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PREFACE

The problem of determining whether a number is prime or com-
posite is one of the classic problems of number theory. Many attempts
by many mathematicians have as yet to produce a simple concise method
of determination.

The methods explained in this report are not always simple for
large numbers, but they are procedures which will determine whether
a number is prime or composite. For small numbers, one thousand or
less, the methods work very well.

I gratefully acknowledge indebtedness to Dr. W. Ware Marsden
and Dr. James H. Zant for their guidance and constructive criticism
glven throughout the study. I thank Dr. James E. Frazier and Dr.
Robert D. Morrison for thelr valuable assistance and helpful suggest-
lons. '

I also wish to acknowledge indebtedness to Mr. Ben Hermanski,
Breckenridge, Oklahoma, for encouragement and common interest in
the problem.

I owe specilal thanks to my wife, Louise, and my children, Kathy
and Kelly, for their indulgence throughout this project.

G. K. Go
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CHAPTER I
HISTORICAL BACKGROUND

One of the philosophies concerning the foundations of mathematics
is intuitionism. The Intultionist thesls is that mathematics is to be
built solely by finite constructive methods on the intuitively given

~sequence of natural numbers. The intuitionists would embrace Leopold
Kronecker, a twentieth century German mathematician, and his classic
remark, "Die ganzen zahlen hat Gott gemacht, alles anderes ist Men-
schenwerk",l which translates as,"God made the whole numbers, all the
rest is the work of man." This concept of the nature of mathematics
places special emphasis on whole numbers as building blocks and, as a
consequence, the special properties of the whole numbers play a very
important role in any mathematical work.

While the whole numbers have many properties, the attribute of
being composite or prime is possibly one of the most fascinating. In
addition to being fascinating this property is guite useful in many
investigations involving whole numbers. Prime whole numbers, usuvally
referred to as prime numbers, are building blocks from which all real
numbers may te constructed. For this reason, prime numbers have re-
ceived much study and it would be a mathematician's delight to discover

a function F(n) which would yield prime numbers for all positive

1L .
B. M. Stewart, Theory of Numbers, New York: The Macmillan
Company, 1952, p. 1. o




integral n.

Prime numbers are important and useful in any problem relating to
number theory but the study of prime numbers alone is not sufficient.
The other aspect of this property, compositeness, is also of importance
and one aspect cannot be completely divorced from the other. The pur-
pose of this particular study is to develop an algorithm which will
determine if a given whole number is prime or composite and, if it
is composite, produce all factors of the whole number.

The procedure nearest at hand for determining whether a given
whole number is composite or prime is closely related to Eratosthene's
sieve.2 This procedure consists of considering all primes less than
the given whole number and determining whether any of these primes
are factors of the given number by attempting to divide the number
by each of the primes. If none of the primes divide the whole number
it is prime. If one of the primes p does divide the given number n,
one can write n = pm and then repeat the procedure with the smaller
number m. Repeated application of this procedure will eventually
produce all the prime divisors of the given number and enable one to
express the number as a product of primes. The computation involved
in this procedure is reduced by the fact that if a number is composite
it must have a factor which does not exceed the square root of the
number. This implies that only primes less than or equal to the
square root of the given number need be considered. The computation
required by this procedure can be reduced even more by utilizing

Theorem I from Chapter II which will establish a smaller upper limit

2'Howza.rd Eves, An Introduction to the History of Mathematics,
New York: Rinehart and Company, Inc., 1953, p. 1lhk.




for the set of primes to be considered. Another useful observation
is that when the smallest prime factor p of a number n is found to be
greater than the cube root of n, the other factor m in n = pm must
be prime. This is easily shown since if m is composite, m = ab, both
a and b will be greater than the cube root of n and this will lead to
the obvicus contradiction n = pab > ?Gl 3%. 3h = DN

