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CHAPTER I 

INTRODUCTION 

The estimation of parameters that appear in various functional 

relationships is of general statistical and scientific interest. For 

many problems, the method of least squares is a desirable and satis­

factory technique. Historically, it seems that Karl Friedrich Gauss 

was the driving force behind the development and enlargement of the 

method. It is of interest to note that a translation of Gauss' least 

squares work has been prepared by Trotter (1957). 

As one peruses this material, it appears that Gauss was on the 

verge of stating the principle of maximum likelihood. Of course, the 

clear enunciation of this principle had to wait for Fisher (1922, 1925) 

to state it in some generality. Indeed, it is now clear that Gauss' 

least squares criterion for the estimation of parameters in many rela­

tionships is equivalent to maximum likelihood when certain of the 

variables in the relationships are assumed to be normally distributed. 

Out of this background has grown an area of statistical interest 

called Linear Hypotheses, which includes such seemingly diverse con­

cepts as multiple regression and analysis of variance. An important 

tool in Linear Hypotheses is the concept of model building, in which 

a mathematical expression is prepared in an effort to describe observ­

ational data. This expression is the 11model11 for the data and is used 
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extensively in preparing the theoretical bases for tests of hypotheses, 

confidence intervals, estimation procedures, and similar statistical 

matters. 

If y is a random variable, X is a mathematical variable, and a is 

a parameter, it will be said that the equation H(y, X, a)= 0 is a 

model. If, in addition, we can assume that y is normally distributed 

with meanµ and variance o2, we will speak 

2 model H(y, X, a)= 0 where y-"'../N(µ, o )." 

of the following: "The 

Moreover, each of the argu-

ments may be multi-dimensional. For example, y may be a 2-element 

vector with a particular bivariate distribution, and a may be a vector 

of parameters. Based on these considerations, we may define a model 

as follows: 

Definition r.i. A model is a mathematical equation involving 

random variables, mathematical variables, and parameters. 

Information about the distributions of the random variables is 

considered part of the model. 

A long-accepted practice has been the division of models into two 

classes: those that are "linear" and those that are not. The defini-

tion given by James and James (1959, p. 235) says, "An equation or 

expression is said to be linear in a certain variable ftheir emphasi§] 

if it is of the first degree in that variable." Using this concept, 

we can state the next definition: 

Definition I. 2. A linear model is a model that is linear in the 

random variables and in the parameters. 
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We note particularly that a model may be linear even if it contains 

nonlinear functions of the mathematical variable X. For example, sup­

pose we have H(y, X, a)= y - (a
1 

+ a
2

X) = O. This model is linear

because the random variable y and both parameters, a1 and a
2

, appear

in the function Hin a linear fashion. But, by our definition, the 

2 model G(y, X, a)= y - (a
1 + a

2
X )  = 0 is also linear. Both of these 

models are forms of a general polynomial model. On the other hand, 

sup_pose F(y, X, a)= y - sin (aX) = 0 is prescribed. This function is 

linear in the random variable y, but it is nonlinear in the parameter 

a. This particular function, then, qualifies as a nonlinear model.

Just as Graybill (1961, pp. 103-5) classifies linear models into

at least five useful types, so does it serve our present purpose to 

consider the classification of nonlinear models. One step is the sub-

division of nonlinear models into three types: (1) nonlinear only in 

the param.e-ters, (2) nonlinear only in the random variables, and 

(3) nonlinear in both. Further subdivision seems to be a prodigious

task because of the infinite variety of statistical models. 

We have chosen to limit our considerations in this work to models 

of the type which are nonlinear only in the parameters. With this in 

mind, we are able to propose a generalization of model 1 as presented 

by Graybill (1961, p. 103). We shall call this generalization "models 

of Type I." 

Definition I.3. A model of type I is any function y = f(X; a)+ e 

in which y is an observable random variable, X is a J-element 

vector of known mathematical variables, a is a K-element vector 

of unlmown parameters, and e is an unobservable random variable 

whose mean is assumed to be zero. 



The semicolon separating the arguments X and a in the function f is 

introduced onl_y to emphasize the difference between the mathematical 

variables and the parameters. We make particular note of the faet that 

this type of model preserves the linearity of the random variables as 

required by our self-imposed limitation, while no restrictions are 

placed on the parameters. 

Model 1, as defined by Graybill, fits this definition, and any 

results obtained for models of Type I apply immediately to his model. 

To see this, recall that the linear model 1 is given as 

y = �o + z �.x . + e. 
i=l 1 1 

If we define X as a vector whose transpose is X 1 = (1, X
1

9 x

2
, •.. , 1ic)

and� a vector whose transpose is P' = (�0, �l' �2, ••• , �k) and let

J = K = (k + 1), we see how Graybill's model 1 is a special case of 

models of Type I. 

There is another model which qualifies as meeting Graybill 1 s 

specifications and, thereby, ours. This is the model in which the 

vector Xis itself a function of another vector of mathematical vari-

ables, say X* whose transpose is (X*) 1 = (Xi, X�, ••• , �). Setting_ 

x1 = f1(X*), x
2 

= f2(X*), ••. ,and�= f
�

(X*), we can obtain the

mod-el given byy= �0 + �1f1(x�*) + �2r2(X*) + ••• + �krk(X
.
*) + e

= f(X*; �) + e. 

The main reason for bringing this last model into our discussion 

is to point out that a model should pe formulated in terms of its 

- basie -arguments. There is no advantage, for example, to be _gained

in talking about the model "y = a.X + e where X = sin X*" when we can

4 
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just as well (and without losing sight of our objectives) refer to 

the model "y = a sin X* + e. 11 Of course, we must realize that a is 

the parameter and that X* is the mathematical variable--but that real­

ization must go with any model we form. 

Many functions belong to the Type I class. Whenever a function 

also belongs to Graybill's model 1, it means that the parameters 

appear linearly in the function. The estimation of parameters in this 

function, whether it be a hyperplane or an analysis of variance model, 

usually requires little more than application of results already con­

tained in a highly developed statistical domain. Such problems there­

fore have, for the most part, solutions that are both esthetically 

pleasing and practically satisfying. 

The same cannot be said for a model in which even one of the para­

meters appears nonlinearly. The basic difficulty, as Turner (1959, 

pp. 3-8) points out, is simply that sufficient estimators of nonlinear 

parameters do not exist in general. In addition, even if we were 

willing to accept a standard technique of estimation, such as least 

squares, we would be faced with having to solve systems of nonlinear 

equations. This is hardly a pleasing prospect. 

Trying to circumvent the problems associated with solving non­

linear equations, many authors have proposed other estimating proce­

dures. These invariably require certain restrictions on the values 

allotted to the vector X. Sometimes it is necessary also to perform 

a transformation on the model, so that linearity of the random vari­

ables is violated. 

By way of illustration, consider the 11 sum of exponentials" model 

5 



K/2 A.kX 
y = � ake + e

k=l 

where K is an even integer. With reference to our Type I, we note 

that Xis a scalar, the K-element vector of parameters has elements 

a1, Al' a2, l2, •••, aK/2' A.K/2' and the random variable e has mean

zero. Tb.is model has a great many uses, particularly in the physical 

and biological sciences. Attesting to its usefulness is the great 

amount of literature available in which various authors discuss the 

problem of estimating the parameters. From Prony's method, discussed 

by Whittaker and Robinson (1944, PP• 369-70), to a fairly recent pro­

posal by Cornell (1956), a recurrent theme appears: the data must be 

equally spaced with respect to values of X, the number of points at 

which observations are made often should be some multiple of K/2 

(the number of "periods"), and, having taken all these precautions, 

the experimenter must beware of the all-too-many cases in which esti-

mates of the parameters are complex numbers. Hildebrand (1956, 

pp. 380-1) gives a particularly discouraging example in which Prony 1 s 

method gives estimates which are either real or complex, depending 

upon a slight degree of rounding in the observations y. This obstacle 

never faces the practitioner who remains loyal to linear models. 



CHAPTER II 

THE GENERAL LEAST SQUARES PROBLEM 

AND THE GAUSS ITERATIVE METHOD 

In a manner similar to Chapter 6 of Graybill (1961), eonsider the 

frequeney function g(y; x
1

, x
2

, ••• , x
3

; a
1

, a.
2

, ••• , a.K) of a random

variable y, which depends on J known quantities x1, x2 , ••• , X
J 

and on

K unknown parameters a.
1

, a.
2

, ••• , a.r We shall assume that the 

expected value of y is a function of the X
j 

and the ak; i.ee, E(y) =

f(X; a) where X and a are vectors whose elements are, respectively, 

the X
j 

and the ak. Furthermore, we assume nothing in particular about

2 the variance of y, denoting it temporarily only by d .

