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PREFACE

A generalization of the concave function concept is the super—(L)
function concept introduced by F. F. Bonsall [1]. (The number in the
bracket refers to the bibliography.) Certain properties of super-(L)
functions are investigated in this paper. The basic definitions and
some properties of super-(L) functions are given in Chapter I, with the
fundamental result being the fact that the set of non-negative super-(L)
functions on [O,i] forms a convex cone C. Chapters II through VI are
devoted to consequences of this result, with continuity of the functions
at the end points assumed in Chapters II through V.

In Chapter II, the extremal structure of the convex cone C is
characterized, and a type of integral representation for the elements
of C in terms of the extremal elements of C is developed in Chapter III,
The structure of the linear space C-C is partially determined in
Chapter IV, The relationship between the extremal elements of C and
Green's function is discussed in Chapter V. In Chapter VI, the ex-
tremal structure of the convex cone of discontinuous super-(L) functions
on (0,1] is characterized. In Chapter VII, a partial solution is ob-
tained to the problem of extending the preceding results to super-(L)
functions on a convex compact domain in E2, and the paper is ended with
an indication of some unsolved problems.

Indebtedness is acknowledged to the members of my advisory com-—

mittees; to Dr. L. Wayne Johnson, Head of the Department of Mathematics,
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for my graduate assistantship, for his friendly counsel, and for his
thoughtfulness in the arrangement of my teaching assignment; and espe-
cially to Professor E. K, McLachlan for the inspiration and encourage-

ment he provided before and during the writing of this paper,
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CHAPTER 1
INTRODUCTION

One of the more interesting generalizations of the notion of a real-
valued concave function of one real variable is that due to F. F,
Bonsall (1] . It is this generalization that is investigated in this

thesis,

Definition 1, Let y and z be arbitrary real numbers, and let u and
v be real numbers such that 0S u<v=1, Let L(y)= dzv,«'/d)nt2 +
p(x)-dy/dx+Q(X)Y = 0 be such that there exists a unique solution F on
[0,1] (where the appropriate one-sided derivatives are used at the end-
points 0 and 1) for which F(u) =y and F (v) =z, Then a real-valued
function f is super-(L) on [0,1] if f(x) = F(f,u,vsx) for all x, u,
and v such that 0 €u<v=1and usxsv, where F(f,u,vsx) is the

solution of L(y) = O such that F(f,u,vsu) = f(u) and F(f,u,vjv) = f(v).

Definition 2. A function f is goncave on [(a,b] , where a<b, if
ftx+(1-t)y) = tf(x)+(1-t)f(y) for all x and y in [a,b] and all t

such that 0 €t &€ 1.

Observe that the ordinary concave function definition, Definition 2,

is the special case of Definition 1 obtained by using L(y) = d2y/dx?.

Definition 3, A function f is sub=(L) on [O,l] if -f is

super=(L) on [p,f] .
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Definition 4, A function f is gopvex if -f is concave.

Bohsall studied properties of sub-(L) functions on an arbitrary
(bounded) open interval; however, it was found to be more fruitful in
this thesis to use a closed interval. For con&enience, the closed inter-
val [O,l] was chosen, All the results obtained are glso valid in any
closed interval, The definitions and results due to others have been
rephrased, when desirable, to fit the particular setting used.

Generalizations of the convex function definition which contain
the sub—(L) function definition as a special case have Been considered
by Valiron [2:] and Beckenbach [S'].

Bonsall characterized sub-(L) functions by proving that if f is
sub~(L) in.(a,b) then f has a second derivative almost everywhere in
(a,b) and L(f) Z 0 at each point where the second derivative exists,
and that if f has a continuous second derivative and L(f) =0 in (a,b),
then f is sub-(L) in (a,b). He pointed out that this characterization
makes it possible to use sub—-(L) functions as an analytical tool in a
manner similar to the use of convex functiohs,

Some basic properties of super—(L) functions are’giVen in the next

two- : theorems due to Bonsall.

Theorem lici, o lOi] . If f is super-(L) on [p,f] , then

£(x) € F(f,u,vsx) for all x in (0,u] and {v,1] , where u<v.

Theorem 2 [1, p. 102) . If f is super—(L) on [0,1] , then £
is continuous in (0,1).
By Theorem 2, a super—(L) function is continuous in (0,1). Unless

stated to the contrary, it will be assumed in the remainder of this



thesls that the super—(L) functions considered are also continuous at
0 and at 1.

The basic result which forms the starting point of the investiga-
tions made in this thesis is the fact that the set of non-negative

super~(L) functions on [O,Ij is a convex cone,

Definition 5, Let A be a set in a real linear space. Then A is
a convex cone if 1) for every f and g in A and every non-negative real
number k, f*+g and kf belong to A, and 2) f in A and -f in A imply £=0,

the origin of the real linear space.

Lemma 1. If f and g are super—(L) functions on [0,1] and k is
a non—negative real number, then kf and f+g are'super—(L) functions on
(o,1] .

Proof. Let u and v be such that 0= u<v £1. Since L{y) =0 is
a linear homogeneous differential equation, kF(f,u,v;x) and F(f,u,vjx)
+F(g,u,vsx) are solutions. Then F(kf,u,v;x) = kF(f,u,v3x) for all x in

[0,1] is the unique solution of L(y) = O such that F(kf,u,vsu) =

]

kF(f,u,vsu) = kf(u) = (kf) (u), F(kf,u,vsv) = kF(f,u,viv) = kf(v)
(kf)(v), and (kf)(x) = kf(x) = kF(f,u,vyx) = F(kf,u,v;x) for all x in
[u,v]. Thus kf is a super~(L) function on [0,1] .

Next, F(f+g,u,v3x) = F(f,u,v3x)+F(g,u,vix) for all x in [0,1] is
the unique solution of L(y) = 0 such that F(f+g,u,vsu) = F(f,u,vju) +

F(g,u,vsu) = f(u)+g(u) = (f+g)(u), F(frg,u,vsv) = F(f,u,vsv)+F(g,u,v;v)

1

£(v)+g(v) = (f+g)(v), and (f+g)(x) = £(x)+g(x) ZF(f,u,vsx) +F(g,u,v;x)

1

F(f+g,u,v3x) for all x in (u,v ] . Thus f+g is a super-(L) function on

[o,1] .



Theorem 3. The set of non-negative super-(L) functions on (0,1 ]
forms a convex cone C.

Proof. Let k be a non-negative real number, Let f and g belong
to C., By Lemma 1, kf and f+g are super-(L) functions on [b,l] . Since
k=0, f 20, and g =20, it follows that kf Z0 and f+g =0. Thus kf
and f*¥g belong to C., Let h be any element of C such that -h is also an
element of C. Then h Z0 and -h 2 0 imply h = 0, the non-negative
super-(L) function which is identically O on [0,1 ). Thus C is a

convex cone,



CHAPTER IT
EXTREMAL STRUCTURE OF C

In this chapter, those elements which are extremal elements of the
convex cone C of non-negative super-(L) functions on [b,ij will be

characterized,

Definition 6. Let A be a convex cone. An element f of A is called
an extremal element of A if for every pair of elements g and h of A

such that f = gth there exists a real number k such that g = kf.

McLachlan E{] has completely characterized the extremal structure
of the convex cone of non-negative concave functions on [Q,l] « It
will be shown in this chapter that the extremal structure of C is analo-

gous to that obtained by McLachlan,

Definition 7. A real-valued function f on [0,1] 1is said to be

(IL)-1inear on lu,vl if f(x) = F(f,u,vsx) for all x in [U,v] , where

DZ2Eu<v =1,

Theorem 4, If f, g, and h are super-(L) functions on [0,1] such
that f(x) = g(x)+h(x) for all x in [u,v], where 0 Su<v £1, and
f is (L)-linear on [ﬁ,v] , then g and h are (L)-linear on Eu,vj .
Proof, Since f is (L)-linear on (u,v], f(x) = F(f,u,v;sx) for
all x in [ﬁ,v] by definition. Then g(x)+h(x) = (g*h)(x) = f(x) =

F(f,u,v;x) = F(g+h,u,v;x) = F(g,u,v;x)*F(h,u,v;x) as in the proof of



Lemma 1. Since g and h are super-(L) on [O,l] , g(x) = F(g,u,vsx) and
h(x) = F(h,u,v;x) for all x in (u,v]. If g(w) >F(g,u,vsw) or
h(w) > F(h,u,vsw) for some w in [u,v] , then g{w)+h(w) > F(g,u,v;w) +
F(h,u,vsw), which contradicts g(x)+h(x) = F(g,u,vsx)+F(h,u,vsx) for all
x in [u,v] . Thus g(x) = F(g,u,v;x) and h(x) = F(h,u,v;x) for all x

in [u,v] , and hence g and h are (L)=linear on [u,vj .

Theorem 5, If f, g, and h are elements of the convex cone C such
that there exists a u in [0,1] for which f(u) = g(u)+h(u) and £(u) =0,
then g(u) = 0 and h(u) = O.

Proof, Since g and h are elements of C, g(u) =0 and h(u) = 0.

Thus g(u)+h{u) = O implies g(u) = 0 and h(u) = 0.

Definition 8. A Teal-valued function f on EO,L] is an (L)-conical
function with its vertex over w in [b,I] if 1) f(w) >0, 2) £(0) =
Cf(1) =0 if w# 0,15 f(0) =0 if w = 13 or (1) =0 if w = 0; and 3) f

is (L)-1linear on CO,w] and on [w,l] .

