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PREFACE

The flexibility approach to the structural analysis of systems of
thin plates and elastic beams is presented in this dissertation. Defor-
mations of plate edges and supporting beams are developed in the form
of Fourier series which have coefficients in terms of redundant forces
and moments. Exact expressions are reduced to a form that allows term
by term solutions; and compatibility between plate and beam elements
is obtained through the use of "Edge-Deflection' and '"Edge-Slope"
equations.

This research is the outgrowth of ideas expressed by Professor
Jan J. Tuma in the summer of 1961. At that time, Professor Tuma
suggested that the method of flexibilities used in the analysis of frames
could be extended to the analysis of structural systems of plates and
beams.

In completing the final phase of his graduate study, the writer
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throughout the preparation of this work.

To Professors Roger L. Flanders, David M. MacAlpine, Olan
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ful advice and encouragement throughout the writer's graduate program.

To Lisle Eddy and the staff of the Oklahoma State University
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that he spent checking parts of the calculations, and to Mr. S, B. Childs
for proofreading part of the final manuscript.

To the writer's parents, Mr. and Mrs. J. J. Oden, for their
encouragement during these years of graduate work.

To Mrs. Mary Jane Walters for her careful typing of the manu-~

script and for her overtime hours taken to complete the task.

July.12, 1962 A
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CHAPTER I
INTRODUCTION

1-1. _Statement of the Problem

This study is concerned with the analysis of plate structures, and
is confined to those with plate elements whose behavior can be satisfac—
torily described by the small deflection theory of thin plates.

Plate structures complying to these restrictions may be classified
as follows: |

1. Single span plates

2. Continuous plates

3. Complex plate systems

4. Plate-frame structures

5. Plate-beam structures

» This inveétigation is restricted to the analysis of plate-beam
structures, though the approach is sufficiently general to include the
first, second, and the fourth classifications. The third classification
is intended to include plates of any shape and material,' acted upon by
both in-plane and out-of-plane loading.

In the ensuing discussion,only thin rectangular plates are con-
sidered. Loading may consist of any general system of forces and
couples applied in such a manner that they are primarily resisted by
bending. -

Plate-beam structures are structural systems composed-of both

1



thin plates and elastic edge beams. More specifically;

a plate-beam structure is a system of beams and thin plates

arranged in such a manner that if is stable and capable of

resisting applied loads.

The Study of such structures centers around the problem of finding
a method that will permit compatibility to be established between the de-
formations of the plates and the supporting members. This problém may
be approached by considering the entire structure as a unit, or by study-
ing the deformations of each part of the structure separately. Fof each
approach, the final analysis may be accomplished by using

1. Exact or approximate classical methods

2. The method of stiffnesses

3. The method of flexibilities

4. Finite differences.

In this study, individual parts of the structure are considered. The
method of flexibilities is adopted and flexibilities are obtained in the form
of Fourier series.

Plate-beam analysis is of practical interest, since this type of
structure occurs quite frequently in several areas of engineering design.
Floor slabs in buildings, retaining walls, rectangular tanks, and certain
types of dams and locks are a few examples. Parts of the hulls of ships
and submérines and the fuselages of the latest aircraft and missiles are
no more than thin sheets of metal supported by elastic beams, and hence,
in many cases, fall into the realm of pléte-beam structures.

Often, due to the lack of more precise analytical techniques, the
analysis of plate-beam systems is accomplished through a multitude of

simplifying assumptions, and the results may sometimes only vaguely



represent the true behavior of the structure.
The need for research in this area has not gone unnoticed.

(1)

Korenev' ™, in his survey of Russian developments in the theory of plates,
said of future work in this area,
A series of new papers in the theory of plate bending must
be awaited, in particular, studies on ... stiffened plates con-
sidered as systems of plates and bars acting together, etc.
" It is the purpose of this thesis to show that, through the use of
Fourier series, the flexibility approach may be successfully applied to

the analysis of plate-beam structures.

1-2. Scope and Procedure of Investigation

.The theory developed in this work is subject to the limitations due

to the usual assumptions of thin plate theory. These assumptions are;

1. ..The material is linearly elastic, homogeneous, isotropic,
and continuous. |

2. The thicknees of the plate is constant and is small in comperi-=
son with the other dimensions.

3. Stresses normal to the plate's middle surface ere small and
can _be neglected.

4. Planes normal to the plate's middle surface before deformation
remain normal after deforme.tion.

5.  The plate undergoes small elastic deformations.

6. Loads are applied normally to the middle surface, and in-plane
forces have a negligible influence en the final deflection of the
plate.

In the development of an anaiytical approach to the problem under

cdnsideration, the basic structure for i.)late elements is taken to be a

rectangular plate supported at four corhers. Flexibilities due to a



general system of normal loads and arbitrary edge moments and forces
ére developed algebraically by using a Levy solution to the governing
differential equation of thin plates. These are reduced to a‘form that
‘allows a ter;n by term solution of the problem.

Flexibilities of a simple ba.r due to end moments énd a general
system of applied loads are then formulated. |

Using these flexibilities, compatibility between plate and beam
elements is established. Compatibiiity relationships lead to a set of
equations for each term in the Fourier series for flexibilities. Solutions
toi the equations resulting from a finite number of terms of the series

are evaluated and the final redundants are obtained by superposition.

1-3. Historical Study

vMost of the important work in the area of plate structures and
associated boundary value problems .has' been critically evaluated and
is : listed in the bibliography under the numbers 2 through 75. The con-
tributions which are directly related to the study are presented in this
article.

In this study, plates are analyzed by the method first proposed by
Levy(z) in 1899. The so called Levy solution is discussed inbArticle
1-6.

Several papers published during the last half centilry contributed
much to the present knowledge of methods dealing with plates with mixed

or unusual boundary conditions. In this area the work of Nédai(?” 4) s

Fletcher and Thorne(5), H011(6’ 7 (8) (9)

, Hencky and Galerkin should be
mentioned.
The papers by Nddai, Hencky, and .Gal'é;r‘k'in,jfin’.p\articplar, threw

light on methods to attack the problem of a plate supported only at its _



corners, which is the basic structure for plates in plate-beam systems.

Insight to the problem of,plafe-beam structures is gained through
reviewing some of the past work in continuous plates. An exact method
for the solution of plates continuous in one direction over rigid supports

;'f:', “..
uo.)'i‘n '1933... More work on this .

(13, 14, 15)

was first developed by Galerkin

(12)

problem was done by Habel(ll), Bleich and others

(16)

Marcus also considered this problem. In addition, he successfully
analyzed plates continuous in one direction over rigid supports by means
of a three~-moment equation similar to that used to study continuous
beams. Using the method of finite differences, Marcus was also able
to study certain plate-beam structures,

Consideration was given to the problem of rectangular plates con-
tinuous in two directions over rigid supports by Girkmann(17), who
presented the approximate method for the analysis of this type of struc-

ture first formulated by Bittner(18). (19),

Maugh and Pan(zo), and Siess and Newmark

More recently Engelbreth

(21) studied this problem.

The complex problem of plates continuous in one direction over

(22)

elastic beams was not solved until 1937 by Weber

(23)

Only a year

later, Jensen obtained more general results for this problem.

In that same year Newmark(24) presented a solution to this problem

(25)

based on the stiffness approach. Fisher considered this problem

in his study of bridge slabs.
(26)

Sutherland, Goodman, and Newmark successfully analyzed

some special cases of plates continuous in two directions supported by

(27)

elastic beams. More recently, Ang developed . a numerical proce-

dure for analyzing this type of structure and, with Newmark(zs) and

(29)

then Prescott , extended this approach to the analysis of some



types- of plate-beam structures.
These researchers, however, were not the first to obtain exact
solutions for elastically supported plates continuous in two directions.

)

' This was done by Kalmanok(?’o in his book on the structural mechanics
of plates which appéared in 1950. In the same publication Kalmanok
solves for the moments and deflections in a rectangular tank, a problem

(31)

solved earlier by Young , and develops a seven and then a thirteen
moment equation for continuous plates.
Steady-state vibrations of such structures were considered by

Di1132) and Dill and Pister(33).

Tekirialp(34)

, in his doctoral thesis in 1952, approached the prob-
lem of beam and plate systems using Green's functions and integral
solutions. He managed to solve, along with some other important
problems; the problem of a uniformly loaded plate, infinite in length

in one direction, and supported by identical symmetrical frames spaced
at equal intervals.

Recently, Wood (35, 36, 37, 38)

analyzed some types of plate-beam
structures by finite differences and considered the ultimate strength of
such structures. He suggested composite beam-plate structures as a

topic for future research.

1-4. The Plate Equation

The equations governing the equilibrium and bef;ding of bars are
well known and recorded to a greater extent than those of their more
complex counterpart, the thin plate. For this reason, and also for the
purpose of establishing certain relationships and sign conventions for
future refereﬁce, the governing equations of the theory of thin plates

will be presented in this article.



Consider an elastic element cut from a thin plate and in equilib-
rium under the action of a general system of loads (Fig. 1-1). The
intensity of the load per unit area acting on the plate is denoted by p.
The stress resultants per unit length developed on the faces of the ele-

ment are the shearing forces sz’ V__ ; the bending moments Mx’ My;

Xy
and the twisting moments Mx;y and Myx These are shown acting in

the positive sense in the figure.

Fig. 1-1
Typical Plate Element

The six stress resultants are functions of the derivatives of w,
the deflection of the plate, and are given in terms of these derivatives

by the relationships

82w o W

M = - D(—Z o2y ) (1-1a)
% ox ay
32w E)zw

M = - D< + u > (1-1b)
R v R~



M
Xy yx

Xz ox ax 9y >
3
- . 90w 0 W
Vyz~'D(3+ 2')’
oy 9x"~ oy

(1-1c)

(1-1d)

(1-1e)

where D is the flexural rigidity of the plate and u is Poisson's ratio.

It may be shown that

Eh3

12(1 - p7)

D =

in which E is the modulus of elasticity of the plate material and h is

the thickness of the plate.

The normal stresses in the x and y direction, Ty
spectively, and the shearing stress ’Txy

accordance with the expressions

s = _Ez_ (azw + ”azw>' \W
‘X 1 - “2 a;z ay2
s = -_ Bz (azw + ”azw)

Y 1- /.tz“ ayz 8x2

2
Ez 0w
T = T = - —_— 1 - ————— >
Xy yx 1 - “2 ( K) 9% dy /

d
an oy

are related to the deflection in

re-

oo

in which z is the coordinate of the point in question measured from

the plate's middle surface. Through the use of Equations (1-1) the

maximum fiber stresses at a point may be expresséd in terms of the



moments as follows:’

6 Mx
(c ) = 5
max h
6 My ‘
(c_) = —* > (1-3)
Y max h :
6 Mxy
%Y max h2

S/

Substituting the moments and shears in terms of the derivatives
of the deflection into the equations of equilibrium of a typical plate -
element; results in the governing partial differential equation of the

theory of thin plates,

4 4 4

9;.%+282W2+S7Z=% (1-4)

ox ox"~ 9y oy
| ‘ 2 o | &

Introducing the Laplacian differential operator V™~ = —3 + —5
‘ 9x oy
the above equation becomes
4, - P -

Viw = 5. (1-5)

Equation (1-4) is an elliptic fourth order, linear partial differen-
tial equation with constant coefficients, in the two 'indepehdent variables
x and y. The solution surface is uniquely determined by given bound-
ary conditigns ; and any function, w(x,y), that simultaneously satisfies
both the partial differential equation and the boundary conditions is the
desired solution. Once the solution surface is known,. the six stress

resultants along with the individual stresses may be evaluated.
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1-5. Boundary Conditions

At this point it will be beneficial to record, for later use, three
of the more common boundary conditions that arise in thin plate prob-
lems. They are listed below for an edge, x = 0, parallel to the y-axis.
For the other edges it is merely necessary to interchange x and y in
the expressions given.

a.) Clamped Edge - The deflection along a clamped edge and
the slope in a direction perpendicular to that edge is zero. Thus,
= ow =
(W), _o = O, (). = © (1-6)

X ) -
x=0
b.) Simply Supported Edge - The bending moment in a plane

perpendicular to a simply supported edge is zero. Along a simply

supported edge the curvature and the deflection are zero. Hence,

2

_ 0 W - -
(W), = O, (?X7> = 0. (1-7)
x=0
c.) Free Edge - No bending moments, twisting moments, or

shearing forces can exist along a free edge. Therefore,

(M) = 0, v._.) = 0, (M_ ) = 0. (1-8)
x=0 XY x=0

It may be shown that the last two of these relationships can be
combined and only two conditions, instead of three, are needed to com-
pletely determine the deflection surface. This is accomplished by

introducing the edge reaction given by

aMXy,
R = + » . 1-9
(R,,) Vi) o+ ). (1-9)
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This reactive force may be expressed in terms of the deflection
by substituting Equations (1-1c) and (1-1d) into Equation (1-9). If this

is done it is found that

: 95w ' 55w
(&m) =-D[C—§_ + @-;n( Q ]. (1-10)
» x=0 ‘8x ox 9y <=0

o x=0 % x=0
3 3 .
<§J§> + (2 -;¢)< 9 “;) =0, (1-11)
ox <=0 ox 9y <=0 v

Similar considerations show that the corner reaction at the

origin is

2
0w
R),_qg veq = 2(M__) = - 2D(1—,4)(___J
X-U’ Y'O . Xy X=O, y=0 aXay X:O’ y.:

(1-12)

1-6. General Solution of the Plate Equation

The expression:

w = F (x+iy) + XF%x+iy)+ Fglx - iy) + xF,x - iy),
' (1-13)

where Fll, F2, F3, énd F4 are arbitrary functions of the indicated
arguments, is the general form of the complementary solution to the

'plafe equation (Equation 1-4), From the theory of ordinary differential
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equations it is I".ecvalled that general solutions to linear equations of order
i contain i arbitrary constants Whichlmust be evaluated using i boundary
or initial conditions. In the case of linear partial differential equations
of order i, the general solution contains i arbitrary functions of the in-
dependent variables. Little is gained, however, by trying to fit the above
form of the solution to any boundary conditions.

For this reason it is the practice of analysts to seek solutions to
many' linear partial differential equations by the method of separation of
variables. In this approach,a form of the solution is assumed that, on
substitution into the equation, reduces it to a system of ordinary differ-
ential equations. The problem then is one of evaluating arbitrary con-
stants rather than arbitrary functions by using the auxiliary conditions.
When the complementary solution is found, then the sum of it and any
particular solution form the general solution of the equation.

If the complementary solution is assumed to be of the form
w = XY,

where X is a function of x only and Y is a function of y only, then

substituting in Equation (1-4) gives, for p equal to zero,

v IIYII

xVy 4+ 2x v

+ XY = 0.,

The Roman numerals indicate differentiations with respect to the
functions' arguments.

Dividing this relationship by XY yields

XIV -+- 2XIIYII .\ YIV - (1-14)
— <7 ~ .
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This form is inseparable unless the form of one of these functions

is assumed. Assume, for example, that

YU = - g?y, (1-15)
where 62 is some constant. Substituting this into Equation (1-14) gives

XV . 92l IV io1g)
S

The solution to Equation (1-15) is

Y = C1 cos By + C2 sin By , (1-17)

where C1 and C2 are arbitrary constants. Thus, the right-hand side
of Equation (1-16) reduces to -34. Multiplying both sides of this equa-
tion by X and then transposing, gives the fourth order linear differen-

tial equation

xIV - 282kl + B%x = 0. (1-18)
The general solution of this equation is

X = C,coshfBx + C, sinhfBx + C

3 4

5X cosh Bx + C6x sinh ‘Bx )

(1-19)

in which Cg, C4. Cg, and Cg are arbitrary constants.

4’ 6
Now Equations (1-17) and (1-19) are solutions for any and all real

values of B ; and the sum of all of these solutions is also a solution.

There is an infinityl' of values of B; and if for the nth value, Bﬁ., the

corresponding solutions are denoted Xn and Yn , then the general

solution to this so*c¢alled biharmonic equation is



Levy

14

oG

w = EX Y . (1-20)

n n
_ n=1

The procedure just outlined is a slightly generalized form of the

(2)

solution. This method is adopted in the discussion to follow,



CHAPTER II
FUNCTIONS OF THE BASIC PLATE

2-1. General

A complete analysis of plate-beam systems is accomplished when
all deformations, stresses, and stress resultants are determined for
each element in the structure. Since the stress resultants must be such
that each element is in equilibrium and that compatible deformations are
produced, all of these quantities are related; and,once the deflection
curves or surfaces of all elements are found, any other function may be
calculated.

A complementary approach may also be taken. It is possible to
express these deformations and stress resultants in terms of the unknown
forces and moments which act at the boundaries of each structural ele-
ment. If these forces and moments are determined, then all other Quan-
titie:s may be evaluated. |

These well known concepts define two basic approaches that have
evolved in structural analysis, the stiffness approach, in which moments
and forces are expressed in terms of unknown defori’nations, and the
flexibility approach, in which deformations are expressed in terms of
unknown forces and moments. The latter approach is adopted in this
investigation since it is more direct for the type of structure being
analyzed, and is sufficiently basic that, with modifications, the stiffness

approach may be formulated if desired.

