
SUBADDITIVE FUNCTIONS OF ONE REAL VARIABLE 
I 

By 

RICHARD GEORGE LAATSCH 
" 

Bachelor of Science 
Central Missouri State College 

Warrensburg, Missouri 
1953 

Master of Arts 
University of Missouri 

Columbia, Missouri 
1957 

Submitted to the Faculty of the Graduate School 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the degree of 

DOCTOR OF PHILOSOPHY 

l"lay, 1962 



L \ \ \ s
(. 0 f . ?.



SUBADDITIVE FUNCTIONS OF ONE REAL VARIABLE 

Thesis Approved: 

Thesis Adviser 

<D�ff/�� 

Dean of the Graduate School 

504544 

ii 

OKLAHOMA 
STATE UNIVERSITY 

LIBRARY 

NOV 8 1962 

~ 
~ffcL~~\, 

-y1o-z..<A/ [: .. ~ 

~~~ 



PREFACE 

This paper is concerned with certain problems in the 

theory of subadditive functions of a real variable. The 

basic definitions appear on page 1 and the entire first 

chapter serves as an introduction and orientation to the 

remaining materialo Chapter II contains a basic rotation 

theorem and some lemmas on continuity and boundedness 

which will be used in later chapters. Chapters III and IV 

deal with several kinds of extensions of functions which 

yield or preserve subadditivity; in particular, Chapter 

III is devoted to the maximal subadditive extension to 

E = [O ,co) of a subaddi ti ve function on [O, a]. Contrary to 

previous work on this topic, no assumptions of continuity 

are made. 

The last three chapters are devoted to sets of subad­

ditive functions. Chapter V discusses convergence, espe­

cially uniform convergence, of subadditive functions -­

motivated by a theorem of Bruckner -- and gives an example 

(the Cantor function) of a monotone subadditive function 

with unusual propertieso In Chapters VI and VII convex 

cones of subadditive functions are discussed and the ex­

tremal element problems considered. Chapter VI contains a 

complete solution of these problems in a simple case, and 

iii 



Chapter VII discusses partial solutions in other cases, 

applications of the results of previous chapters, and some 

unsolved problems. An index to numbered propositions, 

theorems, lemmas, and remarks is provided in Appendix A to 

facilitate the many cross-references made in the body of 

the paper. Appendix B contains a list of special or unu­

sual notations used in the paper. 

I am deeply indebted to Dr. L. Wayne Johnson, Chairman 

of the Department of Mathematics, and to his entire staff 

for providing a climate in which the study of mathematics 

can be pleasantly and profitably undertaken. The members 

of my advisory committee have been particularly generous 

with their time and encouragement. The comradeship and 

encouragement of my fellow students especially John 

Allen, F. W. Ashley, Jr., David Cecil, and Glen Haddock, 

who helped me to organize my thoughts by listening pa­

tiently to explanations of my problems -- have contributed 

markedly to the result. I am especially grateful for the 

friendly counsel and challenging questions offered by 

Professor E. K. McLachlan which have contributed a great 

deal to the construction of this paper. 
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CHAPTER I 

SUBADDITIVE FUNCTIONS 

This thesis is concerned with certain real-valued 

functions of one real variable; in particular, the word 

"function" will always mean "finite-valued, Lebesgue meas­

urable function." The definitions to be given will be 

given, whenever appropriate, in the context of their ap­

plications although, for example, one can study subadditive 

functions on an arbitrary additive semi-group and concave 

functions on any convex set. 

Definition 1: A function f defined on a set Hof real 

numbers and with range contained in the set R of all real 

numbers, is subadditive on H if, for all elements x and y 

of H sueh that x+y is an element of H, 

f(x+y) s: f(x)+f(y). 

If equality holds, f is called additive; if the inequality 

is reversed, f is superadditive. A function g is concave 

on the (possibly infinite) interval D if, for all x and y 

in D and all t which satisfy O s: t s: 1, 

f(tx+(l-t)y) :.:: tf(x)+(l-t)f(y). 

If this inequality is reversed, f is convex on D. A meas­

urable concave function is continuous except possibly at 

1 
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boundary points of D. [1, p. 96]1•

The principal work on the general theory of subaddi­

ti ve functions is that of Hille and Phillips [ 2 J. This 

reference also includes a part of the work of Rosenbaum [3] 
on subadditive functions of several variables. 

The use of some sets H as the domains of sub.additive 

functions is somewhat "dishonest." For example, every 

function defined on the interval [2,3] is subadditive 

there. In most of what follows H will be the closed half-line 

E = [0, 00), the set J = {0,1,2, .•. } of all non-negative inte­

gers, or some initial portion of either. 

Some basic properties of subadditive functions f on 

R -- noted in the works of Hille and Phillips [2] and 

Rosenbaum [3] are: 

1) f(O) � 0 and f(-x) � -f(x);

2) if g is also subadditive, then f+g is subadditive;

3) if t � O, then tf is subadditive9

4) if {rs} is any family of subadditive functions

. and if sup
8

{fs(x)} is finite for every x, then

g:x .... sups{f
8
(x)} is subadditive;

5) if g is subadditive and non-decreasing, then the

composite h:x-- g(f(x)) is subadditive; and

6) if f is also non-negative on E and if g is a pos­

i�ive non-decreasing function on E, then the

product h:x ... f(x)g(x) is subadditive on E.

1The symbol "[]" indicates a reference to the Bibliography.



3 

A large class of examples of subadditive functions on 

E can be obtained from the following prop.osi tion. 2

Proposition 1 [1, p. 83]: If f, defined on (o,�), is 

such that, for each t > 0, 

f(x) � !f(t) for all x .?: t, 

then f is subadditive on (o,�). (In other words, f is 

subaddi ti ve if the function f •, defined by f• ( x) = f ( x) /x, 

is non-increasing.) 

Many examples to follow will show that the condition

of this proposition is not necessary for subadditivity.

Functions which do satisfy Proposition 1 include any func-

tion which is non-negative and non-increasing on E, any

concave function f on E with f(O) �O (in particular, any

non-negative constant function), and the function defined

by g(x) = V a2 + x2 , x � 0, which is convex. Convex subaddi­

ti ve functions form an easily characterized class since

the converse of Propositlon 1 holds if f is convex. [2,
p. 239 ]. If one insists that f(O) = 0, the class becomes

trivial.

Remark 1: If f is convex and subadditive on E and if 

f(O) = o, then f is additive on E. 

2No connotation of merit or importance is attached to
the usage of "proposition" and "theorem. " A result called 
a "proposition" is due to another author. Results labeled 
II theorem," 11 lemma," or "remark" are believed by this au­
thor to be new. 



Proof: Let xe(O, =) and te(0,1] be given. Then 

f(tx) = f(tx+(l-t)O) :s:tf(x)+(l-t)f(O) = tf(x), 

so that division by tx yields f(tx)/tx :s:f(x)/x. Thus 

f(x)/x is non-decreasing on (O,=), and, by the result 

mentioned above, must be constant. Therefore, f (x)/x = c, 

a constant, on (O, =). Since f(O) = O, f(x) = ex for all 

xeE. 

Another remark which serves to develop the intuitive 

4 

aspects of subadditivity follows. It implies, roughly, 

that the function f spends at least half its time on [0,1] 

on or above the line y = f(l)x. The third remark implies 

that the set [0,1] is general enough to be useful. 

Remark 2: If f is a continuous subadditive function 

on [0,1], then 

f(l)/2 :s: f1
f(x)dx.

0 

Proof: Let xe[0,1]. Then f(l) :s: f(x) + f(l-x), so that 

1 1 1 
f(l) = f f(l)dx :s:1 f(x)dx+ f f(l-x)dx. 

. 0 . 0 . 0 

By the change of variable v = 1-x one obtains

Thus 

1
1 0 1 

1
1 

f(l-x)dx = r f(v)(-dv) =1 f(v)dv = f(x)dx.
O J1 0 0 

1 1 
f(l) :s: 2 

0 
f(x)dx. 
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Remark 3: If f is subadditive on R and keR, then the 

function g such that g(x) = f(kx) is subadditive on R. 

Proof: By direct calculation, g(x+y) = f(k(x+y)) 

= f(kx+ky) s: f(kx)+f(ky) = g(x)+g(y). 

Thus the sets [0,1] and J are just as general domains 

of subaddi ti ve functions as the sets [O, a] , a> 0, and 

{o,a,2a,3a, ••• }. It also follows from Remark 3, using 

k = -1, that g:x ... f(-x) is subadditive on R; that is, 19 re-

flection in the y-axis" preserves subadditivityo 

Another large class of functions which are subaddi-

ti ve -- again including the non-negative cons·tant functions 

appears in the following result. 

Proposition 2 [1, p.83]: Any function f such that 

sup{f(x): xeH} s: 2(inf{f(x): xeH}) 

is subadditive on H. 

Hille and Phillips [2, p.246] discuss functions f de­

fined by f(x) = a if xeA and f(x) = b if xecA, where A is 

closed under addition and cA is its set-theoretic comple­

ment. They note that f is subaddi ti ve if Os: as: 2b and 

that, if b s: 2a, the bypothesis that A is closed under ad-

dition can be dropped since f then satisfies Proposition 

2. Under certain conditions a converse is possible and

is proved below.

Definition 2: Let Ac:Bc:R, where R is the set of all 

real numbers. The set A is closed under addition with 



respect to B if x,yeA and x+yeB imply x+yeA. 
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Theorem 1: Let O:;;; 2a <b in R and let AcBcR. Define 

f on B by f(x) = a if xeA and by f(x) = b if xeBncA. Then f 

is subadditive on.B if, and only if, A is closed under ad­

dition with respect to B. 

Proof: To show that the relation between A and B im-

plies subadditivity, the various possible cases will be 

considered for x,y,x+yeB. 

1) If x,yeA, then x+yeA and f(x+y) = a :s:f(x)+f(y) = 2a.

2) If xeA and yeBncA, then f(x+y) = a or b, while

f(x)+f(y) = a+b.

3) If x,yeBncA, then f(x+y) = a or b, and f(x)+f(y)

= 2b. In this case f (x+y) < f (x)+f (y). 

Thus f is subaddi ti ve on B. 

Conversely, if there are elements x,yeA such that 

x+yeBncA, then f(x+y) = b >f(x)+f(y) = 2a, which means that 

f is not subadditive on B. 

In particular, the characteristic function of the ir­