If the transformation e = y - f(X; a) is performed, it follows 

that e is a random variable such that E(e) = 0 and the variance of e 

is d
2 • The transformation could also be written y = f(X; a)+ e. We
y 

note especially that thiJ is the form required for a model to be of 

Type I. 

In order to estimate the parameter vector a, we will consider 

having taken a random sample of size I from the distribution of y. We 

note that a sample consists of the selection of a J-element vector X 

� a corresponding random observation y. Denoting the general 

element of the sample by i, we obtain a system of relationships among 
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the observations: 

y, = f(X.; a)+ e., 
1 1 1 

i = 1, 2, ••• , I, 

where X. is a vector of J elements and a is a vector of K elements. 
1 

This can be written in matrix notation as 

Y = F(X; a)+ E 

where 

Y'1 rc1i, a) el

Y2 f(X2; a) e2
Y= . F(X; a) = E= ••• • •• • • •

Yr f'(XI; a) eI

x
n 

al

xi2
a2

x. = i = i, 2, 0 • •  ' Io and a -
• '

1 ••• • • •

xiJ
aK

To obtain the least squares estimate of the parameter vector a, 

we could use an adaptation of Aitkin 1 s proposal (1934-5). That is, 

suppose the error vector E has a known covariance matrix, say V. Then, 

the least squares estimate of a would be the vector, say a, such that 

the generalized sum of squares [Y - F(X; a)] 
1 

v-l [J - F(X; a)] is

minimized. This vector a is also the maximum likelihood estimate of a 

when Eis assumed to be distributed as an I-variate.nor:ma.l whose mean 

vector is null and whose covariance matrix is V. 

' 



For our work, we shall assume that the elements of E have zero 

for their expected values, have the same variance 6
2 , and are uncor­

related. Thus, Vis simply i times the identity matrix and the 

generalized sum of squares is d-
2 [Y - F(X; a)] 

1 

[Y - F(X; al]. How­

ever, to avoid continued reference to the factor d-2, we will be con-

9 

cerned with minimizing the sum of squares of the errors, E 1 E. Because 

the vector Y and the vectors X. are fixed for a given sample, we will 
J. 

use the notation Q(a) = E 1 E = [Y - F(X; a)] I] - F(X; aJJ, indicating 

that the sum of squares is a function of the parameter vector. When,

in addition, we impose the condition that Y is an I-variate normal,

the maximum likelihood estimate of o2 is Q(a)/I, where Q(a) denotes

the minimum of the sum of squares of the errors. Furthermore, Cramer

(1951, pp. 500-4) states that under certain general conditions the

estimating vector a is normally distributed with mean a and a specific

covariance matrix.

In order to make possible the statement of a formal minimization 

procedure, certain assumptions and notation will be given as the 

discussion developes. The first of these assumptions follows. 

Assumption II.1. The function f(X.; a), i = 1, 2, 
J. 

e o o , I, has 

continuous first and second derivatives with respect to each 

element of the vector a. 

Therefore, for a given set of observations (y., X.) where i = 1, 2, 
J. J. 

••• , I, the sum of squares of the errors is a continuous and twice-

differentiable function of the parameter vector a. 

P will denote an Ix:K matrix of the first order partial derivatives 

of the vector F(X; a) with respect to the vector a. In general, the 
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matrix P will be a function of a. Thus, P(a) 
= 

[i,ik(a)J where the

element in the !th row and kth column is pik(a) 
= of(Xi; a)/ aak.

With Assumption 'II.l, we see that a necessary condition that Q(a) 

has a minimum at a = a is that , oQ/ c>ak = 0 for k = l s, 2, ••• , K when

the derivatives are evaluated at the point a= a. This system of K 

equations in K unknowns can be summarized in matrix notation, after 

dropping the common factor 2, as 

p r (a) [Y - F(X; a)] = cp (II.1) 

where P' (a) .i$ the transpose of the matrix P(a.) evaluated at a. = a, 

F(X; a) is the vector F(X; a.) evaluated at a= a, and cp is a null 

vector of K elements. These equations are commonly ca,ll·ed the "normal 

equations." 

Formally, then, all we need to do to find the least squares 

estimate of a is to solve this system of equations for the elements of 

the vector ai In general, however, fil:luations (II.l) are nonlinear in 

the vector a. Although a great deal of mathematical effort and inge-

nuity has been devoted to the problem of solving simultaneous non-

linear equations, each set of such equations poses its own difficul-

ties and no really satisfying general approach has been forthcoming. 

Gauss' technique of expanding the model y = f(X; a)+ e in a 

first-order Taylor's series in a and iteratively seeking a value of a 

that minimizes Q(a) is a well-known and widely used procedure. Never-

theless, for the sake of completeness, it is worthy of some discussion 

here. We begin by examining a form of Graybill 1 s model land noting 

how the least squares estimates of its para.meters are obtained. 
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The model we will consider is of the matrix form 

I= X� + E (II.2) 

where Y is an I-element vector of observed random variables, Xis an 

IxK matrix of observed mathematical variables,� is a K-element vector 

of unknown parameters to be determined, and Eis an I-element vector 

of unobservable random variables which have a constant variance and 

are uncorrelated. For this linear model Fquations (II.l) simplify and 

take the form (X'X)b = X'Y. If, in addition, we assume that the 

matrix X has rank K, we know that X'X also has rank Kand therefore 

the least squares estimate of� is b = (x•x)-
1
x•Y. Moreover, because

X'X is positive definite and independent of�, we know that the vector 

b so determined is the unique value at which the sum of squares, Q(p),

is a mininrum. 

Let us return now to our models of Type I and examine Gauss' 

method. We begin by choosing in some manner a vector a0 which we hope

in some sense is "close" to the minimizing vector a. We rewrite the 

model y = f(X; a)+ e in the form of a first-order Taylor's series 

about the point a0 to obtain a new model

Whenever a0 appears in an expression, such as f(X; a
0
), it means that

the expression is to be evaluated at a
0

o The symbol 6k,l = (ak - ak,O)

where ak,O is the kth element of the vector a0• The symbol� contains

the error e and all additional error introduced in the expansion of 

the function. Thus, we have§.= e + (all terms in the series for 
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f(X; a) of order higher than the first)e 

Suppose now that this series expansion has been performed for 

each of the I observations (y., X.). We define F
0 

to be the vector 
J. J. 

F(X; a) evaluated at a= a0 o We also let P
0 

be the matrix P(a) at

a= a0• We let 61 be a K-element vector whose Js;th element is 6k,l•

Finally, we let �O be an I-element vector whose 1th element is �i·

Then, in matrix notation, the model can be written Y = F0 + P061 + �·

To finally obtain the form (II.2), we let z
0 

= Y - F0 and write our

new model as 

( II.3) 

If we can assume that P0 is a matrix of rank K� we can apply the

theory applicable to Graybill 1 s model 1 and obtain a least squares 

estimate of 61 by minimizing q(61) = ��0 = (z0 - P081)t(Z0 = P081).

This estimate, say d1, is given by�= (P0P0)-1P0z0
• Now, because

we have written the vector 6 = a - a0, we will take a1 = a0 +�as an

11improved 11 estimate of the vector a which we have assumed to be the 

value of a which minimizes Q(a). 

The procedure is now repeated. That is p we replace the initial 

estimating vector a0 by the improved vector a1• The vector F and the

matrix Pare now evaluated at a1 and denoted by F1 and P1, respec­

tively. The vector of corrections is now denoted by a2• Thus, we are

now in the position of finding the estimate 9 say d2, which minimizes

q(82) = ];j_i1 = (Z1 - P182) 1 (z1 - P182). The new estimate, say a
2

, of

the minimizing vector a is defined by a2 = a1 + d2•

Continued repetition of the procedure leads to the mth iteration 

in which the mth vector of corrections is computed by minimizing 



q (6 ) = (E 1) 1 (E . 1) = (Z 1 - fl 1a ) 1 (Z 1 - P 16 ) • From this,m -m- · -m- m- m- m m- -m- m 

we obtain the equation of the estimate of 6 asm 

1.3 

When, after say the �th iteration, the estimating vector correction�

is deemed "sufficiently small," we will say that the procedure has con-

verged and that aM = 8M-l +�is our estimate of the true minimizing

vector a. 