15
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It will be necessary, therefore, to develop expressions for the
deflection of a typical plate element bending under the action of applied
moments and forceé along each edge and loading normal to its plane.
Edge deflections and slopes are dependent upon the nature of the loading
and the applied moments and forces. A basic structure which provides
complete generality in edge conditions must be sélected, and a provision
must be made for distributed edge forces and moments defined by func-
tions of as general a nature as possible.

The basic structure for plate elements is a single span rectangular
plate, free along all edges with point supports at each corner. Once its
deflection is determined in terms of the arbitrary edge forces and mo-
ments, its deformations must be made compatible with those of the other
structural elements that 'comprivse the system. Thus, it is necessary to

study some basic problems of plates supported only at their corners.

2-2. Plat With Arbitrary Edge Forces

In this article, the problem of a plate supported only at its corners
and subjected to arbitrary forces applied along two edges is considered.
The deflection surface of this plate is to be denoted W, It is shown
that, once wy is determined, the deformations of the basic plate struc-
ture can be found rather easily.

It is necessary to superimpose two deflection surfaces to obtain

ST Algebraically,

in which;

1. Wi is the deflection surface of a rectangular plate simply sup-
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ported along two opposite edges and free along the remaining edges.
This plate is under the action of applied edge forces, SI and SH, distrib-

uted along the free edges, where

J o Jd omx I o 2mx L, I.k1rx__;I.n7rx
S = Slsm?+ st1nT+ + SksﬂmTﬂisnsm—a_’
n
and
I3 v k
II _ I . mx , II . 27x II . kmx _ II . n7mx
ST o= S1 sin— + 82 sin—/= + .-+ + Sk sin—= = ZSD sin— .
In these series,S% s e, Sé, S{I, e, SE:I are arbitrary coef-

ficients, k is some positive interger, and

It is  emphasized that S™ and are not the final arbitrary edge
forces which act on surface Wy The final edge forces are functions of

these coefficients.

2. Wig is the.deflection surface of a rectangular plate simply sup-
ported along fhe edges corresponding to the free edges of surface Wiqs
and free along the edges corresponding to the simply supported edges of
surface Wy Surface Wig is developed by forces distributed along its

free edges which are equal and opposite to those created along the simply

supported edges of surface Wi

The mechanics of this superposition procedure are illustrated in
Fig. 2-1. As is indicated in the figure, reactive forces are developed

along the simply supported edges of surface Wi which are functions,
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I

d and f, of SI and SI . Forces equal and opposite to these reactions

are applied on the free edges of surface Wig - These, | in turn, develop
reactions along the simply supported edges of this plate which are also
functions of SI and SH, denoted g and h. Thus, when w4 and Wio
are superimposed, the resulting deflection surface is that of a plate

supported only at the corners with the forces,

I I

- g(s-, SH)

S

and

II

st 4 nest sthy,

acting along two opposite, free edges.

Fig. 2-1
Superposition Procedure for Obtaining

- Deflection. Surface W
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Since SI and SII have not been specified, these edge forces are
completely arbitrary in nature. As was mentioned earlier, the deflec-
tion surfaces of various plates supported only at their corners is needed.
The formulation of these surfaces is accomplished by first calculating
the deflection surface, wé . This surface is that of a plate free along

two opposite edges and simply supported on the edges corresponding to

I

those of surface w, on which the arbitrary forces SI - g(S-, SH) and

1
SII + h(SI, SH) act. Surface w'2 may be caused by any general type of
loading, including forces and moments applied along its free edges. The
calculation of this surface is straight forward and presents no unusual
difficulties.
Known reactive forces must be developed along the simply supported

edges of surface w If the arbitrary forces along the edges of deflection

!
9 -
surface w, are adjusted so that they are equal and opposite to those of
surface W'2 , the sum of these gives the deflection surface of a plate sup-

ported only at its corners and under the action of the general loading of

W'z. This procedure is illustrated in Fig. 2-2,

Fig. 2-2

Development of Free-Edged Plate

Under General Loading
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To obtain the expression for the deflection surface Wy consider
a rectangular plate simply supported along the edges parallel to the
x-axis and frée along thbse parallel to the y-axis (Fig. 2-3). Let the
length of the edges parallel to the x-axis be' a and those parallel to the

y-axis be b.

e

Fig. 2-3

Deflection Surface Wiq

The resulting deflection surface must satisfy the homogeneous

plate equation, V4W11 = 0, and the boundary conditions,

0 W 0 W,
11 11
(_2_8 - u—s > - 0 (2-1a)
Y X y=0, b
-D 83W11 + (@2 - )BBW11 - N s! sin a (2-1b)
CayS Y xZoy ) n S p* |
y X y _0 r,'_lJ



21

[}
w)
—
(sb)
S|
(=Y
— .
(s>
g
—
—
~—_—
[}

k
= Z Srlll sin a x (2-1c)
n

'(wll) =0 (2-1d)

9 Wiq
(‘"‘T) = 0, (2-1e)

in which

These requirements may be fulfilled if W4 is taken to be of the

form
k
W11 T Z ¥iin (2-2)
n=1
where
Wiin © Z(any) sin & x, (2-3)

and Z(any) is some function of a_y.
The form given by Equation (2-3) automatically satisfies Equations
(2-1d, e), and when substituted into Equation (1-4) results in the ordinary

differential equation

— 2an — af;llZ(afny) = 0. (2-4)
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From Equation (1-19) it follows that the solution of this equation

is
Z(a'ny) = A chay + B sh @y + C oaychay + D ayshay,

(2-5)

where An’ Bn’ Cn’ and Dn are constants and, for simplicity in notation,

ch @,y cosh @y,

- sh )y = sinh a.y etc.

Substituting the resulting equation for Wi into Equati_c')ns (2-1)
gives four equations from which the constants An’ Bn’ Cn’ and Dn may
be evaluated. Performing such calculations, it is fouhd that the final
deflection surface may bg written in the form

SI a3 SII a3
n

Wi = —p— Ppley) + —5— Dy (ay) sina x . (2-6).

The functions (Dl and (2)2 are given in Table 2-1,
By means of Equation (1-10),it is found that the reactive forces
developed along the simply supported edges are

I

nIE2 (any)), (2-7)

P
s}
t
—~
]
oy
=]
e
o
N
sv
i

(S, E (e y) + S

where the functions E; and E, are given in Table 2- 2.
The functions @, (@ y), @, (@ y), E,(a y), and E, (o y) may be

represented in the Fourier series



. TABLE 2-1

DEFLECTION FUNCTIONS

(3+u)sheab o o ) o ) . (3+.y)stha

ky = e b0 -a) : . S Cm T EEr=RT

n . m

m

Oo(Bmx) = mﬂ)z_(cm—-l_) [((1+y )sh gmé - Bma(l-u)) ch Bmx + Bm(l—y) sh émgx sh L.‘Imx’ + (1 -ch ﬁmai ((14p) sh Bmx + Bm(l-y)xch BmX)]»

) (any) = —3—3—-——1—2—2——— [(kn ch anb' + 1)(-2 ch ay + nvn(l-y )y shay) + (ijn sh anl.J -ab (1= )) sh .y - un(l-y )k, sh a-nbych @y
v 0 7 @ b(lu P - 1) _ ) _ .

@, (o y) = gy —— [(k + chab)(2che y - o (-p)yshe y) + sha b((l+u)she y + @ (l-u)ycha y)}
L @bl -1 U° oo B n’ L o

03B) = g7
R T Y

[(Cm ch Bma +1)(- 2ch Bmx + Bm(l-y)x sh B x) + (2cy, sh ﬁma - Bpall-u))sh ﬂmx =B (1-u) e shB axch Bmx]

04(BmX). = _.4._3._.12_2__ [(cm + ch Ema)(z ch Bmx - ﬂm(l-u)x sh Bmx) + sh Bma((l-l-u)sh B x + Bm(l'-“)x ch Bmx)]
B a (1=u)lc - 1) .

T - [ o ' . - (el -1ehB a+ec_sh’B a
(2)5 (Bmx) = B—g?_(l——:—)m = (Q+p)ey, sh B a - B a(d-p))ch B x - B (1-u)e  shB axshB x + o ((1+u)sh 8 x + B,(1-u)xch Bmx)]
Fm m .




TABLE 2-2
REACTION FUNCTIONS

. (3+u )sh a b . ) o a : . . - (3+i)sh Bma

m

. _ ) X ) - i
E; (apy) = m [(kn chab + 1) (2ch @y * ayshay) k, she b (2 shay + aych any) anb sh any]
n'n :

E, (a.y) = mlr-—l-) [ (k, + chab)(-2chayy - ayshay) + sha;ib ((% )shayy + ayych any)] .
n n . . °

»Fl (B@x) = —._.—12..._—1— [(cm ch Bma'.+ 1)(2ch me + Bpxsh Bmx) - ¢, shB a(2sh B'mx + Bpxch B;nx) - Bma'sh Bm*]

Balc - )
F, (B'm)r) = ————é——— [ (e + chB_a)(-2chB x - B x shﬂmx) + shB_a ((%ﬁ-) sh B x + Bmk ch me)]

Bpafley, -1

: . 1 ) 7 5e c2-1chB_a + c_sh®B a Gap o

R [Bma ehBpx = o shBa (32 ) enBx + Boxsnfx) + B W W (3% )anp x + Bx ch Bmx)]
(] : 3 m m .

. G m - ; B B

Q) = gy b [((,?:—ﬁ)sh-sma © BpadehBox + B shB axshB x + (1-chBa)((}&)shB x + B xch Bmx?]
. L m 'm .




TABLE 2-3A

FOURIER SINE SERIES COEFFICIENTS

Function

Coefficient:
2(1 = (-1)"cosh B_a
cosh B_ x h;ﬂi ( m )
'm ool + (B /)
L X -2(-1)" sinh 8_a
sinh Bmx hﬁnz m®
- ‘ nr|l + (ﬁmlan)zi
. . 2,,°2 o
20 (-1)*(28_ sinhB_a - ala,“+B_“)chB_a
x cosh Bmx h:“i n ( m mz 2n m m )
- . ale, + B9
o ) o da_ B (-1 cosh B a - 1) - 2aa (-1 ? +B, PIsinh B a
x sinh Bm" h z o
n ale; o+ B9
. s L W 1) L 40 | 1) o [l 2) 3.)
%(BmX) B mr E’S_ag(T-ﬁ)(c _1){Sh Bn2 ('1-_;.4 hpr + Bm hmx‘) - Bpe by + (1-ch Bma)(Fﬁ hopr Bm hnir)]
m m .
. 1) (k, cha b+ 1) 2hr11;) +a (ophi)) + k_sh anb(Zhﬁ;) -a (op )hg;)) - a b1 )hﬁ;)
Qley Por ’ T ¥l e b(1-p )Pk - 1) - :
N n n X
' 1) 4.) : 2.) 4.)
- C 2 e, + chab)2nl) - o (1-p )hm_\) + shab((tn) + o (1-u )hnr_)
% ” ' n¥ 1% e b(1-u)? (7 - 1)
. 3
3. bp? 1))
Dyl ) 9.0 25




~ TABLE 2-3B

FOURIER SINE SERIES COEFFICIENTS

3n21 a® (e, - 1)

Function Symbél Coefficient
3
4.) b 2.)
04(Bmx) S mr ;3- o r
. 2 2
(c2-1)chB_a+c_sh“B_a .
R : 1.)- - _ 4.) - 1.) m m m m 2.) 3.)
(8, x) g;g e, shB a ((l+p oL+ B0 “)hmr> + Ba-ph 0 o4 S+ ChPB_3 ((lw Y+ B (1-p)h T
33 3, 2,2
B2 (-u) (e - 1)
. 1) ( chab + DR + and)) —k shab@En2) + ond)) - apni)
Eyley) ®mn n n . nm n’nm n n nm n''nm n° "nm
abp®k? - 1) '
) 2.) - 1) 4.) -y, 2.) 3.)
Ez("n))_ e (kn + ch anb)(_z hnm + _anhnm) + sh anb('l—-LT hnm + anhnm)
. 2
a b k= - 1)
F,(B_x) g1 1.)
17 m’ mr €rm
! 2.) 2.)
Fz(gm}‘) fmx‘ €rm
(czl)chi3 a + shZB a -
L) _ . 5-p . 1.) 4.) m”~ m °m m? 5-u,2,) 3
G(Bmx) Emr Bmé hmr m sh Bma,('i-_uhmr * Bmhmr) * ¢ ¥ ch Hma (7-_;4 hmr + Bmhmr)
c s -1
m
i ©iBep, 1.) a)y 1) o 5-p, 2.) 3.)]
Q%) % ufsneagnl) + g nth - 5 anl) v q-ens aniEn2) g 03

n ™
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m
(2-8b)
_ in which |
Bm = T , m = 1, 2, 3,
(2-8c)
- rm -
By =5 ., r =12 3.. |,
and the coefficients ¢:1') ¢2') el') and e2') are listed along with
nr '’ nr’ mn ’ mn g

those for some other functions of interest in Tables 2-3A and 2-3B.
Thus, the reactions along the simply supported edges become
(R, )

xzn'x=0 (-»” (sz )

n
X=a

IN 1) _ QN 2. . ol
= Snzemn sin Bmy S Zemn sin Bmy . (2-9)
m m

The deflection surface, Wig s of a plate simply supported along
the edges parallel to the x-axis, free along those parallel to the y-axis,

and bent by arbitrary forces distributed along x = 0 of the form

Z T, sin Bmy s
m
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and along x = a of the form
Z Um sin Bmy_ s
m

must now be formulated (Fig. 2-4). Following a procedure similar to
that used in calculating surface Wiqs it is found that Wig is defined by

the equations

Wig T Z“’mm’ (2-10)
m

and

(‘T a’ U_a’

nllD @3) (Bmx) + —'r_nD_— ®4 (BmX)) sin Bmy

Wi2m

(2-11)

Again, the deflection functions ®3 and (2)4 are given in Table 2-1.

Fig. 2-4

Deflection. Surface Wig
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. The reactive forces developed along the simply supported edges

are

Ryp) = CUR @R, = - (T, B0 + U, Fy6,)

(2-12)
The reaction functions, F1 and F2 , are recorded with others of interest
in Table 2-2.

In a manner similar to those of surface w the functions

11°
DB %), D,B x), F (B x), and.Fz(Bmx) may be expressed by
Fourier series whose coefficients are tabulated in Tables2-3A, B. The

Fourier representations are

Q)S (Bmx) = Z¢I§13 sin a_x ®4(Bmx) = Z ¢fnz~ sin @ x
T T
(2-13a)
F.(B_x) =Zf1‘) sin a_x F,(B_x) =Zf2') sin a_x
1'"m ‘ mr r 2 m mr ro
T T
(2-13b)
where again,
o =T =1, 2, 3, *-- . (2-13c)
r a

An examination of Equations (2-10) through (2-13) shows that the
relations defining surface W, are identical in form to the corresponding
relations of surface Wiq - In fact, with the excéption of the coefficients

I
n

II
n

S-, S, Tm’ and Um’ the expressions for deflections and edge reactions
of surface Wi result from merely interchanging x with y , m with n,

and a with b. Mathematically,
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3 3 v
b6 % = 0,6 _x , B @yB, %) = 0,6, %) (2-14)
a a

and

BB %) = P8 %) ‘ E,(B_x) = Fy(B_x) .(2-15)

If the amplitudes of the force distributions along the free edges of
Wio are chosen so that

T ='Z(Sle1')+8 2)) \

n mn
n

- ’ ' L; (2-16)

Z(l) (ste 1)+s e 2:)

. mn )’ /

then, by adding deflection surfaces Wi and W19, the deflection surface

G
i

wy is obtained.
Substituting Equations (2-16) into Equation (2-11) leaves surface

II

Wig in terms of the coefficients SrI1 and Sn If this result is added to

Equation (2~6), the final deflection surface becomes

3
. _ a I 11 .
Wy =® Z D 5y @ l@y) + 8" @yla y)) sin ax +

n
Zz n mn Sr{I e'ri'rz)(Q)B(BmX) +

+ (D" @,B_x))sinB_y . (2-17)

The final force distributions on the edges parallel to the x-axis

are
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o _ N I _ 1 1.) I 2.)
(Ryz) 0 = ZSH sin & x ZZ (Sn ern T Sp emn)
y n mn

X Z frilr)' sina_x + (—1)“2 fgnz sin a_x) (2-18)
r r

and
R.) = ESH sin @ x - ZZ -1y (sl el) 4 gl o2.)y
yz =b n n n mn n mn
y n mn

X (anlq'lz sin @ x + (-1)“23?21'12 sin @ _x) . ‘(2-19‘)
- |

T A

As was mentioned earlier, the deflection surfaces of corner sup-

ported plates may now be obtained by a proper adjustment of SrI1 and

II
n

S " in Equations (2-18) and (2-19). This process presents some dif-
ficulties, however, since these coefficients cannot be solved for on a
term by term basis. In other words, since the reactions of surface
W'2 are in terms of infinite series, this adjustment leads to an infinite
number of equations and an infinite numberj’ of unknowns. The inver-
sion of such an infinite order matrix is, of course, impossible, and
only a finite numbe?‘ of terms, say k terms, can be taken. This is
the reason that the applied edge forces for surface Wi | are repre-
sented by k terms rather than a complete infinite series, and hence,
2k equations are needed to solve for the coefficiénts, Sr{ and Sr{I .
The procedure by which this set of equations is formulated for

specific loading cases is somewhat involved. It will be discussed in

the following two articles of this chapter.
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2-3. Edge Forces and Moments on Free-Edged Plates

The deflection surface of a plate simply supported along the edges
parallel to the x-axis, free on the other edges, and subjected to the
action of a distributed force along the edge x =0 of the form

R}'{Z = E R!' sin Bm-y s (2-20)

XzZzm
m

can be obtained from the calculations made previously. Such a surface

(Fig. 2-5) results from merely setting

R! (2-21a)
m xzm

T

and

Um =0 , (2-21Db)

in Equation (2-11). Hence, this deflection surface, denoted Wg is

given by
' 3

Beom 2 X
Wy = Z—-—D—-—-—- (Z)3 (Bmx) sin Bmy s (2-22)
m

where @5 (B x) is defined in Table 2-1.