Theorem 6, If f is an element of the convex cone C such that
£(w) = 0 for some w in (0,1), then f = O,

Proof. Suppose there exists a u in [O,L] such that f(u) > 0.
Assume u<w. ( A similar proof holds for the case u >w). Suppose
there is a v in (w,lj such that f(v) = 0. Since f is super-(L),
F(f,u,vsw) € f(w) = 0 and F(f,u,vju) = f(u) >0, so there exists a z in
(uyw] such that F(f,u,v3jz) = 0 since F(f,u,v;x) is a continuous function.

" (See Figure 1.) Then F(f,u,vix) = 0, the unique solution of L(y) =0



0 u z >~ —_ W v 1

Figure 1, Theorem 6 proof. The assumption that
f(v) = 0.

which haé zero function value at two distinct points, since F(f,u,vjv) =
f(v) = 0. This contradicts F(f,u,vyu) = f(u) >0, so that f(x) =0 for
all x in (w,1]) . Since f is super—(L), F(£,0,1;w) < f(w) = 0. Suppose
F(f,0,13w) < 0, Now F(f,0,131) = f(1) >0, so that there exists a z

in (w,1) such that F(f,0,13z) = 0, since F(f,0,1;x) is a continuous
function, Also, since F(f,0,130) = £(0) =0 there exists a t in [O,w)
such that F(f,0,13t) = O. Thus F(f,0,1;x) = 0, the unique solution of
L(y) = 0 which has zero function value at two distinct points which
contradicts F(f,0,131) = £f(1) > 0. Therefore F(f,0,13w) = 0 = f(w).
Since f is super—(L), f(x) Z F(£,0,w;x) for all x in [0O,w] and

f(x) = F(f,w,13x) for all x in [w,1] . (See Figure 2.) By Theorem

1, £f(x) € F(£,0,w;x) for all x in (w,l] and f(x) € F(f,w,13x) for all
x in {O,w] . Then F(f,0,w;0) = £(0) = F(£,0,1;0), F(f,w,151) = £(1) =
F(f,0,131), and F(f,0,wsw) = F(f,w,13w) = F(£,0,1;w) = f(w), so by

uniqueness of solution to L(y) = 0, F(f,0,w;x) = F(f,w,1l3x) = F(f,0,13x).



0 W 1
Figure 2, Theorem 6 proof., The proof that f is
(L)-linear.

Thus f(x) = F(£,0,1;x) for all x in [0,1] .

Let u and v be such that 0 Su<w<vEl. Let r and's be arbi-
trary positive real numbers. There exist non-negative real numbers m
and n such that r =“mF(f,O,l;u) and s = nF(f,0,13v), since F(f,0,13x)>0
for x #w in [0,1] . Since L(y) = 0 is a linear homogeneous differen-
tial equation, mF(f,0,13x) and nF(f,0,13x) are solutions. Let G be the
solution of L(y) = 0 such that G(u) = r and G(v) =s. If mZn then
mf(f,O,l;v) = nF(f,0,13v) = s = G(v). (See Figure 3,) Suppose
G(w) < 0. Then since G is continuous and G(v) > 0, there exists a z
in (w,v) such that G(z) = 0, and since G(u) > 0 there exists a t in
(u,w) such that G(t) = 0. This implies G(x) =0, the unique solution
of L(y) = 0 having 0 function value at two distinct points, which con-
tradicts G(u) > 0. Therefore G(w) =0 = F(f,0,13w). Then since G(v)=
mF(f,0,15v) and mF(f,0,13x) is continuous, there exists a z' in [w,&]

such that G(z') = mF(f,0,152z'). Then G(x) = mF(f,0,1;x) by uniqueness



0 u w \4 1

Figure 3. Theorem 6 proof. Contradiction of f
being positive.

of solution to L(y) = 0, since G(u) = r =mF(f,0,15u). Similarly, if

n = m then G(x) = nF(f,0,135x), so that in either case G(w) = 0. Thus

any solution of L(y) = 0 taking a positive function value in [O,w) and

a positive function value in (w,l] is 0 at w, which contradicts the
existence of a solution taking arbitrary positive function values at

w and at u # w, since such a solution would be positive in an open
interval containing w. Therefore there does not exist a u in EO,I] for

which f(u) > 0, and the theorem is proved.

It is now possible to characterize concisely the extremal struc-
ture of C; however, the proof of the characterization is long, so it

will be developed in a series of lemmas.

Lemma 2, If f is an (L)-conical function with its vertex over O or
1, then f is an extremal element of C,

Proof. Let g and h be elements of C such that f = g+th. By
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Definition 8, f is (L)-linear on [p,l] , and thus is super~-(L) on[Q,lj.
Since f is zero at one end-point and positive at the other end-point, it
is non-negative by uniqueness of solution to L{y) = 0. Hence f belongs
to C. Assume f has its vertex over O since the proof for the other case
is similar, By Theorem 4, g and h are (L)-linear on {0,1] . By
Theorem 5, g(1) = 0 and h(1) = 0 since f(1) = 0. Since g #0, g(x)>0
for all x in [p,l). Let k = g(0)/£(0). Then g and kf intersect in

two distinct points since g(0) = kf(0) and (Kf)(1) =(0='g{1),0

and so by uniqueness of solution to L(y) =0, g = kf. Thus f is an

extremal element of C,

If f is an (L)-conical function which has its vertex over w in
(0,1), then by Definition 8, f(x) = F(f,0,w;x) for all x in [O,w] and
£(x) = F(f,w,13x) for all x in {w,1] . The relationship between these

two (L)-linear functions is given in the following lemma,

Lemma 3. If f is an (L)-conical function which has its vertex
over w in (0,1), then F(f,0,w;x) > F(f,w,13x) for all x in (w,1] and
F(f,0,w;x) < F(f,w,13x) for all x in [O,w). |

Proof. If F(f,0,w;x') = F(f,w,13x') for some x' in (w,1] , then
F(f,0,w;x) = F(f,w,15x) for all x in [0,1] by uniqueness of solution

to L(y) =0, since F(f,0,wsw) = F(f,w,13w) and x' #w. Then F(f,0,w;0) =

!
1

0 and F(f,0,w;1) = F(f,w,151) = 0 imply F(f,0,w;x) = 0, the unique

i}

solution of L(y) = O which is O at two distinct points. This contra-

f(w) > 0. If F(f,0,w;x') < F(f,w,1;x') for some x'

1

dicts F(f,0,wsw)
in (w,l), suppose that F(f,0,w;1) = F(f,w,131). Then there exists an
x" in (x',1] such that F(f,0,w;x") = F(f,w,1;x") since F(f,0,w;x) and

F(f,w,l;x) are continuous functions of x. Then by uniqueness of
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solution to L(y) = 0, F(f,0,w;x) = F(f,w,13x) for all x in [0,1] since
F(f,0,wsw) = F(f,w,1;w), which, as before, leads to the contradiction
that F(f,0,w3x) = 0. Thus F(f,0,w;l) < F(f,w,1;1) = 0. Since
F(f,0,wsw) = f(w) >0 and F(f,0,w3;x) is continuous, there exists a t
in (w,1) such that F(f,0,wst) = 0. Then F(f,0,w;x) = O for all x in
(0,1] by uniqueness of solution to L(y) = 0 since F(f,0,w;0) = £(0) = O,
This contradicts F(f,0,wjw) = f(w) > 0. Therefore F(f,0,w3x) > F(f,w,1;x)
for all x in (w,l] .

The proof for F(f,0,wsx) < F(f,w,13x) for all x in {O,w) is similar

to the above proof.

Lemma 4, If f is an (L)-conical function which has its vertex
over w in (0,1), then f is an extremal element of C,

Proof. The proof will be given in two parts: (i) it will be
shown that f belongs to C, and (ii) it will be proved that f is an
extremal element of C by showing that every (non-zero) decomposition
of f is proportional to f.

(i). In order for f to be an element of C, it must be both non-
negative and super-(L).

By uniqueness of solution to L(y) = 0, an (L)-linear function
which is not identically zZero can have zero function value at only one
point. Thus f is non-negative on [O,w] and [w,l] and hence on [Q,l].

It will now be shown that f is super—(L). Let u and v be such
that 0Su<v=1. Ifuandv are both in [O,w] or both in [:w,l] ,
the result follows immediately since f ié (L)-linear on [O,w] and on
E”’lj ; hence it will be assumed that u< w < v. The proof will be by

contraposition, Suppose there exists a z such that u< z < v and
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f(z) < F(f,u,vsz). Suppose there is also & z' such that u< z'< v and
F(f,u,vsz') € f(z'). Then there exists an x' in (u,v) such that f(x') =
F(f,u,vix') since f(x) and F(f,u,v;x) are continuous functions of x. If
x' is in (u,w], F(f,u,vsx) = F(f,0,w;x) for all x in [0,1], since

F(f,u,vsu) = F(f,0,wsu) = f(u). Then E(f,0,w;x) F(f,w,13x) for all

1

x in (0,1] by uniqueness of solution to L(y) = O since F(f,0,w;w) =
F(f,w,13w), F(f,0,wsv) = F(f,u,vsv) = F(f,w,13v), and w # v. This
implies F(f,0,w;x) = 0 since F(f,0,w;0) = f(0) = 0 and F(f,0,w;l) =
F(f,w,1351) = f(1) = 0, which contradicts F(f,0,wsw) = f(w) > 0. Simi-
larly, taking x' in [w,v) leads to a contradiction. Thus F(f,u,v;x)>
£(x) for all x in (u,v).

