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PREFACE 

The generalized inverse of a matrix has been shown to be a 

natural tool for the study of systems of linear equations. This fact 

leads one to suspect that it might also prove useful in the investi­

gation of statistical problems associated with linear models, In this 

paper such an approach is attempted with a resulting simplification 

of the existing theory as well as several additions to it. 

I am indebted to Professor J. L. Folks for initially suggesting 

the possibilities of th'e generalized inverse and his patient guidance 

and assistance in the ensuing work and would like to thank Professors 

C. E. Marshall, L. W. Johnson, R. D. Morrison, D. L. Weeks, and R, N • 

. Maddox for serving on my advisory committee. Also I am grateful to 

the National Science Foundation for their financial aid, in the form 

of a Science Faculty Fellowship, which has made this research and the 

prior course work at Oklahoma State University possible. 
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CHAPTER I 

INTRODUCTION 

The concept of the generalized inverse of a matrix~ discov­

ered some thirty years ago, forgotten, and later rediscovered~ 

appears to be a natural and valuable tool for investigating many topics 

of interest to statisticians. This paper is devoted to a re-examination 

of the theory of the general linear hypothesis from the viewpoint of 

the generalized inverse; and, as will be shown, this theory is both 

simplified and amplified, particularly the theory of hypothesis testing. 

The chapters on connectedness and interaction are not as dependent on 

the generalized inverse concept, but its use and the emphasis which it 

places on vector spaces are very convenient in several places. 

Notation and Mathematical Preliminaries 

As considerable use is made of partitioned matrices, in the 

mathematical statements we shall limit the use of brackets to that of 

enclosing the elements or sub-matrices of a matrix. Thus A= [B c] 

says that A has been partitioned into the sub-matrices Band C, while 

A= (BC) says that A is the product of Band C. 

The notation dlag[A, B] will mean the matrix [: :J, 

We shall let the enclosed symbols be either matrices or scalars, and 
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the obvious extension will be made if there are more than two diagonal 

elements. 

Generally upper and lower case English letters will denote mat-

rices and scalars resp~ctively, Lower case Greek letters will usually 

denote parameter vectors although other uses are occasionally made of 

them. 

The transpose of a matrix is denoted by a prime and the general-

ized inverse by a star -- that is, A1 and A* are the transpose and 

generalized inverse respectively of the matrix A. The rank of the 

matrix A is denoted by r(A) and its trace by tr(A). 

C(A) will denote the vector space generated by the columns of 

the matrix A and R(A) the vector space generated by the rows of A. We 

shall think of the elements of .C(A) as being column vectors and those 
~ 

of R(A) as being row vectors. Of course the dimension of either C(A) or 

R(A) is equal to the rank of A. The set of vectors which are orthogonal 

to each member of C(A) is another vector space and is denoted by C(A). 

We note that if A is an n by m matrix, then C(A) n C(A) =~'the sum of 

the dimensions of C(A) and C(A) is equal ton, and any n by 1 vector 

can be written as the sum of an element of C(A) and an element of C(A) . 

We shall find the use of the direct product of two matrices A and 

B to be convenient. This product is denoted by A(&) Band i$ defined as 

follows: let A be n by m and B be p by q; then AQ9 Bis the np by mq 

matrix 

a B nm 



The following prpperties are easily demonstrated: 

(A@B)@C =A® (B ®C) 

(A@ B) I = A 1 ® B' 

(A® B) (C ® D) = (AC)®(BD) 

The matrix Jn is then by m matrix all of whose elements are m 

unity. (f) is a null matrix and may be written (f).n if we wish to emphasize 
m 

that its dimensions are n by m. 

We shall use the symbol d~ to mean "is distributed as. 11 

u d-+-, (a, b) will mean that the random variable u is distributed with 

mean a and variance b. Y d-+o N (M, S) will mean that then by 1 random 
n 

vector Y has a multivariate normal distribution with mean Mand 

variance-covariance matrix S. 

then 

We shall make use of the following facts: if Yd.+- N (µ, cfr), 
n 

(1/c?)Y'AY d+ x12{r(A), (l/o2)µ 1Aµ} if and only if A is idem­

potent. 

if A is symmetric and BA= q,, then BY and Y1AY are independent. 

if I: Ai= I and A1 is idempotent for all i, then the set of 

Y'A.Y are jointly independent and 
1 

(l/i)Y1AiY d+X 12{r(Ai), (1/i)µ'AiµJ. 

References to the bibliography will be indicated by numbers 

enclosed in brackets. .:.\ .. 
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CHAPTER II 

THE GENERALIZED INVERSE 

The generalization of the inverse of a nonsingular matrix to 

include singular and rectangular matrices was first discovered by E. H. 

Moore around 1930 [7] and was rediscovered by R. Penrose around 1955 [8]. 

In 1959 and 1960 T. N. E. Greville presented the basic ideas using both 

a new definition and a new name [4, 5]. This generalization has been 

called the "general reciprocal" by Moore [7], the "pseudoinverse" by 

Greville [4], and the "generalized inverse" by Penrose [8]; in this 

paper we shall use the last :r:iame. 

As the concept and properties of the generalized inverse are 

relatively unknown, in the course of this chapter we shall make a 

rather complete exposition of the theorems developed by Penrose and 

Greville; these theorems will be presented without proof, but the source 

will be indicated by a reference to the bibliography. The definition 

given by Greville [5] will be used as our starting point. We shall 

confine our attention to matrices with real elements although Penrose's 

development covers the complex case as well. 

Theorem 2.1 [5]: Ann by m non-null matrix A of ran~ r can be written 

as a product A= BC where Bis n by r of rank rand C is r by m of 

rank r. This factorization is not unique. 
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Definition 2.1 [5]: Let A be a non-null matrix factored as in Theorem 

2.1. Then the generalized inverse of A, denoted by A*, is them by n 

matrix 

The generalized inverse of a null matrix is its transpose. 

Theorem 2.2 [8]: AA*A = A; A*AA"~ = A*; A*A and AA* are symmetric. 

Theorem 2:l. [5]: If A is n by m of rank; m, then A* = (A 1A)-1A1 and 

A*A =I. If A is n by m of rank n, then A*= A1 (AA 1 )-l and AA*= I. m n 

Theorem M [8]: A*A*'A' =A*= A'A'IHA'l~; A*AA' = A1 = A1AA*. 

Theorem 2.5 [4]: The generalized inverse of a matrix is unique. 

The following theorem is very useful in determining if a given 

matrix is a generalized inverse. Penrose uses it and its converse~ 

which is Theorem 2.2 ~ as his definition. 

Theorem 2.6 [8]: Given A, if Xis such that AXA= A, XAX = X, and 

AX and XA are symmetric, then X = A*. 

Theorem 2.7 [8]: A*A, AA*, I - A*A, and I - AA* are symmetric and 

idempotent. 

,!heorem 2.8 [8]: If A is nonsingular, then A*= A-1• 
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Theorem~ [8]: (A*)*= A. 

Theorem 2, 10 [8]: (A')* = (A*)'. 

Theorem 2,11 [8]': (A 1A)* = A*A*'. 

Theorem 2.12 [8]: If c is a non-zero scalar, then (cA)* = (1/c)A*. 

In particular, (-A)*= -(A*)~ 

Theorem 2,13 [8]: If U and V are orthogonal matrices, then 

(UAV)* = V'A*U' • 

We note that (AB)* is not in general equal to B*A*. 

6 

Theorem~ [8]: If A=~+ A2 + ••• + At and AiAj =~and A1Aj = ~ 

for all i, j = 1, ••• , t, i ~ j, then A*=~+ A2 + ••• + A!· 

Theorem~ [8]: If A is idempotent, then A*= A. 

Theorem 2.16: If A'A = I, then A*= A'. 

Proof: This is verified immediately by using Theorem 2.6. 

Theorem 2,17 [4]: AA* is the unique left identjity for A having its 

columns in the column space of A~ that is, such that C(AA*) '= C(A). 

A*A is the unique right identity for A such that C(A*A) '= C(A'). 

Theorem 2.18: If Bis such that BA= A and there exists C such that 

AC= B, then B = AA*. If Bis such that AB= A and there exists C such 



that A'C = B, then B = A*A. 

fIQ.g!: This follows directly from Theorem 2.17 as AC= B implies that 

C(B) S C(A) and A'C = B implies that C(B) S C(A'). 

1heorem ~: r(A) = r(A*) = r(A*A) = r(AA*) = tr(A*A) = tr(AA*). 

~: As AA*A = A, r(A*) ~ r(A); as A*AAi~ = M~, r(A{q ~ r(A); there­

fore r(A) = r(A*). As AA*A = A, r(A) ~ r(A*A); as A*A = A*A, 

r(A*A) ~ r(A); therefore r(A) = r(A*A). As A*A and AA* are symmetric 

and idempotent, r(A*A) = tr(A*A) = tr(AA*) = r(AA*). 

Theorem 2.20: C(A') = C(A*) = C(A*A). 

Proof: We use the statement in the proof of Theorem 2.18 and the fact 

that if C(X) '= C(Y) and r(X) = r(Y), then C(X) = C(Y). By Theorem 2.4 

A*= A'~~-'A*, and so C(A*) <; C(A'); as A*A = A*(A), C(A*A) c;; C(A*). By 

Theorem 2.19 the ranks of A', A*, and A*A are equal; and the theorem 

follows. 

Theorem 2.21 [8]: If X and Y satisfy XAA' = A' and A'AY = A', then 

A* = XAY. 
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Theorem 2.22 [8]: If A is normal~ that is, A'A = AA' ~ then A*A = A.A* 

and (An)*= (A*)n for any positive integer n. 

Theorem 2.23: Let A be factored A= BC according to Theorem 2.1. Then 

AA*= B(B 1 B)-1B1 = AC 1 (CA 1AC 1 )-1CA' 

and 



Proof: The first equality in each set follows directly from the defini-

tion of A*. The second follows by noting that the factorization A= BC 

implies that B = AC 1 (CC 1 )-l and C = (B'B)-1B1A. 

,l'b.eorem 2,24: If A is n by 1, then A*= (l/A 1 A)A 1 , A*A = 1, and 

AA* = (l/A 1A)AA 1 • 

Proof: This follows directly from the definition by noting that 

A= Ax 1 is a suitable factorization. 

The proofs of Theorems 2.25 through 2.Jl follow more or less 

readily from Theorem 2.6, and specific details will be omitted. 

Theorem 2,25: If A= [B c] and B'C = cp and C'B = cp, then 

r*B cp J A*A = . , and AA* = BB* + CC*. L q> C*C . 

Theorem 2. 26: If A = [ ~ J and BC' = cp and CB' = cp, then 

A* = [B* C*], A*A = B~~B + C*C, and AA* = !BB* cpl. l cp CC*J 

As might be expected, the generalized inverse of a J matrix~ 

that is, a matrix all of whose elements are unity~ is of a very 

simple form. Such matrices occur frequently in the study of experi-

mental design models and so are of considerable importance. 

