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CHAPTER I 

INTRODUCTION 

This thesis presents the analysis of continuous beams in space, 

loaded by stationary and moving loads. 

The space continuous beam, as defined in this study, is a three-

dimensional bent member of variable or constant cross-sections, rest-

ing on spherical hinges; thus it is capable of resisting forces and mo-

ments applied in any direction. The geometry of the continuous beam 

considered is general, and the loading may be forces and moments 

applied in any direction. 

1-1. Historical Notes

The analysis of continuous beams attracted the attention of civil 

engineers during the last century. The first analytical approach to the 

analysis of continuous straight beams lying in plane and loaded by a 

coplanar system was presented by Clapeyron(l) . The application of the 

Three Moment Equation to the analysis of other problems has 1 been dem� 

onstrated by Miiller�Breslau (2). The graphical analysis of continuous 

beams in connection with three moment equations and fixed points has 

been developed by Culman (3) , and considerably extended by Ritter (4) . 

The introduction of slope deflection e quations to the analysis of coplanar 

continuous beams can be found in the work of Bendixen (5).

The analysis of continuous space beams by slope deflection was 

recorded by Ba'zant ( 6). The extension of the moment distribution method

1 
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to the analysis of continuous space beams was recorded by Michalos<7 >
, 

The application of the joint carry-over moment procedure to space 

beams was derived by Tuma (8) in his lectures and recorded by Childress

· in his M. S. The sis (9). The flexibility approach to continuous beams

lying in plane and loaded by forces perpendicular to the plane was devel

oped by Tuma (8 ) and recorded by Patel in his M. S. Thesis (lo).

The author I s· contribution is the generalization of the flexibility 

approach to any type of continuous member in space. 

1-2. Statement of the Problem

A continuous beam of variable cross-section loaded by a general 

system of loads and supported by spherical hinges at unequal levels is 

considered (Fig. 1-1). The geometry of the beam, of the supports, and 

of the loads is known. The forces and moments at any section and at 

points of supports are required. 

1-3. Assumptions

In the analysis of this problem, the following assumptions are 

being m�de: 

(a) The material is homogeneous and isotropic.

(b) Deformations are small and elastic.

(c) Plane sections remain plane after deformation.

(d) Deformations due to shears are small and can be neglected.

1-4. Procedure of Investigation

In the development of the method of analysis, the following steps 

of investigation are considered: 

(1) The geometry of the structure is defined in terms of coordi-

nate and transformation matrices.
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(2) A basic structure (Fig. 1-2) is selected, and the forces and

4 

moments at the ends of the basic structure are introduced as

unknowns.

(3) Through the equations of stereo-static equilibrium and special

equations, certain unknowns are eliminated, and the number of

unknowns is reduced to the number of redundant forces and

moments.

(4) Elastic constants related to the action of redundants are <level-

oped in matric form and deflections of the basic structure ex-

pressed by the corresponding elastic weights.

(5). The compatibility equations are obtained by requiring the equi-

librium of elastic weights in terms of flexibilities, load func-

tions, and redundants. 

(6) Compatibility equations are solved and the numerical values

of redundants are substituted into the equations of cross-

sectional and reactive elements.

(7) The case of movipg loads is considered, and the equations

obtained for stationary loading are extended to the influence

areas of the beam functions.

(8) The procedure developed is illustrated by a numerical example.

1-5. Sign Convention arid Notation

Signs of all analytical quantities are governed by the following 

sign convention: 

(a) Loads, reactions, joint moments, and joint deformations re-

presented by vectors acting in the direction of coordinate axes

are positive (Fig. 1-3).

(b) Cross-sectional forces, cross-sectional moments, and cross-

sectional deformations of the far end represented by vectors
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acting in the direction of coordinate axes are positive 

(Fig. 1�4). 

Force-vectors are represented by a line with a single arrow 

designating the sense; moment-vectors are represented by a line with 

a double arrow assigning the sense. 
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CHAPTER II 

GEOMETRY 

The geometry of a continuous beam in space, simply supported at 

1, h, i,j, k, 1, 2 (Fig. 2 - 1), is investigated in this chapter. 

Each span of this beam is a straight bar of variable or constant 

cross-section, and the supports 1, h, i, j, k, 1, 2 are assumed to be 

spherical hinges. 

In the study of the geometry of this beam, two systems of coordin-

ates are considered. The first system, called the initial system, is re-

lated to the principal axes of each bar. The second set of coordinates, 

known as the reference system, is given by an arbitrarily selected set 

of orthogonal axes. There are as many initial systems as spans; but 

there is only one reference system. The study of geometric quantities, 

of loads, and cross-sectional elements in relationship to these two 

systems follows. 

2-1. Geometry of Bars

If bar ij is isolated from the continuous beam 1 h i j k l 2 

(Fig. 2-1), and related to the reference system X, Y, Z (Fig. 2-2), the 

coordinates of the end points i and j become x ., y ., z ., and x ., 
01 01 01 OJ 

Yoj' zoj' and the angles of this bar with the reference axes are then

w .. ' w .. ' w .. . 
lJX lJY lJZ 

The length of the bar ij 

8 
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d.. = J (x . - x . )
2 

+ (y . - y . >
2 

+ ( z . - z01-
)

2 

D OJ 01 OJ 01 � 

(2-1) 

The components of d .. in terms of the reference coordinates arelJ. 

d.. = x . x . lJX OJ 01 

d .. lJY 

d., lJZ 

= 

. 
-

Yoj
- Y oi

z OJ
- z oi

or in terms of the direction parameters 

are 

cos w .. lJX
iJ' 

= a 
x 

cos w .. . lJY

d .. = 
lJX 

d .. = 
lJY 

d .. = 
lJZ 

- {3 ij
x

d .. ij 
lJ x 

d .. {3 ij
lJ x 

d . ij 
ij 11x

, 

cos w .. lJZ 

These components represent a column matrix, 

d .. lJX 

[
dij]

d .. lJY 

d .. lJZ

which is being used extensively in this study. 

( 2 - 2 ) 

ij = 
'Yx (2-3) 

(2-4) 

(2-5) 

The next problem is to find the relationship between the coordi

nates of the reference system and those of the initial system. For this 

= 



12 

purpose an arbitrary :point "A" lying off the line ij is selected and re-

lated to the reference system x.
0

• Y.0 
• z.

0
• and to the initial .system 

1 1 1 

X! • Y! ,, Z! as shown in Figur.e 2-3. The supers-crtpts indicate the 
1 · 1 1 

syste.m, and the subscripts the origin. The reference coordinates of 

this point are 

(2-6) 

and the initial coordinates are 

(2-7) 

The relationship between these coordinates is well known from 

space geometry and is restated here 'for completeness only: 

[ siJ] 0 [� �iis•ij] 

[ s1J O f i�[sijJ 

(2-8) 

(2-9) 

The transforniation matrix, E �jl Jand its transpose, [: it J are functions

of the direction parameters as shown below: 

= 

I 
ziA 
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ij . ij ij a a a x y z 

,B ij ,B ij ,B ij 
x y z 

14 

(2-10) 

(2-11) 

The meaning of the functions a, ,B, 'Y is explained in the Appendix

Table A-1. In many important cases instead of the total matrix a column 

or a row submatrix must-·be used. In those instances, the following 

nomenclature is introduced: 

a ij 
x 

[� ij J = ,B ij 
olx x 

')' ijx 

[�
ij Jola 

[ ��
j
l/3 J 

[ �i
j
1'Y]

and 

a ij 
y 

= 

r
ij 

J 
' oly ·

,B ij 
y 

= 

= 

= 

ij 
'Yy 

[ a ij a ij a ij j
x y z 

[ ,B ij ,B ij ,B ij J x y z 

� 
ij 

. 
ij ij 

� 'Yx 'Yy 'Y z 

a ij 
z 

r
ij 

J 
= ,B ij (2 -12) ' olz z 

ij 
')' z 

(a) 

(b) (2-13) 

(c)

ij ij ij 
7 x 7y 'Yz 

ij {3 ij ij 
ax x 'Yx 



[?Titx] 

� ij Jloa 

[7T
ij J loy 

� i�/3] 

[?T itz] 

r; ij 

J L 
10,, 

2-2. Geometry of Loads

= 

= 

= 

= 

= 

[7T 
ij � I 

= 

ola 

t
ij J' = 

olx 

[7T �
j
l�

r 
= 

[7T 
ij 
J
' 

= 

oly 

[7T 
ij J

'
= 

ol'Y 

= 

ij 
x 

a ij 
y 

a ij 
z 

[ a ij /3 ij ij 

Jx x 'Yx 

/3 ij 
x 

/3 ij 
y 

/3 ij
z 

['· ij � ij ij 

Jy y 'Yy

ij 
'Yx 

ij 
'Yy 

ij 
'Y z 
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(2-14) 

(2-15) 

(2-16) 

(2-17) 

(2-18) 

(2-19) 

If bar ij is acted upon by a single concentrated load P applied at 

point p between i and j (Fig. 2-4), the load P can be conveniently 

resolved into three components related to the initial axes of the bar or to 

the reference axes of the system. Assuming that the transformation 

ra ij (3 ij ij J L z z 'Yz 
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matrices, [1rip] and [1r�J, are known and given by direction param

eters, the components of P with respect to the initial system arep 

p 
p 

(2-20) 

Similarly, the components of P with respect to the reference systemp 

are 

(2-21) 

If,instead of a force, a moment Q is applied on the bar ij , the 
' q 

same resolutions in matrix form can be performed: 

[ Q�J - [1r�x] Qq

[ Q�J = [1r�x] Qq .