The reactions along the simply supported edges are

m 1 -
Rypm) o = OO Bypr) = =Py Br) Ry - (2029)

Using Equation (2-13b),. the reaction along y =0 may be written

R ) - -R! £1) sina x . (2-24)
=0 XZm mr Ir
y T
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Fig. 2-5

Deflection Surface Wo
In order to obtain the expression for the deflection surface of a
plate free along all edges and bending under the action of R)‘{z along
x =0, it is now necessary to add surface Wy of Equation (2-17) to sur-

face W, of Equation (2-22), and adjust Srll and SII

n SO that the forces

along x=0, y=b are practically zero. Let this sum of deflection sur-
faces be denoted R (Fig. 2-6). Then, if the surface W with coef-

ficients SI

and SII in terms of R' is called w, o,
n n Xzm 1R

W T ViR * Wy - (2-25)

The set of 2k equations needed to solve for the coefficients is
obtained by equating to zero the total reactions developed along the

edges y=0 and y=b. k equations result from each edge, giving a_
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total of 2k equations. Thus, along the edge y=0,

k

ZS sin o X ZZ 1.) SII ez'))Z(f 1.) +
mn n mn mr

m n

+(1)nf2))smozx zz fl')sinozx= 0, (2-26)
zmm mr r
m7r -

and along y = b,
k i
I _. _ _ym oI 1)) II 2)
ESn sin @ _x z (=177 (S e 0 + )Z(
n m n

xzm mr r

+ (-1)" fz))smax Z;‘(l) fl)sinax=0
T

(2-27)

A k term approximation leads to the set of equations for the edge y=0:

A

Fig. 2-6

Deflection Surface WR
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k

[I'Z el 4 cnks z),]lsk S R

A B R

(2-28)

cge
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Results may be obtained from more or less than k terms. Less
than k terms, however, will likely result in more error in the coeffi-
cients SrI1 and SIIII ; and more than k terms will eliminate the diagonal
element in each additional equation. This will not necessarily enhance
any additional accuracy and calls for a greater than k term approxima-

tion for the edge forces of surface w Hence, taking k terms of these

11°
series seems entirely permissible and, in fact, logical. Doing this
amounts to approximating the functions El(any), E2 (ozny), Fl(Bmx),
and Fz(Bmx) by the first k terms of their Fourier éeries expansions.
Equations(2-28) result from expariding Equation (2-26) and then
collecting coefficients corresponding to each of the k sine terms, sin 7;_x
through sin Egi, for only one side of the plate. Since the resulting equa-
tion must vanish for all values of x, it is necessary that the amplitudes
of each mode vanish independently, The k equations (Equations 2-28)
contain 2k unknowns, S{, see Slz, S{I, ey, SliI, which must ultimately
be expressed in terms of R>'§zm in order to allow the deflection surface
wR to be expressed explicitly in terms of the components of this edge
force. The additional equations needed are obtained from considering

the edge y=b.

Equations(2-28) may be written in the form

Exrln][sj = [R;czm fxi[) ; (2-29)

where [Arln] is the cbefficient matrix of Equations(2-28), [S:]is the column

vector of unknown coefficients, and |R' f 1.)

is the column vector on
XzZm m

the right-hand side of the equation.
The matrix [AIIIJ is of order k by 2k. The elements of this ma-

trix obey a definite pattern. For this reason it is possible to write
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(1 + =a

Z291

2a

k1l

11)

Zalz

(1+ =a

Zakz

22) )
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Zay ok

Zaz’ 2k
. (2-30)

(1 + Za

k, 2k’
_

The element corresponding to the ith row and the jth column has

been denoted Zai.jwhere
- 1.) ,.1.) 1y 2.) . _
ai.J = emj (fmi + (-1) fmi ), < k (2-31a)
and- -
- - 2.) 10) - j_k 2') 3 . -
ai.J emj (frni + (~1) _Affmi*f’-“ i>k . (2-31b)

As is indicated, unity must be added to this general term to obtain cor-
rect diagonal elements.
Similarly, for the edge y=b, Equation (2-27) may be expanded to

give the equations

[H [S] - [R'sz (-1)™ f;l')] . (2-32)

. . . _\m 1.):' .. . . _ . _
in which I:szm (-1) fm is identical to the right-hand side of Equa
tion (2-28) with the exception that each element is multiplied by (-l)m,

and the coefficient matrix [Agl]is given by

Zaj;; Zagy : Za) ok
- Zagy Zagy cv v Zay ok
] - | . (2-33)




in which
a.., =
1)
and
a.. =
1]

= -(-1)™

m
(-1) 3y

(-1 a,. =-(-1)"

1

1) 1) L g e2) s
emj (fmi + ( ;L) fmi)’ Jik

2.) . 1.) j-k . 2.), .
emj Gy + DTN >k
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(2-34a)

(2-34b)

Equations (2-29) and (2-32) comprise the set of 2k equations, and

may be written in the form

e

(1 + Zall)

Z}az 1

Zakl

—

Z}all

—_—

Z'ak 1

I

Zalz Zal,,Zk S1

I

‘(1 + Eazz). .o Zaz’ 9k 82
>a >a ‘S.I =
19 k, 2k k| ©

— — I

Zajy Za; o 1151

— I

Zay, (1+Zay 2k) Sy

>R! f
xzm ml

xXzm ma2

SR f 1)
xzm mk

1.)

m
(-1) fml

!
z;:RX zm

1.)
(l)fk

Z}R'

(2-35)

If the coefficient matrix in Equation (2-35) is denotéd [Arr;l , it is

evident that

(2-36)

Using this nomenclature, Equation (2-35) may be written

o) [S]

sz

xzm( 1)

1.)
m_
ml)

m

(2-37)
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The solution of Equation(2-37) is

~ = _
I I '
S1 Z Tm1 szm
m
I I
SZ Tm2 R;:zm
m
I 1
Sy = Z Ymk Bxzm (2-38)
m
II II
Sl Z Tm1 R)';zm
m
II II
Sk z Ymk R}'czm
o — __m —

The coefficients, 'YrInn and ’YrIr{n’

in this equation are merely the coef-
ficients of the terms Ry';zm which result from premultiplying the right-
hand side of Equation (2-37) by the inverse of I:An:J '« From Equation

é’2-38),it is seen that

I
2%

n

I
ZZ Tmn R}'(zm ?
nm

(2-39)
ESII - z I _,
n Ymn Bxzm
n n m
Thus, Equatiens(2-16) become."
(el) I, o204 g (2-40a)
mn 'rn mn ‘'rn’ “xzr °’ ‘ a

and
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:ZZ(”(GI)I e2:) Iypi (2-40b)

mn rn mn rn XZr

It should be noted that the use of an additional summation index, r,
is necessary in Equations’ (2+40).
For largé values of k it becomes necessary to solve numerically

for the coefficients 'Yrim and ‘YrIr{n'

By means of Equations (2-39) and
(2-40),the deflection surface w, can be written in terms of these coef-
ficients and the components of the applied force, R)'{Z. After substitut-
ing Equations(2-39) into Equation (2-17) and then using the relation given

by Equation (2-25),the final deflection surface, WRs becomes

wg * z xzm > (Z) B x)sinB_y + ZZ xzm ® Ifnn D, (@ y) +

m

I R),p 2" L1
. h XZr
* Yon (2)2 (any))sm @ X + EEZ € n an +
mn r

mn rn

+e2)y ><¢3<B x) + (-1)"@, B_x)) sinB_y .

(2-41)

It is possible to assign to each of the terms of this equation a
definite physical interpretation. The first term represents the deflec-
tion surface of a plate subjected to the edge force, R)’{Z, with the edges
parallel to the x-axis simply supported. The second term is the addi~
tional deflection due to cancelling the reactions along the simply sup-
ported edges of the plate. This term, it should be noted, has no influ-

ence on the deflection along the edges x=0 and x=a. The third term in



41

this equation is smaller than the first. It represents the correction to
the edge deflections due to releasing the edges of the plate. Such a cor-
rection must also influence deflections elsewhere in the plate, as is con-
Mﬁrmed by an inspection of the equation.
V_These interpretations allow the relative magnitude of various terms
in this equation to be speculated. Intuitively, the first two terms in
.Equation (2-41) have a dominating influence on the final defleétion for
common length to width ratios. The last term, as was mentioned, is
merely a correction term for the edge aeflectioné. Its contribution to
these deflections is illustrated in Fig. (2-7). The solid line represents
the final deflection along the edge x =0 ; the dashed line the deflection
along that edge due to the first term in Equation (2-41).

The following array results if k terms of this correction are ex-

panded along x=0:

3

' ' .. 2 4in W 4

[szlzbll + szzzbm + R}';zkzblk] D Sing ¥
n } n n

— ' _ 3
' A T a . 27y
[ )':zl'z Poy * szzzbzz * szkzbZk]'D sin —= +
n n

n
+
' b, . + R by o + -+« R b ﬁsink”y
<zl /, Pk1 %22 /, Pk2 xzk /, Pkk | D -5
n n n .
(2-42a)

where

oo vl v 2y (a0, + (1 @,0,0), (2-42b)
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and Q)3'(,i), (2)4 (0,1) represent the functions (2)3 (Bmx) and (2)4 (Bmx),

of Equation (2-11),evaluated at x=0 for m=1.

Deflecfidn due to third term
in Equation (2-41)

Deflection due to first term

R/ sinB_y in Equation (2-41)

XzZm- m

Final deflection
curve

— —
—
— —

x = —y

Fig. 2-17
Physical Interpretation of Terms of the
Deflection Surface YR
Since the elements of this array are composed of products of terms
of convergent series,a strong diagonal can be expected. The magnitude
of these diagonal elements is greatly increased when the influence of
the first term of Equation (2-41) is introduced. If this is done, Equation

(2-42a) becomes
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- 3
- e & qin Y
[R}':zl(%(o’ 1) +Zb11) * R;{ZZEbIZ * * ngkzblk] D Sinp *
n n n
Mo +R] o (9,00,2)+ bbe e B b |2 sin 2T 4
le 12 z2 \P3 Pog xzk/ P 1k| D S %
n n
[' b, + R Zb +---¥R' (P.(0, k) + )al3 kry
xz1/,°1k 7 “x22/,"2k zk \¥'3 byy)| o sin =g
n n n
(2-43)

As a consequence of this strong diagonal,an approximate form of
Equation (2-43) may be formulated by neglecting elements not appearing
on the diagonal in comparison to the diagonal elements. The limitations
and validity of this approximation will be investigated in a later chapter;
but, it is worthwhile to mention that,in the related problem of a plate
with clamped edges, similar arrays occur and the diagonal elements are
often as much as twenty times larger than the largest non-diagonal ele-
ment occuring in a given row. With this approximation, Equation 2-43)

may be reduced to the series
' 3

R a
—i%_n'_[(%m’m) + Z(erlnzl lenn + rirz mn><¢3(0 m) +

m n

+ (- ¢4(0, m))] sin Bmy . (2-44)

If this modification is extended to incorporate all values of x,

Equation (2-41) reduces to
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' 3
— R! a’r
wp, = ) X2 [¢3(Bmx) +Z(er1n31 R S e )( Bo(B_x) +

mn mn ‘'mn
m n

3
R! _a
+(-1)" 9,(8,_x) )}sm By +zz_xsz_( Ve (e y) +
' mn

I .
+ Yo @2 (afny)>s1n ax . (2-45)

By using a procedure similar to that just completed,it is possible
to find the deflection surface of a plate supported only at its corners with
an applied moment along the edge x=0. This is accomplished by first
obtaining'the deflection surface of a plate simply supported along the
edges parallel to the x-axis, free along the remaining edges, and sub-
jected to the action of an applied moment distributed along the edge x=0
of the form |

1 = 1 ; -
Mx z Mxm sin Bmy . (2-46)
m

This deflection surface, denoted w, and shown in Fig. 2-8, may

3

be written

M! az

wg = z Xgl @, B x)sinB_y , (2-47)
m

where (Z):.’ is tabulated in Table 2-1.

The reactions developed along the simply supported edges are

G({B_x)
_ m _ m 1
(R ) = (-1)7 (R ) = - M _ .

yam) (2-48)
y:



Refer, as before, to Table 2-2 for the deflection function G(Bmx) .

Fig. 2-8

Deflection Surface W

The functions ®5(Bmx) and G(Bmx) may be represented in the

Fourier series

45

(2-49)

@5 (Bmx) = E ¢1$1r? sin @ x
T

G(Bmx) = z g,y Sin @ x
T

2

The coefficients ¢r5;1r and gmn 2re given in Tables 2-3B.

Thus, the reactive force distribution along the edge y=0 may be

written



46

CH
1]

s S i
3 Mxngmr sin @ x (2-50)
e

In order to eliminate thisreaction,it is necessary to adjust the

Vc‘oefficients-, Sr{ and S&I, of deflection surface VVi anvd,obtain some new
defléctio_n surface, WM which has reactions along y=0, b equal and
opposite to those given by Equation (2-48 ). When WM is added to the
deflection surface w3 of Equation (2- 47 .),the deflection surface of a
plate supported only at its corners and acted upon by M}'{ along the edge
x =0 is obtained. This deflection surface will be called WL (Fig.2-9).

Therefore,

¥ Wgq ° . (2-51)

M!
X

Fig. 2-9

Deflection Surface Wt
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The set of 2k equations needed to solve for the coefficients Sr{ and

Sn ~arises from equating to zero the sum of the reactions given by Equa-

tions (2-18) and (2-19) and those of Equation (2-48). Thus, for all values

of x élong y=0,

mr
I, ) y _mf(oI 1)) 112)2 1.)
ZS sin a_x ZZ( 1) (S mn + Sl,1 mn>' <fmr +
' m n r
. ) —l)mM' .
n.2.))\ . ( Xm : -
+ (-1) fmr>s1n @ x - zza— 8my Sin @ x 0.
: mr

(2-52b)

As before, these expressions may be expanded for a k-term

approximation to yield the set of equations

1
Mxm gm 1

§
Mxm gm2

1 | B
mls ] dlmea) -2 ] e

m
Mim (-1) €mk
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The matrices on the left-hand side of Equation (2-53) are identical

to those appearing in Equation (2-37). The solution of Equation (2-53) is

I I
S1 z Kml M)'(m
m
I I
SZ Z >tm2 M;cm
m
I N I
Sy Z Mk Mim
1] m
= = (2-54)
II 11
St | Z A1 Mym
m
II II
SZ z )\m2 M;cm
m
II I '
Sy Z >tmk M m ’
. . . m -

where lrlnn and err{n are the coefficients of the terms M, ., which result
from premultiplying the right-hand side of Equation (2-53) by the inverse
of [Arrj . From Equation (2-54) it follows that

1
ZSI - ZZAI Mxm )
n mn a
m n

n

(2-55)

z JI szn Mim
n mn a
mn

n
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Substituting these expressions into Equation (2-17) defines surface
W in terms of the components of the applied moment, M}'{ . If this re-
sult, along with deflection surface w, of Equation (2-47),is introduced
into Equation (2-51), it is found that the final deflection surface, w,, ,

takes the form

' M;;maz azM;gm I
WM. = z D @5(BmX) sin Bmy + ZZ _D_‘—'(Amn ®l (any) *
m mn

2
M! a
+ ArIr{n @2 (a'hy)) sina x + Zzz >g’ ___( er;.rz >LII‘n
mnr
* er?l.rz lrli )(@3 (Bmx) + (-)"° ¢4'(Bmx)) sin Bmy . (2-56)

The first term in this equation represents the deflection of a plate
simply supported along the edges parallel to the x~axis and bent by the
moment M}'{ distributed along the free edge, x=0. The second term re-
presents the additional deflection due to cancelling the reactions devel-
oped along the supports and releasing the edges y=0, b. This term does
not effect the deflection along the‘free edges x=0 and x=a. Finally,
the third term yields the corrections to the edge deflections of term one

| due to releasing the simply supported edges. It also influences deflec-
tions elsewhere in the plate.