Theorem 2.27: If A= Jn, then A*= (1/rnn)Jm, A*A = (1/m)Jm, and 
-- m n m 

AA*= (1/n)Jn. 
n 
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The next theorem gives the generalized inverse of the direct pro­

duct of two matrices. Although seldom used in statistical literature, the 

direct product is at times an extremely convenient tool. As an example, 

if Xis the design matrix for a particular experimental design, then 

the design matrix for the design consisting of r replications of the 

original design can be written J~ ® X. Other uses will be seen later 

in this paper. 

Theorem 2.28: If A= B ® C, then A* = B* ® C*, A*A = B*B © C*C, and 

AA* = BB*® CC*. 

Theorem 2.29: If A= diag[B, c], then A* = diag[B*, C*], 

A*A = diag [B*B, C*C], and AA* = diag [BB*, CC*}. 

Theorem 2.30: If A is diagonal, then A* is also diagonal with the 

elements of A* being the reciprocals of the corresponding elements 

of A, letting the reciprocal of zero be zero. 

The next theorem is of importance as sub-matrices of many exper­

imental design matrices are of the form described~ for example, the 

sub-matrices associated with the mean, the blocks, and the treatments 

of a randomized complete block design. 

Theorem 2.31: Let A be a matrix such that each element of A is either 

zero or unity, each row of A contains exactly one non-zero element, 

and each column of A contains exactly p non-zero elements. Then 

A*= (1/p)A 1 and A*A = I. 

To find the generalized inverse of a given numerical matrix which· 
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is not of a form covered by one of the previous theorems and whose fac-

torization is not apparent~ and it seldom is~ one of the sequential 

methods given in the next two theorems can be used. Greville [5] has 

suggested that the; method given in Theorem 2.33 might be useful in the 

problem of finding a regression model that "fits" a given set of data 

by adding terms to the model one by one. 

!}ieorem 2. 32 [9] : Let A be an n by m matrix of rank r. Let c1 = 

Let cj+l = (1/j)tr(C.A 1A)I - C.A'A, j = 1, 
J m J 

• • •, ~-lo 

A* = _t_r_,(_C..._A_1_A...,.)- Cr A 1 • 

r 

Then 

I . 
m 

Theorem~ [5]:. Let ak denote the kth column of A. Let Ak be the 

matrix composed of the first k columns of A. Then A* can be found by 

the following sequential procedure: Af = (l/A{A1)A1; given ~-l' 

A{= ~~-l :k'\:b~ where'\:= Aj;_1ak and~= (1 + d{'\:)-1'1,AJ;_1 if 

ak = Ak-ldk, and bk= (ak - Ak-ldk)* if ak f Ak-ldk. 

As a simple example, let 

A= 

2 0 2 

O 1 -1 

-1 -3 2 

1 -2 3 

We see that the rank of A is 2. Of course we could use Definition 2.1 

in this case as the required factorization follows after noting that 

the last column is simply the difference of the first two. 

To use Theorem 2.32, we find 



and finally 

We note that 

32 -1 -5 

c2 = tr(A'A)I - A'A = -12413 

-5 13 20 

54 4 -39 19 

C2A1 = (1/249) 24 11 -45 -10 

30 -7 6 29 

1 -1 -1 

c3 = -1 1 1 

-1 1 1 

and so C3A1A = cp. The property Cr+lA'A = cp is a general one for this 

procedure and may be used to determine the rank of A - and hence the 

termination point for the sequence -- if it is originally unknown. 

To use Theorem 2.33 we start with 

Then 

Therefore 

and 

A*= 2 

A1 = [2 0 -1 1]1 • 

Af = (1/6) [2 0 -1 1] 

a2 = [o 1 -3 -2] 1 

d2 = Ata2 = 1/6 

A1d2 = (1/6) [2 O -1 1]' ~ a2• 

[28 -1. -11. 16J (1/8.3) • 
-2 6 -17 -13 

11 



Then 

So 

and 

a~ : [2 -1 2 J J I 
d k A*a = [1 -1]' 
J 2 3 

A2d3 = [2 -1 2 3]' = a3• 

i 

b.3 = (1 "' d'd )-1d1A*::: (1/249) [Jo -7 6 ~9] · 
3 3 3 2 

A* - A* -- 3 -

i 

54 4 -39 19 

(1/249) 24 11 -45 -10 

30 -7 6 29 

12 

The next three theorems show the connection between the so-called 

pr~ncipal idempotents of a symmetric matrix and the generalized inverse. 

Theorem ~ [10]: Let A be an n by n symmetric matrix with distinct 

characteristic roots>,_, A2, ••• , At with multiplicities~, •• • , mt 

respectively. Then there exist matrices~, •• • , Et (the principal 

idempotents of A) such that A= I AiEi, I Ei = I, EiEj = 6ijEi, and 

r(Ei) = mi where 6ij is the Kronecker Delta. 

Theorem ~ [8] : If A is symmetric, then the principal idempotent 

corresponding to the characteristic root Ai is given by 

Ei = I - (A - AiI)*(A - Ail). 

Theorem 2.36: Let A be any matrix. Then I - A*A is the principal idem-

potent of A1A corresponding to the zero characteristic root of A1A, and 

I - AA* is the principal idempotent of AA' corresponding to the zero 

characteristic root of AA'. 
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~: Let B = A1A. Let Ebe the principal idempotent of B corresponding 

to the zero characteristic root of B. By Theorem 2.35 E = I - B*B. 

Therefore E = I - (A 1A)*(A 1A) = I - A*A'*A 1A = I - A*A which proves 

the first part of the theorem. The second part is proved in a similar 

manner. 

The previous theorem is of interest as it will be shown later that 

in an analysis of variance of the linear model Y = X~ + e the matrix 

I - XX* is the matrix of the quadratic form for error. 

The next theorem gives a method for finding the generalized inverse 

of a symmetric matrix if the characteristic vectors associated with the 

zero characteristic roots of the matrix are lmown. A special case of this 

is suggested by Graybill [3, p. 305, problems 13.20 and lJ.21] for solv-

ing the reduced normal equations of a two-way classification design. 

The~ 2.37: Let A be an n by n symmetric matrix of rank r. Let 

P = [P1 P2] be an orthogonal matrix with P1 being n by rand P2 being 

n by n-r such that P'AP = diag[D, q,J where D is r by r diagonal, the 

elements of D being the non-zero characteristic roots of A. Then 

A*= P1D-1P1 =(A+ P2P2)-l - P2P2. 
Proof: As P'AP = diag[D, cp], A = P(diag[D, cp] )P'. So by Theorems 2.13 

and 2.29 A* = P(diag[D*, cp] )P 1 = P1D*P1 = P1D-1P1. Also, as PP 1 = I, 

A+ P2P2 = PP 1 (A + P2P2)PP 1 = P(P 1 AP + P1 P2P2P)P 1 

= P(diagQD, q,] + diag[q>, I ] )P' = P(diag[D, I] )P 1 • But P and n-r 

diag[D, I] are nonsingular, and so A+ P2P2 is nonsingular, and 

(A+ P2P2)-l = P(diag[D-l, I])P' = P1D-1P1 + P2P2 which completes 

the proof. 
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The application of the next three theorems will be found in later 

chapters. 

Theorem 2.38: Let A= B(I - C*C). If C(I - B*B) =~and BC*CB* is 

symmetric, then A* = (I - C*C)B"f· 

Proof: This follows immediately by testing with Theorem 2.6. 

Theorem~: Let A= B(I - C*C). If C is n by m of rank n and 

C(I - B*B) =~'then AA*= BB* - B* 1 C1 (CB*B* 1 C1 )-1CB*. 

Proof: We first note that r(CB*) ~ r(C) = n; and, as CB*B = C, 

r(CB*) ~ r(C); and so r(CB*) = n. Hence CB*B*'C' is nonsingular. We 

shall now use Theorem 2.18 for the remainder of the proof. Let 

D = BB* - B*'C'(CB*B*'C')-lCB*. We must show that DA = A and t hat 

there exists E such that D = EA'. The first follows immedi ately, and 

the second is satisfied if we let E = B*'[I - C1 (CB*B*'0')-1CB*B*'}. 

Theorem 2.40: Let X be a vector. Then X belongs to C(A 1 ) if and only 

if A*AX = X; X belongs to C(A') if and only if A*AX = ~. 

Proof: If X belongs to C(A 1 ), then there exists B such that X = A'B; 

hence A*AX = A*AA'B = A1 B = X. On the other hand if A*AX = X, then 

X = A'A*'X and so belongs to C(A 1 ). The final statement follows as a 

vector will belong to C(A') if and only if it is orthogonal to every 

vector in C(A 1 ) or, more simply, to every member of a basis for C(A'). 

But A' certainly contains a set of basis vectors; and , as A*AX =~if 

and only if AX=~' the proof is complete. 

We now turn to some t heorems concerning the application of the 

generalized inverse to the solution of simul~neous linear equations. 



These theorems are .of the utmost importance to the development of the 

later chapters. 

Th~~ [8]: Let A, B, and C be given matrices. Then the matrix 

equation AXB = C is consistent~ that is, there exists X such that 
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AXB = C ~ if and only if AA*CB*B = C in which case the general solution 

is X = A*CB* + Y - A*AYBB* where Y is arbitrary. 

As in this paper we shall be concerned only with the case where 

B = I, we shall specialize Theorem 2.41. 

Theorem~: The set of simultaneous linear equations AX= C is 

consistent if and only if AA*C = C in which case the general solution 

is X = A*C + (I - A*A)Y where Y is arbitrary. 

Theorem~ [8]: AX= C and XB = D have a common solution if and only 

if each has a solution and AD= CB. 

In the proof of Theorem 2.41 Penrose notes that the only properties 

required of A* and B* are AA*A = A and BB*B = B. The conditional inverse 

of a matrix A has been defined to be a matrix G such that AGA = A, and 

so we may replace A* and B* in Theorem 2.41 by conditional inverses if 

we wish. We note that A* is a conditional inverse of A, and using Theorem 

2.41 we see that G is a conditional inverse of A if and only if there 

exists Y such that G = Ai} + Y - .A*AYA.A*. 

If a matrix equation is not consistent, it is often desirable to 

find an approximate sol¥tion which has certain properties. Penrose has 

considered one approach which is given by the next definition and the 

following four theorems. 



Let 11 ~,11 = tr (A' A) = sum of the squares of the elements of A. 

Definition 2.2 [9]: x0 is a bes~ approximate solution (BAS) of the 

. equation f(X) = G if for all X either ,j.jf(X) - GIi > llf(X0) - GIi 

or if llf(X) - GIi = llf(X0) - GI I, then llxll ~ llx0J I. 

Theorem~ [9]: .A*B is the unique BAS of the equation AX= B. 

Theorem ~ [9]: A1xc1 + ••• + AmXCm = B has a unique BAS. 

Theorem 2. 46 [9]: The unique BAS of AXC = B is X = A*BC* ~ 

Theorem 2.47 [9] :_ The unique BAS of AX= I is X = A*. 