(2-22) 

(2-23) 

The resolution of the applied load into one of the major systems of 

coordinates is of great importance, and a reference will be made to 

these resolutions at several places of this study. 

2-3. Geometry of Cross-Sectional Elements

The bar ij loaded by a general force Pp and a general moment

Qq representing the resultant of loads and moments has six cross

sectional e1ements acting at each end. The end forces are designated by 

"N" and the end moments by the symbol "M". These end forces and 

end moments are listed in their corresponding matrices: 



CD 

CD 

Figure 2-4 
Components of Load and Moment Vectors along the 
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N' ..lJX 

[N'ij]
= N' .. (2-24a) 

lJY 

N i .. 
lJ z 

N' .. 
JlX 

[N'] :::: Ni .. (2-24b) 
Jl JlY

N' .. 
JlZ 

M' .. 
lJX 

[ M'ijJ 
= M' .. (2-25a) 

lJY 

M i .. 
lJ z 

M' .. 
JlX 

[ MJi] ::: M' .. (2-25b) 
JlY 

M i .. 
JlZ 

The first subscript indicates the point of application of the cross-

sectional element, the second denotes the far end, and the third one the 

direction of the cross-sectional vector. 

These cross-sectional elements must be in many cases transformed 

from the initial system to the reference system or to another initial 

system. Whatever this transformation is, it can always be performed 

by means of the transformation matrices discussed in the first part of 

_I 



this chapter (Eq. 's 2-10, 11). 

The end forces at i transformed from the initial system to the 

reference system are 

19 

(2-26) 

�he end moments at the same point are 

(2-27) 

The same equations can be written for the forces and moments of the 

opposite end, and similar equations can be written for all the members 

of the continuous beam. 

[ Nij] = [~~jl][N'ij] • 

[M;J] = [~~j1IM';J , 



CHAPTER III 

STEREO-STATICS 

. Ste.reo-statics deal with end-conditioning elements and loads applied 

to.the. structure. The end-conditioning elements and the loads can be re-

lated by means of equations of static equilibrium. Because there are six 

end-conditioning elements at each end (a total of twelve), six end elements 

can be related to loads in terms of the remaining six. There. is a large 

variety of chotces pci'ssible; in this particular case the end bending mo-

ments,one torsional moment and one normal force, are assumed to be 

temporarily known, and the remaining end-conditioning elements {end 

shears, the other torsional moment, and the other normal force) can be 

easily obtained from statics. 

3-1. Relationship Between End Forces, Moments and Loads

A free body ij is isolated from the continuous beam 1 h i j k 1 2 . 

The loads and end-conditioning elements are related to the initial system 

ij {Fig. 3-1). Because the temporarily assumed elements are N' .. ,JlX 

M' ..• M' .. , M' .. , M' .. , and M' .. , it may serve to an advantage to use
JlX JlY JlZ lJY lJ z 

the following equations of stereo-static equilibrium: 

20 
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�N' 0 

�M'. 0 
lX 

�M'. 
1y 

(3-1) = 

�M! 0 
lZ 

�M'. 
JY 

0 

�M'. 
JZ 

Equation 3-1 expresses, in terms of nomenclature introduced in 

Table 3- la after a rearrangement of the terms, that 

(3-2) 

If more than one system of loads is applied, the principle of 

superposition must be used. 

The same equation for the second span is obtained by cyclosym-

metric substitution (Table 3- lb). 

3-2. Cross-Sectional Elements

A cross-section m of bar ij is considered (Fig. 3-3). Cross-

sectional elements are shown along the initial system. The six cross-

sectional elements at m are functions of the end-conditioning elements 

of ij; they are related through equations of stereo-statics. Cross-

sectional forces at m are 
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N' m N' .. P' N' .. pr 
x JlX px lJX qx 

N' m 
- N' .. + pi = N' .. + P'

y JlY PY iJy qx 

N' m N' .. pi N' .. P' 
z JlZ pz lJ z qz 

(3-3) 

and the cross-sectional moments at m in terms of nomenclature intro-

duced in Table 3-2a are 

(3-4) 

By the use of transformation matrices previously outlined (Art. 2-1), 

(3-5) 

Moments on section s of member jk (Fig. 3-4), 

(3-6) 

and matrices appearing in Equation 3-6 are explained by Table 3-2b. 

3-3. Number of Unknowns

The total number of unknowns is 12n, and they are calculated by 

means of three types of equations: 

a - Member equilibrium equations 

b. - Joint equilibrium equations

c - Deformation equations 

6n 

3(n + 1) 

3(n - 1) 

[M'm] '" [um][MJi] + [vmJM'ij] + [BM'm] . 

[M'm J = [um][~it]rj~J + [vm][~it][MiJ] + [BM'm] . 

[M"s J = [ us ]~kj] + [ vs ]~Jk] + C3M"s J , 
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TABLE 3-2a SECTION ELEMENTS MEMBER ij 

/ 

M' m M!. M!. ·x JlX lJX 

[M,, = M' m 

[Mj;J 
::: M!. [M•iJ = M!. JlY lJY

Mv m M!. M!. z JlZ lJZ 

1 0 0 0 0 0 

[um

J I 

[vm

} I 

= 0 

xim
0 0 

x
mj 0 

� lJ . I 
lJ I 

0 0 

xiin
0 0 

X
mj

lJ lJ 

Qlx 0 0 0 P' px 

�M', = Qly 
+ 0 0 x' pr 

mp PY 

Qlz 0 -x' . 0 P' . mJ pz 

0 0 0 N!. JlX

0 0 x' 
mj

N!. JlY 

0 -x' . 
mJ 0 N!. JlZ

y 

+ 



TABLE 3-2b 

M'.'s
x 

[M,1•] :: M11 s 
y 

M"s
z 

1 

[ u" J :: 0 

0 

0 

�M"� 0 

0 

Q II 

lx 

+ 
Q II 

ly 

Q II 

lz 

SECTION ELEMENTS 

[MkJ 

0 

x'! 
� 
djk

0 

0 

0 

-x " sq 

+ 

0 

0 

. II 
x: . 

� 
djk

0 

x 11 

sq 

0 

Q II 

2x 

Q II 

2y 

Q
" 2z 

M11 

kjx 

:: M" kjy

M" kjz

[v•J 

p11
qz 

p11 
+ qy 

p11 
qz 

0 

+ 0

0 
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MEMBER jk 

M11
jk 

[M� = M" jk

M" jkz

0 0 0 

. II 

0 

x sk
0 djk
Ii xsk

0 0 d·kJ. 

0 0 0 N11
kjx 

0 0 
II xsk N11 

kjy 

0 
II -x sk 0 N" kjz

0 0 pll
px 

0 
II x sp

pll
PY 

II 
0 p11 - xsp pz 
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It can be observed that the total sum of these equations is 12n and 

that.there are as many equations as there are unknowns for the con-

tinuous beam. 

· 3-4. Joint Equations

In addition to the member equiiibrium equations previously dis-

cussed (Art. 3-1), there are three equations of moment equilibrium for 

each joint. If the equilibrium of joint j along three reference axes is 

considered (Fig. 3-5 ), 

�M. 0 
JX 

�M :: 0 

jy 

�M. 0 
JZ 

3-5. Selection of Redundants

There are three classes of unknown values left: 

a Forces 

b Bending moments 

c Torsion moments� 

(3-7) 

Forces are calculated from Hooke's law of axial deformation; 

they can be removed because they do not influence the moment equations. 

The moments can be selected as dependent or independent systems of 

redundants. Bending moments lie in the plane perpendicular to the tor-

sion. Thus, at an intermediate joint there is only one line for moment 

which does not influence the torsions in the two members. This line is 

the inter.section of the two respective planes of bending. The selection 
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of the moment along this line as the redundant bending moment and the 

two torsions in the members as unknown torsional moments makes pas-

sible the separation of redundants. Thus, there are three unknown mo-

ments at each intermediate joint, two torsional and one bending (Fig. 

3-6). Unknown moments at joint j are arranged in the form

M' .. JlX 

[MJjJ 
= M u .. 

JJZ 

M'.k J x

(3-8) 

From the previous discussion (Art. 3-1}, the end torques of a 

panel ij are related through stereo-statics 

where 

M' .. 
lJX 

::: M'.. + �Q'JlX X 

�Q' = sum of twisting moments applied to the member ij.x 

(3-9) 

The unknown bending moment and one unknown torque at each 

inter.mediate joint are selected as rec;iundant moments (Fig. 3-7); for 

joint j the redundant matrix is written in the form 

and at k 

M' .. 
lJX 

M' .. 
JJZ 

(3-10) 

M'.k J X 



y 
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JlX ' 
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Figure 3-5 
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M" jkx

[Mr] = M" kkz (3-11) 

M" klx

This shows that there is a redundant bending moment at each inter-

mediate joint and a redundant torsion in each intermediate span. For 
,. 

the whole continuouE! beam (Fig's .. 3-7, 3-8) there are 

n independent redundant forces, 

n - 1 independent redundant bending moments 

at intermediate hinges, 

n - 2 independent redundant torsional moments 

in intermediate_ members. 

