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PREFACE

The purpcse of this paper is to examine the topolosical
property of being a Y=subcontinuum of & compact continuum in
& locally connected space S satisfying the weak aeparaﬁion
axioms, as defined by 0.H, Hamilton [5, pp.297-298], with
special attention given to %S~indecomposable compact continua
of S. (The numbers in square bracketa,[ ], refer to the
references in the Bibliography,)

The basic definitions and theorems are gilven in Chapter
I. Of particular importance is the role played by the boun-
daries of the maximal connected open aubaets‘(m.c.o.) of M,
a compact continuum, It is shown that the boundary of a
3=subcontinuum of M completely determines the topological
structure of the %-subcontinuum, If S is completely separable
there exists a %-irreducible S-subcontinuum of M about any
connected set in M and this set 1s determined by the m.c.o.
of M.

Chapter II treats mainly %-indecomposable continua, A
continuum M is decomposable if and only if it contains some
proper subcontinuum with non-empty interior with respect to
M. A §-=indecomposable continuum, ocn the other hand, may
contain infinitely many proper subcontinua with non-empty

interior, Even sco, many properties of indecomposable continua

i §



carry over to ?-indecomposable continua, For example, under
véry mild conditions, if A 1s an indecomposable sub@on@inuum
of the continuum M then S(4), the %=irredu@ible'5msub@0ntinuum
of M containing A, is %S~indecomposable, However, examples

are given to show that §-indecomposability does net, in gen-
erél,_imply indecomposability. |

In the third and last chapter the space 5 is restricted
to Euclidean n-space, Every compact convex éet with interior
is seen to be %uinﬂé@@meSable; Alsc many results of Chapter
II ére strengthened by requiring the m,c.0, of M to be simply
cennscted, Chapher III ends with a discussion of unsolved
pr©bléms and sonjectures,

I should like to a@EHQWIedge my indebtedness to Olan H,
Hamilton for his wvaluable guidaﬁ@e‘in:the preparatimq of this
thesis; to the other members of my committee, Carl E; Marshall,
HaﬁriSQn”S, Mendenhall, John E, Hoffmen, Eugene K, McLachlan,
and Paul Arthur; to L, Wayne Johnson for the teéching assltant-
ship, often with reduced lcad, held the past three years: ﬁb
the National'S@ience Foundation for two summer fellowships;
to Walter E. Stuermenn for kindling my love for pure mathe-
matics; and to‘my wife Bétﬁy'for’hér encodragemen@ at all

times,
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CHAPTER I
GENERAL PROPERTIES OF %-SUBCONTINUA

We shall assume throughout, unless explicitly stated
otherwise, that the space 5 under consideration is locally
connected and satisfies the weak separation axioms Tl and
T,. Hence every singleton set in S 1s closed; and S 1s
Hausdorff, as well as being locally connected at every point,

As for notation we shall use A+B for the set-theoretic
union of A with B, AB for the set intersection of A and B,
A-B for the set of elements belonging to A but not to B,
Int(A) for the interior of A with respect to S,Cl(A) for the
closure of A with respect to S, F(A) for the boundary of A
relative to S, and O for the empty (or null) set,

In general when the words open, closed, or boundary
occur we shall mean open, closed, or boundary with respect

to S.

Our first result is used quite frequently in the forth-

coming theorems in conjunction with local connectedness,

Lemma 1 [1, p.171: Let A and B be subsets of S such that

AB#£0#£A-B, If A is connected then A meets F(B).
Proof: If A fails to meet F(B) then A is the union of



the two mutually separated sets AB and A-B, Consequently A
would not be connected., This is a contradiction so A must

meet F(B).

The first two theorems are structure theorems for sub-

sets of S and depend heavily on local connectedness,

Theorem 1: If M is a subset of S then Int(M)=tD. such
that for each x,D. 1s a maximal connected open (again rela-
tive to 8) subset of M, and D_Dy=0 for «#f.

Proof: Let x be an arbitrary element of Int(M), and
Dx be the union of all the open connected subsets of M con-
taining x, It is clear that the set Dy exists since S 1is lo-
cally connected at x. Then Dy is the maximal connected open
subset of M containing x. If Int(M):Dx there 1is nothing more
to prove; otherwise let y belong to Int(M)-Dx. As before,
construct a maximal connected open subset Dy of M by forming
the union of all the open connected subsets of M that contain

y. Clearly Dy fails to meet D By transfinite induction

y.
we obtain Int(M) equal <« _ D, such that the D, have the desired

properties,

For brevity we shall often use the initlals m.c.o. to

stand for maximal connected open (with respect to S) subset.

Theorem 2: Let T D, be the union of any subcollection
of the m.c,o0, subsets of M, then F(ZI.D,)=Cl(Z.F(Dg)).
Proof: We shall first show that F(Z,Dy) 1s a subset of

Cl(Z4<F(Dx)). Let x belong to F(ZDy) and let V be any open



set containing x., Since S is locally connected at x there
existe an open set W containing x such that W is connected
and contained in V., Then x in F(Z%,)D,) implies W meets both
I,Dy and S~ I,Dy, so there is some Dw such that W meets both
Dy and 8-D . By Lemma 1, W must intersect F(Dw) since W 1is
connected, and consequently W meets I,F(Dy). But V contains
W so V intersects T F(Ds). Hence x belongs to CL(T,F(Dy))
80 C1l( £,F(Dy)) contains F(I,Dys).

We now show that Cl(Z¢F(Dy)) is a subset of F(IyDy).
Let y belong to Cl(ZF(Dy)) and let V be any open set con-
taining y. We know V intersects T«F(Dy) so there is some Dy
for which F(Dv) meets V, and therefore VDV#O. However Dv is
contained in T Dy so V meets I Dy. Now suppose V(S= T )=0.
Then V 1is a subset of ZDy so, for some ¥ , y belongs to Dy.
But y in C1(Z F(D,)) and D4 open about y imply D, meets
F(Dg) for some Dy, 80 DyDg#0#D4(S-Dg). Now the Dy are dis=
joint so DyD,#0 implies Dy=Dy. This, of course, is a con-
tradiction since Dy meets S=Dg, Consequently V intersects
S-%ZDy. We have shown that V intersects both T Dy and S-T/Dx,
s0 y belongs to F(Z¢Dy) and therefore F(I D) contains
C1(EF(Dy)).

Corollary: If Int(M)=t,D,, then F(Int(M))=Cl(Z,F(D,)).

Definiticn 1: Let M be a compact continuum in S (that

is M is connected and compact in the Bolzano=Welerstrass
sense) and A be a subcontinuum of M, We shall say that A is

a S-subcontinuum of M if for each m,c,0, D of M, D is con=-
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tained in A whenever D meets A or whenever F(D) is a subset

of A,

One of the main features of a & -subcontinuum is its in-
variance under homeomorphisms, We shall show this with the

aid of the next two lemmas,

Lemma 2: Let M be a compact continuum in S and let f
be a homeomorphism of S onto some space T, If D 18 an m,c,o0.
of f(M), then F“l(D) is an m.c,o0, of M.

Proof: ©Since D is open and f is continuous we have
f'l(D) open relative to S. Further D connected and f-l con=
tinuous imply f"l(D) is connected, Hence f_l(D) is an open
connected subset of M, If f'l(D) is not an m.c.o, of M then
there exists an m,c,0., E of M such that f'l(D) is a proper
subset of E, We then have D being a proper subset of f(E)
with f(E) open and connected in f(M), since f continuous and
E connected force f(E) to be connected and f'l continuous
with E open implies f(E) is open., But D is a maximal con-
nected open subset of f(M). Consequently f'l(D) is an m,c.o0.

of M,

Lemma 3: Under the same hypothesis as for Lemma 2,
£~1(F(D)) equals F(£~1(D)).

Proof: We first show that f'l(F(D)) is a subset of
F(f'l(D)). Let x belong to f'l(F(D)) and V be any open set
containing x. Now f'l continuous implies f(V) is open about

f(x)., Then f(x) is in F(D) so f(V) meets both D and T-D, and



V meets both £~1(D) and £-1(T-D)., But £~1(T-D)=s-f-1(D).
Thus V meets f‘l(D) and S-f'l(D), so X belongs to F(f'l(D)).
Consequently F(f~1(D)) contains £ L(F(D)).

To complete the proof we must have f'l(F(D)) containing
F(f'l(D)). Let y belong to F(f"l(D)) and W be any open set
containing f(y). Now f is continuous so there exists an open
set U containing y such that f(U) is contained in W, But y
belonging to F(f-l(D)) implies U meets both f‘l(D) and
s-f"1(D). Then W meets both D and T-D, so f(y) is in F(D).
Therefore y is in £~1(F(D)), and F(f-1(D)) is a subset of
£=1(F(D)).

