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.CHAPTER I 

INTRODUCTION 

Sensitivity testing deals with a continuous variable which cannot 

be determined in practice. For example, suppose it is desirable 

to know the amount of mass of a high explosive such that the proba

bility that an explosive response will occur when the mass is subjected 

to a jet-fuel fire is less than some specified level, say 1:-'• There are 

levels of mass at which the probability of response is less than v and 

levels at which the probability of response exceeds v, Clearly, the 

critical value of mass at which the probability of response is exactly 

v cannot be measured. All one can do is select a sample arbitrarily 

and determine whether the critical value for a sample is less than or 

greater than the mass of each element of the sample. 

This situation arises in many fields of research. In selecting 

insecticides, a critical dose is associated with each insect but cannot 

be measured. One can only try some dose and observe whether or not 

the preassigned percentage of insects are killed, i.e., observe whether 

or not the desired dose for the insect is less than the chosen dose. The 

same difficulty arises in pharmaceutical research dealing with germicides, 

anaesthetics, and other drugs, in testing strengths of materials, and in 

several areas of engineering and developmental research .. 

1 
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In true sensitivity experiments, it is not possible to make more than 

one observation on a given sp�cimen. Once a test has been made, the 

specimen is altered (e.g., the explosive is destroyed, the insect weak

ened) so that a bona fide result cannot be obtained from a second test on 

the same specimen. The common procedure in experiments of this kind 

is to divide the sample of specimens into several groups (usually, but 

not necessarily, of the same size) and to test one group at a chosen 

level, and a second group at a second level, etc. The data consist of 

the numbers affected and not affected at each level. Several methods of 

analyzing such data (variously called sensitivity data, all-or-none data, 

or quantal responses) are available. ( 1 ), ( 2 ). 

Most of the methods commonly used are applicable only in special 

cases, most of which are based on various assumptions concerning the 

distributions of the estimators, expecially if confidence limits are 

desired. A method, devised relatively recently (and seldom used for 

various reasons), is available to the experimenter in which he may 

estimate any critical value. The method, called a stochastic approxi

mation method, was formulated by Rob bins and Monro ( 3 ) . 

Briefly stated, stochastic approximation is concerned with the 

regression of a variable y on a variable x, and seeks the value 

x = 9 for which the regression value of y is some preassigned number, 

y = a. The estimation procedure for 9 is sequential and distribution

free. Despite its extreme simplicity in application and the wide variety 

of the situations in which it may be useful, the technique has not been 

taken advantage of by empirical research workers. One reason for this 

may be that the existing literature is addressed primarily to the profes

sional mathematician. Another reason may be that the mathematical 
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theory itself is not yet complete for relatively small samples. 

A desirable feature of stochastic approximation is the lack of assump-

tions required. In many problems, the researcher has no clear picture 

of the structure of the relationship he wishes to study and would prefer, 

if possible, not to commit himself to hypothesize the precise shapes of 

the regression or other distribution features. In such cases, he needs 

a procedure which is distribution-free. 

Theoretically, the problem reduces to solving the regression equation 

( 1) M(x) = a 

This problem has been studied by Robbins and Monro ( 3 ), Blum ( 4 ), 

Keston ( 5 ), and others ( 6, 7, and 8 ). Using the notation of Robbins 

and Monro, M(x) denotes the expected value at level x of the response, 

say Y, of a certain experiment. M(x) is assumed to be a continuous 

monotone function of x, but is unknown to the experimenter, and it is 

desired to find the solution X = e of the equation M(x) = a where a is 

a given constant. The Robbins and Monro method is one in which sue-

cessive experiments are performed at levels x
1
, x

2
, .•. in such a way 

that X. will tend to e in probability. 
J 

Except for an unpublished study by Teichrow ( 9 ) and an application 

of the Robbins and Monro technique described by Louis and Ruth Guttman 

( 10 ), little is available to the experimenter to guide him in the use of 

stochastic approximation methods. 

The thesis is divided into two parts. The first is a discussion and 

description of three stochastic approximation estimators and an empiri-

cal comparison of the convergence properties of the three estimators. 

The second part (Chapter 7) is a formulation of a method to determine 

confidence limits on the solution of (1) when a = O. 50 using theory 



developed for finite Markov Chains. 

Since the form of M(x) is not known to the experimenter, the 

means used here to study the convergence properties is to employ 

4 

a Monte Carlo sampling scheme to simulate a test in which stochastic 

approximation methods will be used. Upon repeated simulations of 

trials for various forms of M(x), various convergence properties of 

each of the three estimators can be observed. 

The primary interest here lies in sensitivity testing, sometimes 

called quantal response testing; therefore, the empirical study made 

is a simulation of this type of testing. A similar study could be made 

by assigning a continous distribution function to the observed random 

variable Y ( x). 



CHAPTER II 

THREE STOCHASTIC APPROXIMATION ESTIMATORS 

..•. 

For ect.ch real number x, let Y(x) be a random variable such that 

E [Y(x)] = M(x) exists. Assume that the regression equation M(x) = a 

has a single root at x = 8, which is to be estimated, and that 

(x ... 8) [ M(x) - a] > 0 for all x F 8. An initial value � and a sequence

[c.] of positive numbers are selected. The (j + l)st approximation to 
J 

8 is defined inductively by the recursive formula 

( 2) x.+l = x. + c.(a. - y.)
j J J J 

where y. is the observed value of the random va:dable at x = x.. The 
J J 

letter j denotes the trial number .. 

Each of the three estimators can be written in the form of equation 

(2). However, the difference lies in the way the sequence [c.] is 
J 

defined. The proofs that estimators I and II converge with probability 

one to the desired value, x = 8, are available in statistical literature 

and will not be discussed here. 

The sequence [c.] which defines estimator I (the Robbins-Monro 
J 

estimator) is a fixed sequence of positive elements with the following 

properties: 

(a) 

(b) 

00 
:;B c. = 00 
j=l J

z 

j=l 

2 c. < 00

5 

J 



6 

The sequence [ 1/j] has these properties. 

The second estimator (estimator II proposed by Keston) is defined 

by equation (2) where the sequence [c.] is defined in the following way
J 

from the sequence 

where t( j ) = 2+ 

and o (x) = 1 

= 0 

. :2: 0 

i=3 

if x 

if x 

c j = a t( j ) 

[ (x. - x. 1}(x. 1 - x. 2)]
l 1- 1- 1-

< 0 

> O,

Thus every time (x. - x. 1) differs in sign from (x. 1 - x. 2),
J J- J- J-

another ak is taken. A further restriction on the sequence [ak] other

than the properties (a) and (b) is 

(c) 

It is important to note that the elements of [ c.] for j > 2 are ran
J 

dom variables. 

Ke ston 1s rule for selecting the members of [ c.] is based on the con
J 

jecture that in the neighborhood of x = 8, 8 being the solution of equation 

( 1), it seemed likely that frequent fluctuations in the sign of 

(xj - 8) - (xj+ 1 - 8) = xj - xj+ 1 indicatl;l that \ xj

few fluctuations in the sign of xj - xj+l indicate

from 8. 

- 8' is small where a

that x. is far away
J

It can be shown that there exists a 8 1, not necessarily identical with 

8, where fluctuations in the sign occur more frequently in a finite num-

ber of trials. The value x = 8 1 is defined by the inter section of the 

j 



line Y(x) = a and the locus of the medians of the densities 

dH(y x) / dy for any x. It should be noted that if the density

dH(y x} / dy is symmetric, then Keston's conjecture is obviously

correct. Even though the fluctuation would be expected to occur at 

es instead of e, this does not affect the convergence in probability of 

( 3) 

to 8, as Keston has proved. 

Let x. be the value such that the variation in the algebraic sign 
J 

of xj - xj+ 1 is maximum. Suppose that x. 1 < x ..
J- J 

In order for a 

variation in the sign to occur, xj+l < xj; where xj+l is defined by

equation ( 3 ) . 

7 

Let U denote a random variable whose density is the point binomial. 

The variable U takes on the value unity with the probability P wherex 

( 4) I x. 1 < �-]
J- J 

From equation ( 3 ), it follows that 

(5} P =Pr[Y(x.) > a]x J 
Clearly, U has maximum variance at P = 1/ 2. Therefore, thatx 

value of x such that 

(6) Pr[ Y(x.) > a] = 1/2 
.J 

is the desired value of e•.

If x. 1 > x., a similar argument leads to the conclusion that the
J- J 

value of x such that 

( 7) Pr[Y(xj} < a] = 1/2

is the de sired 8 1 • Hence, 0 1 is the value of x defined by the inter-

section of the line M(x} = a and the locus of the medians of dH(Y x) /dy.

Since the sequence [x.] converges to e with probability one, there 
J 

x._,_ 1 = x. + c. (n - y,) 
J I J J J 

P. = Pr[X.+l < x. 
X J J 



exists a J such that for all j > J

Pr [ Sup I X
J
. .. e I < e - e I 

x. 

8 

= 1 - e 0 1 f 0 and e > 0 

That is, there exists a neighborhood of 0 which does not contain 

e I such that after some trial number N almost surely all x. will lie
J 

inside the neighborhood. Hence, there will exist almost surely only 

a finite number of sign changes in a neighborhood of e I if e is not in 

the neighborhood of 0 •. But, for a finite number of trials, the experi-

menter cannot be as sured that the sign changes are occurring in the 

neighborhood of 8 or e 1
• 

The terminology 11 almost surely'' is used to denote that the proba-

bility that an event occurring is one except for a set of probability 

measure zero. 

In order to obtain an indication\, of how this fact would affect the 

sequence [ c.], consider the difference between the median and means 
J 

of two rather common skewed densities: the triangular and the gamma. 

Consider first the following form of the triangular distribution: 

f(x) = 

cb x

2 

c(c-b) 

0 < x < b

(c - x} b < x < c 

Table I. presents values of the ratio of the median to c, the ratio 

of the mean to c, and their difference for various values of b / c. 

Note that for small values of b / c, the difference between the median 

and the mean can be slight. 

Table II presents the ratio of the median to 13, the ratio of the 

mean to 13, and their difference for variou.s values of a, when the 

J 

2 



gamma density is of the following form: 

1 
f (x) = ---......----

� a+ 1 
r( (1 + 1)

a -x/�x e 

9 

x > 0 

From the data in Table II, it appears that even for small values 

of �, the difference betwee:n the median and the mean can be rela-

tively large. 

It should be noted that the mean and the median are identical 

in the binomial distribution if; and only if, p = 1, O, or 1/2 where 

p + q = 1. The importance of the binomial distribution is that it is 

the basic distribution for quantal response problems. 

It is hard to justify the use of an estimator computed from a 

small number of trials simply because it is known to convei-ge to the 

desired value as the number of trials increases without bound. The 

fact that no other estimators have been proposed and found better, 

in some sense could be a just reason for using the stochastic approxi-

mation estimator. Therefore, it seems desirable to compare the two 

stochastic approximation estimators previously described with an 

estimator (estimator III) which seems to be the one which would be 

most naturally proposed by an experimenter who had no knowledge 

of the Robbins ... Monro or the Keston estimators. 

An experimenter who wishes to determine an x such that 

M(x) = a would most logically select an x1 
which he would consider

as being close to the desired value and then compare the random 

variable Y (x 
1
) with a. 