3_-6, Geometry of Redundants

It is important to relate redundant moments to the reference sys

teni; jointal and redundant transformation matrices are introduced in 

this study as powerful means for the analysis of moments and deforma-

tions. A system related to each joint of the continuous beam is termed 

the jointal system. It includes the longitudinal axes of the members and 

the normal to their plane,:•:, X'ij' Xjk and Xjj constitute the jointal sys

tem at j (Fig. 3-9). Two of the three directions are known from pre

vious discussion (Art. 2-1); the third is normal to them. The direction 

vectors of X'ij' Xjk are



n 
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Figure 3-9 
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{3-12) 

(3-13) 

CD 
I 

X·· JJ 

= 

= 

dkl~ 



The direction parameters of X!. are denoted by a jj, /3 jj
'Y 

jj 

JJ 
x x ' x 

they are related through the equations 

37 

a ij 
QI 

jj
x x + 

/3 ij {3 jj 
x x +

ij ij
'Yx 'Yx

= 0 (3-14a) 

and 

jk jj. a .QI x x 

(QI jj )2 

+ 

+ 

/3jk /3jj 
x x 

({3 jj )2
x 

+ 

+ 

'k ..
'Y J 'Y JJ x x 

(-yjj)2
= 

x 1 

Equations 3-14a, 3-14b are written matrically as 

i a ij {3 ij
x x 

Qljk
/3

jk
x x 

ajj
x 

/3 
jj 
x 

ij 
'Yx 

'Y 
jj = 

'k x 
'Y J x 

= 0 (3-14b) 

(3-14c) 

(3-15) 

It should be noted that the left coefficient matrix must be non

singular� If the �' /3 J matrix is found to be singular, the [a, 'Y J or

@, 'YJ matrix would be used instead. Assigning a value of -1 for 

'YJj', Equation 3-15 becomes

and 

a ij /3 ij
x x 

ajk
13

jk
x x 

a,jj
x 

/3 I jj 
x 

ij 
'Yx 

'k 
'Y J x 

Thus� the direction parameters of X' .. are 
JJ 

(3-16)

(3-17) 

X 

:: 



-1

and jointal transformation matrix at j is 

.. .. 
'k a lJ aJJ aJx x x

13ij /3jj /3jk
x x x 
.. .. 

'k I' lJ l'JJ YJ 
x x x 
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(3- 18a) 

(3-18b) 

(3-18c) 

(3-19) 

If the two members of the joint are perpendicular, the jointal matrix 

becomes orthogonal. 

The inverse of the jointal matrix is also very important. Both 

matrices are used extensively in this study. The inverse is 

(3-20) 

From the geometry of the normal vector and the theory of matrices, 

= (3-21) 

Matrices involved in Equation 3-20 and their submatrices are 

explained in Table 3-3a. 

{3 I JJ 
X 

'Y jj = 
X 



TABLE 3-3a 

[Pojx]
::: 

Gaj
J = 

[Poj �J
= 

�ojy] 
= 

[P
jox]

= 

[Pjo�
= 

[PjoJl] = 

[PjoY]
= 

ij 
x 

/3 ijx 

ij'Y x 

[ a�

[ Jl[

j . x 

[y� 

Pjax 

Pj/3x 

Pj-yx 

�jax 

�jJlx

�jYX 

JOINTAL MATRICES 

a jj 
x 

�oj y] 
= /3 jj 

, x 

'Y jj 
x 

ajj 
•k
] 

aJ x x 

/3 jj 
x 

Jl i: J 

jj'Y x 
y i:J 

Pjay

' �joy]
= Pj[3y

pj'Yy

Pjay PjaJ

Pjf3y PjJlJ [Pjo]
= 

pj'Yy Pj
y�
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. JOINT j 

'kaJ x 

�oj z]
= /3 jk 

x 

'k
'Y J x 

[Pojx] �i
j J olx 

�ojy]
= [w jj J o1x 

�oj � = �
j
k J olx 

Pjaz 

�joz] 
= Pjf3z 

Pj'Yz 

Pjax Pjay Pjaz

ajj 
x 

/3 jj 
x 'Y jj

x 

pj')'X pj-yy 
pj')'Z
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Unknown moments at j related to reference components of the 

joint moments in terms of nomenclature introduced in Table 3-3b are 

(3-22) 

and 

(3-23) 

Substituting Equations 3-9 and 3-10 into Equation 3-23, 

(3-24) 

From the geometry of the normal vector. 

(3-25) 

[MJi] = [ rjo][ Mj J 

[MJ J = [raj Jhj] . 

[ MJ] = ~oj][Mfl + [rojx] ~ ~ · 

[r oj] = [Pjo ]' · 
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TABLE 3-3b REDUNDANT MATRICES JOINT j 

M!. a ij f3 ij 'Y ij
JlX x x x 

•: } 

[MJJ = M' .. 
[rjoJ = ajj f3 jj 'Yjj

J�Z x x x 

'k {3
jk 'k 

M'.k 
Cl:' 

J 'Y J 
I 

J x x x x 
! 

a ij 13 ij ij 
x x 'Y x 

Gjox] = 
jj 

sjoy] 
= 

f3 jj 
�joJ 

= 'Y jj a x x x 

'k Jk 'k 
(l'J {3x 'Y J 

x x 

r roay
r 

oax oaz 

�ojx]

-

�ojy] [rojz]= r = ro/3y
= ro/3zo/3x 

r O')/X ro'Yy
rO')/Z

[roja] [roax r oay r0aJ roj/l J fjoy J 

[roj/l] 
= [ro/lx r o/3y r

ollJ [roj ] . [rjo J 
[rojy]

= [r r r
0yJ 

[rjo] [Poj
J 

O')/X O"(y 
:;::''.\ 



CHAPTER IV 

ELASTO-STA TICS 

The deformation of a space continuous beam is investigated in this 

chapter. Methods for analyzing the deformations of space structures 

are 

a Energy Methods 

b Elastic Curve Methods 

c . Analogies. 

OnE;! of the most convenient of the analogies applied to space struc

tures is the method of elastic weights. This method applied to space 

continuous beams is presented in this chapter. Deformation constants 

are outlined and the elasto-static equations developed. Each joint of the 

space beam in this study is considered to have three angular deforma

tion components, and consequently three elastic weights are needed. 

4-1. Angular Deformation Constants

A bar ij discussed in the second chapter and represented by Figure 

2-5 is investigated for angular deformation constants at each end; they

·are

(1) Angular and Carry '"over Flexibilities

(2) Angular Load Functions.

The angular flexibility is the end slope of the elastic curve of the 

basic structure at a given point due to unit moment applied at the same 

point about the same axis. Two types of angular flexibilities must be 

42 



recognized, the flexure flexibility and the torsion flexibility. 

The angular carry-over flexibility is the end slope of the elastic 

c u rve at a given point due to unit moment applied at another point 

about the same axis. 
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The end slope of the elastic curve due to applied loads only (the 

member being considered simply supported) is the angular load function 

at that point. 

Angular deformation constants are illustrated in Tables 4- la, b. 

Matrices of Deformation Constants 
--- - -------- -- .. --

The angular and carry-over flexibility matrices, referred to the 

initial system, are diagonal matrices with flexibilities displayed along 

the diagonal. The matrices for member ij at its end i are 

F' .. 0 0 lJX 

[F'iJ = 0 F' .. 0 lJY 

0 0 F' .. lJZ 

0 0 0 

[a·iJ = 0 G' .. 0 lJY 

0 0 G' .. lJ z 

and at the end j

F' .. 0 0 JlX 

[Fji]
= 0 F' .. 0 JlY 

0 0 F' .. JlZ 

(4-1) 

(4-2) 

(4-3) 
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TABLE 4-la MEMBER ij 
ANGULAR AND CARRY �OVER FLEXIBILITIES 

F:>i'
jix 

dx' 
GJ' x

::::: angular flexibility 
at j in the x' 
direction. 

