obtain block (j+1).

In order to clarify the definition of the Slipped-Block Design,
examples of two-way classifications which are Slipped~Block Designs
are given in Illustration II with the values of b, t, kj’ Uy qu, and
s q as.indicated. An ''x" denotes an observation in the statistical
layout given in Illustration II and in all layouts of this type which

follow,



Examlgle 1.

Treatments

iExa.rnple 2.

Treatments

ILLUSTRATION II

EXAMPLES OF SLIPPED-BLOCK DESIGNS

N o Wy

0 N O ;o W

Blocks

Blocks

2 3

4

5 .

=4; t=7
ky =k =35 k, =45 k, =
1_11=u7"—‘1;uz=uﬁ=u4 ug =
Wip T2 Wy = 05wy, =
Wog T A Wy T
Wag =
slz—l, 8137‘ 3; 514—5
Sp3 ® 25 sy, T
°34
=5;t=28
kj = 4 for all j
u1=u8=1, g2=u7=.2
u3=u6=3, u4=u5=4
Wio = 3; w13 =2; W14 =13 Wi
Wog =3 Wy, =G W25
W34 T 35 Wag
Was
s1p =1 813725 8,735 8y
53 7Ll sy, =2 sy
s34 = 835
| 545

i
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- The analysis of the General Slipped-Block Design can be performed
by considering it as a general two-way classification and proceeding in
the manner described in Chapter I. No simpler analysis will be given
in this paper. However, if some additional assumptions are immade,

a simpler analysis is possible for certain cases. These analyses
will be given in the remainder of this paper.
The Slipped-Block Designs considered in this paper will be

assumed to have N , = kj = k observations in each block. For any two

adjacent blocks, the slip will always be s, = s, and the overlap will
3

Js Jtl

bew n., The slip and overlap for any two blocks which are not

[

adjacent will not be of any importance.
If reference is made to the discussion following Table II, it becomes

apparent that X{X1 will always have diagonal elements N ,.=k, and

-1 -
therefore (Xi Xl) =k llb when the above assumptions are made. The
-1
- - t - ¥ t ¥ . i y : -
matrix A XZXZ : XZXl(Xlxl) XIXZ defined for the general two-way

classification now becomes A = X'ZXZ - k-1 X2'=X1XiX2', but since N was

defined to be X'Z»Xl, it follows that

- X1 - 1
(1) A =XLX, -k NN

The same substitutions used above to obtain (1) reduces the vector

. -1
A =XV o X’ 1 1
q XZY X2X1(X1X1) XlY to

(2) q=XLY - s NX!Y.



CHAPTER II1

THE SLIPPED~-BLOCK DESIGN WITH TWO BLOCKS

1 1 -1

-1 t -1 t
The Derivation of A + ¢t .Jt and (A +t J’t)

'The statistical layout for the Slipped~Block Design with two blocks

is given in Illustration III. With the assumptions given in Chapter II,

b=l

and t = T s, + k

it is seen that the relations k. =w, , _+'s, . . .
j js. jH+1 js jH+1 Gel. Je 3t j

from that chapter becomek =s +nandt=s+k = 2s + n. Therefore,
if any two of the four quantities k, s, t, and n are known, the
remaining two can be determined.
Observation of Illustration IIl indicates that if the method described
“in Chapter I for writing the matrix N is used, and if it is recalled that
" X*X_ is diagonal with diagonal elements N, , then the matrix

2 2 i.

-1
A= XEX2 -~ k., NN*¥ can be written as shown in Illustration IV. Per=

forming the multiplication indicated in Illustration IV to obtain NN*

and partitioning the matrices as indicated in the illustration gives

T S S——-1 r S S S——‘
IS ¢n ¢S JS J_n ¢S
n n 1 n n n
A= ¢S a b |- % J,oo2, I
s s )
¢ (Pn I ¢s In ?
T R e )
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ILLUSTRATION III
LAYOUT FOR THE SLIPPED-»BLOCK DESIGN WITH TWO BLOCKS

Blocks

\ s
. J
k % x x
x x
Treatments .
. . n
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ILLUSTRATION IV

THE MATRIX A FOR THE DESIGN IN ILLUSTRA TION III

. — —_
1 7] 0}
1 first 1 0
e S
. rows . . °
1 1 0
2 1 1
: ‘ s n s
2 next R T T T
0 . . It...1 11...1 00...0
A = ’ rows L 00.,..0 11...1 11...1
2 k 1 1
0 1
last O 1
s . .
TOWS : : s
1 0 1
a - -

All off-diagonal elements of X ‘ZXZ are equal to zero.



and the final result for the matrix A is

1 _s s .
-=J
k n ¢s
2 .n 1 n
2] - — - = J
In kJn k s
Ly 1 -5t
"k 'n 5 k s *

37

Since the dimensions of the identity submatrices are obvious from

the dimensions on the other submatrices, the subscripts on them will

be omitted.

-1t ~1
t J t

If the matrix

S
J 7° J
S n
n
J N J
S . S
S . S
J 3° 3
S n ]
et pa—

is partitioned as . indicated and added tp .the matrix A, the result is

- 1

t -k _s k-t s 1 _s

J -7 J —J

I kt 8 kt n t s

-1 t k -t n 2t - k n k-t n

_ - J - i T J
At Jt kt s 21 kt n kt s
1 _s k-t _s t-k _s

ol J - — J

Js kt n I kt s

If the relations k =s + n

numerators in the above

and t = 2s + n are used to simplify only the

matrix, it can be written as



B s 5 5 1 _s
- J -—J -
I kt kt =n t Js
’ - =l t s n t+s _n )
. A F o= - e J P ] P ———
= (13 At : Jt kt s 21 kt Jn kt
1 ] s s s
—J - — I
t s kt J I kt J

: -1 t =1
If it is now assumed that (A + t Jt) has the same form as

-1 t
A+t Jt: » then the inverse can be represented in the form
_ -
al + bJ® 3’ as°
s n S
-1t =1 n
A+t71)" = cJ el + £ e
t S n s
ar® ci? al + b’
s n SJ

If the product of the above matrix and the matrix in (1) is
equated to IZs+n = It s Where the identity is partitioned in the same
manner as the two matrices forming the product, it is readily seﬁen
that a = land e =1/2 . The necessary algebra can then be carried

out in order to complete the solution for b, ¢, .d, and f. The matrix

resulting from this procedure is

B -2ks .S s s ns - kt
I+_TJS > Jn 5 J
nt t nt
1.t - 1 4s + s
I Pl anb A
t 2t t
e ST s
nt t n nt
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It can be verified that the matrix in (2) is the inverse of the matrix
in (1) by multiplying the two matrices together and substituting s + n

for k and 2s + n for t in order to show that the product is IZs+n = -,It .

The Variances of Estimates of Treatment Differences

If reference is made to Theorem 16 and the comment immediately
following it, then from the inverse (2), it is observed that the vari=
ances of the estimates of treatment differences are as follows:

(@) Ifi=1, 2, vouy sandj=1, 2, «u. , 8, i F j, then

N\ 2 2k 2
Var (Ti ~-7)=0 [2(1 + ——-25——) -.2}(—-241—{25;-' =20 .
J nt nt

(by 1fi=1,2, ... ,sandj=s+1, s+2, ..., s+ n, then

RN 2 2k 1 4
Var (7, - 7) = o (1455 + 5+ 2R (5],
J at” 2t £

If a common denominator is obtained, and the relationships
k=s+nandt=2s+n are erriployed, the above expression
simplifies to

‘ 3
Var (7. - 7.) =0 { 2—4——1——)-

(c) Ifi=1,2, oo 3 sandj=s+n+l, s+n+2, ... ,28+n=t,

then
N : 2k ’ 2 - .
Var(T--T.)=o~2[1+ S p14 ZKS _p(nsco kb,

If this expression is simplified in the same manner described
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in (b), then

RN

2 2
Var ('Ti - 'Tj) = g _(2+' < ).

(d) Ifi=s+1l,s+2, co.; s+n,andj=s+n+1l, s+n+2, ...,

28 + n =t, then

//\ 2 51,
Var(Ti-Tj)=cr[32-+————~4s";n +1e 25205
2t nt t
23 1
“U("é“ +2n)s

the same result that was obtained in (b).

() i=s+1, s+2, .o. ,s+nandj=s+1, s+2, ... , s +n,

i #j, then
/\ 2
Var (1, - 7) =0 [ 2 ( ;— yRetn g pdetr g
] 2t 2t
2
= 0 .

(f) Ifi=s+n+l, s+n+2, ... ,28+n=t,andj=s+n+1,

s+n+2, e.. 3-28+n=1t, 1 % j» the results are the same as
obtained in (a).

PN

It is worth noting that in {(a), (e), and (f), the variance of ('7'i - 'Tj)

does not depend on n, but in (b), (c), and (d), the variance decreases

as n increases,

The Extension of Results

The variances of ('ri - 7.) have been obtained in general for the

case of two blocks where the number of treatments, the overlap,



the slip, and the number of observations per block are not specified.
Before proceeding with the discussion of confidence intervals and tests
of hypotheses for this case, the results will be extended to permit r
replications of each of the two basic blocks.

The statistical layout for the design under consideration is as

shown in Illustration V. Suppose now that the matrix X'X it NN?

272
for this case is designated by Ar in order to distinguish it from the
matrix A obtained when the design consisted of only the two basic
blocks. Then if X'ZX2 and NN' are multiplied out in the same manner

used for the case of two blocks, it is again possible to partition these

product matrices to obtain

/ | _

S s s s S
I q)n ‘q)s Js Jn q)s
J n n 1 n n n
Ar =T ¢S ZIn ¢s Tk Js 'ZJn Js
s 5 s s s
\js (pn I B Lips Jn Js_ :

1 _s 1 _s s
I- $7, - %7 9,
:1 n 2 .n 1l n
Ar-r --E.TS 21 - EJn 'kJs = rA,
1 _s ‘ 1 .s
¢ -EJn I-E'Js

~lt. . :
Now, if it is recalled that adding t .I't is just a means of

imposing the condition that 27;& 0 on the system AT = < thenAadding



ILLUSTRATION V

LAYOUT FOR THE SLIPPED-BLOCK DESIGN WITH
r REPLICATES OF TWO BASIC BLOCKS

Blocks

r blocks r blocks
/‘\_/\_.__—.—a.\

Treatments
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"'1 - t L~ -
rt Jt would impose the same condition on Ar'T =4, because r I "r_i =0

if = T, = 0. The notation 4, serves the same purpose as A.r does. If

1.t 1

-1 t - -
rt Jt is added to Ar’ .then Ar + rt Jt =r{A+t Jt ), and this means

- - - -l t -1
that r(A + t 1JE) 1»:—' r 1(A. +t J't) .- The net result is that replicating

each basic block r times divides all elements of the covariance matrix
of T obtained for r = 1 by r.