In particular, F(f,u,visw) > f(w) = F(f,0,wsw). Then there exists
an x' in (w,v) such that F(f,0,w3;x"') = F(f,u,v;x'), since F(f,0,w;v)
F(f,w,1l5v) = F(f;u,v;v) by Lemma 3, and since F(f,0,wsx) and F(f,u,vsx)

are continuous. (See Figure 4.) Then F(f,0,w3x) = F(f,u,vsx) for all

™~ B{£,0,w;x

Figure 4, Lemma 4 proof.
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x in [0,1] by uniqueness of solution to L(y) = 0 since F(f,0,w;u) =
F(f,u,vsu) and u # x'. Then F(f,0,w;x) = F(f,w,15%) for all x in [0,1]
since F(f,0,wsw) = F(f,w,1l3w) and F(f,0,w;v) = F(f,u,vsv) = F(f,w,13v).
Now F(f,0,ws;1) = F(f,w,131) = O implies F(f,0,w;x) = O, which contra-
dicts F(f,0,wsw) >0. Therefore F(f,u,v;x) € f(x) for all x in [u,v],
and hence f is super-(L).

{ii). In this part it will be shown that every non-zerc decompo-
sition of f is proportional to f. Let g and h be any elements of C
such that f = g+h. By Theorem 4, g and h are (L)-lirear on [O,w] and
on [w,lj . Let k =g(w)/f(w). Note that g(w) # 0 since g(0) = 0 and

g is not identically zero. Then kF(f,0,w3;x) is the unique solution of

=
—
<
~—
I

0 such that kF(f,0,w;0) = 0 = g(0) and kF(f,0,wsw) = g(w). So

F(g,0,w;x) = kF(f,0,w;x) = kf(x) for all x in [O,w] . Similarly,

te}
x

~—
it

1

kF(f,w,13x) is the unique solution of L(y) = O such that kF(f,w,l;w)
g(w) and kF(f,w,131) =0 = g(1). So g(x) = F(g,w,13x) = kF(f,w,13x) =
kf(x) for all x in [W,ij . Thus g(x) = kf(x) for all x in [0,1] , and
the decomposition is proportional. Therefore any (L)-conical function

for which w is in (0,1) is an extremal element of C.

Lemma 5. If f is an element of C which is not (L)-linear on {0,1]
and is such that either f(0) = 0 or f(1) >0, then f is not an extremal
element of C,

Proof. It will be assumed that f(0) >0 since the proof for the
case where f(0) = 0 and f(1) > 0 is similar. .

Let g(x) = F(f,0,13%) and h = f-g. (See Figure 5.) Suppose
F(£,0,135u) < 0 for some u in [0,1] . Then since F(f,0,13x) is con-

tinuous, and since F(f,0,130) = £(0) >0 and F(f,0,1;1) = f(1) =0,
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Figure 5, Lemma 5 proof,

there exist an x' in (0,u) and an x" in (u,1] such that F(f,0,13x') =0
and F(f,0,15x") = 0. Thus F(f,0,13x) =0 by uniqueness of solution to
L(y) = 0, which contradicts F(f,0,1;0) = £(0) > 0. Therefore g is non-
negative. Since F(f,0,13x) is (L)-linear, g is super-(L). Thus g be-
longs to C.

Since f is super—(L), f(x)ZF(f,0,13x) for all x in [O,i]a Thus
h(x)=f(x)-F(f,0,13x) is non-negative., By Lemma 1, h is a super-(L)
function since h(x) = f(x) + (-F(f,0,13x)) and -F(f,0,13x) is an
(L)-linear function. Thus h belongs to C.

The decomposition is non-proportional since g is an (L)-linear
function, but kf is not (L)-linear for any non-zero real number k.

Therefore f is not an extremal element of C,.

Lemma 6., If f is an element of C which is (L)-linear on [9,1]
and such that f(0) > 0 and f(1)> 0, then f is not an extremal element

of C,
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Proof, Let h be the (L)-linear function such that h(0) = 0 and
h(1) = £f(1). Let g be the (L)-linear function such that g(0) = £(0)
and g(1) = 0. (See Figure 6.) By uniqueness of solution to L(y) = 0,
a not—identicaily—zero (L)-linear function can be 0 at only one point,
so that g and h are non-negative., Since g and h are (L)-linear they
are super—(L). Thus g and h belong to C. Now g+h is the solution of
L(y) = 0 such that (g+h)(0) = g(0)+h(0) = £(0) and (g+h)(1) = g(1) + h(1)
= f(1), so that f = g+h by uniqueness of solution to L{y) = 0,

Let k be any positive real number, Then kf(0) # 0 = h(0), so
h % kf. Thus gand h form a non-propcrticnal decomposition of f, and

hence f is not an extremal element of C,.

To complete the characterization of the extremal structure of C,
it will be shown in Lemma 8 that the non-{L)-conical functions which
are 0 at both end-points are not extremal elements of C. For such a
function, the non-proportional decomposition exhibited in the proof of

Lemma 8 will be based on the following lemma,

f
9 h ——77
\ //
\ ///
I
// \
- \
-
/// \
~
~
0 1

Figure 6. Lemma 6 proof.
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Lemma 7. If g is a super—(L) function which is positive on (w,1)
for some w in (0,1) and is such that g(w) = g(1) = O, then there exists
an (L)-linear function F which intersects g at least once in (w,1) and
is such that F(x) Z g(x) for all x in [w,1] and F(0) = 0,

Proof. Let X =-{F: F is (L)-linear, F(0) = 0, F # 0, and F(u) = g(u)
for at least one u in Ew,{]}'. By Definition 1, X is not empty, If
F is in X, then F(x) > 0 for all x in (O,l] by uniqueness of solution
to L(y) = 0. Let P(Fg) = {x: x is in [0,1] and F(x) = g(x)} + The
structure of P(Fg) will be considered in three cases:

Case A: There exists an F in X for which there exists an x' such
that P(Fg) ={x'} .

Case B: There exists an F in X for which P(Fg) consists of more
than two points,

Case C: For every F in X, P(Fg) consists of exactly two -points.,

If a function of the type described in Case A exists, then it will
be used as the function F in the statement of the lemma, If no such
function exists, then it will be proved that a function of the type de-
scribed in Case B must exist and that it may be used as the function F
in the statement of the lemma.

It will first be shown that for the F in Case B, p(Fg) is a closed
interval. Let u< z < v be three points in P(Fg). Then since F is the
solution of L(y) = 0 such that F(u) = g(u) and F(z) = g(z), and since g
is super-(L), it follows that g(x) = F(x) for all x in [u,z] . Also,
since F is the solution of L{y) = O such that F(z) = g(z) and F(v) = g(v),
it follows that g(x) = F(x) for all x in [u,z] by Theorem 1. Thus

g(x) = F(x) for all x in [u,z] . Similarly g(x) = F(x) for all x in
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(zv] , so P(Fg) is a convex set in (0,1] and hence is an interval. Let
x' < x" be the end-points of the interval. Since F and g are continuous,
F(x') = g(x") and F(x") = g(x"). Therefore P(Fg) is a closed interval,

Next, it will be shown that Case C is impossible, Let A be an index
set such that X = {sz & 1s in A} . For each F, in X, let x, be the
smaller point in P(Fg g), and let ye be the larger,

If Fo(;é Fﬁ » then Xy Yo xﬁ , and yﬁ are all distinct since
Fx and F‘3 can have no more than one point, (0,0), in common by unique-
ness of solution to L(y) = 0. (eag., if x, = xg, then Fo (xn) = glx )=
o(xg) = Fglxg)e)

Let F, be in X, Suppose there exists an FB in X such that yﬁg X
and F’@ ;5 Fx « Then F,@ 75 F, implies yﬁ;é X o by the above remark, so
Vg < Yoo Since g is super-(L), Fﬁ(x) = g(x) for all x in (yﬁ,lj by
Theorem 1. Since P(Flg g) = {xﬁ ,yﬁ} and xﬁ< 7 F,G (x) >g(x) for all
X in (y’B ,1] . In particul.ar, Fﬁ (x o) >g(x4 ). Similarly, Fq(x)>g(x)

for all x in [w,x4), and in particular, th(yg )>g(y16)a (See Figure 7.)

0 W Xg Vg Xor Y 1
Figure 7. Lemma 7 proof. Assumption that
y,@ é xo<°
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Then Foe (v g)Fglyg) > alvg)Fglyg) = alyg)-alyg) = 0, and

Fox (Xg )—-F/3 (X o) € Foe (xpe)-glx,.) = 9{xp )-9(x, ) = 0. Thus there
exists an x' in (y’3 ,xo() such that Fge(x') = F/e(x') since F, and Fg
are continuous, Since F(0) =0 = F13 (0)y Foe= F‘e by uniqueness of
solution to L(y) = 0, which contradicts the assumption that FD(% Eﬁ .
Therefore for every F/sin X,. X < Y,B .