If Y(x1) exceeded a, then x2 < x1 would be selected according

to ..the magnitude of a - Y(x1). Similarly, if Y(x1) were less tha,n a,



b/c 

• 5

• 6

. 7 

. 8 

. 9 

1. 0

a. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

TABLE I 

COMPARISON OF THE MEAN AND MEDIAN FOR 
THE TRIANGULAR DENSITY FUNCTION 

10 

Median/c Mean/c Difference/ c 

. 500 • 500

• 548 .533 

• 592 . 567 

.632 .600 

.671 .633 

. 707 .667 

TABLE.II 

COMPARISON OF THE MEAN AND MEDIAN FOR 
THE GAMMA DENSITY FUNpTION 

• 000

, 015 

. 025 

. 032 

• 038

. 040 

Median/[3 Mean/[3 Difference/ [3 

.693 1.000 . 307 

1. 678 2. 000 . 322 

2. 674 3.000 . 326 

3. 672 4.000 • 328

4. 671 5.000 . 329 

5.670 6.000 . 330 

6.670 7.000 • 330

7.669 8.000 . 331 

8.669 9.000 . 331 

9.669 10.000 . 331 

10.669 11.000 • 331
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the experimenter would continue testing at x1• If after j tests

Y(x. 1) < a and Y(x.) > a or Y(x. 1) > a and Y(x.) < a, then it
J- J J- J 

seems logical that the experimenter would interpolate in order to 

obtain xj+l" Also, it seems a desirable procedure to shorten the

steps that one takes after each trial in a small neighborhood of the 

desired value of x. A modification of Keston 1s procedure for 

shortening the step length seems intuitively adequate. 

Mathematically, this procedure can be described by the recur-

sive�'formula, equation ( 2), where c. is an element of a sequence 
J 

[ c.] defined by the following rule: 
J 

If cj-l = ak for k > 2, then 

c. =
J J-{

ak when a f (y., y. 1)
J (x. - x. 1) / (y. - y. 1) when a £ (y ., y. 1)J J- J J- J J-

(x.
l-l - x.} / (y. _, 1 - y.)J" J J .- J 

and c. = (x. - x. 1) / (y. - y. 1)
J J J- J J-

where ak is an element of a sequence (ak] having the following

properties: 

(a) for k = 1, 2, 

(b} for k = l, 2, ... 

ak when cj = ak and a f (yj+P yj) 

when a £ (yj+l' yj) 



12 

00 

(c} � a = 00 

1 
k 

00 

(d} � 2< 
00 a

k I, 

That is, if a e: (yj' yj_1}, then xj+l is obtained by linear

interpolation. A new ak is selected after each period of linear inter

polation. An end of a period occurs if a e: (yl yj-l} but a ft (yj+l' yj};

hence, cjtl is the next unused element of the sequence [ ak] The

symbol e: denotes "contained between.t:rwhile; denotes "is not con-

tained between. ti 



CHAPTER III 

APPLICATION OF STOCHASTIC APPROXIMATION METHODS 

TO QUANTAL RES:PONSE PROBLEMS 

Let the random variable Y take on only two values, unity 

with the probability M(x) and zero with the probabi�ity 1 - M(x). "This 

type of a response has been called quantal response. Let there be two 

real numbers, a and b (a < b}, such that 

and 

Y(x} = 0 

Y(x) = 1 

for all x < a 

for all x > b 

Assume that a = 0 and b = 1. Then the regression function M(x) will 

have the following properties: 

(8) M(x) = 0 for x < 0 

= f(x} for O < x < 1 

= 1 for x > 1 

In a neighborhood of x = 0, the root of the regression equation 

M(x} = a, we know that there exists some neighborhood of e in which 

(9) Pr[ > x. - e
J

the probability of making an incorrect decision at x. ) is an increasing
I J 

function of. x as x tends toward e.

Since Y(x.) can take on only the values of zero and unity, and 
J 

assuming a. f. 1 or a f. O, then Pr [Y(xj) = a \ xj = 0] = O, or the

value of the probability statement 9 is unity. 

13 

and (xj+l - e)(xj - e) > 0] J 



are 
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Suppose, however, that at each level x. a sample of k > l Y's
J 

taken. Since the sample mean 
k 

O if no response occurs 
y (x.) l

l = Y. (x.) where Y. J k l J l 

1 1 if a response occurs 

has the same expected value as the random variable Y(x), the recursive 

[ a - y(x.) ] ;will also converge in probability 
J 

to .8 for estimators I and II. 

Let us consider a special application of the general stochastic 

approximation technique, that is, the problem to which stochastic approx-

imations would be most applicable: the quanta! tesponse problem or 

sensitivity testing. This is a test in which the experimenter wants to 

determine a level of x such that the probability of a response as defined 

by the problem will be some preassigned value, say a. Let M(x) be 

defined by equation (8) where f(x) is monotonically increasing in its range. 

Let us now consider the upper and lower toleranc::e equations, L1 and L2,

respectively, such that 1 - 2 y percent of the observed Y(x) will be expect-

ed to fall between them. Let us re pre sent these by L 1 (x) and L2(x).

In order to show that L1 (x) and L2(x) are monotone increasing

functions consider the following argument: .· We know that 

therefore 

Pr[Y = l] = M(x) 

k 

Pr[ 

i=l 

Y. > kL1l -

and if x2 > xl' then +vf(x2) > M(x1} and

k 

Pr[ l Yi > kL1(x1}

i=l 

for each x 

= 

formula x.+l = x.+ c. 
J J J 



Now selecting kL1 (x2) such that
k 

Pr [ 2 Yi > kLl (xz) -I<- M(xz) 1 = "
i=l 

implies that L1 (x2} _> L1 (x1).

Hence, we can conclude that if x2 > x1 then L1 (x2) _:: L1 (x1) and

the tolerance function is non-decreasing. It follows similarly that 

L2(x) is also a non-decreasing function. The ranges of L1(x) and

L2(x) are from zero to unity.

15 

In order to gain further insight, consider Fig. 1. A desirable 

qu.ality of a test would be conditions such that the length of the inter-

val I( 8 )  = [x{L_1), x(L2)] be minimized. The length of 1(8) depends

upon slope and .curvature of f(x) in the neighborhood of 8 and the dis-

tribution function of Y, say G(y x). 

Since kY is distributed as 

increasing the sample size k decreases the variance 

Var(Y l . x) = M(x) [ l - M(x) ]
k 

We note that lim 1(8) = 0 and that the density g(y J x) becomes 
k-+00 

symmetric as k increases. Hence, for large samples, we are assured 

that as the trials proceed we will move toward 8 with a probability of at 

least l - 'Vat each trial when x f 1(8). It is only in those trials at levels 

of x which are contained in 1(8) that the probability the next step will 

be toward 8 is less than l .. 'V· 

Figure l illustrates that each sample size fixes the tolerance 

-1 

( ~\ M(x) ky [ 1 • M(x)] k-k"y 

ky} 
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x 

Fig. 1. The Regression Function and the Associ
ated Curve Illustrating the Probability of Making 
an Incorrect Decisic;m in Direction. 
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equations L1 (x} and L2 (x}. Note that the probability of moving

toward e at each xj exceeds or is equal to l - y if x ( I(e);,. SinGe

cost and sample size are usually directly related, it would be desir-

able to minimize k, the sample size. If \ x. - e I is relatively large, 
J 

a small sample size seems to be desirable. When \ xj - e \ is relatively .

· small, a larger sample size requires the length of 1(0) to decrease and

the likelihood that x/ 1(8) to increase,for a given probability level.

The effect of increasing sample size with number of trials has 

been studied empirically. (See Tables IV and VIII.) 



CHAPTER IV 

THE MONTE CARLO SAMPLING PLAN TO STUDY THE RATES 

OF CONVERGENCE OF THE ESTIMATORS 

Due to the number of uncontrollable parameters involved, per-

haps the most practical means available at this time to study conver-

gence properties of the three estimators is a Monte Carlo procedure. 

The procedure used is as follows: 

1. Define M(x}, a, .6.k, and k, where k is the size of the sample

taken at each level of x, and ..6.k is an increment which will be added 

to k with increasing trials. 

z. Letting x1 = a, compute M(x1).

3. Generate k random numbers (r., i = 1, Z .•• k) from a
l 

uniform density. 

4. Compare each random number r
i 

with M(x
1). If r

i 
> M(x

1
}:, 

assign the value of zero to Y .• If r. < M(x1), assign the value of
l l -

unity to Y .• 
k l 

5. Compute y
1 

1

I= 
Y· 

l 

i=l 

6. Substitute y
1 

into the recursive formula to determine x
2

• 

7. If (x. - x. 1}(x. 1 - x. 
2

) < 0, an increment of .6.k is added
J J- J- J-

to the sample size. 

This procedure was programmed for the IBM 704 and continued 

for a de sired number of trials. 

18 



In the study, each test was composed of a simulation of 

forty .. nine trials. Each test was repeated one hundred times. 

Average value of 100 trials for x
7

, x14
, x21, x28

, x35, x
42, and

x
4

,
9 

were tabulated (Tables IV-VIII) for various values of a, k, and 

.6.k. 

In practice, the form of M(x) is unknown to the experimenter, 

19 

but it was necessary to define the form of M(x} to perform the samp-

ling plan. In this study, five forms of M{x) were selected in order 

for a relatively complete grid to be placed over the unit square. A 

sketch. of these three forms are shown in Figure 2. 

These were 

M4(x)

= 
( 2x2

L 1 - 2( 1 - x) 2 

= {
4x 2 /3 

1 - of.1(1 - x) 2

=x 

0 < x < 1 

O<x<l/4 

1/ 4 < x < 1 

O<x_:::1/ 2 

l/ 2 �x<l 

0 < x _::: 3/ 4 

3/1 <,x _::: 1 

0 < x < 1 

' The form of dH(y x) / dy is defined by tthe quantal response

property as the point binomial. 

The values of a considered here with their associated e. for 
1 

i = 1, 2, 3, 4, 5, where e. is the x value of the intersection of 
1 

M. (x) = a and M. (x), are tabulated in Table III.
1 1 

4 



PROBABILITY 

OF 0.5 

A RESPONSE 

0.1 0.2 0.3 0.4. 0.5 

)( 

0.6 0.7 

Fig. 2. The Five Forms of M(x). 
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AVERAGE 
VALUE OF 

Xj FOR 
400. 

INDEPENDENT 
TESTS 0.34 

7 49 

TRIAL NUMBER (j) 

Fig. 3. The Effect of the Selection of [ c/j J 
on the Rate of Convergence. {Estimator I)

EMS x 10 2 

FOR 400 
INDEPENDENT. 

TESTS 

1.400 

7 21 

TRIAL NUMBER (j) 

Fig. 4. The Variation of the Estimator for 
Various Values of c. (Estimator I) 
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TABLE III. 

DA TA FOR SAMPLING PROCEDURE 

a e 1 e2 e3 84 e
� 

.05 . 00006 • 11180 . 15811 • 19 365 . 47287 

. 10 . 00010 . 15811 • 22361 . 27386 . 56234 

• 30 .00810 . 27543 . 38730 . 47434 . 74008 

. 50 • 06250 . 38763 • 50000 .61237 . 84090 

Various sample sizes, ranging from one to twenty, were used 

in simulating the test. Also, a scheme in which the sample size 

increases by an increment of five as the number of trials increased 

was considered. When (x. - x. 1)(x. 1 - x. 2) < O, the sample
J J- J- J-

size was increased. 

The sequence [c.] for the empirical study was [c/j] where 
J 

c = O. 250 and j the trial number. The choice of O. 250 is arbi-

trary and is not optimum for all forms of M{x). 