In order that the foregoing may be a useful procedure, we must 

make Assumption II.2 as follows: 

Assumption II.2. F.ach of the matrices P0� P1, ••• , P
m

, ••• is

of rank K. 

If this assumption is not made, there is no guarantee that there is a 

unique solution for each system of equations and the procedure is 

vitiated. 

This hlnimization procedure may be characterized as follO'ws: We 

have a function, say Q(a), of the vector a of K variables. We assume 

the existence of a vector, say a, at which the function attains a min-

imum. Starting with a trial vector, say a0, we generate a sequence of

vectors by the method given above such that the vector a is a limit 

point of the sequence a0, a1, a2, ••• , a
m

, •••• In addition, we are

assuming that the first time [a - a 1] = [d 1 is "small" impliesm m- m:-1 

that [a 1 - a] is also "small'' for m 1 = m + 1, m + 2, m o e o o 

The procedure is open to mathematical criticism; but, at the same 

time, the method has been demonstrated by application to be useful and 

profitable when it is properly handled. Deming (1943) has devoted most 
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of his book to the routine use of the method, even when the vector X 

is itself a random variable. Ra.o's (1952, PP• 165-72) method of 

"scoring," given as a general technique for solving maximum likelihood 

equations, is the same sort of procedureo Moore and Zeigler (1959, 

pp. 28-31) give several examples of functions that have yielded to 

careful administration of the method. 

Well-known, but nevertheless worth noting in terms of our present 

notation, is the fact that the iterative method gives an exact result 

in a single iteration when applied to the linear model Y = Xa + e. 

The demonstration is straightforward • .Any estimate of a, say a0, is

chosen. The matrix P0 is independent of a0 and we write P0 = X. We

have the vector z
0 

= Y - Xa0• Then, the vector of corrections is

d1 = (X 1 X)-1x•z0 = (X 1 X)-1X 1 (Y - xa
0

). The new estimate of the least

squares estimate of a is a1 = a0 + � = a0 + (X 1 x)-1x 1 r - (X 1 X)-1X 1 Xa0
= (X 1 X)-1x•r. But it has already been noted that this is the estimate

of the vector a obtained by direct application of least squares methods. 

Hence, a1 = a, and the correspondence between the techniques for this 

model has been established. 



CHAPTER III 

SUFFICIENT CONDITIONS FOR MULTIPLE MINIMA 

OF THE SUM OF SQUARES SURFACE 

It was pointed out in Chapter II that linear models, perhaps after 

some reparameterization, lead to least squares solutions that are 

unique. Hence, there is no concern about multiple minima and the pos­

sibility of choosing a local maximum or saddle point as a least squares 

estimate of the parameter vector a. 

However, this is not the case for nonlinear models. Each pro­

posed model presents a new problem for the statistician. Even after 

applying the Gauss iterative techniques, he must satisfy himself and 

his client that his solution does meet the requirements of being a 

global minimum. Showing uniqueness of the result is also a difficult 

problem. In general, a detailed examination of the sum of squares 

surface is required. Sometimes, it is possible to call on certain 

theorems about convex functions; but these are difficult to work with 

because the sum of squares is often only locally convex and defining 

the neighborhoods of convexity is a complicated procedure. 

It is the purpose of this chapter to state and prove a theorem 

about a class of functions that will lead to several points in the 

parameter space at which the sum of squares is minimized. Following 

the theorem, some space will be devoted to an example and discussion 
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of a difficulty implied by the theorem. 

Because the values of the mathematical variable X are of no direct 

concern in this theorem, the notation will be simplified by writing F a
and P for the vector F(X; a) and the matrix P(a), respectively, de-a 

fined in Chapter II. The notation for the transpose of a vector or a 

matrix will be used where convenient; e.g., we will speak interchange-

ably of a and its transpose a 1
• 

Theorem. Let the following conditions be satisfied: 

1. The parameter vector a is divisible into (k + 1) subvectors

�l' �2' ••• , �k' �k+l 0

2. The length of the subvector �., is the same as the length of
1

the subvector �i"; i' � i", i', i 11 = lll 2, ••• , k. The sub-
vecto� �k+l may contain no elements.

3. With this subdivision of a, the function to be fitted may be
written

f(X; a)= � g(X; �i) + h(X, �k+l).
i=l 

4. The sum of squares is minimized at the point a'= (b1 b2 •••
bk bk+l), where the length of bi is the same as that of �i.

Then there are at least kl points at which the sum of squares is 

minimized. 

Proof. Consider the vector, say �j formed by permuting the first 

k subvectors of the vector a. The new vector can be written 

where (i) � i for at least one i in the set {l, 2, ••• , k). It will 

be shown that� is also a minimizing vector for the sum of squares. 

k 
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By conditions 1, 2, and 3 and the convention adopted just prior to 

stating the theorem, 

Hence, F
a = Ft.

F = � G + 
a i=l �i 

H
r:i.

• 
'"'k+l 

Let R be the matrix of partial derivatives of the vector F witha 

respect only to the elements of�.,, and let S be similarly defined 
l. 

for the elements of �. 11• It follows that R
� 

= S
� 

• Therefore, if
l. i' i 1 

Tis the matrix of partial derivatives of Fa with respect only to the

elements of �k+l' the matrix P can be partitioned so that

P = (R R . . . R T) 

where the matrix R is repeated k times. 

Since condition 4 implies that the normal equations are satisfied 

at the point given by the vector a, it follows that P 1 (Y - F) = cp,a a 

where cp is a null vector. However, because of the partitioning of P, 

this single equation is equivalent to the following (k + 1) matrix 

equations: 

and 

R_I (Y - F) = cp, i = 1, 2, ••. , k,
-1,i a 

T 1 (Y - F ) = cp. 
bk+l a 

Now consider the matrix products 

R_I (Y - F ) ' (i) = 1, 2, 0 • •  ' k, 
-1,(i) a 

where the subvectors b(i) are selected from the vector�·

(III.l) 

(III.2) 

These matrix 

k 



18 

products are, by definition, permutations of the set of products in 

Fq_uations (III.l). Hence, it follows that the products (III.2) are 

null vectors. The vector� is therefore a solution to the normal equa-

tions. Since there are kl possible permutations of the minimizing 

vector a, there are at least k! points at which the sum of squares is 

minimized. 

Motivation and inspiration for the theorem were derived from a 

paper by Cornfield, Steinfeld, and Greenhouse (1960)0 These men were 

concerned with the fitting of experimental data by the sum of exponen-

tials model given in Chapter I. In particular, they were interested 

in estimating the parameters a
1

, A1, a2, and "-2 in the model

This is an example of the kind of models with which the theorem above 

is concerned. Thus, if ('a1, 1i, �2, 1
2

) is a point at which the sum

of squares is a minimum, then the point (�
2

, 12 , 11
1

., 't1) is also a

minimum. 

The main concern of Cornfield and his fellow workers with respect 

to this result is the implication that there is a third stationary 

point at some intermediate position which does not give a minimum sum 

of squares. They show, for the model considered, how to find such a 

third stationary point. It seems to be their contention that the 

iterative least squares method may sometimes converge to this third 

stationary point and thus lead to estimates of the parameters which do 

not minimize the sum of squares. 

To examine this conjecture, a set of data was prepared by the 
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author of this thesis for a double exponential model. The values of y 

were exact to at least seven significant figures. Following the in­

structions of Cornfield and his co-authors, the third stationary point 

was found. These values were then used as the starting values for the 

parameters in a routine calculation using the program described by 

Moore and Zeigler (1959). Contrary to the fears of Cornfield, et al, 

the iterative procedure (as carried out by the Moore-Zeigler program) 

experienced no difficulty in "sliding away" from the false point and 

converging to the true values of the parameters. 



CHAPTER IV 

A FORTRAN II PROGRAM FOR PERFORMING SAMPLING INVESTIGATIONS 

OF THE CHARACTERISTICS OF ESTIMATORS 

OBTAINED FROM GENERAL MODELS 

Researchers in the field of Linear Hypotheses often have one 

great advantage over those who are concerned with nonlinear models: 

the estimators of the parameters in a linear model usually are them­

selves linear functions of the random variables. This being the case, 

it is possible to state precise theoretical results concerning such 

matters as the distributions of the parameters and tests of hypotheses 

about the model in question. Graybill (1961) summarizes a general 

theory that covers most models and problems of this sort that the 

statistician is willing to admit to his domain of interest. 

However, this is not the case when one is dealing with nonlinear 

models. Nearly every model carries with it certain idiosyncracies and 

difficulties that may not occur in any other model. As a result, a 

considerable amount of applied statistical literature has been devoted 

to articles which present special techniques for particular models. 