-Then {xd : o is ih"ﬂ} has an upper bound (any Vg ), 50 by-the
completeness property of real numbers there exists a least upper bound
Z. Similarly, iya(: o¢ is in A} has a lower bound (any Xﬁ), so that
it has a greatest lower bound z'., Since Xog < y,s for all O(",'B in A,

z €£z'. Suppose z <z'. Then there is an x' in (z,z'), and the points
(0,0) and (x*',g9(x')) determine a solution of L{y) = O which is in X,
This is a contradiction since then x' would have to be in {%a(:axis in
Az or {}o(: o is in ﬁ} , but be less than the greatest lower bound of
{y“ 2 o is in A} and greater than the least upper bound of {;(«.:o(is
in A}. Thus z = z',

Let F be the solution of L(y) = O determined by the two points (0,0)
and (z,9(z)). Then F belongs to X, so F intersects g in a second point,
say (z', g(z")), where z' # z and z' is in (w,1). There are two possible
casess

Case 13 Suppose z' « z. Let u be such that z' < u <z. Let G be
the solution of L(y) = 0 determined by the two points (0,0) and (u,g{u)).
Then G is in X, so that G intersects g at a second point, say (v,g(v)).
Suppose v = z. (See Figure 8,) Since g is super—(L), G(u) = g(u) = F(u)
and F(z) = g(z) 2 G(z). Then there exists a u' in (u,v] such that

F(u') = G(u') since F and G are continuous. Thus F = G by uniqueness of
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Figure 8, Lemma 7 proof. Assumption that z'< z,

splution to L(y) = 0. This contradicts z' < u < z since F intersects
g in only two distinct points., Similarly, assuming v < z' leads to a
contradiction, so that z' < v < z. Then the larger of u and v is in

{yo(: & is in AZ and less than z, the greatest lower bound of%w: [ ¢
is in A}, a contradiction.

Case 2: Suppose z' >z, Let u be such that z<u< z', Let G
be the solution of L(y) = O determined by the two points (0,0) and
(uyg(u)). Then as in Case 1, G intersects g at a second point v such
that z < v < z'. The smaller of u and v is in {x“: x is in A} and
greater than z, the least upper bound of {}cx‘ o is in A}, a contra-
diction,

Thus F intersects g only at (z,g{z)), and Case C is impossible,

Suppose for the F in Case A that F(u) < g(u) for some u in {w,1] .
Then F(x) < g(x) for all x in (w,1] such that x # x', since P(Fg) =

{x{} . This contradicts F being non-negative., In Case B, let
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x' = sup P(Fg) and x" = inf P(Fg)., Then F(x) = g(x) for all x in [w,x"]
and (x',1] by Theorem 1. Thus in either case, F(x) = g(x) for all x in

(w,1] , and the proof of Lemma 7 is completed.

Lemma 8, If f # 0 is an element of C which is not (L)-conical and
is such that f(0) = f(1) = 0, then f is not an extremal element of C.

Proof. Let w be in (0,1). Since f is not (L)-conical, it is
either non-(L)-linear on (O,w] or on [w,I]. It will be assumed that
f is non—-(L)~linear on E@,I], since the proof for the other case is
similar.,

Let g(x) = f(x)-F(f,w,13x) for all x in [0,1]. (See Figure 9.) It
will be shown that g satisfies the hypotheses of Lemma 7. The (L)-linear
function of the conclusion of Lemma 7 will then be used to exhibit a
non-proportional decomposition of f. By Lemma 1, g is a super—(L)
function since -F(f,w,15x) and f are super—(L) functions. Next,
glw) = f(w)-F(f,w,13w) = f(w)-f(w) = 0 and g(1) = £(1)-F(f,w,151) =

O. Finally, it is necessary to show that g is positive on (w,1).

Figure 9, Lemma 8 proof. The function ga
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Since f is super—(L), f(x) = F(f,w,13;x) for all x in (w,1), so that

g(x) 20 for all x in (w,1). Suppose there exists a u in (w,1) for

1

which g(u) = 0. Then F(f,w,13u) = f(u) and F(f,w,1l3w) = f(w) imply by
uniqueﬁess of solution to L(y) = 0 that F(f,w,13x) = F(f,w,u;x), Similarly,
F(f,wy15u) = f(u) and F(f,w,151) = £(1) imply by uniqueness of solution
to L(y) = 0 that F(f,w,13x)= F(f,u,l3x), By Theorem 1, f(x) = F(f,u,1l5x)=
F(f,w,13x) for all x in [w,u] and f(x) < F(f,w,u;x) = F(f,w,15x) for all
x in [u,1]. Since f is super-(L), f(x) & F(f,w,13x) for all x in [w,1].
Thus f(x) = F(f,w,13x) for all x in {w,1], which contradicts the assump-
tion that f is non-(L)~linear on (w,1]. Therefore g(x) >0 for all x in
(w,1).

By Lemma 7 there exists an (L)-linear function F which intersects g
at laeast once in (w,1) and which is such that F(0) = 0 and F(x) = g(x)
for all x in (w,1] « Let z = sup P(Fg). Suppose z = 1. Then F(1) =
g(1) = £(1)-F(f,w,131) = £(1)-f(1) = 0, and since F(0) = 0, F = 0 by
uniqueness of solution to L(y) = 0. This contradicts F(x) = g(x) for all
x in (w,1). Thus z < 1. Now, f(z)-F(z) = f(z)-g(z) = F(f,w,13z) >0
and f(1) = 0 <F(l), so that there exists an x' in (z,1) such that
f(x') = F(x'). That is, F(x) = F(f,0,x"3x).

Let G(x) = F(f,0,x";x) for all x in {0,z] and f(x)-F(f,w,13x) for
all x in [2,1] . Let H = f-G,

To complete the proof that f is not an extremal element of G, it will
be shown that G and H belong to C énd that f 1s not proportional to G.
The proofs that G and H belong to C are each given in two parts: (i) each

function is shown to be non-negative, and (ii) each is shown to be

super—(L).



(i). Suppose there exists a u in (0,1] such that F(f,0,x';u)=0,
Then F(f,0,x';1)>g(1) = 0 and continuity of F(f,0,x"3x) imply that there
exists a v in[u,1)such that F(f,0,x";v) = 0. So F(f,0,x';x)=0 by
uniqueness of solution to L(y) = 0, since F(f,0,x';0)= 0, This tontradicts
F(£,0,x';1) > 0, Therefore F(f,0,x";x) 20 for all x in [0,z] . Since
f is super-(L), f(x)2F(f,w,13x) for all x in(w,1], so f(x)-F(f,w,15x)20
for all x in{w,1]. Thus G is non-negative,

By its definition, H(x) = f(x)-F(f,0,x';x) for all x in [0,z] and
F(f,w,13x) for all x in(z,1].

Since f is super-(L), f(x) Z F(f,0,x'3x) for all x in [0,x'], so
H(x) = f(x)-F(f,0,x";x) 2 0 for all x in E),z] since z < x', Since
F(f,w,132) > 0 and F(f,w,151) = 0, F(f,w,15x) = 0 for all x in[z,1]
because othe rwise F(f,w,15x) would be zero at some u < 1 and by unique-
ness of solution to L(y) = 0 F(f,w,13x) would be identically zero, a
contradiction, Thus H is non-negative on [b,l].

(11). Since F(f,0,x';x) is (L)-linear, G is super-(L) on (0,z].
By Lemma 1, G is super-(L) on [z,1]. Let u be in [0,2) and v in (z,1].
Suppose F(Gyu,vsu') >G(u') for some u' in (u,v). (See Figure 10,)
Then F(G,u,v3z) > G(z), since if F(G,u,v;z) £ G(z), F(G,u,vsu*) > G(uf)
and continuity of F(G,u,v3x) and G imply the existence of a v‘fbetween
z and u' such that F(G,u,vjv') = G(v'), If v' is in (u,z], F(G,u,v;x)=
F(f,0,x";x) by uniqueness of solution to L(y) = 0, since F(G,u,vju) =
F(f,0,x';u) and u # v'. This contradicts F(f,0,x';v) > G(v) = F(G,u,v;v).
If v' is in (z,v), thenu< z S v' < u' < v and G{u')<F(G,u,v;u') =
F(G,v',v;su') contradict G being super-(L) on (z,1]. Then F(G,u,v;z) >
G(z) = F(f,0,x"3z), F(G,u,vsv) = G(v) < F(f,0,x*;v), and continuity

of F(G,u,vsx) and F(f,0,x';x) imply the existence of a z" in (z,v)
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Figure 10. Lemma 8 proof. The function G.

such that F(G,u,vsz') = F(f,0,x';z"). By uniqueness of solution to

L(y) =0, F(Gyu,v;x) = F(£,0,x";x) since F(Gyu,vsu) = G(u) = F(£,0,x";u)
and u # z'. This contradicts F(f,0,x';v) > F(G,u,v;iv). Thefefore

G(x) Z F(G,u,v3x) for all x in [u,v], and G is super-(L) on (o0,1].
Therefore G belongs to C.

In order to prove that H is super-(L) on [0,1], it is first
necessary to show that H(x) € F(f,w,1;x) for all x in [0,z]. Suppose
there exists a u in (0,z) such that F(f,w,13u) < H(u) = f(u)-F(f,w,15u).
Then F(f,0,x';u) < f(u)-F(f,w,13u) for some u in [0,z). As shown
previously, F(f,0,x';x) >0 for all x in (0,1], so F(f,0,x';w) >
f(w)-F(f,w,13w) = 0. By continuity of f(x)-F(f,w,13x) and F(f,0,x";x),
there exists a v between w and u such that F(f,0,x';v) = f(v)-F(f,w,1;v).
Suppose u € v < w. Then since f is super-(L), f(v)Z€F(f,w,15v) by
Theorem 1. Then F(f,0,x'3v) = f(v)-F(f,w,13v) = 0, which contradicts

F(f,0,x'3v)> 0. If w<v <u then P(Fg) contains v and z but not u,
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which contradicts P(Fg) being a single point or a closed interval,
(Recall that F(x) = F(f,0,x'3x) and g(x) = f(x)-F(f,w,13x).) Thus
F(f,0,x"3x) = f(x)-F(f,w,15x) for all x in [0,z), or in other words,
F(f,w,13x) 2 H(x) for all x in {0,z].