Another approach to an approximate solution is to use the least-

squares criterion·which in the general case amounts to minimizing 

1 lf(X) - GI I• Thus Penroseis BAS is a least-squares solution, but in 

general there are more least-squares solutions than BAS 1s. This is 

shown for the most important case by·: the next theorem. 

Theorem~: Let X be a colµmn vector. Then the general least-squares 

solution for the equation AX= Bis X = A*B + (I - A*A)Y where Y.is 

arbitrary. The resulting value of I IAX - Bl I -- which has been mini­

mized -- is B'(I - AA*)B. 

Proof: I !AX - Bl I = (AX - B)' (AX - B). Setting the derivative with 

respect to X equal to q:,, we obtain A'AX = A'B. As 

(A 1A)(A 1A)*A'B = A1 AA*A* 1A'B = A'AA*B = A'B, 

the equation is consistent; and the general solution is 

X = (A 1A)*A 1B + [I - (A 1A)*(A 1A)}Y = .A*B + (I - A*.A)Y 

16 
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where Y is arbitrary. Then AX= AA*B and so 

I IAX - Bl I= (AA*B - B) 1 (AA*B ~ B) = B'(I - AA*)B. 

It is of some interest to note that any two least-squares solutions 

of AX= B differ by a vector which belongs to C(A1 ); that is, each member 

of the set of least-squares solutions consists of the fixed vector A~fB, 

which belongs to C(A 1 ), and an arbitrary vector belonging to C(A 1 ). 



CHAPTER III 

LINEAR MODELS 

The basic assumption of a wide class of statistical problems is 

that a vector Y of observed values is the e;ium of some fixed but unknown 

vector Mand a vector e of random variables. Certain distributional 

properties are assumed fore, and these generally include the property 

that E(e) = q>. Thus the vector M is simply the expected value of Y. 

Before much progress can be made on the problem a further assumption 

concerning M must be made. The usual assumption is that Mis equal to 

some function of a vector of parameters~ that is, M = f(~) ~ and the 

statistical problem is then one of estimation or hypothesis tests of 

certain functions of~. We speak of the function f(~) as a model or 

representation of M. The theory of the general linear hypothesis is, 

based on the ae;isum.ption that M = X~ where Xis a known matrix and~ 

is a vector of unknown parameters. 

In this chapter we shall make a few comments of a strictly 

algebraic nature concerning the linear model X~ assuming that Mis 

known. 

We first observe that the acceptance of the model X~ for M 

implies that the equation M = X~ is consistent and so, by Theorem 

2.42, that :XX*M = M which in turn implies that M belongs to C(X). This 

fact will be useful to us when considering the problem of hypothesis 

testing. It should be noted that for a given X the assumption M = X~ 

18 
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usually restricts the possible values of M to some proper subspace of 

the space of all vectors; however in ~ome instances XX*= 1, and the 

assumption of the model X~ does hot tliply such a restriction. Examples 
· I i 

of this include the one-way cl.as,sification model and the ·complete n-way 

classification model with interabtion. (A little! thought :will reveal 

that in these cases the rank of Xis equal to the v~rtical dimension 

of X, and consequently XX*= I.) 

Next, as M = X~ is consistent, Theorem 2.42 also tells us that 

~ is of the form 
/ 

~ = X*M + (I - X*X)a 

where a is an arbitrary vector. To be definite let M pen qy 1, 1 b~ 

n by p of rank q, and~ be p by 1. It is clear that the value of~ will 

be unique if. and only if I - X*X =~which ~ili occur if ahd ~nly if 
I . ' 

q = p. If this is indeed the case, we ~all the model full-ran~, and 

th~re is little more to be said about it; we shall also say in this 

case that~ is intrinsically defined, and of course any single-valued 

function of~ is also intrinsically defined - that is, the value of 

the function is unique. 

Turning to the case where q .< p - in which case we speak of the 

model as less-than-full-rank - ~ can take on an unlimited number of 

values and still satisfy the equation M = X~; that is, ~ is not intrin-

sically defined. Nevertheless certain functions of~ are so defined, 

and it is these functions which seem to be of importance in statistical 

problems. We confine ourselves in this paper to linear functions of~, 

and it is sufficient to consider only homogeneous functions because if 

A~ is intrinsically defined so is A~+ B for any given B. 

Let A be a given t by p matrix. Then we have 
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A~= AX*M + A(I - X*X)a, 

and so the vector of linear functions of~~ that is, A~ -- is intrin­

sically defined if and only if A(I - X*X) =~;this in turn is true if 

and only if each column of A' belongs to C(X') . 

Although, as mentioned above, we are generally concerned only 

with the class of intrinsically defined functions of~, it is occasion­

ally desirable to alter the model in one way or another so that the new 

model is full-rank as the usual theoretical analysis is thereby simp­

lified. As we shall show later, however, the use of the generalized 

inverse overcomes the theoretical difficulties of the less-than-full-

rank model. 

One possible procedure is repa.rametrization , in which t he original 

model is replaced by one whose parameters are intrinsically defined 

functions of the parameters of the original model . Thus let X be factored 

X = UV as in Theorem 2.1. Then X*X = V'(VV')-1V; and V~ is intrinsically 

defined, as VX*X = V. Letting 8 = V~ we can use the model U8 which is of 

full rank. Observing that the columns of U can be any set of n by 1 vec­

tors which .form a basis for C(X) and that it is always possible to find 

an orthogonal basis for a given vector space, we see that we can choose 

U so that its columns are orthogonal to each other and hence that U'U is 

diagonal; such a reparametrization is called orthogonal. 

Another procedure is to place restrictions of a certain kind on 

~. This amounts to choosing ans by p matrix B such that V = [ :J has 

rank p and then making the further assumption t hat ~ satisfies B~ = C 

f or some specif ied C such t hat B~ = C is cons is t ent. To select B we 

require only that at least p-q rows of B be linearly independent both 
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among themselves and with respect to the rows of X. 9ne particularly 

simple set of restrictions to use can be obtained by choosing any set 

of q linearly independent columns of X and setting the parameters 

corresponding to the remaining columns equal to some constant values. 

To show this let us assume that the columns of X and the corresponding 

elements of~ have been arranged so that the first q columns o.f X are 

linearly independent. Write 

x~ = [xl x2] [ ::1 = JS_Pi + X2P2 

where x1 is n by q. Let the restriction be ~2 = C. Then M = x1~1 + x2c, 
and, as XiX1 = I, we get the unique solution 

~l = XiM - XiX2C 

~2 = c ... 

Still another procedure is suggested by the solution to M = X~ 

in terms of the generalized inverse -- that is,~= X*M + (I - X*X)a. 

Clearly if we choose a particular value for a, then~ will be uniquely 

determined. For example, if we choose a= q>, by recalling Penrose's 

BAS (see Definition 2.2) it is clear that~,~ will be minimized; this 

may or may not be a useful property. 



CHAPTER IV 

ESTIMATION 

We now return to the basic assumption that Y = M + e where Y i s 

an n by 1 vector of observations, Mis an n by 1 vector of fixed but 

unknown constants, and e is an n by 1 vector of unobserved random 

ifariables whose multivariate distribution has mean q> and variance -

covariance matrix~~ that is, e d~ (q>, ~). For this ' and the following 

chapters we shall assume a linear model X~ for M where Xis- a known 

n by p matrix of rank q and pis a p by l vector of unknown parameters . 

The first matter to be settled is to decide which functions of 

P can be estimated. As estimation clearly implies that there is some-­

thing to be estimated that is, some fixe·d but unknown number it 

is obviously nonsense to discuss estimation of functions which are not 

intrinsically defined. ( Of course the class of such functions- depends 

upon the particular model chosen; but having chosen a model the class 

is fixed.) Therefore the class of intrinsically defined functions and 

the class of functions whose values can be estimated are logically 

identical; in fact in the sequel we shall use . the terms "intrinsically 

defined" a~d ttestimable 11 interchangeably. This usage of course gives 

a broader meaning to "estimable" than that, given by Graybill [J] as 

he also requires that an unbiased estimate for such a function existn. 

However, we shall confine our discussion to linear functions; and, as 

we shall see, a linear estimable function can always be estimated with-
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out bias. Therefore there will be no confusion between the two mJanings. 

Our attention is then fixed Ori the class O.f' linear estimable func-

tions of~' which is the cl~ss of functions of the fdrm AP where A is 

such that A(I - X*X) = q>. By using Th~orem 2.40 and s_onie minor ~nipu-
' 

~ations, this requirement for A is seen t6 be equivalent to stating 
! 

tnat there exists B such that X'B = A' or that there exists B such that 

X'XB = A 1 . ' 

We first consider estimation in the case where e d+ (q>, /r) 
with the form of the distribution unspecified and o2 unknown. Through-

out this discussion we shall let AP be estimable and A bet by p with 

no restriction on the rank of A. By Theorem 2.48 the lea.st•:Squares 

solution for Y = X~ is 

~ = X*Y + (I - X*X)a, a arbitrary. 

This solution comes about of course by minimizing e'e. By the Gauss-

Markov Theorem we know that the least-squares estimate of A~ is AX*Y, -which we denote by A~. As E(AX*Y) = AX*E(Y) = AX*XP = A~, the estimate 

is unbiased. 

Now e d~(q>, o2I) implies that Y do+ (X~, o2I), and consequently 

~ d~ (A~, o2AX*X* 1A1 ). 

We also note that by Theorem 2.48 e'e = Y'(I - XX*)Y, and so 

E(e 1 e) = tr{ (I - XX*)E(YY 1 )} 

= tr{(I - XX*) (ir + x~~·x• >} 
= o2tr(I - XX*) 

. 2 = (n-q)o. 

2 We thus get an unbiased estimate of o by 

~ = (l/n-q)Y1 (I - XX*)Y. 

Let us now specify that e d~ N (q>, o2I), a multivariate normal 
n 
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distribution. We first consider the case where A is 1 by p and to avoid 

confusion she.11 use a 1 instead of A. As a linear function of normal var-

iables is also normal, we have immediately that 
/'\.. 2 .. 
a'~ d+ N1 (a'~, c5 a 1X{}X* 1a). 

Also, as I - XX* is idempotent of rank n-q, we have 

_(n-~)°82 d.+ X' 2 (n-q, ,~) 
c5 

where 11. = (1/2/)~ 1X1 (I - XJC{})X~ = O; and so the distribution is a. 

central chi-square with n-q degrees of freedom. 
/',... ( ~ ~ \ "'."-2 

Observing that a'X*(I - XX*) = q,, we see that a'~ and _\...U.::.~.L.CL 
c5 

are independent. Therefore we can obtain at statistic which can be 

used to set a confidence interval on a'~. 

If A is t by p of rank t, we can obtain a simultaneous confidence 

region for the t linear functions of~ represented by A~. We have 

AB d+ Nt(A~, iAX*X~HAI ). 

Recalling the proof of Theorem 2.39, we know that AX*X*'A' is non-

i,ingular; and so 

(1/i)(~ - A~) 1 (AX~fX*'A 1 )-l(~ - A~) d+X2 (t). 