About 164Q, Pierre de Fermat produced an algorithm for factoring
composite numbers. Fermat's algorithm is_based on the idea that an
odd number whigh is not a square can be expressed as the difference
of two squares in as many ways as it is the product of two factors.
Fermat explained his method in a letter to F. M. Mersenne5 and the
essence. of his method is illustrated in the following example. Gilven
a number n, say 51, extract the square root. The square root r is 7
with the remainder 2. Subtract the latter from 2r + 1 and you have 13
which is not a square. Hence add 2 + 2r + 1 to 13 and you have 30 which
is not a square. Continue until you get a square by adding the number
two greater than the number previously added. In this case the next
step would be to add 19 to 30 and this produces a square, L9, Now take
the first number added, 17, and subtract from the last number added, 19,
divide the difference by two and then add two. In this example this
would produce a 3. Next, add 3 to the root r = 7 and this will give
you 10. Finally, add and subtract the square root of the square pro-
duced by the addlitions and you have the two numbers nearest to r whose

product is n. In this example, (10 + 7)(10 - 7) = (17)(3) = 5l.

5 L. E. Dickson, History of the Theory of Numbers, Vol. I,
Washington: Carnegie Institute of Washington, 1919, p. 357.




The above example of Fermat's algorithm is vague and difficult
to follow. The mathematical principles involved are not particularly
difficult but the abstract symbolism to which we are accustomed was
not available to Fermat at his time in history. Hence it was necessary
for Fermat to express himself as illustrated. The concept of zero was
only some three hundred years old during the time of Fermat and many
notations used today were unheard of during his period.

Another method of factoring as proposed in 1796 by C. F. K.auslerlL
consists of adding the square -of 1 to n, the square of 2 to n, the
square of 3 to n, et cetera until the sum is a square and then factor-
ing as a difference of two squares. Using the same n as the previous

example, this method is illustrated as follows:

5L + 1 = '52 not a square
50 + 4 = 55 not a square
51 + 9 = 60 not a square
51 + 16 = 67 not a square
51 + 25 = 76 not a square
5L + 36 = 87 not a square
5L + Y9 = 100 square of 10

Now 51 = 100 = 49 = 10° - 72 = (10 + 7)(20 = 7) = (17)(3).

i

While the method of Kausler is mathematically sound, the com-
putation involved has disadvantages. One must know the successive
squares which are to be added and also, if one starts with a large
number, this process creates stlll larger numbers which are trouble-

some. The difficulty of the successive squares to be added can be

* L. E. Dickson, History of the Theory of Numbers, Vol. I,

Washington: Carnegie Institute of Washington, 1919, p. 357.




alleviated by making use of the fact that any square, n2, can be repre-
sented as the sum of the odd numbers from 1 to 2n - 1 inclusive. To
utilize this fact one can alter the procedure slightly by not return-
ing to the given number each time and then adding a square but instead,
use the previous sum as an addend and the next odd number as the other
addend to create the next sum. When one of the sums is a square, fac-
tors of the number can be found as before. Considering the given num-
ber of the previous example, 51, and incorporating this change, the

method appears as follows:

Sl i amy s 52 not a square
S | 55, =55 not a square
55+ 5= 60 not a square
60 + T = 6T not a square
67T + 9= 76 not a square
76 + 11 = 87 not a square
87 + 13 = 100 square of 10.
Now 51 = 100 - (%(13 w3 it T = @)

In 1889, ¢, &. Busk5 gave a method for factoring a number which
was essentially that of Fermat. This method of factoring was put in-
to general algebraic form by W. H. H. Hudson6 in the same year. If
Fermat had known or had had available to him the algebraic notation
of this period he probably would have presented his algorithm in much
the same way as did Busk and Hudson. The following illustrates the

algebraic form as given by Hudson:

> L. E. Dickson, History of the Theory of Numbers, Vol. I,
Washington: Carnegie Institute of Washington, 1919, p. 358,

6Ibid.




Let N be the given number and x2 the next higher

square. Then N = x2 i, = (x + 1)2 -r )2

1= i 4 gy 5 .Y

**" where Tys To r5, "** are formed from r, by successive
additions of 2x + 1, 2¢x + 3, 2x + 5, "**« Thus Yy =

ro + 2%y + ye. Iif ry is a square, then N is the difference

of two squares and N can be revresented as a product of two

numbers.

The preceding illustration is based on the same mathematical
principles underlying the illustration on pages 3 and 4. Thus
Hudscn, in comparison to Fermat, was able to express the same mathe-
matical principles in a more concise manner through the use of al-
gebraic notation.