Examination of the properties of estimators obtained from itera­

tive methods is hampered by the basic intractability of the form of 

the estimators. This is, of course, a consequence of the fact that 

20 
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the est,imators are the results of a sequence of approximations. Owing 

to the lack of suitable forms, the usual elegant techniques for linear 

estimators are not applicable. 

To overcome these difficulties, one may resort to using HMonte 

Carlo" or distribution sampling methods. These methods are among the 

oldest of all statistical devices and were brought into prominence 

early in the 20th ceni;ur.y by 11 Student 1 s11 work with the t distribution. 

It is unfortunately true that these techniques are generally cumber­

some and tedious. However, the introduction of extremely high-speed 

computers was accompanied by their being heralded as devices which 

would remove the drudgery from large scale sampling investigations. 

Teichroew (1953) gives a discussion of this subject, along with a bib­

liography containing most of the pertinent literature available at the 

time of publication. 

In this chapter we will discuss a computer program written ex­

pressly for the purpose of examining the properties of estimators of 

parameters in nonlinear models. The overall code name for the program 

is TEE. It was written by the author of this thesis under the auspices 

of the Los Alamos Scientific Laboratory, Los Alamos, New Mexico. 

Written in the FORTRAN II coding system, the program is designed to 

allow investigation of various characteristics of the parameters in 

nearly any desired model with almost any proposed distribution of the 

random variables in the model. 

In principle, the program is completely general. This generality 

is achieved by dividing the program into several basic parts. By so 

doing, each part becomes a subroutine that can be modified easily as 

various conditions arise. For example, it sometimes may be convenient 



to have the computer prepare the values of the mathematical variables 

X, while at other times the investigator may be interested in values 

22 

of X that are most conveniently prepared externally. To allow for 

such situations, the array of mathematical variables is selected by a 

subroutine. Within the subroutine, the proper X-array is prepared or 

loaded according to a key number which is one of the subroutine's argu­

ments. 

Even the most basic part of the program 9 that in which the para­

meters are estimated by a particular method, is a subroutine. Because 

it was desired to write a program that would allow the comparison of 

estimating procedures, such a subroutine was an absolute necessity 

because of the impossibility of even beginning to code into the program 

all possible estimating procedures. In the present work j we have been 

interested in least squares estimators. Hence, the subroutine for 

their estimation is an adaptation of a basic least squares program, 

long in use at Los Alamos and elsewhere, which is described in detail 

by Moore and Zeigler (1959). Should another estimating procedure be 

proposed or modifications required on this one, it will be a simple 

matter to prepare a different subroutine or to make the modifications. 

Because it is impossible to anticipate the desires of an investi­

gator, the output of the program is also contained in a subroutine. 

Actually, this subroutine must be entered several times during the 

running of a problem. First, it must be entered to prepare for the 

storage of results that will be forthcoming. Next, it must be entered 

at the end of the estimation procedure in order to store these results. 

Finally, it must be entered to prepare and record for examination the 

properties of the estimators in which there is interest. 



Details of the preparation and operation of this prog�am are not 

included in this thesis. Still in its developmental stage, the pro­

gram requires considerable reorganization and refinement before being 

made available for general usage. It is expected to be issued as a 

Los Alamos Scientific Laboratory Report when it is in its final form 

and operating writeups can be prepared. 
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CHAPTER V 

CONCERNING THE SINGLE EXPONENTIAL MODEL AND THE SELECTION 

OF A SET OF PARAMETERS FOR EXAMINATION 

The sum of exponentials model 

(V.l) 

given in the earlier chapters as an example of a nonlinear model, is 

an extremely useful one. By varying the value of Kand the signs of 

the a's and the A 1 s, it is possible to represent a great many types of 

curves. In various areas of investigation, the parameters have special 

and useful interpretation. For example, the i,.'s are the "decay con-

stants11 of the several isotopes in the material being measured in 

radioactive decay studies. Many functions of the para.meters, such as 

the "mean life" and the "half-life" of an isotope or its initial abun-

dance, are of interest to the experimenter. The model obtained from 

(V.1) by setting K = 4, Al= A, and A
2 

= 0 is sometimes called the

Mitcherlisch Law. This model, which is written y = a
1

eAX 
+ a

2 
+ e, is

often used to fit data from fertilizer experiments. The parameter a
2 

is the asymptotic yield for large amounts of fertilizer, x, while i,. 

measures the rate of change in effect and a1 is a "positioning"

parameter. 

24 
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In the remainder of this thesis, we shall be concerned with the 

simplest form of the exponential model; i.e., we t ake K = 2, drop the 

subscript k, and obtain the model 

�y = ae + e, (V.2) 

2 where e is independently distributed with mean zero and variance o.

If we assume that the initial estimates of a and� are a0 and c0,

respectively, and that the number of observations is I, we obtain the 

matr ices z
0

, P0, and a1 which are required by E::J.uation (II.J). Thus,

Z
o 

= 

I 
co�

Y1 - aOe 

Y2 - aOe 

COX2

. . . 

Yr - aOe 

COXI 

e 

c 
' p =0 

e 

co�
a0�e 

COXl

COX2 a0x2e 
COX2

' 

. . . • 0 • 

COXI
aoxre 

COXI

We note that P0 is of rank 2 if a0 f. 0 and xi, 'f. xi 11 for at least one

pair i' and i 11
• Thus, Assumption I.2 is satisfied. The estimates of 

aa1 and 6c1, say.Oa1 and �c1, are obtained by solving the normal equa­

t ions. This solution can be written in matrix form with the elements 

expressed as sums: 



Aa1

2cox. 
�(e . _J.)

Llc1

2c0x. 
aol:(xi

e 1)

2c x 

aoI:(xi e o 1)

2 2 2cOxi 
a0l:(xie ) 
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-1

x (V.3) 

where the index of summation runs over the values i = 1, 2, ••• , I. 

Estimates of the parameters a and A are obtained from these re­

sults as a1 = a0 + Lla1 and c1 = c0 + Ac1• These estimates take the

place of a0 and c0 in F,quation (V.J), and the solutions obtained in

the second iteration are denoted L\.a2 and &2• The process is con­

tinued until such a time, sa., the lith iteration, that the solutions at 

that stage, say .l\.8M and A�,are "sufficiently small." The values 

8M and °Mat that stage are take� to be the least squares estimates of 

a and A and are denoted by a and c. 

The variances of these estimates can be examined in a manner 

similar to that used in linear models. Deming (1943) and Rao (1952) 

have previously used this idea. The asymptotic covariance matrix for 

a and c is 

(v.4) 

where (P
0
,A) is the matrix P0 evaluated at the true values of the

= 



parameters. 2 The variance of the errors, d, is estimated by summing 

the sq'Ul3;res of the deviations of the observations from the fitted 

funqtion and dividing by (I - 2). Thus, the estimate of the variance 

is 

cxi 2�(y. - ae ) 
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8
2 

= 

1 • 

I - 2 
(V. 5) 

The factor (I - 2) is used in an attempt to obtain an unbiased esti-

2 mate of d. Finally, then, to obtain estimates of the variances of

the parameter estimates, we evaluate the matrix (Pa A) using a and c�
' 

to give (Pa,c), substitute this result and that of Equation (V.5) into

Equation (V.4), and find that an estimate of the covariance matrix is 

s2 r(P ) I (P )1-1
L a,c a,c 'J 0 (V.6) 

An experimenter interested in the single exponential model should 

usually have some idea of the values of the parameters a and A and also 

of the domain of values that the independent variable xis likely to 

assume. Th.us, for the most part, it will be known whether the decay 

constant A will be positive or negative and that each x1 will lie in

some interval, say (x0 , x
1
). Moreover, knowing approximately the value 

of A, it is possible to have some idea of the change that will occur 

in the response y as x varies between x0 and x
1
• Furthermore, it is 

reasonable to be concerned only with positive values of a. 

In order to discuss several sets of parameters on a common basis, 

we note that the points x belonging to the interval (X
0

, x
1

) map into 

the points t belonging to the interval (o, 1) by means of the 



transformation t = (x - x
0

)/(X1 - x
0

)o We use this relationship to

AX change the model y = ae + e for x in the interval (X
0

, x
1

) to the

model 
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6t 
y = �e + e (V.7) 

fort belonging to the interval (0,1). It can be shown that the 

relationships among the parameters can be expressed as 

A= 6/(X
1 

- X
0
) 

-AX
and a= �e O

Thus, from estimates of� and 6, which we henceforth call band d, we 

can obtain estimates of a and Ao In particular, we note that the 

estimates of A and 8 are linear functions of each other. We may state, 

therefore, such expressions as E(d) = (X
1 

- x
0

)E(c), where the opera­

tor E( ) is the usual expectationo When x0 = O, a and� are identical. 

