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PREFACE 

The prob.lem o;f' determining whether a number is prime or com­

posite is one of the classic problems of number theory. Many attempts 

by many mathematicians have as yet to produce a simple concise method 

of determination. · 

The methods explained in this report are not always simple for 

large numbers, but they are procedures which will determine whether 

a nup1ber is prime or co�osite. For small numbers, one thousand or 

less, the methods work very well. 

I g,rate:f\il.ly a.cknowled.$e indebtedness to Dr. w. ware Marsden 

and Dr· James H. Zant for their guidance and constructive criticism 

given throughout the study. I th,ank. Dr. James E. Frazier and Dr. 

Robert D. Morrison for their va.J.ua.ble assistance and helpful s-u.ggest­

;Lons. 

I a.J.so wish to acknowledge indebtedness to Mr. Ben Hermanski, 

]3reckenridge, Oklaboma, for encouragement and common interest in 

the problem. 

I owe special thanks to my wife, Louise, and my children, Kathy 

and Kelly, for their indulgence throughout this project. 

G. K. G, 
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CHAPTER I 

HISTO�IC.A1 BACKGROUND 

One of the ph:i . .losophies concerning the foundations of mathematics 

is intuitionism. The intuitionist thesis is that mathematics is to be 

built solely by finite constructive methods on the intuitively given 

seq_uence of natural numbers. The intuitionists would embrace Leopold 

Kronecker, a twentieth century German mathematie:ian
1 

and his classic 

remark, aDie ganzen zahlen hat Gott gemacht, alles anderes ist Men­

schenwerk'' ,1 which translates as,"God made the whole numbers, all the

rest is the work of man. 11 This concept of the nature of mathematics 

places special emphasis on who.le numbers as building blocks and, as a 

conseg_uence, the special properties of the whole numbers play a very 

important role in any mathematical work. 

While the whole numbers have many properties, the attribute of 

being composite or prime is possibly one of the most fascinating. In 

addition to being fascinating this property is quite useful in many 

investigations involving whole numbers. Prime whole m1mbers, usually 

referred to as prime numbers, are building b.locks from which all real 

numbers may be constructed, For this reason, prime numbers have re-

ceived much study and it would be a mathematician's delight to discover 

a function F(n) which would yield prime numbers for all positive 

1 
B. M. Stewart

y 
Theory £f. Numbers, New York: The Ma.cm:i.llan

Company, 1952, p. 1, 
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integral n. 

Prime numbers are important and useful in any problem relating to 

number theory but the study of prime numbers alone is not sufficient. 

The other aspect of this property, compositeness, is also of importance 

and one aspect cannot be completely divorced from the other. The pur-

pose of this particular study is to develop an algorithm which will 

determine if a given whole number is prime or composite and, if it 

is composite, produce all factors of the whole number. 

The procedure nearest at hand for determining whether a given 

whole number is composite or prime is closely related to Eratosthene's 

2 sieve. This procedure consists of considering a1i primes less than

the given whole number and determining w�ether any of these primes 

are factors of the given number by attempting to divide the number 

by each of the primes. If none of the primes divide the whole number 

it is prime. If one of the primes p does divide the given number n, 

one can write n = pm and then repeat the procedure with the smaller 

number m. Repeated application of this procedure will eventually 

produce all the prime divisors of the given number and enable one to 

express the number as a product of primes. The computation involved 

in this procedure is reduced by the fact that if a number is composite 

it must have a factor which does not exceed the square root of the 

number. This implies that only primes less than or equal to the 

square root of the given number need be considered. The computation 

required by this procedure can be reduced even more by utilizing 

Theorem I from Chapter IJ; which will establish a smaller upper limit 

2·· Howard ;Eves, � Introduction to the Historf 2f. Mathematics,
New York: Rinehart and Company; Inc,, 1953, p. 14.' 
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for the set of primes to be considered. Another useful observation 

is that when the smallest prime factor p of a number n is found to be 

greater than the cube root of n, the other factor min n = pm must 

be prime. This is easily shown since :i,f m :i,s com;posite, m = ab, both 

a and b will be greater than the cube root of n and this will leaq. to 
3 3 3 

the obvious contradict:Lon n = pab > ".!n J:n ".!n = n. 