As an example of the algorithm of Busk and Hudson, again con-
sider 51 as the given number, then:

51 = 25 15, 13 is not a square

5l = (B 1= a8y 4 1) = 8F

30, 30 is not
a square,

5l = (8 £ )% = [0 ¥'2(8) -+ 5y +20% <« 49, W {5 7.

2

Thus 51 = 10° - 7° = (10 + 7)(10 - T) = (17)(3).

[

This method also involves computational difficulties. Since one
must recognize squares to use this method, the mechanics are simpli-
fied a great deal if one knows the twenty~-two possible combinations of
the last two digits in any square. These twenty-two endings are listed
in Appendix I. Another computational difficulty inherent in this method
oecomes evident when N is large. The labor involved in applying this
algorithm may become prohibitive except in special cases. The compu-
tation involved in this method will be cut in half in Chapter II through

the use of two theorems.



CHAPTER II
EXTENSIONS OF METHODS IN CHAPTER I

The methods of factoring discussed in Chapter I were designed
primarily to be used on composite numbers. The method of Busk and
Hudson will produce the pair of factors of a number which are nearest
to the square root of the number. In many cases more than one pair
of factors exist and in many other cases no proper factors exist. This
particular method can be extended to include all cases.

Theorem I: If n = ab and a <b with N, a, b whole numbers

then a < [xo - J}O] when N = x2 -r and x. = -[afﬁ].

0] 0 0

Proof: Let x (b + a)/2 ana yy= (b - a)/2 then,

J
b = xj + yj, a = xJ - yj, and N = ab = (XB - yj)(xj + YJ) S

]

2 2
X, = with x
g 3 J

a composite number can be represented uniquely as the difference

> 0 and y,j > 0. Thus every factorization of

of two squares. The minimum value of x'j is XO where

Xy = -[JJN] for if Xj < Xy this implies -yi :PO, an obvious

s g el N TR - LA
contradiction. Now N = Xy = Vg =X =¥, = =% =¥y
where x; = x5 +1, 1 =0, 1, 2, *¥Y aifid ¥y is a non-negative
real nunber. Let Xj > £y oy 3, 5% " and x? - y? =

2 R 2 2 2 2
Xy = Yor Now AJ - yJ - Yo which implies yJ > Yo

Since (xJ - yJ)(xJ + yj) = (xo - yo)(xO + yo) then B YJ =

(XO T yo)(xo B yo)
x'j + yJ




But Xy > Yo S0, x'j > yJ >0, xJ > Xqs yJ > ¥y so
0 < (xO + yo)/(xJ + yj) < 1 and Xy = ¥y L
Xq = Jr. Thus, if N = ab and & < b, then a < X0 --Jr,

and since a is a whole number, a < [xo - J}].

In this particular method the initial representation for N 1s

xg - r, and Theorem I assures us that any pair of factors will have

one of the pair less than or equal to on = Jro]. The steps of the

algorithm will produce an ordered set of representations for N,

IR g 30 4 8 T Ve
Lo 5 g | S & J
In this ordered set, xj-lerJ-l < xjafgg from the proof of Theorem I,

and if Xy -'J;; = 1 with i1 > J, then the set will produce all factors

of N. Each pair of factors will correspond to one and only one

. r, and no factors will be omitted since, for each pair of factors,

X
J v

[xo - JrOJ is an upper bound for the smaller factor of the pair and
X

-\72 =
> Ry ri} where x, > X if j > k.

g = J;; is a lower bound. Thus, the algorithm as extended will pro-

duce all factors of a given number if continued until the number N =

2
x] - Ty with x; - J?; <3,

The method can now be extended to determine if N is prime. If

r, 1s a square and r, is not a square for j =0, 1, 2, ***, 1 -1

i J
then N 1s prime. This follows from the previous argument for if N

has proper factors then some r, must be a square. However, this

J
contradicts the hypothesis and hence N has no proper factors.

With the initial representation of N determined by Theorem I,
and taking N = xi - Ty with Xy = J;; = 1 as the terminal representa-
tion, one can now use the extended algorithm to determine whether N

is composite or prime and if N is composite to produce all factors.

