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PREFACE 

The purpose of this paper is to examine the topological 

property of being a ~~subcontinuum of a compact continuum in 

a locally connected space S satisfyi_ng the weak separation 

axioms, as defined by q.H. Hamilton [5, pp.297-298], with 

special attention given to ~-indecomposable compact continua 

of S. (The numbers in square brac~ets ,t ], refer to the 

references in the Bibliography.) . 

The basic definition~ and theorems are given in Chapter 

I. Of particular importanc e is ~he role played by the boun

dari es of the maximal connected opep subsets (m. c . o •. ) of M, 

a compact continuum. It is shown that t he boundary of a 

b=subcont1nu~ o~ M completely determines the topological 

structure of the b-subcontinuum. If S is completely separable 

there exists a ~-irreducible b-subcontinuum of M about any 

connected set 1n M and this set is determined by the moc. o. 

of M. 

Chapter II treats ma.inly ~-indecompo~able cont1nuao A 

continuupi M is decomposable if and only if it contains some 
. . 

proper aubcontinuum with non~empty int erior with respact to 

Mo A 'b=indecomposable continuum, on the other hand, may 

contain infinitely many proper subcontinua with non.,._empty 

interior. Even so , many properties of indecomposable continua 
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carry over to b-indecomposable continuao For example, under 

very mild. conditions, 1-f A is an indecomposable subcontinuum 

of the continuum M then ~(A), the ~=irreducible 'ii-subcontinm.1m 

of M containing A~ is ~ ... indecomposable 0 However, examples 

are given tio show that ~ ... indecomposability does not, in gen ... 

eral, . imply indecomposabil~ ty •. 

In the third and last chapter the spar~e S is restricted 

to Euclidean n=space., Every compact conyex set with interior 

is seen to be ~-indecomposableo Also many results of Chapter 

II 8.r0e strengthened. by requiring the illoC.Oo of M to be simply 

connected. Ch.apter III ends wi tli a discussion of un·solved 

problems and conj eci;,UJ;."'es., 

I should like to acknowledge my indebtedness to Olan H. 

Hamilton for his valuable guidance in the preparation of this 

thesis; to the other members of my aommittee, Carl E; Marshall, 

Harriso:n S,. Mendenhall, John E. Hoffman~ Eugene K. McLachlan 9 

and Paul Arthur; to L. Wayne Johnson for the teaching assitant= 

ship, often with reduced load~ held the past three years; t,o 

the National Science Foundation for two summer fellowships; 

t,o Walter E. St.uermann for kindling my love for pure mathe= 

ma tics; and to my wife Betty for h-er encouragement at all 

times. 
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CHAPTER I 

GENERAL PROPERTIES OF ~-SUBCONTINUA 

We shall assume throughout, unless explicitly stated 

otherwise, that the space Sunder consideration is locally 

connected and satisfies the weak separation axioms T1 and 

T2 • Hence every singleton set in Sis closed; and Sis 

Hausdorff, as well as being locally connected at every point. 

As for notation we shall use A+B for the set-theoretic 

union of A with B, AB for the set intersection of A and B, 

A-B for the set of elements belonging to A but not to B, 

Int(A) for the interior of A with respect to S,Cl(A) for the 

closure of A with respect to S, F(A) for the boundary of A 

relative to S, and O for the empty (or null) set. 

In general when the words open, closed, or boundary 

occur we shall mean open, closed, or boundary with respect 

to s. 

Our first result is used quite frequently in the forth

coming theorems in conjunction with local connectedness. 

Lemma 1 (1 1 p.171: Let A and B be subsets of S such that 

ABIOIA-B. If A is connected then A meets F(B). 

Proof: If A fails to meet F(B) then A is the union of 
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the two mutually separated sets AB and A-B. Consequently A 

would not be connected. This is a contradiction so A must 

meet F(B). 

The first two theorems are structure theorems for sub

sets of Sand depend heavily on local connectedness. 

Theorem l: If M is a subset of S then Int (M)= 1:))c,(. such 

that for each~ ,D~ is a maximal connected open (again rela

tive to S) subset of M, and Do(.D~=O for o1-;t~. 
Proof: Let x be an arbitrary element of Int(M), and 

Dx be the union of all the open connected subsets of M con

taining x. It is clear that the set Dx exists since Sis lo

cally connected at x. Then Dx is the maximal connected open 

subset of M containing x. If Int(M)=Dx there is nothing more 

to prove; otherwise let y belong to Int(M)-Dx• As before, 

construct a maximal connected open subset Dy of M by forming 

the union of all the open connected subsets of M that contain 

y. Clearly Dx fails to meet Dy• By transfinite induction 

we obtain Int(M) equal "L.~D~ such that the D~ have the desired 

properties. 

For brevity we shall often use the initials m.c.o. to 

stand for maximal connected open (with respect to S) subset. 

Theorem 2: Let L~D~ be the union of any subcollection 

of the m.c.o. subsets of M, then F(1~D~):Cl(Y~F(D~)). 

Proof: We shall first show that F(~~D~) is a subset of 

Cl(Y~F(D~)). Let x belong to F(Y~D~) and let V be any open 
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set containing x. Since Sis locally connected at x there 

exis ts an open set W containing x such that Wis connected 

and contained in v. Then x in F(r 1D~) implies W_meets both 

!&D"' and S- ! 1 D"6 , so there is some Dw such that W meets both 

Dw and S=Dw• By Lemma 1, W must intersect F(Dw) since Wis 

connected, and consequently W meets llF(D~). But V contains 

W so V i nt ersects Y,F(Dis). Hence x belongs to C~(~ 11F(Di)) 

so Cl(r1 F(D 1 )) contains F{! 11 Dt). 

We now show that Cl (1 11 F(D 11 )) is a subset of F(YisD~). 

Let y belong to Cl(l~F(D"')) and let V be any open set con= 

taining y. We know V intersect_s 't"'F(D 1 ) so there is soine Dv 

for which F(Dv ) meets V, and therefore VDvfO• However Dv is 

conta ined i n 'tisD~ so V meets '!isDl. Now suppose V(S= tisDis ): 0. 

Then Vis a subset of r 1 D1 so , for some~ , y belongs to D~. 

But y in Cl( r,F(D~)) and D"CS open about y imply Dl! meets 

F(D~) for some D~, so D~D~ f otD~(S=D~). Now the D~ are dis= 

joint so DlD$ ~0 implies Dr=D~. This , of course, is a con= 

tradiction since D11 meet s S=D,e. Consequently V intersects 

S= 'I"11Dt.. We have shown that V intersects both 'i:t.D"' and S= 'i:'1'D 11 , 

soy belcings to F( ~1Dis) and therefore F(~~D~) contains 

C 1 ( tl F { D \S ) ) • 

Corollary: If Int (M) = t..,.Do1., then F(Int(M)):Cl(!.,.F(D...._)). 

Definiti on 1: Let M be a compact continuum in S (that 

is Mis connected and compact in the Bolzano=Weierstrass 

sense) anft A be a subcontinuum of M. We shall say that A is 

a ~-subcontinuum of M if for each m. a . o . D of M, Dis con-
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tained in A whenever D meets A or whenever F(D) is a subset 

of A. 

One of the main features of a h -subcontinuum is its in-

variance under homeomorphisms. We shall show this with the 

aid of the next two lemmas. 

Lemma 2: Let M be a compact continuum in Sand let f 

be a homeomorphism of S onto some space T. If Dis an m.c.o. 

of f(M), then F-1 (D) is an m.c.o. of M. 

Proof: Since Dis open and f is continuous we have 

f- 1 (D) open relative to s. Further D connected and f-.l con-

tinuous imply f- 1 (D) is connected. -1 Hence f (D) is an open 

connected subset of M. If f-l(D) is not an m.c.o. of M then 

there exists an m.c.o. E of M such that f- 1 (D) is a proper 

subset of E. We then have D being a proper subset of f(E) 

with f.(E) open and connected in f(M), since f continuous and 

E connected force f(E) to be connected and f-l continuous 

with E open implies f(E) is open. But Dis a maximal con-
-1 nected open subset of f(M). Consequently f (D) is an m.c.o. 

of M. 

Lemma 3: Under the same hypothesis as for Lemma 2, 

r-1 (F(D)) equals F(f-1 (D)). 

Proof: We first show that f- 1 (F(D)) is a subset of 

F(f-1 (D)). Let x belong to f- 1 (F(D)) and V be any open set 

-1 ( containing x. Now f continuous implies f V1 is open about 

f(x). Then f(x) is in F(D) so f -(V) meets both D and T-D, and 
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V meets both f- 1 (D) and f-l(T-D). But f-l(T-D)=s-f-l(D). 

Thus V meets f-1 (D) and S-f-1 (D), so x belongs to F(f-l(D)). 

( -1 ( ) -1 Consequently Ff D) contains f (F(D)). 

To complete the proof we must have f- 1 (F(D)) containing 

F(f-1 (D)). Let y belong to F(f-1 (D)) and W be any open set 

containing f(y). Now f is continuous so there exists an open 

set U containing y such that f(U) is contained in w. But y 

belonging to F(f-1 (D)) implies U meets both f-l(D) and 

S-f-1 (D). Then W meets both D and T-D, so f(y) is in F(D). 