Theorem 3: Let f be a homeomorphism of S onto some
space T. Further let M be a compact continuum in S, and A
be a %=-subcontinuum of M. Then f(A) is a %=-subcontinuum
of the compact continuum f(M).

Proof: It is well known that f(M) is a compact con-
tinuum and f£(A) is a subcontinuum of f(M), Let D be an m,c,o0,
of £(M) such that D meets f(A)., Now f'l(D) meets A with
f'l(D) being an m,c.0, of M by Lemma 2; hence f"l(D) is a
subset of A since A is a S-subcontinuum of M, Then D must
be contained in f(A). Now we consider the case of an m,c.o0,
D of f(M) such that F(D) is a subset of f(A). Then £=1(F(D))
is a subset of A, so by Lemma 3, F(f'l(D)) is contained in
A, But, again by Lemma 2, f'l(D) is an m.,c,0, of M and there-
fore £~1(D) is part of A by virtue of the fact that A is a

S -subcontinuum.
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We have shown that for every m.c,o, D of f(M), D is con-
tained in f(A) whenever D meets f(A) or F(D) is a subset of

f(A). Consequently f(A) is a S-subcontinuum of f(M).

Simple examples in the Euclidean plane show that it is
not enough for f to be merely continuous and/or one-to-one,
i.e. f(A) may not be a %-subcontinuum of f£(M) if A is a
b-subcontinuum of M and f is continuous and/or one-to-one.
Of course f(A) is always a subcontinuum of the compact con-

tinuum £f(M) if f is continuous.

We will be interested in ascertaining whether or not
certain subsets of a compact continuum are %-subcontinua of
M, Our first result in this direction deals with pairs of

subsets,

Theorem 4: Let A and B be closed subsets of the com-
pact continuum M, If both A+B and AB are %=-subcontinua of
M, then A and B are %-subcontinua of M,

Proof: It i1s a known fact that A and B are subcontinua
of M.

We shall now show that A is a S-subcontinuum of M. Let
D be an m,c¢,0, of M such that D meets A, Since A is part of
A+B, D meets A4B and is then contained in A+4B as A4B is a
%=subcontinuum of M. If D is not wholly contained in A, D
must meet B-A, Then DABZ0 since otherwise D=D(A-B)+D(B-A)

with A-B and B-A mutually separated, or D is not connected.

Now AB is a § -subcontinuum of M and DABZ0O so D is contained



in AB and therefore D is a subset of A, We have then shown
that any m,c.,o0, D of M is a subset of A if D meets A,

Suppose D is any m,c,0, of M such that F(D) 1s contained
in A, Now F(D) is contained in A4B, so D itself is contained
in A4+B since A4B is a bH=-subcontinuum, If D meets AB then D
is contained in AB (and hence in A) since AB is & %-subcon-
tinuum, If D fails to meet AB then either (1) D=D(A-B)+
D(B-A) with D(A-B)#£0#D(B=A), or (2) D is contained in B-A,
or (3) D is contained in A-B, However (1) implies D is not
connected as we saw in the previous paragraph, Also (2) im-
plies F(D) is contained in B so F(D) is contained in AB, and
D is contained in AB since AB is a %-subcontinuum, Then D
misses B-A, so (2) cannot hold, Therefore (3) holds so D
must be contained in A-B and hence in A, We have then shown
that any m.c.o., D of M is a subset of A if F(D) is contained
in A, Consequently A, and likewise B, is a ®=-subcontinuum

of M.

That the boundaries of maximal connected open subsets
of a compact continuum M play an important role in the con-
cept of $-subcontinue of M can easily be seen from Definition
1. The next three theorems relate the boundaries of bY=-sub-

continua to each other and to the boundary of M.

Theorem 5: If A is a ¢ -subcontinuum of M then F(A) is
contained in F(M).

Proof: Suppose x belongs to F(A)-F(M)., Since x belongs



to M-F(M) there exists an open set V containing x such that

V 1s contained in M, Now S is locally connected so there is
an open connected set W containing x such that W 1s a subset
of V. Let D be the m,c.o, of M such that W is contained in
D, We then have x in D and x in A (x is in F(A) and F(A) is
part of A since A is closed). The subcontinuum A is a §-sub-
continuum of M so D is a subset of A, But x in F(A) and D
open containing x imply D meets S-A, We have a contradiction

so F(A)=-F(M) is null. Consequently F(A) is contained in F(M).

Theorem 6: If A is a %-subcontinuum of M and D is an
m.c,o0, of M such that F(D) is contained in A, then F(D) is
contained in F(A),

Proof: Since A 1s a %-subcontinuum of M we have D con=-
tained in A, or Cl(D) contained in A, Then, if F(D) meets
S-F(A), F(D) can meet only A-F(A) (i.e. F(D) is a subset of
F(A)+(A-F(A)). Suppose x belongs to F(D)(A-F(A)), so x belongs
to Int(A). Then there exists an open set V containing x such
that V is contained in A, Also S is locally connected so
there 18 an open set W containing x such that W is connected
and is a subset of V., Now x lies in F(D) so- W meets D, Hence
W+D is an open and connected subset of M. But x in F(D) also
implies W(8=D)#0, or (since W is contained in A) W(A=D)ZO.
Consequently D is a proper subset of W4D. This is contradic-
tory to the fact that D is a maximal connected open subset of
M. Therefore (A-F(A)) F(D) is null so F(D) is contained in
F(A).
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Qorollafy l: If A is a d-subcontinuum of M and D is an

m,c,0. of M such that D meets A, then F(D) is contained in
F(A). |

Proof: Since D meets A with D an m,c.o. of M and A a
S~subcontinuum, we have D as a subset of A, Now A is closed
so C1(D), and hence F(D), is contained in A, Hence F(D) is

‘a subset of F(A) by the theorem,

Corollary 2: If D is an m.c.o, of M then F(D) is con=-

tained in F(M).
Proof: Clearly M is a $-subcontinuum of itself and D
meets M, so F(D) is contained in F(M) by Corollary 1.

Corollary 3: Let A be a S=subcontinuum of M, Then

F(A)=F(M) if and only if A=M,

- Proof: Clearly A=M implies F(A)=F(M). Hence we need
only show that F(A)=F(M) implies A:MQ' If A#M, then A must
be a proper subset of M, Therefore let us suppose there is.
an element x belonging to M-A, Now M=Int(M)+F(M) with F(M)
contained in F(A) (which is a subset of A) so x must belong
to Int(M). By Theorem 1l let D be the m.c.o. of M such that
x lies in D. By Corollary 2 above, F(D) is contained in
F(M) wi’ch-F(M):—;F(A)_ so F(D) is contained in A, But A is a
d~subcontinuum of M so D is contained in A. Therefore x lies

in A since x belongs to D. However we assumed that x be=-

1ohged to M-A, Consequently M=A is empty, so A=M,

By changing Corollary 3 slightly we are led to believe
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that if A and B are distinct S-subcontinua of M then A and B
must differ in their boundaries, i.e., A and B must differ in
more than just thelr interiors. The following theorem sub-

atantiates our beliefl,

Theorem 7: Let A and B be S-subcontinua of M. For B
Lo be a subset of A it is necessary and sufficient ﬁhat F(B)
be a subset of F(A),

Proof: If B is a subset of A then F(B) is a subset of
F(A) (by an argument similar to the proof of Theorem 5),
Gonverselys if B is not contained in A there is some point
x belonging to B=A, Since F(B) 1s contained in A, we have

x belonging to Int(B)., By Theorem 1, there exists an m.c.o.

o

D of M guch that % lies in D. Now B is a S-subcontinuum of
I 80 D is contained in B, Then, by Corocllary 1 to Theorem
6, F(D) is contained in F(B), But F(B) is a subset of A and
A is a S-subeentinuum of M, so D is a subset of A and x must
then belong to A. However x belongs to B=A by assumption,

Consequently B-A ia empty, so B is a subset of A,

Corollary: Let A and B be S=subcontinua of M., If the
symmetrice difference of A and B is not eupty then the syme
metric diffTercnece of F(A) and F(B) is not empty.

Proof: If F(B)-F(A) were empty then B would be a sub-
set of A by the theorem, so B=A would be empty. The same

reasoning holds for F(A)=F(B).