About 1640, Pierre de Fermat produced an algorithm for factoring 

composite numbers. Fermat's algorithm is based on the idea that an 

odd numb-er which is not a square can be expressed as the difference 

of two squares in as many ways as it is the product of two factors. 

Fermat explained l;lis method in a lt;:tter to F. M. Mersenne 3 and the 

essence of his method :Ls illustrated in the following example. Given 

a number n, say 5l, extr�ct the square root. The square root r is 7

with the remainder z. Subtraot the latter from 2r +land you have 13 

3 

which is not a square. Hence add 2 + 2r + l to 13 and you have 30 which 

is not a square. Continue until you get a square by adding the n-qmber 

two greater than the number previously added. In this case the next 

step would be to add 19 to 30 and this produces a square, 49. Now take 

the first number added, .l. 7, and subtract from the .last number added, 19, 

divide the difference by two and the:p. add two. In this example this 

would produce a 3. Next, add 3 to the root r = 7 and this will give 

you 10. Finally, add and subtract the square root of the square pro-

duced by the add4tions and you ha.ve the two numbers nearest tor whose 

product is n. In this example, (10 + 7)(10 - 7) =i: .(17) (3) = 51. 

3 L. E. Diqkson,. History of the 'l'heory of Numbers, VoJ,. I,
Washington: Carnegie Institute"""o:f'washingtoi:i;- 1919, p. 357. 



The above example of Fermat's algorithm is vague and difficult 

to follow. The mathematical principles involved are not particularly 

difficult but the abstract symbolism to which we are accustomed was 

not available to Fermat at his time in history. Hence it was necessary 

for Fermat to express himself as illustrated. The concept of zero was 

only some three hundred years old during the time of Fermat and many 

notations used today were unheard of during his period. 

Another method of factoring as proposed in 1796 by c. F. Kaus1er4

consists of adding the square of 1 to n, the square of 2 to n, the 

square of 3 to n, et cetera until the sum is a square and then factor-

ing as a difference of two squares. Using the same n as the previous 

example, this method is tllustrated as follows: 

51 + 1 = 52 not a square 

51 + 4 = 55 not a square 

5.1 + 9 = 60 not a square 

51 + 16 = 67 not a square 

51 + 25 = 76 not a square 

51 + 36 = 87 not a square 

51 + 1�9 = 100 square of 10 

Now 5.l = .100 - 49 = 102 - 7
2 

= (10 + 7)(10 - 7) = (.17)(3).

While the method of Ka.usler is mathematically sound., the com-

putation involved has disadvantages. One must know the successive 

squares which are to be added and also, if one starts with a large 

number, this process creates still larger numbers which are trouble-

some. The difficulty of the successive squares to be added can be 

4L. E. Dickson, Histor:y of� Theor:y of Numbers, Vol. I,
Washington: Ca,rnegie Institute of Washington, 191,9, p. 357. 
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2alleviated by making use of the fact that any square, n ,  can be repre-

sented as the sum of t�e odd numbers from 1 to 2n - 1 inclusive. To 

utilize this fact one can alter the procedure slightly by not return-

ing to the given number each time and then adding a square but instead, 

use the previous sum as an addend and the next odd number as the other 

addend to create the next sum. When one of the sums is a square, fac-

tors of the number can be found as before. Considering the given num-

ber of the previous example, 51, and incorporating this change, the 

method appears as follows: 

51 + 1 = 

52 + 3 = 

55 + 5 ::; 

60 + 7 :: 

67 + 9 = 

76 + 11 = 

87 + 13 = 

Now 51 = 100 -

In 1889, C. J. 

52 not a square 

55 not a square 

60 not a square 

67 not a square 

76 not a square 

87 not a square 

100 square of 10. 
1 2 2 2 (�(13 + 1)) = 10 - 7 = (17)(3), 

Busk5 gave a method for factoring a number which 

was essential.ly that of Fermat. This method of factoring was put in­

to general algebraic form by W, H. H, Hudson6 in the same year. If 

Fermat had known or had had available to him the algebraic notation 

of this period he probably would have presented his algorithm in much 

the same way as did Busk and Hudson. The following illustrates the 

algebraic form as given by Hudson: 

5 L. E. �ickson, History of the Theory of Numbers, Vol •. I, 
Washington: Carnegie Instttute of Washington, 1919, p. 358. 