Therefore y is in f- 1 (F(D)), and F(f-l(D)) is a subset of 

f-1 (F(D)). 

Theorem 3: Let f be a homeomorphism of S onto some 

space T. Further let M be a compact continuum in S, and A 

be a ~-subcontinuum of M. Then f(A) is a ~-subcont1nuum 

of the compact continuum f(M). 

Proof: It is well known that f(M) is a compact con

tinuum and f(A) is a subcontinuum of f(M). Let D be an m.c.o. 

of f(M) such that D meets f(A). Now f- 1 (D) meets A with 

f- 1 (D) being an m.c.o. of M by Lemma 2; hence f-1 (D) is a 

subset of A since A is a 8-subcontinuum of M. Then D must 

be contained in f(A). Now we consider the case of an m.c.o. 

D of f(M) such that F(D) is a subset of f(A). Then f-l(F(D)) 

is a subset of A, so by Lemma 3, F(f-1 (D)) is contained in 

A. But, again by Lemma 2, f-1 (D) is an m.c.o. of Mand there

fore f-l(D) is part of A by virtue of the fact that A is a 

~-subcontinuum. 
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We have shown that for every m.c.o. D of f(M), Dis con

tained in f(A) whenever D meets f(A) or F(D) is a subset of 

f(A). Consequently f(A) is a ~-subcontinu~m of f(M). 

Simple examples in the Euclidean plane show that it is 

not enough for f to be merely continuous and/or one-to-one, 

i.e. f(A) may not be a ~-subcontinuum of f(M) if A is a 

5-subcontinuum of Mand f is continuous and/or one-to-one. 

Of course f(A) is always a subcontinuum of the compact con

tinuum f(M) if f is continuous. 

We will be interested in ascertaining whether or not 

certain subsets of a compact continuum are i-subconti~ua of 

M. Our first result in this direction deals with pairs of 

subsets. 

Theorem 4: Let A and B be closed subsets of the com

pact continuum M. If both A+B and AB are b-subcontinua of 

M, then A and Bare b-subcontinua of M. 

Proof: It is a known fact that A and Bare subcontinua 

of M. 

We shall now show that A is a b-subcontinuum of M. Let 

D be an m.c.o. of M such that D meets A. Since A is part of 

A+B, D meets A+B and is then contained in A+B as A+B is a 

t-subcontinuum of M. If Dis not wholly contained in A, D 

must meet B-A. Then DABIO since otherwise D=D(A-B)+D(B-A) 

with A-Band B-A mutually separated, or Dis not connected. 

Now AB is a 8 -subcontinuum of M and DABIO so D is contained 
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in AB and therefore Dis a subset of A. We have then shown 

that any m.c.o. D of Mis a subset of A if D meets A. 

Suppose Dis any m.c.o. of M such that F(D) is contained 

in A. Now F(D) is contained in A+B, so D itself is contained 

in A+B since A+B is a b-subcontinuum. If D meets AB then D 

is contained in AB (and hence in A) since AB is a ~-subcon

tinuum. If D fails to meet AB then either (1) D=D(A-B)+ 

D(B-A) with D(A-B)iOiD(B-A), or (2) Dis contained in B-A, 

or (3) Dis contained in A-B. However (1) implies Dis not 

connected as we saw in the previous paragraph. Also (2) im

plies F(D) is contained in B so F(D) is contained in AB, and 

Dis contained in AB since AB is a ~-subcontinuum. Then D 

misses B-A, so (2) cannot hold. Therefore (3) holds so D 

must be contained in A-Band hence in A. We have then shown 

that any m.c.o. D of Mis a subset of A if F(D) is contained 

in A. Consequently A, and likewise B, is a ~-subcontinuum 

of M. 

That the boundaries of maximal connected open subsets 

of a compact continuum M play an important role in the con

cept of h-subcontinua of M can easily be seen from Definition 

1. The next three theorems relate the boundaries of ~-sub

continua to each other and to the boundary of M. 

Theorem 5: If A is a b -subcontinuum of M then F(A) is 

contained in F(M). 

Proof: Suppos e x belongs to F(A)-F(M). Since x belongs 
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to M-F(M) there exists an open set V containing x such that 

Vis contained in M. Now Sis locally connected so there is 

an open connected set W containing x such that Wis a subset 

of V. Let D be the m.c.o. of M such that W is contained in 

D. We then have x in D and x in A (xis in F(A) and F(A) is 

part of A since A is closed). The subcontinuum A is a \-sub

continuum of M so Dis a subset of A. But x in F(A) and D 

open containing x imply D meets S-A. We have a contradiction 

so F(A)-F(M) is null. Consequently F(A) is contained in F(M). 

Theorem 6: If A i s a ) -subcontinuum of ij and Dis an 

m.c.o. of M such that F(D) is contained in A, then F(D) is 

contained in F(A). 

Proof: Since A i s a \ -subcontinuum of M we have D con

tained in A, or Cl(D) contained in A. Then, if F(D) meets 

S-F(A), F(D) can meet only A-F(A) (i.e. F(D) is a subset of 

F(A)+(A-F(A)). Suppo s e x belongs to F(D)(A-F(A)), so x belongs 

to Int(A). Then the r e exists an open set V containing x such 

that Vis contained in A. Also Sis locally connected so 

there is an open set W containing x such that Wis connected 

and is a subset of V. Now x lies in F(D) s~ W meets D. Hence 

W+D is an open and connected subset of M. But x in F(D) also 

implies W(S-D)~O, or (since W is contained in A) W(A-D)~O. 

Consequently Dis a proper subset of W+D. This is contradic

tory to the fact that Dis a maximal connected open subset of 

M. Therefore (A-F(A)) F(D) is null so F(D) is contained in 

F(A). 
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Qorollary 1: If A is a ~-subcontinuum of Mand Dis an 

m.c.o, of M such that D meets A, then F(D) is contained in 

F(A). 

Proof~ Since D meets A with Dan m.c.o. of Mand A a 

~-subcontinuum, we have Das a subset of A~ Now A is closed 

so Cl (D), and hence F(D), is contained in A. Hence F(D) is 

a subset of F(A) by the theorem. 

Corollary 2~ If Dis an m~c.o. of M then F(D) is con= 

tained in F(M). 

Proofg Clearly Mis a b=subcontinuum of itself and D 

meets M~ so F(D) is contained in F(M) by Corollary 1. 

Corollary 3g Let A be a O=subcontinuum of M. Then 

F(A):F(M) if and only if A:M. 

Proof g Clearly A::M implies F(A)::F(M). Hence we need 

only show that F(A)::::F(M) implies A=M. If A~M, then A must 

be a proper subset of M. Therefore let us suppose there is. 

an element x belonging to M=A. Now M:Int(M)+F(M) with F(M) 

contained in F(A) (which is a subset of A) so x must belong 

to Int(M). By Theorem 1 let D be the moa.o. of M such that 

x lies in D. By Corollary 2 above, F(D) is contained in 

F(M) with F(M):F(A) so F(D) is contained in A. But A is a 

t=subcontinuum of M so Dis contained in A. Therefore x lies 

in A since x belongs to D. However we assumed that x be

longed to M=Ao Consequently M=A is emptyj so A:Mo 

By changing Corollary 3 slightly we are led to' belfeve 
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that if A and Bare distinct b=subcontinua of M then A and B 

must differ in their boundaries, i.e., A and B must differ in 

more th1:1n just their interiors. The following theorem sub= 

stantiates our belief • 

.IlJ.~rem_1~ Let A and B be S =subcontirn1a of M. For B 

to be a subset of A it is necessary and sufficient that F(B) 

be a subset of F(A). 

Prog,!_g If Bis a subset of A then F(B) is a subset of 

F(A) (by an argument similar to the proof of Theorem 5). 

Conversely» if Bis not contained in A there is some point 

x belonging to B=A. Since F(B) is contained in A, we have 

x belonging to Int(B). By Theorem 1~ there exists an m.c.o. 

D of M such that x lies in D. Now Bis a 6-subcontinuum of 

H so Dis contained in B. Then, by Corollary 1 to Theorem 

6, F(D) is contained in F(B). But F(B) is a subset of A and 

A is a S-subaontinuum of M9 so Dis a subset of A and x must 

then belong to A. However x belongs to B=A by assumption. 

ConseqQently B-A is empty, so Bis a subset of A. 

~.!~tl~ Let A and B be b~subcontinua of M. If the 

symmetric difference of A and Bis not empty then the sym= 

metric differ0nce of F(A) and F(B) is not empty. 

~~ If F(B)=F(A) were empty then B wotlld be a sub= 

set of A by the theorem 9 so B=A would be empty. The same 

reasoning holds for F(A)=F(B). 

Our next two theorems deal with well-ordered monotonic 
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collections of ~-subcontinua of a compact continuum in a com

pletely separable space. 

Theorem 8: Let S be completely separable and let M be 

a compact continuum ins. If lA~1 is a well-ordered monoton

ic descending sequence of distinct ~-subcontinua of M then 

A, the intersection of the A,;.., is a ~ -subcontinuum of M. 