Our next two theorems deal with well-cordered monotonic
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collections of d-subcontinua of a compact continuum in a com-

pletely separable space,

Theorem 8: Let S be completely separable and let M be
a compact continuum in S, If {A*E i1s a well-ordered monoton=-
ic descending sequence of distinct %-subcontinua of M then
A, the intersection of the A , is a $ -subcontinuum of M,

Proof: It 1s well known that A 1s a non-vacuous sub-
continuum of M, Let D be an m.,c.o0. of M such that D meets
A, Then D meets each of the A,, so D 1s contained in each
A, since all the A, are %-subcontinua of M, Hence D is con-
tained in A, We have then shown that for each m,c.o0., D of
M such that D meets A, D is contained in A, Now suppose D
is an m,c,0, of M such that F(D) is contained in A, Then
F(D) is contained in each of the A,, so D is contained in
each A, since all the A, are %-subcontinua of M, Therefore
D is contained in A, so each m,c,0, D of M such that F(D)
is contained in A is a subset of A, Consequently A is a

f-subcontinuum of M.

Theorem 9: Let (A} be a well-ordered monotonic as-
cending sequence of distinct §-subcontinua of M and let A
be the closure of the union of the A,. Further suppose that
M is such that if the boundary of an m.c.o, of M is con-
tained in A then the boundary 1s contained in a finite num-
ber of A,. Then A is a ?Y-subcontinuum of M,

Proof: Clearly the union of the A  1s connected so A,



12

belng the closure of this union, is connected, Hence A is

a subcontinuum of M, Suppose that D is an m,c.o., of M such
that D meets A, Then D open implies D meets the union of the
A,, 80 there exists an Ay of A such that D meets A,. But A,
is a %-subcontinuum of M so D is contained in A,. Con-
sequently D is contained in the union of the A, and in A,

the closure of this union. Thus we have seen that every
m.c,0. D of M that meets A is contained in A, Now suppose
that D is an m.c,0, of M such that F(D) is contained in A,
Then, by hypothesis, the boundary of Dmeets A in a finite
number of A,. Let 8§ be the maximum of the cardinal sub-
scripts of these finite number of A,. Then each of the fi-
nite number of A, which meet F(D) is a subset of Ag, and
therefore F(D) i1s a subset of Ag., Then D 1s contained in Ap,
and hence in A, since A; 1s a % =subcontinuum of M, Thus
every m,c,0, D of M whose boundary is contained in A is a

subset of A, Consequently A is a %=-subcontinuum of M,

The following example shows that Theorem 9 minus the
phrase "further suppose that M is such that if the boundary
of an m,c.,0, of M is contained in A then the boundary is con=-

tained in a finite number of A_" no longer holds true,

Example 1l: Let S be the Euclidean plane with the usual
topology and let M be the circle (given in polar coordinates)
r=a together with its interior, Clearly M 1s a compact con-

Ui

tinuum of S, Let Aizijr,e):Oseﬁ o and r:a}. The Ai cone
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stitute a well-ordered monotonic asgending sequence of dis-
ﬁinct 8~subcontinua of M. If A is the closure of the union
of the Ay, then A is i(a,e):OSGSZvl. Hence A is a subcon-
tinuum of M that is not.a S-subcontinuum sincé Int(M) 1s an
m,c,0, of M with F(Int(M)) contained in A, but Int(M) not

contained in A,

' Definition 2: If A is a connected subset of a compact

continuum M, the %-subcontinuum %(A) of M is saild to be
S—irreducible about A if A is a subset of §(A) and if §(A)
is 2 subset of every §=-subcontinuunm of M that contalns A,

@1early 1f such a S~subcontinuum exists it 1s unique,)

To assert the exlstence of S~-irreducible %-subcontinua
we shall need to make use of the Brouwer Reduction Theorem,

We state thls theorem without proof since it 1s well known,

Theorem A (Brouwer Reduétidn;gheorem): If (1) 5 1s com=

pletely separable, (2) M is a compact subset of S which has
property P, and (3) if the intersection of a monotonic de-
scending sequence {A,} of compact point sets has property P
whenever each A, has property P; then some closed subset of
"~ M is irreducible with respect to being closed and having

property P.

Theorem 1l0: Let A be s connected subset of a compact
continuum M, Further suppose that S 1s completely separable.

Then there exists a S$-subcontinuum %(A) of M such that 5(4)
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is.%-irreducible-about A,

Proof: Let property P be the property of being a %-sub-
‘continuum of M that contains 4, Clearly M itself has property
P so the first two hypotheses of Brouwer Reduction Theorem
are satisfied, But hypothesis (3) of the same theorem is sat-
isfied also,.as can be seen from the statement of Theorem 8.
Consequently, by the Brouwer Reduction Theorem; there exists
a»S-subéontinuum §(A) of M such that $(A) is S-irreducible

about A,

Note: 1In what follows when we use 5(A) it shall be
assumed that the space S is completely separable, so we will
be justified in asserting the existence of a $(A) for any

»cOnnected subset A of M.

Definition 3: If A is a connected subset of a compact
continuum M, let Al be the union of all m,c.o0. D of M such
that D meets A, and let A, be the union of all m.¢.0., E of
M such that F(E) is contained in C1(A+4,).

Ekdmple.Q: Let S be the Euclidean plane with the usual

topology. Figure 1 illustrates the sets A. and A2 for the

1
given connected set A, (It is to be noticed that an m,c.o.

of M may belong simultaneously to A, and A,.)

1
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™M

Flgure 1

It appears that %(A) and Gl(A+Al+A2) coincide, The |
following lemma and theorem show that this is indeed the case.

Lemme. 43 Let A be & connected subset of & compact con-
tinuum M, Then Cl(A+A1+45) 1is a %-subcontinuum of M contain-
ing A, '

Broof: We shall first show that Gl(A+A1+A2) is a sub-
continuum of M containing A, Clearly Gl(A+Al+A2) is closed
and contains A, Now A+A,) 18 connected as otherwise A;Alz
P+Q such that P and Q are mutually separated implies that A
1s contained in elther P or Q@ since A is connected, Let us
suﬁpose the former so A is containéd in P, and hence Q 1is
contained invAl. Then there exists a D belonging to 4, such
that D meets Q, so D must be a subset of @ since D is a cone-
nected subset of the .union of the two mutually separated sets
P and Q. Therefore D does not meet P, so D misses A, How=-
ever D in A; implies D meets A, Consequently A+A;, and also
Gl(A+Al), is connected, 1If Gl(A+Al)+A2 is not connected then
there exlst two mutually separated sets P and Q such that

P+Q=Cl (A+A;)+A3. Since Gl(A+Al) is connected, we may assume
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that Cl(A+Al) is contained in P, so Q is contained in A2.
‘Then there exists an E belonging to A, such that E meets Q,
and hence E must be a subset of Q since E is a.connected sub=-
setAof P+Q with P and Q mutually separated, Therefore F(E)
is a subset of Gl(Q); so F(E) misses P and therefore also
‘misses Cl(AfAl). However E in A, implies F(E) is contained
invdl(A+Al), Hence_Cl(A+Al)+A2, and also Cl(Gl(A+Al)+A2)=
Cl(A+Al+A2), is cohnécted. Consequently Gl(A+Al+A2) is a
subcqntinuum of M that contains A.

We shall now show that Cl(A+A;+4,) 1s a % =subcontinuum
of M, | | |

Let D be an m.c.o. of M such that D meets CL(A+Aj+A,).
Then either (1) D meets A, or (2) D meets Al’ or (3) D meets
Ay, since D is open. In (1), since D meets A, D must belong
to Al' In (2), there exists some D; in Al such that D meets

- D Then D+D; 1s connected so the maximality of D. implies

1° 1
that D is containséd in D;, and hence 1s a subset of Aj. In
(3), there exists some E in A2 such that D meets E, Then, as
in (1) above, D is contained in E so D is a subset of Ay,
Hence (1), (2), and (3) all imply that D is a subset of
Cl(A+Al4A2); 50 every m.c.o., D of M that meets the set
Gl(A+Al+A ) is contained in that set.

Now suppose D is an m.c.,o., of M such that. Cl(A+Al+A2)
contains F(D). Let x be any element in F(D), If x belongs
to Cl(A2), then for evéry open set V contalning x, there

exists an open connected sét'W‘containing x such that W is

contained in V, W meets Ay, W meets D, and Wmeets S~D. Since
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W meets A, there is an E beldnging to A, such that WE 1s not
empty. If DE 1s not empty then D+E is a connected open sub=-
- get of M, so D+E=D=E by the maximality of both D and E. Then
F(D)=F(E) so F(D) is contained in Cl(A+A7), and x belongs to
Cl(A+Al). If DE is empty then D 1s contained in S-E, so
(since‘W‘meets D5 W meets S-E, Now W also meets E so W, be-
ing connected, meets F(E) by Lemma 1. Buﬁ F(E) 18 contained

in Cl(A+A;), so W meets CL(A+A ) and then meets A+A.. Hence

l) 1
v meets A+A; so x belongs to Gl(A+Al). Therefore F(D) 1s con-
tained in Cl(A+Al) so D belonge to A,, which in turn is a
subSet of Cl(A+Al+A2). Consequently every m,c,0, D of M
whose boundary is contained in the set Cl(A+Al+A2) 18 itself
contained in'Cl(A+Al+A2). '

Thus, by Definition 1, Cl(A+A;+45) 18 a $-subcontinuum

of M,

Theorem 11: Let'A be a connected subset of & compact
continuum M., Then $(A), the S-subcontinuum of M that is
b=irreducible about A, is equal to Cl(A+A1+A2).