The selection of c = O. 250 was based on the data summarized 

in Fig. 3 and 4. Three choices of c(c = O. 125, O. 250, O. 375) were 

studied empirically using estimator I. From Fig. 3, a "good" 

value of c in terms of minimum bias, in a sequence of form [c/j], 

would be in the range of from O. 250 to O. 375. Figure 4 shows that 

the greater variability of the estimator for a small sample size for 

22 

c = O. 375 may offset its value as an estimator even though it is assoc-

iated with the minimum bias of the three cases studied here. 



The results of the Monte Carlo simulation are tabulated in 

Tables IV - VII. 

23 



TABLE IV 

AVERAGE x. FOR 100 TRIALS FOR ESTIMATORS I, II, AND III, a=0.05, �k=O 
J 

:;ample Tri.al 
'\ = .00006 Q2 = .112 · 93 = .158 Q4 = .194 g5 = .473

size number 

(k) (j) I I II ( III I I II I III I I II I III I I II I III I I II I 

1 7 .084 .099 .092 .067 .087 .086 .077 .085 .091 .076 .091 .093 .081 .094 
14 .080 . 075 .064 .073 .086 .121 .084 . 099 .130 .083 .122 .134 .090 .137 
21 .075 .058 .037 .075 .073 .148 .088 .101 .164 .087 .141 .171 .095 .. 181 
28 .072 .058 .. 016 .077 .069 .167 .090 .113 .188 .090 .146 .200 .099 • 225
35 .070 . 037 .005 .078 .074 .175 .092 .110 .208 .092 .148 .226 .101 .261 
42 .068 . 015 . .007 .079 .081 .183 .093 .112 .224 .094 .152 • 246 .104 . 298 
49 · .066 .020 .009 .080 .087 .187 .095 .120 .231 .095 .153 .260 .106 .331 

5 7 .052 .050 .041 .073 .079 .085 .076 .086 .088 · .078 .087 .091 .081 .094 
14 .043 .034 .019 . 078 .091 .105 .083 .106 .118 .085 .111 .i23 .090 .137 

III 

.094 

.137 

.181 
.224 
.268 
.310 
.351 

.094 

.137 
21 . 039 . 016 .010 .081 .094 .114 .087 .117 .135 .089 .127 .147 .095 .180 .• 180 
28 .035 .010 .004 . 082 .097 .120 .090 .123 .147 .092 .136 .164 .099 .220 .222 
35 .033 .004 .003 .083 .099 .125 .091 .127 .152 .094 .142· .174 .101 . 258 . 263 
42 .032 .005 .002 .085 .101 .127 . 093 .130 .158 .096 .148 .182 .104 .291 .301 
49 . 031 . 004 .001 .085 .103 .128 .094 .132 .162 .. 097 .151 .187 .106 .318 .335 

10 7 .041 . 035 . 032 .072 .076 .078 .075 .085 .085 .078 .086 .086 .081 .094 .094 
14 .034 . 018 .009 .077 .087 .091 :082 .102 .106 .085 .109 .112 .090 .137 .137 
21 .030 .008 . 003 .08.0 .091 .098 · .085 .111 .U8 .089 .120 .128 .. 095 .179 .179
28 . 027 .004 . 002 . 082 .094 .103 .088 .117 .125 .092 .128 .138 .. 099 .n9 • 219
35 . 025 . 002 .001 .083 .096 .105 .090 .121 .130 .094 .132 .145 .101 .255 . 256 
42 .023 . 002 .001 .084 .097 .107 .091 .123 .134 .096 .136 .151 .104 .284 • 288
49 .022 .001 .000 . 085 .098 ·.108 .093 .125 .137 .097 .140 .155 .106· .306 .314 

20 7 .040 .036 .024 .072 .075 .078 ,076 .082 .086 .078 . 086 .089 .081 .094 .094 
14 .032 .016 .005 .077 .082 .093 • 083 .097 .111 .085 .104 .120 .090 .137 .137 
21 .027 .006 .002 .080 .086 .100 .087 .103 .127 .089 .114 .142 .095 .• 180 .180 
28 .024 .002 .001 .081 . 088 .105 .089 .108 .134 .092 .119 .155 .099 .221 • 223
35 .022 .002 .000 .083 .090 .107 .091 .111 .141 .094 .123 .163 .101 .256 .264 
42 .020 .001 .000 .084 .091 .108 .093 .113 .145 .096 .126 .169 .104 .280 .302 
49 .019 .001 .000 . 085 .092 .110 .094 .115 .148 .098 .128 .175 .106 .296 .335 

N 

.i,. 

I I -I __ , _. -----!-...:-



TABLE v

AVERAGE x. FOR 100 TRIALS FOR 100 TRIALS FOR ESTIMATORS I, II, AND III 
J WHE-N a = · . 1-o·AND Ak = 0 

Sample Trial 
9

1 
= .0001 9

2 
= .158 9

3 
= .224 9

4 
= .274 9

5 
= .562 

size number 
k) c I II III I II III I II III I II III I II III 

1 7 .042 .048 .018 .129 .128 .165 .149 .151 .168 .150 .174 .180 .161 .187 .187 
14 .036 .014 .012 .134 .117 . .207 .157 .164 .227 .161 .212 .248 .180 .272 .275 
21 .031 .023 .001 .135 .121 .215 .161 .175 .267 .168 .212 .297 .190 .348 .359 
28 .027 .010 . 007 .136 .130 .228 .164 .180 . 286 .172 .220 .327 .197 .416 .440 
35 .024 .010 . 009 .137 .138 .234 .. 166 .186 .295 .176 .224 .348 . 203 .465 .508 
42 .021 .006 • 008 .137 .139 .239 .168 .189 .306 .178 .228 .359 . 207 .482 .556 
49 .020 .006 .006 .138 .140 .238 .170 .193 .311 .181 .239 .370 .211 .. 495 .588 

5 7 .017 .015 .013 .129 .132 .134 .144 .151 .159 .151 .164 .163 .161 .186 .187 
14 .009 .004 .001 .135 .139 .148 .154 .168 .183 .163 .190 .200 .179 .269 .271 
21 .005 .002 .001 .138 .142 .. 153 .159 .179 .193 .170 .203 .219 .189 .339 .344 
28 .002 .001 .001 .139 .144 .155 .163 .184 .200 .174 .213 .230 .196 .393 .398 
35 .001 .000 .000 .141 .145 .157 .165 .188 . 207 .178 .219 .237 .202 .422 .434 
42 .001 .000 .000 .141 .146 .157 .167 .191 . 210 .180 .222 .242 .206 �438 .459 
49 .001 .000 .001 · .142 .147 .158 .169 .194 .212 .183 . 226 . 247 .210 .451 .475 

10 7 .007 .002 .002 .127 .132 .138 .143 .151 .159 .149 .161 .167 .161 .186 .187 
14 .002 .001 .001 .132 .137 .147 .154 .168 .189 .161 .182 .210 .179 • 268 .272
21 .001 .000 .000 .135 .139 .154 .159 .176 .202 .168 .191 . 235 .189 .331 .350 
28 .000 .000 .000 .137 .141 .157 .163 .180 . 209 .173 .197 .247 .197 .367 .. 417 
35 .000 .000 .000 .138 .143 .157 .166 .183 . 215 .176 .201 .254 .202 .389 .468 
42 · .000 .000 .000 .139 .144 .158 .168 .185 .218 .179 .205 .257 . 207 .404 .500 
49 .010 .003 .000 .140 .145 .158 .170 .187 . 219 .181 • 207 .260 . 210 .415 .520 

N 

\JI 

) r I 



TABLE VI 

AVER.AGE VALUE OF x. FOR 100 TRIALS FOR ESTIMATORS I, II, AND III 
J 

WHEN a. = . 30 AND �k = 0 

Sample Trial 
•, .. ,,, � "" 'ti:' -r-- -

size number
91 = .008 92 = .275 9

3 
= .387 '\ = .474 95 = .740 

(k) ( i) I I II I III I I II · J III I l U. I III I. I II I III I I II I 
. .  

l 7 .100 .084 . 080 .287 . 284 .311 .367 .348 .371 .396 .397 .435 .472 . 520 
14 .074 .050 . 058 .277 .272 :336 .369 .354 .402 .409 .423 �476 .514 ,635 
21 . 060 . . 03:S .045 . . 279 .274 .336 .371 .36.l .415 · .415 .432 .481 ;538 .666 
28 .049 .028 .044 .278 :215 .326 .374 .364 .. 420 .421 .43.9 .500 .553 .683 
35 .045 . 024 .041 .279 .. 276 .328 .375 .365 .422 .424 .441 .513 · . .564 .695 

III 

.540 
.681 
.721 
. 746 .· 
.753 

42 .. 040 .019 .035 .279 .. 275 .329 .375 .. 370 .423 .,425 .443 .522 .573 . 703 . 756 
49 

5 7 
14 
21 
28 

.35 
42 
49 

10 7 
14 
21 
28 
35 
42 
49 

. 036 .019 .. 033 

.081 .048 .044 
. 046 .. 019. . 018 
.033 .014 .015 
.026 .012 .013 
.020 .Oll .012 
.018 .010 .012 
.016 ;010 . 012 

.076 .044 .038 
.. 041 . 016 .014 
.029 .012 .613 
.022 .010 . 012 
,019 .009 .010 
.016 .009 .010 
.014 .009 .010 · .. 

. 279 .275 .328 

.280 .279 .287 
.278 . 276 .283 
.278 .276 .281 
. 277 .276 .283 
.277· .275 .285 
.277 .275 . 282 
.277 .274 .281 

.281 . 283 .280 
. 280 .280 .282 

.. 279 :280 ,276 

.278 .279. · .277 

.278 .278 .275 

.278 . 278 .275 
.277 .277 ; 276 

.376 .374 .429 .426 .444 .526 .580 • 712 . 759 ·

.352 .356 .356 .385 .396 .• 404 .4ZO .. 533 .536 
... 360 .366 .376 .403 .424 .436 · .515 .651 .662 
.364 .373 .s81 .412 .435 .447 .538 .681 .703 
.366 .376 .382 .4],5 .442 .454 .5,54 .698 .714 
.368 .377 · .383 .420 .446 .459 .565 .707 .721 
.370 .378 .384 .423 .448 .460 .574 .712 .728 
.370 .380 .. 385 .425 .452 .463 :582 .715 .731 

.358 .362 .363 .391 .397 .410 .471 .533 .535 

.365 .370 .37.9 .408 .421 .445 .515 .661 .669 

.369 .374 .378 .415 .431 .457 .538 .692 . 712 

.370 .377 .382 .420 · .437 .461 .554 .704 .725 

.372 .378 .386. .424 .440 .465 ,565 .710 .730 
.373 ;379 .. 387 .427 .443 :468 .574 .713 .732 
.373 ,380 .389 .429 .445 .467 .581 . 716 .733 