Proof: It is well known that A is a non-vacuous sub

continuum of M. Let D be an m.c.o. of M such that D meets 

A. Then D meets each of the A~, so Dis contained in each 

A°" since · all the A o1- are b-s_ubcontinua of M. Hence D is con

tained in A. We have then shown that for each m.c.o. D of 

M such that D meets A, Dis contained in A. Now suppose D 

is an m.c.o. of M such that F(D) is contained in A. Then 

F(D) is contained in each of the A~, so Dis contained in 

each A~ since all the A~ are ~-subcontinua of M. Therefore 

Dis contained in A, so each m.c.o. D of M such that F(D) 

is contained in A is a subset of A. Consequently A is a 

~-subcontinuum of M. 

Theorem 9: Let \A;\ be a well-ordered monotonic as

cending sequence of distinct b-subcontinua of Mand let A 

be the closure of the union of the A~. Further suppose that 

Mis such that if the boundary of an m.c.o. of Mis con

tained in A then the boundary is contained in a finite num~ 

ber of A~. Then A is a ~-subcontinuum of M. 

Proof: Clearly the union of the A~ is connected so A, 
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being the closure of this union, is connected. Hence A is 

a subcontinuum of M. Suppose that Dis an m.c.o. of M such 

that D meets A. Then D open implies D meets the union of the 

A~, so there exists an A~ of A such that D meets A~. But A~ 

is a ~-subcontinuum of M so Dis contained in A~. Con

sequently Dis contained in the union of the A~ and in A, 

the closure of this union. Thus we have seen that every 

m.c.o. D of M that meets A is contained in A. Now suppose 

that Dis an m.c.o. of M such that F(D) is contained in A. 

Then, by hypothesis, the boundary of D meets A in a finite 

number of A~. Let~ be the maximum of the cardinal sub

scripts of these finite number of A~. Then each of the fi

nite number of A~ which meet F(D) is a subset of A~, and 

therefore F(D) is a subset of A~. Then Dis contained in A~, 

and hence in A, since A~ is a b-subcontinuum of M. Thus 

every m.c.o. D of M whose boundary is contained in A is a 

subset of A. Consequently A is a b-subcontinuum of M. 

The following example shows that Theorem 9 minus the 

phrase "further suppose that Mis such that if the boundary 

of an m.c.o. of Mis contained in A then the boundary is con

tained in a finite numbjr of A~" no longer holds true. 

Exam;Ele 1: Let S be the Euclidean plane with the usual 

topology and let M be the circle (given in polar coordinates) 

r::a together with its interior. Clearly M is a compact con-

tinuum of S. Let Ai= t(r,e) :O'i8 ~ t:~ and r::a1. The Ai con-
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stitute a well-ordered monotonic ascending sequence of dis~ 

tinct S-subcontinua of M. If A is the closure of the union 

of the Ai, then A is \ (a,e) :o~e:!.2.~}. Hence A is a subcon

tinuum of M that is not a 6-subcontinuum since Int(M) is an 

m·.c.o. of M with F(Int(M)) contained in A, but Int(M) not 

contained in A. 

Definition 2: If A is a connected subset of a compact 

continuum M, the ~-subcontinuum ~(A) of Mis said to be 

b-irreducible about A if A is a subset of &(A) and if b(A) 

is a subset of every &-subcontinuum of M that contains A. 

~learly if such a b-subcontinuum exists it is unique.) 

To assert the existence of £-irreducible ~-subcontinua 

we shall need to make use of the Brouwer Reduction Theorem. 

We state this theorem without proof .since it is well known. 

Theorem A (Brouwer Reduction Theorem): If (1) Sis com~ 

pletely separable, (2) Mis a compact subset of S which has 

property p·, and ( 3) if the intersection of a monotonic d a

scending sequence tAo1..\ of compact point sets has property P 

whenever each A~ has property P; then some closed subset of 

Mis irreducible with respect to being closed and having 

property P. 

Theorem 10: Let A be a connected subset of a compact 

continuum M. Further suppose that Sis completely separable. 

Then there exists a ~-subcontinuum ~(A) of M such that h(A) 



14 

is i-irreducible about A. 

Proof: Let property P be the property of being a ~-sub

continuum of M that contains A. Clearly M itself has property 

P so the first two hypotheses of Brouwer Redt1ction Theorem 

are satisfied. But hypothesis (3) of the same theorem is sat

isfied also, as can be seen from the statement of Theorem 8. 

Consequently, by the Brouwer Reduction Theorem, there exists 

a ,~subcontinuum ~(A) of M such that i(A) is 6-irreducible 

about A. 

Note: In what follows when we use ~(A) it shall be -· 
assumed that the space Sis completely separable, so we will 

be justified in asserting the existence of a ~(A) for any 

connected subset A of M. 

Definition 3: If A is a connected subset of a compact 

continuum M, let A1 be the union of all m.c.o. D of M such 

that D meets A, and let A2 be the union of all m.c.o. E of 

M such that F(E) is contained in Cl(A+A1 ). 

Example 2: Let S be the Euclidean plane with the usual 

topology. Figure l illustrates the sets A1 and A2 for the 

given connected set A.,. (It is to be noticed that an m.c.o. 

of M may belong simultaneously to A1 and A2.) 
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M 

Figure l 

It appears that 1i(A) and Cl(A+A1+A2 ) coincide. The 

following lemma and theorem show that this is indeed the case. 

Lemma 4: Let A be a connected s~bset of a compact con

tinuum M. Then C·l (A+A1 +A2 ) is a 'b-subcontinuum of M contain• 

ing A. 

Proof: We shall first show that Cl(A+A1+~) is a sub.; 

continuum of M containing A. Clearly Cl(A+A1+A2) is closed 

and contains A. Now A+A1 is connected as otherwise AfAi= 

P+Q s·uoh that. P and Q.. are mutually separated. implies that A 

is contained in either P or Q since A is connected~ Let us 

suppose the former so A is contained in P, and hence Q is 

eontaine.d in A1• Then there exists a D belonging to A1 such 

that D meets Q, so D must be a subset of Q since Dis a con

nected subset of the .union of the two mutually separated sets 

P and Q. Therefore D does not meet P, so D misses A. How

ever Din A1 implies D meets A. Consequently A+A1 , and also 

Cl(A+A1), is connected. If Cl(A+A1 )+~ is not connected then 

there exist two mutually separated sets P and Q such that 

P+Q,:Cl(A+A1.)+~. Since Cl(A+A1 ) is connected, we may assume 
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that Cl (A+A1 ) is conta.ined in P, so Q is contained in A2 • 

Then there exists an E belonging to A2 such that E meets Q, 

and hence E must· be a subset of Q since Eis a connected sub-

set of P+Qwith P and Q mutually separated. Therefore F(E) 

is a subset of Cl(Q), so F(E) misses P and therefore also 

_ misses Cl (A~A1). However E in A2 implie~ F(E) is contained 

in Cl(A+A1). Hence Cl(A+A1)+~, and also Cl(Cl(A+A1 )+A2 ): 

Cl(A+A1+~), is connected. Consequently Cl(A+A1+A2 ) is a 

sub.continuum of M that contains A. 

We shall now show that Cl(A+A1+A2 ) is a b-subcont1nuum 

of_M. 

Let D be an m.c.o. of M such that D meets Cl(A+A1+A2). 

Then either (l) D meets A, or (2) D ;meets A1 , or {3) D meets 

~, since D is open. In (1), since D m_eets A, D must belong 

to A1 • .In {2), there exists some n1 in A1 such that D meets 

D1• _Then D+D1 is connected so the ma.ximali ty of n1 implies 

that Dis contained in n1 , and hence is a subset of A1• In 

(3), there exists some E in A2 such that D meets E. Then, as 

in (1) above, D is co.ntained in E so D is a subset of A2• 

Hence (1), (2), and (3) all imply that D is a subset of 

Cl(A+A1+~), so every m •. c.o. D of M that meets the set 

Cl(A+.A.1 +~) is contained in that set. 

Now suppose Dis an m.c.o. of M such that-Cl(A+A1+A2 , _ 

contains F(D). Let x be any element in F(D). If x belongs 

to Cl(~), then for every open set V containing x, there 

exists a:p. open connected set W containing x sueh that Wis 

contained in V, W meets ~, W meets D, and w·meets s .. n. .Since 
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W meets~ there is an E belonging to A2 such that WE is not 

empty •. If DE is not empty then D+E is a connected open sub

set of M, so D+E:D:E by the maximality of both D and E. Then 

F(D)~F(E) so F(D) is contained in Cl(A+A1), and x belongs to 

Cl(A+A1 ). If DE is emp~y then Dis contained in S-E, so 

(since W meets D) W meets S-E. No.w W also meets E so W, be-

ing connected, meets F(E) by Lemma 1. But F(E) is contained 

in Cl(A+A1 ), so W meets Cl(A+A1 ) and then meets A+A1• Hence 

V meets A+A1 so x belongs to Cl(A+A1 ). Therefore F(D) is con

tained in Cl(A+A1 ) so D belongs to A2 , which in turn is a 

subset of Cl(A+A1+A2 ). Consequently every m.c.o. D of M 

whose boundary is contained in the set Cl(A+A1+A2 ) is itself 

contained in Cl(A+A1+A2 ). 