Proof: Clearly §(A) is contained in CL(A+A;+4,) since
%(A) is S-irreducible about A and (Lemma 4) Cl(A+Al+A2) is
a $-subcontinuum of M containingA.t Conversely (1) A is a

subset of $(A), and (2) if‘D‘belongs to A, then D meets A,

1
so D meets %(A) and hence D is contained in $(4) since $(4)
is a S-subcontinuum of M, Thus Al is a subset of %(A)., Also

if (3) E belongs to Ay, then F(E) belongs to CL(A+4;). But
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Cl(A+A;) by (1) and (2) 1s a subset of $(A), so F(E) is con-
tained in §(A). Hence E is a subset of $(A) since $(A) is a
S-subcontinuum. Consequently A, 1s a subset of §(4), so (l);
(2),‘and (3) imply that Cl(A+A;+A5) is contained in §(4),

Therefore S(A):Cl(A+Al+A2).

‘Corollary l: If A and B are connected subsets of a com-

pact continuum M such that A is contained in B, then $(A) is=
contained in § (B).

Proof: Clearly A, 1s a subset of B, so Cl(A+Al) is a

1
subset of Cl(B#B;). Then A, must be a subset of B, 80

CLl(A+A +A2))is contained in Cl(B+B +B2). Thus, by the

1 1
theorem, §(A) is contained in $(B).

Corollary'E:. If A is a connected subset of M then

S(S(A)):S(A), i,e., the § operation applied to a connected
subset of M is idempdtent.

Eggggz} Since A is contained in %(A) with both A and
S(A) connected, %(A) is contained in $($(A)) by Corollary 1.
Now $(§(4)) is § ~irreducible about $(A) so &($(A)) is con-
tained in $(A) since §(A) 1is a § -subcontinuum of M con-

~ taining $(4A)., Thus $(A) i1s the same as $(%(4)).

'Corollary 3; If A is a %-subcontinuum of M then A

equals §(4).
Proof: Since 5(A) is § ~irreducible about A and A'is
a.d=subcontinuum containing A we have %(A) contained in A.

Also the theorem implies A is a subset of %(4), Consequently
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'

A equals $(4).

Corollary 4: Let A and B be connected subsets of M such

that AB is connected. Then %(AB) is a subset of $(A)S$(B),
which in turn is a subset of §(A)+§(B), with the latter set

a subset of 0(A+B). |

| »22222: Corollary 1 implies §(AB) is a subset of both
%(A) and S(B) so $(AB) is a subset of §(A)§(B). Also A and

B are connected subsets of the connected set A+B, so Corollary

1 implies 5(A)+S$(B) is a subset of §(A+B).

In general the set inclusions of Corollary 4 are proper,

as can be seen frdm simple examples in the plane.

Gorollary 5: Let T be a homeomorphism of M onto itself,

If D is an m.c.o0. of M then £($(D)) equals $ (£(D)), i.e. the
% and f operations cdﬁmute.

Proof: By Definition 3, f(cl(Dg)zf(c1&m.c.o. E of M:F(E)
is contained in F(D)E).‘ Since T is a homebmorphism the last
meﬁtioned get coincides with N:Cl{m.d.o. f(E) of‘M:f(F(E))
contained in f(F(D))}, with the f(E) m.c.0, by Lemma 2, Then
Lemma 3 implies that N=C1{f(E):F(f(E)) is contained in
F(f(D))}. But this set is C1(f(D),) since f is onto, Con=
sequently £(C1(Dy)) equals CL(£(D,).

Now £(%(D)) equals (by the theorem) f(D+Cl(D2)), which
in turn equals f(D)+Gl(f(D) ) from the previous paragraph,

But Theorem 11 also implies that $(f(D)) equals f(D)+Gl(f(D) )
Hence f(8§(D)) equals 5(f(D)).



20

'Retufning torCornllary 1 of the last theorem it appears
as if we could induce a partial order on the %-irreducible
v%-Subcontinua of M by defining %(A) to be less than %(B) if
A 1s contained in-B,with A and B connected, The following
'éxample showslthat‘this is impossible since $(A) may be iess
than ‘§(B), §(B) may be less than §(A), but AB may be empty,

- Example 3 (modification of the Lakes of Wada 121): Let
M,'Ai,.and Bl‘bevthree rectangles together with thelr inter-.
iors in the plane S(with its usual topology) such tnat Al and
. Bl are subsets of M(sge‘Figure 2)., In the first step of the
construction we enlarge A, and B, (keeping inside M) to form
A2 and ngsuch that the distance ffom every polnt of
M-(A2+B2) is less than one unit from'eVery point of Ay+Bj.

In the second step of the construction we enlargé A2 and;32
(staying nithin M) to form A3 and B3 such that the distance
from every.point’of M-(A3+B3) is less thanvone-half unit from
every pointvof.A3+33. Continuing, at step 1 we enlarge A;.q
1 and B; such that the
) 1s less thén < units

P

and Bi-i (without leaving M) to form A
distance from'evefy point of M-(A1+Bi
from every point of A,+B;. Let A and B be the coupleted en-
largeménts of tne Ai'and Bi’ respectively. Then (1) M-(A+B)
is a nowhere dense closed subset of 8, (2) M=(A+B) is the

~ common boundary;ova,B, and S-(A+B), (3) A and B are distinct

maximal connected open subsets of M, and (4) S(A)=M=%(B).
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Figure 2

Definition 4: If A and B are infersecting %-subcontinua
of a compact coﬁtinuum M then E(A,B) shall be the set of all
m.c.0. E of M such that (1) F(E) is contained in A+B, (2)
F(E) meets A-B, and (3) F(E) meets B-A,

We note that E(A,B) 1s disjoint from A+B since, if D
belonged to E(A,B) and D met A+B, then D would be a subset
of either A or B (as A and B are $~-subcontinua of M); 80
F(D) woﬁld be a subset of eilther A or B and condition (2)
or (3) of Definition_4 would be violated,

Lemma 5: If A and B are interseéting d~subcontinua of
M thenké(A+B) equals A+B+Cl(E(4,B)).

22292:‘ Clearly A+B 1s connected so, by Theorem 11,
S(A+B=CL(A+B+(A+B) +(A4B)5). Now (A4B) =im.c.o. D of M:D
meets A+Bl={m.c.o. D of M:D meets A}+{m.c.o.vD of M:D meets

3}3A1+B1. But Al'is contained in A and Bl is contained in B
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by Corollary 3 to Theorem 11, so Al+Bl is a subset of A+B,
Also (A+B)2={m.c.o. E of M;F(E) is a subset of A+B+(A+B)11
={m.c.0o. E of M:F(E) 1s a subset of A+Bl={m.c.o. E of M:F(E)
18 a subset of Al+{m.c.0. E of M:F(E) is a subset of BY+E(A,B)
- =A>+B,+E(A,B), with Ap4B, contained in A+B by Corollary 3 to
Theorem 11, Hence 5(A+B)=Cl(A+B+E(A,B) )=A+B+C1(E(A,B)) since
both A and B are closed,

Corollary 1: A necessary and sufficient condition for

the sum of two intersecting b%-subcontinua A and B to be a

8-subcontinuum is that C1(E(A,B)) be empty.

Corollary 2: If we allow the empty set to be a $-subcon-

tinuum then a necessary and sufficient condition for the sum
of two intersecting S-subcontinua A and B to be a b-subcontin-
uum 18 that (A+B)C1l(E(A,B)) be a §-subcontinuum,

| Proof: If A+B is a S-subcontinuum then C1l(E(4,B)) is
empty by Corollary 1, so (A+B)Cl(E(A,B)) is the empty set (a
b~subcontinuum by assumption). Conversely if (A+B)Cl(E(A,B))

1s a S~subcontinuum then Lemma 5 and Theorem 4 imply that

A+B 1s a §-subcontinuum.

Lemme. 6: Let A,B, and C be S-subcontinua of M such that
none is & subset of any other and such that AB#O#AC. Then
BCZO 1f $(A+B)=58(A+C).