N 
O'-

I 
. . . 
.. -_ - __ .. _ -_- : ' I ---•---_ 



TABLE VII 

AVERAGE VALUE OF x
j 

FOR 100 TRIALS FOR ESTIMATORS I, II, AND III 

WHEN a = . 50 AND .6.k = 0 

Sample Trial 
'\ = .062 Q2 = .388 93 = .500 94 = .612 95 = .841 

size numl>er 

k I II III I II III I II III I II Ill I II III 

1 7 .300 .281 .279 .436 .435 .428 .511 .504 .510 .569 ;569 .596 . 721 .739 .728 
14 .261 .ill .187 .429 .422 .. 402 .505 .501 .497 .580 .. 576 .598 .753 .787 .790 
21 .241 .182 .153 .426 .413 .412 .504 .500 .494 ;584 .586 .602 .766 .810 .8ll 
28 . 226 .168 · .126 .424 .404 ;403 .501 .500 .493 .585 .589 .606 .776 .820 .818 
35 . 216 .155 .106 .421 .402 .400 .500 · .500 .498 .588 .592 .607 .782 .. 822 .820 
42 .207 .144 .099 .420 .400 .394 .500 .503 .499 .590 .593 ,608 .787 .. 824 .827 
49 .202 .138 .098 .416 .398 .394 .501 .502 .497 .591 .593 · .609 .791 .826 .829 ·

5 7 .317 .. 244 .258 � 425 .413 .428 .504 .504 .494 .573 .578 .586 . 721 . 769 .. 770 
14 . 274 .154 .156 .416 .403 .410 .503 .504 .495 .584 .593 .599 .758 .813 .821 
21 .251 .124 .120 .411 .399 .404 .503 .503 .496 .590 .599 .603 . 774 .. 825 .830 
28 . 237 .110 .098 .408 .397 .398 .503 .501 .498 .593 .602 .605 .784 .829 .834 
35 . 226 .100 .088 .406 .395 .396 .502 .500 . 499 .594 .603 .607 .790 .832 .836 
42 .218 .093 .084 .404 .394 .394 .502 .500 .. 499 .596 .603 .607 . 795 .. 834 ;838. 
49 .211 .089 .080 .404 .394 ,393· .502 .500 .499 .597 .604 .609 .798 .834 ,339· 

10 7 .316 . 255 .. 266 .425 .424 .411 .499 .502 .499 .573 .577 .585 .722 .. 770 .770 
14 .273 .159 · .135 .416 .412 .403 .499 .500 .499 .584 .588 .600 .759 .810 .827 
21 .250 .128 .096 · .413 .407 ·.396 .500 .499 .501 .587 .593 .605 . 775 .821 .831 
28 . 236 . . ll4 .079 .410 .403 .392 .499 .500 .503 .590 .597 .606 .786 .825 .834 
35 .224 .105 .073 .408 .401 .390 .499 .499 .502 .592 .599 .606 .793 . 829 ·• 835 
42 .216 .100 .070 .407 .400 .391 .500 ,499 .502 .593 .600 .608 .798 .831 .838 
49 . 209 .096 .068 .406 .399 .392 .500 .499 .500 .595 ,.602 .608 .801 .832 .839 

N 

--J 
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TABLE VIII 

AVERAGE x
j 

FOR 100 TRIALS FOR ESTIMATORS I, II. AND III, k=l, .6.k=5

Trial '\ = .00006 92 = .112 93 = .158 94 = .194 95 = .473 
a I Number

I II III I II III I II III I II III I II III 

.05 7 .095 .105 ;081 .073 .077 .087 .077 .087 .092 .078 .086 .090 .081 .094 .094 
14 .091 �080 .056 .078 :018 .120 ,085 ,116 .. 129' .084 .115 .130 .090 .137 .137 
21 .088 .057 .• 034 • 081 .069 .137 .089 .129 .158 . • 089 .14_0 .• 166 · .095 .181 .181 
28 .085 .042 .012 .082 · .067 .141 .092 .126 .176 .091 .159 .193 .099 .225 .224 
35 .083 .026 . 004 .083 .069 ,135 .094 .118 · .179 .093 .154 .• 208 .101 .267 .268 
42 .082 .010 .001 .084 .077 . .128 .095 .119 .176 .095 .143 .212 .104 .307 .311 
49 .080 .007 .001 .085 .083 .125 .096 .122 .172 .096 .143 .. 213 .106 .334 .352 

1 91 = .0001. 1 · 92 = .158���I. · 93 = .224� ��� r� 94 = .. 274 I 95 = .562 

.10 7 .044 .040 .026 .134' .137 .147 .149 .147 .177 .. 147 .169 .180 .161 .187 .187 
14 .037 .012 · .. 004 .136 .. 134 .144 .159 .166 ·. 228 .158 .. 209 .247 .180 .• 272 .273 
21 .031 .002 .000 .139 .131 .167 .164 .164 ,248 .165 .217 .277 .190 .349 .356 
28 .028 .000 .000 .139 .137 .166 .167 .. 177 ·.243 .170 .224 .287 .197 .412 .433 
35 .025 .000 .000 .140 .142 .163 .169 .186 .237 .173 . .234 .286 .203 .461 .. 495 
42 .022 .000 .ooo. .141 , 145 .162 .171 .193 .233 .176 .238 .282 .207 .470 .530
49 .020 .000 .000 .141 .147 .161. .173 .197 .231 .178 .242 ·.280 .211 .484 .541

I 91 = .008 I 92 = .275 I 93 = .387 I 94 = .474 I · 95 = • 740 ""\ 

· .30. 7 .082 .08� .063 .272 .280 .290 .363 .351 .391 .389 .380 .425 .475 .522 .544-
14 .051 .025 .018 .273 .274 .286 .366 .362 .391 .403 .412 .448 .519 .619 .672 
21 ;038 . · .012 .010 .273 .274 · .282 .369 .369 .388 .411, .430 .455 .542 .666 . 703 
28 .031 .009 .009 .273 .274 •. 279 .370 .373 · .387 .416 .440 .460 .558 .696 • 717 
35 .027 .009 .009 .273 .275 .278 .371 .375 .386 .420 .447 .463 .569 . 711 . 725 
42 .024 .008 .008 .274 .275 .277 .372 .378 .387 .422 .452 .465 .578 .• 719 .729 
49 .021 .008 .008 .274 .275 .276 -.373 ,379 .387 .425 .455 .466 ,585 .724 .731 

I 91 = .• 062' I 92 = .388 I 93 = .500 I 94 = .612 I 95 = .841 

.50 .301 .278 .263 .433 .435 .419 .497 .·488 .497 .· .565 .570 .579 .713 • 729 .. 772 
14 ,259 ·.204 .168 .422 ;419 .399 .499 .492 .500 .576 . 586 .596 .749 .797 .821 
21 ,240 .159 .. 115 ,417 .413 .394 .499 .494 .501 .. 581 .595 .603 .766 .818 ·.832 
28 .225 .131. ·.093 .4.15 ;408 .392 .499 .496 .502 .584 .598 .606 ;777 .826 .835 
35 ,215 ;115 .082 .412 .405 .390 .499 .496 .501. .586 · .601 .607 . 784 .830 .838' 
42 .207 .104 .077 .410 .403 .389 .499 ;497 .501 · .588 .603 .609 .789 .833 .838 
49 .201 .097 .072 .• 409 .401 .389 .499 .498 .soo .590 .604 .609 .793 .8'34 .839 

(j) 

7 

f 

N 
00 



CHAPTER V 

PROPERTIES OF THE SEQUENCE (cj] ASSOCIATED WITH

ESTIMATO� III 

Let H(y I x) be a family of distribution functions depending on 

the real parameter x, and let 

( 10) 
+ 00

M(x) = s_ 
00 

ydH(y x) 

be the corresponding regression function. It is assumed that M(x) 

is unknown to the experimenter, who is, however, allowed to take 

observations on H( y I x) for any value of x. 

( 11) 

The recursive formula 

x.+l = x. + c.(a - y.)
J J J J 

defines a sequence [x.] which in the limit would be desirable to 
J 

converge with probability one to e, which is a root of the equation 

( 12) M(x) = a 

The value c. is an element of a sequence defined by the follow
] 

ing rule: 

( 13) 

for k > 2, then 

29 

c2 = a2 

If cj-1 = ak 



when a I, (y., y. 1)J J-

-x.}/(y. 1-y.) 
J J- J 

when a e (y., y. 1)
J J-

ak when cj = ak and a f (Yj+l' yj)

(xj+l - xj)/(yj+l - Y} when a. e (Yj+P yj)

ak+l when a f (yjtl' 
Y} and

c. = (x. - x. 1)/(y. - y. 1)
J J J- J J-

Where ak is an element of a sequence, [ ak], having the following

properties: 

(a) ak > 0 fork= 1, 2, 3,

(b) ak > ak+l fork= 1, 2, 3,

(c} f = 00 

l a.

(d) f 2 < 00 a. 
1 J 

The symbol £ in the quantity a £ (yjt:l' y�) denotes between,

that is, a is contained in the interval [ yjtl' yj] if Yj+l < yj' or in

[y., Y·, 1] if y. < Y·
.L

l" 
J JT J ,J I 

It is ;;is sumed that M{x) is a non-decreasing continuous function 

and H(y x) is such that 

Pr [Y > a x < e ]  < Pr[ Y > a x = a]

and Pr [Y > a x > e ']: < Pr[ Y > a x = e] 

These conditions and the restrictions listed below are the only 

restrictions placed on M(x) and H(y I x). 

30 

c. = 
J 

J 



(a} 

(b) 

M(x} < c + \ d I x 

00 

c and 4 are 

real constants 

.) _oo 
I y --- M(x) /

2 2 dH(y , x) < er < oo 

(c) M(x} < a for x < 9, M(x) > a for x > 9

( d} inf \ M(x) - a \ > 0 
61 < \x-9j .S 62

for every pair of n-µrnbers 

The properties of the sequence [ c.] will be presented in the form 
J 

of seven lemmas and a single theorem. 

Lemma 5. l If the elements ck and ck-l of the sequence [ cj] �

such that ck_1_!.j a
j] and ck = (xk - xk-l) / (yk .. yk_1), then

�Ck.2_Ck-l" 

31 

Proof: Since ck-! e: [aj], ck-l > O. If yk < a < yk·l' ther xk < xk·l"

Similarly, if yk-l. < a < yk' then x{_
1 

< xk. It follows immediately

that ck = (xk - xk-1) / (yk - yk-1) > O!

; 
It remains to be proved that ck < c

k:
-!" Since xk = xk-i +

c-J ... 1 (a - yk_1), we can write ck::;: ck_1{a. - yk-l) / (yk ... Yk .. 1).

No�ing that both yk < a < yk-l and yk·l < a < yk imply that

0 < (a - yk-l) /{yk .. yk-l) < 1, it. can be concluded that ck < ck-l"

r. t should be noted t.."ltiat if xk < xk-1' then y k- l < y k

cannot be true. This follows immediately from the recursive formula,

equation {11)

Lemma 5. 2. For every k such that ck= {xk - xk_1)_LJ.Yk ·- Yk_.1} and

ck+l = {xk+l - xk) / (yk+l - yk)' then ck+l �k·

Proof: From the proof of Lemma 5. 1, we know that , . 



ck+l = ck(a - yk) / (yktl - yk)' and ck > 0 and O < (a - yk) /

(Yk+l - yk) < 1, it follows that ck+l < ck.

It should be noted that in general cj+l is not less than cj for

all j = 1, 2, . . . . 

Lemma 5. 3. For each k and J the probability that cj = ak for all

j � J is zero •... 

Proof: Let cj = ak for all j > J, where j = 
l; 2,. The sequence 

32 

[x.] is monotone and converges to a finite value, say A, if the sequence 
J 

is bo1.1nded, and diverges to either - ooor + OOif unbounded. 