One of the obwvdous limitations of this algorithm is the amount



of computation involved. In Chapter I it was mentioned that this com-
putation could be reduced by approximately one-half through the use of
two theorems. These two theorems are as follows:

Theorem II: If N2 1 mod 4 and N = x° - y° then x is odd and

y 1s even.

Proof: Since N is 0odd, N= 1 mod 4 or N & 3 mod 4. Assume x

is even and y 1s odd. lLet x =2p and y = 29 + 1, then x2 = hpg

and y2 = h(q2 +q) + 1. Now x° - y2 = hp2 - h(qe +q) - 1or

LLk-lwithk:»pe-qe-q_. bk = 1= -1 mod 4 or N= 3 mod 4

which contradicts the hypothesis. Therefore x must be odd and

y must be even.

Theorem III: If N &3 modhandN=x2-y2 then x is even

and y is odd.

Proof: The proof of this theorem follows immediately from the

proof of Theorem II.

Thus is N® 1 mod 4 the number of elements in the set {xg = B

2 Ve

D Sl L
Je Ak

used since we need consider only odd numbers for xi and the even ones

O}
9 xf - ri} is approximately one-half the number previously

can be deleted. If N= 3 mod 4, the Xy values must be even and the
odd values can be deleted, reducing the number of representations by
approximately one-half. Examples illustrating this reduction will be
given in Chapter III.

By meking an additional observation, one can further reduce the
computation necessary in the algorithm. Since we are considering only
odd numbers as the given number, the number two cannot be a factor.

This permits one to eliminate the steps in the algorithm between the

representation N = x§ - r‘j where xJ - J;S < 3 and the terminal
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‘ representation N = xi - r, with xi - J;; =1,

i
’ Théorem I can also he used to réduce the computation involved in

the method in which one uses prime trial divisors. Previously all primes,

'pi §§Jh) were considered as possible divisors, Whereasyat this point only

primes, p, < [xo - J?B],vneed be conéidered. The twa sefs of primes

determined by these upper boupds are ldentical if r, =0, But if

0
o > 0 then the latter set will generallyvhave a smaller number of

elements and can never have & larger number of elements than the former
set. The use of Theorem I to reduce the computation bf this method will

be 1llustrated in Chapter III,



- CHAPTER IIT

EXAMPLES AND ILLUSTRATIONS

Te illustrate how the extended method of Busk and Hudson will

produce'all factors of a composite number, consider N = 105:

N = 105 = 11°
23

105 = 122
T
105 = 15°
2T

105 = 142
29

105 = 152
3

105 = 162
33

105 = 17°

35

105 = 182
37

105 = 19°

Since 19 - 16

23
39
25

- 16 = (11 -~ B)(11 + 1) = 7(15)
since 2(11) + 1 = 23
since 2(11) + 3 = 25

= 5(21)

b |

<
=

64

= (13 - 8)(13 + 8)

er

. 91

29
120
31
151
33
184
35

29 .

37
256

= (19 ~ 16)(19 + 16) = 3(35)

3 the terminal representation_ié the only

other representation.which will be the difference of two

squares. N = 552 -

522 = 1(105). Thus the set of factors

1l



for 105 is {1, 3, 5, 7, 15, 21, 35, 105}.
Using Theorem II with the same given number the Xj values must
be odd since N = 105= 1 mod 4. The previous example can now be

reduced to:

=
i
=

O

\ S}
1]
[
—
1

16 = (11 - 4)(11 + &) = 7(15)
48 -~ 48 since 152 = 112 + u(11) + 4

105 = 13° - 6k = (13 - 8)(13 + 8) = 5(21)

56 - 56
105 = 15° - 120
ek - 6k

105 = 17° - 18k

7 - T2

105 = 19° = 256 = (19 - 16)(19 + 16) = 3(35)

Since 19 - 16 < 3 the only other representation which
can produce factors is the terminal representation.
N =53 - 52% = 1(105).

In this example, the application of Theorem II reduced the
number of steps from eight to four not counting the initial and
terminal steps. Thus the application of Theorem II or Theorem III,
whichever is applicable, will reduce the computation necessary in
this algorithm by approximately one-half.

The extended method of Busk and Hudson will also determine
when a given number is prime. The following application of the

algorithm will illustrate how this is done.