Suppose now we consider the ratio, say R, of the value of the 

model at x1 to its value at x0 , ioe.,

• 

Solving this expression for>,.,, we obtain 

Thus, if we wish to simulate a model in which the ratio of the function 

at the endpoints of the domain of xis known, we may find the value of 

>Jel A(Xl - XO) 
R = _a_e-=--Ax··o = e 

ae 

log R 
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� which corresponds to that ratio. Because we know the parameter 6 in 

terms of�, we can simulate the same effect in the model (V.7) by 

taking 

6 = log R. 

Based on these considerations and arbitrarily choosing five values 

of�, the following 25 combinations of� and 6 were selected for 

detailed examination: � = 10, 50, 100, 500, 1000; and 6 = log (1/4), 

log (1/2), log 1 = o, log 2, log 4. Using these values of 6, we exam-

ined situations in which the model evaluated at t = 1 ranges from one-

fourth to four times its value at t = O. 

With respect to the choice of the values of 8, it is somewhat 

unrealistic to use an exponential model which affords the chance that 

some of the observations y will be negative. Because we wished to 

assume that the errors in the observations are normally distributed 

with mean zero and unit variance, it was necessary to select models 

so that only a few negative values would occur. The lowest value 

attained in the set of 25 models is g.5. Thus, the probability of 

generating a negative observation for that value is about 0.0062, and 

the chance of a disturbance due to negative numbers is small. 

It was decided to limit the study of these populations to the 

case in which 10 values oft are uniformly distributed on the interval 

(o, 1). We therefore chbse t. = (1 - 1)/9 for i = 1, 2, ••• , 10. 
J. 

Twenty-five exact functions were generated, one for each pair of the 

chosen� and 6. A total of 500 samples for each function were then 

generated by adding a random normal deviate from N(O, 1) to each point 

of each(�, 6) pair. 
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The random normal deviates were generated by the method given by 

Box and Muller (1958): 

Let u
1 

and u
2 

be independent random variables from the same rec­

tangular density function on the interval (O, 1). Consider the 

random variables: 

Then w1 and w2 will be a pair of independent random variables

from the same normal distribution with zero mean and unit 

variance. 

Box and Muller indicate that this method gives higher accuracy 

than other standard methods and compares favorably with the other 

methods in the matter of computing speed. The generation of the uni­

form random variables required for this study was accomplished by the 

use of the 11residue-class11 method which seems to have first been pub­

lished by Lehmer (1949). A subroutine incorporating these two methods 

was used in the TEE computer program discussed in Chapter IV. 

The entire program was operated on an IBM 7090 with magnetic tape 

input and output and under a supervising monitor system. Less than 

110 seconds were required to generate the 500 samples and to record 

the sampling characteristics of the least squares estimates of each 

pair of� and 80 Discussion of the results of the experiment is divid­

ed into three parts: (1) some general observations, (2) characteris­

tics of the estimate of�, and (3) characteristics of the estimate of 80 



CHAPTER VI 

SOME GENERAL OBSERVATIONS ABOUT DISTRIBUTION SAMPLING 

FOR THE MODEL y = �eat + e

The problem of determining at what stage convergence of the itera-

tive least squares procedure can be said to have occured was purposely 

left vague in Chapter II. Any number of possible criteria are avail-

able. Returning to the notation of Chapter II in which a is a vector 

of parameters and� is the estimate of a obtained at the Mth itera­

tion, we might use the criterion that we will be satisfied whe;p 

IQ(�_1) - Q(�) I< u wher-e Q(�_1) and Q(�) are the sums of squares

for the (M - l)th and the Mth iterations and u is an arbitrarily 

"small" scalar. However, this is difficult to provide for in a com-

puter because of the problem of trying to anticipate a reasonable 

choice for the constant u and because the difference between two 

consecutive sums of squares may be obscured by the size of the obser-

vationso 

Experience at the Los Alamos Scientific Laboratory has led to the 

following criterion for convergence: Let 1�_1 1 and l�-l - aMI denote

the vectors of the absolute values of the elements of the vector 8M-i
and the difference vector (�-l = �). Let v be an arbitrarily small

scalar that is chosen in advance. The condition l'�-l - aMI <'. vl�_1 I

means that every element of l�-l - aMI is strictly less than its
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corresponding element in vl�_1 1. Then, if this condition is satis­

fied_, we take � as the least squ,a.res estimate of the vector a.. Nor­
-6 mally, v = 10 has proved satisfactory for this test for a great many

functions and a great many sets of observationsi. H'.owever, 'in the 
. l' 

. 

course of' the present study, it was found that thi� convergence cri-

terion could not be satisfied for some samples when 6 = o. A detailed 

examination showed that the reason for failure in these cases was the 

oscillatory nature of the sequence of estimates of the parameter 6. 

To remedy this condition, the criterion was reduced to v = 10-3 for

the samples in which 6 = o. Because the entire program was coded in 

single-precision, it is felt that increased aeeuracy in calculation--

by either increasing word size or using multiple word precision--would 

result in satisfactory convergence. In Chapters VII and VIII, we shall 

see that this relaxed criter.ion seems to have had little or no affect 

on the bias and the variances of the estimates. 

As a practical point, it is well to establish a limit on the 

number of iterations that will be allowed for any one set of observa-

tions. Again by experience, it has been fairly well determined that, 

unless convergence has been attained within 20 or 25 iterations, some 

additional analysis is in order. Sometimes this consists merely of 

checking the input data for transcription errors. Of more serious 

consequence is a basic programming error or the failure of the data to 

even remotely resemble the function being fitted. 

It has been noted by many writers, among them Levenberg (1944) 

and Hartley (1961), that the occu:;-,ence of large oscillations has been 

detrimental to the increased usage of the Gauss iterative scheme. Both 

of these authors have proposed remedies. But, as Hartley points out in 



33 

his paper, Levenberg's idea does not lend itself well to computer 

methods. Hartley's own modification, justifiable mathematically under 

some fairly general conditions, is subject somewhat to the same objec­

tion. However, this can be overcome in a variety of ways, and the 

Hartley proposal was considered by this author as a possibly desirable 

feature. A pilot study, using 100 samples from the single exponential 

model with�= 10 and 8 = log (1/4), was conducted to contrast 

Hartley's procedure with the basic Gauss method. In terms of the pro­

grams developed at Los Alamos, the running time for Hartley's modifi­

cation was about twice that of the unmodified method. There was no 

change in the results, and very little reduction in the number of 

iterations required for convergence was exhibited. The same conver­

gence criterion was used in both trials. 

Other methods of oscillation control are mentioned by Hartley 

(1961). Still another, adopted originally as an expedient and since 

used routinely, has been suggested by Moore and Zeigler (1959, p. 43). 

This is an arbitrary technique for forcing each element of the esti­

mating vectors to have the same sign as that assigned to the corre­

sponding element of the vector of initial estimates a
0
• Although 

successful from a practical standpoint, the method still lacks the 

statement and proof of the conditions under which it may be expected 

to be mathematically precise. 

In the light of these observations, it was decided to carry out 

the sampling experiment with no attempt to control the oscillations. 

As it turned out for these models, every one of the 12,500 samples in 

this study converged to the required criterion. Since we were not con­

cerned with methods of obtaining the initial estimates of the 
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parameters, the values used to prime the procedure were the true values 

of the parameters. 

The number of iterations required for convergence for each sample 

was recorded, and a histogram of these values was formed for each of 

the 25 models. Based on these histograms, estimates of the average 

and of the range of the number of iterations required were computed. 

These results are shown in Table I. It is to be remembered that con-

vergence is not possible until at least two iterations have occured 

and that a maximum of 20 iterations were permittedo In addition, the 

values in the table probably should be interpreted as lower bounds for 

"real data" since the initial values of the estimates were taken as 

the exact values of the true parameters. 