Thus, by Definition 1., 01 (A+A1 +A2 ) is a . ~-subcontinuum 

of M. 

Theorem 11: Let A be a connected subset of a compact 

c.ont1nuum M~ Then b (A), the 6-subcontinuum of M that is 

~-irreducible about A, is equal to Cl(A+A1+A2 ). 

Proof:·· Clearly 6 (A} is contained in Cl (A+A1 +A2 ) since 

~(A) is &'."'irreducible about A and (Lemma 4) Cl(A+A1+~) is 

a b-subcontinuum of M containing A. Conversely (l} A is a 

subset of 'b(AJ, and (2) if D belongs to A1 then D meets A, 

so D meets b(A) and hence Dis contained in <i>(A) since ~(A) 

is a ii-subcontinuum of M. Thus A1 is a subset of ~(A). Also 
' ' 

if (3) E belongs to~' then F(E) belongs to.Cl(A+A1 ). But 



18 

Cl(A+A1 ) by (1) and (2) is a subset of b(A), so F(E) is con

tained in ·~(A). Hence E is a subset of ~(A) since b(A) is a 

'-subco~tinuum. Consequently A2 is a subset o~ i(A), go (1), 

(2), and (3) imply that Cl(A+A1+A2 ) is contained in ~(A). 

Therefore b(A):Cl(A+A1+A2 ). 

·corollary 1: If A and Bare connected subsets of a com

pact continuum M such that A is contained in B, then i(A) ii: 

contained in S(B). 

Proof: Clearly A1 is a subset o:f' B1 so Ol(A+A1 ) is a 

subset of.Cl(B+B1 ). Then A2 must be a subset o:f' B2 so 

Cl(.A+A1+A2 )) is contained in Cl(B+B1+B2 ). Thus, by the 

theorem,. b(A) is contained in .S(B). 

Corollary 2: If A is a connected subset of M then 

b(S(A)):b(A), i.e. the S operation applied to a connected 

subset of.Mis idempotent. 

·Proof:. Since A is contained in ~(A) .with both A and 

b (A) connected,· b(A) is contained in H HA)) by Corollary 1. 

Now ~(b(A)) is L 00 irredt.1cible about ~(A) so \(t(A)) is con

tained in ~(A) since ~(A} is a '-subcont1nuum of M con

taining ~(A). Thus <;(A) is the same as ~(~{A)). 

Corollary 3: If A is a b-subcontinuum of M then A 
I 

equals ~(A). 

Proof: Since <o:(A} is b -irreducible about A and A is 

•~~-subcontinuum containing A we have i(A) contained in A. 

Also the theorem implies A is a subset of ~(A). Consequently 
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A equals b (A). 

Corollary 4: Lat A and Bbe connected subsets of M such 

that AB is connected. Then ~ (AB) is a subset of ~ (A) ~(B), 

which in turn is a subset of S (A)+ b(B), with the latter set 

a subset of 6(A+B). 

Proof: Corollary 1 implies b(AB) is a subset of both 

~(A) and 6 (B) so b(AB) is a subset of ~ (A) fi(B). Also A and 

Bare connected subsets of the connected set A+B, so Corollary 

l im,plies ~(A)+~(B) is a subset of <o (A1-B). 

In general the set inclusions of Corollary 4 are proper, 

as .. can be seen from simple examples in the plane. 

Corollary 5: Let f be a homeomorphism of M onto itself. 

If Dis an m.c.o. of M then f(b(D)) equals 'i>(f(D)), i.e, the 

band f operations commute. 

Proo.f: By Definition 3, f(Cl(D2 ):f(Cl\m.c.o. E of M:F(E) 

is contained.in F(D)1). Since f is a homeomorphism the last 

mentioned set coincides with N:Cltm.c.o. f(E) of M:f(F(E)) is 

contained in f(F(D) )s, with the f (E) m.c.o. by Lemma 2. Then 

Lemma 3 implies that N:Cllf(E) :F(f(E)) is contained in 

F{f(D))]. But this set is Cl(f(Dt2 ) since f is onto, Con

sequently f(Cl(D2 )) equals Cl(f(D2 ). 

Now r ( 'b(D)) equals · (by the theorem) r (D+Cl_( n2 )), which 

in turn equals f(D)+Cl(f(D) 2 ) from the previ_ous paragraph. 

But Theorem 11 also implies that <o(f(D)) equals f(D.)~Cl(f(D) 2 ). 

Hence f(&(D)) equals ~(f(D)). 
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Returning to Corollary 1 of the last:'. theorem it appears 

as if we could induce a partial order on the ~-irreducible 

~-subcontinua of M by defining ~(A) to be less than <o (B) if 

A is contained in B with A and B connected. The following 

·example shows that this is impossible since <ii(A) may be less 

.than fi(B), &(B) may be less than fi(A), but AB may be empty. 

Example 3 (modification of the Lakes of Wada t21): Let 

M, A1 , and B1 be three rec tangles together with their inter- -. 

iors in the plane S(with its usual topology) such that A1 and 

B · are subsets of M(see Figure 2). In the first step of the l . . . 

con.struction we enlarge A1 and B1 (keeping inside M) to form 

~ an<;l B2 .such that the distance from every point of 
. . 

M-(A2+B2} is less than one unit .from everoy point of ~+B2• 

In the second step of the construction we e~large A2 and. B2 

(staying wit:P,in M) to form A3 and B3 such that the distance 

from every point of M-(A3+B3 ) is less than one-half unit from 

every point of .A3+B3• Continuing, at step i we enlarge Ai;;i 

and Bi-l (without leaving M) to form Ai and Bi suQh that the 

distance from every point of M-(Ai +Bi) is less than r uni ts 

from every point of Ai+Bi. Let A and B be the completed en

largements of the Ai and Bi, respectively. Then (l) M-(A+B) 

is a nowhere dense closed subset of S, (2) M-. (A+B) is the 

common boundary-of A,B, and 8-(A+B), (3) A and Bare distinct 

maJi;imal ccmneoted open subsets of M, and ( 4) <t, (A):::M= <ii (B). 
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Figure 2 

Definition 4: If A and Bare intersecting t>-subcontinua 

of a compact continuum M then E(A,B) shall be the set of all 

m.c.o. E of M such that (1) F(E) is contained in A+B, (2) 

F(E) meets A-B, and (3) F(E) meets B-A. 

We note that E(A,B) is disjoint from A+B since, if D 

belonged to E(A,B) and D met A+B, then D would be a subset 

of either A or B (as A and Bare b-subcontinua of M), so 

F(D} would be a subset of either A or Band condition (2) 

or (3) ot Definition 4 would be violated. 

Lemma 5: If A and Bare intersecting 6-subcontinua of 

M then b(A+B) equals A+B+Cl(E(A,B)). 

Proof: Clearly A+.B is connected so, by Theorem 11, 

b(A+~Cl(A+B+(A+B) 1+(A+B) 2 ). Now (A+B) 1:\m.c.o. D of M:D 

meet.a A+B1=tm.c.o. D of M:D meets A)+tm.c.o. D of M:D meets 

B} :A1+B1 • But A1 ·is contained in A and B1 is contained in B. 
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·by Corollary 3 to Theorem 11, so A1+B1 is a subset of A+B. 

Also (A+B) 2:tm.c.o. E of M:F(E) is a subset of A+B+(A+B) 11 
=\m.c.o. E of M:F(E) is a sub~et of A-t:"B1=(m.c.o. E of M:F(E) 

is a subset of A1+tm.c.o. E of M:F(E) is a subset of B1+E(A,B) 

· =~+B2+E(A,B), with A2+B2 contained in A+B by Corollary 3 to 

Theorem 11. Hence b(A+B):Cl(A+B+E(A,B)):A+B+Cl(E(A,B)) since 

both A and Bare closed. 

Corollary 1: A necessary and sufficient condition for 

the sum·· ot two intersecting <o-subcontinua A and B to be a 

b-suboontinuum is that Cl(E(A,B)) be empty. 

Corollary 2: If we allow the empty set to be a b-subcon

tinuum then a necessary and sufficient condition for the sum 

of two intersecting b-subcontinua A and B to be a b-subcontin

uum is that (A+B)Cl(E(A,B)) be a 8-subcontinuum. 

Proof: If A+B is a b-subcontinuum then Cl(E(A,B)) is 

empty by Corollary 1, so (A+B)Cl(E(A,B)) is the em-pty set (a 

'b-stibeontinuum by assumption). Conve~sely if (A+B)Cl(E(A,B)) 

is a 'b .. subcontinuum then Lemma 5 and Theorem 4 imply that 

A+B is a b~suboontinuum. 

Lemma 6: Let A,B, and C be b-suboontinua of M such that 
' none is a subset of any other and such that AB~O~AC. Then 

BC~O if b (A+B ): b (A+C). 