Let [xj] be non•increasing and bounded below by its limit A,

Then for each j > J there exists an e. > 0 such that x. = A + e .ak.
J J J 

The sequence [ e .] is a non-increasing sequence of positive elements
J 

such that lim e. = O. 
j-00 J 

Then, 

( 14) 

Simplifying, 

0 < xj - A + ak{a. - y.)J 

0 < 

0 < 

e .ak + ak(a. J 

e. + (a 
J .. - y.)J 

a < y. < a+ e. 
J - ' J 

- y. ) <
J -

< e. 
J

< ejak
-

ejak

Let us now consider the probability of such an event, that is, 

Pr [ a < Y. < a + e.]. If H(y \ x) is continuous, then, as j-oo- J - J 
and e.-0,.Pl'[a< Y. < a. +e.J- 0. However, ifH{y 

J - J - J 
x) is

discrete, Pr[ a< Y. 
- . J 

zero as e. - O. But 
J 

< a. + e.J may not necessarily converge to
J 

[ a �· Yj < a + ej] must hold for all j greater

.. 



than that one for which the inequality (14)holds. As e. tends to zero,
J 

the probability of such an event is 

00 00 
n Pr[-Y. = a. J < n 

1 J - 1 
max (Pr[Yj =a.])

A < x < x1 

= 0 

A similar argument holds when the sequence (x.] is non-decreasing
J 

and bounded. 

Suppose the 

or lim x. = - co. 
j-oo. J 

y. > a. for aUj
J 

sequence [x.] is unbounded, then either lim x. = co 
J j-00 J

In order for these events to occur, y. < a or
J 

> J, respectively. Let us investigate ;the probability

of such events, that is, Pr[ Yj > a., Y j+l

= Pr [ lim x. = - co] and Pr [ Y . < a. , Y
J
. + 1 < 

j-00 J J 

> a. J, ••• ]

a., .•• ] = Pr[lim x. = 

+ ooJ
j-00 J 

Consider the latter of the two cases. 
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Pr[Yj < a., Yj+l < a., -·.] = Pr[Yj < °'
,
] Pr[Y

j+l < a. I Y. <a.] •• ,.J 
I·":( 

P�[Yj+L < a. \ yj < a.' ••• , Yj+L-1 < a.] 

= II Pr [ Y. + L < a ]
L J 

There exists only a finite number of L such that x < 9, It follows th�n 

that 

< a., ••. ] < n Pr [ y. < a. I x. > e]
L J J 

o6
-< ll Pr [ Y < a. l x = 9 ] 

L 

= 0 
. .. .

A simiiar argument holds. when lim x. = - co, and the lemma is proved.
j-00 J 

Lemma 5. 4. If c. = (x. - x. 1) / (y. - y. 1) for all j > J,. then lim 
J J J- J J- -

j-oo
(x. - x. 1) = 0 almost surely is true for all c .•

J J ... ·,' J 
Proof: Suppose x2. > x2· . 1 and a. < y2.• In order that c. have the

J J- J J 
form restricted by the hypothesis of the lemma, Yzj-l < a. < Yzj

00 



for all j � J. The sequences [xzj-l] and [x2j] are monotone; the

first is increasing, the second is decreasing. Since xjtl is obtained

by a line.ar interpolation between x. and x. 1, both sequences are 
J J-

bounded above and below .. Let lim x2._1 = A and lim x2. = B. Let
j-00 J j-00 J 

B - A = D., where D. > O. Then for every j > J, there exists an 

eZj-l > 0 such that xZj-l = A - e2j_1• The sequence [e2j_1] is

monotonically decreasing and converges to zero. With.each j there 

exists an e2j such that Xzj = B + ezr The sequence [ezj] is monotoni

cally decreasing and converges to zero a s j increases without bound. 

Consider 

(l5:·) xzj+l = x2j + [(xzj - xzj-1) I (Yzj ... Yzj-l)]{a - Yzj)

= B. + e2j t (B + e2j - A+ eZj-l)

[(a - Yzj) I (Yzj - Yzj-1>]

= B + D. [ ( a - Y 2j) / ( 'y 2j - Y 2j -1) ] + e 2j

T aking the limit of both sides, 

lim x2 .
+ 1 = B - A [lim(y2. - a) I (y2J. - YzJ·-i>]

j-00 J j-00 J 
it is clear that 

Pr[ lim (Y2. - a)/ (Y2. - Y2._1) = D] = O for any D
j-00 � J J 

Since the left side of Jquation (15) converges and [lirn (Y 2. - a.)/
I j-oo J 

(Y Zj - Y Z
j-l)] almost! surely does not exist, D. = O, that is A= B.

It follows immediately, then, that for almost all c. lim (x .... x._1)J j-00 J J 
= O, the desired result. 

Lemma 5. 5. .Let the sequenq,e [ zk] .be the .union of all .subsequences

� [ Zk] such that lim zk = oo, where 7,k is the number of times that
k-oo 
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the kth element of [ak] appears in the sequence [c.]. Then,
-=--=-�����--,....;:.� ......... - J 

Pr[lim zk = ooJ = O.
k-+00 

Propf: From Lemma 5..3, we know that for each k, Zk is almost always

finite. Since the sum of a denumerable number of sets of measure 

zero is also of measure zero, we can conclude that the probability 

of at least one element of the sequence of infinite terms in [ Zk] 

being infinite is also zero. This still does not as sure us that the 

sequence ( zk] is almost alway1;i bounded. 

Let lim zk = oo. Then for each L > O, there must exist a k
k-+00 

such that zk > L. Consider the probability of such an event, that is 

Pr[zk > L] = Pr[Y1 > a, ... , YL > a]

or Pr[ zk > .!:'..] = Pr[ Y 1 < a, ••. , Y L < a]

But, from the proof of Lemma 5. 3, we know

lim Pr[Y 1 
> a, . ,. . ' 

L-+oo 

or lim :i?r(Y 1 < a, .. . . .

L-+00 

Hence, .we can conclude 

Pr[lim zk = ooJ = 0 
L-+00 

YL 
> 

YL < 

a] = 0 

a] = 0

That is, the sequence [ zk] is almost surely a bounded sequence. 

Lemma 5. 6. For every J,. the pro'bability that c. = (x. - x. 1} /
J J J-

(y
J
. - y. 1) for all j > J is zero.

J- -

Proof: Suppose each element of the sequence [ c.] takes on the form
J 

defined by the hypothesis of the lemma. Then the sequences [x
2j] and

[xzj
-l] are monotonically decreasing and increasing sequences, res

pectively, when Yzj-l < a < Yzj for all j > J. Similarly, the seq

uences are monotonically increasing and decreasing, respectively, if 
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Yzj < a. < Yzj-l for all j > J.

By Lemma 5. 4, we know that both these sequences converge to a 

common limit, A. Consider a neighborhood of A, say v(A), such that 

at least one of the following probabiliti�s is less than unity for all 

xi;; v(A): Pr[Y Zj > a x e v(A}] alnd Pr[xzj-l < a, { x e v(A)].

The existence of v(A) is assured by the continuityi of M(x). Suppose 

that at least one of the probabilities above is identically equal to unity, 

or at least in the limit equal to unity as j - oo and x -A. It is assumed 

that the variance of the ra:Q.do:rn variable Y is finite for all values of 

x and that M(x) is continuous. Then if 

lim 
x-A
j-;..00 

this must imply 

Pr[Y Zj > a ·1 x 2j E v (A) ] = l

lim Pr[Y 2._1 < a. \ x2J
.-l e v(A)] = 0

x-A J 
j -,.,0() 

and vice versa. 

Let there be a J such that c. = (x. - x. 1) / (y. - y. 1) for all
J J J- J J-

j > J. Consider the probability of such an event, that is, 
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i 
pt [ y l < a. , •• • , y 2j -1 < a. , • •• ] Pr [ y 2 > a. , ••• , y Zj > a. , ••• ]

< li.m ( max Pr[Yzj-l < 
j-oo 

x.ev 

This is true since in v(A) either max Pr [ Y Zj-l < a.] or max Pr[ Y Zj > a]

must be less than unity. Therefore, at least one of the limits will be 

identically zero. 

Lemma 5. 7. Let the sequence [ zk] be the uni.on of all subsequences

o� [ Zk] such that Um zk = oo where Zk is the number of elements
k--... oo 

of the sequence [c.] having the form (x. - x. 1) / (y. - y. 1) whic·h· lie
J J J- J J-

J 

a]~ lim( max Pr[Y 2j > a]}j 
j-oo 

X.EV 
J 



between any two successive members of the sequence [a.]. Then
J 

Pr[li-m zk = ooJ = O.k-00 
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Proof: Let lim z. = oo, then for each 2L > 0 there exists a j such that 
j-00 J 

z. > ZL. Let us now consider the probability of such an event, that is,
J 

Pr[Yl < a., Yz > a., .•• , Yzk-1 < a, y2k > a, .•. , y2L-1 < a.,

Y ZL > a.]. But, from the proof of Lemma 5. 3, we know that

lim Pr[Y 1 < a., .•• , Y ZL-l] Pr[Y 2 > a, ••• , Y ZL] = O. It f,
.
' __ 
pllows

L-oo 
then that Pr[lim z. = oo] = O. 

j-oo J 

Theorem 5. 1. Any given sequence [ c.] is almost surely a member of
J 

the c1ass of sequences [bj] where [bj] is defined by the following

properties: 

(a) b. > 0 for all j 
J 

!: b. = 00 
1 J {b) 

00 

b� !: < 00 
1 J 

(c) 

Proof: Consider any sequence [ c.] as defined in rule 12. By Lemma
J 

5. 1,. each element of the sequence is necessarily positive. Condition (a)

is satisfied.

Lemma 5. 3, Lemma 5. 6, and Lemma 5. 7 as sure us that every 

element of the sequence [aj] is almost surely contained in [ cj]. There

fore, since c. > 0 for all j,
J 

00 00 
!: c. > !: 
1 J 1 

a., but !: a. = oo,
J :1 J 

Hence, condition (b) is satisfied. 

00 
then:!: 

1 
c. = 00

J 

In order to show that the 1:1equence [c.] satisfied condition (c),
J 

00 

00 



consider the following infinite sum: 

00 2 2 2 2 2 2 2 
� 

cj =al+ a2 + ••• + a2 +ell+ cl2 + ••• + clM1 
+ a3

+
2 2 2 

+ a 3 + c 21 + .•• + c ZM ; etc.
2 

Where a1 occurs once, a2 occurs k2 times, a3 occurs k3 times, etc.

By Lemma 5. 5, the sequence [ k.] is almost surely bounded. By 
J 

Lemma 5. 7, the sequence [M.] is almost surely bounded. Let 
J 

k = max k. and M = max M .•. J . J J j 
00 2 If the sum � c. is convergent, it is absolutely convergent. The 
1 J 

rearrangement of terms will not affect the convergence or the sum. 

Hence; 

00 2 00 2 pO 2 
2} c. < k � a. + M �· a. = 
l J 1 J 1 J 

00 2 ( k + M) � a . < oo 
1 J

which is the desired result, condition (c). 

What is unusual about the theorem is that the conditions 

2 > 0c . 
J 

(a) 

00 2 
� c .  < 00 

J 
(b) 

(c) c. = 00 

1 J

are identical to those required by Blum ( 4 ) in his theorem which 

proves that the limit point of the sequence [x.J is 8 with probability 
J 

one for estimator I. The theorem can be stated as follows: Let 

M(x) be the regression function corresponding to the family H(y x). 