Fjiy = s1j

(x!m ): :{,'
(d .. ) y lJ 

= angular flexibility 
atjintheY' 
direction 

j (x! Hx' .) 
G!. 

lJY 

_ \ lID IDJ 

- J i (d .. )2 

dx' 
EI' y

F!. 

lJ 

= angular carry-over 
flexibility at i in 
the y v direction 

(xim)
2 

dx' = lj JlZ ----:- 2 EP 
1 (d.,) 

lJ 

= angular flexibility 
at j in the z v

direction 

= angular carry-over 
at i in the Z' 
direction 

·~x:n•j~ d .. 
lJ 

G!. 
lJZ 

= illJ JTil. lij (x 1 • Hx 1 • ) 

(d .. )2-
lJ. 

z 



TABLE 4-lb 

G) 

---------- - ------------ -- -------- ----------- -- - - -- ------- -- - ------- - --· ----------- - . ------- - --- - -- ·  

ANGULAR LOAD FUNCTIONS MEMBER ij 

Q' z 
P' pz

{ 

7" ! !--' lJZ
= s: 

m , dx' BM' x · EI 1 Z IDJ 
Z 

= angular load function at i in the 
Z I direction 

'T,L -
jiz Sj 

x! 
. BM'm � dx/
1 

z d.. EI· lJ z 
= ang-alar load function at j in the 

z e direction 

,L 7" •• lJY

:. ' 

SJ 
x . dx'

= .-BM'm mJ �Y d.. EI i lJ y 
= angular load function at i in the 

Y' direction 
. 

i 

L lJ x. dx'
7 1 = BM'm �
jiy . y d .. Err

·l lJ y 

= angular load function at j in the 
Y' direction 

� 
cri 

-
�

I 

CD 
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0 0 0 

[aji]
= 0 G' .. 0 (4-4) 

JlY

0 0 G' .. 
JlZ 

where 

F' .. = � F>'� F' .. = � F>!C,.'· . 

lJX lJX JlX JlX 

The matrix of angular load functions is a column matrix,the elements of 

which are the rotationsialong the initial axes X', Y', Z', respectively. 

As an illustration, the matrices of angular load functions at ends i, j 

of bar ij are 

,L 
7 ijx 

[ r'it] -. ,L 

'T ijy (4-5) 

,L 

7' ij z 

and 

,L 
7jix 

[ ;Jr J 
-

,L

7'jiy

,L 
7jiz 

Deformation constants related to the reference system instead of 

the initial are to be used in many cases. They may be derived by the 

(4-6) 
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use of Equation 3-5 following the same procedure outlined before. It is 
much easier to transform the· deformation constants from the initial 
system to the reference system by the use of the transformation matrices 
previously discussed (Eq's. 2-10, 11}. 

The angular and carry-over flexibilities for bar ij, referred to 
the reference system, are 

that 

[FijJ = �it Jr•ij]� �jl] 

[Ff;].= [�it]�Jil�jJ 

[ Gij J = [�n][G'ij][� 1jJ 

[GJ;] = [�it][Gjir�jJ 

(4-7) 

(4-8) 

(4-9) 

{4� 10) 

The reference angular load functions for the same member are 

[rt°] 
[Tj�OJ 

= 

= 

j'" ij ][ , LJ Llo 7 
ij

(4-11) 

[ ij l[ , LJ7TlOJ T ji (4-12) 

It is clear from Equations 4-9 and 4-10, since [a'ij] 
= [ajJ 

(4-13} 

'Tihe matrices of angular and carry-over flexibilities referred to the 
reference system are sy:q:1metrical, in the general form 

I , 

la<=:.J =o la~.] L lJ L Jl . 
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F .. F .. F .. 
lJXX lJXY lJXZ 

[F�j] 
- F .. F .. F .. (4-14) lJXY lJYY lJYZ 

F .. F .. F .. 
lJXZ lJYZ lJZZ 

and 

G .. lJXX G .. lJXY 
G .. lJXZ 

[a�] ::: G .. G .. G .. (4-15) 
:U.J lJXY lJYY lJYZ 

G .. G .. G .. 
lJXZ lJYZ lJZZ 

The matrix for the reference angular load functions is a column 

matrix,. 

T .. 
lJX 

(4-16) T •. 
lJY 

T .. 
lJZ 

The angular flexibilities (Eq. 4-14) are defined by: 

F.. = rotation at i in the X direction due to a unit moment lJXX 

M .. = 1 
lJX 

F.. = rotation at i in the Y direction due to a unit moment lJXY 

M .. = 1 
lJX 

= rotation at i in the X direction due to a unit moment 

M ... = 1 
lJY 

F.. = rotation at i in the Z direction due to a unit moment lJXZ 

M .. = 1 
lJX 

L 

L 

L 
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F .. = rotation at i in the· X direction due to a unit moment 
lJZX 

M .. = 1 
lJZ 

F .. = rotation at i in the y direction due to a unit moment 

) 
lJYY 

M .. = 1 
lJY 

F .. = rotation at i in the z direction due to a unit moment 
lJYZ 

M .. = 1 
lJY 

= rotation at i in the Y direction due to a unit moment 

M .. = 1 
lJZ 

F .. = rotation at i in the z direction due to a unit moment 
lJZZ 

. M .. ::: 1 . 
lJZ 

The angular carry-over flexibilities (Eq. 4-15) are defined below: 

G .. 
lJXX 

= rotation at j in the x direction due to a unit moment 

M .. = 1 
lJX 

G .. = rotation at j in the y direction due to a unit moment
lJXY 

M .. = 1 
lJX 

= rotation at j in the x direction due to a unit moment 

M .. = 
lJY 

1 

G .. 
lJXZ 

= rotation at j in the z direction due to a unit moment 

M .. = 1 
lJX 

= rotation at j in the x direction due to a unit moment 

M .. = 1 
lJZ 

G .. 
lJYZ 

= rotation at j in the Z direction due to a unit moment 

M .. ::: 1 
lJY 

= rotation at j in the Y direction due to a unit moment 

M .. 
lJZ 

= 1 
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G .. 
lJYY 

-· rotation at j in the y direction due to a unit moment

M .. = 1 
lJY 

·G ..
lJYZ 

= rotation at j in the z direction due to a unit moment 

M .. = 1 
lJY 

= rotation at j in the y direction due to a unit moment 

M .. - 1
lJZ 

G .. = rotation at j inthe ·z direction· due to a unit moment 
lJZZ 

M .. - l.
lJZ . .. 

4-2. Elastic VVeights

An elastic weight is defined as the change in slope dsz, between 

two points on the elastic curve. 

(a) Elemental Elastic VVeights - p
. --- .. - . ---------

An elerrientai elastic weight is .the change in slope in an element 

,ds of the elastic curve. Elemental elastic weights in the initial system 

(Fig's. 4-1. 2, 3) are 

-, d ¢' ::\.' 0 0 M' PX x x x 

-, ::: d</)' = 0 ::\.' 0 M' (4-17) Py y y y , 

-, d(,1> I 0 0 ::\.' M' Pz z z z 

and elemental elastic weights along the reference system (Fig's. 4-4, 

5, .6) are 

PX d(,1> ::\. ::\. ::\. M xx xy xz x 

Py 
= d(,1> = ::\. ::\. ::\. M (4"".18) y xy yy yz y 

Pz d(,1> ::\. ::\. ::\. M .. z xz yz zz z 

X 



i.;, 
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X' Axis. 

Figure · 4, - 2 
Elemental Elastic eight Along Y 9 Axis 

Mzo 

ds = dx' 

Figure 4 - 3. 
Elemental E·la,tic Weight Along Z' Axis 



+Z· +Y

+z +Y 

+z

+X.

+! 

+X

52 

Figure 4--4 
Elemental Elastic Weights

for Moment Mx 

Figlll'0 4 .. 5 
Elementa1·Ela.stic Weights

for Moment My 

ds 

Figure 4-6 
Elemental Elastic Weights

ror Moment M� 

I 
I 

t / 

ds 

M .x 



where

PX 

Py

Pz

= 

pxx + Pyx + Pzx

Pxy + Pyy + Pzy

Pxz + Pyz + Pzz

.J 

d ¢.  x

d¢ = 

. y

d(,Z) z

d¢. + d¢. + d¢ xx yx zx

d¢. + d¢. + d¢ xy yy zy

d¢. + d('A + d¢. 
XZ' yz ZZ

The coefficient matrices are denoted as follows:

Av 0 0 A A A xx xy xz

[ A'] = 0 A' 0 [Ao ] = A A A y xy yy yz

0 0 A' A A A z XZ. yz zz

and

[�oJ = [�10I �·J[w0J 

(b) Panel Elastic Weights - p .. -- - -- - --- - _. _ lJ_ 

53

(4-19) 

(4-20) 

. The panel elastic weight. is the change in slope ,for the whole panel.

A bar ij · has thre.e panel elastic weights at each end (Fig. 4-7). Panel

elastic weights are designated by P with the first subscript indicating

the point of application, the second denoting the far end, and the third

the dire'ction of the vector. It. must be noted that the torsional elastic

weight is split in two, each half being applied at an end (Fig. 4-7). The

panel elastic weights at the end i of member ij in the initial system are

X 
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pk
". 
JZ 

P'" kjy F." 

-u
�® kjx 

p "k """'' 
"'""' J z r.kx

JlZ r.k 
r .. "!,II� 

l>!. P!. .._." --, - J� djk

pij
�

1Jz 
P!. 

Jl
Y�. .

\ · lJX JlX (7\ 

dij

J 

0 

�r- .