Proof: By Lemma 5, b(A+B):A+B+Cl(E(A,B)) and b(A+C): 

A+C+Cl (E (A,; C)) so A+B+Cl (E(A, B) )::A+C+Cl (E (A, C)). If E(A, B) 

is empty then C is a subset of A+B so BC~o. Therefore let us 
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suppose that Cl(E(A,B)) is not empty, and let E belong to 

E(A,B). Now b(A+B):b(A+C) so Eis a subset of (C+Cl(E(A,C))) 

-A by the note following Definition 4. If E meets C then E 

is a subset of C, since C is a ~-subcontinuum, so F(E) is a 

subset of c. Then BC;tO since Eis an element of E(A,B). If 

E meets Cl{E(A,O)) then E meets E(A,C) so Eis an element of 

E(A,C) by the maximality of E and the maximality of the ele

ments of E(A,C). Then F(E) meets C-A so there exists an 

element x belonging to (C-A)F(E). But E belongs to E(A,B) 

so F (E_) is contained in A+B. Consequently x must belong. to 

B-A, so BC;tO. 

The next two theorems are again concerned with the boun

daries of &-subcontinua of a compact continuum, and the proofs 

used depend heavily on Theorem 11. 

Theo:riem 12: If D is an m. c. o. of a compact continuum M 

then F(D). coincides with F(b(D) ). 

Proof: Clearly Dis a subset of b(D) so F(D) is a sub~ 

set of F(b(D)) by Corolla.ry l of Theorem 6. It then suffices 

to show that F(b(D)) is a Sllbset of F(D). By Theorem 11, 

b(D):Cl(D+D1+D2 ):Cl(D+D2 ) since the maximality of D implies 

that D1 is. contained in D. Then F(6(D))=F(Cl(D+D2 )) with 

F(Cl(D+D2 )) being a Sllbset of F(D+D2 ), and the last mentioned 

set being a Sllbset of F(D)+F(D2 ). Hence F(b(D)) is a subset 

of F(D)+F(D2 ). Let us suppose that xis an element of F(D2 ). 

Then if Vis any open connected set containing x (sllch a V 
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exists since Sis locally connected at x) V intersects n2 , 

so there exists E, an element of D2 , such that V intersects 

E. Now V also misses D 
2 

so V intersects S-E, and (by Lemma. 

1) V intersects.F(E). But Eis an element of D2 so V inter-

sects D (we showed that D1 was a subset of D). Further, if 

V is contained in D then D intersects E, so D:E by the max·':"' 

imality of both D and E; but then E would not be an element 

of D2. Hence V intersects S-D; so for any open connected set 

V containing x, VD~O~V(S-D). Then x belongs to F(D), since 

given any open set W containing x there exists an open con

nected set V containing x with V contained in w. Consequent

ly F(~(D)) is a subset of F(D); so F(D) coincides with 

F(b(D)). 

Corollary: Let D be an m.c.o. of M. Then b(D):M if and 

only if F(D):F(M). 

Proof: By the theorem F(D):F(b(D)) ,Ai'ith 'ti(D) a ~-subcon

tinuum of M. The conclusion then follows by Corollary 3 of 

Theorem 6. 

In connection with the above corollary we note (by The

orem 11) that b(F(M))=M if F(M) is connected. 

The proof of Theorem 12 would have been trivial if ~(D) 

were equal Cl(D) for Dan m.c.o. of M. That this is not true 

in general can be seen from Example 3 given earlier. There 

A was an m.c.o. of M such that ~(A)df=Cl(A+B), but Cl(A) : 

failed to meet B. Theorem 27 gives a sufficient condition in 



the plane for ~(D) to equal Cl(D). 

Even if Int(M) is equal to a single m.c.o.·D, we may 

have <ii(D} a proper b-Bubcontinuum of M. Further, if A is 
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·-~ connected subset of M, then F( b(A)) may not coincide with 

F(A) {this is illustrated in Figure 3 below). Hence neither 

Theorem-12 nor its Corollary may be improved. 

M 

Figure 3 

Theorem 13: Let A and B be intersecting 'b-subcontfnua . 

of a ooinpaot continuum M. Then F('b(A+B)) coincides with 

F (A+B). 

Proof': Clear.ly F(A+B) is contained in F(A)+F{B)", with 

A and B 6-subc:ontinua such that A ana B are subsets ·of 'i>(A+B). 

Then/by Theorem 7, F(A.).+F(B} is a subset of F(~(A+B)). Hence 

F(S(A+B)) contains F{A+B). Conversely let x be any elem~nt 

of F(~{A+B)}, and V pe any open set containing x. Then V meets 

S-b(A+B) so (since A+B is a subset of' b(A+B)) V meets B-(A+B). 
. . - . 

Now, by Lemma 5, F(£(A+B}):F(A+B+Cl(E(A,B))) so F(£(A+B}) is 

a subset of F(A)+F(B)+F(Cl{E(A,B})), and x must then belong 

to this union. If x belongs to F(A)+F(B) then V meets A+B. 
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If x belongs to F(CJ,(E(A,B))), let W be an open connected 

set containing x such that Wis a subset of v. Then there 

·exists an E belonging to E(A,B) such that W meets E. Also 

x in F(<i>(A+B.)) implies W meets S-~(A+B) so W meets S-E. By 

Lemma 1, W meets F(E) so (by condition (1) of Definition 4) 

W, and therefore V, meets A-+.B. Then V(A+B)~otv(s .. (A+B)) so 

x belongs to F(A+B). Consequently F(b(A+B)) is contained in 

F(A+B). 

Corollary: Let A,B, and O be & ... subcont1nua of M such 

that A meets B. Then C contained in S(A+B) implies F(O) is 

contained in F(A+B). 

Proof: By Theorem 7, F(C) is contained in F(i(A+B)). 

Then F(C) is contained in F(A+B) by the present theorem. 

The next theorem is a gene;ra:lization of a well-known 

theorem concerning the formation of subcontinua from mutu.a:lly 

separated sets. 

Th.ear.em 14: Let A be a S-subcontinuum of a compact con

tinuum M, and let M-A be the sum of two mutually separated 

sets P and·Q. Then A+P and A+Q, are proper i-subcontinua of 

M.-

Proof: It is well known \_3, p.lo81 that A+P and A+Q a.re 

both proper subcontinua ·of M. We shall now show that A+P is 

a h-subcontinuum of M. (The proof that A+Q is a b-subcontin-·· 

ullm is exactly the same.) Let D be an m.c.o. of M such that 

D meets A+P. If D meets A then Dis a subset of~; since A 
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is a b-suboontinuum of M, so Dis a subset of A+P. Otherwise 

DA::O and (ainoe ~A+P+Q,) Dis a subset of P+Q,. Then Dis a 

, subset of either P or Q,, since Dis connected and P and Qare 

mutually separated sets. But D a subs~t of Q implies D misses 

A+P, in contradiction to hypothesis. Hence D ~s a subset of 

P and then Dis a subset of A+P. Therefore Dis a subset of 

A+P whenever Dis an. m.c.o. that meets A+P. Let us no~ sup

pose that Dis an m.o.o._ of M su,ch that F(D) is a subset of 

A+P. Clearly M:A+l?+Q, so D must be a subset of A+P+Q. As 

shoWTI: :,.n the first'part of this proof, Dis a suoset of A+P 

if D .meets·A, and if D miss~s A then Dis a subset of either 

P or Q. Now D a subset of Q. implies F(D) is a subset of 

Cl(Q) so F(D) misses P, as P and Qare mutually separated sets. 

But F(D) is contained in A+B so F(D) must be wholly contained 

·in A, and then Dis contained in A since A is a b:-isubcontinuum 

of M. Theref.ore D is a subset of A+P whenever D is an m.o.o. 

of·M such that F(D) is a subset of A+P. Consequently A+P 

is a ~-subcontinuum of M. 



CHAPTER II 

~_-INDECOMPOSABLE AND ~.-.IRREDUCIBLE CONTINUA 

We begin this chapter by showing that no indecomposable 

continuum in Smay contain open sets. 

·Theorem 15: Let M be a contin,uum in our spaces. Then 

· (l)_M decomposable implies there exists a proper subcontin-

. uum A of M such that IntM(A), i.e. the interior of A with 

respect to M, is not empty; and (2) if the:re exists a proper. 

subcontinuum A of M such that Int(A) is not empty then Mis 

decomposable. 

Proof: .If Mis decomposable then there exist proper 

subcontinua A and B ·or M such that M::A+B. Since B·is proper, 

A-B 1s not empty so there is an element x belonging to A-B • 
... 

Now B closed implies there exists an open set V (of S) con-

taining x such that VB is nu11· and VA is not null. But VM 

is an open set a.bout x with respect to M, so x belongs to 
I 

IntM(A) since VM::VA. Consequently IntM(A) is not empty; so 

(l) holds. 

Let us now suppose that A is a proper su.bcontinuum of 

M such that Irit(A) is not empty. Then Cl(M-A) is a proper 

subset of M. If M-A. 1s connected so is Cl (M-A), and we have 

M::A+Cl(M-A); so Mis decomposable. If M-A is not connected 

28 
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then M-A:::P+Q such that P and Qare mutually separated sets. 

·By Theorem 14, M+P and M+Q, are proper subcontinua of M with 

M::(M+P)+(M+Q); so Mis again decomposable. Consequently con

clusion (2) .holds. 