It is easily seen that this statistic and 62 are independent; and it 

follows that we can obtain an F statistic which will permit us to con ... 

struct the required confidence region, which will beat-dimensional 
A 

ellipsoid with center at A~. 

In this chapter we have indicated a few places in the theory of 

estimation where the generalized inverse seems particularly applicable. 

No attempt was made to develop the entire theory in detaU, but it 

appears that considerable simplification if not amplificatlon of the 



25 

theory can be made using this tool. It should be emphasized that, as the 

results in this chapter are completely general with regard to the rank 

of the model matrix, separate discussions of the full-rank and the less­

than-full-rank models are not required. The only comment that needs to 

be made is that. in the full-rank case all functions of the parameter 

· vector are estimable while the class is restricted in the less-than­

full-rank case. 



CHAPTER V 

HYPOTHESIS TESTING 

In this chapter we shall discuss in some detail the problem of 

· testing a hypothesis of the form A~= C. As with the estimation problem 

the use of the generalized inverse gives us a completely general theory 

and in addition allows us to investigate hypotheses other than the so-

called "estimable" hypotheses in which the elements of A~ are estimable 

functions and the rows of A are linearly independent. 

· 2 2 
Our assumptions are Y = M + e, e d+- N (~, o I), o unknown, Y is 

. n 

n by 1, M = X~, and Xis known and is n by p of rank q. Actually the 

distributional form of e·is not required for the first part of our dis­

cussion but will be needed later when the likelihood ratio test is devel-

oped. We shall consider the hypothesis AP= C where A is t by p of rank 

hand C is such that AA*C = C (to insure consistency.) 

We first develop a criterion for the admissibility of a hypothesis 

where by admissibility we mean that a hypothesis is logically relevant. 

As we noted in Chapter III, the assumption M = XP implies that M belongs 

to C(X), which is a subspace~ and generally a proper subspace~ of 

the space of all n by 1 vectors. It seems reasonable to require that a 

hypothesis, if true, will restrict M to some proper subspace of C(X). If 

the hypothesis leads to the statement that M belongs to, say, C(D) 

where C(D) in.eludes C(X) JI then we are hypothesizing less - putting 

fewer restrictions on M ~ than we have already assumed. On the other 
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hand if C(D) is properly included in C(X), then it is reasonable to 

inquire whether the hypothesis is true or not. As an analogy let the 

North American continent be the domain of discourse (corresponding to 

the space of all n by 1 vectors.) Let us assume that Jones Lake is 

located in California (the column space of X.) The question (hypothesis) 

of whether or not Jones Lake is located in the United States is irrel­

evant in the sense that the affirmative answer can be given immediately 

with no further geographical research. On the other hand the question 

of whether or not Jones Lake is located in Los Angeles county is rel­

evant and requires additional research to answer. 

With this in mind let us look at the hypothesis AB = cp. This is 

true if and only if ~ = (I - MtA)a for some a; substituting into M = Xfl 

we have M = X(I - A*A)a = Da where D = X(I - A*A), and this implies that 

M belongs to C(D). As D = X(I - A~fA), C(D) is a subspace of C(X); and we 

are led to the requirement that C(D) be a proper subspace of C(X) if the 

hypothesis A~= cp is to be admissible. 

If the hypothesis is A~= C, then it is easily seen that the 

discussion in the previous paragraph carries through if we replace M 

by M - XAiiC; that is, our assumption implies that M - XA~}C belongs to 

C(X) as (I - XX*)(M - XA*C) = (p, and the hypothesis implies that 

M - XMfC belongs to C (D) as ( I - DDi~) (M - XM~C) = cp. Thus we are led 

to the following definition: 

Definition ,2.:J_: The hypothesis A~= C is admissible if C(D) is a proper 

subspace of C(X) where D = X(I - A*A). 

------
As C(D) is no more than a subspace of C(X), we i.rnmediately have 

Theorem hl: The hypothesis A~= C is admissible if and only if 
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r(D) < r(X) where D = X(I - A*A). 

We shall now develop a statistical test equivalent to the likeli-

hood ratio test for the admissible hypothesis A~= C. The test statistic 

is indeed a simple monotonic function of the likelihood ratio. First l8't 

us state and prove a general theorem concerning the likelihood function. 

Theorem 2..:.2,: If the random n by 1 vector Z has a multivariate normal 

distribution with mean R + S~, Rand S known, ~ an unknown parameter 

vector, and variance-covariance matrix /r, i unknown, then the maximum 

of the likelihood function over all values of~ and i is 

[(211e/n)(Z - R) 1 (I - SS*)(Z - R)}-n/2.. 

Proof: The likelihood function is 

(211/)-n/2exp[(-1/2i)(z - R - s~) 1 (Z ·~ R - s~)}. 

As usual we maximize the logarithm of this function which is, letting 

T = Z - R, 

(-n/2)ln(2rr) - (n/2)ln(i) - (1/2/) (T - S~) 1 (T - S~). 

Setting the partial derivatives with respect to~ and/ equal to q, and 

0 respectively, we obtain 

s 1 s~ = s1 T 

and 

d2 = (1/n)(T - sp) 1 (T - S~). 

Multiplying the former equation by S~H we get S~ = S*' S1 T :::: SS'kT 9 and 

substituti~g this into the latter equation we get 

r} = (1/n) (T - SSifT) 1 (T - SS*T) 

= (1/n)T' (I - SS~(·)T, 

Substitution of these expressions for S~ and i into the likelihood 

function then gives the required result. We have not verified that this 



is indeed a maximum, but this can be done with little difficulty. 

Under the assumption that Y = X~ + e where ed..,... N (~, o2I) we 
n 

have Yd~ N (X~, o2I). By the previous theorem the maximum of the n . . 

unrestricted likelihood function is 

[(2TTe/n)Y' (I - XX*)Y}-n/2• 
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Under the hypothesis A~ = C, ~ = A*C + (I - A~fA)a where a is arbitrary; 

by substitution, Y d+ Nn[ XA*C + X(I - k 1fA)a, ci2I]. Therefore, by 

Theorem 5.2 again, the maximum of the likelihood function under the 

hypothesis is 

[(2rre/n)T 1 (I - DD*)T}-n/2 

where T = Y - XA-*C and D = X(I - A*A). Letting L denote the likelihood 

ratio we obtain 

1-2/n _ T1 (I - DD*)T 
- Y'(I - XX*)Y • 

Noting that T1 (I - XX*)T = Y'(I - XX*)Y, we can rewrite this as 

1-2/n _ l + T1 (XX* - DD*)T 
- T'(I - XX*)T • 

Observing that T d~ N (X~ - XA*C, o2I) and that each term of 
n 

I = (I - XX{*) + (XX* - DD*) + DD* is idempotent, we can deduce that 

2 2 
~ = (l/c5 )T' (I - XX*)T d+:X' (n-q, ~) and 

u2 = (1//)T 1 (XX* - DD*)T d+X12 (q-d, A2) where d = r(D), 

}..1 = (1/2/) (X~ - XA*C) 1 (I - XX*) (x~. - XA*C) = 0 and 

>..2 = (1/2i)(x~ - XA*C) 1 (XX* - DD*) (X~ - XA*C), and that ~ and ~ are 

independent. Therefore 
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-Uie various altern~tiv~ mathematical fbrmulations. AJJ an example,. c.oIL-

sider a one-way classification with three treatments. The scala r model 

· is Yij = µ + ai + eij ~here the ai are the treatment parameters. Let the 

hypothesis be that the treatment effects are all the same. Let 

~ = [µ a1 a2 a3J •. Two of the many possible mathematical form'Q.}.ations 

are 

~ 
1 -1 _j Al~ = q> where~ = 
1 0 

and 

~ 
1 -1 J A2~ = q> where A2 = 
1 1 

I 
Although we would certainly hope that the different mathematical state-

ments would lead to the same test statistic, it is not obvious th~t they 

will do so. 

In general let us consider two hypotheses~~= c1 and A2~ r c2. 

Let J\ = X(I - Af~), D2 = X(I - A2A2), ~ = r(D1), d2 = r(D2), ~ and 
. I 

u2 be the statistics computed by Theorem 5.3 for the two hypotheses, and 

~ and A2 be the corresponding noncentra1ity parameters. 

DefinitiQrl ~: The two hypotheses A1~ = c1 and A2~ = c2 are eguizalent 

if~= u2, d1 = d2, and~= A2• 

Therefore equivalence of two hypotheses means that the resulting test 

statistics and their distributions will be the same; it follows t~at 

we may replace a hypothesis by an equivalent one with the assurance 

that we will obtain precisely the same statistic with the same distri-

but ion. 

The next .theorem gives a slightly simpler criterion for equivalence 



32 

and is proved by noting that D1Di = D2D2 and ~l = h2 imply that d1 = d2 

and u1 = u2. 

Theorem .2..:.Li:= The hypotheses A1~ = c1 and A2~ = c2 are equivalent if 

D1Di = D2D2 and Al= A2• 

If~= RS where the factorization is in accord with Theorem 2.lJ 

thenAiA1 = S1 (SS 1 )-1s. Let A2 = EA.1 where Eis any nonsingular matrix. 

Then r(A2) = r(A1), and the factorization A2 = (ER)S is again in accord 

with 'Theorem 2.1. Hence A2A2 = AiA1, and so D1Di = D2D2. This suggests 

the next theorem. 

Theorem 5. 5: If E is nonsingular,· then the hypothesis A~ = C is equiva-

lent to the hypothesis EA~= EC. 

Proof: Let A1 = A and A2 =EA.We have already shown that D1Df ::! D2D~ 

and have only to prove that \ 1 = A2; this will be done if we can show 

that Aic1 = A2c2 where c1 = C and c2 =EC.Using the factorizations 
. . . . 1 

A1 = RS and A2 = (ER)S and the fact that C = AA*G = R(R1 R)- R1 C we get 

A{fG ::: S1 ( SS1 )-1 (R1 E1 ER)-lR' E' ER(R' R)-lR' C 
2 2 

= ,61 ( S.81 )-1 (R1 R)-1R1 C 

- A*C - 1 1· 

Qefinitio:n, 5.! • .2.: The hypothesis A~ = C is full-rank if A is t by p of 

rank t; that is, the rows of A are linearly independent. 

Theorfiln g: A hypothesis A~= C is equivalent to a full-rank hypothesis. 

Proof: Let A bet by p of rank h < t. Then there exists a nonsingular 

t by t matrix E such that 



where A1 is h by p of rank hand c1 is h by 1. By Theorem 5.5 the 

hypothesis EAP = EC, which can be written A1~ = c1, is equivalent 

to the hypothesis AP= C. 

The previous theorem tells us that any linear hypothesis can be 

replaced by an equivalent full-rank one, and the proof indicates a 

method of finding it. In the remainder of this chapter we shall deal 

only with full-rank hypotheses because the discussion will thereby be 

somewhat simplified. 
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We shall now make a second classification of the set of all poss­

ible linear hypotheses in order to derive some results concerning admiss­

ibility. 