rational numbers is subadditive on R.3 This is an example 

of a subadditive function which is discontinuous at every 

point and an example which negates the converse of Proposi-

tion 2 in every interval. The above theorem implies that 

the characteristic function of a set Ac R is subaddi ti ve if� 

3The characteristic function of AcR is the function 
defined by X(A;x) = 1 if xeA, = 0 if xecA. 



and only if, cA is an additive semi-group in R. An exam­

ple of a continuous, non-negative, subadditive function 

with infinitely many separated zeros is given by 

f (x) = I sin x I ( since lsin(x+y) I s: I ( sin x) ( cos y) I 

+ l(cosx)(sin y)I s: !sin xl+lsin YI, !cos xi being �l)o

This example will be generalized in Chapter IVo

7 



CHAPTER II 

SOME GEOMETRY OF SUBADDITIVITY 

Several properties of subadditive functions which 

have a graphical interpretation will be developed in this 

chapter. Two of these, the lemmas, will be of value in 

proving theorems and validating examples in later chapters. 

The function f*:x�f(x)/x associated with a subadditive 

function f has already appeared in Proposition 1 and will 

appear later in this work, notably in Chapter III.1 The

properties off*, the properties of additive functions j

several examples of subadditive functions� and especially 

Theorem 5 suggest that subadditivity may be preserved un-

der rotation of coordinate axes� as the following theorem 

shows, subadditivity is preserved if the function concept 

is. 

Theorem 2: Let f be subaddi ti ve on R and let 0, 0 < e

< � (or - � < e < O), be a rotation of axes such that the 

graph v = f(u) in the rectangular Cartesian (u,v)-system is 

the graph of a single-valued real function for all rota= 

tions ex. of the axes such that o::;;cx.::;;e (respectively� 

e ::;; ex.::;; 0). Then.the function g obtained by referring the 

8 



graph of f to the (u' ,v' )-system obtained by the rotation 

e is subadditive on Ro 

9 

Proof: The theorem will be proved by the method of 

contradiction. It will be shown that, if g is not subaddi­

tive, then there exist points of the graph which determine 

a line perpendicular to a rotated position of the u-axis 

for some rotation a. included in the statement of the 

theorem. 

Let x', y', and z O be values of u O such that x 0 + y 0 

= z'. Let x, y, and z be the u-coordin�tes of (x' ,g(x')), 

(y' ,g(y')), and (z' ,g(z')), respectively. Suppose that 

g(z') > g( x')+g(y'). Let G= g(z')-g(x')-g(y'). From the 

rotation formula f(u) = u' .sin( e)+g(u' )cos(�) it follows that 

f(z)-f(x)-f(y) = (z'-x'-y' )sin(e)+Gcos(9)o 

Since z 1 -x 1 -y' = O, 

f(z)-f(x)-f(y) = Gcos(e). (A)

In the same way, the formula u = u'cos(e)-g(u 1 )sin(e) yields 

x+y-z = Gsin( e) o (B) 

In the case e > 0 (see Figure 1), equation (B) yields 

x+y = z+Gsin( e:,) > z, which implies that the point 

(x+y,f(x+y)) is to the right of the line u=Zo Using 

equation (A), f(x+y) :s: f(x)+f(y) = f( z)-Gcos( e), which 

implies that (x+y ,f (x+y)) is c;,n or below the line u' = z' o 

Therefore, the points (z,f(z)) and (x+y,f(x+y)) determine 

a line which makes an angle a., 0 < a. :s: ·e, with the vertical 

line u = z. For this rotation a. of the (u,v)-axes these 

two distinct ( since x+y > z) points have the same abscissa. 



10 

v 

(X 

f(x+y) 

y z x+y 

.. Figure 'i:. . 'subadditi vi ty and J?osi tive Rofations 

In the case e < 0 ( see Figure 2) � sin( e) < 0, which 

means that equation (B) implies x+y < Zo The inequality 

f(x+y) :s: f(x)+f(y) = f(z)-Gcos(e) still holds -- which means 

that the rotation again exists for which (z,f(z)) and 

(x+y,f(x+y)) have the same abscissao 

The restriction - � < 0 <�can be removed by repeated 

rotations e 1 < �' although the property cos(e) > O was nec­

essary to the proof giveno 

The class of continuous subadditive functions is 

quite large. For example, the following curve-fitting 

problem has the indicated solution. 

v' 

V = f( U) u' 

u 



v v
1 

v = f(u) 

x+y,f(x+y)) 

Figure 2. Subadditivity and Negative Rotations 

11 

Remark 4: Let x, u, y, and v be non-negative numbers 

with x < u. Except for the case u = nx and v > ny, n �a po sf;;.. 

tive integer, there exists a continuous subadditive func� 

tion f on E with y = f(x) and v = f(u). 

Proof: If v � y, let f(t) = y for te[O,x], 

f(t) = (y-v) (t-x)/(x-u) + y for te[x,u] � and f(t) = v .for 

xe[u,�). This "polygonal" function is non-increasing and 

non-negative so it is subadditive by Proposition 1. 

If v > y and u # nx � 0, then there exists b > 0 such 

that f(t) = y+b I sin( nt/x) I is the desired function. The 

function f is here the sum of two subadditive functions. 

(x)+f(y) 

z' 
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In each case the function f is bounded above on E and is

non-negativeo

In the case u = rue, if f is subadditive,

v = f(nx) :S: nf(x) = ny, and no subadditive function is possi­

ble for which v > ny o

The following lemmas deal with continuity and bound­

edness of subadditive functions on E and will be useful

later in verifying examples and proving a convergence

theorem ..

Lemma 1: If g is a subadditive function on E= [O,�)

and if g(x) :S: mx for all xeE and some meR, then u < v in E

implies that g(v)-g(u) :S: m(v-u).

Proof: Since v-ueE, g( v-u+u) :S: g( v-u) +g( u), implying

that g(v)-g(u) :S: g(v-u) � m(v-u) by hypothesiso

For subadditive functions defined on R, Hille and

Phillips [ 2, p. 247] show that, if f is continuous at t = 0

but f(O)>O, the discontinuities of f may be everywhere

dense in R; if, however, f is continuous at t = 0 and

f(O) = O, then f is continuous everywhereo For functions

defined only on E, the following simpler results are all

that is required.

Lemma 2: Let f be a subaddi ti ve function defined on E

with at most a finite number of discontinuities on any

compact subinterval of E. If f(x) .... 0 as x .... 0, then the

oscillation of f at a point of discontinuity y



-- lim f(x)-lim f(x) -- is negative. If f isx ... y+ x ->y-
also non-decreasing on E, then f is continuous on E. 

Proof: Let O < h � x. Then f (x+h) s: f (x)+f(h), whic,h 

implies that limh ... O+f(x+h) � f(x). Also f(x-h+h)

� f(x-h)+f(h), or f (x)-f(h) � f(x-h), so limh ... O+f(x-h)

� f(x). Thus at a point of discontinuity y, where at 

least one of the limits is not equal to f(y), 

limh __, O+f (y+h) < limh ... O+f(y-h) o 

If f is non-decreasing, then f(x+h) � f (x) � f(x-h) 

for h > 0, which means that limh ... O+f(x+h) = f(x)

= limh ... O+f (x-h).

The principal result of this chapter has been the 

13 

solution given in Theorem 2 to the rotation problem. A 

discussion of the frequently associated problem of trans­

lation of axes has been rather glaringly omitted. The 

problem has been studied, however. In particular ? an un-

published article written by P. C. Hammer of the University 

of Wisconsin, 00 Subadditivity in General $ n contains the 

following result, which is stated here in less general form 

than that in which it appears in that article. 

Proposition: If sup {.f(x+y)-f(x)=f(y)} exists andx,y. 
equals b and if c � b, b,ceR, then c+f is subadditive (and 

conversely) 

Hammer then applies this result and some calculus to 

the statement of Rosenbaum [3] that 3+sin(t) is subadditive 



on R� but 3 is not the smallest value for which this is 

trueo Hammer shows that 31/3/2 is the smallest valueo 

14 



CHAPTER III 

THE l"IAXIMAL SUBADDITIVE EXTENSION 

Definition 3: Let f be a subadditive function on the 

interval [O,a] 1 a>O. The function Sf defined at each 

xeE = [O , oo) by 

Sf (x) = inf E f(xi),

where the infimum is taken over all f_ini te sets 

{ x1 ,x2
, .• o ,xn} (where xi may equal xj for i-/, j) such that

x
1 

+x
2

+o. o+xn = x and xi� a (i = 1,2, ••• ,n) 1 is called the 

maximal subadditive extension off to E. Each set 

{x1,x2, ••• ,xn} is called an a-partition of x.

The function Sf was defined and investigated (using 

some different notations) by Bruckner [4 9 5] in the analo­

gous case of superadditive functions. Most of his results 

pertain to continuous and non-negative superadditive func­

tions and are not immediately applicable here. More will 

be said about this situation in Chapter v� but a few of 

his general results follow. 

Proposition 3 [5]: a) The function Sf is subaddi­

tive on E, and, if g is any subadditive function on E 

which is an extension of' f, then Sf (x) � g(x) for all xeE. 

15 
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b) If f and g are subadditive on [O,a] and if f(x):??: g(x)

for all xe[O,a], then Sf(x):??: Sg(x) for all xeE. c) If

c :l? 0, then c(Sf(x)) = S(cf(x)) for all xeE. 

Proposition 4 [ 4]: If xeE and x �Ma, M a positive 

integer, if {x1, ••. ,xn} is an a-partition of x, and if f 

is subadditive on [O,a], then there exists an a-partition 

{y1 ,Y 2, ••• ,Yr} of x such that r :s: 2:M+l and 

r n 
Sf ( x) :s: � f ( y . ) :s; � f ( x . ) •

i=l 1. i=l 1. 

Proof: If u, ve{ x1, ••• ')xn} and u+v :s:: a, then

(A) 

f(u+v) � f(u)+f(v). Thus replacement of u and v by u+v 

yields an a-partition which is at least as good (in the 

sense of (A)) as the original. Repetition of this proce-

dure yields.the desired a-partition. 

Definition 4: Any a-partition D such that u,veD 

implies u+v > a is called a refined a-partition. 

By the above proof� a refined a-partition can be ob-

tained as a ,u refinement uu of any given a-partition without 

loss of accuracy of approximation to Sf. A refined a­

parti tion of x does not contain O if x > 0 and does contain 

at most one element of (O,�J. A refinement of a given a­

partition is not necessarily unique. For example, if 

a= 1, x = 2, and the a-partition of x is 

{1/3,1/3,1/3,1/2,1/2}, then possible refinements are 

{1,1}, {1/3,5/6,5/6}, and {2;3,5/6,1/2}. 
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Proposition 5 [ 4} a) If f is continuous and subad­

di ti ve on [O,a] and xeE, then there exists a refined a­

partition {x1, ••• ,xn} of x such that Sf(x) = f(x1)+f(x2)

+ ••• +f(xn). b) If f is subadditive and continuous on

[O ,a] and f(O) = 0, then Sf is uniformly continuous on E.