The only difficulty arising here is shc;wing that adding ,rt-lJz.to Ar
in order to solve the system Ar;’ =q, results in -7 having the same
expected value as it does when t'lJE is added to A in order to solve the
system AT = q. When the condition = ;1 = 0 is thus imposed on the

latter system, the vso,lution"’; =B 1q to that system is such that

1

E(T) = BllA,T. It is now necessary to show that imposing the same

condition on the system Aiﬁ: = q, by adding ,rt-lJtt: to A_.does not
change E(7).

If the system Ar; =q is considered, then from the preceding

1

-1 t, ~
discussion, this system is equivalent to.the system r(A +.t Jt)'r =q.

If this system is multiplied by the inverse matrix, then, by virtue of

Corollary 14.1 and the above results, the solution

T = (r'-lB + 1'“11:'-1.1t

-1 -1t
1 toTa, = (Bt T,

, ‘ 1
is obtained. Since Jiqr = 0 just as th = 0, this solution becomes

1

T o= Bllqr’ which corresponds to the solution;_ = Bilq‘obtained when
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r =1. Since E(q) = AT and E(7) = B, AT from Theorem 15, it follows

{(rA)r = B, AT,

‘that E(qr) =.Ar'r. Therefore E(’F) = r-iB A= rulB 1

11r 11

‘and this is exactly the same result obtained for r =1, Since the
expected values remain the same as théy were for b = 2, and the
inverse (2) is the same except for the factor rml, it is not difficult to
analyze the design when each of the two basic blocks is replicated r

times.

' Test of the Hypothesis TP F Ty T e BT,

Reference to the preceding section and to the discussion of the test
of this same hypothesis for the general two~way classification in the
fourth section of Chapter I revetals that the analysis of variance given

-1
in Table III can now be written as given below since (X!X.) =k 1

11 b

for the Slipped-Block Design. Note that with the assumptions made at
the end of Chapter II, the analysis of variance below is a general one
for all the Slipped-Block Designs considered in this paper, and not
necessarily just for a design with two blocks or r replicates of two

basic blocks.
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TABLE IV

AQV FOR THE SLIPPED-BLOCK DESIGN

Source _q__f_ _S_i
Total bk Y'Y
R(a; T) b+t-1 k-l'Y'Xle'Y +4'Bjq
R(a*) b Kty X, XY
R(T]|a) t-1 q'B),q
Error bk-b-t+l . . Y'Y - q'BHq - _k’lY KXY =E__

Since the distributional properties of the vector Y are the same as

1
q Bllcl has a non-central

2
o

given in the discussion following Table III,

chi-square distribution with t - 1 degrees of freedom and non-centrality

T'AT

262

If the hypothesis 7. = 7_ = ... = 71_is true,

parameter \ = 1 2 ¢

. ' IB ;
- then X\ =0, and 4 11cl has a central chi-square distribution with
2
o

t - 1 degrees of freedom. From Theorem 9,

1
4'Byq bk -b -t +1
E ) t -1

SS

~has a non-central F-distribution witht - 1 and bk - b -t + 1 degrees of

T'AT

20

freedom and non-centrality parameter If the hypothesis is
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true, this reduces to a central F-distrib,ut:io_n. Therefore v is compared
with the tabular value of the F-variate with the appropriate degrees of

freedom in order to te.stithe hypothesis T Ty T eee T e

A Computing Procedure for the Analysis of Variance

‘In an experiment involving even a relatively small number of
observations, the computation of the quantities represented by the
quadratic forms in Table IV is quite tedious. 'In the special cases under
consideration in this chapter, it is possible to derive a rather simple
computing procedure.

The computing procedure will be derived by using the inverse
gi\?e,n in equation (2) of this chapter to obtain the quadratic form for

R('rla),_’. q'B,.q, in a different form. Since the sum of squares fo,x"

11

R(a*) is simply the uncorrected sum of squares .forvblocks and Y'Y is
the tf,ota,l uncorrected sum of squares, there is no difficulty experienced
in computing these qué.ntities.in the ordinary manner. -The difficult part
of the computing would be inverting the t x t matrix (A +‘At— JE) in ordver

to obtain B,, and then q'B..q. However, if a different form for g'B

11 13 14

is obtained as described above, and if the sum of squares for error.

q and kY 'X XY from Y'Y, it can be

is oBtained by subtracting q,'B11 121

shown that the sum of squares for error is easily obtained without the
‘inverse (2). It-then becomes more practical to compute Y'Y,

vk‘h-lY'Xle'Y, and the error sum of squares directly, and then obtain
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ci"‘Bilq by subtraction,

If reference is made to the discussion of the X XZ’ and N

1’
matrices in the third section of Chapter I, and to the layout fg/i' the
Slipped-Block Design with two blocks in Illustration III, it is evident
that XiY is a b x l'vector whosé elements are the block totals, and

X'Z-Y is atx1lvector whose elements are the treatment totals. Further-

more, note that

1 1 1 S s S s
J1 ¢1 Js Jn ¢n q)s Js Jn q’n q’
n n 1 1 1 1 ‘n n n n
NXl' - 'Jl J.l ¢s q>n Jn Js | = 1J g Jn Jn Js
) s s 5 ) s
q)l ‘,Tl '(Ps ¢n Jn Js
B | R |

-1
Now suppose that the t x 1 vector q = 'X"ZY -k NXiY is partitioned

into sub-vectors ql, qz, and q3, where q1 is s x 1, qz isnx 1, and q3
is s x 1. Also partition the bk x lor (2s + 2n) x 1 vector Y into sub-

VeC_tOVI‘S»‘V]-, VZ’ V3, and V4, where V1 and V4 are s x 1, and V'2 and V3

arenx 1l. That is, the first s observations in block lare the elements

of V‘l’ and the last n observations comprise VZ. The first n obser~

vations in block 2 are the elements of V3, and the last s observations

are the elements of V This means

4°
1 v Vs
Js-vl-n and JS'-l-n
VZ v

are the block totals. '
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and V4 are the treatment totals

If it is noted that the elements of V1

for the first s and the last s treatments, respectively, and the elements
of (V2 + V3) are the treatment totals for the n intervening treatments,
it follows that the elements of these vect‘brs are the elements of X',Y.

' -1
Therefore, the sub-vectors of q = X!Y - k NX!Y are as follows:

2 1
-V, -k N
ql T T s+n v
' 2
- -’v —
‘ 1
. ; . -lmn \'A
(3) A=V ¥ Vi) sk Jonies | 2
‘ \'
3
V4:
V — e
~1_s 3
93 _V4 -k J‘s-l-,n
V4

-1 t ~1 ‘ _
From (A +t ‘Jt) as given in (2), and from the fact that the matrix

1

]311 = (A +_t"1JE)~1 -t J: by virtue of Corollary 14.1, . it appeé.rs that

e s -1t . . ‘
it is necessary to subtract t Jt from the inverse matrix in order to

obtain B., and then q"B

1 n% However, since J};q = q'J; = 0, it.is possible

: -1t = - :
to use either (A + t ]TJt) L or B11 to obtain the same result. The inverse

{2) is already partitioned in the same manner as q, so that by
performing the multiplication and making use of the relations

k=s+nandt=2s+n, the quantity q'B,, q simplifies to

11

' 1 s, 2 s 1 s -n
¥ - - Il ¥ — Iy 1 1
@ ViV 2 VTV e Ve T eV P YRVt am Ve



§~-n ., N ?;l
3'3" 2kn ViTaVsm ©V3

L VIV oo '
V4+V4V4 kV4JsV

::SI’—‘

e
2n3

Since Xl'Y has the two block totals,

1
s+n and J s+n

for its elements, it follows that the uncorrected sum of squares for

blocks, R(a*) = K hyx XY, is

1

1 s n s n . s s
5 — 1 1 b 2 H . i 1 1 .
(5) k(vleV1+V2JnV2+ V1JnV‘2+V3JnV3 +V4JSV4+ 2V4JnV3)

Subtracting.the expressions in (4) and (5) from Y'Y results in the
error term for the analysis of variance. Thus

Y'Y -k 1Y'X XY - g'B..q is.equal to

1717 11
1 1 1 1 1 n
) =V VIV VIV, - VI V! + 2V
(6) 2V2V2+VZV3V3 V23 "on anVz 2n' 370 V3 n 2'n V3

However, the lemma below shows that this is exactly the expression

for interaction in the n x 2 table composed of the vectors V2 and V3 .

LEMMA 2. The interaction in the n x 2 table composed of the two

nx1lvectors Vz.and V3 is as given in (6) above.

Proof: The table and the necessary totals are as shown below:

Totals

'VZ V3 V2-+ V3:

1., 1 1
Totals JnV Jan Jn(VZ + V3)
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‘The uncorrected sums of squares are given in (a}, (b), and (c).

(a) The total sum of squares for the table is V'ZVZ + .V'3V3 .

(V5 + VIV, +V )

(b) The sum of squares for the row totals is * 2
2

(c) The sum of squares for the column totals is

N 1 , 1 1
(VZJI) (JnVZ) + (V3J1) (JnV3)

n

(d) The correction factor for all three of the above is

1

n
+J V
n

. n 1
1] L
(VZJ1 + V3J1) (JnV

Zn

2 3)

If the multiplication indicated in (b), (c), and (d) is performed,
it then follows that the interaction in the table is given by subtracting
the sum pf the expressions in (b) and (c) from the sum of the expressions
in (a) and (d). The result is as shown in (6). This completes the proof.
The computation of the analysis of variance thus can be performed
rather simply for the case in which there are onlby two blocks. The
totabl uncorrected sum of squares, Y'Y, and the uncorrected sum of
squares for blocks, k'-lY "X1X‘1'Y’ are computed in the ordinary manner.
Then the error can be obtained by computing the interaction in.the n x 2

table composed of V_ and V3. Then the adjusted sum of squares for

2

treatments, q'B 1q, can be obtained by subtraction. This would com-

1

plete the analysis of variance table. The computing procedure is

illustrated in Example 1. 1In all the tables which follow in this paper,



a double line vyill be used to separate the observations from totals,

7tre.a.tmevnlf numbers, and block numbers.
/

Examplé 1.

Blocks
1. 2 ‘Totals
1 6 6
2 8 8
3 7 3 10
Treatments 4 4 5, 9
5 9 8 17
6 S 2 2
7 _6 6
Totals|| 34 | 24 58
‘ ' ' g2 2 2
The total uncorrected sum of squares is 6 + 8 + ... + 6 = 384.
2 2
347 4 ; 2
The uncorrected sum of squares for blocks is ————_‘5--—2-?——— o= 346 —

The n x 2 table composed of V2 and V.3 is shbwn below:

The total sum of squares for the table is
Totals 2 2

‘ 7 +3 +...+8,2=244.
7 3 10 : |
4 5 | 9 . The sum of squares for rows is
9 8 17
! ‘ 102 +_92 +1172 =.235.
- 20 16 36 >

The sum of squares for columns is

2 2
202 +16 =218 =«
— 3



52

2
The correction factor for the table is 366 = 216, and therefore the
. . . 2 1 '
interaction is 244 + 216 - 235 - 218 3= 6 3 The sum of squares

for treatments is obtained by subtraction so the analysis of variance
is as given in Table V. Note that a check could be obtained by using

(4) to compute the sum of squares for treatments.