Definition~: The hypothesis A~= C will be called 

~ l if A(I - X*X) = cp, 

~ II if AX*X = q>, 

~ III if it is neither Type I nor Type II. 

This classification includes all possible linear hypotheses, and 

almost every such hypothesis is uniquely classified, the only exception 

being when A= q> which is obviously of little consequence. We note that 

so-called "estimable" hypotheses are those which we call full-rank, Type 

I. 

Theorem .2..!.2: A Type II hypothesis is non-admissible. 

Proof: Let the hypothesis A~= C be Type II; then AX*X = i:p. Multiplying 

on the right by X1 we get AX'= q> or XA' = q>. Therefore 
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D = X(I - A*A) = X - XA'A*' = X, 

and so by Theorem 5.1 the hypothesis is not admissible. 

Let us now consider the Type I hypothesis A~= C where A is t by p 

of rank t. As A(I - X*X) =~,Theorem 2.39 is applicable; and we can 

write 

DD*= XX* - X*'A' (AX*X*'A' )~1AXi" 

F.ach term of this equation is idempotent, and so 

d = r(D) = r(DD*) 

= tr(XX*) - tr X*'A'(AX*X* 1A1 )-1AX* 

= r(XX*) - tr (AX*X*'A' )-lAX*X* 1A1 

= r(X) - tr(It) 

= q - t. 

As q - t < q, Theorem 5.1 gives us the next theorem. 

Theorem .2.Ji: A Type I hypothesis is admissible. 

Using the proof .of Theorem 2.39 we see that AX*, which is t by n, 

has rank t; therefore, if we wish, we may write DD* in the simpler form 

DP*= .XX* - (AX*)*AX*. 

Looking at the noncentrality parameter>.. for a full-rank, Type I 

hypothesis we note first that in general we can write 

2i>-.. = Q'Q 

where 

Q = (XX* - DD*)X(~ - A*C). 

Therefore in the case under consideration 

Q = (AX*)*AX*X(~ - A*C) 

= (AX*)*(A~ - C). 
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But Q'Q = 0 if and only if Q = q:> and, as AX*(AX*)* = I, if and only if 

A~ - C = q:>. 

The above discussion of a full-rank, Type I hypothesis is summed 

up in the next theorem. 

,!heorem .2!..2: To test the full-rank, Type I hypothesis A~= C, a test 

statistic equivalent to the likelihood ratio is given by 

~ J1=.9._ T1 (AX*)*AX*T .• 
u - t T'(I - XX*)T 

where T = Y - XA*C and t = r(A). Furthermore 

u d~ F 1 (t, n-q, A) 

where 

and A= 0 if and only if~~= C. 

Other forms for u and~ in this theorem are easily found if A and 

X are such that XA*AX* is symmetric. A direct application of Theorem 2.38 

shows that in that case D* = (I - A*A)X*, and consequently 

DD* = XX* - XA*AX*. 

We then obtain 

Theorem i:_lQ: If in Theorem 5.9 XA*AX* is symmetric, then 

....n.::g_ T'XA*AX*T 
u = t T1 (I - XX*)T 

and 

°A.= (l/2o2)(A~ - C) 1A* 1X1 XA*(A~ - C) 

We now turn to the consideration of a Type III hypothesis. We 

shall still assume that the hypothesis is full-rank. For a Type III 

hypothesis we have A(I - x~•x) = B where B f. q:> and B f. A. Now there 



exists a nonsingular matrix E such that 

EB= [:J 
where B1 is b by p and r(B1 ) = b = r(B). Therefore we can replace the 

hypothesis A~= C by its equivalent EA~= EC and have EA(I - X*X) 

partitioned as above. Let us assume that this has been done and, for 

convenience, retain A~= C as the notation for the new hypothesis. 

Partition 

A = [ ~ ] and G = [ :: J 
where A2 is b by p and c2 is b by 1. Then 

A1(I - X*X) = q> 

and 

A2(I - X*X) = B1• 

Letting A bet by p of rank t we have A1 is t-b by p of rank t-b. As 

B = [ ~ ], we have by Theorem 2. 26 and the faot that B1 Bf = \ 

BB* = jC? q> J . 
l, Ib 

We shall now show that the hypothesis A1~ = c1 is equivalent to the 

hypothesis A~= C. 

Let D = X(I - A*A), D1 = X(I - ~A1 ), and :>,. and :>,.l be the 

corresponding noncentrality parameters for the two hypotheses. We 

need to show that DD*= D1Di and}..= :>,.1 • As D and D1 do.not depend 

upon C or c1 , it is convenient to let C = q> temporarily. 

In Chapter II we noted that the assumption of the linear model 

M = X~ implies XX:*M =Mand~= X*M + (I - X*X)a. The hypothesis 
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A~ = q> can thus be written AX-lfM + A(I - X*X)a = <p or simply Ba = -A,"'{-l(-M. 

Therefore by Theorem 2. 42 BB-lfAX*M = AX-l1M; and so 

(I - BB*)AX*M = q>, 

and finally 

A1X*M = q>, 

Let H = A1 x-it. Then again using Theorem 2. 42 we get 

M = (I - H*H)B, 8 arbitrary, 

or, as XX*M = M and XX:-lfH* = H-l~, 

M = (XX* - H-lfH)8. 

However A1 is full-rank and A1(I - X*X) = q>; therefore by Theorem 2.39 

XX* - H*H = D1Df, 

and so 

M = D1 Df6. 

Consequently under the hypothesis A~= cp, Yd-+,, Nn(D1Di6, o2I), 

Therefore by Theorem 5.2 the maximum of the likelihood function 

restricted by the hypothesis is ((2ne/n)Y' (I - D1 D1)YJ-n/2• But 

recalling the proof of Theorem 5,3 we also know that this maximum 

is f(2ne/n)Y 1 (I -· DD~f)Y]-n/2, and so 

Y' ( I - D1 Di) Y ::: Y1 ( I - DD·lf) Y 

or 

Y' (D1Di - DD*)Y = cp. 

It is readily shown that D1 Di - DD~f is symmetric and idempotent, and 

it follows that (D1Di- DD*)Y= cp. However Y is a function of the 

random vector e as well as X~J and as a result we must have 



Dl DI = DD*. 

Returning to the original hypothesis A~= C, we must show that 

A.= (l/2d2)Q 1Q where Q = (XX* - DD*)X(~ - A*C) 

and 

A.l = (l/2d2)Q2Q1 where Ql = (XX* - °iDt)X(~ - AfC1). 

As n1nt = D?* and A1~ = c1 is a full-rank, Type I hypothesis, 

XX* - DD* = XX* - D D* = (A X*) 1 (A_X*X* 1A1 )-liLX* 11 1 --i 1 --i • 

Letting G = (A1X*) 1 (A1X*X~HA1)-l, we have 

and 

Q = GA1X*X(~ - A*C) 

= GA1 (~ - A*C) 

= G(\~ - c1) 

Ql = GA1X*X(~ - AtC1) 

= G(A1~ - c1). 

Therefore Q = Q1, and finally 

A. = "'i. 
We note that if r(B) = r(A), then A1 =, and n1 = X; and so the 

hypothesis is non-admissible. 

This discussion of Type III hypotheses is summed up in the 

following theorem: 
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Theorem 5.tl: Let A~= C be a full-rank, Type III hypothesis such that 

A(I - X*X) = B where B = [ ~ J and B:i_ is b by p of rank b. Partition 

A = [ ~ J and C c, [ :: ] in the sBJJ1e manner as B. Then the given 



hypothesis is equivalent to the full-rank, Type I hypothesis~~= c1• 

If r(A) = r(B), then the given hypothesis is non-admissible. 

Theorems 5.6, 5.8, and 5.11 can be combined to give the next 

theorem. 

]:ieorem 2.12: Every admissible, linear hypothesis is equivalent to a 

full-rank, Type I hypothesis. 
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This last theorem justifies the almost exclusive attention given 

to full-rank, Type I hypotheses in the literature, and in most cases 

the only hypotheses of practical interest are of this form. One impor­

tant exception is to be found in testing equality of treatment effects 

in a non-connec.ted two-way classification; but we shall defer discussion 

of this to Chapter VII, in which connectedness is investigated, and Chap­

ter IX, in.which a specific example is examined in some detail. 



CHAPTER VI 

SOME EXAMPLES OF CONVENTIONAL DESIGNS 

In this chapter we shall consider several of the more common design 

models, giving expressions for the matrices which would be needed to 

apply the results of the two previous chapters. In addition we shall give 

certain properties of the submatrices of the model matrix which are re-

quired to verify the generalized inverse using Theorem 2.6 and comments 

on the class of estimable functionse 

In all cases we shall deal only with a single replication of the 

basic design. The extension tor replications is easily made by the use 

of Theorem 2.28: if Xis the design matrix for a single replication, then 

the design matrix for r replications is given by W = J~ ® X; and so 

W* = (1/r)J1 @ X*, WW* = (1/r)Jr@ XX*, and W}W = X*X. It is particularly 
r r 

important to note that questions of estimability and admissibility depend 

only upon the single replication case because W*W = X{fX. 

The generalized inverses given were obtained by a trial-and-error 

process, verifying the results by Theorem 2.6. 

One-way classification: 

X* = 
1 Jl J t,+1 t ' 

1 + 
--- JIJ 
t+l t 

XX* = rt' r - x•x = t~l I 1 -J~J. 
~Ji J~ 

40 
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Consider the function A~. Let A be partitioned[~ A2] in the same 

manner as X. First assume that A~ is estimable. Then 

...L ·[ 1 -J~J t+I [~ A) t t = q>, 
. -Jl Jt-

and in particular A1 - A2Ji = q>. Now assume that A is such that 
t . t t Ai = A2J1 • Then A = [A2J1 A2] = A2 [J1 It] = A2X. Therefore A~ is 

estimable as A(I - X*X) = A2X(I - X*X) = q>. Hence A~ is estimable if 

and only if A1 = A2Ji· 
As XX*= I, no estimate of error is available unless the design 

is at least partially replicated. 

Complete two-way classification without intera£.iiQn: 

X'Jbt = tJb. X Jb = Jbt. X'Jbt = bJt• X Jt = Jbt. X2'X2 = tib,. X3'X3 = bit·' 
2 s s' 2 s s ' 3 s s' 3 s s' 

X* = ..1_ X' · a(t+l} Jb . 
t 2 - t bt' 

b+t 

b 
I - X*X = a -tJ1 (t+l)J~ 

_L X' _ a(b+l) 3t -. ~bJt _Jt (b+l)Jt 
b 3 b - bt · 1 b t 

XX*= (l/t)X2x2 + (l/b)X3x3 - (1/bt)J~~. 

Preceding as in the one-way classification case, we easily see that A~ 

b t n J is estimable if and only if A1 = A2J1 = A3J1 where A= L~ A2 A3 , the 

partitioning being the same as that for X. 
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Co~~lete ~wo-wa_x classification with interaction* 

x1, x2, and x3 are the same as for the previous example and so have the 

1 
same properties. Let a= bt+b+t+l. 