12



Let N = 131 = 12°
52

131 = 142
60

131 = 162
68

131 = 18°
76

131 = 20°
84

131 = 22
92

131 = o)2

- 13 and 131 3 mod 4
- 52
- 65
- 60

- 125

- 68

193
- 76
- 269
- 8k
- 353
- o
- 45 5 but 24 - Vb5 < 3 and

the only representation of 131 as the difference

of two squares is the terminal representation.

Therefore, 131 is prime.

One interesting problem for which the extended method of Busk

and Hudson offers a systematic solution is:

A merchant has a number of ties priced at $2.00 each. He

marked the price down and sold all the ties.  The net proceeds

from the sale of the ties was $603.77. How meny ties did the

merchant sell, and what was their selling price?

Let x be the number of ties and let y be the price in

cents of the ties; then xy = 60377.



, 1h

60577 = 246° -~ 139 and 60577 = 1 mod 4
| 493 - Lo3
60377 = 2u47° - 632
992 - 992
60377 = 2u9® - 1624
1000 ~ 1000
60377 = 2512 - 262k

1008 - 1008
2

60377 = 253° - 3632
1016 - 1016
60377 = 255° - LGh8
| 102k~ 102L
60577 = 257° - 5672
1032 =~ 1032 :
60377 = 259° - 670k
1040
T7hs = 2612 - 887 = (261 - 88) (261 + 8)

1040

60377 = 0612
60377 = 173(349)

Since 173 and 349 are prime the two solutlons are x = 349,

¥y o= 173 and x = 60377, ¥ = 1. The most reasonable answer is

349 ties sold at $1.7% each.

Theorem I can be used in‘conjunction with the method of using
prime trial divisors. | The upper bound for the prime divisors of‘ a
nurber will determine the maximum number of trialsvnecessary and since
Theorem I establishes an upper bound less than or equal to the upper
bound previously used, the computation is therefore reduced. This

reduction is illustrated in the tWo examples which follow:
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Example I: Let N = 53 = 82 - 11. UsingQJh as the upper
bound, the set of trial divisors is {2, 3,‘5, T} and fouyr
divisions are necessary to>determine whether 53 is prinme
or compcsite and to find‘all factors if it is éomposite.
Using the upper bound from Theorem I, (8 - J11]1= L, thé
set of prime trial divisors is {2, 3} and only £wo divisions
are necessary td complete the methéd. Since 2 does not
divide 53 and 3 does not divide 53, we can c¢onclude that
53 is prime, |
Example II; ILet N = 403 = 212 - 38, Using VN as the upper
bound the set of prihe‘trial divisors will be {e, 3 5, T,
11, 13, 17, 19}. Using the upper bound determined by
Theorem I, [21 - v38] = 1k, the set is {2, 3, 5, 7, 11, 13}.
Now 2, 3, 5, 7, 11 do not divide 403 but 13 does diﬁiae 403,
Since 13 >»3E63 the other factqr is also prime and 403 = 13(31),

the only pair of proper factors of 403,



CHAPTER IV

A METHOD OF FACTORING USING MATRICES

An integer can be represented as the determinant of a two by two

. . a o
matrix since |’ al = ad - bc. If the elements a, b, ¢, d are taken
. : - 2 b o
as a=d=xwithb=randc=1, then N = x" ~ r = R

Before proceeding with this method it will be necessary to prove
the following theorem:

Theorem IV: If N = lx Y| wth X, ¥, z integers and if d

1l =z
divides x then d divides N if and only if d divides y. And,

if d divides y then d divides N 1f and only if d divides x or z.

Proof: If d divides y then y = dg. x = dp by hypothesis and

dp dgq
1 Z

d divides N. If d does not divide y, assume d divides N. Now

N = = dpz - dg = d(pz - q). Since N = d(pz - q),

N = dd., aM = Idﬁ Z =dpz -~ v and v = dpz -~ dM. Since
y = d(pz - M), d divides y which is a contradiction and if d

does not divide y, d does not divide N. The second part of

the theorem follows since interchanging any two lines of a

matrix merely changes the sign of the determinant and the de-

terminant A equals the determinant of A transpose,

Since N is represented in terms of the determinant of a matrix
the properties and theorems of matrix algebra can be utilized in the
method. Two theorems from matrix algebra which will be used in this

method are as follows:

16



"Theorem 2.7.6 Let B be a square matrix the same as A except

that all the elements of some line of B are k times the corre-

sponding elements of the corresponding line of A. Then det

B =k det AT

"Theorem 2.7.8 If in A we add any multiple of one line to a

different, parallel line, the determinant of the new matrix

equals det A."8
Using these two theorems in conjunction with Theorem I and

Theorem IV, it is now possible to determine whether a given number

N is composite or prime and if composite to determine all prime fac-

tors.