Following an argument similar to that used for the deflection sur-
face WR it is possible to express Equation (2-56) in the approximate

form
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2
M! a B 1.).1 2.),II
Moo E"%H‘L"‘[(b5 (Bmx) * Z(emn >tmn * ®mn xmn )(Q)B (Bmx) *
. m n -

2
M! a
' I
+ (-1)" (2)4 (Bmx)):l sin Bmy + Zz_"%___(kmn (bl (a/ny) +
mn

NI . ' _
+ hmn @2 (any)) sina x . (2-57)

The equations (2-41, 45, 56, and 57) define the deflection surfaces
of plates free on all edges, supported at the corners, and bending under
the action of applied forces or moments distributed arbitrarily along one
edge. A typical plate in a plate beam structure may bé subjected not
dnly to edge loading but also to loads normal to its plane. The cases of
free-edged plates under this type of loading will be discussed in the next

article,

2-4. Normally ILoaded Plates Supported at Their Corners

The deflection surfaces of plates with free edges, supported only
at their corners, and bending under the action of any of the standard
types of normal loading may be formulated according to the same philos-
ophy used in the previous article. The general procedure may be out-
lined as follows:

(1) . Obtain a Levy solution for the deflection surface, w,, of a
plate simply supported along the edges parallel to the x-axis, free along
the remaining edges, and subjected to normal loads of any desired varia-
tion.

(2) Compute the reactions along the simply supported edges and

represent them in Fourier sine series. -
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(3) Formulate a set of equations for SrI1 and SrIlI of deflection
surface W. that will adjust these goefficients so that on superimposing

1
W, and the surface Wi the reactiqns along the simply supported edges
will be cancelled out. |
(4) * Solve this set of equations and record for the final deflection
surface the sum of W10 and W where Wio is the surface Wy after

the coefficients Srll and Sr{I

have‘b.een determined.

If a plate supported along y=0, b, free along x=0, a, and bending
under the action of some load p(x, y) is considered, the governing dif-
ferential equation of the plate no léenger is homogeneous and a particular
solution must be found.

In general, any load may be expressed as a trigonometric series

of the form

p(x,y) = Z P (x) sin Bmy s (2-58)
m

where P(x) is some function of x. If the load varies only with respect

to y, it is called a one directional load variation and may be represented

by

p(y) = z Pm sin Bmy s (2-59)
o )

where Pm is some coefficient independent of x and y determined.

by the integral

9 b ,
P, =% ‘S:) p(y) sin Bmy dy . (2-60)

Substitu‘ting into Equation (1-4) gives
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L4 - P(y) - 1 Z . |
v W 5 5 Pm sin Bmy , (2-61)
m

where, again, W, is the deflection surface of a plate supported only
along y =0, b.

The solution to this equation may be taken to be of the form

w_ = w + w s (2-62a)

in which Yoo is the complementary solution,

Woo = 'ZZ (Bmx) sin Bmy = z [A ch Bmx + B, sh Bmx +

+ Cm Bmx ch Bmx + Dm Bmx sh Bmx] sin Bmy, (2-62b)

of the homogeneous equation

vV w = 0 , (2-62c)
and Wop is any particular solution of the equation

4 1 o i
v oo T D Z P sin Bmy . (2-62d)
m

The coefficients Am’ B Cm, and Dm of Equation (2-62b) are

m’
arbitrary constants.
- The deflection curve of a simply supported wide beam must satisfy

the differential equation (Equation '2-62d) and therefore may be taken as

a particular solution. Hence, if
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Wop wop:ﬁy? = ZEm sin Bmy , (2-63a)
m

then

P
‘w =Ygl . _ y m

v Wop = ZBm Em sin Bmy = /D sin Bmy s (2-63b)

m m

and therefore

P .
E = - (2-63b)

m 4
B D

Deflection surface W becomes

P
Wo = W ky) +Z Z (B x) sinB_y = (B 2 vz (Bmx)) sinB_y .
; m

B0

4 D
m
(2-64)
‘This function must satisfy the conditions
82W0 32w0
+ “ = 0 3 (2"658.)
BXT ) 2
J x=0, a
33WO 83w0
(7 + (2 - ) s 2) =0 . (2-65b)
X y x=0, a

By using these conditions,the coefficients of Equation (2-62b) may
be evaluated. After performing the necessary calculations, it is found

that the final deflection surface (Fig. 2-10) is

P a \
Vo = ) (Lt 0,6 0)singy, (60

m (B 2)
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where Q)O is given in Table 2-1.

Fig. 2-10

Deflection Surface Wo Due to a One-Directional

Load Variation

Fourier coefficients for some typical types of loading are given in
Table 2-4. It should be noted that the function (Z)O(Bmx) vanishes for
p = 0,and the deflection surface reduces to that of a simply supported
wide beam.

The reactions along the simply supported edges are

Roym) = CDP®R ) = -PaQ@ x)+ (BR

), (2-67)
y=o y=b '

m
where (BRyzm) is the coefficient of the Fourier series for the reaction of
a simply supported wide beam and Q(Bmx) is'a deflection function - re-
éorded in Table 2-2.

The functions, (Z)O(Bmx) and Q(Bmx), may be represented by the
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TABLE 2-4

COEFFICIENTS P_ FOR ONE DIRECTIONAL
LOAD VARIATIONS

Case p(y) Sketch Pm
x I b I
= 4po
P _
1 Py o mm
m
. P,y 5 -2(-1)"p,
b o mm
by [2(- )™ (2-m®7®) - 4]p_
3 —5— P :
: b . M ° ' mm Blfl
_ n _
Py , 2p, b,
, il b (o] , :
* m-1
- 2
5. Triangular’ 8 po( 1)
R
6. ‘Line Psinv
| 2 (oty) sin 8
7.  ply) rﬂ\j—] Bip(y sin By dy

3{( m:1’3'5--o
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Fourier series
(DO(Bmx) =Z ¢ Sina x, Q(Bmx) =,Z 9, Sin @ x. (2-68)
T T

The coefficients, @° and q_ _,are defined in Tables 2-3A and
mr mr
2-3B. Thus Equation (2-67) can be written
(R ) = (R ) (-1 =-P_a)q sin a_x + (BR )
zm’ ¢ zm m mr r zm
J y:O Y y:b T y y= 0
(2-69)
According to step (3.) of the procedure outlined at the beginning of
this article, it is now necessary to superimpose surfaces W, and W and

eliminate the reactions given by Equation (2-69). This leads to the set

of equations

Z Sr{ sin a x - ZZ(SrIl eri;rz + SIIQI eriri)Z(friu? + (-1 fig)
n

mn r

X sin a x —zz P a Ay sin @ x + (BRyzm) _O:= o,
, mr y=
(2-70)

m_. _ _gm I 1), I 2)) 1.) n,2.)
2 Sn S x Zz(( 1) S €mn T Sy emn>ZKfmr +(-1) frar
n m n r
X_sinax-ZZ(-l)mP aq sin ¢ x + (BR ) =0

r m~ ‘mr r yzm’ __
mr y=b

The Equations (2-70) may be written in matrix notation as follows:
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| ZP q .+ (BR.__.)
1 z1
- m "'m Yy y=0

ﬁ me 9m2 * (BRyzz) -0
- m N (2-71)

y=b

m
Z (-1) Pm Imk + (BRyzk) ’
m

where thg matrices on the left hand side of this expression are the same
as those of Equations (2-37) and.(2-53).

If the solution to Equation (2-71) is such that

/[, n mn m
m n

n
and : (2-172)

;SII_Z§§,II 2P
/s, n /, "mn m

n m n

the final deflection surface may be written (Fig. 2-11)

4 4
P a P a
. 1 . m 1
Wy, =z , I]ID1 <B 4 a4 * (Do(Bmy))Slany +zz ;_—D-—'"(gmn (Dl(any) *
m mn

m
4
~ P a
+ flgn (Z)z(any)>.sin @ X + EZZ _%”<er11rz an +

mnr

+e2) §H)(®3(Bmx) + (-1)" ¢4(3mx}> sinB_y . (2-73)

mn "rn

As before, the first term represents the deflection surface if edges

parallel to the x-axis are simply supported, and the last two terms the
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correction due to releasing these édges.

Fig. 2-11

Deflection Surface WL Due'to a One-

Directional Load Variation

Introducing the same approximation used to obtain Equations

(2-45 and 57), Equation (2-73) reduces to

4 .
P a
_ 1 1) .1 2.) 11 -
Wy —z r]r; \(.64 X + @O(Bmx) +z(emn Con ™ Cmn fmn)( @3(Bmx) +

P_a
+(-1)" ¢4<Bmx>)] sin B_y +ZZ—%—-<:§M @, (e y) +
mn

+ Crﬁn (Z)z(any)) sin @ X . (2-74)
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If the applied loading varies both with respect to x and Yy, the prob-
lem . of obtaining the deflection surface becomes more complicated. For

such loading cases Equation (2-58) becomes

p(x,y) = ZZ '.s1narxs1n3 mY

where
. =j—7r, j = 1:2:3:".:
j a
and
4 (2P .
ij = 5 go So p(x,y) sin a;x sin Bmy dx dy
. (39) . . .
Timoshenko gives for the deflection of a plate simply supported

on all edges and loaded by the above loading the Navier solution

Zz 3 __2___2 sin @;x sinB_y . (2-75)
G 5)
a2 b

~for which the reactions along x=0, a are

1rD

ij(aj3 + (2-u)a, Bi)

(R, -1R,__ ). = ] sin B_y
2, Xzm x 0 EJ; xzm’'x=a 4 7r4((j/a)2 + (m/b)z) 2 m

(2-76)
By choosing Tm and Um of Equation (2-11) to be equal and oppo-
site to the corresponding coefficient above, and then superimposing sur-
face Wig and the surface of Equation (2-75), the final deflection surface,
w_, is obtained. The remaining steps in the solution are identical to

(o)

those discussed previously.
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A kimilar 'procedure may be‘.uised to obtain deflectibn surfaces of
plates that exeerienee non—uniforrh temperature changes or other special
effects.

Fortunately, the most important of these unsymmetrical loading
cases, that of e concentrated load, may be formuiated in a simpler man-
ner, This may be accomplished by first considering a plate siminly sup-
ported on all edges and subjected to a concentrated load, P, at point (u, v).

(39)

Timoshenko gives for the deflection surface of this plate the single

series

2 shfB _usinf_v \
_ Pa m m u _ .
w= _,j (p sh B %q Bmxl ch Bmxl) sinBy .

D 2 2 m
ol mm Bma sh Bma
(2-77a)
where
X; = a - x, (2-77b)
and
u - : =) -
Py = 1 + Bma cth Bma Bmu cth Bmu . (2-77c)

This equation is valid for x>u. For x<u,it is necessary to re-

. . - m u .
place X4 with x,u with u; =a-u, and P with

ul
p

m - 1 + Bma cth Bma - Bmu1 cth Bmul.,

Referring to Equation ( 2-11), if Tm is made equal and opposite
to the reactions of the plate of Equation (2-77a) developed along x=0,
and Um equal and opposite to those developed along x =a, then by add-
ing deflection surface w, to t'hat of Equationv (2-77a),the deflection sur-

face of a plete supported only along y=0,b and subjected to the concen-
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trated load, P, is obtained (Fig. 2-12). Such calculations yield

: 3 .
P(l-p)a” sin B_ v
W, =W, +§, ‘ m [sh Bmu(ﬁ_’i + prlrll)@4(6mx) +

£ Dbsh _Bma 1-u
1+u ul . .;
+ sh Bmul(”l_-ﬁ + P )Q)S(Bmx) ] sin Bmy s »(2—78).

in which w, is the surface defined by Equation (2-77a).

Fig., 2-12

Deflection Surface W Due to a

Concentrated Load

The rémaining calculations are similar to those previously dis-

cussed. If the coefficients in Equation (2-17) are such that
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n
(2-79)
ZSH=EZSH
n ; mn
n mn

the final deflection surface, W'L, for this loading case is (Fig. 2-13)

| 8l .1 I, ,
Wi =wgt ) 'ﬁ( Smn (Z)l(any) + gmn (Z)z(any)> sina x +
m n

EZZPE‘ (éni Frn* i S (P3B) +

+ (-1 ¢4(BmX)) sinB_y . (2-80)

The term, W in this equafion is given by Equation (2-78). It
should be noted that EI and £ II are functions of u and v, the coordi-
mn mn
nates of the load.
Equation (2-80) can be simplified by writihg it in an approximate
form similar to that of Equations (2-45, 57, and 74). This approxima-
.tion is not necessary, however, for the deflection surfaces developed by

applied loads, since all terms are known quantities.
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(a) (o)

Fig., 2-13
Deflection Surface wr, Due to a

Concentrated Load

2-5. Displacement of Supports of Free-Edged Plates

In addition to edge effects and applied normal loads, plates in plate-
beam structures may experience corner displacements. The solution of a
plate supported only at its corners with one or more corners undergoing
an arbitrary displacement will be discussed in this article. |

It is well known that the solution fof a plate subjected to concentrated
corner loads, P, (Fig. 2-14) is the hyperbolic surface

- 4P(x2 - y2)

v D(1-p) °




64

Fig. 2-14

Plate Bent by Concentrated

Corner Loads

If a solution is sought for a plate having its corners displaced an

amount A,it is merely necessary to consider the more general form

W s Coyy 4
i C2X+C2Y+C3-

Cy Cyo 4

use of Equation (1-12) and the corner conditions

C3, and C, are constants to be determined through the

Yx=o0, y=o0 = %00
Wx=o0, y=b = b
Wx=a,y=0 %0

with the origin now at the plates corner. The final deflection sur-

. face for this case is
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R A A A
w = mwxy + a x + ——T ‘ y+ AOO ) (2-81)

in which R is the concentrated corner reaction. This plate is in a state
of pure twist.
If only the corner (a,b)‘undergoes a displacement, say Aab , the

deflection surface is (Fig. 2-15)

A . Xy
_ -Rxy _ -~ab _
W ID0-w  Tab o ((2-82)

Fig. 2-15

Plate With Corner Displacement
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Several interesting plate problems may be easily formulated now
that these results have been established. For example, if R in Equation

(2-82) is chosen so that

where wy is the deflection surface defined by Equation (2-73), the deflec- -
tion surface of a plate supported at only three corners is obtained

(Fig. 2-16a). Denoting this surface w,, it is seen that
Rny
‘ Yo T VL T TD0) (2-83)
For one-directional load variations which are symmetrical with

respect to the line y=b/2,the reaction at the origin of surface w, van-

ishes and this function acquires the form

R
- - L -
W, = W T g(iom) (XY tab) . (2-84)

This expression represents the deflectioh surface of a platé supported
only at two corners (Fig. 2-16b). Nédai(S) obtained this surface in a
differenf form for the case of a uniform load.

If Wi is replaced by Wy OF W'L in the.above equations and RL by
the corner reactions corresponding to these surfaces, several unusual
deflection surfaces may be obtained. Two of these are illustrated in

Fig. 2-16c and d.
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(c) ~(d)

Fig. 2-16

Corner Supported Plates

Equations (2-41, 56, 73 and 8G)define the deflection surfaces of plates
under various loading conditions supported at their corners. The ex-
pressions in this article represent certain cases in which these corner
supports are removed. Since the only similar solutions that exist in the
literature are those for the simpler case of a symmetrical uniform load,
it is believed that these expressions are presented for the first time in

this dissertation.



CHAPTER III

COMPATIBILITY RELATIONSHIPS

3-1. Plate Flexibilities

If a typical plate in a plate-beam structure is isolated from the

. other structural elements, in general it will be acted upon by applied

loads and by moments and forces distributed along each edge (Fig. 3~1).
Moment and force components corresponding to the edges x=0

énd y = 0 will be identified by the prime (') superscript and those corre-

sponding to the remaining edges by the double-prime ('') superscript.

The reactive edge quantities acting on the pth plate in a given struc-

tural system are the edge moments

M}'{p = z (M}'{p)m sin Bmy (3-1a)
. m
M)'{'p = Z (M)'('p) sin B_y (3-1b)
& m
Mgrp = z (M}',p)n sin oznx- (3-1c)
n
M;p = %(M;p)n sin ax , . (3-1d)

and the edge forces

68



1 : '
RXZp z (RXZp Sin Bmy

n
szp z (szp sin B mY

. X
Ryzp z (Ryzp - sin & x

"
Ryzp Z (R ) sin ax .

Fig. 3-1

Free Body of Typical Plate Element
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(3-2a)

(3-2b)

(3-2c)

(3-2d)
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In general, the coefficients of the above series will be unknown
and the eight functions may be considered as redundants for the struc-
ture being studied. Relationships needed to solve for these unknowns
are furnished by statics and by conditions requiring the accumulative
edge deformations‘ developed by applied loads and by all reduﬁdants to
-be compatible with those of adjacent structural members. Thus, edge
deflections and slopes due to loads and each of the redundants must be
evaluated.