X* = 
-1... X' Jb t+l 2 - a bt 

I J bt ..1._ X XI _L X XI 
bt + a bt - t+l 2 2 - b+l 3 3 

I - X*X = 

1-abt 1 
-atJb 

l 
-abJt 

b -atJ1 
l 

t+l 1b 
b 

+ atJb 
b 

-aJt 

t -abJ1 
t 

-aJb bh Ib + abJ~ 

bt 
-aJl 

bt 1 
aJb - t+l x2 

bt 1 
aJt - b+l x3 

1 
-aJbt 

Jb . -1.... X' 
a bt - t+l ·2 

Jt 1 X' 
a bt - b+l 3 

1 
t+l x2x2 + b:l X3X3 

bt 
- aJbt 



1 1 
t(t+3) J 2 

t 

...l_ 1, _ t+2 Jt 

X* = t 2 t 2(t+3) t 2 

3 

_Jt 

I - X*X = t:3 
l 

t 
-Jl 

t 
"."Jl 

Balanceq incomplete block: 

..1... X' _ t+2 Jt 
t 3 t2(t+3) t2 

...l_ X' _ t+2 Jt 
t' ' 4 t2 ( t+3) t2 

_Jl 1 
t -Jt 

t+2 Jt 1 t 
t t --r-Jt 

- ...l_ Jt t~ Jt 
t t t t 

1 t 
- t Jt 

1 t 
- t-Jt 
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_Jl 
t 

1 t 
-TJt 

1 t 
-TJt 

t+2 Jt 
t t 

Let b = number of blocks, t = number of treatments, k = number of plots 

per block, r = number of replications of each treatment, n =bk= rt, 

r(k-1) 
.A. = t-.'.'1-- = number of blocks in which ariy particular pair of treatments 

both occur. 
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X2 is n by b (_blocks) , x3 is n by t (treatments) , x21 Jn = kJ b, X2J b = Jn, . s s s s 

Leta=~· 

I*= ...l.. X' fr - ..J.... X X' (I - X X' )} - a(t+l) Jb 
k 2l n A 3 3 n 2 2 t n 

k X' (I l X X 1) + ..l!:.... Jt ""It 3 n-T 22· t n 

b+t -tJl 
b 

bJl - t 

. 1 b 
(t+l)J~ . ..Jb I - X*X = bt+b+t -tJl t 

t 
-bJl 

t 
-Jb (b+l)J~ 

If A is partitioned [A1 A2 A3] like X, then A~ is estimable.if 
. b . . t 

and only if A1 = A2J1 = A3J1• 

It is of considerable interest to note that I - X*X is the same 

as that for the complete two-way classification without interaction 

example. As will be seen in the next chapter, this is true for any 

two-way class if ica tion which is cdnnected. · 



CHAPTER VII 

CONNECTEDNESS 

In this chapter we shall make a few observatidns c6ncerning the 

concept of connectedness as it applies to an incomplete cross-cla$sifi-

cation model without interaction. In a two-way classification we say 

that the :model is connected if all "block" parameter differences ·and all 

"treatment" parameter dif!'erences ~re intr;tnsically defined or, more 

briefly, are estimabl e. This idea can be generalized to an N-way classi-

fication without too much difficulty. 

Let X~ be an N~way cla.sstfioation fuodel without interaction. Then 

Xis naturally partit ioned X = [x1 ••• 1rJ whe~e Xi is n by ai and has 
· ai n · 

elements which are zero or unity and XiJl = J1, i = 1, ••• , N. P can 

be similarly partitiOfled ~' = [~1 ... PN~ and Pl = r~il •• ~ ~iaiJ 

where pij is a scala:r parameter. --Th.en .ll-e hrve 

Definition ~: · The model XP is connected if Pij - Pij' is intrinsically 

defined for all i = 1, ••• , N and all j, j 1 = 1, ••• , a1, j ~ j'. 

The conditional qlause of this definition can be conveniently 

phra-sed in matrix lan~ge by forming the :r.a.1-N by :r.ai matrix 

A= diag[G(a1), ••• , G(~)] 

where G(p) is the p-1 'Qy p matrix 
I . 
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We then have 

Theorem 7.:l.: XP is connected if and only if A(! - X*X) = ~. 

We now prove 

Theorem 7.2: The model XP described above is connected if and only if 

the rank of Xis :r.a. - N + 1. 
1 

f!:.Q.Qf: Consider the N-1 by :Eai matrix 

Jl -Jl 
al a2 

. . . 

Jl 

B= 
al 

. . . 
• 
• • 
• 

Jl 
al 
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ai n 
The rows of Bare linearly independent, and so r(B) = N-1. As XiJl = J1, 

J1 X! = J1; and so BX'=~. This implies that each column of B' belongs a. 1 n 
1 

to C(X 1 ). Therefore the dimension of C(X 1 ) is at least N-1, and so the 

dimension of C(X') ls no greater than :Ea. - N + i; that is, 
1 

~(X) ·~ :r.ai - N + 1. (Recall that Xis n by :Eai, and so C(X 1 ) is a 

subspace of the space of all :Ea. by 1 vectors.) 
1 

Now assume that the model X~ is connected. Then if A is the matrix 

defined on the previous page, A(! - X*X) =~;and so each column of A1 

belongs to C(X 1 ). The :Ea.1 - N columns of A1 are linearly independent and 

also are linearly independent of any particular column of X1 • Thus the 

dimension of C(X') is at least :Ea. - N + 1 -- that is, 
1 

r(X) ~ :Ea. - N + 1 ~ and therefore r(X) = ~. ~ N + 1. 
1 · 1 

Now assume that r(X) = ~. - N + 1. This :implies that the dimension 
1 
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of C(X 1 ) = N - 1 and consequently that the columns of Bare a basis for 

C(X'). But the columns of A' are orthogonal to the columns of B' and so 

belong to C(X'). Therefore ~(I - X*X) =~'and by Theorem 7.1 ~he model 

is connected. 

For the remainder of this chapter we shall focus our attention on 

the two-way classification, the usual blocks and treatments model. If 

we include a mean parameter in the mod~l, then we really have a three-

way classification in the t~rminology used at the beginning of the chap-

ter; there is no loss of ge~erality by omitting the mean parameter how-

ever, and this will be done as the notation is simplified .somewhat by 

doing so. It will ala~ be c1nvenient to change our notation. by parti­

tioning X = [A B] where A i~ n by a and B is n by b. We shall also 

change the parameter vector to 6 and partition it 6 ' = G:' ~ '1 whe.re 

a is a by 1 and ~ is b by 1. a i and ~ j will denote the scalar parameters. 

Two important problems associated with an incomplete model are those 

of determining if connectedness exists and, if it does not, det~rmining 
I 

which parameter differences - if any - are intrinsically defined. The 

first problem is solved if we know the rank of X, but the fol_lowing pro-

cedure will give a simple solution to both problems. Let N = A1B. N is 

a by band may be termed the incidence matrix of the model. 

1. Construct N. We assume that each row and each column of N has 

at least one non-zero entry; if not, the parameter associated 

with that row or column can be deleted from the model. 

2. Draw a line through the first row of N. 

J. Wherever that line intersects a non-zero entry draw a line 

through. ,that column. 



.4. Draw a line through each row which has a non-zero entry on one 

of the column lines drawn. in step 3. 

5. Continue drawing row and column lines in this manner as long as 

possible. When this is done each non-zero entry of N will be 

intersected by either .two lines~ one row and one column line 

or no lines. 

6. Let~= {ilthere is a line through the ith row of N} and let 

r · fu ] c1 = 1 jlthere is a line through the j column of Ne 

7. If~ contains all integers 1, ••• , a (which will occur when 

and only when c1 contains all integers 1, .• • , b), stop. 

Otherwise repeat steps 2 through 6 with the matrix formed by 

deleting from N the lined rows and columns, calling the new 

sets of integers obtained in step 6 R2 and c2• Continue in this 

manner until all rows.and columns of N have been lined. Let m 

be the number of stages of the process. 

Thus we have partitioned the set [1, • 

• • , Rm and the set { 1, • • • , b J into 

• • , aJ into them sets 

them sets c1, •• • ' C • m 

Let rk be the number of elements in~ and ck be the number of elements 

in Ck' k = 1, ••• , m. Then Erk= a and Eck= b. 

We note that interchanging t'Wo columns of A will result in an 

interchange of the corresponding rows of N and interchanging two columns 

.of B will result in an interchange of the corresponding columns of N. 

Therefore by a sequence of appropriate interchanges and renumberings of 

the columns of X and a corresponding juggling of the elements of 8 we 

can form N such that 



and 

c1 = {1, ••• , c1], c2 = {c1+1, ••• , c1+c2J, etc. 

If this is done, then N t~kes the diagonal form 

where Nk is rk by ck. 

Jt1i. 
·i+·v 

Observing that a scalar linear function of 6 is estimable if ~d 

only if it is a linear combinat~on of the elements of XO and considering 

the way in which the sets~ and Ck were constructed, it is clear that 

ai - ai, is estimable if and only if i and i 1 belong to the same~ and 

that ~j - ~j' is estimable if and only if j and j 1 belong to the same Ck. 

We should note that the procedure given is equivalent to the u,sual 

·llbug'' technique for checking connectedness. Briefly stated, the bug 

technique consists of mentally placing a bug on some non-empty cell of 

N and letting the bug travel around the matrix in a certain manner. The 

rule is that the bug may move ~n the same way as a rook moves on a 

chessboard -- that is, along a column or a row. The bug may change 

direction only at an occupied cell however. The set of all non-empty 

cells to which the bug can travel gives us one of the~ sets and' one 

of the Ck sets. The bug is then placed on an occupied cell not touched 

during the first trial, and the procedure is repeated. If and only if 

all occupied cells are touched qn the first trial, the design is con-

nected. The end result is the same whether the bug technique or our 

procedure is used, but we feel that the latter is somewhat more straight-

forward than the former. 

We shall now see how the rank of Xis affected by failure of the 

model to be connected. Assume that the a and~ parameters have both been 

broken down into m connected subsets by the procedure given above. Again 
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let G(p) be the p-1 by p matrix ~f"1 

a+b mat~ix 

-Ip-1]. Let H be the a+b-2m by 

H = diag~(r1), ..• , G(rm), G(c1), . . . ' 
The columns of H' are linearly independent and belong to C(X 1 ) as H6 is 

estimable. Partition A = [A1 • . . Aml and B = [B1 • BJ where Ak is 

n by rk and Bk is n by ck. Now choose m rows of X, the first such that 

one non-zero element of the row lies in~ (and consequently the second 

non-zero element of the row lies in B1 ), the second such that a non­

zero element lies in A2, etc. A little thought convinces us that these 

rows are linearly independent and, furthermore, are linearly independent 

of the rows of H. Therefore the rank of Xis at least a+b-m. Now let F 

be them by a+b matrix 

F = [diag[J1 , 
rl 

• . • ' Jl J r 
m 

rk ck n 
Observing that AkJl = BkJl = J1 , we see that FX' = ~. This implies 

that them linearly independent columns of F' belong to C(X'), and so 

the rank of Xis no greater than a+b-m. Therefore r(X) =a+ b - m. 