X r
1

must be some prime pi such that pi belongs to the set

‘Tet N = with x = ~[JJN]. Now if N has factors there

[pi | »; < (x - J}]}. To test each p; in the set, operate on the
determihant of the matrix so as to create a multiple of pi in the
upper left position; This can be done by multiplying the second row
by k and adding to the first row where x + k will be a multiple of
P, - Now if pi divides the element in the upper right position, Py
is a factor of N and if Py does not divide the element in the upper
right position, it is not a factor of N. If one exhausts the pi's
and does not find a factor of N, then N is prime.

The method is illustrated in the following examples:

20 29

Example I: Let N = 371 = 1 20l"

p; < [20 -W29] = 14

7 Franz E. Hohn, Elementary Matrix Algebra, New York: The
Macmillan Company, 1958, p. 36. T '

BIbid., p. 37.

17
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20 29
1 20

2 divides 20, 2 does not divide 29, therefore 2 does not

and the set of p,'s = {2, 3,5, 7, 11, 13}. N =

divide 371l. 5 divides 20, 5 does not divide 29, therefore

21 kg
1 20

not divide 49, therefore 3 does not divide 37l. 7 divides

5 does not divide 37l. N = « 3 divides 21, 3 does

21, 7 divides 49, therefore 7 divides 371l. Hence,

371 = T p, <[8-v11] =

3 T| . 8 11
2 |1 e sz =[]

and the set of p,'s = {2, 3}. It has already been determined
that neither 2 nor 3 divide 371 so neither will divide 53 and
53 is prime. Therefore, 37l = 7(53) is a prime factorization
of the given number.

1 %[
and the set of p,'s is {2, 3, 5, 7, 11, 13, 17, 19, 23}.

Example II: ILet N = 1001 :l 52 25 p, < (32 - 23] = 27

1001 = %2 25 t 2 divides 32, 2 does not divide 23, there-

1 3
fore 2 does not divide 1l00l. 23 divides 23, 23 does not
divide 32, therefore 23 does not divide 100l. 1001 = 3; gg..

3 divides 33, 3 does not divide 55, therefore 3 does not
divide 100l. 11 divides 33, 1l divides 55, therefore 1l

divides 100l. Hence, 100l = 11| 2 2| = 11(96 - 50) and

1 3
1001 = 11(91). Now 91 = 10° - 52 = (10 + 3)(10 - 3) and

ol = 13(7). 1001 = 7(11)(13) which is a prime factorization

of 1001.

This method of factoring can be considered an extension of
the method of using prime trial divisors. The use of a determinant
of a matrix to express N changes the procedure from dividing one
number by the prime trial divisors to dividing two considerably

smaller numbers by the trial divisors. The line operations of



the determinant can be considered as extra manipulations but, by
creating multiples of two or more of the trial divisors in the
upper left position, two or more trial divisors can be tested

with each representation.

19



CHAPTER V
USES AND APPLICATIONS

The educational uses of the extended methods of factoring are
quite variled and occur at several places in the mathematics curriculum
of today. Not all of the methods are applicable at all levels but
various aspects of the different methods can be used in several levels.

The method using prime trial divisors can be used with the fifth
grade material of the School Meathematlcs Study Grou.p.9 In the section
deslgnated as EBLL the concepte of factors and primes are introduced.
Eratosthene's sieve is used to determine the primes less than 100 and
the upper bound of WN 1s also included in an exercise designed to
challenge students. The basic concepts necessary to understand this
method of factoring are present in this material and could he used to
provide a somewhat different approach to factors and primes. The
method of factoring by prime trial divisors could also be used as
enrichment material for the superior students.