Edge deformations of the corner supported plates discussed in the
previous chapter may be obtained by substituting the appropriate values
of x and y into the particular expression for the deflection surface or
its first derivatives. Edge deflections and slopes of the surfaces WRo

and w,; of Equations (2-41, 56, and 73), respectively, are recorded

Y L
in Tables 3-1A, B and 3-2A, B..

Caution should be taken in calculating edge slopes by differentiat-
ing the wide beam term in surface Wp s since it is not alwéys possible to
obtain series for the derivatives of functions by differentiating the series
for the function.' This difficulty is overcome by first finding the slope of
the wide beam and then representing it in a Fourier series.

By using the functions defined in these tables, it is possible to write
the final deflectioh or slope of any edge of a plate in terms of the eight
redundants given in Equations (3-1 ahd 3-2‘). Deformations due to redun-
dants acting along edges other than x =0 are obtained by simply making
the obvious replacement of x with y, a with b, etc. Given a set‘ of
boundary conditions, it is also possible to expand these series, collect

coefficients of like terms, and obtain a sufficient number of equations

to solve for all of the unknowns.



TABLE 3-1A

EDGE DEFLECTIONS OF THE BASIC PLATE

N

1, Along the edge x=0 :

4
TP R [ (—4—1 v O+ ZZP ) :m v 2 ey (o) + (1P ®4(0))J sin By

m

[ -SJ © + Lol s 20000 + (-1 0,00 sin g,
wa=0 LD Biom P2 Ryer ©mn Yen mn Trn! Y3 4 sin B,y

m

2
g+ T b 00+ T e, @ADL, ¢ e ABGy0 + 1 0] sin
- x=0 m T

%

2, Along the edge y=0:

. a4
) o ° 205 [P CEn oy + ol o 0()] sinax

‘nm

='L\/J

3 .
Z [R),(zm Tin @1 (0} + 7 n % (0))J sin o x
m

(wM)

='l\/J

Z% (M O 00 + 2B 0y 0] ain o
m

xm mn
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TABLE 3-1B

'EDGE DEFLECTIONS OF THE BASIC PLATE

L

Along the edge x = a :

4 .
a 1 : 1) 2,) !I
(wL)x=a Z-D- [Pm (m + @ Ba)) + ZZ P.le ' :rn + e o) (D ([3 a) + (-1)" 0,6 a))] sin By
m m nr
3
(WR) x=a Z%[ Xzm ¢3 a) + ;‘5‘ xzr x:lrz rl'r + exg).rz 7}L)(@Swma) + ('1’“ ®4‘Bman] sin ﬁmy

m

2 B
(WM)x=a - Z% [M:’(m 05 (Brya) + ZZ Mo (er};rz xrl'n + rfuz 3;)(03(0 a) + ) @4 (Bma))] sin By
nr

m

2.

Along the edge y=b_ :

4
(wL) Zzi‘b—[ m (g B b) + £ @y oh)] sin ax
nm

3 .
(WR) zz% [ zm (’ymn ¢1 (o b) + 7mn ¢2 (an-b) )] sin o x
: nm ]

2
(wM) ZZ:‘D-[ am | A @y () + Ao, b))] sin a %

nm




TABLE 3-2A

EDGE SLOPES OF THE BASIC PLATE

|

1. Along the edge x=0:

1 ) hos 2.), .
sin By +Zz % Pm mn %or * “mn %nr ’5“"3#}

/\
o

4 d(D (0) d @,(0) o 99, (
a 2.),1I 3 4
Z D {[P zz P (emn rn emn o) (& * S
m

3 d@4(0) a@.(0) dQ,(0)

a ' 3 f 1)1 2.) 1 3 - 4 f 1 1.) I 2)
'ﬁ{[nxzm i 4 Ryer ©mn "mn™ ®mn 7rn)( ax + P Tdx ] sin 8 mY * zz @ Bizm O mn ®ar * Ymn %or )-sin B }
nr

&
~

vy 2, 9%© | ’ L)1, 20,1, 0%© 240,00 § 1oL I
GE:?II) = Z {[ xm ~_ox z M Crntn * Cmn *m! + (-1 & ] sin By + zz % Myem Xmn %ar * *mn @ nr ) stn Bry
x=0 nT n
2. Along the edge y=0:
aw 4 d @,(0) d @y ( '
L) _ a . I 1 II 2 1) 2 ) II 3. ] . 4.)y .
: ‘_ﬁ) 0 Z’D'{Pm[ Z (Bm 'mn mnT * cmnﬁ—) sin anx] * zzz P P r©mn ‘rrn * em ;rn)w + P %j) sin ajx}
m nrj

Bw 3 ) d@,(0) d @, (0)

R .S )a ¥ 3), .1 99 % e 1)1 2.) My,3.) 4

(dy>y=0 - Z'D_{szmL,(Bm %mn ¥ Ymn —dy + -ymn dy ) sinapx + zzs‘ﬁm Rizr ©mn Yrn ¥ € rn)(¢ + 17y )sm 5%
m 7

mn

- a4 ®.(0) d©,(0)
' ; 3 . I 1 u 2 S 5 5 M I 2) I 3) n _4.)y _.
{M ) (;m ¢a) + anT * )mn T) sin apx + _,Bm xr mn rn * emn rn)w * D ¢mj)sm ajx}
] DT




TABLE 3-2B
EDGE SLOPES OF THE BASIC PLATE

1. Alongthe edge x=a :

ow 49, (Bpa) o2 11y, 495 40, (8p3) 5 n Iy, I 20
(_Bx_L)\__a ZET{ [ m _odxL * $ P (emn rn * €mn rn)( d + (-1)" —ax . )] sin Bmy * zz -1 % Pm (-(mn %nr * Con %r ) sin Bry
- m nr

aw 3 d 08 ) Ot 40,(8,,2)
R 3 ' 1.) 2.) .11 m 1) 4'Pm’ : n 1.) bi 2.) :
( ox >x- b zaﬁ { [R:'czm axm * ZE Rlzr ©mn mn * enin Yn!( + (-1 dx )] sin 3y + z;‘ Ve, Ryom (7mn $ar * Ymn $np ) SI0 ALY
= = 3 : nr

mn rn . mn !‘l’l

Bwo g 2 404 (3 _a) - ' dQ,(3 a) 40,8 a)
M ' 1.),1 II 3'"m 4 I. 1.) 11 2.)
(T)x_n : E% {[\Ixmf ;-Z Mermn den * el N—g— * 1P —d—)] sin By + ;y( 17 2 My On ®nr * 2mn ‘* nr ) Si0 By
e m r .

2.  Along the edge y=b

4@ la b) 40ya )
(—1) ° I 1%n 11 2Yn P m 1.) 2) 1I ) Sy )
( % ) s { [ 3(( DB 80t G+ E o )sman.\] +2§Z< D P el el e eZ) e lhB) gt sin ajx}
Y m nr)

aw 3 40, (a k) 40, b) '

R) S a S g3 1 1%n I 2'%n : . NS, m 1)1 2.) 1), 3.) n4)

( )1, = /D {R\zmi (0" B ®mn ¥ Tmn dy * Ymn Jy ) sin ¥ ¥ ELZ< DA Rizr ©®mnYen * ®mn rn)(¢ + (-1 )sm agx
¥= m n nr)

o : 5 40, (a;b) 40, b)
A a ' m o,) 1 LI ) .
(T,'I)‘,=b = E—ﬁ {M\m;(( 1) Son * mn * 2n ﬁv_) sin a x
m 3

=|v1

m 1)1 e2),11 3.) n 4
EE (-1) ;’n '\1\‘.1, (e ma )rn + el )m)(a + (~1) ) sin aJx}
rj
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This procedure, however, is extremely complex and impractical.
It does not permit the structure under consideration to be analyzed on a
term by term basis, and a finite number of an infinite number of equa-
tions must be used. Therefore, a simplified approach is highly desir-
able even though the resulting functions may not be exact.

Such an approach can be developed if the expressions given in
Tables 3-1 and 3-2 are written so that each component of any of the re-
dundant forces or moments produces edge deformations that correspond
to the same term in the series. In other words, a given harmonic of an
applied redundant causes deformations in terms of the same harmonic.

For purposes of identification, the edges x=0, x=a, y=0, and
y =b are to be denoted by the symbols i, j, k, and l,respectively. If
the above simplication is adopted, the deformations developed by R;cz

and M}'{ can then be written in the approximate form:

1. Deflections:

. Ry, _
(WR) _F E.R)':zm(Aii) sin Bmy v (3-3a)
x=0 m m .
. R, . )
(WR) = ER}'czm(Aji) sin ,Bmy (3-3b)
x=a o m
. R, .. )
<WR)y=O = ZR;czn(Aki)n sin a x (3=3c)
n
. Ry . i
(WR)y=b = ER}'{anli)n sin @ _x (3-3d)
n

ui

u M ; -
(WM)X=O Z MXm(Aii ) sin Bmy (3-4a)
- m
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2 ' M - -
Z Mxm (Aji )m sin Bmy (3-4b)
m
. M .
= ' -
z Mxn (Aki) sin @ x (3-4c)
n n
. M .
L ' -
Z Mxn (Ali) sin @ x . (3-44d)
o n
H Z R! (GR) sin B (3-5a)
xzm ii m?
m m
5 z R' _ (6%) sin B (3-5b)
' xzm ' ji mY
m m
S ER' (eR) sin @ x (3-5c)
’ xzn ki n
n n

R .
R (611) sin @ x 3-5d)

o)
5

xzn
= Z M! (OM) sin Bmy (3-6a)
m

= ) M!' _ (6:0) sinB_y (3-6Db)
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oW 4
M ) M, ..
(~—5y—> -0 = M n (eki)n sin @ X (3-6¢)
n
ow
= M (9 ) sin ¢ x . (3-64d)
oy y=b 1i n

.The coefficients A and 6 are the components of the linear and’
angular flexibilities of the plate and are defined in Tables 3-3 and 3-4.
The subscripts m and n are, as before, summation indices. The
double subscripts of i, j, k, or 1 refer to specific edges of the plate;
the first indicating the edge at which the deformation takes place and
the second, the edge along which the force or moment was applied that
caused the deformation.

The coefficients, A, of Equations (3-3 and 3-4) may be interpreted

physically as follows (Fig. 3-2):
(A.ﬁ) s <(Ail\i/l) ) is the maximum deflection per unit length of the
m m

edge i of a plate supported only at its corners due to a unit-amplitude

sinusoidal force (moment) at edge i.

(AI;) <(AJI) ) is the maximum deflection per unit length of the

edge j of a plate supported only at its corners due to a unit-amplitude

sinusoidal force (moment) at edge i.
(Alzi) ((A ) ) is the maximum deflection per unit length of the

edge k of a plate supported only at its corners due to a unit-amplitude

sinusoidal forcev(moment) at edge i.
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TABLE 3-3

COMPON ENTS OF LINEAR FLEXIBILITIES

& - g [03“” + Z(cr},}{ AR PALRT (N C R R @4(0))]

(.A?i) . 3; [V’a‘ﬂmf’ * Z:(e;"z vhe 2y o6, ¢ 00, mma)]
» (Aﬁi)n : %:Z[V:n ?\‘0) * Yan ‘Dz“’)]

@ %_?[v:.n Buteyp) + 7 0y 0]

ka‘}})m'é %2 [0)5 © + Z(elﬁ;g A . e2 Al )@y + 1" ¢, @ )]

(A’}bm . %[@swma) + Z(e,};& AL +. e:“} A (@g(Bpa) + (107 @ (B a))

M) - - az[ll @ (0 + Al ]
lun Dl ™1 * nn(bz((l)

2
M, 1
(Ali) . Eiri'[hnn Dy lagb) + A;L P (f"nb)]




'TABLE 3-4 -

COMPONENTS OF ANGULAR FLEXIBILITIES

[d¢3(0) ohd s 48 n o)+ EhIE B My ¢3(0) + -(_l)an¢4(0?)J]

: o
'(ou)m m mn 'mn ®mn 'mn T

40,8,_a) . 40,8, a) d0,8_a)
o, - SR Sl ol B D+ eldnh O 22

' d gy(0) d¢,(0)
adfnr 3. 1 99y nd% n . ) n
(aﬁi)n = F[F % * Upn—ay— * Ymn —5) 1,12;(6!““ Yam t T )(¢ + (-n™

o - B;[Ll_);_"_!ysjn’ . llmdwl(;’:,..b) . Ym[,dml(“) (n nvz(el) T, :‘gynm)(ﬁan) PP 4))J
ol - B[Tae D[ ahasi Ak a2+ ealal, ¢ BB ¢ o 2
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Fig. 3-2

Physical Interpretation of

Linear Flexibilities
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1i

R M
(A .)n , ((Ali)

)is the maximum deflection per unit length of the
n

edge 1 of a plate supported only at its corners due to a unit-amplitude
sinusoidal force (moment) at edge i.

Similarly, the c'oefficienté, 6, of Equations (3-5 and 3-6) may be
given the following physical interpretation (Fig. 3-3):

R

(631

) |, (_(Glﬁ) )is the maximum slope per unit length of the edge
m ST m ‘

i of a plate supported only at its corners due to a unit-amplitude

sinusoidal force (moment) at edge i.

(Oﬁ) , ((GIJY{) )is the maximum slope per unit length of the
m

m

edge j of a plate supported only at its corners due to a unit-amplitude
sinusoidal force (moment) at edge i.

(9?1) s ((Gllg) )is the maximum slope per unit length of the
n

0
edge k of a plate supported only at its corners due to a unit-amplitude

sinusoidal force (moment) at edge i.

R),

(67

((Glﬁ) ) is the maximum slope per unitlleng“th of the
n* n ‘

edge 1 of a plate supported only at its corners due to a unit-amplitude
sinusoidal force (moment) at edge i.

It should be hoted that positive redundants may cause negative
deformations and that some of these flexibility components, the AR's
for example, will be negative quantities. Also it is noted that, as a
consequence of the approximation used in arriving at these flexibilities,
aﬁy sinusoidal disturbance applied to a single edge of a corner-supported
plate produces deformations along adjacent edges that are also sinusoi-
dal. Thislleads to incompatibilities in adjacent modes of deformation

except at node points.



Fig. 3-3

Physical Interpretation of

Angular Flexibilities
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This inconsistancy is remedied, however, when it is observed
that the values used for the flexibility components of adjacent edges
(the edge k and 1 of a plate loaded along i)) are only slightly better
than one-term approximations of the series representing the true de-
formations along those edges. An inspection of the deflection surfaces
of plates subjected to edge forces and moments indicates that deflec-
tions along the adjacent edges resemble very closely one or two super-
imposed harmonics. Thus, these deformations will, in most cases,
be represented by one or two terms of the series with sufficient accu-
racy.

Edge deformations of plates subjected to normal loads may be

written in a similar manner. For example,

(w,) = E(&f) sin B (3-7a)
"L x=0 m 'm P :
(j—W—L) = E(elf) sin B_y (3-7b)
ox <=0 & 1rn mY °

etc. Since the coefficient, Pm,of Equation (2-73), is a known quantity,
no approximation is necessary for these coefficients. They merely
represent the total coefficient of a given sine term when the series
given in Tables 3-1A and 3-2A for wp are expanded and like terms are
collected.

(AI{) and (9]{‘) are components of the linear and angular load

m m

functions of the plate, and may be interpreted physically as follows

(Fig. 3-4):
(AIi“) is the maximum deflection per unit length of the edge i of
m



84

a plate supported only at its corners due to the mth component of the

applied load.

Fig. 3-4

Physical Interpretation of

Linear and Angular Load Functions

(911") is the maximum slope per unit length of the edge i of a

m

plate supported only at its corners due to the mth component of the
applied load.
Now that the components of the flexibilities and load functions of

a plate have been defined, it is possible to write the total deflection or
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slope of any edge of a given plate subjected to completely general load-
ing conditions. If, again, the pth plate of a plate-beam structure is
considered, the total deflection and slope along edge i due to applied
loads and the eight redundants given by Equations (3-1 and 3-2) are

A L @ rmp) @ swm ) @)

pi £ xzp' i xzp' i) YZP' ik m

1 ! M " M
*(RY) (B PO @A) ) )

+

1k) + (M;p) (Ali\f) + (AI;) ]sin Bmy s (3-8)

m m m m

(M}',b) (A

and

" ' R
Z[( o) O TR O 4Ry @)

" R 1 M " M
R OF) L) 1) ) O3

+ (Mv ) (e )m + (M; ) (911) + (Gli‘)m] sin Bmy . (3-9)

Thus, by using simplified forms of the plate's flexibilities, it is
possible to compute edge deformations on a term by term basis. That
such an approach will lead to only small errors for common length to

width ratios is implied by the following observations:

1. Fourier series in Levy-type solutions often converge very
rapidly and functions arising in such solutions can usually be represent-

ed with sufficient accuracy by only a few terms of their series.
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(39)

Timoshenko , in solving the closely related problem of clamped-
edged plates, uses only four terms of the series and obtains answers
less than one percent in error.