+z

Figure 4-7 

Panel Elastic Weights along Initial Systems 

�---- P".k J x

-�.:;;:::::.=====;;;.,---

---P" .. JlX 

:..:.-=---- I}'\ -:;;;... ___ P'.. \:!../ lJX 

Figure 4-8 

Panel Elastic Weights along the Reference System 

P
k. JX 

P ... p 

i l!- ijy 

0--- ---
+Y 

+X 



P!. F.I .. 0 0 
lJX lJX 

P!. = 0 F' .. 0 
lJY lJY 

pv 
ijz 

0 0 F' .. 
lJZ 

0 0 0 M' .. 
JlX 

0 au .. 0 M' .. + 

JlY JlY 

0 0 au .. M' 
JlZ JlZ 

and along the ref ere nee system 

P .. 
lJX 

p:ijy

P" .. 
· lJZ 

G .. 
JlXX 

G .. 
JlXY 

G .. 
JlXZ 

Denoting 

F .. F .. F .. 
lJXZ lJXX lJXY 

= F .. F .. F .. lJXY lJYY lJYZ 

F .. F .. F .. 
lJXZ 

G .. 
JlXY 

G .. 
JlXZ 

G .. 
JlYY 

G .. 
JlYZ 

G .. G .. 
JlYZ JlZZ 

[p0.J = 

lJ 

lJYZ 

M .. 
JlX 

M .. 
J1Y 

M .. 
JlZ 

P .. 
lJX 

P .. 
lJY 

P.. 
lJZ 

lJZZ 
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M' .. 
lJX 

M' .. + 
lJY 

M' .. 
lJZ 

,(L) 
T .. 

lJX 

,(L) 
T .. (4-21) 

lJY 

,(L) 
T .. 

lJZ 

M .. 
lJX 

M .. + 
lJY 

M .. 
lJZ 

(L) 
T .. 

lJX 

+ 
(L) 

(4-22) T .. 
lJY 

(L) 
T .. 

lJZ 
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the matrix Equation 4-22 becomes 

= (4-2 3) [1t] la?.JIM?.J + 

L Jl l Jl 

The components along the reference system for panel :elastic 

weights at j are 

(4-24) 

If bar jk is considered,- its panel elastic weights in the reference 

system at j, k, respectively (Fig. 4-8), are 

[PJ� = [ Fj�[ Mj� 

[p�J = [ F�J[ M� 

(c) Joint Elastic Weights - P.
---- . --------- -J·-

+ [a�i][ M°�

+ [aJ�[MJ�
+ [fi<J . (4-25)

+ t�OJ . (4-26)

A joint elastic weight Pjx is tbe change in slope at the joint j in

the X direction. Similarly, P .• P. are the changes in the Y and Z 
JY J

Z 
directim s, respectively. Thus the joirit elastic_ weights at j are written 

in the matrix form as 

Pjx Pjix pjkx 

pjy 
= 

pjiy + pjky (4-27) 

Pjz Pjiz f:jkz 

Substitution of Equations 4-�4. 4-25 into Equation 4-27 gives 

[p?.'.l.. = [F?.J[M?.l + [a?.JrM?.J. + c~oJ J ~ J 1 Jlj · lJ l lJ J 1 
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G,ijIMO [FJ;][Mf] + GJk][ Mj J +
; . 

��jIM�J [)OJ + f�� (4-28)

and after rearranging the terms� 

[Pf] = [arj][Mf] + �Fj][MJ] 

��j][M�J + .  �Tr] 
where 

PJx 

[PJJ ::, 

1jy 

�z 

arid 

(d) Jointal Elastic Weights

+

(4-29) 

(4-30) 

(4-31) 

(4-32) 

Jointal elastic weights a-re the components of the joint elastic 

weights along the jointal system previously discussed (Art. 3-6). The 

respective matric equations relating jointal elastic weights at j to the 

reference system, and the reverse (Figs.4-9 and .10) are 

+ 

+ 



� +X 
"_

;r

" r,"'\_ 
lx 

" � 
p,(k) 

jkx 

p,(k) 
klx 

,-P 

P!. l'. p " 8 . kx 

JJZ . JJZ jy P! (j) k 

\l 
IJX 

'l'!(j) 
Jkx 

1"!. 

Jointal 
Figure 4-9 

ElastiC We' 

Continuous 

l ght s 

Beam 

J
o:· .. F'jgure 4-10 

t .. lC Weights . .1ntol m1a·s 

Joint J' 

��l' 

CD 
JX 
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t:\~ \J Ix~ Ix 

0 
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ij Q'jj "k -, a Q'J pjix 11x x x x

13ij /3jj 13jk
pjjz -·· �y (4-33) x x x 

ij 
;j 

"k 

pjkx 'Yx ylx �z x 

and 

Pjax Pjay Pjaz I)x -, Pjix 

Pjf3x P·13 Pjf3z �y = -, (4-34) J y pjjz 

Pj-yx Pj-yy Pj-yz Fjz -, Pjkx 

4-3. Elasto-Static Equations
An elasto-static equation is a static equation of elastic functiop.s. 

That is, it is a deformation equation for the real structure. 
It has been shown (Art. 3-5) that the number of redundants is 

3n - 3 , where n is the number of spans in the continuous beam con-
sidered. As previously outlined, there are 

n - 1 redundant moments at intermediate joints, 
n - 2 redundant torsions in intermediate spans, 
n redundant forces along the members. 

To analyze these redundants. 3n - 3 elasto-static equations are devel-
oped. They are classified as 

n - 1 elasto-static equations for compatibility of angular defor-
mations at intermediate joints, 

n - 2 elasto-static equations for compatibility of angular defor-



and 

mations in intermediate spans, 

n elasto-static equations for compatibility of linear defor-

mations along the members. 
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(a) Compatibility of Angular Deformations

The conjugate structure of the continuous beam 1 h i j k 1 2 (Fig. 

4-11) is a link mechanism in space, hinged at the respective joints.

From the supporting conditions, the real structure has zero displace-

ments at its joints. The conjugate structure with typical elastic weights 

and reactions is illustrated in Figure 4-9. The deformation of the con-

tinuous beam is defined by 

hij = system notation, 

�hj - relative displacements of joints h, j along the

joining line hj , 

b.1.. =0 displacement in the X!. direction. 
JJ z JJ 

The relationship used between the functions of the conjugate struc-

ture and the deformations of the real structure is: the displacement of 

the :i;-eal structure along a certain line is the bending moment of the con-

jugate structure about that line. 

a-1. Compatibility Equ!=l,tions for Joints

A free body hij is isolated from the conjugate structure 

1 h i j k 1 2 (Fig. 4-12) . Elastic weights are shown along the jointal 

system. Previous discussion (Art. 3-6) has shown that the elastic 

weight P!. is normal to the plane hij and consequently normal to theHZ 

line hj . The conjugate moment about hj is 



hix' 

. Figtjre · 4_···- 11" . 
Conjtigat.e .. Structt.ir:e for a ·continuous:·: Beam

in Spa�•i, .�n �.i8id Sphericaf Hf:ng�s .. ._(j). - "" . f. .k ,· ..
J � 
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. (j} ... 
P ijxl2 

Figure 4 -· 12' 
Free Body Sketch,fqr Syetem 

hif of the 'co:njugate structure 

Pi. 1Z 9 

1P 
.iiz' 

p 
kkz' 

Pj. JZ' 
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= (4-35) 

where 

s = length of the perpendicular from i on hj . 

The elasto-static condition gives· 

.6.
hj 

= o = P ! . <s > • 
llZ 

(4-36) 

Since s is not zero except when hij is a straight line (Fig. 4-12 ), 

-u 

piiz 
= 0 (4-37) 

Similarly, for other free bodies ijk, jkl J 

pjjz 
= 0 (a) 

pkkz 
= 0 (b) (4-38)

This indicates that the change in slope at an intermediate joint, 

normal to its plane, is zero. 

:a-2. Compatibility Equations of Members 

The non-zero jointal elastic weights applied to the conjugate struc-

ture of the continuous beam are shown in Figure 4� 13'. The conjugate 

end forces at 1 are related to the initial system lh. The conjugate 

moments about h in the Z u, Y I directions are 

MV 
hz

Mv 
hy

N 1
1 (d .. )y lJ 

N 1
1 (d .. )z lJ 

= 0 

:: 0 

p!. <s) 
llZ 

= 



· Figu:i:·e 4-13 ConJugace Structure With the 
Non-zero. Elastic Weights .Applied

Figure 4-14 Elast1c Weights tor Member 
i.J Along its Longitud:Ln�l Axis

U) -
I 
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Thus 
'· 

N' ly
= 0 = N' 

lz 
(4-39) 

and the only existing function at 1 is the conjugate e11d thrust N lx .
By taking conjugate moments about i in the Xh

h 
direction, 

where 

M! 
1 

= {N' lx
= O 

J 

ai = the distance between the two lines Xh
h 

and 
x 1h •

and since a. I O , 
1 

= 0 • 

(4-40) 

(4-41) 

If the conjugate moments are taken about j in the X!. direction, 
11 

M! = + = 0 
J 

(4-42) 

where 

b.
J

= distance between the two lines X!� 
11 

and Xl
h

' and 

a. = distance between the two line.s xi) and XhiJ 11 

By substituting Equation 4-41 into Equation 4-42 and since aj 'f O ,

pu(h)
hix + p ,(i)

hix 
= 0 . (4-43) 

The equation of conjugate moments about k along X!. gives
JJ 

f· - '· 
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{-' N lx + plhx)ak + (p ,(!1) 
h1x + p ,(.i)) b h1x k +

(p ! �i)
lJX 

+ p. �j)) c 
lJX k = (4-44) 

and by substitutions from Equations 4�41, 43 into Equation 4-44, 

= 0 {4-45} 

It should be noted that the equations of the end spans do not contri-
bute to the elasto-static conditions since they are functions of the un
known conjugate thrusts (N lhx or N 21 x)

Thus,it can be stated that the sum of the jointal elastic weights 
along the axis of each bar is zero. This indicates that the change in 
slope at one end of a member along its axis is equal and opposite to the 
change at the other end (Fig. 4� 14}. 