These results for the two-way classification model are summed up 

in the next theorem. 

Theorem 1.:.1: Let m, ~' and Ck, k = 1, ••• , m, be obtained by the 

above procedure. Then a. - a., is estimable if and only if i and i' 
]. ]. 

belong to the same Rk, ~. - ~-, is estimable if and only if j and j' 
J J 

belong to the same Ck' and r(X) =a+ b - m. 

An immediate consequence of this theorem is that if all of the 

a parameters fall in the same set, then all of the~ parameters will 

also fall in the same set, and conversely. Therefore all differences of 

a parameters are estimable if and only if all differences of~ parameters 
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are estimable. This leads to the next theorem. 

Theorem 7.~: A two-way classification model without interaction is con-

nected if and only if all treatment differences are estimable or if and 

only if all block differences are estimable. 

Another consequence of Theorem 7.3 is that if an incomplete two-

way classification model is connected then the set of estimable linear 

functions of the parameters is the same as that for the complete model. 

Let X6 be an incomplete, connected model and za be the complete modeL 

Each row of Xis one of the rows of z, and so C(X 1 ) is a subspace of 

C(Z'). But, as XB is connected, the ranks of X and Z are the same; and 

so C(X') = C(Z 1 ). This implies that x~~x = Z{}Z and proves the next 

theorem. 

Theorem 7.5: The set of estimable linear functions of the parameters of 

a connected, incomplete two-way classification model without interaction 

is the same as that for the corresponding complete model, 

It is of some interest to investigate the test of the hypothesis 

. = a in the non-connected two-way classification model dealt 
a 

with above. This is of course not a Type I hypothesis as some of the 

differences of the a parameters are not estimable, but we would expect 

it to be a Type III hypothesis with an equivalent Type I. To examine the 

situation it is convenient to rewrite the model [A1B1A2B2 •• o AmBmlo 

where this 6 is formed by shuffling the elements of the original 5 i.n 

the same way that the columns of X were shuffled. Let Vk = [Ak Bk]. Then 

the model :ts Zl:l where Z = [V~ ••• VJ. Recalling that our initial 
.l.. m 

interchanges of the columns of X made N = A'B diagonal in form, it is 



readily seen that VkVk 1 = cp fork f k'. Therefore, using the obvious 

generalization of Theorem 2.25, we get 

Z*Z = diag[VfV1, ••• , v:_vml. 

Furthermore Vk6k is a connected model, and using Theorem 7.5 it can be 

shown that 

Anticipating the final results, we shall write the hypothesis as 

.. = ar +r, etc. 
1 2 

and 
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Remembering our rearrangement of 6, this can be written as 
rk-1 · 

hypothesis S6 = q> where, if we let H(rk) = [31 -Irk-l 

the full-rank 
rk-1 

cpc J 
k 

and L = [1 

s=[~J 
where 

and 

L L 

s - L L (/) 
' 2 -- • 

rj) • 

L L 

It then follows that 

S(I - Z*Z) = [:] 

where cp is a-m by a+b and Tis r -1 by a+b of rank r -1. Therefore by m m 
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Theorem 5.11 we see that the hypothesis is equivalent to the Type I 

hypothesis 

This gives us the next theorem. 

Theorem 7.6: In a non-connected two-way classification the Type III 

hypothesis that all treatment parameters are equal is equivalent to the 

Type I hypothesis that the treatment parameters within each connected 

subset are equal. 

It should be noted that we have tacitly assumed that the rk and 

the ck are all greater than one. This assumption is not required as 

minor modifications can be made in the proofs which will take care of 

the case where one or more of them are unity. Of course if a subset 

contains only a single treatment parameter, then that parameter will 

not enter into the Type I hypothesis of Theorem 7.6. 

We shall now investigate the non-centrality parameter A for the 

test of the hypothesis covered in the previous theorem. We might suspect, 

that A would involve a sum of quadratic expressions, one for each con-

nected subset; and this is indeed the case. To make the argument we 

shall assume that the columns of the design matrix have been arranged 

in the same way as was done for the proof of Theorem 7.6 and also that 

the rows of the matrix have been arranged so that the matrix is 

where Uk is nk by rk+ck and nk is the number of observations involving 

the parameters contained in the kth subset. By Theorem 2.29 we get 

ZZ* = diag[u1 ur, ... , Umu:J • 



The Type I hypothesis can be written 8i_6 =~with 5:i.. defined as 

on p. 52. It is readily seen that 

where 

Dk= Uk I - H(rk)*H(rk) • 

Let A= (l/2o2)Q 1Q where Q = (ZZ* - DD*)Z6. Then 

Q = diag[Q1, ... , ~] 

and so 

A= (l/2o2)~Qk. 

· Letting A.k = (1/2o2)QkQk we have finally 

A. = l::A.k 

However each Ak involves just the parameters in the kth subset and is 

the expression we would have obtained had we used only those~ obser­

vations involving these parameters. Of course in this particular case 

only the a parameters will occur, and~ will be that obtained by the 

usual test in a connected design (see Graybill [3], Chapter 13.) 
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CHAPTER VIII 

INTERACTION 

In this chapter we shall consider the problem of choosing suitable 

extrinsic definitions for the linear. two-way classification model with 

interaction. As in Chapter III, we shall be concerned not with the sta­

tistical problems but rather with the algebraic problems of the model; 

hence we shall be dealing with a known vector Mand concern ourselves 

with representing M by a linear model X6. 

Again for convenience we shall omit the mean parameter from the 

model as its use only complicates the notation. 

Let us consider two possible models for then by 1 vector M: 

the first~ Model I - is the two-way classification without inter­

action which we write as Aa + B~ where A and Bare n by a and n by b 

respectively and a and~ are the a by 1 and b by 1 parameter vectors, 

the second·~ Model II~ is the two-way classification with interaction 

which we write Aa + B~ + Co where A, B, a, and~ are as before, C is n 

by n, and O is then by 1 vector of "interaction" parameters. If the 

classification is complete, then n will be ab; but we do not require 

this and in fact do not even require that Model I be connected. For 

Model II by a suitable arrangement of the columns of C we can make C 

be then by n identity matrix, and we shall assume that this has been 

done - that is, Model II is Aa + B~ + o. 

We shall say that a model X6 represents the vector M if the 
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equation M = X6 is consistent~ that is, if XX*M = M. Clearly any vec­

tor M can be represented by Model II as we can let a=~' ~=~'and 

o = M. Also we can certainly find some Model I which will represent any 

given M. However the A and B matrices are usually suggested to us by the 

physical nature of the experiment~ that is, each element of Mis 

associated with a particular block and a particular treatment~ and 

in this case the question arises as to whether or not the natural Model 

I represents M. These ideas lead to the following definition: 

Definition 8.1: The vector Mis said to have interaction with respect 

to a certain classification if the Model I for that classification does 

not represent M ~ that is, the equation M = Aa t B~ is not consistent. 

This definition can of course be easily generalized to N-way clas­

sification models, but we are confining our discussion to the two-way 

case. It must be emphasized that by our definition interaction is not a 

property of the vector Malone but rather is a property of M together 

with a particular classification. 

As an example, let M' = [1 2 3 5]. If the classification is 

such that M1 = [~1 ~ 2 m21 m22J ~ a complete classification~ 

then 

1 0 1 0 3 l 1 -1 

1 0 0 l 1 3 -1 1 
X= and XX*= (1/4) 

0 1 1 0 l -1 3 l 

0 1 0 1 -1 1 1 3 

As M'XX* = (1/4) I) 9 13 19] f. M' , M has interaction with respect to 

this classification. On the other hand if the classification is such 
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that JVP [~l m22 m23 m3), then 

1 0 0 1 0 0 0 

0 1 0 0 1 0 0 
X ::: and XX* = IL. 

0 1 0 0 0 1 0 + 

0 0 1 0 0 0 1 

In this case XX~fM = M, and so M = X6 is consistent; therefore M has no 

interaction with respect to this classification. 

We note that W (I - XX*)M would probably be a very reasonable 

measure of the amount of interaction. This quantity see Theorem 2.48 

- is non-negative and is zero if and only if there is no interaction. 

As we have previously seen, the parameters of a less-than-full-

rank model are not completely defined. Theoretically this offers no 

difficulty other than limiting the class of estimable functions, but 

sometimes it is desirable to extrinsically define the parameters in 

some fashion. For example, if an analysis is being carried out using 

the Doolittle technique [2], it is desirable to impose restrictions on 

the parameters so that the size of X1X is reduced to a minimum because 

this saves considerable labor and may change an almost impossible prob-

lem into a reasonably simple one. 

The simplest restrictions that can be used are those which place 

§:. prior:\, values on certain parameters; and it was shown in Chapter III 

that we can choose such a set of parameters by finding a set of q lin-

early independent columns of XJ where q is the rank of X; then the par-

ameters associated with the remaining columns will be the required set. 

Putting these para.meters equal to zero will be the ltsual procedure as 

this will redu.ce the sheer bulk of the matrices involved as much as 
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possible. This method is of course applicable to the two-way classifi-

cation models we are considering in this chapter; the problem is to find 

a set of q linearly independent columns of X. 

Assume first that the Model I is connected, and so the rank of 

[A B] is a+b-1. [A B I] is n by a+b+n and is of rank n. Therefore to fit 

Model II we can choose a+b restrictions on the parameters a, P, and¥• 

This immediately suggests that we put a=~ and~=~; but then we get 
t 

M = r which really seems to say very little and brings .up the point that 

it would be desirable to choose our re'strictions in such a manner that, 

if there actually is no interaction, then we will obtain t = ~. (The 

converse of this is of course true: if 1 =~'then there is no inter-

action.) This implies two things: first, that we must leave 11 free 11 as 

many of the a. and P parameters as are required in Model I - namely, 

a+b-1; and second, that any restrictions involving O must allow the 

possibility of o being null. The first requirement is met if we choose 

a restriction such as J1a = 0 or J1bp = 0 or simply put one of the a or . a 

~ parameters equal to some constant; such a restriction together with 

putting a+b-1 of the r parameters equal to zero will satisfy both re-

quirements. Our problem then becomes one of choosing the appropriate 

elements of¥ to be set equal to zero. 

As the rank of [A BJ is a+b-1, there are a+b-1 linearly indepen­

dent rows of [A B]. :For convenience assume that these are the first 

a+b-1 rows. Partition the Model II matrix 

[A B I] = I~ Bl Cl] 
LA2 B2 c2 

where A1 is a+b-1 by a,: B1 is a+b-1 by b, and c1 is a+b-1 by n. Now the 

rows of 



G = r a+b-1 
Lci>a+b 

are linearly independent of: first, the rows of [A1 ~ c1] as no non­

trivial linear combination of the rows of [A1 ~] is null; second, the 

rows of [A2 B2 c) as each column of I from which c1 and c2 were 

formed~ contains exactly one non-zero entry; and third, any restric-

tion involving only a and~. Therefore the restriction G6 = cp -- or 

more simply c1o = cp ~ is satisfactory and together with a single re­

striction on a and~ will serve to extrinsically define the parameters 

of the Model II. This then shifts our attention from finding linearly 

independent columns of [AB I] to finding linearly independent rows of 

[A B]. 