2. Boundary conditions along two edges are very closely satis-
fied, the only source of error being an approximation in the correction
term mentioned in the previous chapter. Conditions along the remain-
ing edges are sufficiently satisfied by one or two terms of the series,
as is indicated by the nature of the deflection along those edges.

In fact, Galerkin(g), in solving the problem of a uniformly-loaded

square plate with free edges, satisfied all boundary conditions by taking

many terms in the series and found that the center deflection was

4
= ba
WX=a/2, y=b/2 - 0- 0257—'D_

Nadai(B), in considering the same problem, partially satisfied
boundary conditions along two edges by taking only one term in the
series. He obtained for the center deflection

4

= pa_
szalz, y=‘b/2 0. 0253 D B

a value in error one and one-half percent.

3. If a small error exists in edges adjacent to the ith edge, its
effect must be "carried over'' to the edge under consideration. There-
fore, the influence of errors existing in déformations of these edges is
very small on the edges used to obtain the final solution of the problem.

That this is true can also be seen in Bittner's(18)

seemingly
crude analysis of plates continuous in two directions over rigid sup-

ports. In this analysis only one term of a similar series was used; and
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yet, the final average moments differed from those computed by Siess

(21)

and Newmark by a maximum of ten percent.

Some modifications must be made for cases involving symmetri-
cally loaded plates supported by beams with unsymmetrical end condi-
tions. Otherwise, compatibility equations for even values of m are
homogeneous and possess only trivial solutions. To overcome this
difficulty, the exact éxpressions given in Tables 3-1A, B and 3-2A, B
may be used; or the influence of redundants corresponding to m =2 on
those for m =1 may be accounted for by using only one term in their

exact expressions.

3-2. Deflection of Supporting Members

In general, plate elements in plate-beam structures will be elas-
tically supported along their edges by elastic beams. Consider, as a
-typical example, the beam AB elastically connected to the pth plate in

a plate~-beam structure along the edge i (Fig. 3-5).
Other than the reactive moments and forces transmitted by the
plate, the beam will be acted upon by applied loading; the moments

ABz

and VBAz , as shown in the figure. These moments need not be con-

MABX , MABy s MBAX , and MBAy; and the shearing forces V

sidered as redundants. They are merely the bending and twisting mo-
ments at‘ A and B and may be in terms of the applied loading and re-
dundant forces or moments acting elsewhere in the system.

No moments‘act about the z-axis at A and B. The stiffness
afforded by the plate along the edge i prevents such moments from
being developed. Deformations due to bending about these axes would

require the middle surface of the plate to stretch, an effect taken as



negligible in the thin plate theory.

Z

Fig. 3-5

Typical Edge Beam AB

The reactive forces, R;{zp’ distributed along the edge i of the
plate act as an additional applied load on the beam. Thus, for any point

along the beam, AB,

4

d z. (R! )
i _ XzZPm: . a(y)
i ) BL& Py * ELly) (3-10)

in which
25 is the deflection of the beam along the edge i of the plate.
EIi(y) is the flexural rigidity of the beam.

q(y) is the applied loading acting on the beam.

If EIi is cons_tant: the behding moment at any point is
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fxap Magx - Mpax
M, = -Ell_f 2—2—" sin B mY b Y+ Mgy

(3-11)

Dividing by EIi’ integrating twice, and evaluating the constants of
integration from the conditions that points A and B do not displace,
gives for the deflection curve of the beam

(R! )
XzZp 4 3_ 2.3
Zi=z m-siany+y 3by +2b Y m Lby-y M +Bzi ,

A S 6HET, “ABx  GDEL ' BAx
& “EI -
m 1

(3-12)

where Bzi is the deflection due to the applied load, q(y).
The functions in parentheses which appear as coefficients of the

moments, MABX and MBAx’ may be represented by the Fourier series

3

= 3by” + 2b
M G%Ell M z (XAB sin B mY (3-13a)

bzy -
_Tb—— Z(XBA) sin B mY (3-13b)

in which |
2
_ 2 )
Xap) = 33— - (3-14a)
m m- T EIi

_ 2™ (3-14b)

(xga) = ""—_—m?, 3
1
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These quantities may be interpreted physically as follows:

(XAB) is.the maximum ordinate of the mth term of the deflection
m

1.

curve of mefnber AB due to a unit end moment, MABX=

(XBA) is the maximum ordinate of the mth term of the deflec-
m .

tion curve of member AB due to a unit end moment, MBAx:l'

The function Bzi, physically, is the deflection curve of the simply
supported beam AB due to q(y). Thus, to account for this loading, it
. is merely necessary to add to Equation (3—12) the Fourier series ré-
presentation of the deflection curve of a simple beam due to a given

a(y). In general,

Z 9 .
Bzi = qu sin Bmy s (3-15a)
m"m i
where
9 b
9, * § g a(y) sin Bmy dy - (3-15b)
o .

The coefficients q, are identical to those used for one-directional
load variations for plate elements, and, hence, may be taken from
Table 2-4.

Substituting Equations (3-13) and (3-15a) into Equation (3-12) gives

‘ .
z, = E R' ) (——) + M ( )+
i m[ xzp' Bél EL, ABx XABm
+ M ( )+ : )] in B (3 165
X , sin y . -
BAx BAm B4 El m
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An inspection of the coefficients (YXAB) and (X'BA) shows that.
' m m

if MABx and MBAX are equal , the deflection due to these moments
vanishes for even values of m, and, as should be expected, a deflec-
tion curve which is symmetrical with respect to the center line of the
beam is produced.

If the flexural rigidity of the beam is not constant, it is necessary
to represent its variation as a function of y. This function must be then
substituted into Equation (3-10). The final deflection curve is obtained
by successive integrations of the resulting equation.

If the ends A and B are displaced AAz and ABz,respectively_,

Equation (3-12) assumes the form

(R! ) 3 2 2

- XZp . vy~ - 3by” *2b"y,

2 Z——4 sin By + ¢ BbET. ) Mppy +
& B " EL i

m 1

2 3
by - b - i
+ (mri—’MBAx + Bz; + ‘%)AAZ + Ap, - (3-17)

These deflections may be‘ taken as unknowns; or they may be elimi-
nated from the above equation _by using the equations of statics for the
structure under consideration, and expressing them in terms of redun-
dant forces or moments. Equation (3-17) may be written in terms of a

single series by following the same procedure used to obtain Equation

(3-186).

3-3. Twist of Supporting Members

The .twist of beams . supporting plate elements of plate-
beam structures will be considered in this article. Calculations to

follow are subject to the limitations arising from the usual assumptions
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of linear frame analysis. It will also be temporarily assumed that the
edge of the plate coincides with the axis of the center of twist of the
member under consideration; and, hence, that the force R:'czp produces
no torque.

In general, a typical beam, AB, elastically connected to the ith
edge of a plate element will undergo torsional deformations due to end
moments MABy gnd MBAy’ the moment M::;p transmitted by the plate,
and due to applied couples (Fig. 3-6). The total torque at any section
is |

= XP'm - -
’ ].V.[y MABy +; 'B—;;l- (cos Bmy 1) + t(}’) B (3-18)

where t(y) is the applied torque variation.

Fig. 3-6

Torsional Moments Acting On

Edge Beam AB
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If the angle of twist at a given cross section is denoted l//i , it
follows that
ay, (M}'§p »
- GJi(y) rva My = MABy + Z—T—_ (cos Bmy - 1) + tly),
m m :
(3-19)

in which GJi(y) is the torsional stiffness of the beam. A positive angle
of twist, l//i , is taken as one in the direction of a positive end moment,
MABy .

To evaluate wi, it is necessary to divide Equation (3-19) by GJi(y)

and then to integrate the resulting equation. If GJi(y) is constant, the

final angle of twist becomes

*(M' )
(- Xp
wi_(EJLi)MABy ZBzGJ sin & Y+EB_G,%3’+B¢ +(¢) ’

(3-20)
in which
Bwi is the angle of twist due to the applied torque loading, t(y).

(:pi) is the angle that joint A has rotated in the y-direction.
A

The function in parentheses which appears as a coefficient of

MABy in Equation (3-20) may be represented in the Fourier series
1 = 1 -
(GJ.) Z(nAB) sin Bmy , (3-21a)
i el m
where
2(- 1)

Mam) = Srar (3-21b)
m 1
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The third term on the right-hand side of Equation (3-20) must be

approximated by the series

5 XPm
m Bm GJi

2(-1)™ (M)
] Z sinB_y . (3-22)

The function Bwi may also be represented in a Fourier series.

First, it is assumed that

B(//i = sz sin Bmy s (3-23)
o

where Hm is some coefficient yet to be determined.

The applied torque, t(y), may be represented by the series
tly) = Ztm cos Bmy , (3-24a)
m

where

2

b
th = F S;) t(y) cos Bmy dy . (3-24D)

Differentiating Equation (3-23) and substituting the resulting ex-

pression into Equation (3-i9) gives
- GJi-Z. Hm Bm cos Bmy = t(y) = z tm cos Bmy . (3-25a)
m m
Thus,

Hm = “B—aIT ¢ (3-25Db)

and Equation (3-23) becomes
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' 1
m .
B(J/i = - z m sin Bmy . (3-26)
m

Finally, the constant, ((bi) , may be either taken as an unknown
A

or expressed in terms of moments acting elsewhere in the structure.
This may be done in a variety of ways. To illustrate one possibility,
suppose that the edge k of the pth plate being consideréd is elastically
supported by a beam, AC, of the constant flexural rigidity, EIk-. Since
the rigid joint A has ﬁndergone a rotation (([/i)A in the y-direction, it
follows frorh the familiar slope-deflection equations that

.

+ 2FM - FML },

AC

_ -a
Wy = —“_[ZMACy * Moay

A 6 EIk

in which
FMA“C is the fixed-end moment of member AC at A due to

loads and R! __;
oads a yzp

FMé’A is the fixed-end moment of member CA at C due to

loads and R' .
yzp

This constant may be represented in the Fourier series

-2(-1)™ - qw,)
W, = Z LA

N — sin Bmy . (3-28)

m .

- Substituting Equations (3-21a, 22, 26, and 28) into Equation.

(3-20) gives for the angle of twist the single series
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1+ 2(-1)™ tm
w.=2[<n ) M - ML) -
i ~ AB m ABy Bn21 GJi xp’ BmGJi
2((- 1" - 1)(y,)
- — ]sin Bmy . (3-29)

If, instead of passing through the center of twist of the beam AB,
the line of action of the reactive force R:gzp is found to have an eccen-
tricity, C, Equation (3-29) may be modified by replacing (M;{p) with

m

the quantity

M! - C(R!
() - R,

The coefficients of terms in Equation (3-29) may be interpreted
physically as follows:
(nAB) is the maximum angle of twist of the mth term of the twist

{ m -
series of member AB due to a unit end twisting moment at A (MAByE 1).

1+2(-1)™ . . -

- ———y———— s the maximum angle of twist of the member AB

B~ GJ.

m i

due to a unit-amplitude sinuscidal moment applied along the member's
longitudinal axis.

t
- BA—IC%— is the maximum angle of twist of the member AB due
m i

to the mth component of the applied couple loading.
The last term in this equation is the rotation of joint A, as was

defined earlier. The first two coefficients are the components of the

twist flexibilities of the beam; and the third coefficient represents the
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components of the twist-load function of the beam.

3-4. The Edge-Slope and Edge-Deflection Equations

The details of the procedure that must be adopted to use the ex-
pressions for plate and beam deformations derived in the preceding
articles in plate-beam analysis are quite varied; and depend largely on
the nature of the structure under consideration.

In general, as many as eight unknown force and moment varia-
tions must be added to the number of redundants of a plate-beam struc-
ture for each plate element. Hence, eight additional equations must be
formulated.

Consider, for example, a portion of a typical plate-beam struc-
ture acted upon by a general system of loads (Fig. 3-7). The member,
AB, supports the edge i of the pth plate of this structural system.
Since this member is connected integrally with the edge of the plate, its
deflection must be the same as that of the plate's edge i. Therefore,

from Equations (3-8) and(3-16), it follows that

Api -z, =0, (3-30)

or

! (AR - 1 ' R R R '
e ) i)+ ) ) ) )

R M . M . M. :
+ (Ail)m(R}'y'Zp)m + (Aii)m(Mxp)m + (Aij)m(MXp)m + (Aik)m(Myp)m +
M " - . L _
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q
m ]sinB y = 0 . (3-31)
m
— NS
m -1
A
' 4
/ "\\\\
/ - ~
// // N
Vs [ /O J
/ Ny /

Fig. 3-7
Portion of a Typical Plate-Beam

Structure

If Equation (3-31) is to be valid for all values of y, the coefficients
of each sine term of the expanded series must vanish independently.

Thus, for any value of m,
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o\ 1 ' h
3 -54—EI-)(RXZP> @) Ry @) R
m 1 .

n ! M, '
+M)(%w)+M)<MQ-M%%m@L+

+<Aik)m (Myp)m +<Aﬂ)m (Myp) = (XAB) (Mpp, ) -

q
g L ~m _ _
m m B~ EI,
. m i
This equation is to be called an Edge~Deflection @quation.
Also, the slope of the plate element along the edge i must be the

same as the twist of the member connected to that edge. Thus, from

Equations (3-9) and 3-29) it follows that

epi - (//i = 0. . (3-33)

Hence, for all Valuesrlof y and m,

M 1+_2_(‘1)m) 1 M " '
(0% ) o) ) ong) (oM )(Myp)m+

" O )+ (o8, ) Ry )+ (o8 Y @y, + (0 (Rygp>'+

VP 1, Xz~ i XzZpl

t

n 2((-1)"-1) L m

(3-34)
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Fig. 3-8

Solution by Superposition
of Harmonics
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This equation shall be called an Edge-Slope eqpation.

The fact that Equations (3-32) and(3-34) are valid for all values
of the summation index indicates that numerical values of all of the re-
dundants of a given plate-beam structure may be found for each value
of m. Since the principle of - Buperposition is assumed to hold for the
structures under consideration, final redunciants may be obtained by
simply adding th'e results obtained for. m=1, 2, 3, -:-,etc, Therefore,
a given plate-beam structure is first analyzed as if it were loaded by
only the first harmonic of each of the plate's unknown force and mo-
ment variations, These results are recorded and the procedure is
repeated for m=2, 3, : - -, until the desired accuracy is obtained. For
each case the structure is in equilibrium, but the resulting deforma- |
tions are not compatible., Sufficient compatibility is achieved only after
several solutions have been superimposed. This procedure is illus-
trated in Fig. 3-8.

Equations (3-32) and {(3-34) are applicable only to the case in which
a single supporting member is connected to the edge of a single plate,
Several other cases are possible. For example, considér the case in
Which a plate is continuous over the member AB, and the deformations
of two plates must be considered (Fig. 3-9). The.Edge—Slope and Edge-~

Deflection equations follow from the relationships

Api + %_‘_1’3. © z, = 0 (3-35)
and

epi + 6p+1,j wi = 0, (3-36)
| where Ap+1,j and 6p+1,j are the edge deformations of the p+1th plate
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along its edge j.

Fig. 3-9

Continuous Plate Supported By

Elastic Beams

Following procedures similar to those mentioned, the necessary
compatibility equations for many plate and beam combinations can be

formulated.



CHAPTER IV

NUMERICAL APPLICATION OF THE THEORY

4-1, Calcul_ation‘ of Flexibilities

The humerical caléulation of the constants needed for plate-beam
analysis is extremely laborious and requires the use of an electronic
computer. The method for calculating these constants, however, can
be reduced to a series of matrix operations. This is accomplished by
expanding the coefficients of the Fourier series for the deflection and

reaction functions into the arrays:

= [ [ [l [e) [ [ (49 1. ) L) ()

For example,

[ 1) 1) 1] 1.1 1]
€11 €12 " C1,k Y11 Y12 71,k
1.) _1.) 1.) I I I
€21 €22 "7 €2,k I Y21 Y22 " Y2k
[e,] - o[- | ete.
1 |
1.) _1.) 1.) I I 1 |
°k1 k2 T K,k k1 k2 7T Mk

The matrix, . [Arr;l , of Equation (2-36) can be written in terms of

submatrices resulting from products and sums of the above arrays as;

103
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[ e - e 2] ) T ) - (e e 2
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)

3

in which [I] is the identity matrix of order 2k; the superscript, T, de-

notes the transpose of the matrix; and

1 0 o
0 -1 0
B =lo 0 1
0 0 0

o |
0
0
(-1yk+1

The matrix [ATJ for a square plate (u=0) corresponding to a five

term approximation is recorded in Table 4-1.