6Ibid. 

5 
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Let N be the given number 2and x the next higher 

Then N = 

2 
(x + 1)

2 sg_uare. x - r = 
0 

. . . where r
l, 

r
2 , r3' 

. . .  

are formed 

additions of 2x + 1, 2x + 3, 2x + 5, 

- r 
l 

from

. . .

= (x + 2 ) 2 - r = 

2 

r by 
0 

successive 

Thus r = 

r + 2xy + y .  If r is a square, then N is the diffe:rence 
O y

of two squares and N can be represented as a product of two 

numbers, 

The preceding illustration is based on the same mathematical 

principles underlying the illustration on pages 3 apd 4. Thus 

Hudson, in comparison to Fermat, was able to express the same mathe-

matical principles in a more concis� manner through the use of al-

gebraic notation, 

As an example of the algorithm of Busk and Hudson, again con-

sider 51 as the given number, then: 

51 = 82 
- 13, 13 is not a square 

(8 2
(13 + 2 (8) + 1) 

2 51 = + 1) -
= 9 - 30, 30 is not 

a sg_uare, 

5.1 = (8 + 2 )
2 - (30 + 2 (8) + 3) = 10

2 
- 49, 49 is 72

•

Thus 51 = 102 
- 72 

= (.10 + 7)(10 - 7) = (17)(3).

This method also involves computational difficulties. Sine� one 

must recognize sg_uares to use this method, the mechanics are simpli-

fied a great deal if one knows the twenty-two possible combinations of 

tne last two digits in any sg_uare. These twenty-two endings are listed 

6 

in Appendix I. Another computational difficulty inherent in this method 

becomes evident when N is large. The labor involved in applying this 

algorithm may become prohibitive except in special �ases. The compu-

tation involved in this method will be cut in half in Chapter II through 

the use of two theorems. 

y 
2 



CHAPrER II 

EXTENSIONS OF METHODS IN CHAP!'ER I 

The methods of factoring discussed in Chapter I were designed 

primarily to be used on composite numbers. The method of Busk and 

Hudson will produce the pair of factors of a numbe!l which are nearest 

to the square root of the number. In many cases more than one pair 

of factors exist and in rmny other cases no proper factors exist. This 

particular method can be extended to include all cases. 

Theorem I: If n = ab and a� b with N, a, b whole numbers 

then a� [x0 -J"r0] when N = x� - r0 and x0 = -[�N).

Proof: Let xj = (b + a)/2 and yj� (b - a)/� then, 

b = xj + yj, a= xj - yj' and N =ab= ("j - yj)(xj + yj) =

2 2 xj - yj with xj > O and yj � o� r;rhus every factorization of

a composite number can be represented uniquely as the difference 

of two squares. ':f]:le minimum value of xj is x0 where

x0 = .[ �N] for 

contradiction. 

if xj < x0 this implies -y��o, an obvious

2 2 2 2 ••• 2 2 Now N = XO - Yo = xl - Y1 = = xi - Yi 

where xi= x0 + i, i = O, 1, 2, . . . and Yi is a non-n�gative

real number. Let xj > x0, 

2 2 2 2 2 

XO - Yo· Now xj - XO = yj

Since (xj - yj)(xj + yj) = 

(xo. Yo)(xo + Yo)
xj + yj 

j = 1, 2, 3, • •. and 2 2xj - Yj = 

2 • Yo which implies yj > Yo• 

(xo - Yo)<xo + Yo) then xj - yj =

7 



But XO> Yo> o, xj > yj > o, xj > XO' yj > Yo so

o < (x0 + y0)/(xj + yj) < 1 and xj - yj < x
0 

- y
0 

=
x

0 
- .fr. Thus, if' N = ab and a :Sb, then a :S x

0 
� .Jr, 

and since a is a whole number, a � [ x0 - .fr J.
In this particular method the initial representation for N is 

x0
2 - r and Theorem I assures us that any pair pf factors will have

one of the pair less than or equal to [x
0 

- �J. The steps of the 

algorithm will produce an ordered set of representations for N, 

{x� - r0, xf - r1, x� - r2, ···, x� - ri} where xj > xk if j > k.