Proposition 6 [4]: If f is a subadditive function 

on the set {o,b,2b,3b, ••• }, b>O, and if Fis the function 

whose graph is obtained by joining by straight line seg­

ments the points (O,f(O)), (b,f(b)), (2b,f(2b)), ••• in 

that order, then Fis subadditive on E. 

froposition 6 provides a convenient way of construct-

ing examples of subadditive functions on E. The behavior 

of such examples -- obtained by applying the definition of 

Sf to f defined on the finite set { 0, b, ••• ,nb }, where the 

infimum always exists -- is further amplified by Theorem 6 

and Corollary 6a, which appear later in this chapter. It 

should be noted, however, that, if f is defined on 

{ 0, b, 2b, ••• '>nb} and if Pf denotes the '' polygonal extension" 

off (in the sense of Proposition 6) to [O�nb], then 

P(Sf(x)) -;i S(Pf(x)) in general. For example, if f is de­

fined on { 0 , 1 , 2 , 3} by f ( 0) = f ( 3) = 0 , f ( 1) = 4 , and f ( 2) = 1 � 

then Sf(4)=2 and P(Sf)(3!)=l; but if one considers the 

half-integers also, then it follows that S(Pf) ( 3!) = 2. 

The next few theorems exhibit some of the properties 

of the maximal subadditive extension. 
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Theorem 2: Let f be subadditive on [O,a]. Then f is 

non-decreasing on [O,a) if, and only if" Sf is non­

decreasing on E. 

Proof: Since f is the restriction of Sf to [O,a) 

(written, "f = Sf! [O,a) "), the monotonicity of f follows 

from that of Sf. Conversely, if Sf decreases, then there 

exist x,yeE such that y>x and Sf(y) <Sf(x).(*) Also, 

take y-x < �· (This can be done since the interval [x ., y] 

can be decomposed into subintervals of length less than 

� by a partition x = x0 < x1 < ••• < xp = y. Then

Sf(x. 1) s Sf(x.) for all i = 1, 2, ••• ,p implies that
1- 1 

Sf (x0) s Sf (xp) -- a contradiction.)

If ye[O,a], then f decreases on [O,a] and the contra­

position argument is complete. In the case that y > a, let 

e: > O be given. Then there exists a refined a-partition 

{y1, .•• ,Yn} of y such that y1 > � and Sf(y)+e: > f(y1)+ •••

+f(yn). (See pp. 15,16.) Let z=y1-(y-x). Then

{z,y2,y3, ••• ,yn} is an a-partition of x, so that

Sf.(x) s f(z)+f(y2)+f(y3)+� •• +f(yn). Then subtraction of

this result from the preceding inequality yields 

Sf(y)-Sf(x)+e: > f(y1)-f(,z). -Since e: is arbitrary ') it fol­

lows that f(y1)-f(z) s Sf(y)-Sf(x) < 0 (*), which means that

in thil? case, too, ·f decreases on [O ,a) •. 

Corollary-2.!: Let f be subadditive on [O,a]. Then f 

is strictly increasing on [O,a] if, and only if, Sf is 

strictly increasing on E. 
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Proof: Repeat the proof of Theorem 3, replacing 11 <" 

by "!l:" in the inequalities ( *). 

Theorem 4: If f is subadditive on [O,a], if O < c < a, 

and if g = f I [O ,c], 1 then Sg(x) � Sf(x) for all xeE. Also,

Sg = Sf if , and only if , Sg I [ O , a] = f. 

Proof: If xeE and C is the collection of all c-

partitions of x and A the collection of all a-partitions 

of x, then CcA and Sg(x) = .int{.Ef(xi) {xi}ec}

� inf {.Ef(xi) : {xi}eA} � Sf(x).

To prove the second p art, if there is an xe(c,a] 

such that Sgl [O,a] (x) > f(x) ( "<" has just been ruled out), 

then, since Sf = f on (c ,a], Sg(x) > Sf(x). Thus Sg = Bf im­

plies Sgl[O,a] = f. Conversely, if Sgl[O,a] = f, let s>O 

be given. Then there is an a-partition {x1, ••• ,xn} for 

xeE such that Sf(x) > f(x1)+ ••• +f(xn)-�. For each xi there

' t t't' { l 2 M(i)} h th texis sac-p ar i ion yi,yi, ••• ,yi sue . a

Thus 

. . M(i) r Sg(x
.;

) > t g(yi)-s/2n.... r=l 
n 6 n 6 n M(i) r 6 Sf(x) > .E f(x. )- -2 = 2,; Sg(x. )- -2 > .E ( .E g(y. )-e;/2n)-2 · i=l i i=l i i=l r=l i 

n M(i) r = 
i�l 

( 
r�l g(yi))-s.

n M(i) r n M(i) 
Since .E ( .E y.) = :;x:, it follows that . .E ( .E g(y�)) � Sg(x).

i=l · r=l i i=l r=l ... 

1If f is a function defined on a set Band if DCB, then
f ID de notes the function g defined on D by g(x) == f (x) for 
all xeD. 



Therefore, Sf(x) > Sg(x)-E. Since E is arbitrary, 

Sf (x) ;;,: Sg(x). Since Sg(x) ;;,: Sf(x) by the first :part of 

this theorem, Sf (x) = Sg(x). 
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It is :possible to obtain sharp bounds on the function 

Sf by :proving the general case of a theorem for which 

Bruckner invokes a hypothesis of continuity [ 4, pp. 1159-60 J 

Theore!!!._2: If f is a bounded subadditive function on 

(O,a], then the graph of Sf is bounded between :parallel 

lines on (0 , co). More :precisely, if m = inf{ f (x)/x : xe(O, a]} 

and b = su:p{f(x)-mx: xe(O,aJ}, then mx:s:Sf(x) :s:mx+b for all 

xe(O,oo). 

Proof: Note than, if xe(O,�], then f(2x) :s: 2f(x) and 

f(2x)/2x :s: f(x)/x, so that only those values of x in (�,a] 

need to be considered in finding a lower bound of f(x)/x. 

By hypothesis, !f(x)I :s:M on (O,a] for some :positive MeR. 

Thus ! f(x)/xl :s: 2M/a for all xe(�,a]. Therefore 

{f(x)/x: xe(O,aJ} is bounded below, which means that 

there exists a real number m = inf{f(x)/x : xe(O,a] }. 

Similarly, since {f(x)-mx: xe(O,aJ} is bounded above by 

M+lmal, let b = su:p{f(x)-mx : xe(O,aJ}. 

Let E > 0 be given and consider ye(a, 00). Let 

{x
1

, ••• ,xn} be a refined a-partition for y such that

Sf ( y) + E � f ( x1) + ••• + f ( xn). Sine e xi F O and

m :s: f(xi)/xi (i = 1,2, ••• ,n), 

n n 

m :s;; ( E f(x.) )/ E x. :s;; (Sf(y)+e;)/y, 
i=l 1 i=l 1 



or my :s;; Sf(y)+E. Since E is arbitrary, my :s;; Sf(y). 

There exists a unique integer p such that y = �+z, 

where O :s;; z < �· .. Let t. 6. (�, a] such that f ( t)/t < m+E/ap •. 

Then the integer r is uniquely determined such that 
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y = rt+z' , where O :s;; z' < t, and r :s;; p since t > �· It follows 

that Sf(y) :s;; rf(t)+f(z'). Since f(t) < tm+tE/ap and 

f(z') :s;;mz'+b (by definition of b), Sf(y) <r(tm+tE/ap)+mz'+b 

=m(rt+z')+b+(t/a)(r/p)E :s;;my+b+e;. Thus Sf(y) smy+b since e; 

is arbitrary. 

Corollary 5a: Every subadditive function f on E 

which is bounded on (O,a) and negative at a is such that 

there exists M > 0 for which x > M implies f(x) < 0. 

Proof: Let g = f I [O ,a]. Then, for m and b defined in 

Theorem 5, ms f(a)/a < O. Thus for x beyond the point at 

which the line y = mx+b crosses the x-axis (namely, for 

x > -b/m), f (x) :s; Sg(x) s: mx+b < 0. 

A slightly more general form of this corollary is 

true. It is true if "finite-valued iv is substituted for 

"bounded," but a finite-valued subaddi tive function on E 

can be unbounded on a bounded interval only in a neighbor­

hood of the origin. [ 2, p. 241 and p.243_
]. An example is

given by f(O) = 0 and f(x) = 1/x if x > O. 

In constructing examples of subadditive functions and 

maximal subadditive extensions of them using the technique 

of Proposition 6 (p. 17), one encounters situations of 

which the following examples are representative. 

; .

•·
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1) Let f be defined on the set J4 = {0,1,2,3,4} by

f(O) = f(4) = O, f(l) = f(3) = 2, and f(2) = 1. Then the next 

few values of Sf(n), found by taking min{sf(l)+Sf(n-1), 
. n n } 2 Sf(2)+Sf(n-2), ••• ,Sf([

2
J)+Sf(n-[

2
J) , are

n: 1 2 3 4 5 6 � 8 9 10 11 12 
Sf(n): 2 1 2 0 2 1 0 2 1 2 0 •

It appears that Sf is periodic with period 4 -- a conjec­

ture which will be verified in the theorem to follow. (See 

Figure 3.) 

2 -· ,..---- ... ----t-.----:,\----k-----;;\-------
' ', ;' ' , ', ,'" ' I ', "'� ' 

I ' , \ I ', ; \ I ' ti 
\ 

I ', ; \ I ' ; \ I ', / \ 

1 ,,·_ - - �� - - \- -/- - -¥ - - - \ - --;'- - --41� - - -\-- - - - -1 \ I \ I \ I 
\ I 

\,' \ 

6 10 12 

Figure 3. A Repeating Maximal Extension 

2) If g is defined on J4 by g(O) = g(4) = O, g(l) = 4,

g(2)=3, and g(3)=1, then the first several values of 

Sg(n) are 

n: 1 2 2 4 
Sg(n): 4 3 1 0 

It will be shown to 

period 4 on the set 

5 6 2 8 
4 2 1 0 

be the case 

2 10 
3 2 

that Sg 
' < 

11 12 12 14 15 
1 0 3 2 1 

is periodic with. 

{a,9,10,11, ••• } -- a fact which is 

2The symbol [xJ denotes the unique integer such that
x;..l < [xJ :s:: x. 

16 
0 0 

2 



again more plausible after additional computationo (See 

Figure 4.) 
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Figure 4o An Eventually Repeating Maximal Extension' 

The pertinent theorem will be stated and proved for 

the set E=[O,co), but it is just as valid for, and more 

easily applied to, the set J = {0,1,2, ••• }. The theorem is 

more general than the examples indicate since it is not 

necessary that f take on the value Oat the right _end­

point,of its interval of definitiono 

Theorem 6; Let f be a subadditive function on [O,a] 

such that, for some neJ, Sf( (n+l)a+x) = f(a)+Sf(na+x) for 

all xe(O,a]. Then Sf(ma+x) = (m-n)f(a)+Sf(na+x) for all 

m � n and all xe ( 0, a] • (Essentially, if Sf I ( (n+l) a, (n+2) a] 

is a "copy" of Sf! (na,(n+l)a], then Sf continues to copy 

itself ad infinitum.) 

Proof: Let ye((n+2)a, co)9 then y has a representation 

of the form y = ma+x, where meJ and xe(O 'l a] o Let 
'•:, 

------------------------------ --
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{y1 ,y2, ••• ,Yr} be an a-partition for y. Since each yi :!i:: a,

there exists keJ such that y1 +y 2+ ••• +yk = (n+l)a+x1,

x1 e(O,a] •. Replace y1 ,y2, ••• ,yk by na+x1 and a. ·By hy­

pothesis, f(a)+Sf(na+x1) = Sf((n+l)a+x1) :!i:: f(y1)+ ••• +f(yk)

(since {y1, ••• ,yk} is an a-partition for (n+l)a+x1).

There exists k' > k such that (na+x1)+yk+l + ••• +yk,

= (n+l)a+x2, x2e (0 ,a]. Replace na+x1 ,Yk+l' .•• ,yk' by

na+x2 and a. By Theorem 4, Sf= S(Sf I [O, (n+l)a]), and both

these partitions of (n+l)a+x2 are (n+l)a-partitions, so

that

Sf((n+l)a+x2) = f(a)+Sf(na+x2) � Sf(na+x1)+f(yk+l)+ ••• +f(yk').

Repeat this procedure until an (n+l)a-partition for y of

the form Y = {na+x,a,a,o•• ,a}, with m-n a 0 s, is obtained.

This yields the inequality
r r 

E f(y.) � f(a)+Sf(na+x1)+ E f(y
1.)i=l 1 i=k+l 

� 2f( a)+Sf (na+x2)+ E f(y.) ;;;: •••
i=k'+l 1 

;;;: (m-n)f(a)+Sf(na+x),

which holds for every a-partition of y.

Therefore, (m-n)f(a)+Sf (na+x) :!i:: Sf(y), but, since Y is