Table I shows that: (1) for a given�, the average number of 

iterations essentially decreases as 8 increases, (2) the average 

number of iterations is a decreasing function of� for fixed values of 

6; and (3) the variability of the number of iterations decreases as� 

and/or 6 increaseo Thus, we see that satisfactory and rapid conver-

gertce of the iterative least squares method depends to a large extent 

both on the true function and upon the convergence criterion. No 

information was obtained for situations in which the initializing 

estimate of the parameter vector was not the value used in the model 

formation. However, graphical or linearization methods have proved 

quite satisfactory in practical problems because they are generally 

fairly efficient when dealing with the single exponential model. In an 

automatic computer it seldom matters if several iterations are needed 

for convergence. 

2 
The results of estimating the error variance, d, for each group 
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TABLE I 

T HE NUMBER OF ITERATIONS R�UIRED FOR CONVERGENCE 

FOR VARIOUS MODELS OF THE FORM y = �eat + e 

True Parameters Number of Iterations Required 

� 6 Mean Minimum Maximum 

10 log (1/4) 6.09 4
log (1/2) 5.80 4 
log 1 = O* 4.20* 2 
log 2 5.10 3
log 4 4.65 3

50 log (1/4) 4.51 .3 
log (1/2) 4.47 3 
log 1 = O* 3.78* 2 
log 2 4.08 3 
log 4 3.94 3 

100 log (1/4) 4.10 3 
log (1/2) 4.03 3 
log 1 = O* 3.61* 2 
log 2 3.93 3 
log 4 3.83 3 

500 log (1/4) 3 .. 60 .3 
log (1/2) 3 .. 66 3 
log 1 = O* 2.55* 2 
log 2 3.30 3 
log 4 3.05 .3 

1000 log (1/4) 3.23 3 
log (1/2) 3.24 3 
log 1 = O* 2.09* 2 
log 2 3.03 3 
log 4 3.00 3 

*The convergence criterion was v = 10-3• For unmarked models, the
•t ' 

. 
10-6 cri erion was v = • 

10
8
5 
7 

6 

6 
5
4 
5 
4 

5
5
4
5
4 

4

4
4 
4 

4
4
4
3

4 

4 
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of 500 samples were recorded. The estimate, s
2

, was obtained from

Equation (V.5) with I= 10. Had the model been linear in two para­

meters, we would have been able to state that s2 is independent of the

estimators band d and that the quantity z = (I - 2 )s2
/d

2 is distrib­

uted as a chi-square variable with (I - 2 ) = 8 degrees of freedom. An 

idea of whether this statement is approximately correct for this non-

linear model can be obtained by comparing the sampling distribution of 

a variable w = s2
/d

2 
with a "chi-square-over-degrees-of-freedom" dis-

tribution with 8 degrees of freedom. Because the tails of the sam-

pling distribution are generally of interest, the endpoints of the 

intervals into which the values of w were to be sorted were chosen so 

that the smaller probabilities in the tails could be examined. It was 

convenient to use 16 such intervals, with the one at either end chosen 

so that five out of 500 would be the expected number of occurences. 

2 2 
If s were an unbiased estimator of d, we would expect the average

value of w to be unity. A chi-square goodness-of-fit test was run for 

each of the 25 sampling distributionso A summary of these results is 

given in Table II. 

The most important fact to be gleaned from Table II is that the 

1 - f 2; 2 . •t average va ue, w, o w = s o is near uni yo This indicates a small

bias when the sample size is 10 and the independent variable is equally 

spaced over the interval (O, 1). The next point is that the distribu­

tion of w is very close to that of 1/8 times a chi-square with 8 de-

grees of freedom. This is indicated by noting that none of the 

goodness-of-fit chi-squares exceeds the upper 5 per cent critical 

value and that their average is 12.36 which is not far from the 

expected value of 15 which comes from the use of fifteen intervals. 
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TABLE II 

SUMMARY OF THE DISTRIBUTION OF w = s2/d2 WHERE d2 
= 1

True Parameters Goodness- Number Below Number Below 
of-Fit Lower Upper 

6 w Chi-Square* 1% Point 1% Point 

10 log (1/4) 1.0021 14025 8 4 
log (1/2) 1.0164 12.43 3 5 
log 1 = 0 0.9685 8.01 3 4 
log 2 1.0547 22.29 7 11 
log 4 0.9732 19.31 8 1 

50 log (1/4) 0.9662 8.93 8 
log (1/2) 1.0088 11.73 5 4 
log 1 = 0 0.9774 21.35 12 7 

log 2 1.0265 9.31 5 4 
log 4 0.9907 8.29 7 2 

100 log (1/4) 0.9884 7.65 2 5 
log (1/2) 0.9919 10.47 7 5 
log 1 = 0 1.0154 6. 27 5 8 

log 2 1.0390 14 .. 45 5 4 
log 4 1.0060 8.07 6 8 

500 log (1/4) 0.9776 16.95 7 3 
log (1/2) 0.9722 10.93 5 2 

log l = O 1.0024 6 .. 93 6 5 
log 2 1.0309 16.93 4 5 
log 4 0.9689 22.59 3 7 

1000 log (1/4) 1.0352 17.75 5 6 
log (1/2 ) 1.0043 6.65 6 3 
log 1 = 0 1.0363 10.53 3 4 
log 2 0.9923 5.,69 6 5 
log 4 0.9915 11.23 5 8 

Averages Over 
Entire Sampling 
Experiment 1.0014 12.36 5 .. 6 5 

*Based on 16 intervals of unequal prob�bility. Upper 5 per cent
critical value for 15 degrees of freedom is 25.0.

5 
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Finally, it is seen that, on the average, the tails of the sample 

distributions agree well with the hypothetical chi-square-over-degrees­

of-freedom distribution. 



CHAPTER VII 

CONCERNING CHARACTERISTICS OF THE ESTIMATOR p OF 

THE PARAMETER� IN THE MODEL y =�eat + e

The asymptotic variance of the estimator of� is defined as the 

value obtained by selecting the first diagonal element of the matrix 

(V.4), where�, 6, and tare used in place of a,\, and x. Thus, it 

is the quantity in the first row and the first column of the matrix 

26t. 26t. -1

k(e 1) �Z.:( t. e 1)

02 (VII.l) 

26t. 2 2 26t. 
�Z(t,e 1) � Z.:(t.e 1)

1 1 

where the index of summation runs over the values i = 1, 2, ••• , I. 

We shall denote the value so obtained by o;o 

Two other estimates of the variance of b were obtained from the 

sampling experiment. The first of these is computed from each of the 

500 estimates of�. In general, if N estimates of� are available for 

a given pair of parameters, we compute 

N 

Z (b - b) 2

n 

82 _ n=l ----
b - N 
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where b is the nth estimate of� and b = ( � b )/N. The other esti-
n 

-
n n=l 
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mate of the variance of b is obtained by putting the iterated estimates 

band d into the matrix (VII.l) upon the completion of each fit and 

averaging the results to get 

2 where sb is the nth estimate yielded by the procedure.

In order to examine the distribution of b, it was assumed that the 

estimates would be normally distributed with mean� and variance d�, 

where the latter term has been defined as the asymptotic variance of 

b. Although this is true for infinite sample sizes, one of the objects

of the investigation was to examine the question of whether a sample 

of size 10 is large enough for equally spaced values of the independent 

variable to allow the use of asymptotic results. Following the sug­

gestions of Cochran (1952), the values of b were sorted into 20 

equally probable cells whose endpoints were obtained under this assump-

tion of normality. Thus, (1/20) x 500 = 25 of the b were expected inn 

each cell. The quantity b was taken as the estimate of the expected 

value of b, and the bias was taken as the difference (b - �). To 

examine the magnitude of the bias, its absolute value was compared 

with db�,/5oo which is approximately the standard deviation of b.

The pertinent results are given in Table III. Examination of the 

matrix (VII.l) shows that d� is not a function of� but is a function 

of 6. This can be seen in Table III under the column headed by 

db/i/5oo.