In this ordered set, x
j-l� < xj� f'rom the proof of Theorem I,

and if xi - � = l with i > j, then the set will produce all factors

of N. Each pair of factors will correspond to one and only one 

2xj - rj and no factors will be omitted since, for each pair of factors,

[x0 - �] is an upper bound for the smaller factor of the pair and

xi - � is a lower bound. Thus, the algorithm as extended will pro ..

duce all factors of a given number if cqntinued until the number N = 

xi - ri with xi - rr;_ = 1. 

The method can now be extended to determine if N is prime. If 

ri is a square and rj is not a square for j
= o, l, 2, ···, i - 1 

then N is prime. This follows from the previous argument for if N 

has proper factors then some r
j 

must be a square. However, t�is

contradicts the hypo�hesis and hence N has no proper factors. 

With the initial representation of N determine4 by Theorem I, 

and ta�ing N = xi - ri with xi - � = 1 as the terminal representa­

tion, one can now use the extended algorithm to determine whether N 

is composite or prime and if N is composite to produce all factors. 

One of the ob'rious limitations of this algorithm is the amount 

8 

0 

• l 



of computation involved. In Chapter I it was mentioned that this com-

putation could be reduced by ap�roximately one-half through the use of 

two theorems. These two theorems are as follows: 

Theorem II: If N = l mod 4 and N = x2 - y2 then xis odd and 

Proof: Since N is odd, N � 1 mod 4 or N 53 mod 4. Assume x 

is even and y is Qdd. 

and y2 
= 4(q2 + q) + 1. 

Let x = � and y = 2q + 1, then x.2 
= 4p2 

2 2 2 2 Now x - y = 4p - 4(q + q) - 1 or

4k - 1 with k = p2 � q2 - q. 4k - l = � l mod 4 or N = 3 mod 4 

which contradicts the hypothesis. Therefore x must be odd and 

y must be even. 

Theorem III: If N • 3 mod 4 and N = x2 � y2 then xis even 

and y is odd. 

Proof: The proof of this theorem follows immediately from the 

proof of Theore� II, 

Thus is Ns l mod 4 the number of elements .in the set {x; - r0,

xf - r1, , xi - ri
} is approximately one-�alf the num9er previously

used since we need cpnsider only odd numbers for x1 and the even ones

can be deleted. If N � 3 mod 4, the xi values must be even and the

odd values can be deleted, reducing the number of representations by 

approximately one-half, Examples illustrating this reduction w:1,11 be 

given in Chapter III. 

By making an additional observatton, one can further reduce the 

computation necessary in the algorithm, Since we are considering only 

odd numbers as the given number, the number two cannot be a factor. 

This permits one to eliminate the steps in the algorithm between the 

representation N = x� - r
j 

where xj 
- � � 3 and the terminal

9 

y is eve~. 



10 

representation N =xi� r1 with xi - � = 1.

1heorem I cl;Ul also be used to reduce the computation involved iµ 

the method in which one uses prime tri1;1,l divisor!:>. l?revious.ly al.;!. primes, 

pi :S .fN, were considered a.s possib.le divisors, whereai;; at thie l)O:l.nt only

primes, pi$ [x
0 

- �], need be considered. The t�o s�ts of primes

determineq. by these upper 'qouµd;:i are identical :i,f r O = 0. But :l.f

r O > O then the latter set will generally have. a sma.lle:tl number of

elements and Ca.I\ never have a larger number of' elements than the former 

set. The use of Theorem. I to reduce the computation of this method wi.l..l 

be illustrated :Ln Chi:tpter III,



· ClIAP'l$R !II

· EXAMPLES .Al'iD XLLUSTRATIONS

To 11,lustr�te how tbe extended metholi of B'\l.sk and :audson will . . 

produce al+ factors ot a composite number, consider N = 105: 

N = 105 = J.l 2 "' l.6 i=. (ll .. 4) (ll + 4) .. = 7(15) 

2; .., 23 since 2(.ll) + l = 23 

.105 = J,.2
2 .. 39 

25 .. 25 since 2(11) + 3 = 25 · 

105 == 132 - 64 = (l3 .. 8)(.i3 + 8) .= 5(21) 