an (n+l)a-partition for y, (m-n)f(a)+Sf(na+x) � Sf(y).

Corollary 6a: Let f be a subadditive function on

[O,a] such that Sf(a+x) = f(a)+f(x) for all xe(O,a]. Then

Sf(ma+x) = mf(a)+f(x) for all meJ and all xe(O,aJ.

Proof: Take n = 0 in Theorem 6.

r 
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Bruckner �as shown [4 9 5, po 2] that a function f 

which is concave on [O,a] with f(O):;;: 0 has a maximal sub-

additive extension Sf which behaves according to the rule 

of Corollary 6a. Such a function is given by f(x) = I sin xi, 

which was shown earlier to be subadditive. This function 

will now be used to provide two examples. 

1) The inequalities mx :s:: Sf (x) :!!.' mx+b of Theorem 5 are

the best possible on every interval in E of length ao If 

f(x) = I sin xi and a= n, then m = f( n)/n = 0 and b = f(�) = 1. 

By Bruckner's result just mentioned, Sf(x) = I sin xi on E, 

and the bounds O :!!.' I sin xi:!!.' 1 are realized on every closed 

interval of length 1to 

2) The infimum of a family of subadditive functions

is not necessarily subadditive. For example, if 

f(x) = I sin xi, g(x) = 2x/3n, and h(x) = inf{f(x) ,g(x)}, then 

h(3n/2) = 1 > h(;)+h( n) = 1/3+0. 

The concluding portion of this chapter is devoted to 

a discussion of the additivity of the operators. If f 

and g are functions defined on the same set D \j then write 

f:.?: g if, and only if, f (x) :.?: g(x) for all xeD. This is a 

partial ordering of the set of all functions on Do In the 

usual terminology, Proposition 3, parts band c (p. 16), 

state that Sis a monotone, positive-homogeneous operator 

on the set of all subadditive functions defined on [O,a) 

into the set of all subadditive functions on Eo The fol-

lowing theorem states that Sis also superadditive. 
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Theore!!l_.Z: If f and g are subadditive on [O,a], then 

S(f+g) � Sf+Sgo 

Proof: Using the definition of S (po 15), S(f+g)(x) 

= infE(f(xi)+g(xi)) � infI:f(x
1

)+infEg(xi) = Sf(x)+Sg(x) o 

Equality may not hold. As an example in a finite case, 

let f(O) = g(O) = O, f(l) = g(l) = 2, f(2) = g(2) = f(3) = g(3) 

= g( 4) = 3, and f ( 4) = 5 on J 4 = { 0, 1, 2, 3 ,4}" Then Sf ( 5) = 6,

Sg(5) = 5, and S(f+g)(5) = 12. 

A couple of conditions under which equality holds can 

be mentioned. First, if f = cg, c a non-negative constant� 

then Proposition 3c implies that S( cg+g) = ( c+l)Sg 

= c(Sg)+Sg = S(cg)+Sgo Second, if f and g are both concave 

on [O,a], then f+g is concave and S(f+g)(na+x) 

= n(f +gX a)+(f +g) (x) = nf ( a) +f (x)+ng( a) +g(x) 

= Sf(na+x)+Sg(na+x) for all xe(O ,a] -- by Corollary 6a and 

Bruckner's result noted there. The set of all functions 

having the properties of f in that corollary is also 

closed under addition, so that these functions provide a 

generalization of the notion of concave functions non-

negative at O. 

Theorem 8: Let f and g be subadditive on [0 9 a] with 

the property that Sf(a+x) = f(a)+f(x) and Sg(a+x) = g(a)+g(x) 

for all xe ( 0, a] • If h = f +g, then Sh( a+x) = h( a) +h(x) for 

all xe(O,a]. 

Proof: Assume that there exists an a-partition 

{x1 ,x2, ••• ,x
;t.J· for a+x such that h(x1)+.". +h(xn)<h( a)+h(x).



Then h(a)+h(x) > h(x1)+ ••• +h(x
n

) :a: Sh(a+x)

= S(f+g) (a+x) :a: Sf(a+x)+Sg(a+x) = f(a)+f(x)+g(a)+g(x) 

= (f+g) (a)+(f +g) (x) = h(a)+h(x) -- a contradiction. 
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Thus h(a)+h(x) s: h(x1)+ ••• +h(xn) for every a-partition

of a+x; hence Sh(a+x) = h(a)+h(x). 

Corollary 8a: The functions f and g of Tb,:eorem 8 

satisfy S(f+g) = Sf +Sg. 

Proof: By Theorem 8, Sh( a+x) = h( a) +h(x). By 

Corollary 6a, Sh(ma+x) = mh(a)+h(x) = m(f+g)(a)+(f+g)(x) 

= mf(a)+f (x)+mg(a)+g(x) = Sf (ma+x)+Sg(ma+x), for all meJ 

and all xe(O,a]. Since every yeE has the form ma+x, 

Sh(y) = Sf(y)+Sg(y) at every yeE. 



CHAPTER IV 

OTHER EXTENSIONS 

This chapter deals with extensions of subadditive 

functions from E to R, from J to E, and from [O,a] to Eo 

The first consideration is that of the way in which the 

behavior of a subadditive function f for positive x af-

fects its behavior for negative x a consideration which 

sheds some light on the existence of an extension of a 

function g on E to Ras an even functiono Hille and 

Phillips [2, ppo 244-5] show that a finite-valued subaddi­

tive function defined on (O, oo) has no finite subadditive 

extension to R if either f (x) ..... oo as x ..... 0 or f (x) /x ..... -oo as 

x ..... oo. This supplies some idea of what not to expect of 

subadditive even functionso (An even function f is one 

which satisfies the relation f(-x) = f(x) for all xeRo If 

f(-x) = -f(x), then f is called an odd functiono)

Proposition 7 [ 6} Every even subadditive function

is nowhere negative. Every measurable odd subadditive 

function is of the form f(x) = mx, m a constant. 

Remark 2: Every function f on E such that 

sup { f (x) · : xeE} � 2(inf{ f (x) : xeE}) can be extended to R 

as an even subadditive function. If f is non-increasing 

28 
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on E, this condition is also necessaryo 

Proof: That the function f is subadditive is a con-

sequence of Proposition 2 (po 5) o The supremum and infimum. 

of the extension on R will be the same as those on E, so 

the extension is subadditive by the same proposition. 

If f is non-increasing and Fis its even extension to 

R, then sup{ f(x) : xeE} .= f(O) o If there is a point yeE 

such that. 2f(y) < f(O), then F(O) = F(y-y) > F(y)+F(-y) = 2f(y), 

and Fis not subadditive on Ro 

Theorem 9: If f is non-decreasing and subadditive on 

[O,oo) and non-increasing and subadditive on (-oo,O), then f 

is subadditive on Ro 

Proof: I.f xy > 0, then f (x+ y )  s f(x)+f(y) by hypothe­

sis. If x>O, y<O, and x+y�O,thenf(x+y) sf(x)  sf(x)+f(y) 

since f(y) 2: 0 9 if x+y < 0, then f(x+y) s f(y) s: f(x)+f(y). 

If x = O, then f(x+y )  = f(y) s: f(x)+f(y) o 

Corollary 9a: Every non-decreasing subadditive func-. 

tion defined on E can be extended to Ras an even subaddi-

tive function. 

Corollary 9b: Every non-decreasing subadditive func­

tion f on E can be extended to R by f (x) = 0 for Eill x < 0, 

or by f(x) = f(O) for all x < Oo 

Theorem 10: Let f be subadditive on E. Then f can 

be extended to a .subadditive even function Fon R if, and 

only if, f(x-y) s: f (x)+f(y) for all x 2: y in Eo 



Proof: If f is subadditive on E, and if Fis the 

·even function on R which is an extension off, then
; 

F(x+y) s: F(x)+F(y) whenever x:y � O. Thus assume

f(x-y) s: f(x)+f(y) and let u > 0 and v < 0 be given.. If

u. �Iv!, then F(u+v) = F(u-lvl) = f(u-lvl) s: f(u)+f( Iv!)

= F(u)+F(v). If u < !vi , then F(u+v) � F(u-1 vi) =

f(lvl-u) !i: f(lvl)+f(u) = F(v)+F(u).

Conversely, if there exist u, veE such that u � v and

f(u-v) > f(u)+f(v), then F(u-v) = f(u-v) > f(u)+f(v)

=F(u)+F(-v), and the subadditivity inequality fails for

the even function Fat the pair u,-veR.

The following lemmas will be useful in Chapters VII 
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and V, respectively. In each lemma a non-decreasing sub­

additive function on [O,a] is extended to a larger set as 

a subadditive function. 

Lemma 3: Let f be a non-decreasing subadditive func­

tion on [O,a] (or on Jk={o,1,2, ••• ,k}). Extend f by 

F(x) = f(a), x > a (respectively, by F(n) = f(k), n > k). If 

F = f on the original domain, then Fis subadditive on E 

(on J). 

Proof (for the case of [O,a]): The function Fis non­

decreasing since x < a !i: y implies F(x) = f(x) !i: f(a) � F(y). 

Let u+v = x > a, u;veE. If u,v > a, then F(u)+F(v) = 2F(x). 

If us: a, then v > a..;u and F(u)+F(v) � F(u)+F(a-u) � F(a) 

= F(x). 
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Lemma 4: Let f be non-decreasing and subadditive on 

[O,a], a>O. Let g be defined by g(x)=f(x) if xe[O,a], 

g(x) = f(a) if xe(a,2a], and g(x) = f(a)+f(x-2a) if 

xe(2a,3a]. Then g is subadditive on [0,3a]. 

Proof: If x,y,x+ye[0,2a], then g(x+y) :s: g(x)+g(y) by 

Lemm.a 3. For x+ye(2a,3a] consider the various cases. 

1) If x,ye(a,2a], then g(x+y) :s: g(3a) = 2f(a)

= g(x)+g(y).

2) If xe[O,a] and ye(a,2�], then y-2a :s: 0 and

g(x+y) = f(a)+f(x+y-2a) :s: f(a)+f(x) = g(y)+g(x).

3) If xe[O,a] and ye(2a,3a], then g(x+y)

= f(a)+f(x+y-2a) :s: f(a)+f(x)+f(y-2a) :s: g(x)+g(y).

(Since g is non-decreasing on [0,3a] 5 this construc­

tion may be repeated as often as necessary.) 

Attention turns now to some theorems involving inter­

polation of subadditive functions by concave functions. 

More precisely, if f is a subadditive function defined on 

the set J of all non-negative integers (see Remark 3), how 

can f be extended to E = [O , oo) by interpolation of values 

while retaining the subadditivity property? A simple an­

swer follows, but it is only a special case of the general 

theorem. 

Theo-rem 11: If f is a non-decreasing subadditive 

function on J and F is defined on E by F(O) = f(O) and 

F(x) = f(n) for all xe(n-1,n] (n = 1,2 j3, ••• ), then F is 

subadditive and non-decreasing on E. 
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Proof: For each xeE let n(x) be the unique integer 

such that n(x )-1 < x s: n(x ) o The function F is non­

decreasing since x < y implies n(x) :s: n(y) and F(x) = f(n(x) ) 

s: f(n(y)) = F(y) o If x,yeE, then F(x)+F(y) = f(n(x) )+f(n(y)) 

� f(n(x)+n(y)) = F(n(x)+n(y) )  � F(x+y) since n(x)+n(y) � x+yo 

Thus Fis subadditive on Eo 

This extension of f as a left-continuous step func­

tion and the extension of f as a polygonal function (in 

the sense of Proposition 6) are both subadditive whenever 

f is non-decreasing and subadditive. The interpolating 

functions on [O ,1] -- g(O) = 0, g(x) = f(l) if O < x s: 1 in 

the first case, and g(x) = f(l)x in the second case -- are 

both monotone subadditive functions, but subadditivity is 

not, in general, a strong enough hypothesiso A general 

theorem is true if g is a monotone concave function with 

g(l) = f(l). The g-functions of these two cases then are 

the extremes of this class of interpolating functions,o 