We note from Table III that there is no apparent bias or trend of 

n 

2 N 2 
sb = ~ (sb )/N 

n=l n 

N 
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TABLE III 

THE ESTIMATOR b OF THE PARAMETER � 

True Parameters Bias 
db

/
-v500 

Goodness-of-Fit 
-

� 6 b (b - �) Chi-S:auare* 

10 log (1/4) 9.98 -0.02 00033 19.84 
log (1/2) 10 .. 04 0.04 00030 21.84 
log 1 = 0 10.02 0.02 0.026 28.48 
log 2 9.96 -0.04 0.022 18.08 
log 4 10.01 OoOl 0.018 14.40 

50 log (1/4) 50.03 0.03 0.033 18.48 
log (1/2) 50.00- -0.00 0.030 19.20 
log 1 = 0 49.99 -0.01 00026 10 .. 72 
log 2 50.01 0.01 0.022 14.16 
log 4 50.01 0.01 0.018 22 .. 00 

100 log (1/4) 99.95 -0.05 0.033 28.56 
log (1/2) 100.03 0.03 0.030 25.52 
log 1 = 0 99.99 -0.01 0 .. 026 19.28 
log 2 100.02 0.02 0.022 12.48 
log 4 99.98 -0.02 0.018 10.72 

500 log (1/4) 500.06 0.06 0.033 18.40 
log (1/2) 499.99 -0.01 00030 17.12 
log 1 = 0 500.00+ o.oo 0.026 37.68** 
log 2 500.00- -0.00 0.022 20.48 
log 4 500.02 0.02 0.018 19052 

1000 log (1/4) 1000.02 0.02 0.033 21.12 
log (1/2) 1000.02 0.02 0.030 14.80 
log 1 = O 1000.03 0.03 0.026 20.72 
log 2 1000 .. 01 0.01 0.022 12.96 
log 4 1000.00- -0.00 0.018 17.36 

*Based on 20 equally probable intervals. Upper 5 per cent critical
value for 19 degrees of freedom is 30.1.

**Significant at 5 per cent level. 
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bias for the various values of� and 6. In every case, the absolute 

value of the bias is less than twice the quantity db�-y/5oo, which

implies that b is not far from�. or the 25 results, 10 show negative 

bias and 15 show positive. This, too, is reasonable under the assum.p-

tion that bis an unbiased estimate of�. As for the chi-square 

goodness�of-fit results, only one is significantly larger than the 

5 per cent critical value. In general, these sampling results indicate 

th�t bias, if any, is small and that the distribution of the estimator 

is nearly normal. 

Th t f 2 s.2 , d 2 . f h t e square roo s o  db' ·-b an sb are given or eac para.me er

set in Table IV. If the asymptotic standard deviation, ob, is used as

a standard, we see from Table IV that just about the same numbers of 
2 1/2 Sb and (sb) are above that standard as are below it. This indicates

that all three quantities are essentially the same. For practical 

purposes, then, it seems that the procedure of estimating the variance 

of b by substituting the e�timates of the para.meters into the formula 

for the asymptotic variance is satisfactory for the models considered 

herein. 

If we handle the question of testing a hypothesis about the 

parameter�, say H0: � = �0 , in the same manner as when we have a

linear regression situation, we arrive at a test statistic 

where b is the iterated estimate of� and sb is obtained by substi­

tuting the estimates b and d into the asymptotic variance formula. 

The 500 values of t 1 were tabulated for each parameter set (using the 

para.metric value of� for �
0

) as though t 1 were distributed as 
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TABLE IV 

SQUARE ROOTS OF THE ESTIMATES OF THE VARIANCE OF 

THE KSTIMATOR b OF THE PARAMETER � 

I.rue Parameters. 

� �· 6 c:Sb Sb 

10 log (1/4) 0.740 0.755 0.741 
log (1/2) o.669 o.674 o.674
log 1 = 0 0.588 0.580 0.579
log 2 0.498 0.499 0.511
log 4 0.402 0.382 0.397

50 log (1/4) 0.740 0.752 0.727 
log (1/2) o.669 0.706 o.698
log 1 = O 0.588 0.587 0.581
log 2 0.498 0.490 0.505
log 4 0.402 0.416 0.400

100 log (1/4) 0.740 0.711 0.735 
log (1/2) o.669 o.635 o.666
log 1 = 0 0.588 0.584 0.592
log 2 0.498 0.514 0.507
log 4 0.402 0.401 0.403

500 log (1/4) 0.740 0.706 0.732 
log (l/2) o.669 o.639 o.659
log 1 = 0 0.588 0.632 0.588
log 2 0.498 0.503 0.505
log 4 0.402 0.416 0.396

1000 log (1/4) 0.740 0.717 0.752 
log (1/2) 0.669 0.638 o.670
log 1 = 0 0.588 0.592 0.598
log 2 0.498 0.474 0.496
log 4 0.402 0.407 0.401



Student's t with 8 degrees of freedom. Sixteen cells of varying prob­

abilities were used. A chi-square goodness-of-fit value was obtained 

for each sampling distribution to give some indication of how t' dif­

fered from t. The cells at each end of the distribution were expected 

to contain five values (one per cent of the number of samples). The 

results relating to the parameter Pare given in Table v. We see that 

there is very- little, if any, evidence for rejecting the conjecture 

that t' has nearly a Student's t distribution with 8 degrees of free­

dom. The average numbers above and below the one per cent points are 

nearly five in each case. Thus, for forming tests of significance and 

confidence inte�vals, it appears that the tabulated values of Student's 

t can be used. 

44 
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TABLE V 

DISTRIBUTION OF t' FOR THE ESTIMATOR b OF THE PARAMETER � 

True Parameters 
-

Goodness-of-Fit Number Below Number Above 
� 5 Chi-Square* Lower 1% Point Upper 1% Point 

10 log (1/4) 11.07 8 2 
log (1/2) 15.61 .3 5 
log 1 = 0 19.26 5 6 
log 2 18.49 10 2 
log 4 11 .. 97 8 4 

50 log (1/4) 14.15 .3 6 
log (1/2) 17.45 6 4 
log l = 0 8.81 5 8 
log 2 6 • .3.3 5 5 
log 4 15.45 .3 8 

100 log (1/4) 17.89 6 .3 
log (1/2) 20.03 4 2 
log l = 0 2.3.91 5 .3 
log 2 14.45 5 4 
log 4 11.44 5 4 

500 log (1/4) 11.7.3 3 2 
log (1/2) 10.87 6 5 
log l = 0 20.27 .3 7 
log 2 14.69 3 9 
log 4 17 • .35 .3 4 

1000 log (1/4) 14.06 .3 
log (l/2) 6.71 4 5 
log l = 0 11.29 7 4 
log 2 17.21 .3 2 
log 4 9 • .3.3 6 9 

Averages Over Entire 
Sampling Experiment 14 • .39 4.9 4.7 

*Based on 16 intervals of unequal probability. Upper 5 per cent
critical value for 15 degrees of freedom is 25.0.

5 



CHAPTER VIII 

CONCERNING CHARACTERISTICS OF THE ESTIMATOR d OF 

THE PARAMETER 8 IN THE MODEL y = �eat + e

The decimal representations of the natural logarithms for 8 are 

presented in Table VI. In the computer generation of the models, all 

eight si�ificant digits were used in floating point form. 

TABLE VI 

NATURAL LOGARITHMIC AND DECIMAL EQUIVALENTS 

FOR VALUES OF 8 

Natural Logarithmic Representation 

log (1/4) 

log (1/2) 

log 1 

log 2 

log 4 

Decimal Representation 

-lo3862944

-0069314717

0 

+Oe69314717

+1.3862944

2 The asymptotic variance of the estimator of a, denoted by od, is

that value obtained by selecting the seeond diagonal element of the 

matrix (VII.1). Two other estimates of the variance of d are defined 

analogously to the two given for the estimator b. The first, which is 

46 
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2 the sampling variance of d, is denoted by Sd; the second, whic::..,is the

mean of several estimates of the variance of d, is denoted by sd. 

The individual estimates of 8 were sorted into 20 cells of equal 

probability, the endpoints of which were selected by assuming that the 

estimator dis normally distributed with mean 8 and variance d!· The 

quantity d, the average of the estimates of 8, was taken as an esti-

mate of the expected value of d, and the bias was estimated by the 

difference (d - 8). Pertinent results are given in Table VII. Exam­

ination of the matrix (VII.1) shows that d! is a function of both� 

and 6; for a fixed value of 8, d! is inversely proportional to the 

square of�. This behavior may be seen in Table VII under the column 

headed by od�-...(ifoo.

Perhaps the most striking result shown in Table VII is the pro-

pensity toward d being negatively biased as an estimator of 8. Eight-

een of the 25 results show this negative bias. The absolute values 

of the bias, nevertheless, do not exceed twice dd�.....jifo6, and we are

thus led to feel that the biases are probably small. Only one of the 

goodness-of-fit chi-square values is significant at the 5 per cent 

level. Hence, we conclude that there is little evidence against the 

estimator d being nearly normally distributed with mean 6 and variance 
2 

dd. 