(b} Compatibility of Linear Deformations 
---·-·--------,,.-- -- - - - --

A member ij is isolated from the continuous beam and acted upon 
by a force P�x along its axis at point p (Fig. 4-15) . From the edge 
conditions, points i, j remain still, and point p displaces .6p to the
right. There is an expansion in the portion tp equal to the contraction 
in pj. From the theorem of virtual work, 

where 

= 

Sp 
N' .. 

1 
lJX 

(' j 
JP 

N' .. 
JlX 

, elemental linear extensibility. 

(4-46) ..6.p = 

p!~i) + 
lJX 

0 

= 
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:x'
. i 

I 

�J 

.F:l.giii:e "lf.-157'1irust Dfag,r4m, for lii;mber iJ

N!. 
lJJi: 

1\T:1.' > 

J:,C 

d 

p 
px' 

f.-~~~~~-"-~~-iJ.._~~~~~--~ 



Denoting 

and 

Equation 4-46 becomes 

and 

or 

s� A'N 
::;;: i/J 'ipx 

sj 
AUN 

= i/J 
jp 

Ni.. if;'· = N jix if; 
jp lJX lp 

N i .. 
lJX 

= Nu .. 
JlX 

N' .. 
Jl.X 

The equilibrium of forces gives 

P u + N '· . + N '.. = 0 .. 
px lLJX JI.X 

By substitution from Equation 4-51 into Equation 4-52 

and 

i/Jipp u + N'.. + N'.. ,/,V px �x �x �jp

= 

N' .. 
lJX 

i/J UJ"p"' -P' 
px wvip + i/ijp 

0 • 
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(4-47) 

(4-49) 

(4-50) 

(4-51) 

(4-52) 

(4-53) 

l 

p X 

ij}o 
-- Nu" 0 

1P 
lJX -;;,r

'P jp 

(4-48) 



Denoting 

Equation 4�53 becomes 

Nu .. lJX 

Equations 4-50, 52 give 

and 

if; uJ.P pu + Nu.. + Ni
,1,"i·p� J·1·x px JlX 'I'' 

Nu ..
JlX 

For constant EA 1 
, Equations 4-55, 56 arex -

x' 

Nu ..
- - pu pj 

lJX px d .. 
lJ 

X u. 
N u .. - pu lp 

�JlX px 
lJ 
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if; . .
lJ

(4-54) 

(4-55} 

0 

(4-56) 

{4-57) 

{4-58) 

The same procedure is to be carried out for the n members of the 

continuous beam, and thus redundant forces are determined, 

iV + i/J' lp jp 

-· =.PU 
px 

ijJ V' 

~ JP r lJ 



CHAPTERV 

MOMENT EQUATIONS 

From the previous discussion (Art. 4-3a) elasto-static equations 

for joints and elasto-static equations for members have been established. 

The redundants of a continuous beam of order one are moments 

over supports, and the solution of this beam is completed when the mo-

ment matrix is inverted. In a general case of a continuous beam in 

space, similar equations to the three moment equations are being pre-

pared, but these equations contain more than three unknown moments. 

The compatibility equations for joints are seven moment equations, while 

the equations for members include nine moments. In this chapter the 

derivation of these moment equations is outlined in the following sequence: 

a - The compatibility equations of angu.lar deformations are set 

in terms of elastic weights in the reference system and re-

spective jointal transformation matrices. 

b - Elastic weights for the whole structure in the reference 

system are expressed in terms of moments and angular load 

functions along the same system. 

c - Redundant moments of the continuous beam are pointed out, 

and their matrix set-up i.s outlined. 

d - By the use of the redundant transformation matrices, joint 

moments in the reference system are related to the beam 

redundant moments. 

69 
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e - By substitution (from d), the elastic weights along the refer

ence system are expressed in terms of redundant moments 

and reference components of angular load functions. 

f - The elastic weights .obtained (in e ) are substituted into the 

elasto-static compatibility equations; thus the final moment 

equations are developed. 

g - By rearrangingJerms. the moment equations are written in 

the proper matrix form, and the solution is attained by in

verting the moment matrix. 

h - Soint moments are obtained in terms of determined redun

dant moments by the use of suitable transformations. 

i End moments. of members in their initial systems are deter

mined as functions of reference joint moments using trans

formation matrices. 

j From previous discussion (Art. 4-3b) and stereo-static con

ditions, joint reactions are developed in terms of joint 

moments and applied loading. 

5.-1. Elasto-Static _ Eguations for the Continuous Beam in Space

On the basis of previous discussion (Art. 4-3a-1) the zero change 

in slope normal to the plane of the two adjacent members ij, jk at the 

respective joint j ]eads to 

0 (5-1) 

where 

�joj3]
jointal transformation submatrix (Table 3-3a), 
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[PJ J " reference components of joint elastic weights at j.

Similarly, the jointal component of the elastic weights at k normal to 

the plane jkl leads to the relationship 

and 

0 {5-2) 

rko,8] -· 1 X 3 jointal transformation submatrix corresponding

to the intermediate joint k. 

For the whole continuous beam 1 h i j k 1 2 the respective equa� 

tions are 

(5-3} 

and matrices appearing in Equation 5-3 are explained in Table 5� 1. 

i is 

The change in slope along the axis X 1• •  of member ij at the endlJ 

(5-4} 

and at the end J rn 

where 

jointal transformation submatrix relating axis X' .. tolJ 
the reference system at i, 

�joa] -- jointal transformation submatrix relating axis X'ij to

the reference system at j (Table 3� 3a). 

. r~Ip0J a [oJ 

fioy][Pf] • 

tjoa J[PJJ (5-5) 
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As outlined in previous discussion (Eq. 4-45), the compatibility of 

angular deformations in member ij gives 

0 (5-6) 

If the elasto-sta.tic condition of member jk is considered, by 

cyclo symmetry 

0 (5-7) 

and the system of equations for compatibility of angular deformations in 

different intermediate members of the eontinuous beam are 

Equ,ation 5-8 is in terms of nomenclature introduced in Table 5-1. 

Matric Equations 5;.3, 8 can be written in one form, and, the whole elasto-

static equations for angular deformations in terms of nomenclature in-

.troduced in Table 5-1 are 

5 ..: 2 .. Elastk· Weights A�ong the R�fe:rence System in Terms of

Joint Mom_ents in the Sa_me System 
-

(5-9) 

From previous discussion (Art. 4-2d. the joint elastic weights 

at i, j and k are 

[EFf IM�] + 

�T�J 
(5-10) 

tioyJr~J + ~joa][Pf] " · 

~jo7J[Pf] + [Pk~[ p~J " , 

~ya J[P 0 J " [o l (5-8) 



[pf] :: [a1j ][ Mj + �Fj J[MJ]

[a�j][M� + �Tt�

[p�J - �Jk][M� 
+ fF�I M�

[a�k][ M�J + �TtJ 
-- - ----

and for the wh.ole continuous beam 

Table 5-2 explains the nomenclature in Equation 5-13� 

5-3.. Redundant Matric':'s

74 

+ 

(5-11) 

+ 

(5-12) 

(5-13) 

It was outlined in previous discussion (Art. 3-5) that the redun-

dant moments are the bendings at interm.ediate hinges and the torsions in 

intermediate spans. 

The redundant moments for the beam 1 h i j k 1 2 are rearranged 

in the form 

Mhhz 

M' hix

M' .. 
HZ 

[MJ 

M' .. 
lJX 

= M' .. (5-14) 
JJZ

M'.k J x

M'kkz 

M'klx 

Mllz 

- I 
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5-4. Relationship Between Redundant and Joint Moments
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The relationship between reference components of joint moments 

at j and respective redundant moments as outlined in previous discus

sion (Art. 3-6} is 

+ (5-15} 

Similar relationships. hold for other joints of the continuous beam, 

and are expressed in terms of nomenclature introduced in Equation 

5-14 and Table 5ci2 as

+ {5-16) 

It can be pointed out from the geometric relationship previously 

outlined {Eq. 3-25} that 

(5-17) 

In case no h�listi ng moments are applied to the structure, the end 

torsion moments of the pa.nels are equal and Equation 5-16 reduces to 

(5-18) 

5-5. !3eam Elastic \i\_{ei�hts Alor:§the Reference System in Terms of

Redundant Moments 

Because there are as many elasto-static equations as there are re-

dundants, is very important to express the equations of compatibility 

for angular deformations in terms of respective redundant moments. 