We wish to alter the concepts of continuum and of inde

composable continuum so that conclusion (2) of Theorem 15 may 

be false. We have already defined what we mean by .b·-continuum, 

and .we now define. ~-indecomposable continuum. We shall then 

give an examp~e of ab-indecomposable continuum that possesses 

proper fi-subcontinua with interior points • 

. Definition 5: Let M be a comp~ct continuum of s. If M 

cannot be expressed as the union of two of its proper b-sub

. continua then Mis said to be fi-indecomposable. Otherwise 

Mis said to be b-decomposable. 

We note that (1). if M is indecomp~sable then M is b -1nd1e .. 

composable, and (2) (the contrapositive of ( 1)) if M is b -de

com.posable then M is decomposable. 

Example 4: In the Lakes of Wada example (Example 3) M 

is ~-indecomposable (for the proof see Theorem 16 below) but 

M possesses no proper b-subcontinuum with inte:r;'ior points 

(:relative to S, the plane). 

Example 5: If we let M be the "chi" figure given in 

Figure 4 below and s be the plane, .then M is b -indeoomposable 

(again see Theorem 16 below) and A1 , 1:1,2,3,4, are proper 
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b-subeontinua. of M such that Int(A1 ) is not empty for any 1. 

M 

Figure 4 

Clearly the existence of ~-indecomposable continua is 

assured since S is locally conne:cted: for let x be any ele

ment of Sand let V be an open connected set containing x; 

then M::C.l(V) is a ~-indecomposable continuum containing x 

(by virtue of Theorem 16) whenever Mis compact. 

We note that every non~degenerate compact continuum in 

E1 (the Euclidean line with interval topology) is simultan

eously decomposable and ~-indecomposable. This follows since 

every non-degenerate compact continuum in E1 is a closed and 

bounded interval of the form ~a,b~. 

Th.eorem 16 \), p. 298 l: Let M be a compact continuum of 

s. If there exists an m.c.o. D of M such that F(D) coincides 

with F(M), then.Mis b-indecomposable. 
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Proof: Let us suppose that Mis ~-decomposable so that 

there exist proper b-subcontinua A and B of M such·that M::A+B. 

SinceD is a subset of M~either DA or DB is not empty. Let 
, 

us suppose the former. By Corollary 1 to Theorem 6, F(D) is 

, a subset of F{A). But F(D) coincides with F(M) so F{M) is a 

subset of F(A). Now A is a b -subcontinuum of M so, by Theorem 

5, F(A) is contained in F(M). Hence F(A) coincides with F(M) 

and A::::M by Corollary 3 to T~eorem 6. This is a contradiction 

to the hypothesis that A is proper, and therefol'e M must be 

~-indecomposable. 

The converse of Theorem 16 is not true in general. This 

is shown in the following example. 

Example 6: Consider the indecomposable continuum M 

(4, p.4241 and its image M1 formed by mapping the arc Eili of 

. M onto a simple closed curve. We have Int (M):D, an m. c. o. 

of M, · but F'(D) is a. proper subset of F(M). However we shall 

see later (Corollary to Theorem 21) that Mis 6-indecoinposable. 

M 

Figure 5 
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Theorem 17: Let M be a ~-indecomposable continuum. If 

A is any proper b-subcontinuum of M then M-A is a non~degen

erate connect.ad subset of M. 

Proof: Clearly M-A is non-degenerate since (1) A is 

closed and (2) Mis connected and closed. Let us suppose that 

M-A is not connected so M-A is the unio:n, of two mutually 

separated sets P and Q. By Theorem 14, A+P and A+Q are pro~ 

per b-subcorttinua of M. But M::(A+P)+(A+Q); so M is ~ -decom

posable. However we assumed that M was 6-indeoomposable. 

donsequently M-A . .1s connected. 

Corollary 1: If A is any proper b ... subcontinuum of a 

<;, -indecomposable continuum M then i (M_~A) coincides ·.with M. 

Proof:· By Theorems 17 and 10 we know that b(M-A) exists. 

Further if b(M-A) is a proper &-s'ubcontinuum of M, then Mis 

the union of the two proper S-subcontinua A and & (M-A); so 

M is b-decompo·sable. We have a contradiction; so S (M-A) must 

coiricide ~1th M. 

Corollary 2: If A is any proper S-subcontinuu~ of b•in• 

decomposable M then F ( ~ (M-A)) equals F (M). 

Corollary 3: Let M be a ~;.,indecomposable, continuum such 

that every m.c.o. of M has a non-degenerate boundary. Th.en 

no point; of F(M) is a cut point of M~ 

Proof: Let x belong to F(M). Then ~({x\)=~X\ since x 

cannot be the boundary of any m.c.o. of M. Consequently 
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M~\x} is connected by the theorem, and hence xis not a cut 

point of' M • 

. Corollary 3 of Theorem 17 does not hold fdr points of' 

Int(M) since every interior point of an are cuts the arc. 

As a converse of Corollary 1 of Theorem 17 we have the 

following theorem. 

Theorem 18: Suppose·M is a compact continuum o:f' S such 

that ~(M-A):M for every proper b-subcontinuum A o:f' M (it be-

ing assumed that M-A is connected). Then Mis i-1ndeeomposable. • .. 

Proof: If we assume that Mis ~-decomposable then 

M::A+B, where A and B-are proper b-subeontinua of' M. He:nce 

M-A .is a subset of B, so S(M-A) is a subset of b(B) by 

Corollary 1 to Theorem 11. Also by Corollary 3 of the same 

theorem, ~ (B) • eo.ineides with B; so ~(M-A) is a subfilet of B • 
. 

But b(M•A) coincides with M, so B must equal M. This is con-

tradictory to the hypothesis that Bis proper. Consequently 

Mis &-indecomposable. 
' ..• 

In order to simplify the proof' of a converse to Theorem 

16, . let us consider the following def.ini tion and 1 ts oha.r

aoterization of 6-indecom_posa.ble compact continua. as e;i ven 

in.Theorem 19 below. 

Definition 6: Let M be a compact continuum ins, and· 

let A be a proper f>-subcontinuum of M. We shall say that A 

is a b-subcontinuum of condensation of M if (1) M-A is 
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connected, and if (2) every point of F(A) is a limit point 

ot ~(M-A). 

The <o-sub.conti:p.ua Ai, b!l,2 ,3 ,4, in Figure 4 a.re· s:..sub .. 

continua. of condensation of M. The proof of this statement 

is given in the following theorem. 

Theorem 19 [5, p.2971: A necessary and sufficient con .. 

dition for a compact continuum M to be ~-indecomposable is 

that.every proper b-subcontinuum of M be a b-subcontinuum of 

-condensation of M • 

. Proof: We first show that Mb-indecomposable implies 

every proper ~-subcontinuum of Mis a b-subcontinuum of con

densation of M. Let us suppose, by way of contradiction, that 

there is a proper b-subcontinuum A of M _that is not ab-sub

oontinuum of condensation of M. Then there exists· an element 

x belonging to F{A)-Cl(b(M.;;.A)), with M-A connected by Theorem 

17. Consequently b(M-A) is a proper subset of M. But this 

is a contradiction of Corollary 1 of Theorem 17. Hence every 

proper b-suboontinuum of Mis a· &-subcontinuum of condensation 

of M. 

We now show that M must be b-indecomposable if .every 

proper (-subcontinuum of Mis a ~-subcontinuum of condensation 

of M. I:f we suppose that Mis i-aecomposable, there exist 

two proper <o-subcontinua A and B of' M such that Mis the sum 

of' A and B. By hypothesis, Bis a ~-suboontinuum of conden

sation of M so every point of F(B) is a limit point of b(M-B). 
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But M-B is a subset of A with M-B and A connected, so ~(M-B) 

is a subset of A by Corollaries 1 and 3 of Theorem 11. Then 

F(B) is contained in A so, by virtue of Theorem 7, Bis con

tained in A. This implies that A is not proper; a contradic

tion to the hypothesis that Mist-decomposable. Consequently 

M must be ~-indecomposable. 

Theorem 20: Let D be an m.c.o. of a compact indecom

posable continuum M. Then either (1) F(D) coincides with F{M), 

or (2) every point in F(D) is a limit point of ~(M-b(D)). 

Proof: Let us first suppose that M-~(D) is not empty. 

Then b(D)···:ts a proper ~-subcontinuum of M. Therefore, by 

Theorem 19, . every point of F( ~ (D)) is a limit point of 

~(M•b(D)). But Theorem 12 implies that F(~(D)) is the same 

as F(D), so every point of F(D) is a.limit P('.int of 

'(M-~(D)). Hence conclusion (2) holds. 

If M-b(D) is empty then M::~(D); so F(M) coincides with 

F(D) by the Corollary to Theorem 12. Consequently conclusion 

( 1) must hol.d. 

We next show that, under very mild conditions, if A is 

an indecomposable subcontinuum then )(A) is ·.a ~-indecomposable 

subcontlnuum. (The reader is asked to compare the following 

theorem with The.orem 25.) 