Since F(f,w,15x) is (L)-linear, H is super-(L) on (z,1]. By
Lemma 1, H is super—(L) on (0,z]. Let u be in[0,z) and v in (z,1].
Suppose F(H,u,vsu') > H(u') for some u' in (u,v). (See Figure 11.)
If F(H,u,v3z) = H(z) then there exists a v' between u' and z such that
H(v') = F(H,u,v;v') since H and F(H,u,vjx) are continuous. If v' is in
(up,z), thenu< u' < v' < z <v and H(u') < F(H,u,vsu') = F(H,u,v'su")
contradict H being super-(L) on (0,z]. If v' is in [z,v), then
F(H,u,v3x) = F(f,w,13x) by uniqueness of solution to L(y) = 0 since
F(f,w,13v) = F(H,u,vjv) and v' # v. This contradicts F(f,w,l3u) > H(u) =

F(H,u,vju). Thus F(H,u,vsz) > H(z). Then F(H,u,v3z) > H(z) = F(f,w,1;z)

1

and F(f,w,1l;u) = H(u) = F(H,u,v;u) imply the existence of a z' in [u,z)

such that F(H,u,v3z') = F(f,w,13z") since F(H,u,v3x) and F(f,w,1l3x) are

-

continuous. By uniqueness of solution to L(y) = 0, F(H,u,v;x)=

F(f,w,13x) since F(H,u,v3v) = H(v) = F(f,w,13v) and z' # v. This contra-

dicts F(H,u,v;z) > H(z) = F(f,w,13z). Therefore H(x) = F(H,u,v;x) for

all x in [u,v], and H is super—(L) on (0,1}. Thus H belongs to C.
Suppose there exists a real number k such that G = kf., Since

G#0, k #0. Then f is (L)-linear on [0,z] since G is. Since f = G+H

and H # 0, it follows that k # 1. Then H = f-G = f-kf = (1-k)f, so

that f is (L)-linear on [z,1] since H is, Thus f is (L)-conical since

f(z) > 0, which contradicts the original assumption that f is not

(L)~conical. Therefore G and H form a non-proportional decomposition

of f, and hence f is not an extremal element of C.
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Figure 11, Lemma 8 proof., The function H,

Note: The function 0 is trivially an extremal element of Cj; hence,

the not—-identically—-zero extremal elements will be called "non-trivial, "

Theorem 7, A function f is a non-trivial extremal element of C if
and only if f is an (L)-conical function.

Proof, The proof follows directly from Lemmas 2, 4, 5, 6, and 8.



CHAPTER III

INTEGRAL REPRESENTATION

This chapter is concerned with the existence of a type of integral
representation (Radon measure) for the elements of the convex cone C

based on the following theorem due to Choquet.

Theorem 8 (5, pe 237]. If the linear space L is a locally convex
Hausdorff space, and if A 1s a convex compact subset of L, then for
every x in A there exists a non-negative Radon measure [6] on the

closure of the set of extreme points of A whose center of gravity is xa

Definition 9, Let A and B be subsets of a real linear space L.
Then A+B = {x+y:'x is in A, y is in B}, -A = {x: -x is in A}, and

A-B = A+(-B).

The theorem will be applied in the following way. First, it is
known that C-C is a real linear space such that the vertex of C is the
origin of C-C [7, o 47]. It is also known that when C-C is topologized
with the topology of simple convergence, it 1s a locally convex
Hausdorff space [5,p. 236]. (The topology of simple convergence is the
induced product topolqu of R[D’IL A neighborhood basis at 0 for C-C
consists of the sets {f: [f(xi)|<:8 for i = l,na.,n}', where € is a
positive real number.) Then it will be shown that B = {f: f is in G,

f(w) = i}, where w is a fixed real number in (0,1), is a convex compact
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subset of C-C which meets each ray of C once and only once and does hot
contain 0, It will also be shown that the set of extreme points of B is
closed in C-C for the topology of simple convergence. So by Theorem 8,
there will exist an integral representation of each f in B in terms of
extreme points of B. It will then follow that there is an integral
representation of each g in C in terms of extremal elements of C, since
B meeting each ray of C once and only once implies that there exists a
real number k such that kg belongs to B and that the set of extremal
elements of C is the same as the set {bf: f is an extreme point of B,
m is a non—-negative real numbe{}.

The proof that B is closed willl be based on the following theorem

and lemmas.

Theorem 9 (8, p. 218]. 1In order that a family F of functions on a
set X to a topological space Y be compact relative to the topology of
simple convergence it is sufficient that

(a) F be pointwise closed in YX, and

(b) for each point x of X the set F[x] = {f(x): f is in é} has a

compact closure,

Lemma 9, Let B = {f: f is in C, f(w) = i}, where w is a fixed real
number in (0,1). Let G be the solution of L{y) = O determined by the
points (w,l) and (l,OO, and let H be the solution determined by the
points (0,0) and (w,1). Then for each x in [O,w), {f(x): f is in
B}-: [H(x),G(x)], and for each x in [w,1], {f(x): f is in B} = [@(x),H(x)].

Proof. Suppose there is an x' in [0,1) for which G(x') £ 0. Then
G(w) = 1 and continuity of G imply that there exists an x" between w and

x* such that G(x") = 0, and hence G = 0 by uniqueness of solution to



28

L(y) = 0. This contradicts G{w) = 1. Thus G(x) >0 for all x in [0,1),
Similarly, H(x) > 0 for all x in (0,1}, so that G and H belong to B,

7 Suppose there exists an x' in [O,w) such that G(x*) < H(x*'). Then
G(0) > 0 = H(0) and continuity of G and H imply that there exists an x"
in (0O,w) such that G(x™) = H(x"®). Then G(w) = 1 = H(w) implies G =H
by uniqueness of solution to L(y) = 0. Therefore G(x) > H(x) for all x
‘in (0,w). similarly, H(x) > G(x) for all x in (w,1].

Note that since G and H are continuous on [0,1], each assumes its
maximum on [O,,lja

Let f be any element of B. It will be shown that f is bounded be-
tween G and H. Suppose there exists a u in [0,w) such that f£(u) > G(u).
Then suppose there exists a v in [O,w) such that f(v) = G(v). Now
f(u) >G(u), f(v) = G(v), and continuity of f and G imply that there
exists an x' between u and v for which f(x*) = G{(x"), If v =x"<u
then G(x) = F(f,x*,w;x). (See Figure 12,) By Theorem 1, f(x) = G(x)

for all x in (w,I]. Then £(1) £ G(1) = 0 implies £(1) = O since f

G H
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Figure 12, Lemma 9 proof. The case vEx'< u,



is non-negative. So G(x) = F(f,w,13x), and by Theorem 1 f(x) £ G(x) for
all x in [0,w], which contradicts f(u) > G(u). Thus v< x' < u is im-
possible. Suppose then that u < x'< v. (See Figure 13.) Now G(x)=
F(f,x%*,w;x) and f super—(L) imply that f(x) < F(f,x',w;x) for all x in
(0,x'] by Theorem 1, which contradicts f(u) >G(u). Thus £(u) > 0
implies f(x) > G(x) for all x in [O,w). Suppose there exists a z in
(w,1] for which f(z)< G(z). (See Figure 14.) If £(1) = G(1) =0,
then f(z) £G(z) and continuity of f and G imply the existence of a z!
in (z,1] such that f(z') = G(z'). Then since G(x) = F(f,w,z'3x) and f
is super-(L), f(x) = G(x) for all x in [O,w) by Theorem 1, which con-
tradicts f(u) > G(u). Thus f(1) < G(1) = 0, which contradicts f being
non-negative. Thus f(x) > G(x) for all x in (w,1]. Since -G is a
super—(L) function, f-G is a super—(L) function by Lemma 1. Now
(f-G)(w) = f(w)-G(w) = 0 and w is in (0,1), so f-G = 0 by Theorem 6
since f-G is non-negative. This contradicts f(u) > G(u). Therefore

f(x) € G(x) for all x in [O,w].
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Figure 13. Lemma 9 proof. The case u<x'Zv.
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Figure 14. Lemma 9 proof, Assumption that
f(z) é G(Z)o

Similarly, f(x) < H(x) for all x in EN,I],

Suppose there exists a u in [O,w) such that f(u) < H(u): (See
Figure 15.) If £(0) = H(O) then continuity of f and H implies that
there exists an x* such that 0 € x* < u and f(x') = H(x'). Now H(x)=
F(f,x*,wsx), f(u) < F(f,x',wsu) and x'< u< w contradict f being super-(L).
Then £(0) < H(0) contradicts f being non-negative, Thus f(x) =H(x) for
all x in [0,w]. Similarly, £(x)=G(x) for all x in [w,1].