The matrices['yl] s |:’YII:| s [XI:I , [lel , [tl:l , and E;H:I are obtained

by the following operations:




TABLE 4-

1

ELEMENTS OF THE MATRIX I,Am.l

alb=1 k=5, pu =0

~Col. —

Row™ 1 2 3 4 5 6 7 8 9 10
1 |1.002275/-. 006652 . 000095|-. 000951 . 000014 . 002722 . 006725 . 000095 -. 000951 . 000014
2 . 985781 -. 002995 - — |-, 014333 . 002995 ——— - -
3 .002549-.6212721.000120-.005339 .000019] . 003033|-. 021441 .000120/-. 005339 . 000019
4 -, 023770 . 992879 . 023950 . 007121
5 . 001778|-, 026566 . 000088|-. 008639|1, 000014| . 002110/-. 026773 . 000088 -, 008639| . 000014
6 |-.002214| .002587/-. 000085 . 000156(-. 000012| . 997339 . 002660 -. 000085 . 000156|-. 000012
(N . 000272 -. 000113 11. 000387 ., 000113
8 . |-.002306| .000239|-, 000077|-. 000098-. 000010|-. 002790 . 00040¢ . 999923 -. 000098|-. 000010
9 -. 000812 -. 000166 . 000631 . 999834
10  |-.001552}-. 000193|-. 000048|-. 000131|-. 000006|-, 001884] . 000015-, 000048 -, 000131| , 999994
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where [Am] -1 is the inverse of the matrix E’-\IIJ . Matrices for a square
plate with zero u are given in Table 4-2. |
Additional matrices containing elements corresponding to terms
of the deflection funcfions (Z)O, (Dl , e, ®5 and their derivatives must
also be formulated. This process is simplified if advantage is taken of

Maxwell's Theorem. For example, for a square plate it may be shown

that
@1(0) = ¢3(0) = - ®4(1’17T), Q)l(nw) = ¢3(n7l') = = ¢4(0)
do, (0) d@, (nm) d@4(0) d@, ()
A e e i o
d@,(nm)  d@,(0) d@g(nm). dg,(0)
@5(nw? - dy - dy - dx - dx

Thesé quantities may be expanded to for‘m diagonal matrices in
which each element along the diagonal corresponds to a value of n or m.
These must in turn be multiplied by the arrays previously mentioned to
obtain final flexibilities.

For e_xample, the column vector [A?i:l,whose elements corres-
pond to linear flexibilities for each value of m, is obtained by taking only

the diagonal elements of the array resulting from the operations

oo + [P A7) bud + [ ) + )] )

where [Q)lél and I:®1A;| are diagonal matrices with elements @1(0) and
@1(anb), respectively. Following similar procedures, the remaining
plate flexibilities and load functions may be evaluated.

" Constants correspo'nding to a five term approximation for a uni-

formly loaded square plate (u=0) are recorded in Tables 4-3 and 4-4.



TABLE 4-2

MATRICES FOR A UNIFORMLY LOADED SQUARE PLATE

(=) - )7

o]

.106070° . 016908 .. 004243 . 001462 . 000628 . 106109 . 017699 . 004243 . 001653 . 000628 -1.367148 -. 507028 '.. 240583 -. 136010 -. 087134
. 114205 . 052444 . 020077 . 008488 . 004037 . 114192 . 054562 . 020075 . 009012 ..004037 ~ . 795564 -. 600543 -. 366860 -. 238918 ~-. 165736
. 114555 . 067531 . 035355 .018334 .009913 . 114587 . 070794 . 035354 . 019208 . 009912 - .596123 -. 581488 -. 444690 -. 310296 -.214610
. 079034 . 067128 . 043431 . 026525 . 016158 . 079014 . 071192 . 043427 . 027664 . 016158 - . 394414 -. 543392 -. 515765 -.428156 -. 339134
. 078454 . 062826 . 045877 . 031559 . 021221 . 078465 . 067477 . 045874 . 032920 . 021220 - . 348179 ~. 466822 -. 491512 =. 445288 -.373352
< [7)7 4 (]
[Ez] = [Fz] U a|x
. 127224 . 017174 . 004247 . 0014692 . 000628 -. 106109 .016698 -. 004243 7. 001423 -. 000628 1..367148 -. 507028 . 240583 =. 136010 - 087134
. 114205 . 052444 . 020077 . 008488 . 004037 -.114192 . 052430 -. 020075 . 008492 -. 004037 . 791950 -.581706 . 346938 ~-. 207614 " . 135336
. 137402 . 068596 . 035391 . 018335 . 009913 -.114587 . 067616 -. 035354 . 018350 -.009912 - 596123 -. 581488 . 444690 -. 3102‘95 . 214610
. 079034 . 067128 .043431 . 026525 . 016158 ~-. 079014 . 067240 -. 043427 . 026554 -.016158 . 387420 -. 524768 . 491366 -. 396784 . 304255
. 094101 . 063817 . 045923 . 031561 . 021221 -.078465 . 062937 -.045874.. . 031586 -. 021220 . 348179 -. 466822 . 491512 -. 445288 . 373352
d @ (0) d9. (8,_a)
1,1 1 1 5 1 5 Y'm
(c] et ] 1[s%,) 2 9, (e b) @, (© @, (@,b) 132 1
-1.366572 -.791195 -. 595899 -. 388370 . 348057 -.634986 . 634986 -.021931 -. 003850 -.033214 . 006176 .213087 -. 000833
- .507086 -.582035 ~-.581554 -. 525004 .466875 . 000000 . 000000 -. 002688 -. 000031 -. 008442 . 000132 . 106107 -. 000434
- .240007 -.343163 ~.444501 -.489531 491423 -.210372 .210372 -. 000796 -. 000000 -.003753 . 000004 - .070736 -, 000024
- .136102 ~.206666 ~-. 310402 -. 395831 .445373 . 000000 . 000000 -.000336 -. 000000 -. 002111 .000000 .'053051 -.000001
- .086785 ~.132382 -.214533 -. 302596 -.373333 -.126043 . 126043 -. 000172 -. 000000 -. 001351 . 000000 . 042441 -. 000000




TABLE 4-3

LINEAR AND ANGULAR FLEXIBILITIES OF A SQUARE PLATE

(k =5, u =0)

| Linear Flexibilities

. a—% <Af§i)m ;% (A’g?i)m % (Aﬁ)m % (Affi)m fz @) aR (Al‘fi)m a% (Al‘lfi>m ;32 (Alﬁ)m
1 -.02188 -, 00378 -.00274 - -. 00274 -, 03364 +,00511 +. 03525 +.03525
2 -, 00270 -, 00002 -, 00015 +, 00015 -, 00826 -. 00004 +,. 00160 -, 00160
-. 00080 . 00000 -, 00003 -, 00003 -, 00369 -. 00008 +. 00035 +.00035
4 -, 00034 . 00000 -, 00001 +. 0000.1 -. 00208 -, 00003 +.00014 -. 00014
5 -, 00017 . 00000 . 00000 . 00000 -, 00134 -, 00002 +.00006 + . 00006

Angular Flexibilities

m | 22 (ef})m > <e§>m 209 | 3 wﬁ)m Dot b <e?§>m D <e}§§)m b <91§>m
1§ +.02467 +. 01459 -, 03563 +. 03563 +.32889 | -,11803 -. 02549 +. 02549
2 +, 00796 -. 00030 -, 00366 -, 00366 +.11167 +. 00485 -. 00494 -. 00494
3 +,00342 .+. 00159 -. 00106 +. 00106 +.07298 -. 00294 -, 00144 +.00144
4 +, 00517 -. 00007 -, 00045 -, 00045 +, 05381 +. 00071 -, 00090 -, 00090
5 +.00129 . +.00007 -, 00043 +. 00043 +, 04287 -, 00066 -, 00046 +.00046
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TABLE 4-4
LINEAR AND ANGULAR LOAD FUNCTIONS FOR A
UNIFORMLY LOADED SQUARE PLATE
(a/b=1, up =0, k =5)
L _ L _ (pL _ A L EVIN _ (AL _ (Al
D L D L
m —3 0] )y —z &),
p,a P2
1 +. 05923 +.01637
2 . 00000 . 00000
3 . 00203 . 00017
4 . 00000 . 00000
5 . 00037 . 00002

An inspection of the flexibilities for a square plate (Table
4-3) shows that slopes and deflections along edge k are (- 1™ times
those along the edge 1. It is also seen that positive edge forces and
moments cause negative (upward) deflections along ‘the edge i.

For square plates, positive ‘edige morhents along i, which are
symmetrical with respect to the center line of the plate, cause negative
slopes along edge 1. The fast convergence and relative magnitude of
deformations occuring along edges k and 1 indicate that the approxi-
mate forms of these quantities are sufficiently accurate.

Load functions fdr uniformly loaded square plates converge

very rapidly and could be adequately represented by only the first

term of their series.
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From Table 4-4 it is seen that the maximum edge deflection of a

uniformly loaded square plate is

(WL) ) b . 01656 —
X—O’y_-i-

This value compares favorably with that obtained by Nédéi(g)

J

‘ B o
(WL) ) P 01717
x=0, Y5

the difference being 3.6 percent. This slight discrepancy occurs be-

cause Nddai did not neglect Poisson's ratio.

4-2. Numerical Example

To illustrate the procedure of analysis for plate-beam structures,

the structure shown in Fig. 4-1 is considered.

All values are given in pounds, feet, or pound-feet per unit length,

and properties of individual elements are recorded in Table 4-5

TABLE 4-5
PHYSICAL PROPERTIES OF THE

STRUCTURAL ELEMENTS

Plate ABCD Beam AB

a=b=10.00 ft. Length = a = 10. 00 ft.

7.5% 10% 1b. -ft. .

)
1]

EI = 150X 10° 1b. -ft. 2

it

GJ = 50 X 10°% 1b. -£t. 2
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2

Fig. 4-1

Square Plate Supported by Elastic Beams

It is required to evaluate all edge forces and moments acting on
the plate shown, and end moments acting on the supporting beéms. Beam
supports A and C are fixed and the edge 3 (line AC) of the plate is a
free redge. The edge identified by the number 4 is'elastically supported
by the beam BD which is connected to members AB and CD. The
shapes and elastic properties of all edge beams are identical with the
exception of member BD, which is free to rotate on the point supports
and is assumed to have negligible torsional rigidity. The analysis is

accomplished as follows:

A.) Redundants

For the structure considered it is seen that

(e Ry MY ) =) = 0.
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Thus, the remaining unknown edge forces and moments acting on the plate

are
M!', M'", R! R!' , and R!'
x? Tx ’ Txz’ “xz’ yZ

Due to symmetry, components of (R;I'Z) corresponding to even
m
values of m are zero, and

Rl = - Rll Ml = le
XZ Xz’ p:¢ X
Unknown end moments acting on the edge beams are

M M M M

CDx’ ABy’ M and M

ABx’ CDy’ ""BDy’ DBy

The remaining moments are found by statics. Also, due to sym-

metry

CDy’ BDy DBy

B.) Flexibilities and Load Functions

Plate ABCD:

Linear and angular flexibilities of the plate are given in Table 4-3.

Load functions are given in Table 4-4.

Member AB:

Linear and twist flexibilities of the beam AB are recorded in

Table 4-6. All load functions are zero for the supporting beams.
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TABLE 4-6

OF EDGE BEAMS

LINEAR AND TWIST FLEXIBILITIES

C.) Edge-Deflection Equations (Equation 3-32)

m
m | % (A % (pa) G (n ap G2t ;2‘;” )
1 +. 06450 +,. 06450 -, 63662 -.10132
2 +. 00806 -. 00806 +, 31831 +. 07599 l
3 4'—.'00239 +. 00239 -.21221 -.01126
4 | +.00101 -.00101 +.15916. +.01900
5 » + 00052 +. 00052 -. 12732 -, 00405

Computations are shown in detail for m =1, and the results are

given for m=2, 3, and 5.

since the effects of m=1, 2, 3, and 5 have

these quantities.

Equations for m =4 have trivial solutions

negligible influences on

Substituting the plate and beam flexibilities and load functions for

m =1 into Equation (3-32) results in the Edge~Deflection equations for

members AB and BD. If these are multiplied by EI/a4 the following

expressions result:

Member AB
-.06159 (R' ) + .00548 (R'') - .00571 (M') -
XZ yz X
1 1 1
+ 32.7400 + .00010 (R}'{Z) + .00020 (M}'{) =0

2

2

. 00065 (

+

MABX) 1
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Member BD

+

.03349 (R!'') - .01096 (R!' )
yz'q XZ 1

+ .01410 (M}'{) - .00129 (M

)
1 BDy

1

+ 32.7400 = O

D.) Edge-Slope Equation (Equation 3-34)

Substituting the proper flexibilities into Equation (3-34) and multi-

plying by %‘T gives for member AB,

a

. 19663 (M') + .26173 (R' ) +
X XZ

n
+ .23753 (Ryz)l + 06366 (MABy)l

1 1

+ 394.8667 - .06393 (R' ) + .05182(M') = O .
_ XZ pd

2 2

The last two terms in the compatibility equations for member AB
are taken from the exact edge deformation expressions given in Tables
3-1A, B and 3-2A, B. They are included to account for the fact that
member AB has unsymmetrical end conditions.

It can be shown that the influence of terms corresponding to m=1
on those for even values of m is very small. Similarly, the influence

on the deformations occuring along BD due to (R}'{‘Z) .
2 . 1

, (R;z) , etc. are very small and assumed negligible.
1 .

of (R;{Z)2 and (M}'{)

(M)
|

E.) Deformation Equations for Supporting Beams

The condition that the slope is zero at A leads to the relationship

+

- .22156 (R! )
X2z 1

’ "
+ .31831 (Ryz)1 + .0100 (MABX)

1

' = -
+ 17125 (sz)z 202. 6423.
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Equating the twist of member AB at B to the slope of member BD

at that point gives

+ 3.18309 (M}'{) - .16667 (M +

)
1 BDy 1

(Mpp)

+ 1.07505 (R'') + 1.59155(M') = 0
Yz X9

F.) Equation of Statics

Isolating member AB and equating to zero the sum of moments

about its longitudinal axis gives

- (M _
(MBDy)1 ( ABy)l + 6.36620 (M}'{)1 -0

G.) Final Forces and Moments
Following the procedure just outlined for successive values of m,
a sufficient number of equations can be generated to solve for all un-
knowns. Results for a five term approximation are given in Table 4-7.
Moments and deflectiohs at points in the plate may be found though
the superposition of surfaces given by Equations (2-41, 56, and 73) after
the substitution of the appropriate values for the components of the edge

forces and moments.
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‘TABLE 4-7

FINAL FORCES AND MOMENTS

R! ) M!) (R!)) M M M

( xz' ( X yz' ABx ABy BDy
391.43 -498. 14 -646.81 | 9986. 56 -3353. 82 -182. 55

- 57.81 -693. 20

311. 12 -348.20 | -162.15 | 2658.49 - 427.76 311.13
163. 54 -105. 47 -116. 64 - 77.60 56.69

960. 43




CHAPTER V
SUMMARY AND CONCLUSIONS

5-1. Summary

The analysis of plate~beam structural systems by the flexibility
approach is presenfed in this study. The results of the analysis are
limited to thin rectangular plates of constant thickness and are obtained
in the form of Fourier series.

Edge forces and moments acting on the plates are chosen as redun-
dants and are represented by sine series.

A thin rectangular plate supported at its corners is selected as the
basic structure for plate members. Levy solutions are obtained for edge
deflections and slopes of the basic plate due to arbitrary edge forces,
edge moments, and appiied loading. Final deflection surfaces are in the
form of single, double, and triple summations whose coefficients are in
terms of the components of the series for edge forces and moments.
These series are reduced to an approximate form in which there exists
a one to one correspondence between components of edge redundants and
individual sine terms.

Linear and twist flexibilities of the elastic beams supporting plate
members are developed in the form of trigonometric series. The coef-
‘ficients of these series are in terms of applied loading, edge forces and
moments of the plate, and end moments of the beam. |

Compatibility of plate and beam deformations is accomplished by

117
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means of "Edge-Defleg:tion" and "Edge-Slope" equations. A sufficient
number of equations are formulated to solve for all unknowns for each
term in the series. Final answers are obtained by superposition of the
solutions corresponding to each term.

A systematic sequence of matrix operations is presented that pro-
vides an adequate method for calculating plate flexibilities; and a numeri-
cal example is included to illustrate the application of the theory devel-

oped to the analysis of a typical plate-beam structure.

5-2. Conclusions

Levy solutions for the deflection surfaces of corner supported plates
under the action of any type of static loading may be obtained by super-

imposing the following surfaces:

1.) The deflection surface of a plate simply supported on two
opposite edges, free along the remaining edges, and subjected to a general
system of applied loads.

2.) The deflection surface of a plate supported at its corners and
bent by arbitrary forces distributed along the edges corresponding to the

simply supported edges of the surface of part 1.).

The series coefficients defining these arbitrary edge forces may be
adjusted so that on superimposing the two surfaces, all edges of the plate
become free. This adjustment leads to an infinite number of equations
and an infinite number of unknowns. Results may be obtained by taking a
finite number of these equations. The resulting coefficient matrix of
these equations has a very strong diagonal and differs little from an
identity matrix.

