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PREFACE 

The genesis of this work was in the difficulties 

which I faced as the teacher of introductory courses in 

operations research in trying to introduce the students to 

a number of the basic queueing models. While attempting 

to.show the effects on the models of changes in the assump

tions made, I found that the students, and often I, could 

not reasonably handle the differences between two situa

tions without an extremely lengthy, time consuming detailed 

word description of the situation and the assumptions. 

Eventually, the search for better means of putting this 

information over to the student led to the ideas presented 

in this thesis. Since substantially completing this mate

rial, it has been used in note form for this introductory 

operations research course with, what I believe to be, a 

great deal of success as an aid to the student of queueing 

theory. Certainly there is great truth in the "old saw," 

"Good students are a teacher's sternest master." 

While it may be that students are often stern masters 

to the teacher, the acquisition of knowledge not often is 

accomplished best through sternness. It is then with 

great gratitude that I acknowledge my deep debt to 

Professor Wilson J. Bentley, Head of the School of 
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Industrial Engineering and Management at the Oklahoma 

State University for his many- kindnesses, constructive 

criticisms, cheerful encouragement and readily available 

counsel in his varied capacities as the chairman of my 

graduate committee, as my supervisor during my tenure as 

a member of his faculty, as a colleague, but most impor

tantly, as my friend. 

To the other members of my graduate committee: 

Professors Herbert L. Jones, Solomon Sutker, H. G. Thuesen, 

and David L. Weeks, my debts are hardly fewer or less 

deep. It would be impossible to enumerate them all, but 

. most prominent are my coming to the Graduate School of 

Oklahoma State University, sound advice and encouragement 

since arriving, fair and useful criticism while working on 

this thesis, and enlightenment on many, many- points. For 

all of these I am grateful. 

A special tribute must be paid to Miss Velda D. Davis, 

who labored long and hard with the preparation of the 

typescript and, even more, handled,while I was away from 

the campus, all of those endless details which make com

pleting graduate work while off campus nearly impossible 

without such a friend and helper. 

A final debt which can never be approached is that 

which I owe to my family for their encouragement, under

standing, and the special in.centi ve they offered to me for. 

the completion of this effort. 

Scott Tabor Poage 
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CH.APTER I 

INTRODUCTION 

- -- -
---------------------

The study of the theory of "queues" or "waiting 

lines" refers to the mathematical and physical investiga

tion of a class of systems typified characteristically by 

five features: (1) The units moving through the system 

are discrete, ( 2) A mechanism exists that governs the time 

at which the units composing the system arrive, i.e., begin 

to require service, (3) The units which have begun to re

quire service are ordered in some fashion, which may be by 

a completely determined mechanism or by some probabilistic 

arrangement, and receive service in that order, (4) A 

mechanism exists that governs the time at which a unit re

ceiving service has its service terminated, (5) At least 

one of the two mechanisms, arrival or service, is not com

pletely determined, but can be considered a probabilistic 

system of some sort. These characteristics and their im

plications will be considered and extended later, but they, 

together with some examples, will serve as a basis for a 

preliminary discussion of the engineering importance and 

applications of queueing theory. Some of the classic sys

tems to which queueing theory has been applied are the 

arrival of ships which wait in a harbor until they are 
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unloaded, where the ships are the arriving units, the wait

ing ships form the queue or waiting line, and the unloadiDg 

docks are the service mechanisms; the arrival of ticket 

purchasers who line up to purchase tickets from the service 

facility or ticket booth; the arrival of telephone calls 

at an exchange to be serviced by an operator or trunk 

line; the customers arriving in a barber shop who wait un

til their turn comes and they have their haircut, etc., by 

the serving unit, the barber; cafeteria lines; aircraft 

stacked up waiting to get into a given airport; aircraft 

on the apron waiting for modification, repair or clean-up; 

patients waiting to see a doctor, etc. Less obvious and 

perhaps more important to the industrial engineer are ex

amples of systems to which the theory of queues has been 

applied through analogy with great success. Some of these 

applications have been such systems as a group of machines 

which require repair (arrive) from time-to-time and are 

idle (waiting in line) until the maintenance crew (service 

facility) can repair them and set them back to work; the 

flow of paper work through a production control system; 

an inventory system where the arrival is the demand by a 

customer for a unit of stock, the queue or waiting line is 

the number of units on backorder and the service operation 

is the process of replenishing the shelf stock by ordering 

from the wholesale house or manufacturer. (This last sys

tem may also be considered to be as a ease where the shelf 

space is the service facility, the customer the departure 



mechanism and the item of stock the arriving unit.) 

Systems such as these are types with which the indus

trial .engineer works each day. Queueing theory attempts.to 

develop answers to such questions as: "What is the aver

age length of the line of waiting units?", "How many ma

chines are needed to do a certain job in such a manner 

that the facilities for·waiting are not overloaded or that 

so many of the working units are not waiting in line that 

it is not possible to maintain satisfactory service to the 

customers?", "How long will an arrival at the service 

unit have to wait before being served? ... �--Before being com

pleted?", 0 Wh.at is the probability of a unit having to 

wait longer than a given time?", "What is the probability 

of instant·aneous service?", "What is the utili.zation ef

ficiency of the machines doing the servicing?", "What is 

the utilization rate of the machines or things being ser,;.

iced? "· The importance of these questions to· the i�dus� 

trial engineer, in sucll plamiing functions as plant layout, 

staffing,_ machine se.lection, production control, and inven

tory control, cannot be.overestimated • 

.Although o:t,"iginally developed i.n connection,.with a 

r·eal world . engineering problem by a practicing engi��r, 

queueing•. theory ··was largely"1 ignored by the engiliee�i�g 

,world and most· of the developments which were made in the 

area were.undertaken by mathematicians who produced a 

p-eat . aumber . of additions to the body of Jmowledge in the.

field 
. ' l,argely in the form of solutions to sp_ecial cases
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and situations chosen for their mathematical inte rest 

rather than for their engineering importance, even though 

many of them are quite valuable in everyday engineering 

work. 

It then will be th e purpose of this thesis to present 

the results of an attempt to add to the usefulnes s to in

dustrial engineers of the theory of queues by deve loping 

and te sting a system of classification of queues with spe

cial emphasis on the te sting of certain assumptions re

garding the re lationship between the service rate and the 

length of the queue waiting for service. 

The classification system which will be prese nted 

here was designed to increase the usefulness of queueing 

theory to the working engineer by pre senting a system o f  

classification whereby the engineer may readily and con

veniently classify the queueing situation with which he is 

faced and compare it with those s ituations for which known 

solutions exist. This classification system is tested in 

two ways, by classifying representative queueing situations 

for which known solutions exist and by a demonstration 

classification of a real world situation. The classifica

tion of the real world system is concerned primarily with 

the problem of the relationship between the state of the 

queue and the service rate of the system with the first 

attention being given to cert�in common assumptions re

garding this relationship when the rate of service is 

controlled by human operators who act as the service 

mechanism. 



CHAPTER II 

HISTORICAL DEVELOPMENT OF QUEUEING THEORY 

The historical development of queueing theory is a 

relatively recent development even in the young history of 

statistical applications to industrial problems. General

ly, this development can be treated in three phases, the 

pioneering work of A. K. Erlang, the work done in the era 

between Erlang and'the post World War II development of 

interest in "operations researcht•t and the development of 

queueing theory since that time. The historical develop

ment of queueing theory is considered in this chapter in 

those phases. 

Erlang's Initial Developments 

The first person to become interested in the general 

class of queueing problems was a Dane, F. W. Johannsen (1) 

of the Copenhagen Telephone Company, who published an 

article, "Wai ting· Times and Number of Calls," in the British 

Post Office Electrical Engineers' Journal in 1907. The 

first to publish comprehensive theoretical considerations 

of queueing problems was A. K. Erlang (2), a close friend 

and co-worker of Johamlsen:a�.the Copenhagen !re1�phone 

Company. Erlang was a Danish electrical engineer and 
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mathematician who was interested in the problems of wait

ing lines and waiting times by Johannsen, but went on to 

become much more deeply involved. By laying the founda

tions for most of the present work, he can be consideredto 

be the originator of queueing theory as it is known today. 

In his first publication on the subject, "The Theory of 

Probabilities and Telephone Conversations," Erlang (2) 

pointed out that the waiting lines were characterized by 

an arrival distribution, a queue discipline or rule for 

determining the order of service of the arriving units and 

service distribution. He observed that telephone calls 

could be described as having Poisson arrival distributions, 

a first come, first served discipline, and an exponential 

distribution of service times. Later, he studied and built 

mathematical models for systems characterized by Poisson 

arrivals, first come, first served discipline, exponential 

service times, and several service channels; Poisson ar

rivals first come, first served discipline, regular service 

times and several service channels; Poisson arrivals, ran

dom order service discipline, and exponential service 

times; and Poisson arrivals, first come, first served dis

cipline, one service channel and Erlangian service distri

butions (a special case of the Karl Pearson Type III dis

tribution widely used by Erlang because of its ability to 

form an empirical approximation to a great many distribu

tions in a continum between the exponential and constant). 

Two points seem to be worth noting about Erlang's work 
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because it has continued to influence to some degree the 

thinking on queues down to the present time. First, his 

classification system is limited by the assumption that 

there are an infinite number of possible arrivals, and 

second that the discipline mechanism is limited to deter

mining the order in which the arrivals to the line will be 

served. It is quite possible that Erlang was fully aware 

of the second point, but proceeded with the simpler cases 

as they could be solved, but the relationship of finite 

possible arrivals is not mentioned in any of the earlier 

writings. 

Development Prior to 1950 

The queueing problem attracted some attention among 

telephone engineers in Europe, but was not introduced in 

American until the publication of "Applications of the 

Theory of Probability to Telephone Trunking Problems" by 

E. C. Molina (3) in July of 1927. The work of Erlang and

Molina was considerably expanded by Thronton C. Fry (4) in 

his book, Probability and Its Engineering Uses in 1928. 

Fry's work served to introduce the subject to American 

telephone engineers and mathematicians, but did not gener

ate much use of the idea among engineers generally; how

ever, it did attract attention to the subject by a number 

of European mathematicians. Fry considered the problem 

primarily in the light of telephone work, as did Erlang, 

al though he pointed out many analogous situations 



where it was applicable. He regressed from Erlang on the 

matter of classification in that he did not attempt to 

classify the situation or solutions which he considered, 

but merely listed all of the assumptions which he made 

for each case. From the context, it would seem to be ob

vious that Fry recognized his solutions as different 

special cases of .the same general prol;>lem, but he made no 

apparent attempt to show any structural relationship be-

tween the various,solutions. 

8 

After the publication of Fry's book, there was a lull 

in the interest in the subject of queues in America and 

among engineerso The development of queueing theory then 
. ' 

took a strongly theoretical mathematical turn. An exten-

sive mathematical literature began to develop on the sub-

ject among European mathematicians with Pollaczek (5)

studying the case of Erlangian arrivals, first come, first 

served discipline, gene�al service distributions (inde

pendent) and one service channel in 1930; Khintchine (6), 

in 1932, investigating the Poisson arrivals, arbitrary 

service distribution with one servicing channel, and a 

first come, first served discipline; and in 1932,Pollaczek 

(7) extending Khintchine's work to the case with many serv

ers generally. During the decade following 1930, the princi

pal interest in the subject of queues remained with mathema

ticians and telephone engineers with a small, but increasing 

stream of publications on the subject, generally following the 

lines of the content of the work of Erlang, but on a much more 



sophisticated mathematical basis and with the principal 

interest residing in the mathematical technique involved 

rather than the application. 

9 

During the 1940's, the mathematical interest continued 

in the general subject of queues as such, but it began to 

be recognized that this problem was related to the subject 

of machine down time as a random process in such articles 

as "How Many Automatics Should a Man Run?" by Phillip 

Bernstein (8) and R. Kronig's (9) "On Time Losses in Ma

chinery Undergoing Interruptions�·� All of these papers 

still followed the method of Erlang in assuming independ

ence between the length of the waiting line or direct pro

portionality to the length of the waiting line in some form · 

to the·· service time and in classifying the queues by the 

word description of the arrival distribution, service dis-

tribution and discipline. 

Development Since 1950 

The 1950's brought a fantastic growth in the litera

ture on queues. In a bibliography of the literature which 

the author prepared for American Airlines, Incorporated, he 

found five articles before 1910, two between 1910 and 1920, 

three between 1920 and 1930, ten between 1930 and 1940, 

twenty-eight between 1940 and 1950, and over one hundred 

and seventy-five articles and books between 1950 and 1960. 

(10). This expansion was largely the result of the general 

growth of operations research and the mathematical 
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techniques of industrial engineering. A large portion of 

this literature deals with the practical application of 

specific models developed by Erlang, although a few deal 

with the application of models developed later and a siza

ble number are devoted to the mathematical development of 

specific cases which are variations on the major theme of 

Erlang. In general, this massive literature is not germane 

to the questions considered here except as it emphasizes 

the growth of knowledge in the area and the need for a 

ready means of classifying a given situation and relating 

it to the known solutions. 