Therefore for each x in [O,w], {f(x); f is in é}(::[H(x),G(xi], and
for each x in [w,1], $£(x): f is in B} < [G(x),H(x)]. Let x and y be
such that 0 £ x <w and H(x)< y < G(x). By Definition 1, there exists
a unique (L)-linear function F such that F(w) =1 and F(x) = y. Since
F is in C, it follows that F is in B. Thus for each x in [O,w),
(H(x),G(x)] = {f(x): f is in E}; For x = w, {f(w): f is in é} =
{1} = [H(w),G(w)]. Similarly, for each x in [w,1] {}(x): f is in E} =

[G(x),H(x)], and the lemma is proved.
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Figure 15. Lemma 9 proof. The case f{u)<H(u).

Lemma 10. The convex cone C 1s closed inRELD for the topology of
simple convergences

Proof. Let f belong to the complement of C. It will be shown that
the complement of C is open by exhibiting a neighborhood of f contained
entirely in the complement, Thekproof will be given in two parts based
on the fact that if f is not in C, then either f is non-negative and not
super—(L) or f is not non-negative.

Case I. Suppose f is not non-negative, Then there exists an x* in
(0,1) such that £f(x') < 0. Let €= -(£(x*)/2). Let g be in U(f;x*;¢),
an g¢-neighborhood of f in the topology of simple convergences Since
[g(x‘)—f(x"‘)|<8 , g(x?)-f(x")< -f(x*)/2, and so g(x') < f(x*)/2 <0,
Thus g is not non-negative and hence not in C. Therefore U(f;xa;va) isg
contained in the complement of C,

Case II, Suppose f is non-negative and not super-(L). Then there

exist u,z, and v such that u< z < v and f(z)< F(f,u,v3z). For
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convenience, denote F(f,u,v3x) by F(x),
If F(u) = f(u) > 0 and F(v) = f(v) > 0, let
g =(1/2hin {F(u) (F(2)-£(2)] /[F(u)+F(z)), F(v)[F(z)-f(Z)]/[F(v)'fF(z)]} a
Observe that € >0 since F(u) > 0, F(v) >0, and F(z) > f(z) 2 0.
Thens g< F(u) (F(z)-£(z)] /[(F(u)+F(z)]
(F(u)+F(z))€ < F(u) [F(z)-£(z)]
F(u)e+F(z)€ < F(u)F(z)-F(u)£(z)
F(u)f(z)+F(u)E < F(u)F(z)-F(z)&
F(u) (f(z)+€]<F(z) (Flu)-£)
F(u) (£(z)+€)/F(z) < F(u)-€.
Similarly, F(v) (£(z)+€)/F(z) < F(v)-& Let k = (f(z)+&)/F(z).
By Lemma 1, kF is an (L)-linear function. Note that kF(z) = f(z)+&.
Suppose there exists a g in CNU(fju,v,z3E). (See Figure 16.) Then
g(u) > f(u)-€= F(u)- & > kF(u), g(v) > f(v)-& = F(v)- & > kF(v), and
g(z) < £(z)+&€ = kF(z). Since g and kF are continuous, there exists an

x' in (u,z) such that g(x') = kF(x'), and there exists an x" in (z,v)
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Figure 16, Lemma 10 proof.
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such that g(x") = kF(x"). Then kF(x) = F(g,x?,x"sx) and g(z) < F(g,x*,x";z)
contradict g being super-(L). Thus U(f;u,v,z;&) is in the complement of
Ce

If F(u) = 0, then F(v) = 0 implies F = 0 by uniqueness of solution
to L(y) = 0, and F(z) = 0 contradicts F(z) > f(z) 2 0. Thus F(v) > 0.
Let &=[1/2F(v) [F(z)-f(zi]/[f(v)+F(z)] . As shown in the preceding
paragraph, £€>0 and kF(v) < F(v)-&. If there exists a g in
CNU(fsu,v,z3 £), then g(v) > f(v)-E= F(v)-& > kF(v). Since g and
kF are continuous, there exists an x? éuch that g(x*) = kF(x') and
u € x*< z, and there exists an x" such that g(x") = kF(x") and
z < x" < v. Then kF(x) = F(g,x',x";x) and g(z) < F(f,x‘,x";z) contra-
dict g being super-(L), so that U(fju,v,z; €) is in the complement of C.

Similarly, if F(v) = 0 then F(u) > 0 and U(fju,v,z; &) is in the
complement of C, where &=[1/F(u) (F(z)~£(z)] /[F(u)+F(v)].

Thus the complement of C 1s open irlRE%Dfor the topology of simple

convergence, and the lemma is proved.

Theorem 10. The set B = {f: f is in C, f(w) = i}, where w is a
fixed real number in (0,1), is a convex compact subset of C-C which
meets each ray of C once and only once and which does not contain O.

Proof, First, it will be shown that B is a convex set., Let f and
g belong to B, and let k be any real number such that 0 <k < 1. Then
by Lemma 1, kf+(1-k)g is in C. Since (kf+(1-k)g)(w) = kf{w)+(1-k)g(w)=
k+l-k = 1, kf+(1-k)g is in B. Thus B is convex.

Next, compactness of B will be proved by applying Theorem 9. To
prove that B is closed, it will be shown that the complement of B

relative to C is open. Then since C is closed relative to]ﬂbﬂgby
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Lemma 10, Bwill be closed relative toREhﬂ Let f be any element in
the complement of B relative to C. Then since f.is super*(L), f(w) # 1.

Let €= |f(w)-1

« The neighborhood U(fsws £)N\C of f is in the comple-
ment of B relative to C, since if g is an& element in U(f;w3;E)NC,
[g(w)—f(w)|<:8 implies [g(w)—f(w)l<: lf(w)~l| . Then [g(w)—l|=
|g(w)-—f(w)+'f(w)—l| P |7f('w)—l] - Ig‘(w)—‘f(w)" > 0, so that g(w) # 1, and
hence g is not in B. Thus f is an interior point of the complement of
B relative to C.v Therefore B is closed relative toRﬁ%EL Then by

Lemma 9 and Theorem 9, B is compact.

Clearly f = 0 is not in B-since f{w) = 0 Z 1.

To complete fhe proof of the theorem, it will be shown that B inter-
sects each. ray of C in one and only one point. Let H be any ray of C,
Then there exists an f # 0 in C such that H = {kf; k is a non-negative
real numbef}. Since f is continuous on [0,1] f(w) is finite., By
Theorem 6, f(w) # 0 since w is in (O,l); Then k = 1/f(w) is the unique
real number such that kf(w) = 1. Thus the intersection of B with H

exists and is unique,

Lemma 1l. If f is an element of B\e(B), the complement of e(B)
relative to B (where e(B) is the set of extreme points of B), then
either there exists a u in [0,w) such that H(u) < f(u) < G(u) or there
exists a u in (w,1) such that G(u) < f(u) < H(u), where G and H are the
functions of Lemma -9. |

Proof. Suppose the conclusion of the lemma is false. By Lemma 9,
H(x) < f(x) < G(x) for-all x in [0,w] and G(x) € £f(x) = H(x) for all x
in tw,l] . Since f is continuous and G(x) # H(x) for any x in [O,w) or

(w,1], there are four possible cases: 1) f(x) = G(x) for all x in
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{o,w) and £(x) = H(x) for all x in [w,1] , 2) £(x) = H(x) for all x in
EO,w] and f(x)

(0,1]), and 4) £(x) = H(x) for all x in [0,1]. In cases 2, 3, and 4, f

G(x) for all x in [w,1], 3) £(x) = G(x) for all x in

1

is an (L)-conical function and thus in e(B), which contradicts f being
in B\e(B)e In case 1, it will be shown that f cannot be super-(L).
Let u be in (0,w), v in (w,1]. Then F(£f,u,vsw) = £(w) = G(w),
F(f,u,v3v) = H(v) > G(v), and continuity of F(f,u,vix) and G(x) imply
the existence of an x' in [w,v) such that F(f,u,v3x') = G(x"). Then
F(f,u,v3x) = G(x) by uniqueness of solution to L(y) = 0. This contra-

dicts G(v) < H(v) = F(f,u,vsv), and the lemma is proved.

Theorem 11, The set e(B) of extremal elements of B is closed in
C-C for the topology of simple convergence.

Proof. By Theorem 10, B is closed relative to C-C, so to show
e(B)is closed relative to C-C it is only necessary to prove e(B) is
closed relative to B. It will be shown that B\e(B) is open relative
to B. Let f belong to B\e(B). Using the conclusion of Lemma 11 and
the fact that f is continuous, it will be assumed that there exists a
u in (0,w) such that H(u) < f(u) < G(u). The proof for u in (w,1] such
that G(u) < f(u) < H(u) is similar, and will be omitted,

Let P be the (L)~conical function in e(B) determined by the points
(0,0) and (u,f(u)). Note that any (L)-conical function in e(B) is
either 1) identical with H on [0,r) and identical with the (L)-linear
function determined by the points (r,H(r)) and (1,0) on [r,1], where
r is in (w,1], or 2) identical with G on [r,1]) and identical with the
(L)-linear function determined by the points (0,0) and (r,G(r)) on
[D,r] where r is in [D,ﬁj. Let z be the x-coordinate of the vertex of

P, Note that z<w, since if P intersects H at any point in [D,wj, then
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uniqueness of solution to L(y) = 0 implies P(x) = H(x) for all x in
(0,w], which ﬁontradicts P(u) = f(u) >H(u). Suppose f(x) = P(x) for‘
all x in [0,2], Then f -super—(L) and G(x) = F(f,z,w;x) imply-f(x) = G(x)
for all x in (z,w] ard £(x) € G(x) for-all x in (w,1], b§ Theorem 1, By
Lemma 9, f(x) = G(x) for all x in [—O,vﬂ and f(x) =2-G(x) for all x in
[w,1]. Thus £(x) = G(x) for all x in (z,1], and hence f = P, which
contradicts f not being in e(B). Therefore there existsa v in [:O,zj such
that f(v) # P(v).
It will now be determined how £ may be chosen so that U(f3u,v; €)

is a neighborhood of f contained entirely in B\e(B). (See Figure 17.)
Let Q be the (L)-conical function in e(B) determined by the points (0,0)
and (v,[l/2)E(v)+P(v)] )a Now [Q(v)-P(v)]| =|({1/Be(v)+L/ZP(v)-P(v)] = =
@/é}lf(v)—P(v)l > 0. Thus Q(v) # P(v), which implies by uniqueness of
solution to L(y) = 0 that Q(u) # P(u) = f£(u), since Q(0) = P(Q). Let

& =0/Fnin{|£(v)-p(v)| ,|£(u)-a(w)]}.