Theorem 12: Let f be a non-decreasing subadditive 

function on Jo Let g be a non-decreasing concave function 

on [O ,1] with g(O) = 0 and g(l) = 1. The function F defined 

on Eby 

F(x) = f ( [x] )+{f ( [x+l] )-f( (x] )}g(x-(x]), 

where [x] is the integer x-1 < [x] s: x, is subadditive and 

non-decreasing on E. 

Proof: By the definition of F and monotonicity of g, 

Fis non-decreasing on any interval [n,n+l], neJo Since 

'i 
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the intervals [n,n+l] and [n+l,n+2] have a point in comm.on 

for each n and since f is non-decreasing 1 Fis non-

decreasing on E. To show subadditivity, let x=m+u and 

y = n+v, where m,neJ and u,ve[O,l). 

1) In the case u+v = h s: 1 and g(u)+g(v) s 1, note

that g is subadditive on [0,1] by Proposition 1. Thus 

g(h) s: g(u)+g(v). The calculation proceeds as follows: 

F(x+y) = f(m+n)+{f(m+n+l)-f(m+n) }g(h) 

sf(m+n)+{f(m+n+l)-f(m+n)}{g(u)+g(v)} 

= f (m+n){l-g(u)-g(v) }+f(m+n+l){ g(u)+g(v)} 

s:{f(m)+f(n)}{1-g(u)-g(v)}+{f(m+l)+f(n)}g(u) 

+{f(m)+f(n+l)}g(v) 

=f(m)+{f(m+l)-f(m)}g(u)+f(n)+{f(n+l)-f(n)}g(v) 

= F(x)+F(y). 

2) If u+v = h s: 1 but g(u)+g(v) > 1 � assume that the

notation has been selected so that f (n+l)-f (n) s: f (m+l)-f(m) o 

Thus y denotes the point in the unit interval of smaller 

increase in f. Since g(u)+g(v) > 1, 

{f(n+l)-f(n) }{g(u)+g(v) }+f(n);;;: {f(n+l)-f(n) }+f(n) = f(n+l) � 

so that F(x+y) s: f(m+n+l) s: f(m)+f(n+l) s: f(m) 

+{f(n+l)-f(n)}{g(u)+g(v)}+f(n) 

s: f(m)+{f(n+l)-f(n) }g(u)+{f(n+l)-f(n) }g(v)+f(n) 

s: f(m)+{f(m+l)-f(m) }g(u)+f(n)+{ f(n+l)-f(n)}g(v) 

= F(x)+F(y). 

3) If u+v = l+h > 1 � the proof requires more informa­

tion about the function g. Define G(x) = 1-g(l-x). (In 

effect, turn the graph of g upside-down and let (1,1) be 
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the origino.) G( 0) = 0 and G is convex on [ 0 ? 1] o Thus

G(tx+(l-t)y) s tG(x)+(l-t)G(y) for all t ,x,ye[O �lJ o Let

y=O, x=a+b, t=a/(a+b)9 then G(a) saG(a+b)/(a+b)o Let

y=O, x=a+b, t=b/(a+b); then G(b) sbG(a+b)/(a+b)o Adding

these two results yields G(a)+G(b) s G(a+b) o Letting

a= 1-u, b = 1-v -- so that a+b = 2-(u+v) = 2-(l+h) = 1-h

the result is G(l-u)+G(l-v) s G(l-h), which translates to

g as 1-g(u)+l-g(v) s 1-g(h) or as g(h):;;; g(u)+g(v)-lo Then:

F(x+y) = f(m+n+l)+{ f(m+n+2)-f(m+n+l) }g(h)

sf(m+n+l)+{f(m+n+2)-f(m+n+1)}{g(u)+g(v)-1}

� f(m+n+l){l-g(u)}+f(m+n+l){l-g(v)}

+f(m+n+2){g(u)+g(v)=l}

s{f(m)+f(n+1)}{1-g(u)}+{f(m+l)+f(n)}{1-g(v)}

+{f(m+l)+f(n+l)}{g(u)+g(v)=l}

=f(m)+{f(m+l)-f(m)}g(u)+f(n)+{f(n+l)-f�n)}g(v)

= F(x)+F(y).

Theorems 11 and 12 may fail if f is not monotoneo For

example, the extension in Theorem 11 when applied to

f (n) = 1 if n is odd and f (n) = 0 if n is even gives a func-

tion F which is not subadditive inasmuch as

F(3)=1>2F(l.5)=0o (Figure 5)

Theorem 12 may fail if g is subadditive but not con­

cave on [O,l]. As an example let g be defined polygonally
1 1 by. g(O) = 0, g( 1/4) = 3/8 � g( 2) = 2 � 

and g( 1) = 1. Then g is

subadditive by Proposition lo If f(n) = n for all ne:J �

then F(5/4) = 11/8 > F(3/4)+F(l/2) = 3/4+1/2"" 5/4. (Figure 6)
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1 2 3 

Figures 5, 6, 7. The Failure of Weakened Forms of Theoreml2 

Theorem 12 may fail if g is not monotone. For exam-

ple, let f(O) = O, f(l) = f(2) = 1, and f(3) = 2; let g be de­

fined polygonally by g(O) = O, g(�) = l+e:: (e:: > 0) ., and 

g(l) = 1. Then F(5/2) = 2+E > F(l)+F(3/2) = 2. (Figure 7) 

Finally, Theorem 12 must fail if f is pot subadditive 

since F(n) = f (n) if neJ. A proof similar to that of the 

previous theorem, but a much shorter proof, is given for 

the following theorem, which was suggested by the subad­

ditivity of !sin xi, and which generalizes that 

subadditivity. 

Theorem 13: Let g be concave and non-negative on 

[O,l). The extension F of gas a periodic function to 

E = [O,oo), defined by F(x) = g(x-[x]), is subadditive on E. 

Proof: Let x = m+u and y = n+v, where m ,neJ and 

u,ve[O,l). 

1) If u+v< 1, the subadditivity of g on [0,1) yielq.s



the inequality F(x+y) = F(u+v) = g(u+v) s:: g(u)+g(v) 

= F(x)+F(y). 

2) If u+v = l+h .:!: 1, then h < u and h < v. Since g is

concave and non-negative, let g(l) = 0 and g will be con-

[ ] ( ) . ( 1-u u-h ) 1-u ( ) u-h ( ) cave on O ,1 • Now g u _= g l-hh+1_hl � l--hg h +I=iig l ,
that is, g(u)/(1-u) � g(h)/(1-h). Similarly, 

g(v)/(1-v);;.,; g(h)/(1-h). Therefore, 

.fil.hl :s; g(u)+g(v) _ g(ut+g(v) _ g(u)+g(v)· 
1-h 1-u + 1-v - 2- l+h) - 1-h •

Multiplication by 1-h giyes g(h) s:: g(u)+g(v), so 

F(x+y) = g(h) :e g(u.)+g(v) = F(x)+F(y). 
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It is essential that g be non-negative because 

Theorem 5 and Corollary 5a prevent any bounded subadditive 

function which takes on negative values from being peri­

odic. However, .the condition that g be concave is not a 

necessary condition. The polygonal extension G of the 

function Sf of Figure 3 (p. 22) is not concave, but 

Proposition·6 guarantees that G i� subadditive. 

These last two theorems have served to emphasize the 

close relationship between concavity and subadditivity 

hinted at in earlier results such as Proposition 1. 



CHAPTER V 

CONVERGENCE 

This chapter is devoted to the 'study of sequences of 

subadditive functions. This study was motivated by con­

sideration of a theorem of Bruckner on the convergence of 

extensions of functions. This motivation is the failure 

of the analogue of his theorem when subadditive functions 

are used. The basic result pertaining to sequences of sub-

additive functions will be stated first, and then t�is 

failure will be discussed. 

Proposition 8 [2� p. 238]: If {fn} is .a pointwise

convergent sequence of subadditive functions� then the 

function f:x .... lim fn(x) is subadditive.

Bruckner 1 s theorem 9 mentioned above 9 is the following 

.[4,p. 1157} 

Let (fn} be a sequence of continuous non-negative 
superadditive functions converging to the contin­
uous function f on [0 1 a]. Let Fn denote the min­
imal sµperadditive extension of fn• Then f is a 
continuous non-negative superadditive function� 
and the minimal superadditive extension off is 
lim Fn• 

The proof of this theorem makes use of the uniform convet­

gence of {fn} to f implied by the monotonicity of each fio

37 
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No such monotonicity is available in the subadditive case, 

and the statement obtained from Bruckner's theorem by re­

placing i• superaddi ti ve II by " subaddi ti ve II and II minimal" by 

''maxim.al" is false o (It is, of course, still true if 

"non-negat:i.ve" is also replaced by "non-positive.") To 

verify the failing case with an example, let f(x) = x on 

[0,1)9 then Sf(x) =x o:ri E= [O, co). Let f
n 

(n=l,2,3, ••• ) 

b� defined polygonally on [O ,1) by fn (l/2n ) = fn (l-l/2n ) = 1/2 
.·· 

. · n n .n and by fn(z) = z if z=k/2 (k=0,2,3.,4, ••• ,2 =2,2 ). An 

application of Theorem 5 -- with m = 2n-l/(2n-l) and

b = !<1-l/(2n-l)) -- to fn yields the information that the. 

sequence {sfn} is approaching boundedness above by the 

. line y = �x+�. Specifically, for each xeE and e: > 0, there 

·. exists NeJ �uch that n > N implies Sfn(x) < tx+�e:. Each f
n 

is a continuous non-negative subadditive function on [0,1]

by Proposition 6, and fn .... f (non-uniformly) on [0,1], but 

{sfn} is not approaching Sf. (See Figure 8.) 

Solid line is 
graph of. 
y = r

3
(x) 

1 

1/8 

.--
--

1/2 7/8 1 

--
-

------
----

-
--

--

2

Figure 8. Non-Uniform. Convergence of Maximal Extensions 
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The appropriate positive result, to which Bruckner 0 s 

proof applies, is the following oneo 

Proposition 9,: Let {fn} be a sequence of continuous

subadditive functions converging uniformly to the function 

f on [O ,a]. Then lim :Sfn =Sf. (The function f is� of

course, continuous and subadditive.) 

The hypotheses of continuity and uniform convergence 

may be traded for a different kind of restriction in the 

following manner. 

Theorem 14: If {fn} is a sequence of subadditive

functions on [O �a] converging to f there, and if f ::?: fn 
for all n, then Sf ... Sf on E.n 

Proof: Let xeE and e; > 0 be given� and let 

{x
1 

,x2, ••• 
,
'xr} be a refined a=parti tion. of x such that

Sf(x) � f(x�)+ ••• +f(xr)=�· (The function f is subadditive

by Proposition 8.) Note that r is bounded above by some 

integer M = M(x). There exists mi eJ (i = 1�2 j ••• ,r) such 

that n>mi implies fn(xi)-f(xi) < e;/2M. If n>max {mi}�

then Sfn(x) � fn(x
1
)+ ••• +fn(xr) < f(x1)+ ••• +f(xr)+re;/2M

� Sf (x)+e;/2+e;/2. But fn:?: f on [0 � a] implies :Sfn (x) :?: Sf (x)

by Proposition 3b. Thus I Sfn (x)-:Sf (x) I < e;. 

An attempt to implement Proposition 9 by inserting a 

condition implying uniform convergence might proceed in 

the direction of one of the usual conditions [7 1 p. 86] 

such as: 



4-0 

1) The functions fi are continuous, f1 s f2 s; f3 s; o .  o, 

and f is continuous, or 

2) The functions f. are non-decreasing and f is
l

continuous.

However, a different kind of restriction, a bound on 

the rate of increase at the origin, is possible in the 

subadditive case. 

Theorem-1..z: Let {fn} be a sequence of subadditive

functions (not necessarily continuous) converging to the 

continuous function f on [O,a] and such that there exists 

a real number m > 0 such that fn (x) s mx for all n and all.
xe[O ,a]. Then the convergence f ..... f is uniform on [O ,a]. 

. n 

Proof: The limit function f is subadditive by 

Proposition 8. Also, since fn (x) s: mx and fn (x) .... f (x),

f(x) s:mx at each xe[O,a]. By Lemma 1 (p. 12)� if x>y in 

[O ,a], then f(x)-f(y) s m(x-y) and f (x)-f (y) s; m(x-y) 
n n 

Let E > 0 be given. Since f is continuous on [O,a] 9 

there exists P > 0 such that I f(x)-f(y) I < e:/4 whenever 

I x-y I s; P. Let 6 = min { e:/4m, P}. Let O = x0 < x1 < ••• < xr = a 

be a partition of [O,a] with x.-x. 1 s:o (i=l 1 2 p oqr).
l l= 

Since fn(xi) .... f(xi), there exists Ni eJ such that

I f (x. )-f(x.) I< e:/4 whenever n >N. (i = l 'l 2, •• o ,r). Let 