Thus, elastic weights along the reference system involved in the elasto� . 

static equations must be expressed as functions of independent redundant 

[M~J "' [r ·][M~J [r . J ~Q' . J OJ · J OJX X 
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moments and applied loads by transformations. Substitution of Equa-

tions 5-16, 17, into Equation 5-13 gives 

:: + rJ
where 

5-6. Compatibility Equations in Terms of Redundant Moments

(5-19) 

(5-20) 

An elasto-static equation for angular deformations at joint j (Eq. 

5-1), expressed in terms of respective redundant moments and nomen-

cla ture in Table 5 - 3, is

[ �j][M� + [E� j][ Mt] + �kj][M!] +

[E�J = 0 (5-21) 

This is a seven moment equation in terms of redundant moments 

M v.h , M 1 
• •  , M u .. , M u .. , M v.k , M'k·kz and M'klx . Similar equations

1 x nz 1,Jx JJZ ;J x 

can be written for other intermediate joints. 

The compatibility equation for angular deformations in an inter-

mediate panel ij (Eq. 5-6) after similar substitutions is 

[a1�J[M�J + [EF\a�[Mf] 

[ar1][M!J 

+ 

- 0 • (5-22) 

Equation 5-22 is a nine moment equation; it involves the redundant 

moments M 1lhx' Mhhz' Mhix' M'iiz' M 1 

• •  , M 1 

• • • M'
J.kx' M'kkz and

lJX JJZ 

[Po] ~Go][P J ~, 

tL~ ,, [TLJ + ~GJ[ QJ . 

+ [~T ~a~l -- 1 

l,JJ 
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Substituting the general equation of elastic weights (Eq. 5-19) into 

the matric equation of elasto-static compatibility for angular deforma-

tion of the continuous beam (Eq. 5-9), 

[p J �FGf PJ'[M1 + [T�J = [o], 
5-7. Solution of Final Compat:i.bility Equations

The compatibility matric Equation 5-23 can be written as 

and after rearranging the terms, 

Denoting 

Equation 5-25 becomes 

(5-2 3) 

(5-24) 

(5-25) 

(5-26) 

(5-27) 

CAL]. From the theory of matrices, l: is a square nonsingular

symmetric matrix; it has an inverse; thus 

(5-28) 

Equation 5-28 gives the redundant moments of the space beam 

1 h :i. j k 1 2 in terms of known functions; thus the solution for redundants 

is completed. 

For a highly redundant space continuous beam, the dimension of 

[p J~,G(J[p J [M1 + [p ][TL, = [o], 

[P J[Fa0J[ p] 1 [MR] ~ -[p JrLQJ . 

[AL] ~ [p J[Fa0 J[p ]' , 

[~ L ][MR] ~ ~ [p JELQJ . 
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the coefficient matrix [AL] becomes quite large, and solution of Equa

tion 5-27 may be carried out by the use of electronic computers. If 

computer facilities are not available to the structural analyst, iteration 

or relaxation methods can be employed. 

5-8. D�termination of Reference Components of Joint Moments

Once the redundantce, the continu.ous beam are obtained, other 

functions can be cakulated in terms of them. 

moments in the re:ference system are determined by the use 

of Equations 5-16, 17: 

+ 

5-9. Determination of Initial Components of Joint Moments

(5-29} 

The end cross-se moments for the members of the con-

tinuous beam in their respective initial systems are determined in terms 

of joint moments in the reference system as 



5-10. Determination of Joint Reactions

81 

(5-30) 

From the previous discussion (Art. 3-1), end shearing forces are 

functions of joint moments and applied loads. End thrusts are evaluated 

in terms of loads as previously outlined (Art. 4-3b). By taking moments 

about the end j of membeic ij generally loaded (Fig. 3-1). and using 

Equation 4-55, the end forces r'i� are expressed as

- [ri .. JiN o.. J 
1J L 1J + [123][ Mji - M

i

ij]

(5-31) 



and nomenclature in Equation 5-31 is explained by Table 5-4. 
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If moments are taken about i instead of j and deformation Equa-

tion 4�56 is used, the end forces at j in terms of bending moments, 

applied loads, and nomenclature introduced in Table 5-4 are 

[r'··][N\l
lJ J�

+ [I23][M' .. - M'.l
Jl 

. 
1
u 

+ 

Transforming the end cross-sectional elements to the reference 

system, Equations 5-31, 32 become 

from which 

� J 
n 

N'-' -- ij 
-

[1/� , J [r 
1• �] -

1
fL) 3][1/J1· -·J-[M

0

. 0.L lJ ��· 0 J 

No __ lJ , 1 I. IJ o � l [ ... ][ �-1� ]'[ ·· J[ OJ . j i 
_ 

- 1r o 1 1 ij 
_ 

2 3 1r 1 o M j - M i 

[sw�l], 
(5-33} 

{5-34} 

�
w�ill 

{5-35} 

+ �wi� 
(5-36} 

If the end forces are related to the conventional sign of reactions, 

[,0 J[r•�-lr23J[trt][M� - MJ] + �W�l� 
(5-37} 

[-r,-0 J 1'11 
J 

.° ·--J 

(5-32} 
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By cycl0symmetry, the reference components of end forces at 

j, k of bar jk and related to reactions' sign convention are 

[,,i:1J[rJkf[23J[w
i
t0J[MJ - Mt] + . �wi:�

(5-38) 

(5-39) 

Reactions at joint j along the reference system are 

(5-40) 

Substitution of Equations 5-36, 38 into Equation 5-40 gives 

rj] a [wil1]�1f
f 

1[123J[wtJrJ - M°J + [sw�I] +

[wi:1J[rJ�-t12 3J[wit0J[Mj - �] + [sw�{
k
] .

Denoting 

[ Hij] 
-

[Hkj]
= 

[ N·ti] ·-·

[Nt� -

�Nt] -

rr "I .r ..c
ij JC'' r(H ].J

-1

J �23][ w
i
t] 

f :1J[
r
jk J �23] [w

i
t0J

L7rig 1 J [r ij 
-1

J �w�D 
f!1J[rjk J1�w;t:J

r�-J + [Ntk]
J]. 

{5-40 

(5-42) 

(5-43) 

(5-44) 

(5-45) 

(5-46) 

rj~ a 

!N° .-1 "" lnjk J[rij! J-ifrx . ]["'jk J[M°' -M~J + [swijuj~=ii l kJJ L ol Jl<:: ~23 lo k J PJdJ 



Equation 5-41 becomes 

-[Hij][M�J +

[wt°] 

Equation 5-4'? is a nine moment equation for reactions at j. 
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+ 

(5-47) 

Similar matric equations are available for other joints, and the reference 

components of joint readions of the continuous beam 1 h i j k 1 2 

are 

cRj J = rij + Hkj 1 MjJ - [rrkjI M~ 
I . 
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CHAPTER VI 

STATIONARY AND MOVING LOADS 

The beam functions for stationary and moving loading are investi-

gated in this chapter. Moment equations in terms of angular load func� 

tions along respective initial systems are developed for stationary loads. 

Equations obtained are used for the derivation of moment equations due 

to moving loads. Influence values for different beam functions are out-

lined. 

From the previous discussion (Art. 5-2}, the angular load functions 

for the continuous beam in the reference system are 

and nomenclature of Equation 6-1 is explained in Table 6-11;1. 

If no twisting moments are applied to the continuous beam, the mo-

ment Equation 5-28 after substitution from Equation 6-1 becomes 

(6-2) 

In this case, the angular load functions in the initial system ij at the 

ends i, j are 

87 

6- 1. Stationary Loading 

{6-1) 
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Equation 6-2 in terms of nonzero initial components of angular load 

functions, and nomenclature introduced in Table 6- la is 

6-2. Movi�g Loads

(6-8) 

A bar ij of the continuous beam is acted upon by a unit load in 

the reference direction Z; respective initial components of P are pz 

ij 
'Y x 

ij 
'Yy 

ij 
'Y z 

The angular load functions at end i are 

0 0 0 

[7·-� 0 ij 0- 'Y • 
lJ z 

0 0 --y i
j

where 

cv -· initial angular load function T 'ity 

C' - initial angular load function T'· �
lJZ

The non-zero angular load functions at i are 

(6-9) 

0 

cv 
y 

(6-10) 

C' z 

due to pv = 1 ' pz

due to pi
-· 1 . 

PY 

y J 

z 
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,L ij 0 C' T .. 
'Y z lJY 

-· (6-11) 
,L 0 -}j C' T .. 
lJZ y z

and at the end j 

where 

iL ij 0 C' T .. ')' z JlY ly 

,L 0 --y ij C' T .. 
JlZ y lz 

C' - initial angular load function ,L due to P 1 
T .. ly J1Y z 

C' = initial angular load function ,L due to pi
T .. lz JlZ y 

If the unit load P is applied to the member jk ,z 

vvL 'k C'v T ·1 ylz JKY 

II L 'k C'vT jkz 0 --yJ y z 

(6-12) 

= 1 ' 

= 1 

(6-13) 

For the continuous beam 1 h :i. j k l 2 acted upon by loads as shown 

and nomenclature appearing in Equation 6- 14 is explained in Table 

6-lb.