The most important general developments in the theory 

of queues after World War II were the application of high 

speed computers to the numerical computation of queue re

sults, the solution of the "Swedish Machine Problem," the 

publication of the book, Queues, Inventory and Maintenance, 

by Phillip Morse (11), and the publication of a system of 

classification of queues by David Go Kendall (12). Since 

Kendall's classification of queues is related to the pri

mary subject of this thesis, it will be discussed in a 

separate section reviewing the development of classifica

tions of queues while the other developments must be cho

sen here from among all of the recent works in queueing 

theory for the impact that they have had on the entire 

range of queueing problems, both directly and indirectly. 

The effects of the modern high speed computer upon the 

theory of queues is in many ways representative of its 
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influence on engineering in general. The computer changed 

the possible into the practical. The incentive thus given 

to workers in the area in turn led to whole fields of con

sideration which have not yet begun to be exploited. Many 

queueing problems had been solved with awesome mathemati

cal brilliance only to be completely useless to the engi

neer or other day-to-day workers because either the length 

of computations required were humanly impossible or they 

were economically unfeasible. The computer reduced the 

time required for these calculations to the point of use

fulness and made possible the solution of previously in

soluble.problems through numerical methods. Also under 

the contributions of the computer to queues must be listed 

Monte Carlo or simulation methods. These, while not 

strictly in the field of queueing theory, make possible the 

approximate solution of many otherwise unsolved problems. 

These Monte Carlo approximations are often as valuable 

economically as exact solutions and in other cases one may 

serve as a direction finder which. leads to a rigorous and 

exact analytical solution. Furthermore, the computer made 

possible the publication of tables of queueing results 

which put answers to many problems on the desk of the 

worker who had not the time or had insufficient calculating 

facilities to use the known solutions. The availability 

of these tables and means of computation led to an expand

ed usefulness and use of queueing theory which in turn 

led to great attempts to solve new problems in the area. 
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This process is still going on. 

The "Swedish Machine Problem" was so named because 

its solution was first published by Conny Palm (13), a 

Swede, in relation to one of the basic problems of indus

trial engineering, given that each of m machines has a 

given probability of going down at anytime while it is 

running and there are B repairmen, each of whom takes a 

given average time to repair one machine, what is the ex

pected number of machines running, being serviced, and 

idle waiting for service. This problem because of its 

great importance in determining the most economic number 

of machines and/or repairmen had been the subject of a 

number of approaches by industrial engineers for some 

years. Professor H. G. Thuesen (14) produced one of the 

early attacks using the concept of probability in a paper 

relating to the economical number of repair crews for a 

given oil field. The importance of Palm's solution rests 

on three facts: First, it makes explicit the relationship 

between queueing theory and the machine interference prob

lem which permits an interchange of ideas between the var

ious works on the two problems; second, it provided an ex

act solution to the problem for a general number of ma

chines and repair facilities which previous solution could 

economically do only for a reasonably small number; third, 

it opened up the entire area of queueing systems in which 

there are a limited number of units which could be related 

to the earlier works developed after the ideas of Erlang. 
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Dr. Morse's (11) book holds a unique importance in 

three aspects. It was the first serious book devoted com

pletely to the theory of queues and its applications. It 

was an attempt to present a comprehensive introduction 

which would permit the reader to handle most queueing prob

lems with which he might be faced. Finally, its uniqueness 

and relative completeness caused it to become a prime ref

erence and popularizer of queueing theory, but its style 

of exposition ( which was relatively obscure where compared 

to some of the originating publications) served to drive 

those interested to either search back through the original 

articles or to redevelop many of the arguments, both of 

which led to greater interest and ability for research in 

the field. The systems covered by Morse were essentially 

those for which the arrival and service distribution could 

be approximated by combining exponential distributions in 

such forms as the "Erlang" and the "hyper-exponential". 

Still the greatest achievement of the book was the wide

spread demonstration of the power of queueing methods and 

the exposition of the effects upon queues of various types 

of changes in the distributions and parameters of queueing 

situations. 

Finally, special mention must be made of the book, 

Elements of Queueing Theo�, by Thomas L. Saaty (15),which 

appeared as this research was reaching its conclusion. 

This most notable work, although often leaving the world 

of interest to the engineer for flights of purely 
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theoretical interest, must be regarded as the complete 

source book for the state of the science of queueing theory 

at the time of its publication (September, 1961). While 

it contains very little original material, Mr. Saaty's 

book collects practically every known argument regarding 

queues which is of any interest, many times in greater 

detail than is available in the original published sources. 



CHAPTER III 

EXISTING SYSTEMS OF CLASSIFICATION OF QUEUES 

Erlang's Method 

Erlang (2), in his pioneering works, recognized that 

queues differed and believed that they could be completely 

described by giving the arrival distribution, the disci

pline, and the service distribution. His method was to 

give a word description of the queue's three basic charac

teristics as he understood them. Thus, Erlang would de

scribe a classical queueing situation as "having Poisson 

arrivals with a mean arrival rate, A, from a single source; 

having m service channels, each with identical exponen

tially distributed service times with mean service rate of 

µ each; with arrivals forming a single unlimited queue 

which enters the available (empty) service channels ran

domly on a first come, first served basis. There are sev

eral obvious faults in this method of description, but 

their existence must not be taken as a fault of Erlang's 

insight into the problem, but rather to the limited devel

opment of queueing theory at the time. For example, the 

most obvious fault, failure to recognize the difference 

between queues which have an infinite arriving population 

15 
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and those which have a finite arriving population, was due 

to the fact that Erlang did not consider finite arrival 

populations beyond reasoning that the Poisson provided a 

satisfactory approximation for large populations such as 

the telephone calls with which he was working. A second 

weakness, similarly attributable to the state of the de

velopment, is the bulkiness and unwieldiness of such de

scriptions which make the system very poorly adapted to 

handling a large number of different types of queues. 

For sometime, these faults were not recognized by workers 

in the area for much the same reasons that they were not 

apparent to Erlang and, thus, the practice continued of 

simply giving a word description to each case as it was 

considered or solved. 

Kendall's Classification 

The first recognition that the number of cases and 

types of problems which had been considered in the litera

ture on queues had grown in quantity and diversity to the 

point where the bulk and unwieldiness of the word descrip

tions after Erlang's fashion came in a 1953 article by 

David G. Kendall (12), "Stochastic Processes Occurring in 

the Theory of Queues and Their Analysis by the Method of 

the Imbedded Markov Chain." In this system, Kendall con

cerns himself only with the steady-state cases (those in 

which distributions of arrivals, service, and the result

ing solutions are independent of time) and ignores the 
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effect of discipline, resulting in his classifying queues 

by their input or arrival distributions, service distribu

tions, and number of channels, which.he indicated by let

ters, in that order, separated by solidi; thus: input/ 

service/number of servers. For the letter symbols, he 

used the following code: 

Code Type of Service 
Letter or Input 

D Deterministic 
or regular 

Random or 
Poisson (ex
ponential) 

Erlangian with 
K phases 

Distribution Function 

A( u) = 0 for u < a 
A( u) = 1 for u ?_ a 

A(u) = 1 - e-u/a

k 
dA(u) =We-ku/a uk-ldu

GI Any distribution in which the intervals are 
independent of each other. 

G No assumptions are made about the distribu-
tion except that it must exist. 

Thus, under Kendall's system of classification, Erlang's 

simplest case, that of Poisson arrivals from an infinite 

population, exponential service with one serving channel, 

having first come, first served discipline in a single 

queue allowing infinite length would be classified M/M/1 

or the same situation where there were s serving channels 

with a unit going into the service facility by choosing at 

random from among the available channels would be classi-

fied as M/M/s. Naturally, M/M/s includes M/M/1 as the 

special case where s= 1, but it would be classified as a 

separate case where the solution of M/M/s is considerably 
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simplified by setting s = 1. Kendall used this system to 

indicate the queueing situations for which solutions ex-

isted in the literature at that time. This classification 

system was adopted by ··some other authors following its 

presentation and is still used occasionally. 

Kendall's system while improving over the word de

scriptions which had preceded it, did so at the expense of 

flexibility, exactness, and the ability to be extended to 

cover queueing situations which are structured and/or dis

ciplined differently from that for which it was originally 

set up. The most important criticism of Kendall's classi-

fication system is its limitation to a single queue struc

ture and discipline. 

Galliher's Extension of Kendall's Classification 

The next development in the classification of queues 
I 

was published by Herbert· T. Galliher ( 16) in a collection of 

notes originally prepared for the Massachusetts Institute 

of Technology short courses on operations research. This 

system was a,p.: extension of Kendall's work with the addition 
. .-.�· 

of a notation or classification for known solutions which 

could be associated with a particular problem. As does 

Kendall's system, it makes the assumptions that all para-

meters and the number of servers are stationary and mutu

ally independent, that arrivals are homogeneous from an in

fini te population, that servers are identical, and that the 

queue discipline is single queue, first come, first served, 
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with no arrivals leaving before the completion of service, 

but differs from Kendall in that it recognizes the exist

ence of queues outside of these rather limiting assumptions 

which it handles by classifying them as far as is possible 

by the Kendall notation and then making a word note of the 

exceptions to the basic assumptions such as classifying 

the Swedish machine problem as "Mr1S, finite population"• 

This method of handling the extension of Kendall's system 

is, of course, better than ignoring the cases outside of 

the system, but it does have all of the weaknesses of the 

plain word description used by Erlang and those immediately 

after him with the two exceptions that it recognizes cases 

unstudied and/or unrecognized by them and it gains the 

compactness of Kendall's system whenever and to the extent 

that Kendall's system applies. The greatest contribution 

of the Galliher method is that it associates a classifica-

tion or uniform notation for solutions associated with the 

problems thus classified. 

The classification system for analytic results pre

sented by Galliher (16) uses the following notation: 

"''t 

Nt 

"''t 

to indicate that the probability distribu
tion of the number of units waiting plus · 
those in service is known for any time, t. 

to indicate that the probability distribu-
tion of waiting time is known for any time, 

to indicate that only the expected value of 
Nt is known.

to indicate that only the expected value of 
wt is known.

t.



20 

Under this system, t = oo is taken to mean that only the 

steady-state or equilibrium case is solved. Where both Nt

and N
00 

are shown, Galliher uses this to indicate that for 

t = 
00, the formulae are considerably easier to employ than 

for finite values of t. This double classification system 

within the limits imposed by the method used for the clas

sification of the problems serves a number of useful pur

poses. The most important of these are that it facili

tates communications between researchers in the field, 

permits a ready location of the known theoretical solu

tions, and facilitates the determination of the means of 

solving real world problems. In addition to the limita

tions already noted, all of the systems described so far 

share a common major weakness which the system whose de

velopment is reported here was designed to overcome. This 

weakness is the failure to show structural relationships 

between given problems of different classes and between 

different solutions. 

Moore's Presentation 

The most recent approach to this problem while not 

strictly a system of classification was provided by an 

article, "To Q,ueue or Not to Q.ueue," by James M. Moore (17) 

in which the structure of queueing problems was presented 

in the form of an organization chart reproduced in Figure 

1. This chart is not strictly a classification structure

in the sense that a queue may be placed at any one point 
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on the chart, but is rather a series of five classifica

tion systems, one each for customer population, number of 

channels, disciplines, arrival distributions, and service 

distributions. Other objections which may be raised to 

this system are that the classes under the various charac

teristics are not mutually exclusive nor are they exhaus

tive. (This last requirement is almost impossible for any 

classification system; but, unless the classes are exhaus� 

tive, the fact that they are not exhaustive should be ac

knowledged at least by the inclusion of a class "other:'!) 

Mr. Moore's (17) presentation which in essence constitutes 

a dramatic, graphic presentation of Erlang's (2) classifi

cation has two very useful characteristics: First, it is 

eXpanded to cover most of the cases which have been con

sidered to date and it retains the flexibility to be ex

panded to cover future cases; secondly, it shows the rela

tionship in structure between some characteristics well 

although it is not consistent in this aspect. For example, 

it implies that a queue may have both patient customers and 

random service order, but does not under the same conven

tion imply that a queue may have a finite customer popula

tion and multiple channels. Finally, this system makes no 

attempt to relate the structure of the queues to the 

solutions. 

Saaty (15) presents a considerably extended version 

of Moore's chart in his introductory chapter on the 
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description of queues and occasionally uses Kendall's (12) 

classification, but, in the main, relies on extensive word 

descriptions. 



CHAPTER IV 

PROPOSED SYSTEM OF CLASSIFICATION OF QUEUES 

The system of classifying queues presented here is an 

attempt to satisfy six requirements which seem to be nec

essary for improvement of the existing systems described 

in the preceding chapter. First and most importantly, this 

system must be useful to working engineers as a means of 

describing a situation which faces them in their work, as 

a means of relating their situation to known solutions and 

as a means of communicating between workers who are dealing 

with queueing problems. The other requirements are direct 

consequences of this first requirement. As nearly as pos

sible, such a system must be capable of covering any situ

ation in its area. It must be as compact as possible. It 

should relate the structure of the queue to the method of 

solution as much as possible. It should be as convenient 

for printing or typing as possible. It should be capable 

of expansion to meet new types of queueing situations as 

they develop. Obviously, some of these requirements are, 

to a degree, contradictory, i.e., compactness versus com

prehensiveness, but it is hoped that this strain is minimized 

by the use of a contracting notation for the more general 

cases and for the simpler cases. 