n i i i . 

xe[O,a] with xk-l s x s xk' and let n >max{Ni}. Then

f(x)-fn (x) = (f(x)-f(xk_1) )+(f(xk_1)-f(xk) )+(f(xk)-fn (xk))

+(fn (xk)-fn (x)) < m(x-xk_1)+e:/4+e:/4+m(xk-x)

< me:/4m+e:/2+me:/4m "' E 'j and 
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fn (x)-f(x) = (fn (x)-fn (Xic_1) )+(f
n 

(xk_1)-f(xk_1))

+(f(xk_1)-f(xk) )+(f(xk)-f(x)) < m(x-xk_1)+e:/4+e:/4+m(xk-x) < e;.

Since these inequalities hold independent of the choice of 

x, the convergence is uniformo 

That.this theorem may fail without the m-condition is 

a consequence of the example on page 38. The. condition, 

however, is not necessary since f (x) = 1/n gives a uni-. n - -
formly convergent sequence of subadditive functionso Con-

verses of theorems of the above types on convergence .of 

subadditive functions are, in general , not trueo For ex-

ample, even under conditions of monotone convergence of 

continuous functions a sequence of functions, no one of 

which is subadditive, may have a subadditive limit func­

tiono To show this, let f be defined polygonally on [0,2J, 

by f(O) = 0 and f(l) = f(2) = 1. Let each f be definedn .  
polygonally by fn(O) = o, fn(l) = fn(2) = fn(3/2±1/2n+l) = 1, 

and fn(3/2) = 1+ 1/r-l. Then fn(3/2)-fn(3/2-l/2n+l) = 2/2n+l,

and fn is not subadditive by Lemma l o (See Figure 9o)

2 

l 
f 

1 3/2 

Figure 9. A Sequence of Non-Subadditive Functions 

~--· 

2 .. · . ' ' ' .. 
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The following remarks concern a subadditive function 

with certain pathological properties of continuity and for 

which a couple of the earlier lemmas have been introducedo 

It is introduced in the theory of functions of a real 

variable [s, po 193] as an example of a function which is 

uniformly continuous but not absolutely continuouso The 

function, which is called the Cantor function, is con-

structed as follows: 

Let D be the Cantor "middle third uu set constructed 

by deleting from the closed interval [0,1] the open 

intervals I(l,l) = (1/3,2/3); I(2,l) = (1/9,2/9) and 

I(2,2) = (7/9,8/9); I(3,l) = (1/27,2/27), 

I(3,2) = (7/27,8/27), I(3,3) = (19/27�20/27), and 

I(3,4) = (25/27,26/27); • o. • Define K(x) = (2k-l)/2n

if xe:I (n ,k) and define K(x) = limt K( t) if
-+ x 

xe:D = c I J I (n ,k) o The continuous non-decreasing func-
Ii";"k 

tion K thus defined on [O�l] is the Cantor functiono 

Remark 6: The Cantor function K is non=decreasing 

and subadditive on [O,l]o 

Proof: Define Kn (n = 1,2,3, ••• ) on [0,1] to be the

function obtained by joining polygonally consecutive end­

points of the graph of K restricted to all I(r,k) 

(r = 1,2,.. o,n) and the points (O,O) and (l,l)o (See 

Figu;re 10.) 
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1/9 2/9 1/3 2/3 7/9 8/9 1 

Figure lOo Approximations to the Cantor Function 

Each function K
n 

is additive and non-decreasing on 

[O,l/3
n

] and satisfies the conditions of Lemma 4 when ex­

tended to [0 9 3/3
n

] 9 so it is subadditive on [0�3/3n]. 

Repeating the extension n times by Lemma 4 yields K
n

� 

which is, therefore ? subadditive on [O�lJ (n=l 9 2�o •• ). 

Since Kn ... K uniformly on [0 9 1] 1 K is subadditive by

Proposition 8. 

Note that the function K� usually defined in the 

above manner, might alternatively be defined as lim K
n 

the uniform convergence then giving the continuity of Ko 

It will be shown in Chapter VII that K has additional 

:properties in relation to a convex cone of subadditive 

functions -- :properties to which the remaining chapters 

are devoted. 

__ ,/ 
/ 
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CHAPTER VI 

CONES OF SUBADDITIVE FUNCTIONS 

The remaining material concerns certain subsets of, a 

linear space over the field R of real num.berso Certain 

standard notational devices which will be used are defined 

below, and then_ the .sets and elements of p�rticular inter­

est are definedo 

Definition 2: Let A and B be subsets of a real lin­

ear (vector) space L, and let teR. Then 

.A+B = { x+y : xeA and yeB}, -A = { x : -xcA} ') A-B = A+ (-B) , and 

tA = {tx : xcA}. 

Definition 6: A set Cina real linear space Lis a 

� if 1) C is convex, 2) tee C for all t � 0 in R, and 

3) 0'1(-C) = { e.} where e is the origin in Lo Condition 1

can be replaced by l') C+ccc.

Definition 7: Let C be a cone in Lo An element xeC 

is called an extremal element of C if x1 ,x2cc and x1 + x2 = x

imply that x1 and x2 are scalar multiples of Xo

In an appropriate linear space (space of all functions 

defined on a given set ') space of bounded functions on a 

set, etc.) certain sets of subadditive functions are cones. 

44 



Let D denote one of the sets J = { O, 1, 2, .... } , 

Jk={0,1, 2 ,o • .,k} (k>O),.[O,c;1.J,.or E= [O, oo) •. , Then C(D)

will denote the cone of all non-decreasing subadditive 
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functions defined on D. Some problems of charac�erizing 

the extremal elements of cones of functions have been con-

sidered by Choquet [9] and McLachlan [10, 11]. A motiva-

tion for this study is provided by the following theorem 

of Choquet .. 

Proposition 10 [9, p .. 237]: If the vector space Lis 

a locally convex Hausdorff space, and if A is a convex 

compact subset of L, then, for every x
0

eA, there exists a 

(Radon) measure u0 :.i: 0 on the closure of e (A), the set of 

extreme points of A, whose center of gravity is x
0

• 

This theorem applies to a cone C if there exists a 

b;y"perplane in L cutting the cone C in such a set A which 

has the added property that every ray of C intersects it 

in exactly one point, since the extremal elements of Care 

the non-negative scalar multiples of the extreme points of 

A. [12, . p. 82].

McLachlan has observed [11] that the most difficult 

aspect of such problems is that of finding "non­

proportional" decompositions of the non-extremal elements 

as the sum of elements which are not scalar multiples. He 

also noted that the relation c
1
cc 2 can be used only in

the following way: If c 1c c
2 

and xec1 is an extremal ele­

ment of c
2

, then x is an extremal element of c
1

• 
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Proposition 11 [10]: Let C be a cone of functions on 

one of the sets D mentioned above, and let f,f1�f
2

ec such

that f 
1 

+f 2 = f. a) If C is a cone of non-negative func­

tions, xeD, and f(x) = O, then f1 (x) = f2(x) = O. b) If C

is a cone of non-decreasing functions, x,yeD, and 

f(x) = f(y), then f1 (x) = f1 (y) and f2(x) = f 2(y). c) If C

is a cone of subadditive functions, x,y,x+yeD, and 

f(x+y) = f(x)+f(y), then f i (x+y) = f i (x)+fi (y) (i = 1,2).

CorollaEi:: If C is a cone of subadditive functions on 

D, then e_very function f which is additive on Dis an ex-

tremal element of C. 

The additive functions may be the only extremal ele­

ments of a cone, as in the case of the cone C 8 (Jk) con­

sisting of the zero function and all strictly increasing 

subadditive functions on Jk.

Theorem 16: A function feC 1 (Jk) is an extremal ele­

ment of C'(Jk) if, and only if, f is additive on Jk •

. Proof: An additive f is extremal by the corollary 

above. If f eG' (Jk), let r = min{ f (m)-f(m-1) . m "." 1 � 2, ••. �k}

> o. Let f1 (n) = r2n and f 2(n) = f(n)-f1 (n). Since f1 is

additive, t
2 

is subadditive. Both f1 and f2 are strictly

increasing with f.(m+l)-f.(m)�!:2 (i=l�29 m=O,l, •• o 9 k-l).
l. J_ 

If f is not additive, f1+f
2 

is a non-proportional decompo-

sition of f. 
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Two other examples of cones of subadditive functions 

of types already considered here can be mentioned, namely, 

the cone of all subadditive j non-negative, periodic func-

tions of period p defined on E and the cone of all func­

tions on [O,a] satisfying the condition of Theorem 8 

(po 26). This last example can be verified by appealing 

to Theorem 8 and Proposition 3Co 

It is easily shown that, if C is a cone in L 9 then 

C-C is a subspace of L. The remainder of this chapter is

devoted to a solution of the problems of identifying the

extremal elements of C, showing the existence of an inte-

gral representation in the sense of Proposition 10� and

determining C-C for the cone C = C(Jk) � the cone of all

non-decreasing subadditive functions on Jk = {o j L i 2 i o o o ,k}.

It will occasionally be convenient to think of C(Jk) as a

subset of Euclidean (k+l)-space, Rk+l o 

In connection with this problem there is a conjecture 

due to Choquet that the extremal elements of C(J) are those 

functions feC(J) for which f(m+l)-f(m) is equal to O or to 

f(l) for every meJ" That all such functions are extremal

was proved by McLachlan [11]" However, there are other 

extremal elements and an example of one will be given once 

the extremal elements of C(Jk) have been found. 

The first things to note about the elements feC(Jk) 

are that f(n) :;:: O for all neJk since f(O) :l? 0 and

f (n) :;:: f (n-1), and that f (n) = 0 (n > 1) if, and only if� 

f(l) =0. 
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Lem.ma 2: If f is an extremal element of C(Jk), then 

f(O) = 0 or f(O) = f(l). 

Proof (by contra:posi tion): W"i thout loss of generality 

assume that f(l) = 1 ( see :property 3, p. 2). Then assume 

that the above conclusion fails ., so that O < f(O) < 1. Let 

f1 (n) = f2(n) = 
f(2n) if n > O; let f1 (0) = 0 or � according as

f(O) < � or� i, respectively; let f 2(0) = f(O)-f1 (0). Since

f1 (0) F 
f(20), the decomp osition is non-proportional. Since

f1(0) and f2(o) are non-negative and each is no larger

than 2, f
1 ,f

2
eC(Jk).

If f ¢ 0 in C(Jk), let f be normalized by f(l) = 1 

(that is, consider the :proportional function f' :n-+f(n)/f(l)). 

Consider all equations f(n)+f(m) = f(n+m) (1 s: n,m and 

n+m s: k) and f(n+l) = f(n) (1 s: n < k) which are true for this 

function f. Replace f (n) by xn (n = 1, 2 9 • • •  ,k) to obtain a 

system L(f) of linear equations, which has at least one 

solution, namely xn = f(n) for all xn which appear in L(f). 

Theorem 17: Let feC(Jk) with f(l) = 1, and f(O) = 0 or 