" Proof: By Lemma 5, §(A+B)=A+B+C1(E(A,B)) and §(A+C)=
A+C+C1(E(A;C)) so A+B4Cl(E(A,B))=A+C+C1(E(A,C)). If E(A,B)
is empty'thenbc is a subset of A+B so BCZO. Therefore let us
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suppose that Cl(E(A,B)) i8 not empty, and let E belong to
E(A,B). Now $(A+B)=%(4+C) so E is a subset of (C+Cl(E(A,C)))
-A by the note following Definition 4, If E meets ¢ then E
is a subset of C, since C is a b-subcontinuum, so F(E) is a
subset of C., Then BCZO since E is an element of E(A,B), If
E meets Cl(E(A,G)) then E meets E(A,C) so E is an element of
E(A,C) by the maximality‘of E and the maximality of the ele-
ment s of'E(A;C). Then F(E) meets C-A so there exists an
element x bélonging to (C~A)F(E). But E belongs to E(A,B)

so F(E) is contained in A+B, Consequently x must belong-to

B-A, s0 BCZO.

- The next two theorems are again concerned with the boun-
daries of &~subcontinua of a compact continuum, and the proofs

used depend heavily on Theorem 11.

Theorem 12: If D is an m.,c,0., of a compact continuum M

then F(D)<co;ncides with F(3(D)).

Egggz: Clearly D is a subset of $(D) so F(D) is a sub-
set of F(S(D)) by Cofollary 1 of Theorem 6. It then suffices
to show.that F(%(D)) is a subset of F(D), By Theorem 11,
S(D):Gi(D+Dl+Dé):Cl(D+D2) since the maximality of D'implies

that D, 1s contained in D, Then F(§(D))=F(C1(D+D,)) with

1
' F(Cl(D+D2)) being a subset of F(D+D2), and the 1ast mentioned
set being a subset of F(D)+F(D2). Hence F(§(D)) is a subset
of‘F(D)#F(Dg), Let us suppose that x i1s an element of F(D2).

Then if V is any open connected set containing x (such a V
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.exists since 8 18 locally connected at x) V intersects De,

S0 there exlsts E,.an element of D2, such that V 1ntersec£s
E. Now V also misses D2 so V intersects S-E; and (by Lemma
1) V intersects F(E). But E is an element of D, so V inter-
sectg'D (we showed that D, was a subset of D). Further;lif
V is contained in D then D intersects E, so D=E by the max-
imality of both D and E; but then E would not be an‘element
of Do, Hehce V intersects S<D; 8o for any open connected set
V containing x, VD£O£V (8=D), Then X belongs £o F(D), since
glven any open set W contaihing x there exists.an open cone
nected set V contalning x with V contained in W, GConsequent-

ly F(%(D)) is a subset of F(D); so F(D) coincides with
F(§(D)). o |

Goréllafz: Let D be an m.c.o, of M. Then $(D)=M if and
only if F(D)=F(M). , |

Proof: By the theorem F(D)=F(5(D)) with $(D) a §-subcon-
tinuum of M, The conclusion then follows by Corollary 3 of

Theorem 6,

In connection with the above corollary we note (by The-

orem 11) that §(F(M))=M if F(M) is connected,

The proof of Theorem 12 would have been trivial if %(D)
were equal C1(D) for'D:an m.c,0. of M, That this 1s not true
in general can be seen from Example 3 glven earlier. There
A vas an m.c.o. of M such that $(A)=M=C1(A+B), but Cl(A) .

failed"to meet B, Theorem 27 gives a sufficlent conditlion in
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the plane for %(D) to équal Cl(D).

Even if Int(M) is equal to a single m.c.o. D, we may
have %(D) a proper S-subcontinuum bf M, Farthér, if A is
'a connected subset of M, then F($(4)) nay nbt coincidé with
F(A) (this is illustrated invFigure 3 below), Henéé nelther

Theorém 12 nor its Corollary may be improved.

%(h\\ .
"“\/’\_

™M

Figure 3

Theorem 13: Let A and B be intersecting b-subcontinua .
of a compact continuum M, Then F($(A+B)) coincides with
F(A+B).

Proof: Clearly F(A4B) 1s coﬁtained in F(A)+F(B), with ‘
A and.B S-Schontinua such that A and B are subsétS'pf %(A+B).
Then,’by Theorem 7, F(A)+F(B) is a subset of F(%(A+B)). Hence
- F(5(A+B)) contains F(A+B), Conversely let x be any element
of F(%(A+B)), and V be any open set containing x, Then V meets
5-8({A+B) so (since A}B 1s a subset of %(A+B)) V meets 5-(A+B).
Now, by Lemma 5, F(5(A+B))=F(A+B+C1(E(4,B))) so F(s(A+B)) 1is
a subset of F(A)+F(B)+F(CL1(E(A,B))), and x must then belong
to this union., If x belongs to F(A)4+F(B) then V meets A4+B,



26

If x belongs to F(CL(E(4A,B))), let W be an open connected
set containing x such that W 1s a subset of V, ' Then there
-exlsts an E belonging to E(A,B) such that W meets E, Also

x in F($(A+B)) implies W meets S-%(A+B) so W meets 8-E, By
Lemma, 1, W meets F(E) so (by condition (1) of Definition 4)
W, and therefore V, meets A+B. Then V(A+B)£O0#V(S-(A+B)) so
x belongs to F(A+B), Consequently F(8(A4B)) 1s contained in
F(A+B).

Corollary: Let A,B, and C be b=-subcontinua of M such
that A meets B. Then C contained in 3(A+B) implies F(C) 1is
contained in F(A4+B). | ' |

Proof: By Theorem 7, F(C) is contained in F(§(A+B)).
Then F(C) is contained in F(A+B) by the present theorem,

The next theorem 1s a generglization of a well=-known
theorem concerning the formation of subcontinua from mutually

sepérated gsets,

Theorem 1l4: Let A be a $-subcontinuum of a compact con-
tinuum M,.and let M-A be the suﬁ of two mutually separated
sets P and_Q. Then A4+P and A+Q are proper bt-subcontinua of
M.

Proof: It is well known |3, p.108) that A+P and A+Q are
both proper subcontinua of M. We shall now show that A+P is
a_S-subcontinuum of M. (The proof that A+Q is a S-subconﬁin-
wum is exactly the same.) Let D be an m,c,o. of M such that

D meets A+P. If D meets A then D is a subset of 4, since A
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1s a $-subcontinuum of M, so D is a subset of A+P, Otherwise
DA=0 and (since MzA4P4Q) D is a subset of P4Q, Then D is &

. subset of either P or Q, since D is connected and P and Q are
mutually separated éets. But D a subset of Q implies D misses
- A4P, in contrédiction to hypothesis.' Hence D 1s a subset of

P and then D i1s a subset of A+P, Therefore D ;s a subéet of

' A+P whenever D is an m.c.o0. that meets A4P. Lét us now sup-
_pose that D is an m.c.o0. of M such that F(D) is a subset of
A+P, Clearly M=A+P+Q so‘D mist be a subset of A+P+Q. As
shown 1n thé first part of this proof, D is a subset of A4P
1f D meets A, and if D misses A then D is a subset of either
P‘or Q. Now D a subset of Q implies F(D) is a subset of
C1(Q) so F(D) misses P, as P and Q are mutually separated sets,
But F(D) is contained in A}B so F(D) must be wholly contained
‘in A, and then D is contained in A since A 1s a $Sm=subcontinuum
of M. Therefore D is a subset of A+P whenever D is an nm,c,o0,
of M such that F(D) 1s a subset of A+P., Consequently A+P

is a'Squbcontinuum of M,



CHAPTER II
§ ~-INDECOMPOSABLE AND $8-IRREDUCIBLE CONTINUA

We begin this chapter by showing that no indecomposable

continuum in S may contain open sets,

Theorem l§:> Let M be a continuum in our’spacé S. Then
(1) M decomposable implies there exists a proper subcontin-
‘uum A of M such that IntM(A), i.e. the interior of A with
- respect to M, 1s not empty; and (2) 1f there exists a proper.
subcontinuum A of M such that Int(A) is not empty,then M is
decdmposable;

"22222:»_If M 1s decomposable then there exist proper
Subdontinua A and B of M such that M=A+B, Since B 1is propér,
A-B‘is not'empty gso there 1s an element x belonging to A-B,
Now B closed implies there exists an open set V (of 8) con-
taining x such that VB 1s null and VA 1s not null, But VM
is an opén set about x with respect to M, so x beléngS‘to
, Intﬁ(A) since VM=VA. Consequently IntM(A) 1s not empty; so
(1) holds. o

 Let us now suppose that A 1s a proper subcontinuum of
M such that Int(A) is not empty. Then Gl(M-A) is a proper
subset of M, If M-A 1s connected so is Cl(M=A), and we have

M=A+Cl(M-A); so M is decomposable, If M-A is not connected

28
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then M-A=P+Q such that P and Q'are mutually separated sets,
By Theorem 14, M+P and M4 ave proper subcontinua of M with
M= (M4+P)+ (M4Q) 3 éo‘M is again decomposable, COnseQuently con= -
cluéion (2) holds,

| ‘We wish to alter the concepﬁs of continuum‘and of Inde=-
composable continuum so that conclusion (2) of Theorem 15 may
be false. We have already defined what we mean by $-continuum,
and we now define i-indecomposable continuqm.’ We shall}then
give an’example of a %-1ndecomposable continuum that possesées

 proper §-subcontinua with interior points.