24 
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Organization of Queues 

The view taken here is that any queueing situation is 

in fact composed of fundamental queues and may be described 

in terms of these fundamental queues. Thus, a production 

line may be considered to be a number of fundamental queues 

in series with the arrivals to the first station being 

governed by the arrival of orders, with each succeeding 

station's arrivals being the departures of the preceding 

station and final output of the system being the departures 

of the last station. For the job shop operation, this 

group of queues which are arranged in series and in paral

lel may become as complex an arrangement as any electrical 

circuit diagram and, to a point, the analogy is rather 

strong. The structure of the method of solution of cer

tain of these networks of queues was discussed quite ably 

by James R. Jackson (18), but for the purposes at hand it 

is sufficient to point out that the description of networks 

is best accomplished by diagraming the connections from 

the individual fundamental queueso The classification sys= 

tem here is concerned with the fundamental queueo 

The Basic Parts of the Fundamen+,al Queue 

The fundamental queue consists of three basic parts, 

the arrival mechanism, the queues, and the departure mech= 

anism. When these three parts and their interrelationships 

are defined, the queue and its characteristics are fixedo 
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Therefore, the classification of the queue will be given 

in three parts with each part separated by a solidus after 

the fashion of Kendall (12) in the following order: 

Arrival Populations/Queues/Departure Mechanisms o 

Arrival Populations 

The description of each arrival population will be 

given in the following order and manner. Each population 

will be identified by the letter A with a subscript numer

ically identifying this type of population, a colon, a 

number indicating the number of identical populations of 

this type with a capital P indicating a general number� a 

dash, a number indicating the effective size of the ar

riving population with the capital letter N indicating a 

general number, a description of the distribution func

tion of the inter-arrival times of this population in pa

renthesis and description of the disposition of the ar

rivals. Each arrival population will be separated from 

the next by a double colon, ::. The description of the 

distribution function of the inter-arrival times will be 

in the following manner, which is derived from the nota

tion of Kendall (12), a code indicating the type of dis

tribution, a colon, and the parameters of the distribution 

separated by commas. In the general cases, only the param

eters will be given; but, in specific cases, each parameter 

will be followed by an equality sign and its value. A 

table of the code which is an expansion of that originally 
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set up by Kendall is shown in Table I. Obviously, it is 

to be expected that from time-to-time, this table will re

quire further additions and/or modifications as the state 

of the science progresses or as statisticians improve the 

means of identifying and classifying distributions, but it 

is suggested that for distributions of rare appearance 

that the code Ri with the subscript indicating a note com

pletely specifying the distribution to be used and a Ube 

used for an unidentified distribution. 

The section describing the disposition of arrivals 

from a given population should be as follows. Units going 

to a specific queue would be indicated by the capital let

ter Q with a double subscript, the first, a number indi

cating the type, and the second, indicating the queue of 

that type. Similarly, the units going directly into one 

of the departure mechanisms would be indicated by the cap

ital letter D and the same subscripting method. Each cap= 

ital letter would be followed by a comma and a notation of 

the conditions of the queues and/or departure mechanism 

would allow this disposition following the usual notation 

of queues given by Morse (11) to describe the states of 

the queues and the departure mechanisms. Where more than 

one queue or departure mechanism can meet the conditions, 

the selection is presumed to be randomly selected with 

each mechanism having an equal probability of selection. 

If the selection is random, but not equal, the relative 

frequencies will be indicated by enclosing the mechanisms 



Code 
Letter 

D 

M 

GI 

G 

H 1

x2 

PII-I 

N 

TABLE I 

INTER-ARRIVAL/SERVICE TIJ.VIE DISTRIBUTION CODES 

Type of Arrival 
or Service 

Deterministic 
or Regular 

Random or 
Exponential 

Distribution Function 

A(u) = 0 for u < a 
A(u) = 1 for u > a 

A(u) = 1 = e-u/a 

28 

Erlangian with 
k phases {k/a)k 9

-ku/a. uk=l

dA(u) = k du 

Aey distribution in which the inter·vals are 
independent of each other 

No assumptions are made about the distribu= 
tion except that it exist 

Hyper-exponential, 
L branches 

Chi Square 

Karl Pearson Type III1

Normal 

K,i,j, ••• Any distribution with parameters i� j� 
known 

0 • • 

Not coded: see note i 

Not known 

1
rt should be noted that the X 2

, Ek, M and D distri= 
butions may all be obtained from the PIII by the proper 
selection of parameters� but their greater simplicity and 
in the case of M and D, their logical basis have made them 
so widely used that they should be noted separately for 
convenience. 
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to which the arrival may be disposed with parenthesis and 

preceding the expressions by their relative frequencies. 

Where disposal is to be to a particular mechanism for all 

units not going to another mechanism, this may be indicated 

by giving the first followed by a comma, a minus sign and 

the second. Each arrival population of the elemental queue 

would be thus described with a double colon, ::, separating 

each populationo 

To exemplify this method of classification of the ar

rival populations, a few of the classic cases will be given 

and then their arrival mechanisms placed in this classifi

cation system. 

The original single queue with an unlimited popula= 

tion which arrived randomly at a mean rate of A and a sin

gle queue of unlimited length, having a first come, first 

served discipline to a single service mechanism with ran

dom service completion times, would be: 

A1:l - =(M,A)Q11, n f O; D11, n = 0/ o 

For the Swedish machine case, the arrival population 

description would be: 

A
1

:l - N(M, f)Q11, n > M; Dli' nli = 0/

Queues 

0 

The description of the queues in the fundamental queue 

must state four things about the queues: the allowed 

length, the order of service and the disposition of units 
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which leave the queues. These are classed in this fashion: 

A capital letter Q with a subscript i numerically identi

fying this type of queue, a semicolon, a number indicating 

the number of queues of this type with a Q indicating a 

general number, a dash indicating the maximum allowed 

length for this type of queue, a parenthesis containing 

either the letter F, R, L, or B to indicate the order in 

which the units in this queue are removed. Where F indi

cates first come, first served, R indicates random selec

tion, L indicates last come, last served, and B indicates 

all at once, with the disposition following the parenthe

sis in the same fashion as the arriving units. 

In some cases, it will be found that the units leave 

a particular queue according to two different disciplines, 

such as units going into service coming from the ordered 

queue on a first come, first served basis while units 

which are leaving the queue to try their luck in another 

system might be on a first come, last to leave. In this case, 

the first discipline will be given, followed by the dispo

sition of the units leaving under that discipline followed 

by the second discipline and the disposition of the units 

leaving under that discipline. 

Following this convention, the original single queue 

with an unlimited population which arrives randomly at a 

mean rate of A and single queue of unlimited length, having 

a first come, first served discipline to a single service 

mechanism would have its queue described by: 
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or the Swedish Machine Case by: 

Departure Mechanism 

The description of the departure mechanism follows 

the pattern of the arrival populations and queues. The 

identification begins with the capital letter Di with the

subscript i identifying numerically this type of service 

mechanism followed by a colon followed by a number indi

cating the number of identical mechanisms of this type 

with the capital letter M indicating a gener�l number in 

the same fashion as the arrival time distribution. This 

is followed by the disposition of units which completed 

service, using O for out of the fund$.Inental queue, Aij for

return to the jth population of type i, Qij for the jth

queue of type i (for units displaced by priority units). 

Thus, the original single queue with an unlimited 

population which a�rives randomly at a mean rate of A and 

single queue of unlimited length, ·has a first come, first 

served discipline to a single service mechanism with ran

dom service completion times and a mean service rate ofµ 

would be indicated by: 
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or for the Swedish Machine case: 

Identification of Results 

Finally, it is highly desirable to be able to com

pactly describe the results of the queueing system which 

has been described analytically. This is essentially the 

matter of adopting a consistent, compact notation which 

follows the usual practice of statistics and yet is as 

mnemonic as possible. While it would be desirable to fol

low the literature in such notation, the literature in the 

area is remarkably unstandardized even for a mathematical 

or statistical subject of its relative youth. This makes 

it relatively difficult to follow the literature, yet 

whereever there is a fair degree of consistency, such as 

the use of n to indicate the total number of units in the 

system or P
n 

to indicate the probability of there being

that �umber of units in the system, the lead is followed 

in order that this attempt will add as little additional 

diversity as possible to an already highly diverse subjecto 

With this in mind, it seems wise simply to adopt the ade= 

quate existing system used by Galliher (16) of indicating 

by various appendages to the symbols for the characteris

tics of the queueing system the things that are known 

about the system. Thus, the subscript� t, is used to in

dicate that the probability distribution of that 
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characteristic is known as a function of time for all val-

ues of t, which the subscript 00 is used to indicate only 

the steady-state or equilibrium solution is known. Placing 

a bar over the symbol for the characteristic will indicate 

that only the expected or average value of that character-

istic is known. Similarly, a lower case sigma, o, sub-

scripted by the characteristic will indicate only that the 

standard deviation of that characteristic is known. 

Since many of the known partial solutions are valid 

only for a particular range of the parameters, such as 

n
00 

for the original Erlang model of A1: 1 - 00(M, µ)Q.11, n > 0;

D11, n = O/Q.1:1 - 00(F)D11, n = O/D1:l(M,µ)O which is valid

only for values of A/µ < 1, such limitations should be 

noted in the usual mathematical manner. 

Generally, the notation for the characteristics of 

interest of queues will follow the most common notation of 

the literature except in certain cases where it seems ad-

visable to avoid confusion caused by conflicting notation 

or conflict with other general symbols. The most impor

tant symbols adopted here are: 

n = number of units in the system 

n = number of units in the queues plus the number in 

the service facilities 

qij = number of units in the queue number j of type i 

w = waiting time or time in the queue 

s = time in the system or waiting time plus time in 

service 



d .. = number of units in the jth service facility of 
J.J 

type i. 
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CHAPTER V 

APPLICATION OF THE SYSTEM TO QUEUES 

CONSIDERED IN THE LITERATURE 

The first demonstration of the usefulness of this 

system of classification of queues was achieved by classi

fying under the system a number of the situations described 

in the literature whose solutions are known and some whose 

complete solutions are not known. The following list, then, 

presents the common name applied to them (if a name has been as

signed), describes the queue in the usual word manner, the 

classification of the queue, and the results which are avail

able concerning that queue. Associated with some of the 

results will be two bibliographical references; the first 

being the original publication reference and the second being 

a convenient reference where the same results are available o 

The Basic Poisson Queue 

The most widely known queueing situation, the Erlang 

or basic Poisson Queue is usually described as a case 

where there is an infinite calling population from which 

units arrive randomly, i.e., that the inter-arrival times 

are as likely to end at any one instant as any other, with 

a mean arrival rate of A, with the arriving units going 

35 
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directly into the service mechanism if it is empty, other

wise entering a queue of units waiting for service. The 

units which enter the queue leave only to enter the serv

ice mechanism on a first come, first served basis. The 

service times are also random in that the service of a 

unit in the mechanism is as likely to end at any one in= 

stant as another with a mean service rate ofµ. 

This queue would be classified: 

A1:l - oo(M,A)Q11, n > O; n11, n = 0/ 

Q1:l - 00(F)D11, dll = O/D1:l(M,µ)o

n
oo 

( 1) ' (15), (11) nt (19), (15) 

n
oo (1), ( 15), (11) <loo (11), (15) 

w
oo (15), ( 11) w

oo (15) 

8
00 

(11) 8
00 

(15) 

0nt (15) O'noo (11), ( 15)

Distribution Variations on the Basic Queue 

The queues which follow immediately are a group which 

have received a great deal of study because they are basi

cally variations on the basic queue given above. Their 

word descriptions are identical to that for the basic queue 

except for the distributions, their inter-arrival times, 

and service completion times. For this reason, only the 

distribution differences will be noted and the remainder 
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of the word descriptions will be ommitted. The classifi

cation will be given in full. 

The Deterministic Queue: This queue differs from the 

basic queue in that the inter-arrival times and the serv

ice times are constants. 

A1:1-oo(D,11.)Q11, n= l; n11, n=0/Q1:l-oo(F)D11, d11 =0/

D1: 1 ( D, µ) 0.

(15) (15) 

Erlangian Service Times: This queue differs from the 

basic queue in that the service times follow the Erlangian 

distribution. 

A1:l-co(M,11.)Q.11, n�l; D11, n=0/Q1:l-oo(F)D11, d11 =0/

D1:l(Ek, µ, k)O.

(15) 

<loo (15), 

(15) 

Er langian Arrival Times: This queue substitutes the 

Erlangian distribution for the random distribution of the 

service times. 

A1: 1 -oo(Ek, 11.,k)Q.11, n � 1 ;D11, n = 0/Q.1: 1 = 

00(F)D11 � dll = 0/

D1:l(M,µ)O.