TABLE V

AOV FOR EXAMPLE 1

Source d. f. S. S.
Total 10 384
. 2
Rfa, 1) 8 377 3
. 2
R(a*) 2 346 ¢
” , 4
R(T|a¥) 6 31,3
E 2 61-
rror 3
582

2
Since the sum of squares for the mean is = 336 E the more

10
familiar terminology for the various components of the table could be

used to write the following analysis of variance:
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TABLE VI

ALTERNATE AOV FOR EXAMPLE 1

:So,urce d. f. ; g S. 5.
Total 10 384
‘ 2
Mean 1 336 z
Blocks (unadjusted) T 10
: | | .
Treatments (adjusted) 6 31 3
‘ ' : 1
- Brror ‘ _ 2 L 6 Y

In the case of r replications of the two basic blocks, ‘the computing
procedure extends without difficulty?. The same procedure used for
obtaining the computingv‘technique,f‘or the two basic blocks will be

.e,mployed.. That is, it will be shown that the error sum of squares as

given in Table IV can be obtained more. easily than g'Bnq;_ Then q'Bllq

can be obtained by subt‘rac‘tio‘n«.
The layout for this case is given in Illustration V. It is necessary
: 1 . ! : :
to extend the notation used for two blocks to this .case. Let thé ‘ve‘c;tors

-»v»u,vvl-z, R Vlr be composed of'thé' first s observations in each of

, v v be composed of the last

227

the fifst r blocks and let V21’ V. 5

,V oo ,'V

n ob:servat‘ions‘in each of these same vblock;s. Let V3 3y

317 " 327

be ,éomposed of the first n observations in each member of the second
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group of r blocks, and letV, ., V » V,_ consist of the last s

41> "42° "7 4r

observations in each of these same blocks. Also let'Vj = ,21- Vji .
i=

Note that this definition of V_, VZ’ V3, and V

1 holds for the previous

4
case in which r =1,

With the above definitions for the ij' it is seen that the expr‘e‘s sions
for 9> q,> and 9 in this case are exactly the same as given in (3) for
the case in which r = 1. In view of the result Ar = rA obtained in the
third section of this chapter, it follows that R(7|a*) = q‘Bu q is
obtained by multiplying the exprgssion in equation (4) by r-!

Furthermore, the uncorrected sum of squares for blocks is readily

seen to be

- - g —-—

\' \'4
1 s+n 11 stn | 1r
-— 1 "4 . ] ' - !
(7) k Vi Vo) Js-ffn v T (Vlr Vor) Ysin
. 21 A4
_ 2r]
v v
_s+n 31 - - _84n 3r
' ' . oo+ (V! ' !
VLV e ' Vi Vir) Ysin
V ' V .
41 4r

Novs} consider the four tables shown in Illustration VI. T"he table
in (a) is the layout for the design under consiéeration. This table can
be compared with Illustration V to see the correspondence between
the observations and the vectors Vji . In (b) of Illustration VI is
the (n + 8) x r or k x r table coinpo,sed of‘the observations in the
first r blocks, and (c) is a similar table for the second group of r

blocks. In (d) is an n x 2 table composed of the sums .of the vectors



TABLES FOR COMPUTING THEiANALYSIS OF VARIANCE

ILLUSTRATION VI
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(2)
V11 V12 . LI 3 Vlr l
Va Vaz © Vor V31 V32, Vir
Va Vi Vir
(b)
Totals
i Vi2 : Vir V1
Vol Vaz Vor V2
v v, v oy
Jl 11 J]‘ O 12| J‘l A1 lr Jl 1
stn. V’Zl s+n VZZ s+n VZr s+n V2
(c)
' Totals_
Va1 Vi Viy Vs
Vg Viz : Vir V4
v v .
1 31| Jl 32 le 3r J—l
s+n V41» j si!-n' V42 s+n 4 stn V3_
(d) Totals
A
Va Vs 2T V3
J Vv J1 A\ J1 [V, +V
2 n 3 n- 2 3‘]




sz, and V as 1ndlcatea In tables (b), (c), and (d), the last row in
the table is composed be the totals ‘:of the corresponding co.lumns.»"

- If the interaction is ‘c,ornpu.ted for the tables in (b), (c), and (d),
the following results are obtained:

1 1 : 1 1 ‘ 1
(b) V11V11+V12 12 - +.V1r 1y +V21 21 .. +V

Zr 2r
v
s+n U
. 1 x5t ! 1
+ (V1 VZ)Js+n Vol V1V1 + VZV
' rk ' r
s+n Vu g+n Vlr
1 t 1 1 :
SV Ve e Vad v+ Vi Vol Ton [Van
. ' k ,
1 - 1 1 ! .. !
(c) VIV VAV e + VLV 4V V. VLV,
\'%
3
v: vy VIV, + VLV
+ '3 "4s+n ' 4 - '3'3 4" 4
rk- r
. 31 3r
.:s+n . .8+n |,
t ; ¥
Vo VT om V]t 2OV Vi
- _
' 1
VI l V' ]
(@ v2¥2atViVs, +('2J1+V31)(JV2+JV3)_
r 2nr
1 X7 '
VL VANV, 4 V) ) (VyJ )(J V,) + (VET )(J v,)
" 2r nr

If the expressions in (b), (c), and (d) above are combined with

the expression in (7) and ‘r_l

56

times the expression in (4), the final result
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is
8 1 | .. ) T 1 .. 1
(8) ViV T ViV * PV Ve TV t T VorVor

1 1 1 1
+V31V31 e +V3rV +V41V41 oo +V41“V4-r R

The expressionb in (8) is the total uncorrected sum of squares, Y'Y,
for the layout shown in (a) of Illustration VI, and, in slightly different
form, in Illustration V., Thus it has been shown that the sum of the
~uncorrected sum of squares for blocks, the sum of squares for treat-
ments, and the‘préposed sum of squares for error is. Y'Y, where the
proposed error is the sum of the expressions in (b}, (c), and (d). There-
fore,tfxe proposed error term must really be the error term as given in
Table IV. Since. this error term is the sum of the interactions »f:rom
three two-way tables; it is easily computed; and the computing
procedure for the analysis of variance is ndw apparent. The total un-
corrected sum of squares and the uncorrected sum of squares for blocks
can be computed in the ordinary manner, The error sum of squares can
be computed as the sum of the interaetions of the three ,btwo-way tables
in the manner described, and then the sum of squares for treatments
can be obtained by subtraction.. The\: procedure is illust:éatefc’[ in

Example 2; which will be given after the compﬁting procedures for

some more quantities are derived.
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Estimation of 7, - 7,
i

In the discussion preceding Theorem 14 in Chapter I, it was

determined that ; =B lq. Since Jiq = 0, it is also true that

1

1

~ -1t - ' ~
T =(A+t Jt) 1q. Therefore, under the restriction that Z'r:.l =0,

‘the solution T to the system of equations AT = g can be expressed in a

form that may lead to a computing procedure by forming the product of

1

-1t -
(A +t Jt) ! as given in (2) and q as given in (3}, Then, in order to

permit r replications of the two basic blocks, this product is multiplied
-1 _ .

by r . The results can be simplified by using the relationships k = s +a

and t = 25 + n in order to obtain the components of the vector 7 as shown

below in (9), (10), and (11).

~, 1 _ 1 _s | k _s '8 .8 el
©) mf =g LV - Iy Vo s o Ta Vot Ia Vsl where Ty

- ~

: ' -~ ; .
"Has elements T., T,y oee 5 T o °
’ : 1 2 s

1 n y 1 n ) i; e
:(V2 + V3) -'-ZjEJn(VZ + V3) - t—Jé(V1 + V4)] ; where %

H
] e

(10) 7 = =]

-~

Gy ees s T
s+1° Ts+2® " * Taqn

has elements 7

k : s _s v *
-r_ﬁ:_ JiV3 + ;1? JnVZ ] s Where 73

1 4)

3 e oo ; . Note thatthe SYI‘HbOl 'Ti

has el nts 7 1
as element 75+n+1, Ts+n+2 ¢

merely indicates a solution to the system AT = q. Under the restriction
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Z";i =.0 used to solve this system, it has been shown that E(;i) =(Ti - "7:-.»)9

Since the J matrices in the above expressions simply add the elements
of the corresponding V‘j, the computing procedure is not difficult. Let
Vll” VIZ’ eve 3 V1S denote the sums of the observations on treatments

- - denote

Iy 2, ou ively. v 5 see 5 V
1, 2, » S, respectively. Let VZ,s+1’ 2, 542 * V3 stn

the sums of the observations on treatments s + 1 through s + n, respec-

tively, in the first group of r blocks only; and let v

¢ &0 3

3, 541" V3,542

V3 gtn denote the sums on the same group of treatments in the second’
H

group of r blocks. Also, letv e eV, denote

4, s+n+l’ V4, s+n+2® 4

the sums of the observations on the last group of s treatments. It is

apparent that the v "y and v » where

1p? V2, s+q’ Vs, s+q 4, s+n+p

p=1,2, ... , sandq=1, 2, ... , n, are the elements of the vectors

Vl’ VZ’ V3, and V ,, respectively. Let Vl, Vs Vo and Vg denote the

4 3

sums of the v s respectively. Then

: d
Ip* V2, s+q’ V3, s1q’ and vy, s+n+p

the equations (9), (10), and (11) can be written in a form more adaptable

for computing as follows:

S | 1 k s .
(9%) T, = _1:.[‘,1i - E.(v1+v4) e v2‘+ — & 1, fori=1l, 2, ... , s.
e~ 11, 1 1

b3 = e —_ - — - = f
(10%) Ll [ 5 (VZi + V3i) 5 (vz +va) T (v +.v4_)], or

i=s+l, s+2, ... , s+n.

[

5%k - =
(11%) T T

i=stntl, s+n+2, ... , s+2n = t.
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The computing procedure for obtaining ;1 with the preceding formulas

will also be illustrated in EXampie 2.
Confidence Intervals

If reference is made to the section on confidence intervals in
Chapter 1, it is evident that confidence intervals on linear combinations
of the treatmentsb can be computed just as.they were for the general
two-way classification. The only difference is that the elements
bij of B11 in equation (14) of Chapter I could be replaced by the appropri-
ate expression from equation (2) of this chapter. Since this would
involve writing several different expressions for the bij’ it is simpler
to leave the confidence interval in the more general form of (14). The

actual procedure for computing a confidence interval is illustrated in

the following section,
An Example To Illustrate Cbmputing Procedures

The following example will illustrate the procedure for computing
the analysis of variance, testing the hypothesis that all treatments
are equal, finding es_timates of the T, = 7., standard errors of
estimates of treatment differences, and confidence intervals on linear
combinations of the treatments. Note that there are two basic blocks
in the example and there are four replicates of each of these, but

there is no difficulty caused by thinking of the design as having 8 blocks.