-Definition 5: Let M be a compact continuum of S...If M

‘ cannot be éxpreésed as the union of two of its proper %-sub-
vcontinua then M is sald to be 8-1ndecomposable, Otherwise

‘M is said to'be § ~decomposable,

 We note that (1) if M 1s indecomposable then M is % -inde-
godposable;'and (2) (the contrapositive of (l)) if M is 8 -de-

composable then M is decomposable,

Example 4: In the Lakes of Wada example (Example 3) M
is $-indecomposable (for the proof see Theorem 16 below) but
M possesses no proper b-subcontinuum with interior points

(felétive to S, the plane),

Example 5: If we let M be the “chi" figure given in
Figure 4 below and S be the plane, then M is ®<indecomposable

(again see Theorem 16 below) and Ay, i=1;2,3,4, are proper
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b=subcontinua of M such thatvlnt(Ai) is not empty for any i,
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Cleafly the existence of %-indecomposable continua is
assured since S is locally connected: for let x be any ele=
ment of S and lét V be an open conneéted get contalilning x;
then M:Cl(V) is a S-indecomposable continuum cohtaining X

(by virtue of Theorem 16) whenever M is compact.

We note that every non~degenerate compact continuum in
E; (the Euclidean line with interval topology) is'simulﬁan-
eously decomposable and $~indecomposable, This follows since
, evefy non-degenerate compact continuum in El is a closed énd

‘bounded interval of the form La,p\.

Theorem 16 KS; p.2981:v Let M be a compact continuum of

S, If there exlsts an m,c.o0. D of M such that F(D) coincides
with F(M), then M is $-indecomposable,
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22923- Let us suppose that M is 5-decomposable so that
there exist proper o subcontinua A and B of M such: that M_A+B
Since D is a subset of M, either DA or DB is not empty. Let
us suppose the former. By Corollary 1 to Theorem 6, F(D) is
a sdbset of F(A). But F(D) coincides with F(M) so F(M) is a
subset of F(A). Now A is a 8-subeontinuum of M so, by Theorem
5, F(4) 15 contained'in'F(M). Hence F(A) coincides wifh'F(M)
-and A=M by Corollary 3 to Theorem 6. This 1s a contradietion
to ﬁhe hypothesis that A 1s proper, and therefore M must be

d~indecomposable,

The converss of Theorem 16 is not true in general, This

is shown in the following example,

Example 6: Consider the indecomposable'continuum M
(4, p.424) and its image M' formed by mapping,the arc ab of
'VM'onto a simple closed curve, We have'Int(M)zD, an m,c,o.,
of M, but F(D) is a,proper subset of.F(M). However we shall
see later (Corollary to Theorem 21) that M 1is S-indeeomposable.

Figure 5
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. Theorem 17: Let M be a %~indecomposable continuum, If

A 1s any proper S-subcontinuum of M then M-A is a non—degen-
erate connected subset of M,

- Broof: Clearly M-A is non-degenerate since (1) A is
closed and (2) M is connected and closed, Let us suppose that
‘M-A‘is not connected sb M-A 18 the'union of two mutually
}separated.sété P and Q. By Theorem 14, A+P and A+Q are pro=
per.S-subcontinua of M. But Mg(A}P)+(A+Q); so M is %-decom-
posabie. .HOWever we assumed that M was §-indecomposable,

Consequently M-A is connected.

Cordllarx 1~ If A is aﬁy proper'S-shbcontinuum of a
S-indecomposable continuum M then S(M-A) coincides with M,

Proof: By Theorems 17 and 10 we know that S(M-A) ‘exists,
Furﬁher'if %(M~A) 1s a proper 8—subcontinuum of M, then M is
the union of the two proper &-subcontinua A and §(M«A); so
Mig S-dedomposable. We have a contradiction; so §(M-A) must

‘coincide with M,

Corollary 2: If A is any proper b-subcontinuum of f=ine
decomposable M then F(6(M-A)) equals F(M).

Corollary 3: Let M be a Y~indecomposable continuum such
that evéry m.c.0. of M has a non-degenerate boundary, Then
no point of F(M) is a cut point of M,

Proof: Let x belong to F(M)., Then S({xl):&xl since x

cannot be the boundary of any m.c.o, of M. Consequently
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Me&x} is connectedvby the theorem, and hence x is not a cut

point of M,

. Corollary 3 of Theorem 17 does not hold for points of

Int (M) since every interior point of an arc cuts the arc,

As a converse of Corollary 1l of Theorem 17 we have the

following theorem.

Theorem 18: Suppose M is a compact continuum of S such

that $%(M-A)=M for every proper $-subcontinuum A of M (it be=-

ing assumed that M-A is connected), Tﬁen M iSFS-indecomposablé.
Egggiz If we assume that M 1s §-decomposable then

M=A+B, where A and B are proper %~-subcontinua of M, Hence

~ H-A 1s a subset of B, so §(M-A) is a subset of %(B) by

Corbllary 1 to Theorem 11. Also‘by Corollary 3 of the same

tﬁeorem, $(B) coincides with B; so $(M-A) 1s a subset of B,

But §(M-A) coincides with M, so B must equal M, This is con-’

tradictory to_the hypothesis that B is proper. Consequeﬁtly’

M 1s 6-indecomposable,

‘In order to simplify the proof of a converse to Theorem
16, let us conslder the following definition and lts char-
acterization of b-indecomposable compact continua as given

in Theorem 19 below,.

Definition 6: Let M be a compact continuum in S, and
let A be a proper b-subcontinuum of M. We shall say that A

is a §-subcontinuum of condensation of M if (1) M-A 1is
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connected, and if (2) every point of F(A) is a limit pdint
of $(M-A),

The %-subcontinua Ay 1=1,2,3,4, in Figure 4 are $-sub-
continua of Qondensation of M. The proof of this statement

is given 1n the following theorem,

Theorem 12 [5, p.2971: A necessary and sufficlent con=-
dition for a compact continuum M to be %-indecomposable is
that every proper $-subcontinuum 6f M be a S-subcontinuum of
-condensation of M,

g;gggz._We first show that M $-indecomposable implies
every proper $-subcontinuum of M is a S~subcontinuum of con-
densation of M, Let us suppose, by way of contradiction, that
there is a proper $-subcontinuum A of M that ié not a bt=sub=-
continuum of condensation of W, Then there exists an element
x belonging to F(A)-C1l(5(M=A)), with M-A connected by Theorem
17. Consequently $(M-A) is a proper subéet of M, But this
ié a contradiction of Corollary 1l of Theorem 17. Hence every
pr@per»%-subeontinuum_of M is & §-subcontinuum of condensation
of M,

We now show that M must be § -indecomposable if every
proper f{-subcontinuum of M is a S-subcontinuum of condensation
of M, If we suppoge that M is %-decomposable, there exist
two proper S-subcontinua A and B of M such that M is the sum
of A and B, By hypothesis, B 1s a Sésubcontihuum of conden=-

sation of M so every point of F(B) is a limit point of ?(M~B),
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But M-B is a subset of A with M-B and A connected, so %(M-B)
is a‘subset of A by Corollaries 1 and 3 of Theorem 1ll, Then
F(B) is coﬁtained in A so, by virtue of Theorem 7, B is con=-
tained in A, This implies that A i1s not proper; a contradic-
tion-to_ﬁhe hypothesis that M 1s S-decomposable. Consequently

M must be $-indecomposable,

v Theorem 20: Let D be an m.c.o; of a compact indecon-
posable continuum M. Then elther (1) F(D) coincides with F(M),
“or (2) every point in F(D) is a limit point of $(M~§(D)),
Proof: Let us first suppose that M-%(D) is not empty.