38 

n
oo 

(20), ( 11), ( 15) ( 20), ( 15) 

n
00 

(20) , ( ll) , ( 15) 

� (20) , ( 11)

Erlangian Input, Constant Service Times: In this model, 

the distribution of the inter-arrival times is Erlangian 

and the service times are constant. 

A1:l- 00(Ek,A,k)Q11, n,?:l; D11, n=O/ Q1:l- 00(F)D11, d11 =0/

D1:l(D,µ)O.

woo 
(15) 

Arbitrary Service Time Distribution: Here, the service 

time distribution. 

Al: 1 - oo(M, A)Q11, n,?: 1; D11, n
= O/Q1: 1 - oo(F)D11, d11 = 0/

D1:l(G)O.

Arbitrary Service and Arrival: Here, the only assumptions 

made about the arrival and service distributions are that 

they exist and that each service and inter-arrival time is 

independent of the others. 

A1:l- oo(GI)Q11, n,?:l; D11, n=O/Q1:l- 00(F)D11, d11 = 
0/ 

D1:l(GI)O.

(21), (15) (21), (15) 

Hyper-Exponential Service Time Distribution: This situa

tion is exactly like the basic queue except that the 

noo ( 15) 



service times are distributed according to the byper

exponential distribution with two phases. 

A1:l - 00(M,A)Q.11, n�l;D11, n=O/Q,1:l -oo(F)D11,d11 =0/

D 
l 

: 1 ( HL , µ , L = 2) 0 •

(11) n
oo 

(11) 
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Two Phase Erlangian Arrivals: Here is a specialized ver-

sion of the general Erlangian arrivals where the Erlangian 

distribution has the parameter k = 2. 

A1: 1 - oo(Ek, A,k = 2)Q,11 ,n � 1 ;D11 ,n = 0/Q,1: 1 -oo(F )D11, dll = 0/

D1:l(M,µ)O.

(11) (11) 

(11) (11) 

Erlangian Arrivals and Service, Both Two Phases: This 

system has both service and arrival time distributions of 

two phase Erlangian type. 

Al: 1 -oo(E�, A,k = 2)Q,11,n � 1 ;D11 ,n = 0/Q,1: 1 - 00(F )D11, dll = 0/

D l : 1 ( Ek , µ , k = 2) 0 .

q 

(11) 

(11) 

(11) 

(11) 

(11) 

(11) 

Two Phase HyPer-Exponential Arrivals: This system substi

tutes a two phase hyper-exponential distribution for the 



40 

random arrival distribution of the original queueing case. 

A1: 1 - oo(HL, A,L = 2)Q.11,n > 1 ;D11,n = 0/Q.1: 1 - oo(F)D11,d11 = 0/

D1:l(M,µ)O.

(11) 

(11) 

(11) 

n
oo 

Multiple Channel Queues 

(11) 

(11) 

The members of the following group of queues each have 

more than one service channel. The basic multiple channel 

model is given first and is described completely in the 

word description. The remaining queues in this section 

are not completely described by words, but rather have 

given only their differences from the basic multiple chan

nel situation given with all other features assumed to be 

identical. The classifications are given completely. 

The Exponential Multiple Channel Queue: This queueing 

situation is the case where there is an infinite calling 

population from which uni ts arrive randomly, i.. e. , the 

inter-arrival times are as likely to end at any one in

stant as at any other, with a mean arrival rate of A, 

and with the arriving units going directly into an open 

service mechanism (if there is one) which is chosen at 

random from among the open service channels. If no serv

ice channels are empty when a unit arrives, it joins a 
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queue(which may become intinite)from which it may not de

part except to enter a service channel. The units leave 

queue to enter an empty service channel on a first come, 

first served basis. The service times of all channels are 

identically distributed according to the exponential dis

tribution with identical parameters. The units leaving 

the service mechanism leave the system. 

D1 :M(M, µ)O.

n
oo 

(11), (15) s
oo 

(11) 

-

(11), (15) 
- (11) ) n

oo 
s

oo 

q_ (11), (15) w
oo 

(11) 

- (11) (15) w
oo 

nt

Constant Service Times, Multiple Channels: In this situ

ation, all of the service channels have identical constant 

service times. 

A1: 1 - �(M, A)Q11,n � M;�li ,dli = 0 ,h < M/Q1: 1- oo(F)Dli ,dli = 0/

D1 :M(D :, µ)O.

-

(22), (15) 
-

(22)' ( 15) n. g_ 

-

( 2.2)' ( 15) ( 2,3)' ( 15) w
oo 

w
oo 

�00 (23), (15) 

Erlangian Two Phase Arrivals With T wo Service Channels: 

This case substitutes a two phase Erlangian arrival dis

tribution for the random arrivals and limits the number of 



channels specifically to two. 

A1: 1 - oo(Ek, A,k == 2)Q.11,n 2=, 2 ;Dli ,dli == 0 ,n < 2/

Q.1: 1 - co(F)Dli ,dli == O/D1: 2(M, µ)O.

(11) 

(11) 

noo

42 

(11) 

Two Erlangian Two Phase Service Channels: This case sub

stitutes a two phase Erlangian service distribution for 

the random distribution and specializes the number of 

multiple channels to two. 

Al: 1 - oo(J.VI' A.)Q.11 ' n 2=, 2;Dli, dli = 0 , n < 2/Q.l: 1 - oo(F)Dli , dli = 0/

D1: 2(Ek, ll,k = 2)0.

(11) -

(11) n n co 00 

- (11) (11) q_ woo

soo
(11)

Limited Q.ueues 

The following group of queueing situations are those 

for which the queue is not allowed the possibility of be-

coming infinite. Since, in most cases, these are varia

tions of other queues, their full word description will 

no� be given, but again the nearest previously described 

queue will be indicated with the pertinent differences 

noted. 



43 

Basic Single Channel System With No Queue: This case fol

lows the basic model except that, if a unit arrives while 

another unit is in service, it returns to the calling 

population. 

A1: 1- oo(M, A)A11,n � l;D11,n = O//D1: l(M, µ)O.

nt (11) 

Basic Multi-Channel Case With No Queue: This case follows 

the basic multi-channel model except that, if a unit ar

rives while all of the service channels are filled, it re

turns to the calling population. 

A1: 1 - oo(M, A)A11,n � M;Dli ,dli = 0 ,n < M//D1 :M(M, µ)O.

n
00 

(11) n
00 

(11) 

(11) 

Single Channel Erlangian Arrivals With Queue Length 

Limited: This case is the same as.the single channel

Erlangian arrivals except that the queue length is limited 

to Q units with those units which arrive when the service 

channel is filled and the queue contains Q units will re

turn to the arriving population. 

A1 :1 - oo(Ek,A,k)Q11,Q + 1 > n� l; A11,n� Q + l;D11,n
= 0/ 

Q1: 1 - Q(F)D11, d11 = O/D1: l(M, µ)O.

n
00 

(11) n
00 

(11) 

Two Phase ayper-Exponential Arrivals With No Queue: This 

system corresponds to the single channel two phase 
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hyper-exponential arrivals except that no queue is allowed 

so that units which arrive when the service channel is 

filled return to the arriving population. 

A1: 1 - oo(HL, A,L = 2)A11,n > 0 ;D11,n = O//D1: l(M, µ).

(11) 

Single Channel Hyper-Exponential Service With No Queue: 

This system is like the single channel hyper-exponential 

service system except that units arriving when the service 

mechanism is filled are returned to the arriving 

population. 

A1: 1 - oo(M, A)A11,n� 0 ;D11,n = O//D1: l(HL, µ,L)O.

(11) (11) 

Basic Single Channel Case With a Limited Queue Length: 

This is the same system as the basic single channel case 

except that the queue length is limited to Q units with 

arrivals, when both the service mechanism and the queue are 

filled, .returning to the arriving populationo .. 

Q1:l -Q(F)D11,d11 =0/D1:l(M,µ)O.

woo 
(15) woo 

(15) 

n
oo 

(11), (15) qt (11) 

O'noo
(11), (15) nt (11) 

(15) 
-

c!1) n
oo � 

A1 : 1- oo(M, A)A11 ,n > Q. + 1 ;Q.11 ,Q. + 1 > n > l,D11 ,n = 0/ 
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Basic Multiple Channel Case Where There Are an Infinite 

Number of Channels: This case is identical to the basic 

multiple channel case except that the number of channels 

is considered to be infinite. Because there is always a 

service channel available, no queue will ever form. 

A1: 1 - oo(M ,"-)D1n//D1 :oo(M, Jl)O.

nt (15) 

45 

Epidemic Case: This is a variation on the basic single 

channel model except that it is assumed that the Poisson 

arrival rate is proportional to the number present in the 

system and that the service is exponential with a service 

rate that is proportional to the number in the system. It 

is further assumed that once the system is completely empty 

the operation stops or if the number in the queue reaches 

a.n1+Jllb�r Q, the operation stops.

A1: 1- oo(M,nA)Q11,Q + 1 > n > O;A11,n = O/Q1: l - Q(F)D11,d11 = O;

Q11,n = Q + l/D1: l(M ,np.)O.

Distribution of time to reach stop. (24). 

Additional Complicated Cases 

The following group of cases represent some of the 

more complex assumptions which may be made regarding 

queueing situations for which solutions are available. 

Balking Arrivals: This case is a modification of the 

· single channel basic queue in which the arrivals look at
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the queue upon the instant of their arrival and decide 

either to enter the queue or to return to the population. 

For a given queue length, the decision is a random one 

with a fraction e-an;µ deciding to enter the queue when 

there are n units in the system and a fraction 1-e-an;µ

choosing not to enter the queue. 

A1: 1 - oo(M, A)e-an;µ (Q11,n > 0); (l-e-an/µ)(A11,n > O);

D11,n = O/Q1: 1 - 00(F)D11,d11 = O/D1: l(M ,µ)O.

( 11) 

(11) o2 

noo

(11) 

(1) 

Balking Arrivals With an Arbitrary Arrival Distribution: 

This case is different from the basic single channel lim

ited queue situation in that the arrival distribution is 

arbitrary. 

A1: 1 - oo(G)A11,n 2:, Q + l;Q11,Q + 1 > n2:, l;D11,n = 0/

Q1: 1 - Q(F)D11,d11 = O/D1: l(M, µ)O.

n
00 

(15) 

Balking and Reneging: In this case, the arriving units 

are constantly evaluating the length of the line. Upon 

arrival, some fraction which is a function of the length 

of the line, r(n) decide not to join and the remaining 

1 - r(n) join the line. Similarly, those already in the 

queue are each making the same evaluation with r(n) de

ciding to leave the queue and return to the population and 

the remaining 1 - r(n) deciding to stay in the queue. The 
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decision of the unit in the queue to renege or not is made 

on the total number in the queue, not on the individual 

unit's position in the queue. 

A1: 1 - 00(M ,A) (r(n) )A11 ,n � 1; ( 1 - r(n) )Q11,n � 1 ;D11,n
= 0/ 

Q1: 1 - oo(F)D11,d11 = 0; (r(n) )A11,n � l/D1: l(M, µ)O.

n00 
(15)

Differing Queue Disciplines and Priorities 

The following group queues are concerned primarily 

with queue disciplines other than simple first come, first 

served and with systems in which priorities are granted on 

some basis other than arrival time to individuals arriving. 

The cases involving priorities are among the most complex 

situations found in queueing theory for several reasons. 

A queueing situation with priorities really means that 

there are several queues of different classes in front of 

the service mechanism and that each of these queues must 

be considered separately since each has different charac

teristics. Secondly, the basis used for granting priori

ties is fundamentally arbitrary and can be very difficult 

to describe or determine. 

Single Channel, Random Access to Service From the Queue: 

This is the variation of the basic model where units in 

the queue enter the service mechanism on the basis of ran

dom selection rather than first come� first served. 



48 

A1: 1 - 00(M, i\)Q11 ,n 2::, 1 ;D11 � n �·. 0/Ql: 1 - 00(R)D11 ,dll = 0/

D1: l(M, p.)O.

(11) noo
(11) 

(11) woo
(11) 

(11) 
- (11) 
SCIO 

(11)

Multiple Channel, Random Access to Service From the Queue: 

This case is exactly like the preceding one except that 

the unit randomly selected from the queue for service goes 

to a multi-channel service mechanismo 

A1: l - oo(M, i\)Q.11,n > M;Dlj ,dlj = 0 ,n < M/Q1: 1 = oo(R)Dlj ,dlj = 0/

D1 :M(M, p.)O.

w 
00 

0woo

(15) (15) 

(15) 

Constant Service Times 2 Single Channel, Random Ace�: 

This system is the same as the single channel, random ac

cess to service from the queue with the one difference 

that the service times are assumed to be constanto 

A1: l - oo(M, i\)Q.11,n?:, l ;D11,n = O/Q1: 1 - oo(R)D11, dll = 0/

D1:l(D,µ)O.

woo 
( 25) , ( 15)

J 

w co 

w co 
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Bulk Service With Arbitrary Service Distribution: In this 

case, the units are served in groups. If the arriving 

unit finds the service mechanism empty at arrival, it en

ters and is served alone. If the arrival finds the unit 

busy, it enters the queue. When the service mechanism 

completes service, it takes as many as are waiting up to a 

given number. The service time distribution is arbitrary. 