Suppose there exists a g in U(fju,v; €)Ne(B). Then |f(u)-g(u)|<E&

4 X
T 1 ' v

0 v u z w , 1

Figure 17. Theorem 11 proof,
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and |f(v)-g(v)|<E€. Suppose first that P(v)>Q(v). Then f(u)=

p(u) > Q(u) by uniqueness of solution to L(y) = 0, and @(v) =(1/3e(v){1/2P(v) >

/2 (v)+/Z(v), so that Q(v) > f(v). Thus f(u)-g(u) < €< £(u)-Q(u)

implies g(u)-Q(u) > 0, and Q(v)~£(v) =[1/J(v){/2P(v)-£(v) =

L/2p(v)~t(v)]) Z & > glv)-f(v) implies g(v)-Q(v)< 0. Also, G(v) =

P(v) > Qlv) =[1/2F(v)*+P(v)] = £(v) +[l/]z{?(v) f(v)] £f(v)+ &, so that G

is not in U(fju,v; €). Suppose next that P(v) <Q(v). Then f(u) =

P(u) < Q(u) by unigueness of solution to L(y) = 0, and Q(v) =

L/3e(v)+/2p(v) < /3 (V)4L/F(v), so that Q(v) < £(v). Thus g(u)-f(u)<

€ < Q(u)-£(u) implies g(u)-Q(u) < 0, and £(v)-Q(v) = £(v)-L/2(v)-L/P(v) =

L/2EW)~pv) = € > £(v)-g(v) implies g(v)-Q{v) >0. Also, G(u) =Qu)=

Qlu)=f(u)+f(u) = f(u)+ &, so that G is not in U(fju,v; €). Thus in both

cases, g-Q changes sign between u and v, and G is not in U(fju,v; E). |
Since g-Q is continuous, there exists an x! strictly between u and

v such that g(x') = Q(x*)« Then since g # G, g(0) = Q(0) and unique-

ness of solution to L(y) = O imply g =Q. This is a contradiction

since [f(u)vQ(u)]P’a implies @ is not in U(fju,v; £€). Thus f is an

interior point of B\\e(B), and e(B) is closed relative to C-C.

It now follows from Theorems-8, 10, and 11 that there exists an
integral representation (Radon measure) for each f in C in terms of

extremal elements of C,

Note, If e(B) is dense in B, then the integral representation of
Theorem 8 is of little value, By the above theorem, e(B) is c¢losed,
so that if e(B) Is dense in B then &(B) = B. To see that this is not
the case, observe that[l/@(G+H), where G and H are the functions of
Lemma 9, belongs to B but not to e(B) since [1/29(G+H)(0) # 0 and

[L/2(G+H) (1) # o.



CHAPTER IV
THE STRUCTURE CF C-C

Let X be the convex cone of non-negative concave functions on
[p,l]. The relationship between the real linear spaces C-C and K-K
will be investigated by considering some results obtained by Hartman[?]

and Bonsall [l]»

Definition 10, A real-valued function f defined on a convex
domain D is a ds¢. function on D if there exist continuous convex

functions g and h on D such that f = g-h,

Definition 1l. A real-valued function f is d.c. at a polnt u in
D if there exists a convex neighborhood U of u such that f is dsc. on
UND. When f is d.c. at every point in D, it is called locally d.c. On

D

—t

Theorem 12.[9,pﬁ 707]n If f is locally da.c. on an open interval I,

then f is dsce on T

Theorem 13 El,pn lOSJQ If f is super—(L) on [@,i], then, given a

and b in (0,1), f is d.c. on (a,b).

Theorem 14. If f is super—(L) on [0,1], then f is d.c. on (0,1).
Proof. Let u be in (O,l). Then there exist a and b such that
0O<a<u<b<1, By Theorem 13, f is d.c. on (a,b). Thus f is locally

dec. on (0,1), and by Theorem 12 f is d.c. on (O?l)‘
38



Theorem 15, If L{y) is such that all non-negative (L)-linear
funetions are convex, then K~K is a subspace of C-C.

Proof, Let [ belong to K«K, Then there exist g and h in K sueh
that f=g=h, Let u<v be in {Oy1]. Since g is concave, the line seg-
ment joining the points (u,g{u)) and (v,g(v)) lies below g(x) for all
% in [ﬁ,v]@ Since Flg,u,vix) is econvex, it lies below the line seg-
ment, and thus below g(x) for all x in {u,v]. Thus g is super-(L).
Similarly, h ig super-(L), and hence f belongs te¢ C-C. Therefore

K=K C=C; and hence K=K is a subspace of C-C.

To see that not all L{y) satisfy the hypothesis of Theorem 15,
observe that L(y)=d%y/ax?-[1/(x=2]) dy/dx=0 satisfies Definition 1,

but the golption y==(x=2)24+}; is non-negative and not convex on [Q,%]m



CHAPTER V
REPRESENTATION IN TERMS OF GREEN'S FUNCTIONS

This chapter is concerned with the demonstration of the existence
of a type of integral representation in terms of Green®s functions re-
lated to L(y) = 0. This representation will be for simple modifications
of elements of -the oonQex cone G, |

Let Gt = {f: f is in G, £(0) = £(1) = 0}. Clearly G is a subcone

of C. Let Bt=BNC(C*,

Lemma 12, A functionf is an extremal element of C' if and only
if f is an (L)~conical function with its vertex over w in (0,1).

Proof. If f is not an (L)-conical function, then f is not an ex-
tremal element of C* by Lemma 8 since the functions used for the non-
proportional decomposition in the proof of Lemma 8 are elements of C¥,
If f is an (L)~conical function with its vertex over 0 or 1, then f ig
not an element of C! and hence not an extremal element of Ct.

If f is an (L)=-conical function with its vertex over w in (O,l),
then f is an extremal element of C* by Lemma 4 since the proof of

Lemma 4 uses only elements of C¥¢,

Definition 12, A real-valued function K(x,t) is a Green*s function
of L(y) = 0 with boundary conditions y(0) = y(1) = 0 if 1) for each t,

K(x,t) is a continuous function of x and satisfies the boundary

40
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conditions, 2) for x#t the first and 'second derivatives of K(x,t) with
respect to x are continuous functions of x in [:O,l], and at x = t the

first derivative has the jump discontinuity lim dK/dx-lim dK/dx = -1,
- x>t T Xt~

and 3) K(x,t) as a function of x satisfies L(y) = O throughout [0,1]

except at x = t.

Lemmz 13, For each x in (0,w], {f(x): £ is in B'}- = [H(x),6(x)],
kand for each x in {w,1), {f(x): f is in B} = [G(x),H(x)]. Also,
{f(O): f is in B’} = {O} and {f(l); f is in---B-'t(» = $o0t.

Proof. Let f be an element of B', Since B' is a subset of B,
H(x) € f(x) € G(x) for all x in (O,w] and G(x) < f(x) S H(x) for all x
in [w,0)s Let x and y be such that 0= x <w and H(x) £ y £G(x). By
Definition 1, there existsa unique (L)-linear function F such that
F(0) = 0 and F(x) = y» Then there exists an x' in (O,w] such that
F(x') = G(x'). The (L)~conical function defined as f(x) on [0,x'] and
G(x) on {x',1] belongs to B'. Hence for each x in (0,w), $£(x)s £ is

in Bt} = [_H(x),G(x):] . Similarly, {f(x): f is in B'} = {G(x),H(x)] for

i

each x in (w,1). For x = w {f(w)-: f is in B’? = {l}. For x

[

$03.

0 ££(0): £ is in B'} = {03, and for x = 1 §£(1): £ is in B'}

Lemma 14, The convex cone C' is closed in R@’ﬂ for the topology
of simple convergence.

Proof. Let f be an element in the complement of C' relative to
R[Q’"D. If £ is in the complement of C, Lemma 10 applies directly to
show that f is an interior point of the complement of C', Let f be in

C\C'. Then f is a non-negative super-(L) function which is non-zero

at 0 or at 1. Let £=[i/§fnax{f(0),f(l)}. Then U(f30,1;&) contains f



42

but does not intersect C'. Thus the complement of C* relative to REQ’]J

Lo,lj_

is open, and hence C' is closed in R

Theorem 16, The set BY = {f: f is in C%, f(w) = i}, where w is
some point in (O,l), isa convex compact subset of C'-C' which meets
each ray of C' once and only once and which does not contain Q,

Proof. The proof is the same as the proof of Theorem 10 with B

replaced by B*, C by C', Lemma 9 by Lemma 13, and Lemma 10 by Lemma 14,

Lemma 15, If f is an element of B*\e(B'), then either there exists
a u in (0,w) such that H(u) < f(u) < G(u) or there exists a u in (w,1)
such that G(u) < f(u) < H(u), where G and H are the functions of
Lemma 9.