Assume that M(x) is a Legesque-measurable function satisfying 

(a) M(x) < c +1df x 

(b) .)_: I y - M(x) \ 
2 

dH( y I x) < cr 2 < oo
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(c) M(:x) < a. for x < 9, M(x) > a. for x > 9

( d) inf I M(x) - a. I > 0 
61 < jx-ej < 62

for every pair of numbers 

Let [b.] be a sequence of positive numbers such that 
J 

(e) 

(£) 

:E b. = 00 

1 J 

Let x1 be an arbitrary number. Define a sequence of random variables

recursively by 

(g) X.
L 1 = X. + b. (a, - y.)

J·.- J J J 

where Yj is a random variable distributed according to H(y I x).

Then x. converges to a with probability: one. 
J 
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CHAPTER VI 

RESULTS OF 'fHE EMPIRICAL STUDY 

The most significant result of the empirical study is perhaps 

the apparent slowness with which estimator I converges toe especi

ally when f xj - e { is relatively large. For a test which involves

less than fifty trials, estimator I when compared with II and III appears 

the least desirable in terms of bias. Figures 5 and 6 illustrate and 

emphasize the slowness 0£ its convergence. A good rule is that unless 

the experimenter is certain that the initial value,. x1, is close to e, he

s·hould avoid using estimator I (the Robbins-Monro stochastic approxi

mation methoq). 

On comparing estimators II and III, it is apparent that there are 

cases in which II appt:,ars better in terms of average bias than III, and 

vice versa. When a = O. 50, the data from Table VIII indicate that III 

is slightly better for all sample sizes. Also, it should be noted that 

increasing the sample size had little effect in increasing the rate of 

convergence for all the estimators, I, II, and III. This is not true for 

other values of a. However, with sample size 10, estimator III gives 

a close approximation such that ( x49 
- e\< O. 006 for all ei for

i = 1, 2, 3, 4, 5. The ex:p:lrimenter can be assured that estimator III 

will on the average give results with little bias when estimating e for 

a = O. 50.
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AVERAGE 
VALUE 
OF Xj 

AVERAGE 
VALUE 
OF Xj 

0 7 14 21 28 35 42 49 

TRIAL NUMBER (j) 

Fig. 5. Comparisons of the Rates of Convergence.of 

Estimators I, II, and III. 
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AVERAGE 
VALUE 
OF x·. J

AVERAGE 
VALUE 
OF Xj 

AVERAGE 
VALUE 
OF Xj 

Estimator I 

Estimator II 

83 = 0.224 

0. 2 0 µ..q;.:;.;;.:;-1 ... .µ.;..w::;.,._�.;.;:.;:.;+�.µ;;::;..:.µ;::;;;:

Estimator III 

83 = 0.224 

0. 2 0 ,__,-t-""'··--·· ·'."'.:-:-&f-:-2:'±:..:i-tSR"""'�e""'T'::::::H

7 14 21 28 35 

TRIAL NUMBER (j) 

42 49 

Fig. 6. The Effect of Sample Size on the Rate of Conver
gence when a. = O. 10. 
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On comparing estimators II and III for values of a other than 

a = O. 50, it is seen that th,e bias in estimator II for sample size 

one is the smaller, but bias in estimators III becomes the smaller 

with increasing sample size. The data indicate that, for small 

sample sizes ( l and 5) and a = O. 50, III is biased upward (see 

Fig. 3). In order to explain this, consider the following rationale. 

Recalling that for sample size one 

Y. =
J

O if no response occurs 

l if a response occurs 

then if a e: (yj, yj-l), a linear interpolation restricts xj+l such

that x. < x.+l < x .. 1 or x. 1 < x.+l < x.. Suppose that a = O. 05,
J J J- J- J J 

then one would expect in, the neighborhood of 8 that only one out of 

twenty trials would result in a response. Hence, there would occur 

on the average twenty steps to the right for one to the left. But when 

the response does occur, x.+l £ (x. 1, x.) or x.+· l £ (x., x. 1), which
J J- J J. J J-

offsets the large step back to the right which occurs in using I and II. 

Hence, one would expect estimator III to overestimate toward the right 

in the limit for a < O. 50 and sample size one. It is assumed that a 

is always less than or equal to O. 50. But when a = O. 50, the linear 

interpolation is meaningful and apparently there is little or no bias 

(see Table VII). 

As the sample size increases, the bias associated with estimator 

III becomes smaller, indicating that either the symmetry of the density 

dH(y I x) / dy or the decrease in the size of the variance of Y affects 

the convergence properties of III to e.

Consider the function pk(x), which defines the probability that the
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direction of the next step from x will not be in the direction of a

(see lower part of Fig- 1). 

That is 
s(x) 

where 

0 < s(x) < max 

x i a

x =e 

1 

r dG(y 
J ct 

0. 

I x), r - dG(y
.) 0 

x) 

which in the limit as k increases without bound becomes pk(x) = O.

This is sufficient for the estimator x.+l = x. + c.(a - y.) to converge
J J J J 

in the limit to 8 as k tends to ao, and j tends to co. 

The results support the following rules: For small sample 

sizes and a large number of trials, avoid using estimator III. For 

sample sizes larger than five and a small number of trials, esti-

mator III gives smaller bias. 

The direct relationship between smaller bias and large sample 

sizes poses a problem of efficiency of estimators, that is, the: 

resolving of the problem of whether larger samples with a small 

number of trials is more desirable than unit sample sizes with a 

large number of trials. The solution depends on the nature of the 

test and must be solved for the specific test, hence, will not be 

considered here. 

Increasing the sample size sequentially by increments of five 

(see Table VIII) does not, in the cases studied, decrease signifi-

cantly the bias of the estimators, especially when the comparisons 

are based on sample sizes larger than one. This method can be used 

when sample sizes are not restrictive and relatively little bias . .is 
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important. However,. it was observed that sample sizes wiU in 

some cases exceed one hundred experimental units at the forty

ninth trial. The absolute value of the bias in estimator III is 

decreased perhaps the most from such a scheme. It is impor

tant to note that increasing the sample size has little or no 

effect on the rate of convergence of estimators I and II. 
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CHAPTER VII 

AN APPLICATION OF FINITE MARKOV CHAINS TO 

UP-AND-DOWN TESTING 

Up-and-down testing i.s. testing in which an increasing percen

tage of experimental units will respond as the severity of the test 

increases. The term response may denote a failure, an explosion, 

death, etc., depending upon the nature of the test. In such testing 

the precise severity of the test (that is, the precise magnitude of 

the variable concerned} which would result in a response cannot be 

measured. However, it can be observed that the applied severity 

results in a response or does not result in a response. In true up

and-down testing it is not possible to make more than one observa

tion on a given experimental unit. Once a test has been made the 

experimental unit is altered, so that bona fide results cannot be 

obtained from a second test on the same experimental unit. 

Let M(x) represent a monotonic increasing function which 

describes on the average the manner in which percentage of items 

responding changes with severity applied, say �. Let Y(x} be a 

random variable defined as the percentage of items responding in 

a single test at a fixed level x. Then E [Y(x}]= M(x}, where the 

form of M(x) is unknown to the experimenter.. Since M(x) is mono'

tonically increasing function, then the regression equation (1) has a 

single root x = e, which is to be estimated.for a. = 1/2 in (1). 
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In this chapter a procedure to set confidence limits on the para-

meter e will be formulated without making any assumptions concerning 

M(x) other than continuity, monotonicity, linearity in the neighborhood 

of e, and that an a priori estimate of a lower bound for the slope of 

M(x) in the neighborhood of e is available to the experimenter. 

The formulation of the confidence interval will be based on three 

basic theorems applicable to regular and ergodic stochastic matrices. 

The theorems are stated in Appendix A as Theorems A. 1, A. 2, and 

A. 3.

Preliminary Notions and Notation 

Let the random variable take on only two values, unity with 

probability M(x) and zero with the probability l - M(x). Let there 

be two numbers a and b, where a is less than b, which are known 

to the experimenter and such that 

( 16) Y(x) = 0 

= 1 

x < a 

x > b 

The regression function M(x) will have the following properties: 

M(x) = 0 x < a 

= E[ Y(x)] a < x < b 

= 1 x > b 

and E[ Y(x) J is a monotone increasing function unknown to the 

experimenter. The test plan will require that at each level, 

a sample of k values of Y be taken. Since the sample mean 

·Y(x) = :E Y. / k
1 

where 

x., 
J 
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Y. =

1 

O if no response occurs 

1 if a response occurs 

has the same expected value as the random variable Y(x.), Y(x.) can 
J J 

be computed and compared with a in order to estimate whether x. is 
J 

less than, equal to, or greater than e. Since 

E [Y(x)] = E[Y(x)] = M(x) , 

the value of x such that E[Y(x)] = a is also e, the 'desired result, 

can be obtained by solving the latter equation. 

Our purpose is to determine an interval estimate of e, the sever-

ity at which, on the average, one half the experimental units will res-

pond, that is, a = 1/2 in ( 1 ). We have selected a = 1/2 because in 

many up and down tests this is the value which is of interest. The 

value e when a = 1/2 may be called the mean lethal dose, mean critical 

point, mean breaking strength, etc., depending on the experiment being 

performed. 

It is as sullled that the experimenter knows the values a and b such 

that (16) is true. Partitioning the interval (a, b) into n-1 equally spaced 

abutting intervals, we let the n states (locations) be defined as follows: 

s
l 

= a 

S 2 
= a + (b - a) / (n - 1) 

S 3 = a + 2(b - a) / (n - 1)

S. = a + (j - 1) (b - a) / (n - 1)
J
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S = a + (n -.1) (b - a) / (n - 1) = b
n 

It is at these values of x = S. for j = 1, 2, •.. , n that the trials will 
J 

be performed. A trial is defined as a test of sample size k at a 

specified level S .. For each trial a decision is made in selecting. the 
J 

level at which the next trial will be performed by using the following 

rules: 

. Rule 1. If Y(x.) is greater than a., then the next trial will
J 

be performed atS. 1•
J-

Rule 2. If Y(x.) is equal to a., then the next trial will be 
J 

performed again at Sf

Rule 3. If Y(x.) is less than a., then the next trial will be 
J 

performed at S jt 1•

This procedure defines a random walk with reflecting barriers. We 

will make use of this fact in devetoping the theory for determining the 

desired confidence \imits. 

The Theory. 

The random walk with reflecting barriers may be thought of as 

a finite Markov process. A finite Markov process is a stochastic 
. 

/·· . .. .. 

process which'..:fuoves through a finite number of states, and for which

probability of enterin�La certain state depends only on the last state 

occupied. The transition matrix. P of such a process is displayed on 

the following page. In the transition matrix P we use the notation so 

that the symbol pj will denote the probability that the next trial will be

performed at a state which is closer in distance to the value of 0 than 
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s1 s2 S3 S4 si .,. .z s. 1 s. 5i+l si+2 si+3 s n-2 s n-1 s 
1- l n 

sl 0 1 0 0 

Sz ql rl P1 0 

S3 0 q2 r2 Pz 

S4 0 0 q3 r3 

5i+z 
ri-3 pi-3 0 0 0 0 

s. l qi-2 ri-2 pi-2 0 0 
1-

s. 0 P_l Po P+l 0 0 

5itl 
0 0 p' P' I 0 

-1 0 
P+l 

si+z 
0 0 0 Pitz rit2 qi+2 

si+
3

0 0 0 0 pi+3 ri+
3

s 
r n-2 qn-2

0 
n-2

s pn-1 r n-1 �-1. n-1

s 0 l 0 

The above array of elements is the transition matrix of a random walk with reflecting barriers and the 

associated states along upper left hand periphery of the matrix. We denote this matrix by the letter P. 