A1 :1- oo(M,A)Qli ,(1 + i)Q� n > iQ;D11,d11 = O,n < Q/ 

Ql :oo - Q(B)Dll 'Qlj < li = 0 ,dll = 0/Dl: l(G)O.

� (26), (15) 

woo ( 26) , ( 15)

Single Channel, Two Priority, Non-Premptive: In this sit

uation, there are two classes of units arriving: high pri

ority units and low priority units. The high priority 

units have the right to service on a first come, first 

served basis among themselves ahead of the low priority 

units which may be waiting, but cannot force a low prior

ity unit out of the service mechanism. The low priority 

units are served on a first come, first served basis among 

themselves only when there are no high priority units 

waiting. A fraction, a, of the arriving units are high 

priority and 1 - a are low priority. They are served at 

the same rate. 

A1 :1- oo(M,aA)Q11,n > l;D11,n
= 0: :A2: 1- 00(!1,(l - a)A)Q21,- D11;

Dll' dll =O,qll =O/Ql:l-oo(F)Dll' dll =O::



(11) (11) 

Two Priority, Non-Premptive
2 Differing Service Rates: 

This is the same system as that immediately above except 

that the two classes of units are served at differing 

service rates with the class two units having a service 
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rate which is some multiple, �' of the service rate of the 

class one units. � > O. 

A1:l- oo.(M,cx.t1.)Qll' n 2:_ l;Dll ' dll = O, d21 = 
O,qll = 0::

A2: 1 -oo(M, (1-cx.)t1.)Q21,n 2:. l;D21,n = O/Q1: 1 - oo(F)D11,d11 = 0,

d21 = 0::Q.2:l-oo(F)D2l' dll = 0, d21 =O,q11 = 0/

D1:l(M,µ)O::D2:l(M,�µ)O

(11) 

(11) 

(11) 

R Priority, Non-Premptive, Differing Service Rates: This 

is a generalization of the two priority case. 

Al :1-oo(M, "'1)Qll ' n 2:_ l;Dll ' dlj = O,qll = 0::

A2:l-oo(M, "'2)Q.2l' n 2:_l;D2l' dll = 0, d21 = 0,qll =0,q21 = 0::

•.• : :Aj:l- oo(M,t1.
j)Qjl' n 2:_l;Djl' n = O/Q.1:l- 00(F)D11,djl = 0::

Q.2: 1- 00(F)D21 ' djl = O;qll = 0::. 0 0: :Q.j: 1- oo(F)Djl ,d jl = o,

qkl ( k < j ) = 0 /D l : 1 ( G , µ1 ) 0 : : D 2 : 1 ( G , µ 2) 0 : : ••• D j : 1 ( G , µ j ) 0

800 
(27), (15) 

woo ( 27) , ( 15)
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R Priority, Non-Premptive 2 Multiple Identical Channels: 

This system is a version of that immediately above except 

that there are multiple channels which can operate simul

taneously and have identical exponential service rates. 

A1: 1 - 00(M, "'l )Q.11: n 2:. M ;Dli, dli = 0 ,n < M: :

A2:1- oo(M,A
2)Q.21,n2:_M;D1i'ln<M,q11 = 0::

•.• ::Aj:l- oo(M,Aj)Q.jl'n2:_M;Dli'n<M,q11 =O,q21 =0,

•.• qj - 1,1 = 0/Q.l :1- oo(F)Dli , dli = 0: :Q.2:1- oo(F)Dli ,dli = o,

i=j-1 
ql1 = 0:: ••• : :Q.j :1- 00(F)Dli ,dli = O, Eqil = O/D1 :M(M,µ)O

soo (15) 

Single Channel With a Continuous Number of Priorities: 

This is the basic single channel case except that units

are assigned priorities along a continuous scale according 

to their required service time and served in that order. 
i<t 

Al: 1 - oo(M, A)Q.t ,n 2:. 1 ;D11 ,n = 0/Q.t: oo - oo(F )D11, dll = 0 ,Eqi = 0/

D1:l(M,µ)O

( 28), ( 15) (28), (15) 

Queues From Limited Culling Populations 

The following group of queueing situations is charac

terized by having a finite calling population rather than 

an infinite one as have the preceding models. 

The Swedish Machine Case: This is the case where there is 

a limited calling population of size N requesting service 
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from a finite number of service facilities, M. The calls 

from the arriving units are randomly distributed as are 

the service times. The queue is strictly first come, 

first served. When a unit's service is completed, it is 

returned to the calling population. 

A1: 1 - N(M ,A)Q11,n � M;Dli ,dli = 0 ,n < M/Q1: 1 - N - M(F)Dli,

dli = O/D1 :M(M, p.)A11

n. (13), (15)

n. (13), (15)

w. (13)

� (13)

The Single Repairman Case: This is the same situation as 

the Swedish machine case except that there is only one 

serving facility. 

Al: 1 - N(M, A.)Q11,n > 0 ;D11,n = O/Q1: 1 - N = l(F)D11,d11 = 0/ 

D1:l(M,p.)A11

n. (13), (15)

n. (13)

w. (13)

q_ (13)



CHAPTER VI 

PROBLEMS ENCOUNTERED IN THE CLASSIFICATION OF 

REAL QUEUEING SITUATIONS 

The problems associated with the classification of 

queueing situations may be divided for convenience into 

four rough types which are not mutually exclusive, but 

rather overlap a great deal. These types of problems are: 

(1) the statistical problem of the determination of distri

butions and parameters from data collected about a given 

queueing situation, (2) the physical problem of measurement 

or the collection of the numerical data relating to the 

system, (3) the problems associated with transientness in 

the various characteristics of the system, and (4) the 

problem of a changing informal discipline in the system. 

·, It can be seen that these four types of problems in many

respects refer to the same things, but this division seems

to be useful in considering the particular approaches. 

Statistical Determination of Distributions 

Since most of the work which has been done in finding 

solutions for queueing situations depends upon a knowledge 
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of the distributions of the characteristics1 it follows

that the ability to classify a particular situation and to 

find its related solution depends upon the ability to de

termine the relevant distributions. The determination of 

a distribution is an old and common problem of statistics 

generally. The most common approach to the problem is 

that which was used in this investigation of hypothesizing 

various distributions and testing the goodness of the fit 

provided by the Chi Square test. This "cut and try" ap

proach has many obvious difficulties. The most prominent 

are that it greatly depends upon the experience and in

sight of the user for its success, it does not calculate 

a good fit, it does not converge toward a good fit, and it 

can be extremely lengthy even with high speed computing 

facilities and still not be successful. 

A second common approach is to fit by the "least 

squares" method some sort of multiple regression equation 

in a great many variables and then determine from the re

gression coefficients the nature of the distribution. This 

approach is almost prohibitive without the use of a high 

speed computer and even then is fraught with difficulties 

and dangers, principally the fact that chance variations 

when fitted in this manner can completely mask out a real 

1There are some distribution free or partially dis
tribution free solutions available such as that of Kendall 
which is independent of the service time distribution, but 
usually these solutions are incomplete and limited. 
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distribution. Too, with this approach, there is again no 

guarantee of a fit or convergence with success depending 

mainly upon the experience, insight and luck of the user. 

A third approach to this problem is that developed by 

Karl Pearson for the classification of empirical distribu

tions which is discussed in some detail in Fry's (4) 

Probability Theory and Its Engineering Applications. This 

approach seems to have the merit of convergence for uni

modal distributions, but involves such an extremely large 

amount of calculation that it is rarely used in practice, 

even with high speed computers. 

Transientness 

The problems in the development of solutions to queue

ing situations associated with transientness fall into two 

classes; namely, those which result from a situation with 

stable arrival and service distributions and disciplines 

in which the probabilities of the system being in the var

ious states have time dependent components which diminish 

with time to the point where they are inconsiderable, and 

those wherein one or more of the parameters of the distri

butions, the distributions themselves or the discipline of 

the queue, are changing as a function of time. 

The first type of transientness corresponds to well

known phenomena in other branches of engineering such as 

transient currents in electrical engineering or vibrations 

in mechanical engineering. These problems are well 



56 

recognized in queueing literature, but are only partially 

solved. Most of the solutions are for the steady-state 

situation where sufficient time has elapsed for the tran

sient components to reduce to an insignificant order of 

magnitude. This time, usually called the relaxation time, 

is important when its magnitude is large in relation to 

the period of operation of the system under consideration. 

From a strict theoretical standpoint, the relaxation time 

of the system must be known before the steady-state solu

tion is used. In practice, this is not always followed, 

since the steady-state solutions are usually much easier 

to obtain than the time dependent solutions. In some 

cases, this is quite satisfactory because the general na

ture of the relaxation process can be determined fairly 

satisfactorily from observation, but in many cases, espe

cially when rapid solutions are required by persons inex

perienced in the operation of queueing systems, this prac

tice may lead to extremely poor results. 

The second type of transientness has had almost no 

study and is probably a much greater source of inaccuracy 

in queueing studies than any other single factor. Prob

lems resulting from this type of transientness have re

ceived very little study, beyond a common admonition that 

the investigator should make sure that the system is sta

ble before beginning a study or to break the times studied 

down into segments which approximate stability. Both of 

these suggestions are filled with great difficulties. The 
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first is faced with the fact that many systems simply do 

not stabilize at all. An example of such a situation is a 

theatre queue in which the arrival rate has an almost di

rect relationship to the time of beginning of the attrac

tion. The second suggestion is often made useless by the 

rate at which the system changes with time. Again, the 

theatre queue presents an example where the rate of change 

of the arrival distribution is too great to permit this 

method to be successful. 

Changing Disciplines 

In queueing situations involving people, one of the 

most troublesome problems is lack of discipline or perhaps 

failure to maintain a given pattern of discipline. A par

ticular characteristic of this problem is that it is very 

difficult to observe changes in the discipline where people 

are involved and the discipline is not enforced by mechan

ical means. Fortunately for industrial engineers, most 

industrial systems use people as arrival and service mech

anisms and have products as the units of the system with a 

mechanically enforced single discipline system. 

Measurement 

The problems associated with measuring the character

istics of a queueing situation are primarily a function of 

three characteristics, the physical scope of the system, the 

complexity of the system, and the magnitude of the arrival and 



service rates. The measurement problems are all essen

tially economic except one, instrumentation to detect 

transientness and changes in discipline. 
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The effect of the physical scope of the queueing sys

tem is directly one of size. In a simple, small system 

with moderate rates of arrival and departure, it is possi

ble to measure the characteristics of the system by single 

observer with such simple timing mechanisms as the ordi

nary stop watch. As the physical size of the system is 

increased, direct observation becomes less and less effec

tive, and such expedients as artificial vantage points, 

observation towers, etc., become necessary until the point 

where direct observation is no longer feasible. At this 

point, indirect observation becomes necessary. The com

plexity of the instrumentation for indirect observation 

may range from a simple trip wire or electrical contact to 

the most elaborate telemetry. Generally, the physical 

size of the system governs the expanse of the transmission 

equipment required. Examples of the increasing complexity 

of the transmission requirements in studying queues were 

found in connection with the queues investigated in con

nection with the classification problem and others. In 

the measurement of a queueing system involving a movie 

theatre line, a single observer working with a stop watch 

and a clip board was quite satisfactory since there was a 

single line with moderate arrival and service rates, ten

tatively classified as the type A1: 1 - 00(U)Q11 ,n > 1;



D11, n
= O/Q1: 1- 00(F)D11, d11 = O/D1: l(U)O. Another system

with a similar basic structure in a "Minute Car Wash" 

required that the observer using the same equipment take 

a position on the roof in order to see the arrivals and
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view the service mechanism through an opening in the roof, 

while studies of highway traffic queues have required the 

erection of scaffolding towers. 

The problems of measurement presented by the increas

ing complexity of the system are much more extensive than

those of simple size. In the study reported in Chapter 

VIII of the cafeteria of the type A1: 1 - N(U)Q11, n .?. 2,

ql2 > qll ;Ql2 , n .?. 2 'qll > ql2 ;Dil , dil = O/Ql: 2 - oo(F)Dil , dil = O/ 

D1:l(U)O::D2:l(U)O, it was found to be very easy to handle

each queue under the assumption of independence, 

A1: 1 - N(U)Q11, n > 0 ;D11, n = O/Q1: 1 - oo(F)D11, d11 = O/D1: l(U)O,

by a single observer with a stop watch, but that it was 

not possible to handle the combined system without great 

difficulty by two observers so equipped . Similarly, a 

system in a supermarket with seven service channels and

lines apparently of the type A1: 1 � N(U)Q1i , n .?. 7, qli = 

min . ql ;Dli , n < 7 , dlj = 0/Ql: 7 = 

00(F)Dli , dli = O/D1: 7(U)O

proved to be impossible to measure without elaborate in-

strumentation which was beyond the limitations imposed on 

these studies by budgetary restrictions. 