Then $(D) " is a pfoper Sasubcontinuum of M. Therefdre, by |
'Theofem'lé,_every point of F(S(D)) is a limit point of
$(M=%(D)). But Theorem 12 implies that F(%(D)) is the same
as F(D), so every point of F(D) 1is a\lihit point of o
S(M-S(D)). Hence conclusion (2) holds,

If M-§(D) 1is empty then M;%(D);_so F(M) coincides with
F(D) by the Corollary to Theorem 12, Consequentiy concluslon
(1) must hold,

We next show that, under very mild éonditions, if A is
an indecompbsable subcontinuum then $(A) 1s.a $-indecomposable
subcontinuum, (The reader is asked to compare the following

" theorem with Theorem 25,)

Theorem 21: Let A be a connected subset of a compact
continuum M such that whenever $(A) is the sum of two % -sub-

continua then the intersection of at least ohe of these
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,S-subcontinua with A must be connected, Then A indecomposable
implies %(A) must be $-indecomposable,

Proof: Suppose 3%(A) is S-deéomposable. Then $(A)=B+C
such that B and G are pfoper §-subcontinua of §(4), If
A=AB then A would be a subset of B and hence %(A) would be
contained in B. This is a contradiction so AB(and AC) is a
proper subset of A, with A=AB+AC. BSince A is indecomposable
either AB or AC is not connected, BSupposing the former, we
have AB=P+Q such that P and Q are mutually separated, By hy-
pothesis A 1s indecomposable and AC is connected so A-AC (be-
‘ing contained in AB) is a subset of either P or Q. If A-AC
is a subset:of P then Cl(A-AC) is a proper subcontinuum of A,
since Cl(A~AC) is contained in Cl(P) and QCl(P) is embty.
- Then A:AG{Cl(A-AC) so A is decomposabie. Hence A indecon~

posable implies $(A) is §-indecomposable,

Corollarx {5, p.298l: Let M be a compact continuum éuch :
that whenever M is the sum of two S-subcontinua then the bounf
dary of at least one of these %t~-subcontinua must be connected,

Then M is §-indecomposable whenever F(M) is indecomposable,

Definitidn 7: Let M be a compact continuum énd let A be
a proper %-subcontinuum of M. We shall call A a maximal
%gsubcontinuum of M if M contains no other proper Y~subcontin-

uum B such that A is a proper subset of B.

If A is a maximal S-subcontinuum of M and B is any other

proper f-subcontinuum of M that meets A then elther (1) B is
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& subset of A, or (2) §(A+B)=M.

Example 7: In Figure 6 below we have an example of a
$-decomposable compact continuum M in the plane such that (1)
D is an m.c,o0. of M, (2) F(D) is not connected, and (3)

Cl(M-0C1(D))! is & maximal®<subcontinuum of M,

Figure 6

‘Example 8: By way of contrast Figure 7 is an example of
a %-decomposable continuum M in the plane such that M contains

no maximal $-subcontinuum,

Figure 7
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Theorem 22: Let M be a compact continuum with at least
two disjoint maximal S-subcontinua, Then M must be 3-inde-.
composable; (See [3, p.l48] for the proof in the case of
maxlimal subcontinua,)

£roof: Let P and R be two disjoint maximal %~subcontinua
of M, ©Suppose, by way of contradiction, that M'isls-decom-1'
posable, Then there exist two proper S-subcontinua A and B
of M such that A+B equals M. Since P i1s a subset Qf M, P
meets A+B, Let us suppose that P meets A, By the comment
following Definition 7, either (1) A is a subset of P, or
(2) 3(A+P)=M, But 1T A is a subset of P then (since A+B=M
and PR=0) R 1s a subset of B, so A=P and B=R. Then M=P+R
with P and R disjoint; contrary to the connectivity of M,
Consequently (A+P)=M, If R is a subset of B we have & con-
tradiction in the same manner as before, Thus R must meet
A. Again by Definition 7, elither (1) A is a subset 6f R,
or (2) §(A+R)=M, As before, A a+subset of R implies M 1is
not connected. Hence 5(A+R)=M, Then by Lemma 6, PR#Z0 since
8(A+P)=M=§(A+R). But P and R are disjoint., Therefore M is

{-indecomposable.

It is not know in general whether $(M-A) is §-indecompos-
able whenever A is a maximal S-subcontinuum of a. compact con=-

tinuum M,

Definition 8: If M is a continuum, a Y-composant of M

(with respect to some point p of M) is the set of all points
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- x of M such that there exists arproper b=subcontinuum of M

containing both x and p.

‘Any S-composant is the union Qf connected sets all haVing
a point p in common. Consequently any § -composant is connected,
Depending upon the location of p in M there may or may
not be a S-composant of M with respect to p. In Example 7
there is a {=-composant for every point of M; but in Example 5

no §-composant exists for points in D.

Theorem 23: If the cbntinuum Mis %-decomposable‘then
Mis a 5=~composant for some point of M,

Broof: If M is $-decomposable then M is the sum of two
proper b-subcontinua A and B of M, Since M is connected and
Aiand B are qlosed there exists a point p belonging to bdth
A and B, £t 1s then clear that M is the S-compoéant of M with

respect to p.

Théorem‘24: If the compact continuum M 1s %-decomposable
 then evéry two S~composants intersect.

Broof: Let Ay and &, be two different % -composants of
M with respect to pand q respectively., Since M is f-decom=-
posable.there exist S-subcontinua B and C of M such that |
B+C=M. We may suppose that p belongs to B so B is contained
invAp; since B 1s a proper § -subcontinuum of M cpntaining P.
| vaq belongs to B then B is contained -in Aq (proof as before)

fand hence APA is not empty. 0therwiée a belongs to C and C is

| q
contained in Aq, so M connected implies BC is not empty and
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hence ApAq ls not empty.

'~ The following two theorems on %-qomposants may be found
in the paper by O.H. Hamilton (5, p.297-2987 and are valid
when S is Euclidean n-space, and M, a compact continuum; is
not the sum of a finite number (greater than one) of its
§ =subcontinua gl,;;;,gk such that, for each»integer i, every

boundary point of 8y is a limit point of M-gi.

Theorem B: Every S=-composant of M is the sum of a count-

able number of §-subcontinua of M.

Theorem C: If M is §~indecomposable and no m.c,0, D of
M is such that F(D) equals F(M), then no two b-composants of

M intersect.

To conclude thié chapter we return to the Brouwer Re-
'duction Theorem and Definition 2, and say that a S-subcontin—
uum A of a compact continuum M is {~irreducible with respéct
to property P if A has property P and no proper S-subcbntin-

uum of A has property P.

Theorem 25: Let A be a subcontinuum of a compact con=-
tinuum M such that A is irreducible with respect to some
property P, Then §(A) is S-irreducible with respect to P if
$(4) enjoys property P.

Proof: Let N be §-irreducible with respect to property
P, (We are assuming that P is such that the hypotheses of the

Brouwer Rediction Theorem are satisfied, so N does exist,)
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Since N is a subcontinuum of M enjoying property P, we have
A contained in N by the irreducibility of A, Then $(A) 1is
contained in N by Corollaries 1 and 5 of Theorem 11, But
%(A) possessing property P implies N is contained in §(A)

by the f-irreducibility of N. Consequently N coincides with

9(A), so §(A) is §-irreducible with respect to P,

In general the converse of Theorem 24 1is not true, as

the following example shows.

Example 2? Let P be the property "containing both the
points a and b". Then, in Figure 8 below, B4C is not irre-
ducible with respect to P, but §(B+C)=M is %S-irreducible with
respect to P, (In the figure, B is the arc from a to b and

C is the arc from b to c.)

Figure 8



CHAPTER III
APPLICATIONS TO EUCLIDEAN n-SPACE

In this chapter we shall restrict S, the embedding space,
to be Euclidean n-space, E .
We first show that any compact convex subset of 5 with

interior is %-indecomposable,

Theorem 26: If M is a convex body lying in En then

M is $~-indecomposable,

Proof: We know \6, p.30| that Int(M) is convex. Theﬁ
Int(M) is connected |6, p.74\ so Int(M) is an (in fact, the
only) m.c,o0. of M, It is an easy matter to show that F(Int(M))
equals F(M), Hence M=Int(M)+F(Int(M)) is §-indecomposable

by Theorem 16,

Corollary: If M is a compact convex subset of E, such
that M contains the origin and n linearly independent vectors,
then M is $~indecomposable,

g;gg;: It 1s well known that any convex subset of E
containing the origin and n linearly independent vectors has
interior points relative to En’ The conclusion then follows

from the theoren.
Most of the theorems in this chapter are restricted to

42
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E2, the plane, and require that certain subsets do not separ-
ate E2. The usefulness of these restrictions is quite appar-

ent in Theorem 28 below,

Theorem 27: Let M be a compact continuum in the plane,

A sufficient condition for § (D) to coincide with C1(D), for
every m,c,0, D of M, is that no m.c.o., subset of M together
with its boundary, separate the plane,