Example 2,
»
2
3
4
Treatments 5
6
7
Totals

Blocks

1 2 3 4 5 6 7 8 Totals
3|2 4] 7 16
7171 2] 4 20
s | 3| 8l 2 2| 8| 9| 7 47
4151 9| 5 61| 4] 3] 2 38
216 3] 6] 5| 1| 6] 3 #T 32

9| 8} 4| 2 23

6{ 7| 4] 3 20
24 | 23| 26| 24 | 28| 28| 26| 17| 196

(1) Computation of the analysis of variance
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The following tables and computations are labeled (b), (c), and (d)

in order to correspond to (b), (c), and (d) in Illustration V and the

results labeled (b), (c), and (d) immediately preceding the illustration.

The numbers at the extreme left of each of these tables are treatment

numbers, and the last row of each table consists of the totals of the

corresponding columns.

(b) Blocks

1 2 3 4 Totals
1| 3| 2|4 |7 16
A ERERERP 20
3083 |8 |2 21
4084|519 |5 23
s 216 |3 |6 17
24 123 |26 |24 || 97

2

2

37+ 2 +...+62=569

16% 4 ... + 174 _ 1915
7 1
24% 4 ... + 24% 2357
5 T 5
97% _ 9409 9
6" "0 C 103

= 478 —

3
4

= 471—2-

;]
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The interaction in the table is 569 + 470 i - 478 -?i - 471 — = 89 é—- .

20 4 5 10

'Note that the computations for each table proceed exactly as shown in

Example 1.
(c) Blocks
5 6 7 8 Totals 24 8%+ ... +3% =609
‘ |

3 121819 7}T 261 Vi3 26%4...20% 2055 _ 513 2
4 6|4 l3]2f 15] v, ¢ o
5 (5|1 |6 3“ P Vas o o28% ... w178 2533 _ 506 3
6 1918 4] 2f 23] v 5 > i
TS LT LA P tar 992 9son = 490 5=

28 | 28 | 26| 17 99 02 2

S o . 1 3 3 7
The interaction in the tabl.e is 609 + 490 50 " 513 i 506 = = 78 o

(d) (4) ~ Totals The (4) at the top of the table is to
3 21 26 47 indicate that each enti'y in the table is

4 |23 15 38
5 17 15 32

the sum of four observations. The |,

21, 23, and 17 are obtained by adding the

61 56 117

observations on treatments 3, 4, and 5,

respectively, over the first four blocks.
The entries 26, 15, and 15 are obtained by adding the observations on
the sa_me._trea_trne_nts over the last four blocks. The computation of the

interaction is given in the usual manner.
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2 2 ,
21 +26 + ... +15 2385 596—1
4 4 4
2
47+ 38 4+ 32 _ 4677 sga 2
8 8 8
2 2
61 + 56 6857 _ o0y 5
12 12 7 12
2 X
ur” 13689 .03 .
24 24 8 ' :
The int tion in the table is 596 — + 570 — - 584 = - 571 — =10 =
. e lnteraction 1in tne taple.ls 4 2! -§— - 3 - 13 = 7

The error is the sum of the interactions for the three tables. Hence

3 7 7 7
‘ i — 8 — — =178 — | 1T
the sum of squares for error is 89 o + 7 T +.10 T P Th?

2 2 2 s
total uncorrected sum of squares is 3 +2 + ... +3 =1178, the total

2 3 -
uncorrected sum of squares for blocks is 471 z + 506 3= 978 from .

2
2
(b) and (c), and the correction factor is o = 960 3 Therefore, the

analysis of variance is as given in Table VII.
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TABLE VII

AOV FOR EXAMPLE 2

Source d.f. | S.S. M. S.
Total 40 1178
2
Mean_ : 1 960 “g
. 3
Blocks (unadjusted) 7 17 3
Treatments (adjusted) 6 .21-,é 193—1'90
reatments (adjuste T 7 = L
, : T 271
] ‘ e —_— = 6,8
Error 26 178 5 6 53 6.87

Note .that the computing procedure for this case is consistent with
that used in Example 1 for the case in which r = 1. Ifr =1, the
interactions computed for the tables in (b) and :-(c) are zero, and hence
' only table (d) would be used. The computatioﬁ of the interaction for
the table in (d) is ,exactiy the same as in Exe;mple 1, so that the cése in
which r =1 is sifnply a special example of the case now under
consideration. The treatment sum of squares in the above table was
obtained by sub£raction. If a check is desired, r-l times the expression
in equation (4) affords a direct computation of the sum of squares for

treatments.

(2) Test of I—IO: 71=72,E ver =T
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1.90

6.87 =0.277 is com~

In order to test this hypdthesis, ‘the number

pared with 2.47, the tabular value of the F-variate for 6 and 26 degrees
of freedom at the 5 per cent level. _Since 0.277 is less than 2. 47,

there is no evidence to reject Ho’w*

(3) Computation of the standard errors

Since the error mean square is an unbiased estimate of 0"'2 by virtue
of Theorem 7, the standard e.rro?s of the estimates of the treafment
d’ifference.s, {-}J, are o;b,tained by substituting the error mean square
for o-z,in (a), (b), (c), (d), (e), and (f) of the second section of this
chapter, and then extracting the square root of the result. Since _theé'e

: cr s , e - -1
expressions were for r =1, it is necessary to multiply them by r ,

“4which is —i— for-this example., Sincen =3, k=5,t=7, and s = 2, the |

following results are obtained for the squares of the standard errors:

(a) fi=1, 2, andj=1, 2, i £j, then the result is 20% =13, 74,
. . .o -2.3 1
(b) 1fi=1, 2, and j = 3, 4, 5, then the result is o (-é-v-l- 31-1) =11, 45.
| . : | . a2 2
(c) Ifi=1, 2, and j = 6, 7, then the resultis ¢ (2 + = ) = 14. 88,
(d) 1fi=3, 4,5,and j = 6, 7, then the result is the same as

obtained in (b).
. _ ~2
(e) fi=3,4, 5, and j =3, 4, 5, . i {: j, then the result is ¢ =6,87.

(f) Ifi=6, 7, and j = 6, 7, i.F j, then the result is the same as

obtained. in (a).



66
The standard errors are the square roots of the results obtéined

above.

(4) Estimation of T, =T

If reference is made to the columns of totals in tables (b) and (c)
of this example, it is seen that these row totals are the values of the

v..'s needed to substitute in equations (9%*), (10%*), and (11*) of this
ij - '

chapter in order to estimate ('ri - . )s This is indicated by the vij“s

at the right of these columns. From these values, vy = 16 + 20 = 36,

‘VZ =21+ 23 + 17 = 61, v3 =26 +.15 + 15 = 56, and vy =23 + 20 = 43.
Substituting these values and the values for k, s, n, t, and r gives the"

following estimates:

47

',?,1= %[16 - }7.'(795 - -g—l(él)+ %(56)] = %-[ 16 - %]z Y
';Zt:zl.[zo-%q-]‘:-%

;3~ %[511(47)- L) g (19)] = [ - 22 )= oL
5 il 300~ P 1=- 5

;6;_; %[23 _71(79)-%-(56).+ —2—1(61,)]=£«[ 23 - 33_5']: _Zéz'i
,;7=%_[zo- 3—’%‘?]= %2
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Recall now tha.t under the assumption that > Ti = 0, which was used

to solve the system AT = g, E(7.) = ('7'i - T, )» so that the above results

[

are unbiased estimates of»('ri - ;’) The assumption used in solving
AT = q also afford_s a check of the above computation, since the sum

of the above estimates must be zero. If an estimate of a linear
combination of the T, is desired, say ' = e 'r_i, then = c: ;i is used as

an estimate. Also note that 7 ‘ q=q'B a4 = R(’T[a*)a Therefore, if the

1

-~

"r‘i are computed, this is another means of obtaining the sum of squares

. -1_t
for treatments without finding the inverse of A 4+t 1Jt .

(5) Confidence Intervals

Suppose that a 95 per cent confidence interval is desired on Ty = Tge

Reference to equation (14) of Chapter I shows that this means ¢y =1 and

¢, = -1, so that % c, = 0 as required by Theorem 1l. The standard error

2

E . ssc.cb.. for atreatment difference involving one of the first
m i i) .

s treatments and one of the trea.tmé‘hts numbered from s +I:1 to s + nis
the square root of the result givén in (b) of the computation of standard
errors. Hence, for this case,. it is \{11.45 =-3.39. Also

5 51 _ 19

‘72 - T = ;2 - ;5 == + =z = 54 =0.79, and since the tabular value

of the t-variate with 26 degrees of freedom at the 5 per cent level is

2.056, the desired confidence interval is as follows?
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0.79 - 2.056 V11.45 < Ty = Tg % 0.79 + 2.056 Yil. 45

2 7'5_. 0.79 + 6.95

- 6.16.‘.72 - T £ 7.74

0.79 - 6.95 ¢ 7

This completes the éxample illustrating the computing procedure for
the analysis of the case involving r replicates of two basic blocks for

r =1,



CHAPTER IV

THE SLIPPED-BLOCK DESIGN WITH TWO OR MORE
BLOCKS AND OVERLAP OF ONE

| o=l
The Derivation of the Matrices A, A*¥, and (A%¥)

When the General Slipped-Block Design was defined in Chapter II,
it was stated that no simpler analysis of it would be given in this paper
other than the analysis available by treating‘,_it as a general two~way
classification. It was also stated in Chapter II that all the 'Slipped-
Block Designs considered in this paper would have kj = k observations
in each block. In addition,.it was assumed that for any two a.dja,cen_t
'biocks,_the slip would always be s, and the overlap would always be n.

In Cha.pfer iII, an analysis of the Slipped-Block Design fbr,ifWo
basic blocks:and r replications of the two basic blocks was given. This
-analysis . is valid for any values of s, n, k, and t. Naturally, it is de=
sirable to extend the analysis to designs having more than two basic
blocks. In this chapter, the designs under consideration will'ghave two
or more basic blocks, but the overlap will always be one. By refer-
riﬁg to propefties (7) én_d (8) in Chapter II or observing the s_ta,tisfical
,la,yo,l‘_it‘_of this design as shown in Illustration VII, it is evident that the

relations k = s + land t = (b - I)(k = 1) + k = bk - b + 1 must held for

69
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70

THE SLIPPED-BLOCK DESIGN WITH OVERLAP ONE

\

Blocks
1 2 b-2 b-1
x
X
k-1 .
X X
X
k~1 8
s
Treatments x
x | x
X
X

k-1
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this case.