Goss [2, P• 80] gives a procedure for eliminating certain rows 
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and columns of X'X in conjunction with the solution of the normal equa-

tions X'X6 = X'Y by the Doolittle technique. He gives no rationale for 

the procedure, but a close examination reveals that it accomplishes 

just what we require that is, it determines a+b-1 linearly indepen-

dent rows of [A B]. For the sake of completeness we give Goss I s proced-

ure below with slight alterations in notation and terminology. 

1. Write down the incidence matrix N = A'B. 

2. Strike out all rows that contain only one non-zero entry. 

3. In the remaining matrix strike out all columns that contain 

only one non-zero entry. 

4. Repeat steps 2 and 3 until the remaining matrix contains no 

rows or columns with only one non-zero entry. 

5. Circle all non-zero elements of the first row of the remaining 

matrix except the last. 
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6. Strike out this first row. 

7. Repeat steps 2, 3, 4, 5, and 6 until all rows and columns of N 

are crossed out. 

8. The a+b-1 non-zero elements of N which were not circled are 

associated with a+b-1 linearly independent rows of [A BJ, and 

so we may put the corresponding elements of~ equal to zero. 

The set of elements chosen by this procedure depends upon the 

arrangement of the rows and columns of A1 B and consequently upon the 

arrangement of the columns of A and B; thus in general the set is not 

unique. 

If the Model I is not connected and has m connected subsets, then 

one restriction for the a and~ parameters belonging to each subset will 

be required. Goss's procedure will then determine a+b-m elements of o to 

be put equal to zero, and we shall still have a total of a+b restrictions. 



CHAfTER IX 

A NUMERipAL Ex:AMPLE 

In this chapter we shall look at a small numerical example with 

the idea of clarifying some of the points made in the earlier chapters. 

Let us consider an· tn-completl!l two-way.,, classification model without 

interaction. The scalar model is 

Yijk = ai + ~j + eijk; i = 1, 2; j = 1, 2, 3, 4, 

Let the incidence matrix be 

_ [l 1 0 0 ]. N - • 
0 0 1 2 

Applying the connectedness procedure given in Chapter VII we see 

that m = 2, 11_ = {1J, R2 = {2J, c1 = {1,2J, and c2 = {3,4]· This immedi-

ately tells us that ~l - ~2 and ~3 - ~4 are estimable functions; but, 

for example, ~l - ~3 is n,ot. 

By Theorem 7.3, r(X) = 2 + 4 - 2 = 4° X itself is 

1 0 l 0 0 0 

1 0 0 1 0 0 
,·-,. 

X = 0 1 0 0 1 0 0 

0 1 0 0 0 1 

0 1 0 0 0 1 

To find the generalized inverse of X we can use one of the 

recursive procedures given in Chapter II; but, because this is a 
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fairly small matrix, the definition can be used without undue difficulty. 

A satisfactory factorization of X is given by 

1 0 0 0 
1 0 1 0 0 0 

0 1 0 0 
1 0 0 1 0 0 

X= 0 0 1 0 
0 1 0 0 1 0 

0 0 0 1 
0 1 0 0 0 1 

0 0 0 1 

and, performing the necessary calculations, we obtain 

2 2 0 0 0 

0 0 2 1 1 

4 -2 0 0 0 
x-~ = (1/6) 

-2 4 0 0 0 

0 0 4 -1 -1 

0 0 -2 2 2 

and the associated matrices 

2 0 0 0 0 0 0 0 0 0 

0 2 0 0 0 0 0 0 0 0 

XX*= (1/2) 0 0 2 0 0 
' I - XX*= (1/2) 0 0 0 0 0 

0 0 0 1 1 0 0 0 1 -1 

0 0 0 1 1 0 0 0 -1 1 

and 

1 0 -1 -1 0 0 

0 1 0 0 -1 -1 

I - x1~x = (1/3) -1 0 1 1 0 0 . 
-1 0 1 l 0 0 

0 -1 0 0 l 1 

0 -1 0 0 1 1 



This gives us the necessary machinery for estimation problems; 

however we shall not pursue the matter further but rather shall turn 

to hypothesis testing. 

First consider the hypothesis a1 = ~l + ~2• This can be written 

A6 = cp where A = [1 0 -1 -1 O · o] and 6 = [.a.1 a2 ~l ~2 ~3 ~ J '. 
We see that A(I - X*X) = A, and so AX~~x = q>. Therefore this is a Type 

II hypothesis and is not admissible. 
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Next consider the hypothesis ~l = ~2 = ~3 = ~4• This was covered 

in general in the latter part of Chapter VII, but we shall go through 

most of the specific details anyway. The hypothesis can be written 

A6 = q> where 

0 O 1 -1 0 O 

A= 0 O 1 0 -1 O • 

0 0 1 0 0 -1 

We then get 

0 0 0 0 0 0 

A(I - X*X) = -1 1 1 1 -1 -1 = B, 

-1 1 1 1 -1 -1 

and so the hypothesis is Type III as B -,. q> and B f A. B is not in the 

form required by Theorem 5.11, but by subtracting the last row from the 

second we can make it so. Backtracking, we perform the operation on A 

and obtain the new 

A= O 0 0 O -1 :J. 
0 -1 

0 0 1 -1 0 

0 0 1 0 



We now have 

0 0 0 0 0 0 

A(I - X*X) = 0 0 0 0 0 0 = B, 

-1 1 1 1 -1 -1 

and by Theorem 5.11 the original Type III hypothesis is equivalent to 

the full-rank, Type I hypothesis A1B =~where 

0 1 -1 0 

0 O O -1 

The verbal statement of this hypothesis is ~l = ~2 and ~3 = ~4• Using 

Theorem 2.23 we can easily find~~ and obtain 

0 0 0 0 0 0 

0 0 0 0 0 0 

I - ~~ = (1/2) 
0 0 1 1 0 0 

0 0 1 1 0 0 

0 0 0 0 1 1 

0 0 0 0 1 1 

Therefore 

0 0 1 :i 0 0 

0 0 1 1 0 0 

D = X(I - AfA1) = (1/2) 0 0 0 0 1 1 • 
0 0 0 0 1 1 

0 0 0 0 1 1 

Dis of rank 2 and can be factored 

1 0 

1 0 

[~ 0 1 1 0 ~]. D = (1/2) 0 1 0 0 0 1 
0 1 

0 1 
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Therefore 

3 3 0 0 0 

3 3 0 0 0 

DD~f = (1/6) 0 0 2 2 2 

0 0 2 2 2 

0 0 2 2 2 

and finally 

3 -3 0 0 0 

-3 3 0 0 0 

XX~f - DD* = (1/6) 0 0 4 -2 -2. 

0 0 -2 1 1 

0 0 -2 1 1 

We now have all that we need to find the statistic for testing the 

hypothesis once we are given the values of the observatfons. One point 

should be carefully noted: the rank of both X and Dare one less than we 

would obtain if we had a connected design. This reduction in rank is a 

characteristie of non-connected designs and is one place where an exper-

imenter can easily go astray. In general, if a two-way classification 

model hast treatments and m connected subsets, then the rank of D --

which is of course the degrees of freedom for treatments·-- is t-m. 

The noncentrality parameter for the hypothesis is now easily 

found to be 

~ = (1/12d2)f3<~1 - ~2)2 + 4(~3 - ~4)21· 

It is clear that the experimenter must base his interpretations 

of a hypothesis test not on the original Type III hypothesis but rather 

on the equivalent Type I. Thus if the data leads to the rejection of the 

hypothesis in the example above, it means that either ~l differs from ~2 

or ~3 differs from ~4 or both; but it says nothing whatsoever about the 
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relationship between ~land ~3,say. On the other hand acceptance of the 

hypothesis means only that ~l = ~2 and ~3 = ~4 and does not mean that 

~l = ~3• This kind of thing will happen in general with Type III hypoth­

eses and emphasizes the point that the equivalent Type I hypothesis must 

be known. In practice Type III hypotheses are apparently seldom encoun­

tered, but with designs with missing observations there is a danger that 

a hypothesis which would be Type I in the complete design will be a Type 

III; and unless the experimenter is aware of this possibility, both a 

faulty analysis and a faulty interpretati_on may result. 



CHAPTER X 

SUMMARY 

In this paper we have examined several topics in the theory of 

linear statistical models using the generalized inverse of a matrix as 

an analytical device. The examination has rewarded us with considerable 

insight into some of the underlying structure of this theory, and it 

appears that the generalized inverse will become a valuable addition to 

the theorist's box of mathematical tools. 

To the mathematically pure-minded the use of the generalized in­

verse is particularly pleasing because, as we have seen in Chapters III 

and IV, it combines the theory of full-rank and less-than-full-rank 

models into a single development. For the practicing statistician this 

is probably of little consequence, but it may well prove useful in fur­

ther theoretical studies and when refined may be an excellent pedagogi­

cal approach to the subject of linear models. 

We have been able to make a fairly comprehensive study of the prob­

lem of testing linear hypotheses. The results obtained are generally of 

minor importance to the practitioners of statistics but seem to fill a 

gap in the existing literature. We have made no attempt to consider non­

linear hypotheses, but there is a possibility of some research alon.g 

this line. The lack of such hypotheses in current practice indicates 

that there is no pressing need for this research, but some interesting 

and useful results might be obtained. 
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The examples in Chapter IV were given more with the idea of demon­

strating that the conventional designs could be handled with the gener­

alized inverse than with the thought of suggesting that this is a better 

way of doing so. For new designs the generalized inverse approach may be 

useful if the required inverses can be found; our success in getting 

them for the examples considered is a hopeful sign that they can be ob­

tained for other designs~ at least those which have a more or less 

patterned structure. 

One problem which must be solved before we can ever hope to use 

the generalized inverse in large numerical problems is to find a compu­

tational method for obtaining the inverse which is amenable to program­

ming for an electronic computer. It is possible that one of the methods 

given in Chapter II is satisfactory for this, but we have not investi­

gated the matter. 

Several questions associated with non-connected two-way classifi­

cation models were answered in Chapter VII, but comparable results for 

higher order classifications have not been obtained. Further research 

is suggested not only because of theoretical interest but as a matter of 

practical importance, and it might also provide some increased insight 

into the area of confounded factorial schemes. 

A general approach to the problem of extrinsic definition of par­

ameters in a less-than-full-rank model and a specific procedure for the 

case of the two-way classification model with interaction (due to Goss 

[2]) were pointed out in Chapter VIII. The desirability of making such 

definitions in order to reduce the size of the design matrix and conse­

quently the bulk of the ensuing computational problem in a numerical 

analysis is apparently often overlooked by statisticians. Again the 



N-way classification models provide a field for future inquiry into a 

simple procedure for determining what definitions to make. 
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