Proof: Let D and E be distinct m.c.o. of M such that D
conﬁains F(E). Clearly S-Cl(D)=E+(S-Cl(D+E)). We wish to
show thatvthe last two mentioned sets are mutually separated,
Now (G1(E))(S-C1(D+E))=(C1(E))(5-(C1(D)+C1(E)) with the latter
set contained in the empty set (Cl(E))(S-Cl(E)). Hence
Cl(E) misses S-C1l(D+E)., If x belongs to the intersection of
"E and C1(S-Cl(D+E)) then E meets S=Cl(D+E) (since E is an
open set about x) so E meets S-E (Since 5-Cl(D+E) 1s contained
in S-E). This is a contradiction so E fails to meet
Cl(S-C1(D+E)). Hence E and S-01(D+E) are mutually separated
sets and C1l(D) separétes S. This violates the hypothesis of
the theorem so D and E must coincide, Then %(D) equals CL(D)

by Theorem 11,

Under the hypothesis of Theorem 27, Cl(D) not separating
the plane implies $(D) doesn't separate the plane, since
Cl(D)=%(D). The converse of this statement, however, is not

"~ true in general as can easily be seen from Figure 4,

The following theorem strengthens the concluslon of
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Theorem 20,

Theorem 28: Let M be a compact continuum in the plane
such that no m,c.o., subset of M, together with its boundary,
separates the plane, If M is f-indecomposable and there is
no m,c¢,0., D of M such that F(D) equals F(M), then for any m,
c.0., E of M with connected boundary every point of F(E) is
a limit point of $(M=E),

Proof: By virtue of Theorem 20 it suffices to show
that M-E is connected. Now M-E=(M=Cl(E))+(Cl(E)-E), with
Cl(E)=E connected by hypothesis, Also M=Cl(E) is connected
by Theorem 17 (Cl(E) equals %$(E) by Theorem 27) so Cl(M=Cl(E))
is connected. Clearly Cl(M=Cl(E)) is a subset of M-E, so
M=E=C1(M=C1l(E))+(C1l(E)=-E) with the latter two sets both be=-
ing connected and having a non-empty intersection. Hence

M=E is connected,

The following theorem reduces the hypotheses needed in

Corollary 3 of Theorem 17,

Theorem 29: Let M be a compact continuum in the plane
such that every m.c.o. of M is simply connected., Then M
$=indecomposable implies no point of F(M) cuts M,

Proof: We know [7, p.256} that any simply connected
open subset of C(the complex numbers), distinct from C, has a
non-degenerate boundary. The conclusion then follows from

Corollary 3 of Theorem 17.
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We have the following characterization theorem for an

m.,c,0, of a compact continuum in the plane,

Theorem 30: If D and E are distinct m.c.o0. of é com=-
pact cbntinuum in the plane such that %(E) contains D, then
F(D) is connected,

Proof: By Theorems 6 and 12; F(D) is contained in F(E),
with D and E disjolnt open connected sets in the plane,
Further F(D) is bounded since M is compact. Hence [8, p;1893
F(D) is connected,

Goroliarz l: If D and E are distinet m.c.o. of a com=~
pact continuum in the plane such that $(E) contains D, then
D is simply connected.

Proof: 1In the plane, D is simply connected whenever

F(D) is comnected, so D i1s simply connected by the theorem,

Gorolla;y 2: If M is a compact continaum in the plane

with two diétinct m.c.6, D and E such that %(D) coincides with

%(E), then (1) F(D)=F(E), a connected set, (2) D and E

are both simply connected, and (3) both C1(D) and Cl(E)

geparate the plane, (For an example of such a situation see

Figure 2.) |
ggggiz Clear by Tﬁeofem 30, its Corollary, Theorem 12,

and Theorem 27,

Corollary 3: ILet M be a compact continuum in the plane

and let D be an m.c.,0. of M with non-connected.boundary. Then
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F(E) is a proper subset of F(M) for every m.c.,0, E of M dis-
tinct from D. Consequently if there are two (or more) m,c.o.
of M with non-connected boundaries, then no m,c,0., G of M is
such that F(G)=F(M).

Proof: If there is an m.c,0, E of M distinct from D such
that F(E) equals F(M) then, by the Corollary to Theorem 12,
%(E) equals M, Hence D is a subset of §(E) so, by the theorei,
F(D) is connected, This is contrary to hypothesis; so F(E)
is a proper subset of F(M) for every m.c,0, E of M different

from D.

Corollary 3 to Theorem 30 has interesting applications
in connection with f-indecomposable continua in the plane.

We explore these applications in the followling theorem,

Theorem 31: If M is a compact continuum in Euclidean
n-space with connected boundary, then every m,c.o. of M has
s connected boundary.

g;gg;: Since F(M) is connected, F(M) is a continuum.
Hence [9, p.343x every complementary domain of F(M) has
connected boundary. It is easy to see that every m,c.,o. of
M is a complementary domain of F(M); so every m.c,o, has con-

nected boundary.

In Corollaries 1 .and 2 below it is assumed that M is a
compact continaum in the plane that 1is not the sum of a finilte
number (greater than one) of its S-subcontinua g1,85,.4.,8;.

such that, for each integer 1, every boundary point of g5 is
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a limit point of M-gi.

Corollary 1l: If there is an m,c.o. D of M such that

F(D) is not connected, then S(D) must equal M whenever M is
§ =indecomposable,

Proof: We know {5, p.298| that either F(M) is indecom-
posable or there is an m,c.o., E of M such that $(E) equals
M, Now F(D) is not connected so F(M) can not be connected
(by the theorem), and obviously can not be indecomposable,
Hence there is an m.c.0., E of M with $(E)=M. If E is distinct
from D then, by Corollary 3 to Theorem 30, %(E) cannot equal
M (since, as we have seen before §(E)=M implies F(E):F(%(E)):
F(M)). Therefore $(D) must equal M,

Corollary 2: If M has at least two m.c,o, with non-con-
nected boundaries then M is § ~decomposable.
Proof: OClear by Corollary 1 above and Corollary 3 to

Theorem 30,

We end this'exposition with some remarks on unsolved pro-
blems and conjectures, It 1s hoped that these remarks will

serve as a starting place for further work on %$-continua,

If A and B are intersecting S-subcontinua of a compact
continuum M, under what conditions is §(A+B) the same as
A4+B? In the light of Lemma 5 this amounts to finding con-
ditions under which E(A,B) is null, If M is a subset of the

plane and D is an m,c.0, of M such that (1) D is a Jordan
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domain (i.e., F(D) is a simple'closed curve), and (2) ABF(D).
1s connected, then D cannot possibly belong to E(A,B). This
is, of course, a very special situation. Examples; similar
to Example 8 given previously, may be constructed where D be-
longs to E(A,B) if (1) Cl(D) separates the plane, or (2)
ABF(D) 1s not connected., Furthermore, all.examples obtained
possessed elther property (1) or property (2). Therefére'we
have the following conjecture: If A and B are intersecting
§=subcontinua of a compact continuum M and D is an m,c.0, of
M such that Cl(D) does not separate the épace S and such

that ABF(D) is connected then D does not belong to E(A,B).
Putting this in a slightly differént form we have:  If A and
B are intersecting § -subcontinua of a compact continuum M
such that for every m.c.,o. D of M whose boundary 1s a subset
of A+B,C1l(D) does not separate S and ABF(D) is connected,
then & (A+B)=A+B.

Many theorems dealing with indecomposable continua would
be true for f-indecomposable continua (and exactly the same
proofs could be used) having the property that % (A+B) equals
A+B. Hence ﬂhe desirability of having 8(A+B)=A}B is apparent.

It 1s easy to see that M cannot be hereditarily %-décom-
posable if Int(M) is not empty. Does the same conclusion hold
if M is hereditarily S~indecomposable? 1In other words, if
M is hereditarily &8-indecomposable is M hereditarily indecom-
posable? Also if F(M) is hereditarily indecomposable is Int (M)

empty?
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The answers to these questions, even restricted to the
case where S 1s the plane, would be interesting additions to

the theory of d-continua,
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APPENDIX

NUMBERED DEFINITIONS, RESULTS, AND EXAMPLES

Theorem Page Lemma Page
1 2 1 1
2 2 2 4
3 5 3 4
; 6 4 15
5 7 5 21

6 22
6 8
7 10
8 11 Example Page
9 11
10 13 1 12
2 14
11 17 3 20
12 23 4 29
13 25 5 29
14 26
15 28 6 31
7 37
16 30 8 37
17 32 9 41
18 33
19 34
20 35 Definition Page
21 35 1 3
22 38 2 13
23 39 3 14
24 39 4 21
25 40 5 29
26 42 6 33
27 43 7 36
28 44 8 38
29 4l
30 45
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