. 'The procedure for determining the matrix A = X"ZX2 - k;'1

NN is the
same as described and carried out in detail in Chapter III. 'If this pro-
cedure is used again, the final result for A is as shown in Illustration
VIII. No,te that if A is partitioned in the manner indicated in this illus-
“tration, then all except the last row and column of submatrices ‘have
dirnensions (k -~ 1) x (k -~ 1), and the submatrices in the last row and
column have dimensions k x k.

" Now suppose that the last row and column of A are ,deleteéfz In "V'-:iew
of the results given in Chapter I, this is equivalent to using the vector
Xt = {0, 0, ..., 0, 1) to impose the condition ;t = 0 on.the system
AT = q. If the last component of the vectors 7 and q is elirhina,te.d—, .then
the system of t - 1 equations in t - 1 unknowns, Aok = q**, is obtained.
"~ The elimination of the last row and column of A to obtain A% means Bk
consists ofwb2 submatrices, and each of these submatrices has
dimensions (k = 1) x (k - 1), If these submatrices are denoted by A.;“j*,
“where the i and j denote the row and column of submatrices in which

A’;f}" appears, then A%* can be represented as shown below:

k-1

NE CA KK e —'dl»
{1) - (a) ‘A'11 =k [ kI - Jk-l‘]
_ . ’ ) -
2k - 2 ~J
. ( i T2
(b) A¥% =k fori=2, 3, ..., b
i J_k_,z KT J’k-Z
- ::1 AL e k-z
L _

(c) A%k =kl ‘-Jlf"l

k-1 .
l,i+1 ¢k-2] fOl‘l—l, 2,,...- 9 b"'l
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ILLUSTRATION VIII

12

THE A MATRIX FOR THE DESIGN IN ILLUSTRATION VII

k-1 -1 -1... -1
1 k-l

(k=1)x *. (k=1)
: -1
-1 1., -1 k-1

-l

-1 0 0...0
-1 0 0...0

o (k-D)x(k-1)

10

0...0

2k=2 -1  -l...-1

"1 k"'l "'lt . "‘1
(kul)x(k~1) .

. -1

-1 -l...-1 kel

-1 -1... -1

,—1‘ 0 Oo e 0
-1 O O. L O
. (k-1) xk

-1 0 o0... 0

"]. "1- e : "'1 Zk“z "1 . "'10 o -1

0 o... 0 -1 k-1 -L... -1
0 Ou‘- . 0 T

‘. kox(k-1) . kxkn1

0 0..-. 0 -1 -1... -1 k-1
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-
~J

‘ -1 k-1

@ Apt =k for'i=2, 3, «u. , b
tsi=t ¢k-2
' k-1l

s k-1 s
(e) ,A;‘J."‘ = ¢k 1 except for the preceding cases.

In order to determine (A*‘*)-l, it was aséumed that the ,inv*erse was
of the same general form as‘ A*¥, Observation of several examples
indicated that tﬂe (k=1 x(k = 1) suBma_trices of (A**)“1 could be repre-

" sented as shown in equation (2) which follows. Note that throughout this
discussion, b .denotes ;the number of basic blocks in the des}ign, and i
and j denote ',the row and column of submatrices, not the .indivi@ual‘ rows

and columns of A%¥ or (A**)-lo

k-1

@) (a) (A% =[T+(2b- 204137 ]

. -l k-1 k-1 ' )
sesk - - . - . w3 L
(b) (A;J ) [ (2b - 2]+ 2) I (2b - 2j + 1) Jk_z] for'i 4‘_].

| 1
2b - 21 + 2)
( v,

-1
() (A¥HD =
H (2b = 2i +.1) Jt‘z

I a, -1 3 X .
;[(A%ﬂ It fori >j

In order to .clarify the ,notatio,n!usec‘i for A% and ,(A**)“1 , three
examples are given in Illustration IX. The same basic block size, k=4,
was used for all three examples so that it would be possible to see that

(A**)-l for b = 2 is a submatrix of (A**)‘-1 for b = 3, and that the latter

matrix is itself a submatrix of ,('A**)-.1 for b = 4. Note that the scalar
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ILLUSTRATION IX

SOME EXAMPLES OF A #% AND (A#%) ]

te e -1
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CIf

on each example of the A** matrix.

There is a coefficient of 1]%

the design included r replications of each of the b basic blocks, then

each element of A** would be multiplied by r and each element of (A,**)"1

-1

would be multiplied by r
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element in the first row and first column is 2b in each case. With this
element as the starting point, it is quite simple to write out (A*"“‘)"f]fJfor
any block size, any number of basic blocks, and any number of repli-
cations of the b basic blocks. This will prove to be of some use in later
developments,

It will now be shown that (A**)-l as given in (2) is the inverse of A%%,

* “The procedure will be to show that the product of the two matrices is

'Ibk b= -It 1° The multiplication is divided into four cases as follows:

Case I, The multiplication of the first column of (A**)"1 by the first row

of A¥%,

(a)  The multiplication of the first column of (A.**)-]f by.the first row of

AT \

b - e
This product is =  (A%%)(A%*) 1 , but since all the A¥* are null
j=1 i 0o

except the first two, the result is _ -
(2 -2) 3.,
«l k-1 : k-1 -1, kel kel Tt
k[T - :rk_l][:[ +(2b = 1) Jk_l.] +k [ -;[1 ¢k__2] ol
and this product simplifies to o -

kal

k-
- T
k-1

: k-1 ‘
~The combined coefficient of Jk 1 is zero, so,that the above expression

becomes.,k-l[ kI ] =L _q° which is the desired result.

1

: -1
(b) The multiplication of the second column of (A**) by the first row
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of A%k,

In the remainder of this proof, it is best to partition the submatrices
to a greater degree. The partition-ing will always be as shown in the |
matrices below. In the future, no dimensions will appear on the J

matrices. In this case, the product is

TR 1777 1 1]
, (k - 1) Jl _..Jk_!z (2b = 2) Jl (2b -~ 3) thz
1
k , : v
k=2 ka2 k-2 k=2
- ] - J -2 2D =~
! K-TJ | | B-20 (26 =3) 0y 2
Qs_‘ i : : wed
1 1 B 1 1 7
| o] [@-2s @easl,
+k” ‘
- . k<2 k-2 k-2 k=2
—J,l q)k—Z (2b - 3) :1 I+ (2b - 3)ka2 .
e 1 1 k-2 k-2 . .
The coefficients of Jl R Jk_-Z’ Jl s and Jk-Z are as.listed.in (1),

(2), (3), and (4) below, except that the factor k~! is omitted. Through-—
out this br*oof, the coefficients of these same matrices will be given in
this order. Any éther coefficients listed will be identified as they occur.

(1) (k= 1)(2b = 2) - (k =~ 2)(2b - 2) - (2b -~ 2) = 0.

(2) This is the same as (1) ‘with 2b - 2 replaced by 2b - 3.

(3) =(2b = 2) + k(2b = 2) =~ (k =~ 2)(2b =2) = (2b - 2) =0,

(4) This is the same as (3) with 2b ~ 2 replaced by 2b - 3.

(c) The multiplication of the qth column of _(A.**)*l by the first row of -
A*%, where q =3, 4, «aey b =1,

Here the product is
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k -1)7 -7 (2b - 2q+2) T  (2b=«2q+1)7J
K | |

-J k[ - J (2b - 2q+2)J (2b-2q+1)J

-7 9 (2b-2q+2)J  (2b-2q+1)7
w7 '

-7 0 (2b-2q+2)J  (2b-2q+1) 7|,

- | ¥ L

and the coefficients are as follows:
(1) (k .-  1)(2b - 2q +2) - (k - 2)(2b - 2q + 2) — (2b - 2q+2)=0
(2) This is the same as (1) with 2b - 2q +.1 replacing 2b - 2q + 2.
(3) -(2b - 2q + 2) + k(2b - 2q + 2) - (k - 2){2b ~ 2q + 2) - (2b-2q+2)=0.
(4)  This is the same as (3) with 2b - 2q + 1 replacing 2b - 2q + 2.
Therefore the multiplication of each column of (A*’");‘1 by the first
row of A** does give.the firstk - 1 rows of I =1 . . This is the

bk-b ~ “t-l

desired result.

Case II. The multiplication of the pth column of (A*’“)-1 by the pth row

of A*¥¥, wherep =2, 3, ... , b ~1.

b } | :
Here the product is X (A%*%)(A%%) L , but since all but three of the
q=1 P4’ 9p

submatrices of A%* are null, the only values that g assumes are p - 1,
p, and p +1, Hence the product is

-J . -J | (2b -~ 2p+2)7J (2b = 2p +1) J

0 ¢' l@b-2p+2)7 (2b-2p+1)J
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(2k =~ 2) T -J (2b-2p+2)J (2b=-2p+1)7
e o |
~F kI-J| | (2b=-2p+1)T I+(2b-2p+1)7J
-7 0 [ (2b - 2p) T (2b - 2p) J
+.k-1 ,
-7 ¢ (2b-2p-1)J  (2b~-2p-1)7 |,

and.the coefficients are shown below with the coefficient of L2 given in

(5).
(1) =(2b - 2p+2) - (k - 2)(2b ~ 2p + 2) + (2k - 2)(2b - 2p +2)
“(k - 2)(2b - 2p + 1) - (2b ~ 2p) =k |
(2) -(2b -2p+1) - (k - é,)(Zb = 2p+1) + (2k - 2)(2b - 2p + 1) - 1
-(k - 2)(2b =~ 2p + 1) = (i?.b - 2p) = 0.
(3) =(2b - 2p + 2) + k(2b - ép +1) - (k =2)(2b = 2p +.1) - (Zb-zp);—o
(4) =(2b - 2p +1) +k(2b - 2p +.1) = L = (k - 2)(2b = 2p + 1)~ (2b-2p)=0.
(5) k ‘}
Since the ‘coefficient,kfl is being omitted in the above, if the combi-
nation of the results in (1) and (5) is multiplied by k"1 , the result is Ik-l'

This is the desired result.

Case III. The multiplication of column q .ofv,(A**)i-1 by row p of A¥*,

where ¢ =2, 3, .,. , b=1, andp=2, 3; ... , b =1, butp ¥ q.

(é,) . The multiplication in which the first non=null submatrix in row p

' -1
of A** matches with a submatrix on the diagonal of (A**) ', i.e.; p=qtl.