Table VIII contains the square roots of the asymptotic variance,

o�, and the other two estimates, ;S� and s!o The table shows that any

of the three seems to serve equally well, thus justifying the use of

the asymptotic variance formula for samples of size 10 and equally

spaced values of the independent variableo

As in the case of the estimator of�, we define a psuedo-t 

2 



True Paramete;ts 

�· 6 

lb -1.,38629
-0.,69.315

0 
0 .. 69315 
1 .. 38629 

50 -lo.38629
-0.69315

0
0.,69315
1.,38629

100 -1038629
-0069315

0 
0069315 
1 .. .38629 

500 =l .. 38629 
=0069315 

0 
0.,69315 
1 .. 38629 

1000 -loJ8629
=1069315

0 
0 .. 69315 
le38629 

TABLE VII 

'rHE ESTIMATOR d OF THE PARAMETER 8 

Bias 
6d/-v'5()�0 

Goodness=of=Fit 
d (d = 6) Chi-8:;tuare�i 

=loJ8641 -0.,00012 0.,00912 19.,44 
-0�69415 -0.,00100 0000633 11044 
=0000399 -0000399 Oo00Li43 12.,24 

0069859 Oe00544 0.00316 24016 
1.,38555 -0 .. 00074 0.00228 20088 

=1"38689 =0000060 0000182 21 .. 68 
=0069345 =00000.30 0(>00127 9.,68 
0.,00061 0.,00061 0 .. 00089 15052 
0.,69252 =0000063 0000063 22 .. 00 
1.,38604 -0,,00025 0.,00046 15068 

-L,38645 -0.,00016 0000091 20064 
-0069279 0,,00036 0000063 27068 

0000019 0000019 0,.00044, lL.60 
0069279 -0,.00036 0.,000.32. 11.,28 
L38651 =0 .. 00022 0.,00023 21028 

-L.38660 =0000031 0000018 12.,96 
=0 .. 69.314 0.,00001 0.,0001.3 16(196 
-0.,00001 =0 .. 00001 0.,00009 25.,28 
Oo69J20 0.,00005 0.,00006 14,,72 
lo.38622 =0000007 0000005 30o80H 

=l.38645 =0000016 0.,00009 15020 
-0 .. 69318 =0000003 0.,00006 19004 
-0000007 -0000007 0000004 23076 

0069316 0 .. 00001 OoOOOOJ 13052 
1.,.38629= -0.,00000 0000002 22072 

*Based on 20 equally probable intervals., Upper 5 per cent, critical
value for 19 degrees of freedom is JOolo

**Significant at 5 per cent lev'el,, 



49 

TABLE VIII 

SQUARE ROOTS OF THE ESTIMATES OF THE VARIANCE OF 

THE ESTIMATOR d OF THE PARAMETER 6 

True Para.meters 

� � 6 
dd sd 

10 -1.38629 0 .. 2040 0.2217 0.2071 
-0.69315 0.1415 0.1443 0.1439 

0 0.0991 0.0981 0.0978 
0.69315 0.0708 0.0695 0.0728 
1.38629 0.0510 0.0480 0.0503 

50 -1.38629 0 .. 0408 0.0429 0 .. 0401 
-0.69315 0.0283 0.0299 0.0284 

0 0.0198 0 .. 0196 0.0196 
0.69315 0 .. 0142 0 .. 0146 0.0143 
1.38629 0.0102 0.0104 0.0101 

100 -1.38629 0.0204 0.0200 0.0203 
-0.69315 0.0142 0.0125 0.0141 

0 0 .. 0099 0.0096 0.0101 
0.69315 0.,0071 0.0073 0 .. 0072 
1.38629 0.0051 0.0051 0.0051 

500 -1.,38629 0.0041 0.0039 0 .. 0040 
-0.69315 0 .. 0028 0.0028 0.0028 

0 0.0020 0.0021 0.0020 
0;69315 0 .. 0014 0.0014 0.0014 
1.38629 0.0010 0.0010 0.0010 

1000 -1.38629 0.0020 0.0019 0.0021 
-0.69315 0.0014 0.0014 0.0014 

0 0.0010 0.0010 0.0010 
0.69315 0.0007 0.0007 0.0007 
1.38629 0.0005 0.0005 0.0005 
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statistic for testing the hypothesis that the exponential parameter is 

equal to some specified value; i.e., H0: 8 = 80• Thus, for each trial

of the 25 models under investigation, we computed the quantity 

t 1 = (d - 8)/sd

and tabulated the results into 16 cells of unequal probability as 

though t 1 were distributed as Student's t with 8 degrees of freedomo 

Table IX contains the pertinent results of the tabulatione The appear­

ance of three goodness-of-fit chi-squares that are significant at the 

5 per cent level is perhaps disconcerting, but it seems that t' has 

nearly the distribution of a t  variable. However, probability state­

ments involving such an assumption should be guarded. The tendency, 

at least in the tails of the sampling distribution, seems to be in the 

direction of too many occurences both above and below a specified 

percentage point. Thus, if an experimenter were to form a symmetric 

98 per cent confidence interval under the assumption that t' has at 

distribution, he would actually be using a slightly smaller confidence 

level. 
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TABLE IX 

DISTRIBUTION OF t' FOR THE ESTIMATOR d OF THE PARAMETER 6 

True Parameters 
Goodness-of-Fit Number Below Number Above 

� 8 Chi-Equare-lf Lower 1% Point Upper 1% Point 

10 -1.38629 29039** 5 12 
-0.69315 lloll 4 3 

0 12043 6 6 
0 .. 69315 15049 4 6 
1.38629 19011 7 5 

50 -1.38629 17051 10 6 
-0.69315 9.31 9 5 

0 12.62 7 4 
o.69315 21.37 8 6 
1.38629 9o71 7 7 

100 -1 .. 38629 11.17 5 6 
-0.69315 25.37** 3 2 

0 17.65 1 3 
0.69315 12.49 4 7 
1.38629 9.96 5 4 

500 -1.38629 12.27 4 1 
-0.69315 7o45 4 5 

0 37 .. 83** 12 8 
0.,69315 17079 4 6 
1.38629 19 .. 32 5 3 

1000 -1.38629 21.67 6 4 
-0.69315 9,.36 6 2 

0 20081 2 8 
0.69315 13029 1 5 
1.38629 17 .. 05 9 3 

Averages Over Entire 
Sampling Experiment 16.46 5.5 5.1 

*Based on 16 intervals of unequal probability .. Upper 5 per cent
critical value for 15 degrees of freedom is 25 .. 0o

**Significant at 5 per cent level. 



CHAPTER IX 

SUMMARY AND EXTENSIONS 

In this thesis we have examined the general problem of estimating 

parameters in nonlinear models by the method of least squares. Because 

of the many different types of models, it seems impossible to give 

general rules of procedure. 

The well-known Gauss iterative method is advocated because its 

value has been demonstrated in a variety of situations and because of 

the existence of several worthwhile modifications to the basic tech-

nique. However, general approval of the method does not lift from the 

statistician's shoulders the responsibility for assuring himself and 

his client that the results are satisfactory. In particular, a class 

of functions is exhibited which guarantees the existence of several 

points in the parameter space at which the minimum sum of squares is 

attained. 

In order to examine the small-sample characteristics of any esti­

mation procedure for nonlinear functions, a large-scale FORTRAN II 

computer program has been prepared to base such an examination on 

Monte Carlo methods. The single exponential model, y = �e6t + e where

t lies in the interval (O, 1) and e is independently distributed as a 

normal distribution with zero mean and unit variance, is taken as an 

example. Over a wide range of� and 6, the model is examined and the 
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results discussed. In general, it appears that the least squares 

estimators of� and 8 are very nearly normally distributed and that 

biases for each are small. The usual t statistic for forming confi­

dence intervals and tests of significance seems to be satisfactory for 

both parameters. 

A great deal of work remains to be done with respect to estima­

tion in nonlinear models. Each model presents its own special prob­

lems. The Monte Carlo attack is feasible with super-speed computers, 

and the program discussed in this thesis seems to have a great deal of 

application when used on computers which are at least as fast as the 

IBM 7090. 

Assurance of convergence in any iterative scheme is important. 

Hartley (1961) has done some work in this direction, but it seems 

certain that some models might lead to less restrictive conditions 

than he has used for general functions. Effort might be profitably 

expended in the search for efficient methods of obtaining initial 

estimates of the parameters. 

Until exact distributions are available for the estimators and 

for tests of hypotheses about the parameters, we will have to be satis­

fied with what might be termed "good enough" methods. That is, we 

will need some useful limits on sample sizes, numbers of iterations, 

approximate distributions, and similar matters� It is likely that 

solutions to these problems will be required for each type of non­

linear model. 
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