The expansion of the complexity of the queueing sys-

tem requires an expansion of the facilities for recording 

the inputs from the transmission system. Generally, this 
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expansion is linear with the total number of arrival popu-

lations, queues, and departure mechanisms. 

The third factor contributing to the problem of meas-

uring the characteristics of queueing systems is the mag

nitude of arrival rates and departure rates. The measure-

ment of the inter-arrival times, service times and queue 

states presents an order of difficulty inversely propor

tional to the magnitude of these quantities. In cases 

where the arriving units are aircraft arriving for repair 

and the magnitudes involved are on the order of days, the 

problem of measurement lies not in measuring a particular 

unit's times, but in collecting enough data to have a sta

tistical significance before the system changes or in time 

to make a practical use of the information gained. As the 

time shortens, the problem shifts and becomes more diffi

cult in two ways. First, the times become sufficiently 

short that some means of "magnification" must be included 

in the recording system such as micro-motion filming, high 

speed recording equipment using punched, smoked or inked 

paper, magnetic tape, or photographic methods of tracing 

an electric impulse. Secondly, as the times shorten, the 

problem of interpreting the data economically becomes 

acute due to the mass of data which must be translated 

from the form of the recording mechanism to a numerical 

form for analysis. 

It must be pointed out that the three problems dis-

cussed above are not independent, but rather are 
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interacting and that in many cases the magnitude of the 

difficulties presented by the interaction are of a much 

larger order of magnitude than those presented by the sep

arate components. 



CHAPTER VII 

VARIOUS CONSIDERATIONS OF THE PARTICULAR PROBLEM 

OF THE RELATIONSHIP BETWEEN SERVICE RATES 

AND QUEUE LENGTH 

In studying the problem of classifying queueing sys-

tems in the real world, the primary interest was placed on 

the relationship between service rates and queue length. 

This chapter is devoted to a brief review and examination 

of the principal hypotheses to be found in the literature 

regarding this relationship. 

Erlang's Assumptions 

In his development of the classic queue with exponen-

tial arrivals and service to and from a single first come, 

first served queue which is not limited in length or 

A1: 1 - oo(M :A )Q11,n > 0 ;D11,n = 
O/Q1: 1 - oo(F)D11 ,d11 = 0/

D1:l(M,µ)O, Erlang assumed that the service rate was in

dependent of the queue length and, in fact, had the time 

of service end to be completely random. (1). In the queue, 

A1: 1 - oo(M .,11.)Q11 ,n .2:, M ;Dlj ,n < M, dlj = O/Q1: 1 - �(F)Dlj , dlj = 0/ 

D1:M(M,µ)O, he assumed that the service rates of the indi

vidual channels were independent of the queue length, but 

that the total service rate of all of the channels was 
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directly proportional to the number in service, up to the 

point where the number in service is equal to the number 

of service channels and is independent beyond that point, 

thus: 

µ
c 

= the stationary service rate of a single channel 

when serving 

µn = the total service rate of the system when it 

contains n units 

n<m 

n>m

m = number of service channels available. 

There is considerable logical support for the validity 

of these models in certain cases which follows the same 

general line of reasoning that supports the Poisson distri

bution in most other situations where the probability of 

the event is very small, but the number of opportunities 

for the event to occur is very large so that the average 

number of occurrences is constant. 

Feller's Birth and Death Process 

Feller (29) describes the solution for the case 

Al: 1- oo(M:nA)Q11,n > O;D11,n = O/Q1: 1- 00(F)D11,d11 = 0/

D1:l(M,nµ)O, where the number in the system is allowed to

become infinite and the number of service channels, each 

with an identical exponential service time distribution, 

is always equal to the number of units in the system and, 

thus, is allowed to become infinite alsoo The infinite 
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service rates which this system indicates are rare in in

dustrial practice and situations for which this system 

forms a reasonable approximation have not been reported, 

although it forms a useful tool in the theoretical consid

eration of population studies. 

Romani's Variable Channels 

The solution to a variation in Feller's birth and 

death process was developed by Romani (30) in which the 

number of service channels was held constant until the 

queue reached a given length when another channel is opened. 

The number of channels is allowed to become infinite. 

Channels are removed from service when the queue reaches 

zero and the unit in the channel completes service. Again, 

it is difficult to find industrial operations which are 

approximated by this type of service variation. This sys

tem under the proposed system of classification would be 

described by A
1

: 1 - oo(M: A.)D
li 

,n = i - l//D
1

: i(M, µ)O. 

Phillips' Limited Variable Channels 

A more practical case was studied by Phillips (31) in 

which t�e number of service channels is limited to some 

finite number with the queue being allowed to become infi

nite after this finite number of channels is put into 

service. Under Phillips model, the number of channels is 

reduced by one whenever a channel completes the service of 

its unit and the queue length is zero. This case was shown 
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to form a good approximation to the situation where a re-

serve of identical workers or service mechanisms is avail-

able, but does not handle a varying service rate by the 

service channels. This system would be classified as 

A1: 1 - oo(M: A)Q.11,n �)1 ,Dli ,n = i < M/Q.1: 1 - oo(F)Dli ;dli = 0/

D1 :M(M, p.)O.

Conway and Maxwell's Case 

The most recent hypothesis regarding the relationship 

between service rate and the length of the queue was de-

scribed together with its solutions by Conway and Maxwell 

(32). This system operates for the queue 

A1: 1 - oo(M, An= A nc

)Q.11,n > 0 ;D11,n = 0/Q.1: 1 - oo(F)D11,d11 = 
0/

D1 ;
l(M, µn = µ nc)O where the service rate of the single

channel is proportional to some power of the queue length. 

Thus: 

µn = the total service rate of the system when it

contains n units. 

µ = "average" service rate when there is only one 

unit in the system. 
c µn = n .

This system then can be reduced to the queue, 

A1: 1 - oo(M :A )Q.11 ,n > 0 ;D11 ,n = 0/Q.1: 1 - oo(F)D11, dll = 0/

D1: l(M ,µ )0, by the selection of c = 0, or to the birth and

death system of Feller, A1: 1 - 00(M: nA.)Q.1 ,n > 0 ;D1i ,n = 0/

Q.1: 1 - 00(F)D11,d11 = O/D1: l(M ,nµ )0, by the selection of c = 1.

For values of c > 0, the situation is modeled where the 
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units in the queue create a pressure which tends to force 

the unfts through the service mechanism at an incre'asihg 

rate. For values of c < 0, the service mechanism is in-

creasingly clogged by the units in the line. 

There are reported in t�e literature tests of the 

validity of only three of these various assumptions. The 

assumption of independence in the models of the general 

type A1: 1 - oo(M: A)Q11,n > 0 ;Dlj ,n = O/Q1: 1 - oo(F)D11, dll = 0/

D1:l(M,µ)O has been widely tested. The first such exami

nation was reported by Molina (3) where he found the re

sults of a 1925 New Jersey study of 7837 local telephone 

calls which were found to fit Erlang's assumptions well. 

This assumption seems in general to fit well those cases 

where the service time is determined by the needs of the 

calling population and these are in turn determined by a 

possible very large number of unlikely small needs in' 

combination. Phillips (31) reports testing his hypothe

sis in ·the.: reception office of a. large hospital and. found 

a.· good fit. In addition, there is reason to believe that

the assumption of constant service times exists or is very

closely approximated by many situations where there is

only one service to be performed by a mechanical device.

The following chapter reports on the investigation of 

the relationship between the service rate and the line 

length in a system wherein human beings act as the service 

mechanism and have a degree of control over the time re

quired to perform the service by varying their effort 

levels. 



CHAPTER VIII 

REAL QUEUES WITH LENGTH DEPENDENT SERVICE RATES 

In studying the problems associated with the classi

fication of queueing systems, it was decided that a most 

useful approach would be to investigate in an actual case 

the classification of a particular type of service distri

bution. This approach recommended itself for two reasons. 

First, it would provide an insight in the work-a-day prob

lems faced by the engineer generally attempting to classify 

distributions for this purpose. Second, by choosing to 

investigate the particular class where the service mecha

nism was a human operator, it was hoped to shed a little 

light on certain long time problems of industrial engineeI'

ing with regard to the effect of a back log of work on the 

operator. For these reasons, one of the principal points 

in the investigation of queues was made by the problem of 

the relationship between the length of the queue and the 

service rate of the system when human beings were acting 

as the service mechanism, when these operators were capa

ble of observing the line length, when changes in their 

effort level were capable of influencing the service rate 

and when their reaction to the line length was uninfluenced 

by special incentives to either maintain a given length of 
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the queue or to reduce the queue. This chapter reports in 

detail on the investigation of a representative system of 

this sort and comments on another case which bears on the 

problem. 

Description of a Typical Situation 

Investigated in Detail 

A queueing situation which presents a typical case of 

the human operator acting as the service mechanism, with a 

partial ability to control the service rate by varying, 

either consciously or unconsciously, the effort level in 

response to an observable change in the queue length was 

the operation of the cashier's booth in the cafeteria of 

the Student Union Building of Oklahoma State University at 

Stillwate�, Oklahoma. This cafeteria is a large commercial 

type cafeteria operated by the University for the conven

ience of the faculty, staff, students and visitors of the 

University that offers a wide selection of foods at each 

meal. The patron enters a single queue which feeds two 

service lines. After being served with food, the patron 

is given a ticket for the price of his food at the end of 

the food :service line after which he repairs to the tables 

to consume his meal. After finishing his meal, the custom

er enters one of two queues to the cashier's booth, each 

queue leading to a separate cashier, where he pays the 

bill for his meal and leaves the system. Observation 

showed that there was very little crossing from one line 



to the other, i.e., that once a customer had entered a 

.given line, he usually stayed in it. It was the belief 

of the observer, both by personal experience and by con-
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tact with various other customers, that the patron usually 

chose the line which appeared to be the shortest and that 

by this mechanism, the lines generally maintained approx

imately the same length. According to the manager of the 

cafeteria, the operators of the service facility (the 

cashiers) were of approximately the same skill level and 

to further equalize matters were shifted frequently during 

the study. Even so, at the beginning of the study, there 

were grounds for believing that the service rate of the 

North Line would be significantly smaller than that of the 

South Line due to the South Line's service station being 

equipped with a modern electrically driven change machine 

which delivered the correct change to the customer by a 

chute while the North service station was equipped with a 

manual machine from which the change had to be handed to 

the customer manually. The apparent classification of 

this queue was A1: 1 - N(U)Q11,n > 2, q12 > q11,
Q12,n> 2,q11> q12;D. -�d .. =0/Q1:2-oo(F)D. -�d .. =0/

1J 1J 1J 1J 

D1:l(U)O::D2:l(U)O.

Method of Measurement 

Since preliminary observation showed that the times 

involved in the measurement of the queue length-service 

time relationship in this particular case would be well 
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within the capabilities of an observer using an ordinary 

industrial engineering decimal minute stop watch, this 

method was selected for the study. Because the two cash

ier queues acted independently except for the joint varia

tion in their arrival rates which was obviously a time de

pendent function of the class schedules and of the propen

sity of the patrons for having their meals at or near noon 

and six p.m., it was decided for convenience to study the 

queues independently. The validity of this procedure was 

indicated by the fact that the relationship in question, 

that of the service rate of a particular service facility 

and the queue length made the service rate depend, if at 

all, on its own queue. The observer was placed at the po

sition midway between the two cashiers at the head of the 

lines. From this vantage point, he could observe both de

partures from the system and entries into it. The times 

of each entry and each departure were recorded on columnar 

data paper as the occurred. A sample data sheet is in

cluded in Appendix A. At the end of each day, the observer 

calculated on the data sheet, the inter-arrival interval, 

the service time, and the number in the system (including 

the occupant of the service facility) at the time of each 

arrival. These facts then served as the raw data for the 

study. 

The determination of the inter-arrival time, the 

service time and the number in the system at the time of 

arrival for each arrival was made in the following manner. 
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The inter-arrival time for the nth arrival was simply the 

time of arrival of the nth arriving unit minus the arrival 

time of the n-lth arriving unit. The service time for the 

nth unit was determined by comparing the arrival time of 

the nth unit with the departure or service completion time 

of the n-lth unit. If the arrival time of the nth unit 

was greater than or equal to the departure time of n-lth 

unit, the service time of the nth unit was the arrival 

time of the nth unit minus the departure time of the nth 

unit since that unit spent all of its time in being served 

with no waiting. If the arrival time of the nth unit was 

less than the departure time of the n-lth unit, the serv

ice time of the nth unit was taken to be the departure 

time of nth unit minus the departure time of the n-lth 

unit. This assumes that the departure from the service 

window of a unit and its subsequent replacement occurred 

instantaneously which was not strictly true, but the time 

involved was of such a much smaller order of magnitude 

compared to the other times involved as to be immeasurable 

by the techniques employed and, thus, it was felt this as

sumption was a reasonable one. The number in the system 

at the time of the arrival of the nth unit was determined 

by locating the arrival time of the nth unit between the 

departure times of the previous units and counting back. 