· 27 .. 27

105 = .:i.42 .. 91 

·;29 - 29

.105 ;;:· 152 .. · l�O 

;i ;. 3l 

105 = 16� - .1.51 

33 - 33 

105 • 172 .. 184 

35 .., 35

105 = 182 ... 219 

37 - 37 

105 = 192 .. 256 = (19 .. 16)(19 + 16) =·3(35)

Since 19 - .J,,6 :$ 3 the term:l,nal rep:rese:p.ta.t:i.on :Ls the onl;y­

other representation which will be the di:f'ferem.ce ot: two 

squa.res. . 2 2 · ( ) N.= 53 • 52 ·= l 105. 

ll 

T!l,µ1:1 the set of factors



for 105 is (1, 3, 5, 7, 15, 21, 35, 105}, 

Using Theorem II with the same given number the x
j 

values must 

be odd since N = 105 = l mod 4. The previous example can now be 

reduced to: 

. .

2 N = 105 = 11 - .16 = (.11 - 4 )(11 + l�) = 7(15)

48 - 48 since .132 
= 112 + 4(U) + 4

2 105 = 13 - 64 = (13 - 8)(.13 + 8) = 5(21)

56 - 56

105 = 15
2 - 120

64 - 64

105 = 172 - .184

72 - 72

105 = 192 - 256 = (19 ... 16)(.19 + 16) = 3(35)

Since .19 - 16 < 3 the only other representation which . 
-

can produce factors is the terminal representation. 

N = 532 - 522 = 1(105), 

In this example, the application of Theorem II reduced the 

number of steps from eight to four not counting the initial and 

terminal steps. Thus the application of Theorem II or Theorem III, 

whichever is applicable, will reduce the computation necessary in 

this algorithm by approximately one-half. 

The extended method of Busk and Hudson will also determine 

when a given number is prime. The fol.lowing application of the 

algorithm will illustrate how this is done. 

12 



2 Let N = 131 = 12 · - 13 and 13+ = 3 mod 4 

52 '" 52 

131 = 142 - 65

60 - 60

13l:;: 162 .. 125 

68 - 68

131 = 18
2 - 193

76 "' 76 

131 = 202 .. 269 

84 .. 84 

2 131 = 2� - 353

9a - 92

131 = 242 - 445 ; but 24 .. .J445 < 3 and
-

the o�y ;representation of 131 as.the dif'ferenpe 

of two squares is the terminal representation. 

Therefore, 13l is prime. 

One intere13ting problem f9:r wbich the e:x;tended method of Busk 

and Hudson offers a s;;rstematic solution ;Ls: 

A merchant has a number of ties priced at $2.oo each. Ue 

marked the price down l;Uld sold all the t:tes.· The :qet proceeds 

from the sale of the· ties was $603.77. How m1;1.ny ties did the 

merchant sell, and w:tiat was tb,eir se.Uing pr:Lce? 

I,,et x be the number of ties and let y be the prtce in 

cents of the ties; then xy = 60377. 

13 

-



60377 = 2�L62 .. 139 and 60377 == 1 mod 4 

493 ,. 493 

60377 = 2472 • 632

992 - 992

60377 = 2492 
.. 1624 

1000 "' :LOOO ·

60377 = 25.:i2 - 262l�

1008 - 1008

60377 :;:. 2532 � 3632 

1016 - 1016

60 377 :;: 2552 - 11-648

1024 ... 1024 

60377 = 2572 � 5672 

1032 ... .1032 

60377 = 2,92 
� 6704 

.1040· - .1040
. 2 2 2 60377 = 26.1 - 7744 = 261 - 88. = (261 .. 88)(26.1 + 8)

60377 = 173(349) 

Since .l 73 and 349 are prime the two solutions are x = 349, 

y = 173 and x = 60377, y = .l. The most reasonable answer is 

349 ties so.ld at $1. 73 each. 

Theorem I can be used in conjunction with the met4od of using 

prime trial divisors. The upper bound for the prime divisors of a. 