This product is of the form

and the coefficients are as follows:
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-J -7 (2b - 2q+2) J (2b ~ 2q+1) J
-1
k |
0 ) (2b - 2q + 1) J I+ (2b -2+ 1)J
(2k = 2)J =T |[2b -~ 2(qtl) + 2] T [2b - 2(qF) +2] T
st |
R KI ~J| |[2b - 2(q+l) +1] 7 [2b = 2(q+l) + 1] J
S 0 | |[2b -2(q+2)+ 2] 3 [2b - 2(q+2) +2] J
st -
| -7 O | |[2b = 2(q+2) + 1] T [2b - 2(q+z ) +1]

(1) =(2b = 2q + 2) ~ (k - 2)(2b = 2q + 1) + (2k - 2)(2b ~ Zq)

~(k - 2)(2b - Zq -1) - (2b - 2q - 2)
(2) ~(2b = 2q+1) =1~ (k - 2)(2b = 2q.+ 1) + (2k - 2)(2b - 2q)

~(k = 2)(2b - 2q - 1) - (2b ~ 2g -~ 2) = 0
(3) =(2b - 2q) + k(2b = 2q =~ 1) = (k = 2)(2b = 2q = 1) = (2b = 2q ~ 2) =0

(4) This is the same as (3).

(b} The multiplication in which the second non~null submatrix in row p
of A** matches with a submatrix on the diagonal of (A%¥)" In this

case p = q, and this is-Case II.

(¢) The multiplication in which the third nen-null submatrix in row p

of A** matches with a submatrix on the diagonal of (A**)T y le€.y

p=q-1L
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‘'This product has the form

I -3 | [(2b-2q+2)7] (2b - 2q +1) J
-1 ’
k |
() 0 (2b - 2q +2)J (2b. - 2q +.1) J
. p— L. e
(2k = 2) J 1| |(2b-2q+2) 3 (2b - 2q +1)J
-1
+k |
~J KI-J] |(2b-~2q+2)7 (Zb - 2q + 1) J
-7 01 [(2b-2q+2)73 (2b - 2q +1) J
=1 ‘ ‘ ."\
+ k W L
-J R (2b = 2q+1)J I+(2ba=-2q+1) JJ s

and the coefficients are as follows:
(1) -v_(Zb - 2q + 2) - (k - 2)(2b - 2q + 2) + (2k -‘2)(2b - 2q + 2)
-(k - 2)(2b - 2q + 2) - (2b -~ 2q + 2) =0
(2) This is the same as (1) if 2b - Zq + 2 is replaced by 2b - 2q +'1.
(3) =(2b=-2q+2)+k(2b~ 2q + 2)-(k - 2)(2b - 2q + 2) ~ (2b-2q+2)=4.

(4) This is the same as (3) except that 2b - 2q + 1 replaces 2b—2q+2.

(d) The multipvlication in which all three non=-null submatrices in row p
of A%* match with submatrices above the diagonai of (A**')_l, i.e.,

pé q“z,a

. , ‘ -1
In this case; all three submatrices of (A**) ~are the same so that

it is possible to add the non-null matrices of A¥* to obtain the product
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(2k = 4) J 23] [(@b-29+2)7 (2b - 2q +.1) J
-1 ‘
-27 KI = J (2b -~ 2q +2)J (2b - 2q +1) T | ,

and the coefficients are as follows:
(1) (2k - 4)(2b = 2q + 2) = 2(k = 2)(2b - 2q + 2) = 0
- (2) This is (1) with 2b - 2q + 1 replacing 2b -~ 2q + 2,
(3) =2(2b = 2q + 2) + k (2b = 2q + 2) = (k = 2)(2b = 2q + 2) = 0

(4) . This is (:3) with 2b ~ 2q + 2 replaced by 2b ~ 2q + L.

(e) The multiplication in which all three non-null submatrices on row p

of A** match with submatrices below the diagonal of (A%%) ~, i,e.,

p2 g+ 2. Letm be the column of A**‘Which contains the first non-null

‘matrix.

Then the product has the form

—

-7 -7 (2b = 2m +.2) J (2b - 2m +2)J
-1
k
0 0 (2b-2m + 1) J (2b - 2m + 1) J
‘v(21< -2)7 -7 [2b - 2(m+1) + 2] J [2b - 2(m+1) +2] J
bt
-J kl=-J [2b ~ 2(m+1) +:1] T [2b = 2(m+1) + 1} T
-J 0 r[zb - 2(m+2) % 2] 7 [2b ~ 2(m+2) + 2] T
7 | |
-J 0 [2b - 2(m+2) +1] T [2b - 2(m+2) +1] J
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and the coefficients are as follows:
(1) -(2b - Zm +2) - (k - 2)(2b - 2m +1) + (2k - 2)(2b - 2m)
~(k - 2)(2b - 2m - 1) - (2b - 2m - 2) =’-_o, ,
(2) This is the same as (1).
(3) =(2b - 2m) +Kk(2b - 2m - 1) = (k - 2)(2b - 2m = 1)=(2b - 2m - 2)=0

(4) This is the same as (3).

Case IV, The multiplication of each column of (A**)m1 by the last row

of A¥%,

. . th ey
(2) The multiplication of the g column of (A**) =~ by the last row of

_A_>l<”.<, where q= 1, 2,, eee 3. b = 2.

Sincé all the submatrices of A** for this case are null except those
in the ,:lasf two columnsg,? ..thies,e.:'non-null submatrices of A** will always
match with the last two submatrices in each column of ‘(A.**)-1 . For the
first b - ‘2 columns of (A**)_l, the submatrix in row b ~ 1 is the same
in every column, and so is.the submatrix in each column of row b.

From part (c) of equation (2), or from Illustration IX’, it is seen that
2b - 2(b = i) + 2 =4 aﬁd 2b - 2b + 2 =2, Therefore the product is of

‘the form

- J -7J 43 43 2k = 2)J -7 2 .27
=1 o -1
) o |33 37 -7 KI-J|]|3 gl

and the coefficients are as follows:
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(1) =4-3k-2)+2(2k~-2)~-(k=-=2)=0
(2) ' This is the same as (1).
(3) -2+k =~ (k-»2)1=0,

(4) This is the same as (3).

(b) The multiplication of column b ~ 1 of (A**)m1 by the last row of A¥%,

Since 2b =~ 2(b = 1) + 2.4 and 2b - 2b + 2 = 2 as in (a}, the product

is of the form

-3 -J 47 37 2k -2)J3 -7 |27 23

kwl , {-k—l

0 0 37 1437 -J kI-J||J J
and the céefficients are as follows:
(1) =4 -3(k -2)+2(2k ~2) - (k~2) =0
@2) -3-1-3(k-2)+2(2k=-2)-(k=2)=0
(3) =2+ k'~ (k~2)=0

(4) =2 +k=(k=-2)=0

=1
(c) The multiplication of the last column of (A**) ~ by the last row of

Ak,

The product is of the form
-3 -7 213 7 ek -2y -7 |23 J
-1 -1

0 ¢ 21 J -J kI-J J I+7 ],



84

and the coefficients are shown below. The coefficient of Ik-Z'is given
in (5).

(1) =2 -2(k=-2)+2(2k-2)-(k=-2)=k

2) ~1=(k=2)+(2k=-2)=-1=-(k=2)=0

(3) -2+k-(k=-2)=0

(4) -1+k=~1=-(k=-2)=0

(3) k

Since the factor 'k-1 has been omitted in each of the above, combining
the results of (1) and (5) with this factor and the fact that the coefficients
in {2}, (3), and (4) are all zero gives the product Ekml » which is the de=
sired result.

Consideration of part (a) of Case I, Case II, and part (c) of Case IV
shows that when column p of .(A’f‘*)-?1 is multiplied by row p of A"-‘*., the

(k = 1) x (k - 1) identity, I is the result. The combination of all re-

k-1’

-

maining cases and parts of éases show that when column q of (A%%) ~is
multiplied by réw p of A**¥, where p ¥ q, then the product is the

; L ~1
(k - 1) x (k - 1) null matrix, § This shows that the matrix (A%*%)

k-1"°
defined by equation (2) is the inverse of the matrix A** defined by

equation (1). This co,mpleteé the proof that (A""“)(A**)-'1 :Ibk b= It 1-

The Variances of Estimates of Treatment Differences

From Theorem 15, it follows that the solution T to the system of

equations AT = q is such that E('F) =T, 7T, if the restriction ;t =0 is
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imposed on the system in order to obtain a unique solution. A theb,re_m
similar to Theorem 16 shows that if B?‘l‘i'f :(A**)-l . then Cov (§)= &ZBif‘l”"-,

so that o—‘zvtimes_;the diagonal elements of B”ﬁ“ gives the variances of

2, . ' .
Ty = Ty and o times the off-diagonal elements gives the covariances of

(ry =7 end (7, - 7)), where i § .

The above results will now be ,used_to‘ﬁnd.;the variances of the esti-
mates of treatment differences. Note first of all that the b ~ 1 treatments
with numbers k, 2k - 1, 3k = 2, ..., [(b = 1)(k - 1) + 1] all appear twice
,since.gthey appear in both the basic block numbered .é.and-_the basic block
numbéred a + 1, respectively, fora=1, 2, ... , b - 1. All other treat-
ments appear in only one basic block. Also note that those treatmve,nts
that appear twice correspond ,_t‘o ,‘.,th-e,firs,t element in a submatrix on the
diagonal of (A**)“1 » except that no treatment which appears in two blocks
corresponds to the first eleme,nt‘ of (Ai"l* )-1. There are b of these
(k = 1) x(k - 1) submatrices in B_i“l* » and there are b basic blocks in the
dbesi»gn.. With these remarks and those of the preceding paragraph, the
vai'ia,nqes of the estimates of treatment dvifferences can be determined

by considering two cases:
Case I. Two.treatments appearing in the same basic block.

Suppose the two treatments are in block number p. - Throughout the

remainder of this section, block will refer to basic block, Then
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dZ(A;:;)_l is the covariancé matrix for -treatm ents numbered from

plk = 1) - (k - 2) through p(k - 1)+l,. which is a total of k - 1 treatments,
‘A s noted above, the remaining treatment in block p also appears in
block p + 1, and this treatment corresponds to the first diagonal elemgnt
)-1

in (A%%

p+l, pHl . Hence, for the first k « 1 treatments in block p, if i+j ’
" g »

N\ 2 2
Var (7, - TJ.) =6 [ 2(2b=2p+2)=2(2b-2p+1)]=25.

For treatment number k in block p, i.e., j=pk -p+1,

PN ‘
Var (1, -v'rj) = d‘z[ 2{2b-2(p+1)+2} -2{2b-2(p+1)+1}= 202,

Therefore it makes no difference in the variance if a treatment appears
in two.blocks, for the va.,rianjcelof'(q"i - 'TJ.) is 20‘2 for any two treatments

which appear in the same block,
Case Il. Two treatments appearing in different basic blocks.