Theorem 21: Let A be a connected subset of a compact 

continuum M such that whenever ~(A) is the sum of two <i> "l'stib

continua then the intersection of at least one of these 
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~-subcontinua with A must be connected. Then A indecomposable 

implies ~{A) must be b-indecomposable~ 

Proof: Suppose i{A) is i-decomposable. Then ~(A):B+C 

such that Band Care proper b-subcontinua of b(A). If 

A:AB then A would ·be a subset of B and hence b(A) would be 

contained in B. This is a contradiction so AB(and AC). is a 

proper subset of A, with A:AB+AC. Since A is indecomposable 

either AB or AC is not connected. Supposing the former, we 

have AB:P+Q such that P and Qare mutually separated. By hy

pothesis A is indecomposable and AC is connected so A-AC (be

ing contained in AB) is a st1bset of either P or Q. If A-AC 

is a subset of P then Cl(A-AC) is a proper subcontinuum of A, 

since Cl(A~AC) is contained in Cl(P) and QCl(P) is empty. 

Then A:AC+Cl(A-AC) so A is decomposable. Hence A indecom

posable implies ~ (A) is b -indecomposable. 

Corollary L_5, p. 2981: Let M be· a compact continuum such 

that whenever·M is the sum of two ~-subcontinua then the boun

dary of at least one of these b-subcontinua must be connected. 

Then Mis f;-indecomposable whenever F(M) is indecomposable. 

Definition 7: Let M be a compact continuum and let A be 

a proper ~-subcontinuum of M. We shall call A a maximal 

~-subcontinuum of M if M contains no other proper b-subeontin

uum B such that A is a proper subset of B. 

If A is a maximal ~-subeontinuum of Mand Bis any other 

proper ~-subeontinuum of M that meets A then either (l) Bis 
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a subset of A, or (2) ~ (A+B)=M. 

Example 1: In Figure 6 below we have an example of a 

h-decomposable compact continuum M in the p.1ane such that (1) 

Dis an m.c.o. of M, (2) F(D) is not connected, and (3) 

01 (M-Cl(J)).) :.1s- a ,maxiina.1· 1~ .JsUbcontinuum of M. 

M 

Figure 6 

Example 8: By way of contra~t Figure 7 is an example of 

a ~-decomposable continuum Min the plane such that M contains 

no maximal ~-subcontinuum. 

M 

Figure 7 
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Theorem 22: Let M be a compact continuum with at least 

two disjoint maximal )-subcontinua. Then M must be <o ... 1nde

composable. (See (3, p.1481 for the proof in the case of 

maximal subcontinua.) 

Proof: Let P and R be two disjoint maximal ~ .. subcontinua 

of M. Suppose, by way of contradiction, that M is· ~-decom-· 

posable. Then there exist two proper <ii-subcontinua A and B 

of M such that A+B equals M. Since Pis a subset of M, P 

meets A+B.· Let us suppose that P meets A. By the comment 

following Definition 7, eithe.r (1) A is a subset of P, or 

(2) b(A+P):M. But i"f' A is a subset of P then (since A+B=M 

and PR:O) Risa subset of B, so A:P and B:R. Then M:P+R 

with P and R disjoint; contrary to the connectivity of M.· 

Consequently 't>(A+P):M.· If Risa subset of B we have a con

tradiction in the same manner as before. Thus R must meet 

A. Again by Definition 7, either (l) A is a subset of R, 

or (2) 'b(A+R):M. As before, A a·;'subset of R impli·es M is 

not connected. Hence t>(A+R).:M. Then by Lemma 6, P}¥0 since 

~{A+P)sM::b(A+R). But P and Rare disjoint. Therefore Mis 

E-indecomposabl~. 

It is not know in general whether <ii(M-A) is ~-indecompos

able whenever A.is a maximal S-subcontinuum of a.compact con

tinuum M. 

Definition 8: If Mis a continuum, a i-composant oi M 

(with respect to some point p of M) is the set of all points 
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x of M such that there exists a proper b-subcontinuum of M 

containing both x and p. 

Any b-composant is the union of connected sets all having 

a point pin common. Consequently any b-composant is connected. 

Depending upon the location of pin M there may or may 

not be a ~-composant of M with re,pect top. In Example 7 

there is a b-com:i;:,osant for every point of M; but in Example 5 

no ~-composant exists for points in D. 

Theorem 23: If the continuum Mis ~-decomposable then 

Mis a i-composant for some point of M. 

Proof: If Mis i-decomposable then Mis the sum of two 

proper h-subcontinua A and B of M. Since Mis connected and 

A and Bare closed there exists a point p belonging to both 

A and B. It is then clear that Mis the ~-composant of M with 

respect top. 

Theorem 24: If the compact continuum Mis i-decomposable 

then every two £-composants intersect. 

Proof: Let Ap and Aq be two different <ii-composants of 

M with respect top and q respectively. Since Mis b-decom

posable there exist b-subcontinua Band C of M such that 

B+P:M. We may suppose that p belongs to B so Bis contained 

in Ap, since Bis a proper ~-subcontinuum of M containing p. 

If q belongs to B then B is contained, -in Aq ( proof as before) 

and hence ApAq is not empty. Other~ise q belongs to C and C is 

contained in Aq, so M connected implies BC is not empty and 
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The following two theorems on ~-~omposants may be found 

in the paper by O.H. Hamilton [5, p.297-2981 and are valid 

when Sis Euclidean n-space, and M, a compact continuum, is 

not the sum of a finite number (greater than one) of its 

b -subcontinua g1 , •• ~-, gk such that, for each integer 1, every 

boundary point of g1 is a limit point of M-g1 • 

Theorem B: Every 'll-composant of Mis the sum of a count

able number of ~-subcontinua of M. 

Theorem C.:. If M is o-indecomposable and no m.c.o. D of 

Mis such that F(D) equals F(M), then no two b-composants of 

M intersect. 

To conclude this chapter we return to the Brouwer Re

duction Theorem and Definition 2, and say that a ~ -.su.bcontin

uum A of a compact continuum Mis ~-irreducible with respect 

to property P if A has property P and no proper b-subcontin

uum of A has property P. 

Theorem 25: Let A be a subcontinuum of a compact con

tinuum M such that A is irreducible with respect to some 

property P. Then b(A) is S-irreducible with respect to P if 

~ (A) enjoys property P. 

Proof: Let N be ~-irreducible with respect to property 

P. (We are assuming that Pis such that the hypotheses of the 

Brouwer Reduction Theorem are satisfied, so N does exist.) 
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Since N is a subcontinuum of M enjoying property P, we have 

A contained iri N by the irreducibility of A. Then b(A) is 

contained in N by Corollaries 1 and 3 of Theorem 11. But 

~(A) possessing property P imPlies N is contained in ~(A) 

by the '-irreducibility of M. Consequently N coincides with 

~(A), so . b(A) is & -irreducible with respect to P. 

In general the converse of Theorem 24 is. not true, as 

the following example shows. 

Example 9: Let P be the property 11 containing both the 

points a and b". Then, in Figure 8 below·, B+C is not irre

ducible with respect to P, but ~(B+C):M is ~~irreducible with 

respect to P. (In the figure, Bis the arc from a to band 

C is the arc from b to c.) 

M 

Figure 8 



CHAPTER III 

APPLICATIONS TO EUCLIDEAN n-SPACE 

In this chapter we shall restrict S, the embedding space, 

to be Euclidean n-space, E. 
n 

We first show that any compact convex subset of S with 

interior is b-indecomposable. 

Theorem 26: If Mis a convex body lying in E then 
n 

Mis ~-indecomposable. 

Proof: We know t_6, p. 30) tl':\at Int (M) is convex. Then 

Int(M) is connected L6, p.741 so Int(M) is an (in fact, the 

only) m.c.o. of M. It is an easy matter to show that F(Int(M)) 

equals F(M). Hence M::Int(M)+F(Int(M)) is ~-indecomposable 

by Theorem 16. 

Corollary: If Mis a compact convex subset of En such 

that M contains the origin and n linearly independent vectors, 

then Mis ~-indecomposable. 

Proof: It is well known that any convex subset of E 
n 

containing the origin and n linearly independent vectors has 

interior points relative to En. The conclusion then follows 

from the theorem. 

Most of the theorems in this chapter are restricted to 

42 



43 

E2 , the plane, and require that certain subsets do not separ

ate E2• The usefulness of these restrictions is quite appar

ent in Theorem 28 below. 

Theorem 27: Let M be a compact continuum in the_ plane. 

A sufficient condition for ~(D) to coincide with Cl(D), for 

every m.c.o. D of M, is that no m.c.o. subset of M together 

with its boundary, separate the plane. 

Proof: Let D and Ebe distinct m.c.o. of M such that D 

contains F(E}. Clearly S-Cl{D):E+(S-Cl(D+E)). We wish to 

show that the last two mentioned sets are mutually separated. 

Now (Cl{E))(S-Cl(D+E)):(Cl(E))(S-{Cl(D)+Cl(E)) with the latter 

set contained in the empty set (Cl(E))(S-Cl(E)). Hence 

Cl(E) misses S-Cl(D+E). If x belongs to the intersection of 

E and Cl(S-Cl(D+E)) then E meets 8-Cl(D+E) (since Eis an 

open set about x) so E meets S-E (Since S-Cl(D+E) is contained 

in S-E). This is a contradiction so E fails to meet 

Cl(S"".Cl(D+E)). Hence E and s ... al(D+E) are mutually separated 

sets and Cl{D) separates s. This violates the hypothesis of 

the theorem so D and E must coincide. Then b(D) equals Cl(D) 

by Theorem 11. 