f(O) = 1. Then f is an extremal element of C(Jk) if, and

only if, xi occurs in at least one equa tion of L(f) for

every i = 1, 2 ', .•• ,k and the system L(f) has a unique solu­

tion when x1 = 1. 

Proof: This proof is closely patterned after the 

:proof of a similar resul t given by McLachlan [10]. If f 

is not extrema l but every xi appears in L(f), then the1re 

· exist f1,f2eC(Jk) such that f1+f2=f and f1.;itf, teR.

1 
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Then X = (l ,f (2), ••• ,f(k)) is a soluti on of L(f) and 

Z=(l,z2, ••• ,zk), with z
i

=f1(i)/f1(1) is a different so­

lut ion whi ch satisfies all the equations by virtue of 

Proposit ion llb,c. 

Conversely, if x
p 

does not appear in L(f)� then the

minimum, u, of the set A1UA2UA
3 

is positive, where

A1 = { f(m)+f(n)-f(p) : mn ,' 0 and m+n = p},

A2={f(p)+f(n)-f(p+n) : n > O and p+nsk}, and

A3 = { f (p+l)"'."f (p), f (p )-f (p-1)}. Let f i (n) = f \f) (n ,' p), and

let fi (p) = ¥+(-l)i u/4 (i = 1,2). Then f = f1 +f 2 is a

non-proportional decomposition in C(Jk).

If each xi appears in L(f) but there exists a solu­

ti on Y = ( l ,y 2, ••• ,yk
) -1, X, the equati on x1 = 1 guarantees

that L(f) is not a homogeneous system� so Y ,' tX, teR. 

Also, for any teR, Z = tX+(l-t)Y is a solution of L(f) 

a fact whi ch enables the specification that each y 
i 

> 0 to 

be added since each xi > 0 and there must then be a neigh­

borhood of X in Rk in whi ch the line tX+(l-t)Y contains 

only k-tuples of positive numbers. 

Let u > 0 be the min imum of the set B1UB2, where

B1 = { f(n+l)-f (n) : f(n+l) > f (n) and n < k} and

B2 = {f(m)+f(n)-f(m+n) : m+n s k and f(m)+f(n ) > f(m+n)}.

Let M = max{y i}, let r = l+u/M, and consider

Z =, ( z1, ••• , zk) = rX+ ( 1-r) Y.

The function f 1 : i -,z
i 

is in C(Jk) with 

zi = (l+u/M)x
i

-uy
i

/1'1, and the function f1: i ..... f(i)-(u/2k)f'(i)

gives the non-proportional decomposition 



f =f1+(u/2k)f' in C(Jk) since, to form zi� a number less

than u was subtracted from a number bigger than xi 1 and

since z. = f' ( i) s: k. 
l. 
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Remark z: If xn-l = xn and x +x 1 = x 1 are equa-m n- m+n-
tions in L(f), then x 1+x = x 1 and x 1 = x are inm- n m+n- m- m 
L(f). 

Proof: If xm-l +xn > xm+n-l? then subtraction of

xm +xn-l = 
xm+n-l and use of xn = 

xn
=l imply that xm-l:-xm > 0 �

a contradiction of the non-decreasing property of f. Thus 

equality holds in xm+xn-l = xm+n-l and also� by subtraction�

must hold in xm-l = xm.

Remark 8: If xn-l = xn and xp +xm = xn � where p+m = n,

are equations in L(f) � then xp-l +xm = xn-l � xp +xm-l = xn=l �

x = x 1 , and x = x 1 are in L( f) .
p p- m m-

Proof: If x 1+x . > x 11 then subtraction of
p- m n= 

xp +xm = xn and use of xn=l = xn imply that xp_1
-xp > 0? a

contradiction. Also x 1 = x as in the previous proof.
P= p 

The remaining equations follow by symmetry of hypotheses 

in p and m. 

Theorem 17 may also be interpreted as a characteriza= 

tion of the extremal elements of the subcone c
1 

in C(J) 

consisting of all non-decreasing subadditive functions f

on J which are constant for all n � k = k(f). Since no non-

proportional decomposition exists for such an f if n s: k and 

the proportionality must be preserved for n > k by Proposi­

tion llb, the extremal elements of c
1 

are also extremal



elements of C(J)o This fact and the following example 

yield a counter-example to the Choquet conjecturee 

Consider the function fe:C(J
6

) defined by f(O) = O,

f(l) = 1, and f(n) =� (n= 2,3,4,5,6)0 (See Figure 11.) 

The system 

X2+X3 = X5,

3 ---------- · ------

---2� - - - - - --- -
___

__ ., ..... -· ----
... -

---
--

1 - ,,.,....----------- - .....__ -- - - - - - ......_ -

1 2 3 4 5 

Figure 11. Example on the 
Choquet Conjecture 

6 

L(f) consists of x1 = 1, xl = x2 j 
2x2 = x4,

X2+X4 = X5, and 2x3 = x6• The determinant

this system, 

1 0 0 0 0 

1 -1 0 0 0 

0 2 0 -1 0 0 

1 1 0 -1
1 0 1 0 -1

0 0 2 0 0 -1 ' 

of 
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is equal to 2, so the solution of the system is unique. 

Therefore, f is an extremal element of C(J
6

), and if f is

extended to J by f (n) = 3 (n > 6), then f is extremal in c1
and C(J) although f is not of the form conjectured by 

Choquet. 

, , 

0 
0 

....... -... 

0 
0 

0 
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The cone C(Jk) is a convex subset of Rk+l with the 

usual topology of pointwise convergence (Euclidean topol­

ogy) o . Let B = { f : feJk and f(l) = 1 }. The origin 

(O,O,o •• ,o)tB, and, if feC(J
k

) and f is not the origin, 

then f(l) = r > 0 so that g = (1/r)f is in B. Thus B inter­

sects each ray of C(J
k

) in exactly one point. Also Bis 

convex since f ,geB and O :s: t :s: 1 imply 

tf( l)+(l-t)g(l) = t+ ( l-t) = l o 

The set B will be shown to be compact by showing that 

it is closed and bounded. Since Bis a subset of the rec-

tangl e { ( x0 , x1 , o •• , �) : 0 :s: x0 :s: 1 , x1 = 1 , and

1 :s: xn :s:. n (n = 2, ••• ,k)}, B is bounded. If fn is a sequ.ence

of distinct elements of B with limit feRk+l , then f is 
\

.. 
' 

subadditive by Proposition 8, f(l ) = lim fn(l) = lim l = 1, 

and f is non-decreasing since f(i) = lim fn(i)

:s: ltm fn (i+l) = f (i+l ). Thus f eB and B is closed.

Since the hypotheses of Proposition 10 are sati�fied 

by B = A and Rk+l 
= L, the desired Radon measur� exists for 

�· multiple of each f0eC(J
k

).

Theorem 18: Th� cone O(J
k

) generates all of Rk+l , 

that is, C(Jk)-C(Jk) = Rk+l .
k+l ( )Proof: Define vectors vieR "by v

0
= 1,1., ••• ,1,1.

and vi= (0,1,2,.3, ••• i-l,i,i, ••• ,i) (i=l,2, ••• ,k).· These

vectors represe.nt functions in C(J
k

) (of the Qhoquet type) 

and are subadditive by Proposition l. The k+l vectors vi
form a l>asis for Rk+l since the de'terminant 



vk = 

To show this by 

assume that 

v = n 

Consider 

v 1 = n+ 

Subtracting row 

v 
V

O 

1 
0 = 1 for 

vk 

induction, 

1 1 1 1 0 0 O 

1 1 1 • 0 • 

0 1 2 2 0 0 0 

1 2 3 0 0 0 

• 0 • o O O 

0 1 2 3
1 2 3 0 0 C) 

1 2 3 0 0 0 

1 1 1 1 • 0 • 

1 1 1 0 0 0 

0 1 2 2 0 0 0 

• • 0 0 0 0 

0 1 2 3 0 0 0 

1 2 3
1 2 3 0 0 0 

every k=l�2, ••• 

note that 

1 1 
1 1 
2 2 
3 3 

n-2 n-2
n-2 n-1
n-2 n-1

1 1 
1 1 
2 2 

0 0 0 

n-1 n-1
n-1 n 
n-1 n 

vl 
= 

r 6

1 
1 
2 
3 

= 1.
n-2 
n-1 

n 

1
1
2

n-1
n 

n+l 0 

. 

i l = l, 

2 of vn+l from rows 3�4'}51•••'}n+2 
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and 

and ex-

panding by minors of column 1 yields vn as the only non-

zero cofactor. Thus V 1 = V = 1. n+ n 
Since H={v

0
'}v1, ••• '}vk}cc(Jk) and His a basis ., every 

element yeRk+l has the form 

k 

y = E ai v. = E ·. ai vi - B I a. I v. , 
i•O 1 a.�O a. <O 1 1 

1 1 

the difference of two elements of C(Jk). 

The following chapter discusses some relations between 

extremal elements of C(J
k

) and those of C(J) and C([O '} ll)o 

The Cantor function reappears in the second case, and some. 

unsolved problems are mentioned and discussed. 

0 

0 

0 

0 0 0 0 0 

• • 0 



CHAPTER VII 

EXTENSIONS OF EXTREMAL ELEMENTS 

There are several ways in which extremal elements of 

the cone C(D) can be extended to extremal elements of a 

cone C(B), where DCB '} and these will be discussed nowo 

This discussion will lead to a discussion of the extremal 

element problems in the cone C([0,1]). The first of the 

extensions to be discussed is that resulting from use ef 

the operators, defined either from [O�a} to E or from Jk

to J. The theorem is stated below for the case of [0�?-lj

but its analogue for the case of Jk is proved in the same

way. 

Theorem 12� Let f be an extremal element of C([0 9 a]). 

Then Sf is an extremal element of C(E). 

Proof: The function Sf is in C(E) by Proposition 3a 

and Theorem 3. Let Sf== G+H on E '} where G,HeC(E) and 

Sf� G J! 09 let g = GI [O \)a] and h = HI [O ')al. Then g,heC([0 9 a]) 

and g+h = f. Since f is extremal, g = tf and h = (l=t)f on 

[O,a] for some te(O,l). 

If xe(a� co) '} then G(x) s: Sg(x) = S(tf)(x) = t(Sf)(x) by 

Proposition 3c (p. 16). Similarly, H(x) s: (1-t)Sf(x). 

Therefore, Sf(x) = G(x)+H(x) s: t(Sf)(x)+(l-t)Sf(x) = Sf(x) � 

54 
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and equality must holdo Thus the decomposition is in the 

proportion G( x) :H(x) = t: (1-t) at every xeE, and Sf is ex­

tremal in G (E) o 

In connection with this theorem, it should be noted 

that the sequence { f (n) : ne.J} 

= (o,1,1,2,2,3,3,3,3,4-,4,4,4,4-,4,4,4,5,5,ooo), where there 

2n-l t · f h · t are en ries o eac · in eger n > l, is an extremal ele-

ment of C(J) and its restriction to Jk is an extremal ele­

ment of C(Jk) for every k > 09 however, f is not a .maximal 

exteµ.sion of any of its initial portions 1 -nor is it a min­

imal extension in the sense of being constant for n :t. ko 

That f is extremal in C(J) is a. consequence of McLachlan's 

result �P· 4-7). That the extension of fjJk b� h9lding it. 

constant for .n >.k is in C(J) is a consequence of Lemma _39 

its extr�mal character comes from Proposition llb. It is 

not true,. however, that an extremal element of C(J) must 

be extremal in C(Jk), when restricted to Jk!l .for every 

k > 0. Infinitely many k will do. 

Remark 9: If there exist infinitely ma:ay- keJ such 

that f I Jk is extremal in C(Jk) !l then f is ext.remal in C(J). 

Proof: If f is not an extremal element of C(J), then 

there. exist neJ and g ,heC{J) such that g(n): h(n) I- g(l):h(l). 

Thus f l;k is not extremal in C(Jk) for every k � n since 

glJk+h!Jk is a non-proportional decomposition.

The eml)hasis now turns to those functions which are 
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extr_emal elements of C([O,l])o The 11 1 10 is frequently a 

convenienc,e, but the theory, because of Remark 3 (po 5),

is equivalent to that of C([O�a]) for any a> Oo The first 
., 

,.,. 

consideration will be the extent to which the extensions 

defined in :Proposition 6 and Theorem 11 from C(Jk) to

C ( [ 0 , k] ) yield e.xtremal elements o 

Theorem 20: Let feC(Jk) and let F be defined on