In case the unit load P is moving on the continuous beam, onez 

value of each of C , C , C-1; , c
1 

exists at a time. These are the re-
y z y z 

spective influence values for the nonzero initial components of angular 

y 

0 y 

(Fig. 6-1) , 

(6-14) 



'· 

I
TAB:. 6;,.fb . :{ . MDVlld llQlDS .... JIOMDT. EQ1JA'l'l()}ffl:

•. ,.,.,,

. J{YJ-
·,:···c .. ·· .. .  · . 
'Kc' ·.j ... .. 
__ :_·_::::·_·:·'..Y�. 

·. . 
. 
l}i . ··.. . ··.·· . . . .• . • . . . . ' . .. . .. • :t(, l,,<,Jt<•· . ;,, Z..Th 

[� f . fil tr 9 [c;] [:1'31 ["ij r-·� �·1!>�··' 4 . u
y1 • 0. � l • ��t � �; 

. ., - { • 5•ti ;; !:t:1i 111
co 
[:,:) 

J. 
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load functions at the ends of the loaded panel. 

Thus, the matrix [ cpJ for a moving unit load P z is a diagonal

matrix with maximum of four rows running simultaneously. Each row of 

the matrix contains the respective influence values along the initial direc-

tions specified (Table 6-lb). 

+Z

+X

p =1 pz 

p =1 pz 

p =1
pz 

Figure 6-1 
Continuous Beam in Space

Loaded Vertically 

p =1 pz 

p =l
pz 

p =1pz 
®

0 L~ 
~ 

+Y ® 
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Using the moment Equation 6-8 derived in the first part of this 

chapter, and by substitution of Equation 6-14, the moment equation for 

a unit moving load P isz 

(6-15) 

Denoting 

Equation 6-15 becomes 

(6-16} 

6-3. Influence Valu.es

From the Equations 5-3, 8 outlined in previous discussion and 

Equation 6-14, the influence values of angular load functions included in 

respective elasto-static equations are as shown in Table 6-2. 

The influence values of redundant moments are determined by 

Equation 6-16; respective joint moments in the reference system are 

(6-17) 

Substituting Equation 6-17 into Equation 5-47, the influence values 

for reactions are 

(6-18) 

z 

[ RJ L-l~LJ 
M pz = -[" J [ pz . 
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Nomenclature introduced in Equations 6-17, 18 is explained in 

Table 6-3. 

. . 
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CHAPTER VII 

PROCEDURE AND APPLICATION 

7-1. Procedure of Analysis

The procedure of analysis for continuous beam in space investigated 

in this study is as follows: 

(a) Se.lect a reference system of axes X, Y, Z fixed in direction,

and relate the continuous beam to it.

(b) Establish the transformation matrices relating the selected.

system to the initial systems of the continuous beam through

respective direction parameters.

(c) Compute the direction parameters of the normal vectors at

intermediate joints, and construct respective jointal and

redundant transformation matrices.

(d) By the use of the transformation matrices computed in (b, c),

construct the geometrical matrices

and [r J

(e) Compute the deformation constants along the reference system

and construct the respective matrix for the beam [FG0]

(f) Compute the angular load functions for the members of the

continuous beam; if moving loads are applied compute the

influence matrix [CJ

(g) Compute the linear deformation constants !/; 1 for the members

of the cont:i.nuous beam.

98 
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(h) Substitute the geometrical and deformation matrices into the

general moment equation, and solve for the redundant moments.

(i) Compute other beam functions using the respective matric

equations.

7 � 2. Application 

A space continuous steel girder 1 h i j k 1 2 of constant cross-

section is considered. The geometry and dimensions are shown in 

Figure 7-1. The space continuous beam is loaded by a unit moving load 

in the Z direction and rests on spherical hinged supports at the res-

pective joints. The angle of transformation 0
3 

is zero for all the basic

structures. The coordinates of the joints with respect to a selected 

reference system of axes X, Y, Z (Fig. 7-1) are indicated, and the 

transformation angles 0
1
' 01 for the members are shown. The trans

formation angles 0
2 

are the same for all the basic structures, and they 

are 

-10
2 

'" sin ( - . 100 O).

The transformation matrices corresponding to the initial systems 

of the girder are recorded in Tables 7-1, 2. Jointal and redundant 

transformation matrices for this solution are obtained from Tables 

7-3, 4. The geometry of redundants is indicated i.n Table 7-4.

The initial deformation constants for this solution are the same for 

all the basic structures {Fig. 7-2). 

The inversion of the moment equation was carried out by an elec-

tronic computer, and the influence values for redundant moments are 

recorded in Tables 7-5, 6, 7, respectively. 
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TABLE 7- 2 TRANSFORMATION MATRICES 
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8- 1. Summary

CHAPTER VII[ 

SUMMARY AND CONCLUSIONS 

The .application of the method of elastic weights and the jointal 

and redundant systems to the analysis of continuous beams in space is 

presented in this study. The results of this investigation are general 

and can be applied to any space continuous beam loaded by any system of 

loads, stationary or moving. 

· The "Seven and Nine Moment Equations II are derived for the

elasto-static compatibility. The determination of the independent redun

dants reduces the number of unknowns involved and makes the solution 

by matric inversion possible. 

The procedure outlined for stationary loading is extended to mov

ing loads, and simple matric equation.s are obtained for the influence 

values of the beam functions. 

8-2. Conclusions

A method of analysis for continuous bent members in space has 

, been developed. The method is based on angular flexib:i.lity coefficierits 

and on moment redundants which are selected as the torsions in members 

and the be:ndings normal to the planes of adjacent members. This selec

tion makes the redundant moments independent and offers a simple alge ;.. 

braic solution. The application of the normal and axial vectors to the 

elasto-statics simplifies the analysi.s of the deformations. The arrange-
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ment of the respective equations i.s attained by the use of the jointal and 

redundant transformation matrices. The moment matrix which is de-

- rived from this investigation is a uSeven and Nine Moment· Matrix"

similar to the vuThree Moment Equation Matrix. 11 This matrix offers

an easy application to influence values and leads to a rapid evaluation of

the influence areas. This method involves a small number of unknowns

and requires less amount of numerical work than any other known method

for the analysis of this problem.

The illustration of the theory is demonstrated by a numerical 

example. 
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APPENDIX 

Tables showing the formation of the transformation matrix are 

presented. They have been used in the calculations of the respective 

transformation matrices of the numerical example. 
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TABLE A-1 TRANSFORM..t\. TION OF COORDINATES 

y· 1 

Rotation <J>n_

Rotation� 

z 
2 

O=x2 = X3 Rotation03

3 
y - 2

y 
z 

x 1 
Y1 
z

l 

xl 
Y1

z
l 

x2 
y2 

z2

x2 

Y2

z2 

X3 

Y3 
Z3 

- x 1 cos <,Z\ - y 1 sin �\
- x 1 sin C,Z\ + y 1 cos C,Z\
::: zl

= x cos <1\ + y sin <Z\

= -x sin C,Z\ + y cos 01
- z

-· x2 cos 02 + z2 sin 02
= Y2 
= x2 sin 02 + z2 cos 02

- x1 cos 02 - z1 sin 02
::;: Y1 
::c: x

1 
sin 0

2 
+ z

1 
cos 02

·- X3 

- y3 cos 03 - z3 sin 03
y3 cos 03 + z2 cos 03

= 

- y 2 cos <,t>3 + z2 sin 03
= -y2 sin 03 + z2 cos 03

11.6 

y 

.. 
O,cz:::z 1 

X 

--x 

X 2 



TABLE A-2 TRANSFORMATION MA TRICES 

x' yv zV 

x a a 
y z 

y f3x f3 y /3z 

"I�,. ..,.� 'Yy 1'z 

Transformation Matrix 

·- x' a + y v Q! + Z I 
Q!

y 

-
:K

v {3x + y v /3 + zU f3

. y 

= x' 'Y. + y v 
'V + z' ')' a,\\r -� .J 

x 0 = x a + y f3 + z 'Y x x x 

v V : X Q! + Y (� + Z 'V 
J y 1-'y 'y 

z' - xa +·y[3 +z 'Vz 
Z " Z ,. 

z 

z 

z 

. .

{3x = sin 01 cos 02 

{3y ::;: cos 01 cos 0
3

[31 z 

Q! 

Q! 

Q! 

+ sin 0
1 

sin 02 sin 0
3

- - cos 0
1 

sin 0
3

+ sin 0
1 

sin 0
2 

cos 0
3

= cos 0
1 

cos 02

. .

·- - s:i.n 0
1 

cos 03

+ cos 0
1 

sin 0
2 

sin 0
3

= sin 0
1 

sin 0
3

+ cos 0
1 

sin 0
2 

cos 0
3
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QI 
X 

z 
·--

X 
X -

X 

-
y 

y -·· 

z 
z 

'Yx ·-· ~ sin <i\~ 
-' 

1/y -· cos 02 sin 03 

-· 
'Y z - cos 02 cos 03 

' 
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