Exact expressions for edge deformations of the basic structure for
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plate elements, a corner supported plate, are very complicated, and all
terms of the series for edge redundants influence each term of the de-
formation series. An approximate form of these deformations, which
introduces only small errors, is obtained by retaining only the strong
diagonal terms in the exact arrays and reducing these expressions to a
form in which there is only one component of an edge redundant series
for each sine term. This approximation allows the analyst to solve
plate-beam systems on a term by term ba‘sis, and to then superimpose
the solutions to find final results.

Modifications in this procedure are necessary in cases involving
symmetrically loaded plates supported by beams with unsymmetrical
end conditions; as equations corresponding to even terms in the series
have trivial solutions. To remedy this difficulty, one additional term is
retained from the exact expressions which accounts for the influences of
the first and second harmonics of edge redundants on one another. Nu-
merical calculations show that these influences are small and indicate
that additional refinements are unwarranted., Load functions were

found to be in good agreement with existing data.

5-3. Extension

The analysis of plate-beam structures is a broad area of struc-
tural engineering, and one in which much work remaiﬁs to be done.
With the basic philosophy of flexibility analysis by trigonometric series
established, the theory developed in this study may be extended to cover
more general cases, An immediate extension of this research would be
to develop analytical expressions for plate flexibilities for the case in
which the basic plate is supported by elastic springs. The method of

analysis of the basic plate structure should then be extended to include
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the influences of in-plane forces, antisotropy of plate materials, elastic
foundations, and combinations of these special effects.

After a thorough investigation of plates supported at their corners,
the extension of this research should be directed toward fhe analysis of

general plate-frame structures.



10.

11.

12,

A SELECTED BIBLIOGRAPHY

Korenev, B.G., "The Theory of Plates,' Structural Mechanics
in the U.S.S.R. 1917-1957, Ed. by Rabinovich, I. M., Tr.
Ed. by Herrmann, G., Pergamon Press, New York, 1960,
p. 205.

Levy, M., Compt. rend., Vol. 129, 1899, pp. 535-539.

Nd4dai, A., "Uber die Biegung durchlaufender Platten und der
rechteckigen Platte mit freien Rédndern, " Z. Angew. Math.
u. Mech., Vol. 2, 1922, pp. 1-26.

Nddai, A., Die elastischen Platten, Springer, Berlin, 1925,
pp. 42-45, 86-95, 141-145,

Fletcher, H.J., and Thorne, C.J., '"Bending of Thin Rectangular

Plates, " Proceedings of the Second U. S. National Congress
of Appl. Mech., ASME, Ann Arbor, 1954, pp. 389-406.

Holl, D. L., "Analys1s of Thin Rectangular Plates Supported on
Oppos1te Edges, "' Iowa Engineering Experiment Station
Bulletin, Iowa State College, Ames, No. 30, 1936.

Holl, D. L., "The Deflection of an Isotropic Rectangular Plate
Under the Action of Continuous and Concentrated Loads When
Supported at Two Opposite Edges, ' Iowa State Journal of
Science, No. 9, 1935, pp. 597-607.

Hencky, H., "Der Spannungszustand in rechteckigen Platten, "
Dissertation, Miinich, 1913.

- Galerkin, B. G., Collected Papers, Vol. 2, Moscow, 1953,

pp. 15, 29.

Galerkin, B. G., Elastic Thin Plates, Gosstrojisdat, Leningrad,
1933, pp. 43-74.

Habel, A., "Wandlasten auf linglichen frei aufliegenden Rech-
teckplatten, "' Z. Angew. Math. u. Mech., Vol. 15, 1935,
p. 185.

| Bleich, H., "Berechnung kreuzweise bewehrter Fahrbahnplatten

bie beliebiger Stellung der Verkehrslasten, ' Beton u. Eisen,
No. 36, 1937, p. 312-328.

121



13.

14.

15.
16.
17.
18.

19.

20,

21,

22.

23.

24,

25.

26.

122

Woinowsky-Krieger, S., '"Bietrag zur Theorie der durchlaufenden
Platte, " Ing.-Arch., No. 9, 1938, p. 396.

Nowacki, W., "Bending and Buckling of Some Types of Continuous
Orthotropic Plates, "' Internatl. Assn. for Bridge and Struc-
tural Engin. -Publications, Vol.8, 1948, p. 519.

Chang, F., 'Continuous Rectangular Plates, " Acta Mechanica
‘Sinica, Vol. 2, No. 3, July, 1958, pp. 219-231,

Marcus, H., Die Theorie elasticher Gewebe, 2nd.Ed., Springer,
Berlin, 1932, pp. 173, 310.

Girkmann, K., Fldchentragwerke, 4th Ed., Springer, Vienna,
1956, pp. 205-208, 2'7%-2’74.

Bittner, E., Momententafeln und Einflussfldchen fiir kreuiweise
bewehrte Eisenbetonplatten, Springer, Vienna, 1938.

Engelbreth, K., "Ein Metode for Tilnaermet Beregning av
Kontinuerlige Toveisplater, "' Betong, Vol. 30, 1945,
pp. 99-115, v

Maugh, L. C., and Pan, C. W., '"Moments in Continuous Rec-

tangular Slabs on Rigid Supports, " Proceedings, ASCE,
Vol. 67, 1941, pp. 739-752. (Discussions by %yrne, R. E.,

and Fuber, P. P.)

Siess, C. P., and Newmark, N. M., "Moments in Two-Way
Concrete Floor Slabs, ' Engineering Experiment Station
Bulletin, University of IfIinois, Uréana, No. 43, I950.

Weber, E., ''Die Berechnung rechteckiger Platten, die durch
elastische Triger unterstiitzt sind, Ing. ~Arch, Vol. 8,
1937, pp. 311-325,

Jensen, V. P., "Solutions for Certain Rectangular Slabs Con-
tinuous Over Flexible Beams, "' Engineering Experiment
Station Bulletin, University of Illinois, Urbana, ’No. 81,
1938,

Newmark, N. M., "A Distribution Procedure for the Analysis of
Slabs Continuous Over Flexible Beams, " Engineering Experi-
ment Station Bulletin, University of Illinois, Urbana, No. 84,
1938.

Fisher, G., Bietrag zur Berechnung kreuzweise gespannter
Fahrbahnplatten im Stahlbruckenbau, W. Ernst. u. Sohn,
Berlin, 1952.

Sutherland, J. G., Goodman, L. E., and Newmark, N. M.,
"Analysis of Plates Continuous Over Flexible Beams, "
University of Illinois Civil Engineering Series-Structural
Engineering Series, University of Illinois, Urbana, No. 42,




21,
28.
29.

30.

31.
32.
33.
34.
35.
36.
37.

38.

39.

40.

123

Ang, A. H. S., "A Distribution Procedure for the Analysis of
Continuous Rectangular Plates, " Ph.D. Thesis, University
of Illinois, Urbana, 1959, '

Ang, A. H. S., and Newmark, N. M., "A Procedure for the
Analysis of Continuous Plates, " Proceedings, 2nd ASCE
Conf. on Electronic Computation, 1960, p. 379.

Ang, A. H. S., and Prescott, W., ""Equations for Plate-Beam
Systems in Transverse Bending, " Proceedings, ASCE,
.Engr. Mech. Div., Vol. 87, 1961, pp. 1-15.

Kalmanok, A. S., Stroitelhaya Mekhanika Plastinok, Mash-
stroiizdat, Moscow, 1950.

Young, D. H., "Bending Moments in the Walls of Rectangular
Tanks, " Proceedings, ASCE, Vol. 67, 1941, pp. 1683-1696.
(Discussion by Silverman, I. K.)

Dill, D. H., "The Vibrations of Plates and Plate Systems, "
Doctoral Thesis, University of California, Berkeley, 1957.

Dill, D. H., and Pister, K. S., 'Vibration of Rectangular Plates
and Plate Systems, " Proceedings of the Third U.S. National
Congress of Applied Mech., ASME, New York, 1958,
pp. 123-132.

Tekinalp, B., "Elastik Gubuklara Oturan Plaklarin Géziimleri, "
Doctoral Thesis, Istanbul Technical University, Istanbul,
1952

. : )

- Wood, R. H., "Studies in Composite Construction Part II: The

Interaction of Floors and Beams in Multi-storey Buildings, "

Natl. Building Studies, Research Paper No. 22, H. M. S. O.,
London.

Wood, R. H., "Composite Construction, " Jubilee Issue of the
Structural Engineer, July, 1958, p. 135.

Wood, R. H., "A Preliminary Study of Composite Action in
Framed Buildings, "' Internatl. Assn. for Bridge and Struc-
tural Engin. -Publications, Vol. 15, 1955, pp. 247: .

Wood, R. H., Plastic and Elastic Design of Slabs and Plates,
‘Ronald, New York, 1961, pp. 263-293.

Timoshenko, S. P., and Wionowsky-Krieger, S., Theory of Plates

and Shells, 2nd Ed., McGraw=Hill, New York, 1959, pp. 104,
214-258. ‘

Timoshenko, S. P., "Bending of Rectangular Plates With Clamped

Edges, " Proceedings of the Fifth International Congress of
Appl. Mech,, 1938, pp. 40-43.




41,

42.

43.

44.

45.

46.

47,

48.

49.

50.

51.

92.

53.

54.

55.

124

Kirchhoff, G., "Uber das Gleich gewicht und die Bewegung einer
elastischen Scheibe, " J. reine u. angew. Math., Vol. 40,
1850, pp. 51-88.

Brotchie, J. F., "General Method for Analysis of Flat Slabs and
Plates, " ACI Journal, Vol. 29, No. 1, July, 1957,.
pp. 31-50 . (Discussion by J. Chinn)

Brotchie, J. F., "General Elastic Analysis of Slabs and Plates, "
ACI Journal, Vol. 31, No. 2, Aug., 1959, pp. 124-152.

Lewe, V., "Die Lésung des Pilzdeckenproblems durch Fourier-
sche Reihen, " Bauingenieur, Vol. 1, 1920, p. 631.

Lewe, V., Pilzdecken und andere trigerlose Eisenbetondecken,
Springer, Berlin, 1929.

Thorne, C. J., "Square Plates Fixed at Points, "' Journal of

Appl. Mech. - Transactions, ASME, Vol. 15, 1948,
pp. 73-T79.

Thorne, C. J., '"Symmetrically Loaded Rectangular Plates Fixed
at Points, "' Engr. Exp. Sta. Bulletin, University of Utah,
Salt Lake City, No. 10, 1949,

Prescott, W. S., Ang, A., and Siess, C.P., "Analysis of
Clamped Square Plates Containing Openings With Stiffened
Edges, "' Civil Engineering Studies, Structural Series
No. 229, Universilty of lllinois, Urbana, Nov., 1961.

Grein, K., Pilzdecken, W. Ernst u. Sohn, Berlin, 1941.

Thiirlimann, B., 'Influence Surfaces for Support Moments, "
Internatl. Assn. for Bridge and Structural Engin. -Publica-
fions, Vol. 16, 1956, pp. 485-498.

Kawai, T., and Thiirlimann, B., 'Influence Surfaces for Moments
in Slabs Continuous Over Flexible Crossbeams,' Internatl.
Assn. for Bridge and Structural Engin. -Publications, VoIl.17,
1957, pp. 117-138.

Westergaard, H. M., ''Computation of Stresses in Bridge Slabs
Due to Wheel Loads, " Public Roads, Vol. II, 1930, p. 1.

Baron, F. M., "Influence Surfaces for Stresses in Slabs, "
Transactions, ASME, Vol. 63, 1941, p. A-3.

Pucher, A., Einflussfelder elastischer Platten, Springer,
Vienna, 1951,

Richart, F. E., and Kluge, R. W., "Tests of Reinforced Con-
crete Slabs Subjected to Concentrated Loads, " Engineering
Experiment Station Bulletin, University of Illinois, Urbana,
No. 85, 19.9.




56.

oT.

58.

59.

60.

61.

62.

63.

64.

65.

66.

617.

68.

69.

125

Newmark, N. M., and Siess, C. P., '"Moments in I-Beam
Bridges, " Engineering Experiment Station Bulletin,
University of Illinois, Urbana, No. 336, 1942.

Jensen, V. P., Kluge, R. W., and Williams, C. B., "Highway
Slab-Bridges With Curbs: Laboratory Tests and Proposed
Designs, " Engineering Experiment Station Bulletin,
University of Illinois, Urbana, No. 346, 1943.

Siess, C. P., and Viest, I. M., "Tests of Continuous Right
I-Beam Bridges, " Engineering Experiment Station Bulletin,
University of Illinois, Urbana, No. 416, 1953.

Velestos, A. S., and Newmark, N. M., '"Determination of
Natural Frequencies of Continuous Plates Hinged Along Two
Opposite Edges, "' Transactions, ASME, Vol. 78, 1956,
pp. 97-102. ' :

Dimitrov, N.,; "Festigkeit einer beiden Richtungen vorgespannten
Plate, " Bauingenieur, Vol. 32, 1957, pp.359-361.

Woinowsky-Krieger, S., "Bietrag zur Theorie der Pilzdecken, "
Z. Angevw. Math. u. Mech., Vol. 14, 1934, p. 13.

Hoeland, G., ''Stiitzenmomenteneinflussfelder durchlaufender
elastischer Platten mit zwei frei drehbar gelagerten Réndern,
Ing. -Arch., Vol. 24, 1956, p. 124.

Krug, S., and Stein, P., Einflussfelder orthogonal anisotroper
Platten, Springer, Berlin, 1961.

Odman, S. T. A., "Studies of Boundary Value Problems, "
Proceedings-Swedish Cement and Concrete Institute, Royal
Institute of Tech., Stockholm, Part II, No. 24, 1955.

Werfel, A., ''On the Boundary Conditions of Thin Elastic Plates, "
Internatl. Assn. for Bridge and Structural Engin. -Publica-
tions, Vol. 19, 1959, p. 287.

Clarkson, J., "Elastic Analysis of a Beam-Plating Structure
Under a Concentrated Load, " Congrés Internatl. de
Méchanique Appliquée, Brussels, Vol. 6, 1957, p. 176=186.

Nielsen, N. J., Bestemmelse af Spaendinger i Plader, Copen-
- hagen, 1920,

Parsons, H. W., "The Deflection of a Normally Loaded Square
Plate Elastically Supported Along Its Edges, " Congreés
Internatl. de Méchanique Appliquée, Brussels, Vol. 6, 1957,
pp. 390-395.

Kist, H. J., and Bouma, A. L., "An Experimental Investigation
of Slabs, Subjected to Concentrated Loads, " Internatl. Assn.
for Bridge and Structural Engin., Vol. 14, 1954, p. 85.




70.

71.

72.

73.

4.

75.

126

Karrholm, G., and Samuelsson, A., "Bridge Slabs With Edge
Beams, " Publication, Chalmers Tekniska Hégskolas,
Go6teberg, 1962,

Hawk, R. D., "Analysis of Continuous Rectangular Plates by
Carry-Over Moments, " M. S. Thesis, Oklahoma State
University, Stillwater, 1961.

Lechter, H., "Analysis of Continuous Rectangular Plates on
Rigid Supports by Flexibility Methods, "' M. S. Thesis,
Oklahoma State University, Stillwater, 1962.

Timoshenko, S. P., History of Strength of Materials, McGraw-
Hill, New York, 1953, pp. 29, 77, 120-122.

Sokolnikoff, I. S., and Redheffer, R. M., Mathematics of
Physics and Modern Engineering, McGraw-Hill, New York,
1958, pp. 175-211.

Timoshenko, S. P., and Goodier, J. N., Theory of Elasticity,
2nd. Ed., McGraw-Hill, New York, 1951, pp. 6, 9, 10.




VITA
John Tinsley Oden
Candidate for the Degree of

Doctor of Philosophy

Thesis: ANALYSIS OF PLATE-BEAM STRUCTURES
Major Field: Engineering
Biographical:

Personal Data: Born December 25, 1936, in Alexandria, Loui-
siana, the son of John and Sarah Oden.

Education: Graduated from Bolton High School, Alexandria,
Louisiana in May, 1955. Awarded California Oil Company
and T. H. Harris scholarships while studying at Louisiana
State University. Received the degree of Bachelor of
Science in Civil Engineering from Louisiana State Univer-
sity, January, 1959. National Defense Education Act
Fellow at Oklahoma State University from September, 1959,
to May 1962. Received the degree of Master of Science
from the Oklahoma State University with a major in Civil
Engineering in August, 1960. Member of Phi Eta Sigma,

Pi Mu Epsilon, Sigma Tau Sigma, Tau Beta Pi, Phi Kappa
Phi, Omicron Delta Kappa, Chi Epsilon, and associate
member of the Society of the Sigma Xi. Completed the re-
quirements for the degree of Doctor of Philosophy in August,
1962,

Professional Experience: Teaching Assistant at Louisiana State
University, Spring, 1959. Professional Engineer for the
Louisiana State Highway Department, Summer, 1959. In-
structor in the School of Civil Engineering, Oklahoma State
University, 1960-61, engaged in undergraduate and graduate
instruction in structural analysis and the mechanics of
solids. Associate Member of ASCE and the International
Association for Shell Structures.