Under the hypothesis of Theorem 27, Cl(D) not separating 

the plane implies ~(D) doesn't separate the plane, since 

Cl(D)=b(D). The converse of this statement, however, is not 

true in general as can easily be seen from Figure 4. 

The following theorem strengthens the conclusion of 
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Theorem 20. 

Theorem ~8: Let M be a compact continuum in the plane 

such that no m.c.o. subset of M, together with its boundary, 

separates the plane. If Mis £-indecomposable and there is 

no m.c.o. D of M such that F(D) equals F(M), then for any m. 

c.o. E of M with connected boundary every point of F(E) is 

a limit point of b(M-E). 

Proof: By virtue of Theorem 20 it suffices to show 

that M-E is connected. Now M-E:(M-Cl(E))+(Cl(E)-E), with 

Cl(E)-E connected by hypothesis. Also M-Cl(E) is connected 

by Theorem 17 (Cl(E) equals ~(E) by Theorem 27) so Ol(M-Cl(E)) 

is connected. Clearly Cl(M-Cl(E)) is a subset of M-E, so 

M-E:Cl(M-Cl(E))+(Cl(E)-E) with the latter two sets both be

ing connected and having a non-empty intersection. Hence 

M-E is connected. 

The following theorem reduces the hypotheses needed in 

Corollary 3 of Theorem 17. 

Theorem 29: Let M be a compact continuum in the plane 

such that every m.c.o. of Mis simply connected. Then M 

b-indecomposable implies no point of F(M) cuts M. 

Proof: We know L7, p. 256J that any simply connected 

open subset of C(the complex numbers), distinct from C, has a 

non-degenerate boundary. The conclusion then follows from 

Corollary 3 of Theorem 17. 
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We have the following characterization theorem for an 

m.c.o. of a compact continuum in the plane. 

Theorem 30: If D and E are distinct m.c.o. of a com

pact continuum in the plane such that 1i(E) contains D, then 

F(D) is connected. 

Proof: By Theorems 6 and 12, F(D) is contained in F(E), 

with D and E disjoint open connected sets in the plane. 

FLtrther F(D) is boLtnded since M is compact. Hence [8, p.1891 

F(D) is connected. 

Corollary 1: If D and E are distinct m.c.o. of a com

pact continuum in the plane such that ~(E) contains D, then 

Dis simply connected. 

Proof: In the plane, Dis simply connected whenever 

F(D) is connected, so Dis simply connected by the theorem. 

,Q,£rollary 2: If Mis a compact continuum in the plane 

with two distinct m .. c.Ci". D and E such that qn) coincides with 

~(E), then (1) F(D):F(E), a connected set, (2) D and E 

are both simply connected, and (3) both Cl(D) and Cl(E) 

separate the plane. (For an example of such a situation see 

Figure 2.) 

Proof: Clear by Tµeorem 30, its Corollary, Theorem 12, 

and Theorem 27. 

Corollary 3: Let M be a compact continuum in the plane 

and let D be an m.c.o. of M with non-connected boundary. Then 
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F(E) is a proper subset of F(.M) for every m.c.o. E o·f M dis

tinct from D. Consequently if there are two (or more) m.c.o. 
'· 

of M with non ... connected boundaries, then no m.c.o. G of Mis 

such that F(G):F(M). 

Proof: If there is an m.c.o, E of M distinct from D such 

that F(E) equals F(M) then, by the Corollary to Theorem 12, 

~(E) equals M. Hence Dis a subset of 5{E) so) by the theorem, 

F(D) is connected. This is contrary to hypothesis; so F(E) 

is a proper subset of F(M) for every m.c.o. E of M different 

from D. 

Corollary 3 to Theorem 30 has interesting applications 

in connection with &-indecomposable continua in the plane. 

We explore these applications in the following theorem. 

Theorem 31: If Mis a compact continuum in Euclidean 

n-space with connected boundary, then every m.c.o. of M has 

a connected boundary. 

Proof: Since F(M) is connected, F(M) is a continuum. 

Hence [9, p.343) every complementary domain of F(M) has 

connected boundary. It is easy to see that every m.c.o. of 

Mis a complementary domain of F(M); so every m.c.o. has eon

nected boundary. 

In Corollaries l ·,and 2 below it is assumed that M is a 

compact continuum in the plane that is not the sum of a finite 

number (greater than one) of its ~-subcontinua s1,g2,•••,gk 

such that, for each integer- 1, every boundary point of gi is 
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a limit point of M-gi. 

Corollary 1: If there is an m.c.o. D of M such that . ' 

F(D) is not connected, then ~(D) must equal M whenever Mis 

b-indecomposable. 

Proof: We know l5, p.298j that either F(M) is indecom

posable or there is an m.c.o. E of M such that b(E) equals 

M. Now F(D) is not connected so F(M) can not be connected 

(by the theorem), and obviously can not be indecomposable. 

Hence there :1,s an m.c.o. E of' M with 1i(E):::M. If E 1$ distinct 

from D then, by Coroll~ry 3 to Theorem 30, b(E) cannot equal 

M (since, as we have seen before ~(E):M implies F(E):F(~(E))= 

F(M)). Therefore b(D) must equal M. 

Corollary 2: If M has at least two m.c.o~ with non-con~ 

nected boundaries then Mis ~-decomposable. 

Proof: Clear by Corollary l above and Corollary 3 to 

Theorem 30. 

We end this exposition with some remarks on unsolved pro

blems and conjectures. It is hoped that these remarks will 

serve as a starting place for further work on ~-continua. 

If A and Bare intersecting b-subcontinua of a compact 

continuum M, under what conditions is b(A+B} the same as 

A+B? In the light of Lemma 5 this amounts to finding con

ditions under which E(A,B) is null. If Mis a subset of the 

plane and Dis an m.c.o. of M such that (ll D-is a Jordan 
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domain (i.e. F(D) is .a simple closed curve), and {2) ABF(D) 

is connected, then D cannot possibly belong to E(A,B). This 

is, of course, a very special situation. Examples, similar 

to Example 8 given previously, may be constructed where D be

longs to E(A,B) if (1) Cl(D) separates the plane, or (2) 

ABt(D) is not connected. Furthermore, all,examples obtained 

possessed either property {l) or property (2). Therefore we 

have the following conjecture: If A arid Bare intersecting 

b-subcontinua of a compact continuum Mand Dis an m.c.o. of 

M such that Cl(D) does not separate the space Sand such 

that ABF(D) is connected then D does not belong to E{A,B). 

Putting this in a slightly different form we have:· If A and 

B are intersecting <o -subcontinua of a compact continuum M 

such that for every m.c.o. D of M whose boundary is a subset 

of A+:i,Cl(D) does not separate Sand ABF(D) is connected, 

then 6 (A+B )=A+B. 

Many theorems dealing with indecomposable continua would 

be true for b -indecomposable continua (and exactly the same 

proofs could be used) having the property that ~(A+B) equals 

A+B. Hence the desirability of having b(A+B)=A:t.B is apparent. 

It is easy to see that M cannot be heredi tarily 'b-decom

posable if Int(M) is not empty. Does the same conclusion hold 

if Mis hereditarily b-indecomposable? In other words, if 

Mis hereditarily ~-indecomposable 1s M hereditarily indecom

posable? Also if F(M) is hereditarily indecomposable is Int(M) 

empty? 



The answers to these questions, even restricted to the 

case where Sis the plane, would be interesting additions to 

the theory of 8-continua. 
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APPENDIX 

NUMBERED DEFINITIONS, RESULTS, AND EXAMPLES 

Theorem Page Lemma Page 

l 2 l l 
2 2 2 4 
3 5 3 4 
4 6 4 15 
5 7 5 21 

6 22 
6 8 
7 10 
8 11 Example Page 
9 11 

10 13 1 12 
2 14 

11 17 3 20 
12 23 4 29 
13 25 5 29 
14 26 
15 28 6 31 

7 37 
16 30 8 37 
17 32 9 41 
J.8 33 
19 34 
20 35 Definition Page 

21 35 1 3 
22 38 2 13 
23 39 3 14 
24 39 4 21 
25 40 5 29 

26 42 6 33 
27 43 7 36 
28 44 8 38 
29 44 
30 45 
31 46 
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the Master of Science degree at Oklahoma. State Uni
versity in July, 1960; and completed requirements 
for the Doctor of Philosophy degree at Oklahoma 
State University in May, 1962. 

Professional Experience: Sales engineer for Black, Sivalls, 
and Bryson, 1957-1958; research fellow at Tu,la.ne 
University, 1958-1959; graduate assistant at Oklahoma. 
State University, 1959-1962; and National Science 
fellow, summers or· 1960 and 1961. 

Professional Organizations: Associate member of the Society 
of the Sigma Xi; and institutional member of the·Amer
ican Mathematical Society. 