;number will determi:p.e the max:t,.mum number of tr;l.a.ls necessary and since 

Theorem I establishes an UJ?per bound less tb.Eµi or equal to the upper 

bound previously used, the computation is therefore red�ced. This 

reduction is illustrated. in the two examples which fol.low: 

J,4 



Example I: J:,et N = 5.3 • 82 ... ll. Using .fN as the upper 

bound, the set of trial d.ivieors .is (2 ., 3, 5,. 7J a.nd :f'o'Ll,r 

divisions a.re :necessary to determine.whether 53 is prime 

or composite and to find a.ll factors if it is composite. 

Using t]le uppl;lr bound from Theorem I ., [8 .,. Ji1]. = 4, the 

set of prime trial divisors is (2, ;J and only two divisions 

are necessary to complete the method. Since� does not 

d.iv:\.d$ 53 and 3 does not divid.e 53, we can conclude tha:t; 

53 is prime, 

Example.IJ:; 2 Let .!'l = 4o:, r;: 21 .. ;8. Using .fN �s the upper 

bound the set of prime tr�a.l di'Visors will be (2, 3, 5, 7,

:g, 13, 17., .l9J. Using the upper bound determ;ned.by

Theorem I, [21 · .. �] ;.; 14, the $et is (2, 3, 5, 71 Ur, 13}. 

Now 2, 3, 5, 7, U do not d.ivj,de 403 but 13 does q.iviq,e 403. 

Since 13 > �403 the other factor is also prime and 403 • .13(31) .,

the only pe.ir of proper factors of 403. 

15 
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CHAPTER IV 

A METHOD OF FACTORING USING MATRICES 

An integer can be represented as the determinant of a two by two 

matrix since = ad - be. If the elements a, b, c, d are taken 

2 as a= d = x with b =rand c = 1, then N = x - r ·-

Before proceeding with this method it will be necessary to prove 

the following theorem: 

Theorem IV: If N 
= Ix l

divides x then d divides 
YI z with x, y, z integers and if d

N if and only if d divides y. And, 

if d divides y then d divides N if and only if d divides x or z. 

Proof: If d divides y then y = dq. x = dp by hypothesis and 

N 
= I di 

d
� I = d.pz - dq = d(pz - q). Since N = d(pz - q),

d divides N. If d does not divide y, assumed divides N. Now 

N = dM. dM = I di ; I = dpz - y and y = dpz - dM. Since 

y = d(pz - M), d divides y which is a contradiction and if d 

does not divide y, d does not divide N. The second part of 

the theorem follows since interchanging any two lines of a 

matrix merely changes the sign of the determinant and the de-

terminant A equals the determinant of A transpose.

Since N is represented in terms of the determinant of a matrix 

the properties and theorems of matrix algebra can be utilized in the 

methoc1. Two theorems from matrix algebra which will be used in this 

method are as follows: 

16 
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"Theorem 2.7.6 Let B be a square matrix the same as A except 

that all the elements of some J,.ine of Bare k times the corre-

spending elements of the corresponding line of A. Then det 

B = k det A. 11 7 

"Theorem 2.7.8 If in A we add any multiple of one line to a 

different, paral.le.l, line, the determinant of the new matrix 

equals det A. 118

Using these two theorems in conjunction with Theorem I and 

Theorem IV, it is now possible to determine whether a given number 

N is composite or prime and if composite to determine all prime fac-

tors. 

Let N ..,. I { : I with x = -( ...fN]. Now if N has factors there

must be some prime p. such that p. belongs to the set 
J. 1 

. 

(pi I Pi ::S [x ... Jr ]J. To test each pi in the set, operate on the

determinant of the matrix so as to create a multiple of p. in thel 

upper left position. This can be done by multiplying the second row 

by k and adding to the first row where x + k will. be a multiple of 

pi. Now if pi divides the e.lel,llent in the upper r:i,ght p0sition, pi

is a factor of N and if pi does not divide the element in the upper

right position, it is not a factor of N. If one exhausts the p 'si 
and does not find a factor of N, then N is prime. 

The method is il.1,ustrl3,ted in the following examples: 

Examp.1.e I : p, < (20 - J29] = 14 
J. -

7 Franz E. :S:ohn, Elementari Matrix Algebra, New York: The
Macmillan Company, 1958, p. 36. 

8Ibid., P• 37.