Suppoée T is in block p and Tj is in block q, where p < ¢, and con-
sider the folldwing:
(a) .If T, is one of the first k - 1 treatments in block p, then

7\ .
Var (Ti ~T,) = 0'2.(\;b - 2p + 2)., If Tj is the first treatment in block q,

t

; N
then it is also the last treatment in block g - 1. Then Var ('Tj - 'rt) =
N

iTj - 'Tt] =‘o‘2-(2b - 2q + 2), and therefore

2 N
o (2b = 2q + 2), Cov [ Ty " Ty

Var ('7'i - 'rj) = o-z['Zb-.- 2p+ 2+ 2b « 2q+2 - 2(2b - 2q + 2) |

= 202(q - P)-
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(b) If T, is one of the first k - 1 treatments in block p, and Tj is one

of the middle k - 2 treatments in block q, then

H

N 2
Var (7, - Tj) o [2b~-2p+2+2b-2q+ 2 -2(2b - 2q +1)]

‘ 2
=20 (g -p+1).

(c) If T, is one of the first k - 1 treatments in block p, and Tj is the
last treatment in block g, and hence the first treatment in block q +.1,
then

/\ 2 o . .
Var (r, - T) = [2b-2p+2+2b-2(qtl) +2 =22 {2b - 2(qtl) + 2} ]
2
= 20' (q - p +:1)¢

(d)l, If TS is the last treatment in block p, it is the first treatment
in block p + 1, and therefore

Pl 2 . 2
Var (1, -7) =0 [2b~2(p+1)+2]=20 (b=p)

Therefore if 'Tj is as was considered in (a), (b), and (c), the results
are as given below. These results are labeled to correspond with the
precading (a), (b), and.(c).

0‘2 [2b-2p+2b=-2g+ 2 - 2‘(Zb - 2q + 2)]

I

N
() Var ~(’Ti - Tj)

2
20 (g -p - 1)

If

(b) Var (r, - T.) o-z.[ 2b ~ 2p + 2b= 2q + 2 - 2(2b - 2q + 1]

2
2o (q = p).
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() Var(r, =T.)=c [2b=2p+2b=2(q+1)+2-2{2b-2(qH)+2}]

]

2
20 (q - p).

The results of Case II indicate that if T, appears in block p, but not
in block p + 1, and if T-j appears in block q, but not in block q ~ 1, then
PN PN
Var ('Ti - 7'3.) = ZUa(q - p +1). Since Case I shows that Var ('ri - 'rj')_ for
: s R/ N
two treatments in the same block is 2¢°, the only values that Var (*Ti-c'rj)
| 2

2
assumes areZo-z, 46 , ++.., 2boc , where b is the number of basic

blocks in the design, and there are mnoireplications of the basic blocks.
The Extension of Results

Since there are no degrees of freedom for error in the design given
in Illustration VII, it is. useful to ﬁo,te that if each of the b basic blocks
is réplicated r times, then each element of the matrix A is multiplied
by r, which is the same result obtained for the design in Chapter 11,

Hence, if the matrices are denoted by Ar and A;‘"* when r > 1, it follows

that A = rA, A;‘j* = rA%¥, and (A;F’f")“1 = J:ml(l_lk”"“)nl . This resglts in
the variances obtained in the preceding section being divided by

rif r > 1. This result was noted in Illustration IX., A similar procedure
to that used in the third section of Chapter III - would show that E(';) does

not change when each basic block is replicated r times.
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Test of the Hypothesis ™ =S¥ = ... =T

The analysis of variance table for testing this hypothesis in the
case now being considered is exactly the same as shown in Table IV

except that R(7|a) = g¥* 'Biﬁf‘ g** instead of q'B 19 All the distributional

1
properties remain the same also, so that the test of the hypothesis is

carried out in exactly the same manner described previously.
A Computing Procedure for the Analysis of Variance

It was mentioned in the preceding section that the only difference in
the analysis of variance table for this case and the one given in Table
IV was that R('rla) = q**‘Bﬁ* g**, For any specific example, it is not

used in

as difficult to obtain B"ﬁ“ as it is to obtain the matrix ‘Bll

Chapter III. However, it is desirable to derive a computing procedure
for the analysis of variance which does not require the inverse or the
g** vector, for there may be instances.in which a test of the hypothe-.
sis that all the treatments are equal is the only result desired. Since
it happens that a .sirﬁple computing procedure for the analysis of vari-
ance can be developed, it will be given. However, if estimates of the
treatments are desired, it is easier.to obtain Bﬁ* and g** to compute
such estimates.
The derivation of a general expression for q**‘B"ﬁ< q** correspond-~

ing to the expression for q'B 14 in equation (3) of Chapter III is ex~

1

tremely long, Therefore a different approach in obtaining a computing
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procedure for,i:hea,nalysis of variance is preferred. This computing
procedure will involve treating each ofﬁ the r replicates of the b basic
blocks as a separate randomized block. The sum of squares for error
and for treatments .in each of these randomized blocks can then be com-
puted in the usual manner. The sums of squares for treatments from
these b randomized blocks will be pooled in order to obtain the sum of
squares for treatments in the Slipped-Block Dés.ign. The same procedure
gives the sum of squares for error. If the rjreplicates of the basic
blocks are considered as being br regular blocks, then the sum of
squares for the br regular blocks and the total sum of squares can be
obtained in the regular way. It Will,be‘ shown that such a procedure for
computing the analysis of variance leads to an F-~test for testing the
hypothesis that all the treatments are equal, just as the one given in
Table IV does. Suppose that r replications of each basic block is

" considered as a randomized block with r blocks and k treatments.

Then there are b of these randomized blocks in the design. It has
already been noted that the b - 1 treatments with numbers k, 2k~ 1,

3k = 2y «us 5 [(b = 1)k ~1)+1], appear in two basic blocks, and all

other treatments appear in only one basic block., Suppose that ymnj

represents one of the r observations containing treatment m in the

j.th randomized block, where m = j(k ~ 1) =~ (kK = 2), «v. , jlk = 1) +1;

n=1 2, ..., r;and j=1, 2, ... , b. Note that m ranges over k -~ 1

_consecutive integers, Then let Vi j be the sum of the r observations
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th -
on treatment m in the j = randomized block, and lety , denote the mean

% e

of the observations in the jth randomized block. Then the sum of squares

for treatments in the jth randomized block is

d | -2
3 rl = (s .- ]
(3) W (ymJ YNJ) s

where ¢ = jlk = 1) = (k = 2), and d = j(k - 1) + L.

It is known that if each of the b expressions of the form shown in
(3) is divided by crjZ , then the resulting expression has a non-central
chi-square distribution with k - 1 degrees of freedom and non=-centrality

2
parameter )\.jo The symbols O'j and -\ , denote the variance and non-

: th
centrality parameter associated with the j randomized block.

th
If.'rmj is the constant for treatment m in the j randomized block,

then the expected mean square for treatments in that block is

(4) O'j +

(5) r = (r_.~7.) ,‘

Since (5) is the sum of non-negative quantities, it follows that \, is
zero if and only if the k treatments in each randomized block are equal.
Therefore the distribution of the treatment sum of squares becomes a

central chi-square if and only if the k treatments in any individual
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randomized block are equal.

Since the T in.the model for the general two-way'cv‘.las sification are
fixed, the individual chi-s'qUa;'e distributions for the b randomized blocks
are independent even though there is one treatment common to each
adjacent pair of randomized blocks. Hence the distribution of the sum
of these b chi-sqpare variates is either a central or non-central chi-
square distribution with b(k ~ 1) degrees of freedom.

" The error for the éntire design is the sum of the errors for the b

randomized blocks, and therefore

6y : v 

il
"
i o
2 we
o
<
2
o
1
"4
t._-‘v

Cde-

is distributed as a non-central cih-i-squa,re with b(k -~ 1) c'iegrees of free-

‘dom and non-centrality parameter \. It is necessary to show that \ =0

if and only if Ty =Ty Sees =Ty If it is assumed that O‘Zj = &Z»for é,ll

js then the sum of squares for error, when divided by 0-2 s has a central
chi-sq.‘uavre distribution.

Since the proposed sum of squares for treatments in the design is
obtained by pooling the sums of squares for treatments in the b inde-
pendent randomized blocks, the expected mean square for treatments
Is .the sum of the expected values of_the individual components. -Apply-

ing Theorem 10 once more means that the non-centrality X will involve,
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apart from multiplicative constants, the sum of terms of the form

L N/ ) . . .
k ij -7 j) « . Since.these quantities are all non-negative, the sum
of any number of them is zero if and only if each individual term is

=,,, =7, . Therefore,

=T Ty

zero, Hence \ is .zero if and only if 7
the analysis of variance computed in the manner described provides
att F-test for the hypothesis being considered. The computing

procedure and test will be illustrated in Example 3, which appears

after some more computing.procedures are developed.
Estimation of Tio T,

It was pointed out at the beginning of the second section of this chap-

. i - = dedlem Sics -~ - -
ter that 7 Bllq s 'and E('ri) T " Ty

. for the case under considera-
tion in this chapter., In this section, a computing procedure for esti-

-mating '1'1 - T:t will be obtained. The procedure will require finding

'Bi“l* = (A%‘*)”l, but dince this is easily done for any, particular example
of the design now being cohsidered, the computing procedure is not
difficult, - The .cqmpu‘i:fi'ng procedure will be valid for both r =1 ahd r > L.

If the examples of (A**‘)m1 = B"ﬁ“ given in Illustration IX and »(A;‘j*)"1

as given in equation (2) are considered, it becomres apparent that when
r replications of another basic block of size k is added to a design with
r replications of b basic blocks of the same size; the b~ submatrices of

(Ask*)_—’l for the design with b basic blocks are exactly the same as the
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-bxb arrayof (k - 1) x (k - 1) submatrices in the.lo:\ver right-hénd
portion of (A**)"1 for the design with b+ 1 blocks.

“Note also from Illustration IX and equation (2.)“ that the scalar' ele-
~raent in the first row and column of (A**)-‘1 is always 2b, if the factor
r--l- is written as a coefficient of the entire matrix (A**’)"L and b is the
number of basic blocks in the design. Since (b —!-,'-1)2 = b2 + 2b +1,
-there are 2b +'1 additional submatl;ices in the inverse for b +.1 basic
blocks as compared to the inverse for b‘basic.blo‘cks.v However, since
1

. I
(A11‘ = [1+@-2+n3 7 1=[1+@ -7 1],

for the inverse with b blocks, equation (2) and the examples in Illus-

tration IX indica‘_tte.‘tha.t for b +.1 basic blocks, the following results hold:

(Aﬁ*) Polr+ {2b+1) - 241} ;rk -1 y =[1+(2b+1) Jij]

k-1
(AT* -[2{(b+1)-1} J (2{(b+1)-1}-1)Jk2]
k-1 k-1
= [ 2b ;rl (2b = 1) Jk_z.]

(A"z’ = [ (A%5)" by
,(A>=1=3_==)'-1 for b + 1 basic blocks =_(A>:{3=<)'1 for b basic blocks, and

,(Agi‘l’:‘)-’1 for b +. 1 basic blocks = f(A?‘{“)‘l for b basic blocks if j > 2.