The method of prime trial dlivisors can also be used with the

SMSG meterial in the text, Mathematics for Junior High School.lo

The treatment of prime and composite numbers in this text is very

similar to the treatment in the fifth grade materlal and the method

9SMSG, Mathematics for the Elementary School, New Haven,
Connecticut: Yale University, 1961.

1OSMSG, Mathematics for Junior High Schools, New Haven,
Connecticut: Yale University, 1960, Part I, p. 15L.

20



21

of prime trial divisors could be used in the same way as with the fifth
grade material.

Prime and composite numbers are again included in the SMSG First

Course iE_Algebra.ll The treatment is very similar to the two pre-

viously mentioned and the applications are the same. However, since
the students at this level should be more mature mathematically, the
presentation may be more theoretical.

Factoring as the difference of two squares is introduced in the
text.lg The introduction of this concept would equlp the students so
they could use the method of Busk and Hudson. This method would be
good material for all students at this level and should prove interest-
ing and stimulating to the superior students.

The method of factoring using matrices would be good supplement-
ary material for the students taking a course using the SMSG text,

Introduction to Matrix A.lgeb:ca.‘l5 Two by two matrices and their

determinants are presented in this text and the method of factoring
using matrices would be particularly applicable in this material. This
method would be an example of how some of the comparatively recent de-
velopments in mathematics can be made to apply to older topics.

Another use for the methods of factoring can be found in conjunct-

ilon with the supplementary material for secondary mathematics. The

llSMSG, First Course in Algebra, New Haven, Comnecticut:
Yale University, 1960, part II, p. 252.

2Ip1d., p. 305.

lBSMSG, Introduction to Matrix Algebra, New Haven, Connecticut:
Yale University, 1960, p. T7.
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SMSG material, Essays on NuMbernTheory,l is a good example of supple-

mentary material with which the methods of factoring could be used.

Another use of thebmethods of factoring would be in the training
of secondary mathematics teachers. To present the material on prime
and composite numbers, some knbwledge of the warious methods would be
desirable. This knowledge can he acquired in wany ways but-it would
be good to have the materisl included somewhere in the curriculum
required for prospective. teachers. Some gppropriate courses in wﬁigh
this material could be included are cdursés in elementary number theory,
. matrix algebra, moderp algebra, and methods of teaching mathematics.

The inclusion of material of this type in the mathematics of the
elementary school also means that the elementary teachers must be-
come familiar with the materiai. Thus, the material should be in-
cluded”in the curriculum.Of progpective elementary teachers.

Another use for material on factoring humbers is in cbnjunction
with in-service programs for teachersvin the field. This material
could be used in institutes, extension courses, or any project in-
tended to give help to teachers.

Finglly, the extended method of Busk and Hudson is adaptable
to programming for a computer., The aigorithm has been programmed
and tested on the IBM 650. The program and results of the tests

are included in appendix II,

lESMSG, Essays on Number Theory, New Haven, Connecticut:
Yale University, 1960, parts I, II.
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APPENDIX I
Twenty~two possible endings foi perfect squéres:

00 21 w6 89

01 2k , Ly 69 - 9%
ol 25 . kg 76 '
09 ' 29 . 56 ’ 81
16 36 | 6L | 8k
~ APPENDIX II

Program for the extended-methpd of Busk and Hudson written in
Fortran language for the 650 Fortran System.
1 READ, N1, N2 ’ :
M=N1L
N=N2
2 I=T
NS:N
3 N3=N3-I
IF(N3) 4, 5, 6
6 I = I+ |
GO TO 3
L N=N+b¥(M+1)
NS=N
M=M+2
GO TO 2
5 K=(I+l)/2
L1=M+K
L2=M-K
L=L1*I2
PUNCH, N1, N2, L1, 12, L
IF (L2-1) 6, 1, T
7 N=NS
GO TO L
END

25



In this program, L = N12 - N2 with N1 even or odd according as

3 or 1 Mod 4 and M2 > N with N1 = =[~/N] or -[«/}] + 1.

The program was tested on the IBM 650 by using L = 51 which is
composite and L = 31 which is prime. In the case where L = 51 two
cards were punched out, one gave 17 and 3 for Ll and L2, the other
gave 5L and 1 for Il and I2. In the case where L = 31 only one card
was punched out and this card gave 31 and 1 for L1 and L2.
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