[O ,k] by F(O) = f(O) and F( x) = f( n), xe(n;_l ,n] (n= 1,2,, o .• o.,k)o 

Then Fis a;i. extremal element of C([O,kJ) if, and only if, 

f is an extremal element of C(Jk)o

Proef: By Theorem 11, FeC([O ') k]) if, and only if, 

f eC(Jk) o Since F is constant on (n-1,nJ (l .�. n :s: k), the

decomposition is constant the re by Proposition llbo Thus 

a:ny non-prop.ortional decomposition of F must yield a non­

proportiona.l decomposition on Jk off, and converselyo

Theorem 21: Let feC(Jk) and let P be its polygonal

extension to [O�k] (in the sense.of Proposition 6) .. If P 

is an extremal ele.ment of 0( [O �k]), then f is an extremal 

element of C(Jk) .. 

Proof; If f is not extremal, then there is a non­

proporyional �eeomposition f = f1 +f 2, and the corresponding

polygonal extensions.P1 and P2 then are a non-proportional

(at least on Jk) decomposition P = P1 +P2 of Po

The converse of Theorem 21 is not trueo For example, 

lli2. if feC(J 2) is defined by f(O) = f(l) =. 2 = l, then f is
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extremal, but the polygonal extension� P, off (Figure 12) 

is not extremal in C([0,2]) since. it can be decomposed on 

the half-integerso 

2 
p 

1--�---< 

1 2 

Figure l2o Polygonal 
Extension of an 
Extremal Element 

Some other examples of extremal elements of C([O�l]) 

can be foundo In particular� the Cantor function is one 

such example which seems_ to cloud the general problem of 

finding all the extremal elementso 

R_emark 10: ,The Cantor function K (po 42) is an ex;... 

tremal element of C([O�l])o 

Proof: Let g�heC([O,l]) and g+h=K. Since 

lim
x ... 0

K(x) = 0 and since g and h are non-negative on [0,1) � 

lim .
0g(x) = 0 and lim 

0
h(x) = O o Thus g and h are contin-

x-+ X-+ 

t1.ous by Lemma 2o By Proposition llb, g and hare constant 

--· 
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on 1(2,1) -- using the notation of page 420 Let g(l/3) = r 

and h(l/3) = t \I r+t = 1/2. 

If g(l/9) = g(2/9) < r/2 or h(l/9) = h(2/9) < t/2, then 

g(l/3)+h(l/3) � g(l/9)+g(2/9)+h(l/9)+h(2/9) < r+t = 1/2 -- a 

contradiction since K(l/3) = 1/20 Thus g(l/9) = r/2 and 

h(l/9) = t/2o This argument can be repeated to show that 
- . - -

g( l/3n) = r/2n-l and h( l/3n) = t/2n-l (n = 1, 2, 3, o o o) o 

Since the left endpoint of any interval I(n,k) is the 

· sum of endpoints of intervals I(m,l) and the function val­

ue there is the sum of corresponding function values, the

decomposition is proportional on cD = �kI(n,k), a set

everywhere dense in [O �1]. Since g = 2rK and h = 2tK on cD,

and since g, h, 2rK, and 2tK are continuous on [0,1],

g = 2rK and h = 2tK on [O,l] o · Thus the decomposition K = g+h

is proportional.

Another large class of extremal elements of C([0,1]), 

which includes the functions K used in Remark 6 to approx-
. n 

imate K, is obtained in the following theoremo 

Theorem 22: Let feC([0,1]) such that f is continuous 

on [O,l], f(O) = O, and the graph of :f consists of a finite 

number of line segments with slopes m > 0 and O only. Then 

f is an extremal element of C(["0,1]). 

Proof: If f = g+h, g,heC([0,1]) 'l then the hypotheses 

force g and h to be cont.inuous on [ 0, 1] as in Remark 10. 

If fl! 0 on [0,x1] j x1 > O, then f = 0 on [0,1] j a.nd the

theorem holds by Proposition lla. Let :f have slope m > 0 
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on [O,x1J, 0 < x1 s 19 then f is additive there and g(x) = tmx:

and h(x) = (1-t)m.x, Q st s 1, by Pro:posi tion lle o In par­

ticular, g(x1) = tm:x:1 and h(x1) = (l-t)mx1 o Then let f be

constant on [x1 ,x2J , x1 < x2 s 1, so that f (x) = g(x)+h(x)

.= tmx1+(1-t)mx1 on [x1 ,x2J by Proposition llbo If f has

slope m on [x2 ,x3J, x2 < x3 s 1, then, by Lemma 1,

g(x)-g(x2_) s tm(x-x2) and h(x)-h(x2) s (l-t)m(x-x2) for all

�e(x2,x3J o 

Thus f(x) = g(x)+h(x) s g(x2)+h(x2)+m(x-x2)

= f(x2)+m.(x-x2)., and equality holds, implying that

g(x) = tm(x-x2)+g(x2) and h(x) = (l-t)m(x-x2)+h(x2) o 'l1hus

the :proportionality is maintainedo Repetition of these 

arguments establishes the :proportionality of the decompo­

sition on [0,1]6 

Thus the functions Kn (n = 1 �2, o o o) and K are extremal 

elements of C([0,1]), and Kn�K9 but it is not the case

that the limit of a convergent sequence of extremal ele­

ments must be an extremal elemento An example follows, 

taken from this coneo Similar examples can be constructed 

in Euclidean s:paceo 

As an example from C([0�3J), which is a closed set in 

the Cartesian product topology since subadditivity and 

monoto�icity are both :preserved by :pointwise convergence, 

consider the function f of Figure 13 defined :polygonally 

by f ( 0) = 0 , f ( 2) = 2 , and f ( 3) = 5 / 2. 
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l 2 

Figure 13 o A Sequence of Extremal Elements 
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3 

Let f
n 

be defined polygonally by f(O) = O" f(2) = 2 '1 a.nd 'I on 

the points 2+k/2n (k = 1. ') 2 'Io o o ') 2n) � by f
n 

( 2+k/2n) 

= f
n

(2+(k-l)/2n) if k is odd and fn(2+k/2n
) ""f(2+k/2n) if k

is eveno Then f
n

�f (uniformly� in fact) on [O j 3]" f
n 

is 

an extremal element of 0([0 ') 3]) by Theorem 22 ') and f = g+h 

is not extremal since it has the decomposition g(x) = x/2 

on [0,3] and h(x) = x/2 on [0 ') 2] 9 = 1 on [2 ') 3]. 

In C([O j l]), then ') the set of extremal elements is 

not closed and includes at least the following elements of 

C([0,1]): 1) any non-negative constant function (Proposi­

tion llb), 2) any additive function (Proposition llc) ') 3) 

any continuous polygonal function with slopes of m > 0 and 

O only (Theorem 22), 4-) the Cantor function (Remark 10), 

5) any left-continuous step function extension of an

2 
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extremal element of c({o,l/k,2/k, ••• �l}) (Theorem 2�), and 

6) any step function f with f(x+)-f(x-) = f(O+) or o. To

show this last, l.et g(o+) = tf(o+) and h(O+) = (1-t)f(O+).

Then, where f jumps, g and h must jump by at least these

amounts and cannot jump by more, so the proportionality is

maintained.

Th.e Choquet integral representation for elements of 

C([0,1]) (Proposition 10 and following) exists in the 

product topology. 

Theorem 23: The set B = {f : fe:C([0,1]) and f(l) = 1} 

is a compact convex set in the locally convex Hausdorff 

space RI , where I = [O ,1], and B intersects each ray of 

c·(I) in exactly one point .. 

Proof: Consider C(I) = C( [O � l]) as a subset of RI , 

the set of all functions on I to R with the product to�ol­

ogy. The function g defined on RI by g(f) = f(l) is a 

linear functional on RI , so that H = { f: f(l) = l} is a 

hyperplane in RI . The set H is closed since fn( 1) = 1 and 

fn .... f imply f(l) = 1. The set B = Hr)C(I) is closed and con­

vex since it is the intersection of two closed, convex 

sets. 

If f e:C( I) and f 'f' 0 on I , then f(l) = r > O. Thus 

(1/r)fe:B a,nd is the only element of B of the form tf j t :.i:: O. 
·I By Tychonoff's theorem, the set I is compaet9 therefore,

B, a closed subset of II , is compact. 

Thus the set B satisfies the Choquet theorem, and the 



integral representatio11 of elements of C(I) by a l:iadon 

measure_ on the closure of the set of extremal elements 

exist so 
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The set B is not compact in the space m([O,lJ) of all 

bounded functions on [0,1) with norm llf II

= sup {f(x) : xe[0,1] }. To show this,_ let fr be defined

for each rat_ional number re(O,l) by fr(x) = � if xe[O,r]

and fr(x) = 1 if xe(r,llo Then {tr}cB by Proposition 2,

but, if r F s, then 11,fr-fsll = �. Thus the set {tr} has no

limit pointo 

Having thus surveyed and extended the work of� se­

lected sample of two generations of mathematical progress 

in the theory of subaddi ti ve functions, and having observed 

that the characterization of the extremal elements of C(I) 

is an unsolved problem, this exposition concludes with a_ 

mention of some other unsolved problems. With· respect to 

the present chapter, it is not known how the space 

C(I)-C(I) can be characterized. That is� what functions 

on the unit interval can be expressed as the difference of 

two sµbadditive functions? With regard to an earlier re­

sult, the analogue of Remark 4 in the case of more than 

two points may, or may not, be true. Also� a necessary 

and sufficient condition that S(f+g) = Sf+Sg would be a 

welcome addition to Chapter III. The biggest question, 

however, is far more general� Since Rosenbaum [3] and 

Bruckner [4] have led the way in considering subadditivity 

in several 'dimensions, the project of extending some of 



the results of this paper to n-dimensional and other 

spaces would be an interesting and (perhaps) rewarding 

next step in the. theory of subadditive functionso 
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APPENDIX A 

NUMBERED RESULTS 

Theorem Page Proposition Page 

1 6 1 3 
2 8 2 5 
3 18 3 15 
4 19 4 16 
5 20 5 17 

6 23 6 17 
7 26 7 28 
8 26 8 37 
9 29 9 39 

10 29 10 45 

11 31 11 46 
12 32 
13 35 Remark 14 39 
15 40 1 3 

2 4 
16 46 3 5 
17 48 4 11 
18 52 5 28 
19 54 
20 56 6 42 

7 50 
21 56 8 50 
22 58 9 55 
23 61 10 57 

Lemma 

1 12 
2 12 
3 30 
4 31 
5 48 
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APPENDIX B 

SPECIAL NOTATIONS 

cA Set-theoretic complement of set A (p. 5) 

C(D) Cone of all non-decreas.ing subaddi ti ve functions 

defined on set D (p. 45) 

E The non-negative real line { x : 0 s x < oo} (p. 2) 

f ID Restriction of function f to set D (pp. 18, 19) 

I(a,b) Intervals used to define the Cantor function K 

(p. 42) 

J The set of all non-negative integers (p. 2) 

Jk The set {0,1,2,3, ••• ,k}, k>O (p. 30) 

K The Cantor function (p. 42) 

Kn Approximating function to the Cantor function 

(p. 42) 

R The set of all real numbers (p. 1) 

Rn Euclidean n-dimensional space (p. 47) 

Sf Maximal subaddi ti ve extension to E of function f. 

(p. 15) 

[x] The greatest integer less than or equal to x

(p. 22) 

[NJ. Bibliographical reference (p. 2) 
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