In the very rare cases where the departure time and arrival 

time coincided, for this purpose, it was assumed arbitrar

ily that the departure had actually occurred before the 
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arrival by a minute amount. This method of measurement 

appeared to be entirely satisfactory for the purpose of 

this study, although it has severe limitations which pre

vent its successful use on many systems. These limita

tions and other problems involved in the measuring process 

are discussed in the section on measurement in Chapter VI. 

Determination of Stability 

The first question to be determined from the data was 

the meal-to-meal stability of the variation of the service 

times. A cr control chart was prepared. This chart, shown 

in Figure 2, indicates that a number of points (meals 11, 

17, 20, 21, and 24) were II out of control" or not members 

of the same system of chance variations from the average 

unless an extremely improbable combination of mischances 

had occurred in th- sampling. Although it is not possible 

to consider this a stable system, probably because of 

variations in the menu offering, it was decided that the 

results should be analyzed in three ways for the sake of 

comparison. First and correctly, a day-by-day analysis of 

the independent results of each day . Secondly, by assuming 

that there existed a reasonable assignable cause, the 

change in the menu, for the "out of control" days and re

moving them. This selected data was then tested for sta

bility of the standard deviation from day-to-day and found 

to be "in control". This control chart is shown in Figure 

3. The means of the selected stable samples were then
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formed into an X chart in Figure 4 and the means were 

found also to be stable from the same universe. This se-

lected stabilized data was then grouped and examined as 

whole on the same basis as the individual days'. Thirdly, 

this lack of control was ignored to consider the complete 

data for the study from the standpoint of the relationship 

between the service time and number in line only. 

Test of the Randomness Hypothesis 

The 'first hypothesis to be tested in this system was 

the common one that the service times ended randomly which 

implies that the service times would be distributed accord

ing to the exponential distributiono1 This hypothesis was

tested first because it forms the underlying assumption of 

almost all of the queueing studies reported in the litera

ture as discussed in Chapter VII. This hypothesis was 

checked day-by-day, for the stabilized data, and for the 

total study, in two ways each 9 by a visual check of the 

histograms of the data and by the 0 °Chi Squared 0
' test. 

Each day, the total study and the stabilized data 

each showed roughly the same pattern when plotted as a 

histogram. To the eye� it seems apparent that this dis

tribution is not exponential. Figure 5 shows the histo

gram of the data of a typical day with the exponential 

1The implication of the exponential distribution
from random service termination is fully discussed by 
Fry (4, pp. 221-223). 
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distribution fitted to the same mean rate superimposed. 

The impression given by the histograms was confirmed by 

the "Chi Square goodness of fit 00 test o The results of 
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the "Chi Square II tests are shown in Table II. Here, it is 

seen that with one exception for no one day or for the to

tal study or for the stabilized data was the probability 

of getting a greater value of 0 °Chi Square 01 by a random 

sampling from an exponential distribution with the appro

priate mean service rate greater than O.OOlo The one 

exception was meal 2 where the probability of a greater 

value of X 2 was still only 0.20. This appeared to provide 

sufficient evidence that the service times did not conform 

to the random hypothesis to reject the random hypothesis 

and to continue the search elsewhere. 

The Hypothesis of Normality 

The second hypothesis to be considered for this data 

was that the service times were normally distributedo This 

hypothesis was tested by visual inspection of the histo

grams and by the Chi Squared test for goodness of fit. The 

visual inspection showed that again the 00 fit ' 0 was a poor 

one, and this was confirmed by the Chi Squared test which 

showed probabilities of a greater value of X 2 for a random 

sample from the fitted distribution were less than 0.001" 

for the total study� the stabilized data and a representa

tive day. This was taken as sufficient evidence to justify 

rejection of the hypothesis of normality for the service 

times. 



Meal 

1 

2 

3 

4 

5 

6 

10 

11 

17 

18 

20 

21 

22 

23 

24 

Total 

Stable 

TABLE II 

RESULTS OF TESTS OF EXPONENTIAL DISTRIBUTION -
CAFETERIA 

Number Avg. Service 
Served Time (Mino) x2 P(>X 2 ) 

327 .15508 77.57 < .001 

332 .12825 30.07 .200 

463 .14481 140.59 < .001 

222 .14909 73.77 < .001 

403 .14389 89 .. 26 < .001 

137 .15930 62.25 < 0001 

188 .17140 78.ll < .001 

320 015520 98.10 < .001 

323 015180 92.37 < .001 

176 014280 48.49 < .001 

183 013830 54.18 < .001 

373 .14720 113.87 < .001 

148 .14720 63.38 < .001 

227 .14830 53.05 < .001 

160 .13310- 58.99 < .,001 

3,982 .14732 740.00 < .001 

2,623 .14717 440.85 < .001 
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Test of Linear Correlation 

Of particular importance to industrial engineers is 

the influence of the operator on the service rate in this 

case. This importance rests on two questions: Does the 

operator when not influenced by special incentives to 

either maintain a given length of the queue or to reduce 

the queue tend to increase or decrease the service rate 

naturally to obtain one of these ends? .• If the operators 

do exhibit one of these tendencies, what is the nature of 

this control and to what extent does it affect the perfor

mance of the operator? A tendency to maintain the queue 

length might be exploited by formal work groups such as 

unions or by informal work groups in the effort to "save 

the work II or II make the job last" while a tendency to re

duce the line might be exploited by the industrial engi

neer in the design of incentive systems, the design of 

production control systems and their operation. 

This hypothesis was tested by determining for each 

day for the total study, and for the stabilized data the 

linear regression coefficients, the coefficient of corre

lation, and the probability that the correlation is real. 

These values are tabulated in Table III. Here it is seen 

that generally there is a negative regression of between 

five and ten per cent of the average service rate for each 

additional unit in the system. The linear correlation be

tween the service rate and the number in the system was 
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TABLE III 

REGRESSION AND CORRELATION ANALYSIS - CAFETERIA 

Meal ,/",.. 2 1 
8i.2 bl2 rl2 p(Ho :rl2 = O) t Sig. 

1 0.1737 -.007170 .008600 < .001 1.9400 V.H.S. 

2 0.1619 -.014740 .024880 < .010 3.2900 H.So
> .001

3 0.1670 -.007870 .019790 < .001 2.8790 V.H.S.

4r 0.1846 -.016700 .023780 < .001 2.5270 V.H.S •

5 0.1736 -.009550 .018620 > • 010 2.9360 H.S •
< • 001

6 0.1428 .008140 .000630 > .100 1.0560 
< .200 

10 0.1965 -.014540 .005940 > .050 1.4540 H.S. < .100

11 0.1412 -.005130 -.021900 > .300 0.9580 
< .400

17 0.1499 .000786 -.002664 > .700 0.3832 < .800

18 0.1935 -.024820 .071200 < .001 3.862 V.H.S.

20 0.1850 -.021780 .023980 > .010 2.340 s. 
< .020

21 0.1724 -.008050 .012900 > .010 2.422 s. 
< .020

22 0.1777 -.014880 • 020150 > .020 2.021 s • 
< .050

23 0.1750 -.010300 .021700 > .010 2.448 s. 
< .020

24 0.1106 .012600 .010600 > .100 1.626 
< .200

Total 0.1656 -.007230 .012060 > .020 2.227 s. 
< .050

Stable 0.1742 -.010890 .021410 < .001 7.620 V.H.S.
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generally on the order of one or two per cent and in every 

case in the stable system except one was significant at 

either the 0.05 level, the 0.01 level or the 0.001 level. 

In the one exception, the probability of a greater value 

of t was between 0.2 and 0.1. For the data of the study 

as a whole, the regression equation for the system was: 

(1) Service time= 0.1656 - 0.00723 (number in the

system) with a correlation of 1.2°� which was

significant at the 0.05 level. For the data

during the stable portion of the study, only

the regression equation for the system was:

( 2) Service time = 0 .1742 - 0. 0189 (number in the

system) with a correlation of 2.14% which was

significant at the 0.001 level.

It seems to be a point worth noting that the points out

side of the stable system contained three points out of 

five for which the regression and/or correlation was not 

significant. Similarly, it is worth noting that three out 

of the four points in the whole study in which the corre

lation and/or regression were not significant had very 

small positive regressions. 

The inference then is drawn that in this situation, 

the worker apparently has a very real ability to judge the 

length of the line and do, either consciously or uncon

sciously, increase their service rate as the line length 

increases. It would seem from the correlation coefficients 

that the model of linear regression accounts for only a 
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small part of the variation in t�e individual service 

times. This would then seem to support the hypothesis 

that the operator does influence the average service rate 

in a basically random situation. While this information 

is of very little use in predicting an individual service 

time, it is most useful in the consider�tion of the system. 

This is particularly important in two aspects, in that the 

natural tendency, if this hypothesis is accepted, is for 

the worker to act to stabilize the line length both by 

some shortening of the average number in the system and by 

a reduction in the variation of the mean -number in the 

system. The consequences of these effects will be consid

ered in detail in the conclusions • 

Another Situation 

Another case, a "Minute Car Wash", presented a con

siderably dissimilar· situation with some similar results. 

The. car wash had one line with perfect first come, first 

served discipline with only one service mechanism, but 

that service mechanism was compose� of six operators work-

ing as a team or apparently would be classed 

A1: 1 - oo(U)Q,11,n > D ,D11,n = 0/Q,1: 1 - oo(F)D11,n = O/D1: l(U)O.

Here, the same tests were applied to the data and it was 

found that the mean service rate was extremely unstable 

from day-to-day. The pri�ary cause of this unstability 

was believed to be the fact that the car wash used "pick

up" labor which varied tremendously in ability and energy 
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from man to man. Here the Chi Square test for the good

ness of fit of the exponential distribution showed on each 

day a probability of less than 0.001 of getting as great a 

difference from an exponentially distributed universe with 

the same mean. Table IV presents the summary of the data 

from this study. Using the Chi Square test for fit of 

the service times to the normal distribution showed that 

on each-day the reduction in the Chi Square value by using 

a random sample from a normal universe had a probability 

for each day between 0.10 and 0.20 which provides no evi

dence to reject the hypothesis that the service times in 

this situation were distinctly different from normal, but 

at the same time it was found that on the first day the 

linear regression and correlation were significant on the 

0.05 level and on the second day had a probability of ap

proximately 0.2 of getting this great a value of t where 

no real correlation existed. While this evidence is far 

from conclusive, it -would seem to indicate that the funda

mental distribution is normal with the number in the line 

having some affect on the mean rate. 

Summary 

The investigations reported in this chapter seem to 

indicate that the worker does have some tendency to in

crease his service rate when the line 'increases, but that 

this is not usually the primary relationship. In the 

cafeteria study, it was felt that, based on the 
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1 

2 

Day 

1 

2 

Day 

1 

2 

TABLE IV 

SU1'1MARY OF CAR WASH DATA 

Test of Ex:ponentiality 

x2 P(> X2 from Exp.) 

172.794 < 0.001 

178.938 < 0.001 

Test of Normality 

al2

8.5953 

10.0475 

6.851 

7.325 

Test of 

bl2

-0.1266

-0.0835

P(> x2 from Normal) 

Linear 

0 0 20 > p > 0 0 10 

0 • 20 > p > 0 0 10 

Regression 

r2 t 

0.07411 2.2207 

0.01186 1.2926 
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x 

7.7582 

9.3428 

Prob(>t) 

< 0.05 

N 

0.20 = 

x2 
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observation, the service time might be strongly influenced 

by the pattern of price distributions and the distribu-

. tions of the persons carrying exact change and those car

rying only large bills which required changing. 



CHAPTER IX 

CONCLUSIONS 

The study covered in the prior chapters was success

ful in several aspects and unsuccessful in others. Possi

bly the most important unexpected development was the ex

ploration of numerous problem areas which are important to 

industrial engineers. The most important of these areas 

and recommendations for their investigation are presented 

in the next chapter. The principal conclusions of this 

study regarding the classification of queueing systems are 

presented here. 

Classification System 

The classification system developed and described in 

Chapter IV was tested by classifying a number of represent

ative systems .considered in the literature and several real 

world cases without meeting a situation which it could not 

handle. While this is not evidence that it will be able 

to handle all cases presented to it, it does seem to indi

cate that the system is widely applicable. Further, it 

was found to offer definite advantages in compactness and 

completeness. Particularly, it is important as means of 

recognizing similar systems to which similar analysis is 
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likely to prove to be profitable and, thus, extend the 

value of existing solutions for systems which have already 

been successfully analyzed. The system developed should 

prove with continued experience to provide a material con-

. tribution to working engineers in handling queueing prob

lems and to students beginning the study of the subject in 

organizing the existing knowledge and fitting in new ideas 

as they are mastered. 

Service Rates 

In every situation tested where the service mechanisms 

of the queueing system were human beings whose pace of ac

tivity governed the service rate and who were in a position. 

to observe the length of the queues backing up from their 

service facility, it was found that there was a statisti

cally real influence of the line length on the service 

rate with greater line lengths tending to be associated 

with faster service. The ct>rrelation provided by the lin

ear model was usually found to be extremely small, on the 

order of 0.01. 