Since the derivation of a general expression for 7 in terms of

k(A**‘)'.1 , such as was derived and listed in equations (é), -(10)? and (11)
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" of Chapter III. for the design considered in that chapter, would involve a
very long éroof, the procedure for computing 7 for the case now being
considered will just be illustrated by an exémple. In view of the general
pattern of _(A”‘*)‘-1 that has been indicated, it should then be apparent
that the computing procedure would hold in general for any size basic
block, any number of basic blocks, and any number of replications of
t\he b basic blocks.

The ve.ctorv q is given by XZ'Y - kil NXiY for all the Slipped-Block

Designs under consideration in this paper, and reference to the fifth

section of Chapter III indicates that X:ZY is a vector in which the ith
component ié the total of all observations receiving treatment i. Also
NXiY is a Veétor in which the ith component is the sum of all blocks
containing treatment i. The elimination of the last component of q to
obtain q** does not alter this fac.t.‘ Therefore the computation of any
component of the vector g** is straighi:forward. Th.e procedure for
obtaining g** and 7= Bi‘l“ q** ig illustrated in Examplé 3. Note also

that ;"q =q'B 14 = R.('TIO.) just as for the case in Chapter III, since ;t =0,

1

Confidence Intervals

If reference is made to the section on confidence intervals in Chap-
ter I, it is evident that confidence intervals on linear combinations of
the T, can be computed just as they were for the general two-way

classification. The only difference is that the elements b";;}‘ of B>:]<.>1:= in
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equation (15) of Chapter I could be replaced by the appropriate expres-
sion for vb’g':’]}‘ obtained from equation ‘(2) of this chapter. Since this
would involve writing a confidence interval for each of several different
cases, it is simpler to leave the confidence interval in the more gen-

eral form of (15). The actual procedure.for computing a confidence

interval is illustrated in Example 3.
An Example To Illustrate tﬁ‘e‘c_oﬁipufi‘ng Proé¢edure

The example which follows illustrates the computing procedure for
obtaining the analysis of variance, testing the hypothesis that all the
treatments are equal, estimating treatments, computing standard errors
of the estimates of treatment differences, and determining confidence
intervals.

: Examplé 3.
" Basic Blocks

TT‘JV? ?}7 ' 3"/3“’_6\ Totdls
I | | 7
2 5 2 | 7
ERE 9 8 7 32
 Treatments’ | 4 ) 2 8 10
e 5 3 4 | 8 21
6 7 || 9
7 9 6 15
- Totals IR I ER Bt 21 |15 | 21 || 101
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(1) Computation of the analysis of vai'iance

If the two replications of the three basic blocks are considered as
six individﬁal or regular blocks as indicated by the numbering in the
table, then the sum of squares for blocks is éomputed in the usual way.,
Of course, the total sum of squares is also computed in the usual way.
Therefore, the following results are readily obtaineds

’ .22 2
(a) The total uncorrected sum of squares is 3~ +5 + ... +6 =075,

: ’ 1012 13
(b) The sum of squares for the mean is o T 566 T

(c) The sum of squares for the individual blocks, corrected for the

g 6% 1155 L v 1002 s Y
mean, i —5 -1 =85

However, in order to compute the sum of squares for treatments
and error, the design is cphsidered as three independent randomized
blocks. The treatment numbers and individual block numbers are re-

tained in the tables below in order to help clarify the prc‘)ce.dure..

1 2 Totals The total uncorrected sum of squares for the
L b 3 4 7
.2 2 2
> 5 > 7 tableis 3 +5 +,.. +9 =199.
3 8 9 17 ‘ ,
The sum of squares for the row totals is
16 15 31 :
2 2 2
[ (T B
2
2 2 .
1
The sum of squares for the column totals is 167 + 157 = 160 — .



The correction factor for the table is 3—— = 160

98

o 1
6 6 °

The interaction for the table, which is the error sum of squares for a

randomized block design, is 199 + 160 — - 193 > - 160 13 -5

! « If the

Wi

6

1

corrected sum of squares for treatments is desired, it is 193 = ~ 160 L

1
=33 3
3 4 ‘Totals
8 T 15
4 2 8 10 .
3 6 9
13 21 34
5 6 Totals
4 8 12
6 2 7 9
7 9 6 " 15
15 21 36

2 6

The same procedure used before results in the

sums of squares as shown belows

Error sum of squares = 12 —]é-

Treatment sum of square_s =10 13

The same procedure used before results in

the sums of squares as shown below:

Error sum of squares = 19

Treatment sum of squares = 9

If the sums of squares for treatments in the three tables is pooled,

5 A ‘
the result:is 52 3 and the same procedure gives 36-2— as the error

sum of squares for the Slipped-Blo'ck Design, Combining these re sults

with those obtained in (a), (b), and (c¢) results in the analysis of variance

given in the following table:
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TABLE VIII
AOV FOR EXAMPLE 3

Source d.f. S.S. . M.S.

Total . 18 675
Mean 1 566 %-g-
o . 17
Blocks (unadjusted) 5 18 T3
. . i . .2 7
Treatments (adjusted) 6 52 3 8 9= 8.78
Error | 6 36 < 6-}5 = 6.11
(2) .T.evs_t.of H‘O” 'Tl' = ‘72 =ees = Tt_
. . . ~8.18 _
In order to test this hypothesis, the number TR 1.44 is compared

with 4,28, the ivalue - of the F-variate with 6 and 6 degrees of freedom.

Since 1,44 is less than 4.28;_~ there is no evidence to rejéct.HO.

(3) Co,nﬁputa_-tion of the standard errors

Since the error mean vsquare{.- given in Table VIII, 6.11, is an un~
biased estimate of o—2 by virtue of Theorem 7, the standard errors of
the treatment differences are obtained by substituting this number for o*Z
in the expressions worked out in Cases I and II of the second sectioﬁ of

this chapte‘r,i and then exfra.cting the square root of the result. Since
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the results of Cases T and Il were for r = 1y it is necessary to divide by

r = 2 for this particular example. Since there are three basic blocks,

the results of Cases I and II give the results‘shown_ in Table IX for the

estimates of the variances of (Ti - T.), where i and j assume the values
J :

indicated in the table. | The standard errors are the square roots of the

entries in the table.

ESTIMATES OF VARIANCES OF TREATMENT DIFFERENCES

TABLE IX

id 2 3 4 5 6 7

1 6.11 | 6.11] 12.22] 12,22 18,33 | 18.33
12 6.11| 12,22 12.22 :18.33 18,33

3 6.1 | 6.1 | 12,22 [ 12,22
4 6.11 | 12.22 | 12,22

5 6.11 | 6.11

6 6.11

(4) Estimation of o Ty

If reference is made to Illustration IX and equations (1) and (2) of

. i a1 . .
‘this chapter, it is easy to write A** and (A**) " for Example 3. Since

k=3, b=3, r =2, and t = 7, the results are as follows:



A>:<>'{< = .

1
3

2 0 0 o]
20 0 o0
8 2 -2 A0
2 4 .2 0 '(A#*

-2 =2 8 -2
0 0 =2
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Note that the two repiications of the three basic blocks results in

each element of A% for r = 1 being multiplied by two, and hence each

element of Y(A’i”k.)”1 for r = 1 is divided by two,

Since a compohent q; of the vector q=X!Y - k NX!

2

1

Y is computed

-1 ,
by subtracting k ~ times the total of all basic blocks containing treat-

ment i from the.total of all observations receiving treatment i, the

following results are obtained for the q;*

1 : 10
ql_"?— —5(31)— "'—'3"

1 ... 10
q2~7-§-(31’)-,--3—
| 1 31
q,=32-3(L+34) = T

1. 4
qu =10 -5 (34) == >

1 7
q =2l-3 (34+36) == 3

=9 - L (36) =3
% =7 " 3 -
4 =15 - L(36) = 3
7 3
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As a partial check, the spm of the qi must be"ze‘:ro, and it is seen
:i;hat this is the case. 'HOWe'verv, since :t:he»iast row and column of A were
déléted in order to obtain A**, which is equivalent to setting 1:7 =0 in
this example, there is no need to‘c'omp‘ute- 4 except as a check. The

result desired in this section is 7 = Bikfk q**, where 7 again indicates

a solution to the system AT

1]

q. If the product Bl’lfkq’l‘*vis formed, the.

"results are as follows:

-7 -~ 7 - L,
T2 T2T" 2 T3 2
2
-~ L 3 -~
74""““1 75“"'5 76“.&3

It is possible to arrive at several schemes for simplifying the
multiplication involved in finding the product Bi“fk-q’f"‘< because of the

pattern of B"ﬁk . Such procedures will not be discussed in this paper.

= 0‘ 2o

-~
Es

Note also that ';:"q = 7 Rt g% = 52 23 = Ii((‘r;l d), si‘:rmcelq'7

(5) Confidence intervals

Suppose that a 95 per cent confidence interval is desired on Ty = Tge

Reference to equation (15) of Chapter"I shows that this means ¢ = 1 and
c, =~ 1, so that 2.0 as required by Theorem 1l. The standard error

. . /\ ‘
NE__ = c,cb¥ for (7, =r,)is V12,22 = 3,50 from Table IX, From
ms 1754 3.6

-~

-76)=T - Ty =3 -»(-3)::4.50, and since

!w

the estimates of the 'ri', (7

3 3

™~
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the tabular value of the t-variate with 6 degrees of freedom at the 5
per cent level is 2,447, the desired confidence interval is as follows:

4,50 - 2.447 Y12.22'$.73 STy & 4,50 42,447 Viz.22

4,50 - 8.56 £73 - 76.{:4.50 + 8.56

- £ - < .
4,06 Ty = T 13,06

This completes the example illustrating the computing procedure
for the analysis of the case involving r replicates of b basic blocks and

an overlap of one.



CHAPTER V

SUMMARY OF RESULTS

Under the assumptions given in Chapter II, the Slipped-Block Design
has been analyzed for the case of two basic blocks and r replications of
two basic blocks in which the overlap between the two basic blocks is
greater than or equal to one. - An analysis has also been given for a
design with two or more basic blocks if the overlap is one. In both of
these cases, the theory leading.to an analysis of variance, testing of-
hypotheses, estimating treatments, finding standard errors of treat-
‘men‘t differences,. and determining confidence intervals was developed.

A computing procedure for obtaining each of these quantities was devel-
oped, and examples were worked out in ordér to illustrate the computing
procedure, The block size and number of treatments could be as d(?sired
by the experimenter in both cases.

An'analysis has not been worked out for the case iﬁ which the num-
ber of blocks ié greater than two when“the overlap is greater than one.‘
Neither has any particular application of the Slipped-Block Designs tg
actual experimentation been given in this thesis, but it is believed that
they may prove useful in survey-type experiments in which some infor-
mation on a large number of treatments is desired, but only a small |

number of observations on each treatment is available.
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