0 

1 

n 



the preceeding one. Similarly, the symbol q. is used for the value 
J 

of the probability that the next trial will be performed at a state 

farther in distance from 8 than the previous trial. The symbol r. is 
J 

used for the probabilities that the next trial will take place at the same 

state as the preceeding one. The symbols P_p p
0

, P+l' P�p p�, and

P+l are used for those states in whi:ch no meaning can be attached to 

as to which states Si, Si+l is the closer location to the value of 8; since

we assume thatthe value of e lies -somewhere between or on Si and Si+l"

The probability is zero that S .. will be identically the value of 8. 
1 

Let us consider the upper and lower tolerance equations L1 (x)

and L2(x), These equations are loci of the points (x, y) such that

Pr [ Y (x) < L 1 (x)] > 1 - q

Rr[Y(x) > L2(x)] > 1 - q

for all x belonging to the interval (a, b). The symbol q denotes a 

preassigned probability value whose range we will determine later. 

Let l( 8 )  be the interval [x(L1), x(L2)] as we have previously

defined in Chapter 4, Fig. 1. By defining p+q= 1, it can be seen 

by Fig. l 

( 1 7) 

that the following inequalities are true: 

0 � Pr[ Y 

0 < Pr[Y 

q < Pr[Y 

q < Pr[Y 

1/2 < J?r[Y 

1/2 < Pr[Y 

p < Pr[ Y 

p 'S_. Pr[Y 

> a,

< a. 

> a 

< a 

< (1 

> a 

f x f !(8) and x 

I x \/ 1(0) and x 

I x 

I x 

x 

I x 

E 1(8) and x 

E 1(8) anq x 
I 

E I(8} anq x 

E 1(8) and x 

< a I x ¢ I(8) and x 

> a I x t 1(8) and x

<

>

<

>

<

>

<

>

8] < q

8] < q 

8] < 1/2

8] < 1/2

8] < p

8] < p

8] < l 

8] < 1
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From these inequalities the following bounds for the elements of the 

matrix P are defined: 

0 < qj � q for all j = 1 , 2, 3,

p < p. < 1 for all j = 1, 2, 3,
- J ..... 

q� p_1 =: 1/2

q�pt1�1/2

1/2 < P+l � p

1/2 < p' < p - -1-

.... " i-1, i+2, .• • • I 

... , i-1, it2, ... , 

Since the sum of the elements of each row of P must be unity, we 

have established bounds for each element of the transition matrix. 

From Theorem A. 3, it follows that 

i+2 
� 

i-1 
13.J

where .13. is the jth term of the 13 vector as defined in Appendix A,
J 

and n is the number of trials performed before terminating a test. 

Let us 'determine what the range of q must be in order that 

i+2 
{ 18) � �. > l-q 

i-1 J -

where q is the same q necessary to define the tolerance equations 

L
1 

{x) and L2(x).

Solving 13 P = j3 for the vector j3 in terms of 13 1 where

13 = (131, 13 2, .••• , �n). The results are:

13 2 = 13 1/q1 

13 3 = 13 1P1/q1 q2 

13 4 = 131P1P2/qlq2q3 
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n-1

n-1

lim Pr[ e e; { Si-1' Si, Sitl' Si+2) ] = 
n-+OO 



1\ .,.1 = � 1P1Pz· • • Pi_3/q1 qz. · • qi-z 

I\ = 131P1Pz• • • pi-2/qlqZ .. • qi_zP-1 

13i+l .=:= 131P1Pz• • · Pi_zP+1/q1q2· '· qi_zP-1P�1 

13 i+Z = 131P1Pz· '• pi_zP+1P+1/q1 qz. • • �-zP-1P�1Pi+z 

For simplicity and ease of manipul�tion, the remaining elements of the 

vector 13 are written in terms of 13 i+Z'

13 i+3 = 13 i+Zqi+z/Pi+3 

13 i+4 = 13 i+ Zqi+ Zqi+ 3/ Pi+ 3Pi+4 

13 n = 13 it2qi+Zqi+3" •• �-1/Pi+3Pi+4' •. Pn-1 

Considering the ratio: ... 

. 
' 

r = 

i+Z 
� 13. 

i-1 J

i+Z 
1 - � 

ir 1 
13 

J

i+Z 
E 13.

i-1 J

� 13.
J#-1 J

i 
i+l 
{+z 

we note that the ratio is void of 131 and is a £uncti1:>n of the element'3 of

the transition matrix P. It follows that 

i+Z 
i·�h 13 j = 1/u + 1/r) 

Hence, if r is minimized, a lower .bound for the left side of the above 

equality can be obtained. 
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Consider first 
i+Z 

i
:

l 
{3j = f31P1Pz•••Pi .. 3/q1q2···'4.z + f31P1Pz•••Pi-2/q1q2···qi-2P-1 +

and 
i+2 

{3 1P1P2· • • Pi_zP+1I ql qz. • • qi_zP-1P'� l + f3 1P1P2· • · pi-2P+1P+1/q1 q2. • · qi._zP-1P�1B.if2

= <f3 1P1P2· • • Pi-2/ ql qz. • • %-2Hl/pi-2 + l/p _1 + P +1/P -1 P..
11 + P +1P t1IP _1P�1Pi+z) 

l -.�
.l f3j = -� 

l 
f3j = f31 + 131/ql + �lpl/qlq2 + ••• + f31P1P2···Pi_4/q1q2 .. ·'1j_ .. 3 + !3i+2'4+z/Pi-+3 + .•• +

1- J=l-

i+1 f3i+2qi+2%+3 .. • �-z/Pi+3Pi+4• •• Pn-1 + 1\+2qi+2%+3· •• �-2�-1/Pi+3Pi+4·. • Pn .. l
i+2 

= <f31�1P2· •• pi-2/ql q2 ••• qi-2)(ql q2. • • % .. zlP1P2· •. Pi_z[ � t (l/q1H1 + P1/q2 + P1P2/q2q3 +

· • · + P1Pz· • • Pi_4/q1 q2 .. • % .. 31 + [P+1P+1IP ... 1P�1Pi+a H qi+2IPi+3C1 + %+3IPi+4 + �· E + 

qit3/Pi+4 + • • • + %+3%+4· • • �-z/Pi+4%+s· • • Pn-1] + %+2%+3 .. • �-1/Pi+3 .. • Pn .. 1H

On forming the ratio r and simplifying� we find

( 19) r =
l/pi-2 + l/p_l + P!1+ P+1P+1fP.1P�lpi+2

\ 

(qlq2 ••• % .. 2IP1P2 ... pi-2):[.1 :+ l/q1<1 + P1/q2 + P1P2/q2q3 + • • • +

P1P2· • • Pi ... 4/q2q3• • • qi-3) ] + [ P +1P+1IP .. 1P :1Pi+2H %+21Pi+3< l + qi+3/Pi+4 + · • • +

%+3%+4· • � �-z/Pi+4Pi+5• •. Pn-1) + %+2qi+3" • • �-1/Pi+3Pi+4• • • Pn-11 ·

IJl 

of,,. 



In order to minimize r; we ,first note that if qi-!" qi+i __ : : both are·

equal to q, ri-
l 

and rit2 are both equal to zero, P ... 1 and P+1are both

equalto one-half and finalty, p
0 

and p� both are equal to zero, then 

the probability of leaving the set of states [S. 1, S., S. Ll' S.+2J is
1- . 1 1-, 1 

maximized within the constraints imposed by the inequalities ( 17). 

Using this fact and the remaining inequalities of ( 17), the ratio, r, 

can be bounded below by minimizing the numerator and maximizing 

the de nominator of (19). Substituting these values and simplifying, it 

fallows that 

r > 1+ 2+ 2+1

(q/pl-2(1 +[l/q][(p/q)i -3_ l]/[p/q - l] +

( 1 /p)( [ q/p ][ 1 ... (q/p)n ... 3-i] /[ 1 _ q/p] + [ q/p] n-3-i
q)

which on simplifying further becomes 

(20) 

. Therefore, 

(21) 

r > 3 ( 1 ... q)( l ... Zq)
q 

i+2 
E 13. > 

i-1 J
r* 

1 + r*

where r* is the right hand side of the inequality (20). To find the 

values of q such that 

consider the inequality 

which .is equivalent to 

itZ 
l} 13. > 1 - q ,

i .. l J

r* 
I+r*: >l -q 
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q + 3( I - q)( I - 2q)
> 1 ... q

On simplifying, 

(22) ( 1 - q)( 2q)( 1 - 3q) > 0 

Solving the inequality (22), we find that if O < q < 1/3, then 

the inequality (18) is true. 

It is important to note that the lower boµnd for the quantity 

it2 

� �. as formulated by the inequality (21) is independent of the size 
i-I J 
of the transition matrix (that is, the number1 of states) and the loca-
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tion of the i th state (that is, the location of the solution x = 0). There

fore� if the value of q is such that q is gr[eater than zero, yet less 

than one-third, Theorem A. 3 of Appendix A1,assures that there exists 

an N I such that 

it2 
( 23) 

N' 
� �kj >1-q

j=i-1 

where the symbol 

for all k and N� N 1

is the element of the k th row and the. j th column of the transition 

N·' 
matr,ix P . That is, the fraction of times in the first N' steps that 

the process moves to at least one of the states, S. 1, S., S.+l• S.+21- ·--:i l l 

will be at least 1 - q. 

Let the desired length. of the confidence interval be a preassigned 

value 46 and let tan C be an a priori estimate of the greatest lower 

bound of the slope of M(x} at x = e. It is also required that 46 be suf-

ficiently small so that M(x} is es:sentially linear in the neighborhood 

of x = e.

3( 1 - q){ 1 - 2q) --·-- ---· 

N' 
[3kj 



The size of the sample, say k, for each trial is selected such 

that 

( 24) 

L 2 ( e) = 1 / 2 + 6 tan c

L l ( 0) = 1 / 2 +- 6 tan C

and q is the preassigned confidence coefficient desired. It is also 

required that the inequalities 

Pr[L2(0) < Y(0)] > 1 - q

Pr [ L l (0) > Y(�)] > 1 - q

be true. Fig. 1 gives the graphical sketch of these conditions. 
! 

The value of x at which the variance of Y is maximum is the 
·, 

solution of (1), that is x = e. Therefore, the value x = e is the. one 

at which the tolerance equations, L1 (x) and L2(x), deviate :greatest

from the regression equation M(x). Recalling that M(x) is assumed 

linear in the neighborhood of e, and referring to Fig. 7, the following 

inequalities are seen to be true: 

M{x) - 6, 1 tan C' < L2(x) < M(x) < L1(x) � M(x} + 6 1 tanCI

where tan C I is the true slope of M(x) at x = e. The quantity 6 1 is 

defined by the ratio 

6 1 = ( 6 tan C) / tan. C 1 • 

By fixing Y to be equal to one-half, we can solve the following equations: 

M(x) - 6 1 tan C 1 
= 1/2 

L 2(x) = 1/2 
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Fig. 7. Sketch of M(x) in the Neighborhood of x = e
I 
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M(x)= 1/2 

M(x) + 61 tan C 1 
= 1/2 

The solutions to the equations are a - 61, x(L1), a, x(L2), 0,+ 6 1,

respectively. Due to the monotonicity of each function appearing 

in the inequality it follows that 

Previously, we defined the interval I(e) to be .[:,C(�1)/.:?itJ.;2)]. In order

to be assured that the probability bounds imposed upon the elements 

of the matrix P to be valid, we must show that the length of I(0) is 

such that it can contain at most only two states, S. and S.� Since tan C . . 
l J 

is known and is a lower bound for the slope of M(x) at x = a, that is, 

tan C < tan C.J 

it follow� immediately that 

6• < 6 • 

Recalling that fa + 6 - (0 - 6) I = I sj - sj+l I = 26, for all j, we can

conch�de that the interval 1(0) can cover at most two states. Since 

I(Ef · < 26, the onl;y two states that 1(0) can cover then are Si and

si+l" 
'.°.:';'� 

The number of states nec;''�ssary to perform the test is fixed by 

the value of 6. Let n be the number of states (the size or' the transi-

tion matrix P), then n is the smallest integer larger or equal to 

(ZS) b - a 

6 
+ 1
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Noting; that the desired sample size is determined from {24), the num ... 

ber of trials necessary to complete a test is the only quantity that 

remains to be determined prior to the test. In order to assure our-

selves that the transition matrix is regular, the sample size k must 

be the smallest even integer which equals or exceeds that which satis-

fies (24). 