The conclusions reached from this portion of the in

vestigation were that while the effect of line length in 

the cases studied was real, it was so small as to be neg

ligible in day-to-day work, but of significance in the in-

vestigation and development of incentive systems for such 

workers and the planning of such systems including incen

tives. · Even relationships of the magnitude found in this 
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· study would indicate two facts of considerable utility.

First, since this tendency is real and since it is almost

always an advantageous one in that it stabilizes the sys

tem and increases the average rate of work, it should be

reinforced by incentives where it is possible to do so.

Secondly, the economic effects of this incentive should be

considered in choosing the economic average line length to

be allowed as the effect is most apparent in the economi

cally most unfavorable situation where the line length is

longest.
,' ( 
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CHAPTER X 

RECOMMENDATIONS FOR FURTHER INVESTIGATIONS 

The problem areas encountered in this study which 

recommend themselves and likely prospects for future in

vestigations are concerned with three major areas: the 

problems of identifying or classifying the statistical 

distributions underlying th.e arrival and service times, 

the problems of measurement and the management problem 

of designing incentive systems to take a maximum advantage 

of th.e characteristics of the implications of the ability 

of human operators to control their work rate. 

Mathematical and Statistical Problems 

The first of these problems falls primarily in the 

areas of mathematical and statistical research., but the 

location of the required progress and developments within 

these areas and their application to the problems of in

dustrial engineering is the responsibility of the indus

trial engineer. The two areas of development have almost 

immediate application to queueing problems. 

Development of Measurement Techniques 

The problems associated with the development of 
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better methods of measuring the characteristics of queue

ing systems are primarily industrial engineering problems. 

In many ways, these problems are associated with the tra

ditional reliance of the industrial engineer on certain 

instruments and techniques such as the stop watch, the 

motion picture camera micro-motion study, and charting 

methods in measuring work situations. The extension of 

the analytical tools, such as queueing theory,which are 

available to the industrial engineer calls for the devel

opment of new measurement techniques which take greater 

advantage of the sophisticated instrumentation which is 

becoming available through technological progress in other 

areas of engineering. 

Effects of Incentives 

Finally, this study would seem to point the need for 

more intensive quantitative research on the effects of in-

centives on both a very short term basis and over the 

longer run. This problem has long been one of interest to 

industrial engineers, but now seems to offer new fruitful

ness of opportunity in the light of the current state of 

technological progress in instrumentation and analytical 

tools for the analysis of such situations. 
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Departure 

5:30:39 
1:04 
2:58 

:76 
:91 

3:26 
:39 
:50 
:54 
:90 

4:07 
:20 
:68 

8:22 
:40 
:75 
:93 

9:14 
:16 
:51 
:78 

40:53 
:62 
:68 
:78 
:88 
:89 

1:07 
:53 

2:46 
3:81 

:94 
4:45 

:56 
:64 
:70 

5:28 
:49 

7-17-61
Evening Meal 

5:30 P. M. 

No. in 
Arrival Line 

5:30:09 1 
:95 1 

2:38 1 
:39 2 
:41 3 

3:15 1 
: 27 1 
:29 2 
:32 3 
:72 1 
:74 2 
:78 3 

4:56 1 
8:07 1 

:13 2 
:50 1 

:85 1 
:88 2 
:90 3 

9:45 1 
:57 1 

40:25 1 
:30 2 
:50 3 
:64 2 
:80 1 
:83 2 
:84 3 

1:41 1 
2:35 1 
3.72 1 

:78 2 
4: 26 1 

:28 2 
:54 2 
:55 3 
:80 1 

5:32 1 

97 

Arrival Service 

:30 
:86 :09 
:43 :20 
:01 :18 
:02 :15 
:64 :11 
:12 :12 
:02 :11 
:03 :04 
:40 :18 
:02 :17 
:04 :13 
:78 :12 

3:51 :15 
:06 :18 
: 37 :25 
:35 :08 
:03 :21 
:02 :02 
:55 :06 
:12 :21 
:68 :28 
:05 :09 
:20 :06 
:14 :10 
:16 :08 
:03 :09 
:01 :18 

: 57 :12 
:94 :11 

1:37 :09 
:06 :07 
:48 :19 
:02 :11 
:26 :08 
:01 :06 
:25 :48 
:52 : 17 
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STABILIZED DATA O CONTROL CHART CALCULATIONS - CAFETERIA 

-· B3 ;;_ B4 = B3 o = B4o :.:=
o2 = ......L i +:v� 1-�

Day E� N E�/N (J V2N � ... . 2N u.c�L •• L.C.L. Control? 

1 4�89600 3V .01497 .12235 25.573 .11731 1.11731 0.88269 .13<>8�; .10335· Yes:'. 
.. 

2 5.4944o 322 .01654 .12860 25.768 .11642 1.11642 0.88358 .13072 .10346 Yes:· 

3 6.30162 463 .01361 .• 11666 30.430 .09858 1.09858 0.90142 .12863 .10555 Yes--

4 2.63640 .01187 .10895 .14237 1.14237 
;}., 

.13376 .1oo42 222 21.071 0.85763 Yes:: 

5 5.39125 403 .01337 .11563 28.390 .10567 1.10567 0.89433 .12946 .10472 Yes: 

6 1.69190 137 .01234 .11109 16.553 .18123 1.18123 0.81877 .13831 .09587 Yes 

10 3.18080 188 .01691 .13000 19.391 .15471 1.15471 o.84529 .13520 .09898 Yes 

18 2.07220 176 .01177 .10849 18.762 .15989 1.15989 o.84011 .13581 .09837 Yes 

22 1.96900 148 • 01330 .11533 17.205 .17436 1.17436 0.82564 .13751 .09667 Yes 

23 2.94260 227 .01296 .11384 21.307 .14079 1.14079 0.85920 .13357 .10060 Yes· 

E 1.17094 

Eo i 1.12224 
= 0.117094 u.c.L. = B4o L.C.L. = B3 0(J = rr-= 10 

(Factors taken from Duncan (33, P• 886.) 
.. 
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STAI3ILIZED DATA X CONTROL CHART CALCULATIONS - CAFETERIA 

' i = 0.14717 

1J" = 0.12471 

·:1 1 
Day N 

n.
(NO =O-

x

1 327 .05530 .006475

2 332 .05488 .006426

3 463 .04647 .005441

4 .'222 .06711 .007858

5 403 .04981 .005832

6 137 .08543 .010000

10 188 007293 .008539

18 176 .07537 .008825

22 148 .08219 .009624

23 2Z1 .06637 .007771

= 

X+3 a--
x 

.16661 

.16646 

.16349 

.16985 

.16466 

.17717 

.17279 

.17366 

.17603 

.17048 

X-30-
x 

.12773 

.12788 

.13085 

.12359 

.12968 

.11717 

.12155 

.12068 

.11831 

.12386 

i :Control? 

.15508 · Yes -.

.12825 Yes

.14481 Yes

.14909 Yes

.14389 Yes

.15930 Y�s

.i714o Yes

.14280 Yes

.14270 Yes

.1483 Yes

= 

/ 

" . 



· , .,}7-16-61
Service 'l:'imes 
Noon 
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Meal 2 
332 

Cafeteria Study 

Regression and Correlation Analysis 

N =· 

EX1
EX2

Ex 2

2 

332 

= 

= 

.::42:.;88. EX 2 

1 = 10.9552

757 '£Xi = 2429

r.x1 = ,-- = 0.12825 

EX2 = T =

=. EXi - NXl = 7030 1312

= EX
1

2
- NXl = 5.49444325

Exlx2 -10.3?02 .. 
= Ex2

2 = 703.1312 = -O.Ol474

= x1 - b12x.2 
= 00 1618572

= 0.1618572 - 0.01474X2

= r.vl.2
2 

_ 5. 341583 =N- 2 - 330 
(N-1) Ev1.i

= l - (N - 2) Ex1
2 

0.01618 

2EX
1
X

2 
= 173 .. 42 

EX
1
X

2 
= 86.71 

0.02488. 

2.28 



·. . . . . 1 · .. Testing R:v.12 = 0:

b12 - 0 -0.014?4 3.0·7·27·5 t = = - =s . · .: :Q. 004797 b12 

to.en.= 2.!,76
df = ClO 

. 

0.01618 
= 703.1312 = 0.0000230113

t
= 3.291 OoOOl 

df = 00 

102 

·. . • it is concluded that this small correlation is highly

. significant o 

S . 2 
b .. 

12 
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x.2 Test for Exponential Distribution - Cafeteria:Meal 3 

X = 0.14481 µ = 6.9056 N = 463 

Class r µt e -µt p(n),; ctnp n · (f·-inf(n.)3 2

np n' 

0 �. (> \ :� :; \.1 1.0000 
1 27 .0691 .9324 .1306 60.468 18.52398 

· · · .  

2 15 .1380 .8694 .0588 27.224 5.4887'8 

3 11 .2070 .8106 .0548 25.372 8.14103 
4 14 .2760 .7558 .0511 23.659 3.94337 
5 21 .3450 .7047 .0411 19.029 .20415 
6 18 .4140 .6637 .0449 20.789 .37416 
7 11 .4830 .6188 .0418 19.353 3.60528 
8 20 .5520 .5770 .0391 18.103 .19878 
9 22 .6220 .5379 .0363 16.807 1.60452 

10 42 .6910 .5016 .0339 15.695 44.08132 
11 21 .7600 .4677 .0317 14.677 2.72401 
12 22 .8290 .4360 .0294 13.612 5.16886 
13 15 .8980 .4066 .0275 12.733 .40361 
14 20 .9670 .3790 .0256 11.853 6.59973 
15 22 1.0360 0 3535 .0239 11.066 10.80357 
16 14 1.1050 .3296 .0192 8.890 2.93724 
17 10 1.1740 .3104 .0210 . 9. 723 .00789 
18 14 1.2430 .2894 .0196 9.075 2.67279 
19 14 1.3120 .2698 .0182 8.427 3.68557 
20- 50 1.3810 .2516 .0743 34.401 7.07330
25- 28 1.7260 .1773 .0511 23.659 ·79649
30- 11 2.0720 .1262 .0373 17.270 2.27636
35- 5 2.4170 .0889 .0256 11.853 4.96217
40- 6 2.7620 .0633 .0187 8.658 .81600 
45- 3 3.108 .0446 .0129 5.973 1.47978 
50- 7 3.453 .0317 .0317 14.677 4.01555 

df=N-2= 26 - 2 = 24 x2 = 140.58823 

p(> X2) < 0.001 



x = 7.7582 

a= 1.2.024 

t :'to 

-o·�o

0.5
1.0
1.5
2.0
2o5
3.0
3.5
4.o
4.5 1 
5.0 3 
5 .. 5 
6.0 2. 
6.5 9 
7.0 11 
7.5 9 
8.o 7 
8.5 5 
9-�o 3 

. 9o5 2 
lOoO 
10 .. 5 
11.0 
11.5 6 
12.0 1 
12 .. 5 
13.0 
l}o5
14.o

- 14.5-

df = N-3 = 

p(> x2 > 

p(> )(2) 

z 

-604523
-6 .. 0364
-5.6205
-5.2047
-4.7889
-403731
-3.9572
-3.51+14
43.1256
-2.7097
-2.2939
-1.8780
-1.4622

--100464
-0.6305

- ;.;;0.214?
0.2011
0.6164 
L.0327
1.4486 
108644 
202802 
2.6961 
3olll9 
3 .. 5277 
3.9436 
4.3594 
4 .. 7752 
501911 
5 .. 6069 

7-3 = 4

= 0.10 

= 0.20 

TEST OF NORMALITY 

I:·- p( >j n:;) p(n) ·np(I).)

05000 .0000 OoOOO 
.5000 .0000 0.000 
05000 .0000 0.000 
.5000 .0000 0.000 
05000 .0000 0.000 
.5000 .0002 0.000 
.5000 00007 OoOlO 
.4998 00015 0.035 
.4991 .0176 0.075 
.4966 .0190 0.880 
.4890 00421 0.905 
.4700 .0755 2.105 
.4279 .1167 3.775 
.3524 .1505 5.835 
.2357 01646 7.525 
.0852 .1523 8.230 
.0794 .1172 7.615 
.. 2317 .0776 5 .. 860 
.31+89 .0421 3.880 
.4265 00201 2.105 
.4686 00077 lo005 
.4887 .0017 0.385 
.4964 .0007 0.085 
.4991 .0002 0.035 
.. 4998 .0000 OoOlO 
.. 5000 .0000 0.000 
.5000 .0000 0.000 
05000 .0000 0.000 
.5000 .0000 0.000 
.5000 .0000 0.000 

12= 7o78 

x.2 = 5.99 

group 

7.830 

5.835 
7.525 
8.230 
7.615 
5 .. 860 

7.505 

X2 

104 

Car Wash 
Day 1 

[f0 - np(n)]2

nptn) 

209794' 

1.7167 
1.6047 
0007204 
0.04966 
0012621 

0.30180 

= 6.8505 

------
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