17 

Let N = 371 = 120 291 l 20 • 



and the set of p1•s = [2, 3, 5, 7, 11, 13}. N = , 2� �6 I·
2 divides 20, 2 does not divide 29, therefore 2 does not 

divide 371. 5 divides 20, 5 does not divide 29, therefore 

5 does not divide 371. N = j 2f. �6 I· 3 divides 21, 3 does

not divide 49, therefore 3 does not divide 371. 7 divides 

21, 7 divides 49, therefore 7 divides 371. l;Ience, 

371 = 11 r 
2
� I = 7(53). Now 53 = I .f l� I· pi ::S [8 - .fu] == 4

and the set of pi's == [2, 3J. It has already been determined 

that neither 2 nor 3 divide 371 so neither will divide 53 and 

53 is prime. Therefore, 371 = 7(53) is a prime factorization 

of the given number. 

Example II: Let N = 1001 = j 3f �g l· pi ::S [32 - .f23] = 27

and the set of pi's is ( 2, 3, 5, 7, 11, 13, 17, 19, 23}· 

100.1 = 1
3.i �g � 2 divides 32 , 2 does not divide 23, there­

fore 2 does not divide 1001. 23 divides 23, 23 does not 

divide 32, therefore 23 does not divide 1001. 100.l = I 3r �� J·
3 divides 33, 3 does not divide 55, therefore 3 does not 

divide 1001. 11 divides 33, 11 divides 55,. therefore 11 

divides 1001. Hence, 1001 = 11 j i 
3
� I = 11(96 - 50) and 

1001 = ll(91). Now 91 = 102 - 32 = (10 + 3)(10 - 3) and 

91 = 13(7). 1001 = 7(.ll) (13) which is a prime factorization 

of 1001. 

This method of factoring can be considered an extension of 

the method of using prime trial divisors. The use of a determinant 

of a matrix to express N changes the procedure from dividing one 

number by the prime trial divisors to dividing two considerably 

smaller numbers by the trial divisors. The line operations of 

18 



the determinant can be considered as extra manipulations but, by 

creating multip.les of two or more of the trial div;i.sors in the 

upper .left position, two or more trial divisors can be tested 

with each representation. 
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CHAPTER V 

USES AND APPLlCATIONS 

'l']:le educational uses of the extended methods o:f' factoring are 

quite varied and occur at several places in the mathematics curriculum 

of today. Not all o:f' the methods are applicable at all .levels but 

various aspects of the different methods can be used in several ,leve.ls. 

The method· using prime tria.l divisors can be used with the fifth 

grade material of the School Ma.thematics Study Grou,p.9 :Cn the section 

designated as EB.ll the concepts of :f'�ctors and primes are introduceq.. 

Eratosthene 's sieve is used to determine the primes less than 100 and 

the upper bound of ..fN is also included in an exercise designed to 

challenge students. The basic concepts necessary to understand this 

·method of factoring �e present in this material and could be used to

provide a somewhat different approach to factors and primes. The

method of factoring by prime trial divisors could also be used as

enrichment material for the superior students.

The method of prime trial divisors can also be used with the 
. 

wSMSG material in the text, Ma.them.A.tics !£::.. Junior � School." 

The treatment of prime and composite numbers in this text is very 

similar to the treatment in the fifth grade material and the method 

9sMSG, Mathematics f2!_ � Elementary School, New Haven, 
Connecticut: Ya.le University, ,1961. 

10sMSG, Mathematics .!eE. Junior High Schools, New Haven,
Connecticut: Ya.le University, .1960, Pa;rt I, P• .151. 
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of prime trial divisors could be used in the same way as with the fifth 

grade material. 

Prime and composite numbers are again included in the SMSG First 

Course in Algebra.11 The treatment is very similar to the two pre-
--------

viously mentioned and the applications are the same. However, since 

the students at this level should be more mature mathematically, the 

presentation may be more theoretical. 

Factoring as the difference of two squares is introduced in the 

text.12 The introduction of this concept would equip the students so

they could use the method of Busk and Hudson. This method would be 

good material for all students at this .level and should prove interest-

ing and stimulating to the superior students. 