In order to determine the number of trials necessary so that (23) 

is true, consider the transition matrix that minimizes the probability 

that the next trial will occur at a state nearer to e. That is, when 

i implies that Si < e < Si+l' we consider the matrix

P .  = 
-1 

0 1 

q 0 

0 q 

s. . . . . 

0 

p 

0 

. . . 

0 

0 

p 

. 

q 0 p b 0 

. • 0 1/2 0 .J/2 .0

0 0 1/2 0 1/2 

0 0 0 p 0 

Let nk_ be the power of the matrix fi such that

i+2 

0 

0 

0 

q 

p 

0 

0 

1 

!; (3 ni . > l - q
j=i-1 mJ

for all m = 1, 2, ••. , n-1 

0 

where m denotes the row� Repeating this procedure until i exhausts 

its range, the following set of values for n. is determined 
1 
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= [ n
l' 

n2, •.• , nn - 1 ]

The desired number of trials follows immediately and is equal to 

(26) max 
i

n. 
1. 

We will denote this number of trials as N. It is important to note 

that no restriction has been made concerning the location at which 

the initial trial is to be made. Therefore, if the first location must 

be selected by a random process, equation ( 26) gives the desired 

number of trials. 

Upon performing N trials we are assured that 

( 27) 
i+2 N 
� 13 mj 1 - q >

j=i-1 
for all m. 

From ( 27) it follows then that 

.regardless of the state at which the initial trial was performed .. 

Noting that Si < 9 < Si+i' it follows that if SN is the state at which

the .N + 1 trial wou�d be performed that 

or. equivalently, 

( 28) 

which is the desired non-parametric confidence limit on the parameter 

e with the coefficient 1 - q. 

The number N given by (26) is the smallest number such that 

the probability statement ( 28) will be true independent of the location 

of the state at which the initial trial will be performed. By selecting 

the initial trial to be S , a. substantial decrease in the number of- m 

61 

Pr(SN-Z < a < SN+Z) > 1 - q 



trials necessary to assure that (i.8) will hold may be realized. 

Consider the set M. where M. is the smallest power such that 
1 1 

P.Mi as sure s that
---1 

(Z9) 

it2 
M· 

I; 13 mj J=i-1 
> 1 - q

and m is that state at which the initial trial will take place. Form-

ing the set 

the desired number of trials is 

max M. 
i 

1 

which is the least number of trials necessary given that the initial 

trial was performed at the m th state. 

A natural choice of m would be that value of m such that the 

· state at which the first trial would be performed would be near the

mid-range of the interval (a, b).

Numerical Example. 

Suppose that an interval estimate is desired for the mean lethal 

dosage of gamma radiation for a specified species of dogs. Let x be 

the unit of measure of radiatign. Let the value of a = 0 and b = 1, 

0 < x < 1. It is desired that the len�th of the 90% confidence inter

val should be no longer than O. 20. From''previous data it is known 

that Jhe slope of M(x), the regression equation, is never less than 2 

in the neighborhood of a= 1/�. The procedure to obtain such a con-

fidence limit is as follows: 

1. Determination of the number of states and the size of the

transition matrix P. Since the length of the confidence interval is 
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preassigned to be 0. 20, it follows that the distance between states will 

be 6 = I /4, where I is the length of the confidence interval. Hence 

6 = 0. 20/4 =. 0, 05. Therefore, from (25) the number of states is 

n = 1 + 1/0. 05 = 21. 

2. Determination of the sample size at each trial. First we det-

ermine L 1 (0) and L2(e) from (24,). That is,

L1(H) = 0. 50 + �D. 05)(�) = 0. 60

L2(e) = o. 50 - (0.05)(2) = o. 40

The sample size k is such that 

Pr(0.40 < Y: ( x = 0) < 0.60) _::: l - 2q = 0.80 . 

Using tables of the binomial probability density, we find that the value 

for k = 40. 

3. Determination of the number of trials necessary in order to

assure the validity of the confidence statem1ent. In order to take advan-

tage of tthe smaller sample size, one first defines the location at which 

the initial trial will take place, say s11 • Note that this will fix S asm 

being s
11

, that is m = 11 in the inequality ( 29), The selection of S is 
m 

arbitrary but generally can be selected as that state nearest to the 

midrange of the interval [ a, b] . 

Letting p = O. 90 and q = O. 10 the matrix!:\ is formed; where the 

subscript i implies the state such that 

Since it is unknown to the experimenter the value for i such that the 

above inequality holds, twenty matrices P. must be built with i vary�· 
• -1 

ing fr om 1 through 20. The [ max M.] is the number of trials that will 
. 1 

s. < e < si+l 
1 

1 



validate the confidenc:e statement where M. is the power of the matrix1 

!\ such that the inequality t 29) is true with m = 11 . 

64 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 . 20 

M 13 13 . 11 10 8 7 6 5 4 2 2 4 

Hence, the number of trials will be 13, 

5 6 7 8 10 11 13 13 

4. Performing the test •. Letting s
11 

be the state at which the

initial trial is to be performed, one �tarts the test. After 1 3 trials, 

using Rules 1, 2, or 3, to determine the location. at which each sue..-

ceeding trial will be performed,. the test ends, say, at S 13• The de\>ired

confidence interval follows from (28}, that is we can say with 90% confi .. 

dence that the closed interval [O. 50, 0, 70] will contain the .solutioh 

of the regress.ion equation 9. 

i 



BIB'.tI-OGRAPHY 

(1) Crow, E. L., U. S. Naval Ordnance Test �tMion,. Statistics
Manual, China Lake, California, NOTS, 1955. (NAVORD 
Report 3369, NOTS 948.) P. 93. 

(2) Dixon, -W. J. and Mood, A. M. 11A Method for Obtaining and
Analyzing Sensitivity Data," American Statistical Associa
tion Journal, Vol. 43 (1948), p. 109, 

65 

(3) Robbins, H. and Monro, S. 11A Stochasl_ic Approximation Method/'
Annals of Ma\thematical Statistics, Vol. 22 (1951), pp. 400-407 

(4) Blum, J. R. ''Approximation Methods Which Converge With Proba.-
bility Qne, "Annals of Mathematical Statistics, Vol. 2 (1951), 
pp. 382- .. :86 

(5) Keston, H "Accelerated Stochastic Approximation, 11 Annals of
Mathematical Statistics, Vol 29 (1938), pp. 41-59. 

(6) Chung, K. L .  "On a Stochastic Approximation Method, 11 Annals
of Mathematical Statistics, Vol. 25 (1954), pp. 46.3-483 

(7) Kiefer, J. andWolfowitz, J. ''Stochastic Estimation of the Maxi-··
mum of a Regression :function, 11 Annals of Mathematiqi.l 
Statistics, Vol. 23 (1952), pp. 462-46p. 

(8) Wolfowitz, j_ ''On Stochastic Approximation Methods," Annals of
Mathematical Statistics, Vol. 27 (1956), pp. 1151-1156 

(9) Teichrow, D. 11 Ari Empirical Investigation of the Stochastic Approxi-
mation Method of Rob bin and Monro. '' Unpublished Report. 

(10) Guttman, L. and Guttman, R. 11 An Illustration of the Use of Sto
chastic Approximation, 11 Biometrics,. Vol. 15 (1959), pp. 551-
559. 

(11) Kemeny, J. G. and Snell, J. L. ''Finite Markov Chains, New York,
D. Van Nostrand Company, Inc. 1960



APPENDIX A'-< 
. 

' 
. . 

D:g:!FINITIONS AND THE:OREMS APPLICABLE TO 

FINITE MARKOV CHAINS 
. . 

The .theorems a.nd definitions lis.ted here are essentially the 

sarrte as those given by Kemeny and Snell [ 11]. 

Fundame.ntal Definitions 

.Definition A. 1. A finite Ma.rkov chain is a sto.chastic process 

which moves through a finite number of states, and fo.r which the 

probability of ,.enter1ng a certain state .depends only on the last 

state occupied. 

Definition A. 2. An e.rgodic set of states is a set in which 

every state can be .reached from every other state, and which can .. 

not be left once it is entered. 

Definition A. 3. An ergodic chain is one whose states form 

a single ergodic se.t; or--equivalently--a chain in which it -is pos-

sible to go fro;rn every state to eve.ry other sta.te. 

Definition A. 4.. A cyclic chain is an ergodic chain in which 

each state can only be enter.ed at certain periodic intervals. 

Definition A. 5. A regular chain is an ergodic chain that is not 
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cyclic. 

Basic -Theore.n;i.s. 

Theorem A. 1. Let TTn be the· induced rmea.sure for the outcome 

function for a finite Markov chain with iniUal probability 

vector 'ITO and transition matrix P. Then : 

. This theore:m shows _that the keyto the study of the induced 

.measures of the outcpm·e function of a finite Markov chain is the 

study of the powers of the tran�ition mat:rix. The entries of these 

powers have .themselves an interesting probabilistic jnterpreta ... 

. tion. · To see .this _take as initial vec.tor rr O the ve.ctor with 1 in 

the i th component an� 0 otherwise. Then by Theore.ni A. 1, ,_ 

n n 
h · n T .hus· the.TT:n = TT0P • But rr

0
P · is the i th row of t e matrix P . 

i th row of the' nth power of the 'transition matrix give� the pro'ba-

· ,bility of being in each pf the various states u�der ·the assumption

that the process started in state s 1 .

. Theorem A. 2. If P il'i a :r�gular transiti9n mat:i;ix then

(i) The powers pf approach a probability mat_rix' A.

(ii) Each row of A is 'the same probability vec_tor

;' 

,,(u1) The components of a are positive.'. 

(iv) For any probability vector rr, rr:Pn approaches the

vector a·.as n tends to infinity.,
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.· (v) . The ve.ctol;' a ·· :i;'s the unique vector such tha.t aP = a. 

We note from Theorem A. 2, for a regular Ma.rkov chain there 

.is a limiting probability a; of being in state S
j 

for a large number

of steps. The· symbol v� :r:i )' is the fraction of times in the first . 
J 

n steps tha.t the process moves to state Sf · The law of large 

numbers for regular Markov chains can be stated as follows: 

Theorem A. 3. Consider a regular Marko:v chain with limiting 

vector a = (a:I.' a2, •.. , an). For an:y initial.vector rr

and for any e > 0 

a.s n tends to. infinity.
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(n) 
Pr[ \v j -a J\ > e] - 0: 
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