The method of factoring using matrices would be good supplement-

ary material for the students taking a course using the SMSG text, 

Introduction to Matrix Algebra.13 Two by two matrices and their

determinants are presented in this text and the method of factoring 

using matrices would be particularly applicable in this material. This 

method would be an exam;ple of how some of the comparatively recent de-

ve.lopments in mathematics can be made to apply to older topics. 

Another use for the methods of factoring can be found in conjunct-

ion with the supplementary material for secondary mathematics. The 

11sMSG, First Course� Algebra, New Haven, Connecticut:
Yale University, 1960, part II, p. 252. 

12Ibid., p. 325.
l3SMSG, Introduction :!?.2, Matrix Algebra, New Haven, Connecticut: 

Ya!.e University, .1960, P• 77• 
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� . ·

SMSG material, Essays on Numoer 'l.1]:J.eori, i,s a good exe,.mple of supple-
,� " •  · . · · ·  

menta.ry material w;l.th wh;Lch tb.e methods of factoring could oe used. 

Another use of the methods of fe.ctorine; would o� �n the training 

of secondary ma.thema,t:tcs teache:vs. To present the mate:d,a.J. on prime . 

and composite numbers, some knowledge of the various m�thods would be 

desirable. This knowledge c1a41 be a.cqv.ired in ma.nywa.ys but it woµld 

22 

be gooq, to ha,ve the pia.teriaJ. i:ncJ,uded somewhere in the curriculum 

re�uj.red for prospective teachers. Some ap�ropriate courses in which 

this .material cou.,ld be ineluded �e courses in elementary nurnbe� theorr, 

matrix algeora., mode.rn algebra, a.pg. methods of t�achi:ng matheinf:!.tics • 

. ';Che inclusion of material of this type in the mathematics of the 

e�ementary school also means tlla.t the elementary teachers must be-

come familiar with the material, Thus, tb.e material should be :t.n-

eluded in the curriculum of prospective elementary teachers. 

Another "U.Se :f'or mater:ial on faotorin$ numbers is in conjunct,ion 

with ;tn-servtce program$ for teachers i:n the field. This mater:t.a,l 

could be used in institutes, extension courses, or any project 1:n-

tended to give help to teachers. 

Finally, the extended method of Busk and Hudsen is ad.ail>teible 

to programming tor a computer. 'rhe aJ,.gorithm has been �rqgre.m.med 

ap.d tested on the lBM 650. The �rogra.m. and results of the tests 

are included in append� II, 

4 . I 

·1· SMSG, Esea.:x;s £!.£ Number Theori, New Haven, Connecticut:
Yale University, 1960, parts l, II. 
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APPENDIX :C 

00 21 4:i 64 89 
O.l 24 44 69 96 

. 04 25 49 76 

09 29 ·. 56 81 
16 �6 6.l 84 

APPENDXX·:tI 

Program tor the extended,.· method of B'U.S� a:p,d Hudspl), "l'l'i tten . in.
Fortran language ;f'Or ·tne· 650 Fo;i:-tr�n·Sy�tem. 

l REAP, NJ., N2 
M;,;:N.). 

N=N2 

2 I=J; 

:W3:;=N 

3 N;3=N3·l; 
IF(N3) 4, 5, 6

6 l = I+:2 

00 TO. 3 

4 N=N+4t(M+l) 
NS=l'if 

M=M+2 

GO TO 2 

5 K=(I+l)/a 
Ll=M+K 

L2=M ... K: 

I,:;Ll*L2 

PUNCH, N.1, N2, Ll ., LZ, L

:\'.F (L2"'1) 6 ., l; 7 

7 N=NS

GO TO 4 
EN.P 

25 
. .  

. . 

'l\renty"'two p0$Si'ble ena.ings fo~ perfec:t i?quares: 



In th;i.s program, L = Nl2 - N2 with N.l even or odd according as 

3 or .l Mod 4 and N.12 � N w;.t th Nl = - [ �Ji\T] or - [ .,Ji{] + l. 

The program was tested on the IBM 650 by using L = 51 which is 
composite and L = 31 which is prime. In the case where L = 51 two 

cards were ;punched out, one gave .17 and 3 for Ll and L2, t.he other 

gave 51 and 1 for Ll and L2. In the case where L = 31 only one card 

was punched out and this card gave 31 and l for Ll and L2. 
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