Proof, The supposition that the cbnclusion is false implies
£(x) =H(x) for all x in [0,w) and f(x) = G(x) for all x in {w,1].

This f is an (L)-conical function, which contradicts f being in B*\e(RB').

Theorem 17, The set e(B*) of extremal elements of B' is closed in
C*-C' for the topology of simple convergence.

Proof, The proof is the same as the proof of Theorem 11 with B
replaced by B, C by C', Lemma 9 by Lemma 13, Lemmavll by Lemma 15, and

Theorem 10 by Theorem 16.

Theorem 18, If-f is an element of C, then there exists an integral
representation (Radon measure) for f£(x)-F(£,0,15x) in terms of Green's
functions of L(y) = 0 with boundary conditions y(0) = y(1) = 0.

Proof, By Lemma 1, f(x)-F(f,0,13x) belongs to C'. By Theorem 8,
theré exists an integral representation for each funcfion in B* in terms

of extreme points of B*. It then follows that there is an integral
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representation for each function in C*' in terms of extrémallelements of
C', since B® meets each ray of C' once and only once, ‘Since the extremal
elements of'65 are (L)-conical funcfions.with Qérticeﬁ‘bver points in
(0,1), and since for each such function g there‘exiéts-a positive real
number k such that kg is a Green's function of L(y) = Q with boundary
conditions y(0) = y(l) =0, it foi;ows that the integrél'rgpresehtation
for f(x)-F(f,0,13x) is in terms of Green's functiohs-of L(y) = 0 with

boundary conditions y(0) ='Y(1) = 0,

Note., Martin [}O] has obtained a result similar*tp‘that of
Theorem 18 for the special convex cone K of non-negative.concave‘

functions on[b,l].



CHAPTER VI
DISCONTINUOUS SUPER-(L) FUNCTIONS

The larger cone C" of non-negative super—-(L) functions which may
be discontinuous at O or at 1 will be considered in this chapter., For
f in C", F(f,0,u;x) € f(x) for all x in [0,u) and continuity of

F(f,0,u;x) imply £(0) = lim F(f,0,u;x) € lim+f(x), Similarly,
x+0" x+0

£f(1) € lim(x). From this and from Theorem 4 it is easy to see that
X"

any (L)-conical function is also an extremal element of C", Also, since
C is a subcone of G", any element of C ﬁhich is not an extremal element
of C is not an extremal element of C", Therefore to determine the ex~
tremal structure pf C" it is only necessary to consider those elements
which are discontinuous at O or at 1.
Lemma 16, If f is an element of C" such that 0 < f(0) < lig+f(x)
: X

or 0 < £(1) < lim £(x), then f is not an extremal element of C",
x-1"

Proof. Let g(x) = F(£,0,15x) for all x in [0,1], and let h = f-g,
Then g is in C" since F(f,0,13x) is a non-negative (L)-linear function.
Since f(x) = F(£,0,13x) for all x in {0,1], h is non-negative, By
Lemma 1, h is super-(L) and hence is in C", Suppose there exists a
positive real number k such that g = kf. Then £f(0) = g(0) # 0 or

£(1) = g(1) # 0 implies k = 1, which contradicts lim+f(x) > £(0) or
x»0

44
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1im £(x) > £(1) since 1lim g(x) = g(0) and lim g(x) = g(1). Thus g and
x=1" x»0" x-1"

h form a non-proportional decomposition of f, and hence f is not an ex-
tremal element of C".
Lemma 17. If £ is an element of C" such that £(0) =0 <11im+f(x)
x>0

or f(1) = 0 < lim f(x) and f is not (L)-linear on (0,1), then f is not
X"

an extremzl element of C%,
Proof. Let g on (0,1) be the (L)-linear function determined by

the two poimts (0,1im f(x)) and (1,1imf(x))e Define g(0) = £(0) and
x=0F X1~

g(1) = £(1)s Let h = f-g. {See Figure 18.) ‘Since g is (L)-linear on

(0,1), g(0) € lim+g(x) and g(1) < lim g(x), g is a non-negative super-(L)
0 x>l '

|

f(x) for all x in (0,1), G(0) = 1im f(x) and
x-»07F

function. Define G(x)

Figure 18, Lemma 17 proof.
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G(1) = lim ¥(x). Then g(x) = F(G,0,13x) for all x in (0,1), so that
X=1"
h(x) = f(x)-g(x) = G(x)-F(G,0,13x) = 0 for all x in (0,1) since G is

super-(L). Since h(0) = h(1) = 0, h is non-negative. By Lemma 1, h is
a super-(L) function. Since g is (L)-linear on (0,1) and f is not,
g # kf for any real number k, Thus g and h form a non—proportional

decomposition of f, and hence f is not an extremal element of C",

Lemma 18, If f is an element of C™ such that f is (L)-linear on

(0,1), f(0) = 0 < 1im f(x) and 0 < lim f(x), or f(1) = 0 <1im f(x) and
x=0* x=1" X1~

0 <Zlim+f(x), then f is not an extremal element of C".
x>0

Proof., Only the first case will be proved, since the proof for
the other case is similar. Let g on [0,1) be the (L)-linear function

determined by the two points (0,0) and (1,1im f(x)), and define
x=+1"

g(1) = £(1)« Let h on (0,1] be the (L)-linear function determined by

the two points (O,lbn+f(x)) and (1,0), and define h(0) = 0. (See
x-0

Figure 19.) Then (g+h)(0) = g(0)+h(0) = lig+f(x) and (g+h)(1) =
X

g(1)+*h(1) = 1im f(x), so g*h is the unique solution of L(y) = O which
X"

is 1im f£(x) at O and lim f(x) at 1. Thus f(x) = g(x)+h(x) for all x
x»0% x»1"

in (0,1). Now £f(0) = 0 = g(0)+h(0) = (g+h)(0) and £(1) = g(1) =
g(1)+h(1) = (g*h)(1), so that f = g+h, Suppose there exists a positive

real number k such that g = kf, Then limkf(x) = 1im g(x) = 0 which
x»0* x~0*

contradicts 1im f(x) > 0. Thus g and h form a non-proportional
x>0
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| Figure 19. -Lemma 18 proof.

decomposition of f, and hence f is not an extremal element of C",

Lemma 19, If f'is an element of C" which is either (L)~linear on

el

(0,1] and such that £(0) = 0 < lim £(x) and £(1)

0, or (L)~linear on
x->0 '

1

(0,1) and such that £(1) = 0 < 1im £(x) and £(0) = 0, then f is an

X
extremal element of GC".
Proof, Let g and h be any two elements of C" such that f = g+h.
Only the proof for the first case will be given, since the oroof for .

the other case is similar. By Theorem 4 g and h are (L)-linear on

il

(0,1]). Let k = 1im g(x)/1im £f(x). Then kf(x) g(x) for all x in
x*0+ x-0" .

(0,1] by uniqueness of solution to L(y) = 0 since g{1) = 0 = kf(1) and

lim g(x) = Limkf(x). Also, k£(0) = 0 = g(0), so that g = kf and the
x»0 x>0 ‘

decomposition is proportional. Thus f is an extremél element of C",
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Theorem 19, A function f is an extremal element of C" if and only
if it is an extremal element of C or a function of the type described in
the statement of Lemma 19,

Proof. The proof follows directly from Lemmas 16, 17, 18 and 19.



CHAPTER VII
A CONE OF CONCAVE FUNCTIONS

One extension of the concave function definition (Definition 2) to

domains of dimension higher than one is the following.

Definition 13, Let D be a convex compact set in a real linear
space L. Then a real-valued function f is a goncave function on D if f
is a concave function when restricted to any line interval contained in

D.

It is known that the set K(n) of real-valued non-negative concave
functions on a convex compact domain in E” is a convex cone, McLachlan (4]
has obtained some results concerning the extremal structure of this cone.
In this chapter a certain subcone of this cone will be investigated and
its extremal structure completely characterized.

Unless stated to the contrary, the domain of the real-valued
functions considered in this chapter will be a compact convex subset D
of E2, and the functions will be assumed to be continuous on D. For
each such function f, define V(f) =§(r,8,2z): (r,8) is inD, 0 € 2zE
f(r,8)}, where r, ©, and z are cylindrical coordinates, with 0 8< 27
and r 2 0., It will be assumed that the point (0,8) is an interior point
of D and that r = h(8) is the equation of the boundary of D,

Let Q ={f: f is a non-negative concave function on D which is

continuous on the boundary of D, f(h(8),8) = 0 for all © in [0,2m), and

49
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for each Z such that 0 Z = sup {f(r,e)z (r,8) is in D} the boundary of
the intersection of z = Z with V(f) has equation r = kh(8) for some

constant k in [:0,1:]}.

Theorem 20, The set Q is a convex cone,

Proof, Let f and g belong to Q, and let k be a non-negative real
number, Since K(2) is a convex cone, kf and f+g are non-negative concave
functions on D, For all ® in [0,27), (kf)(h(®),8) = kf(h(8),8) =0
and (f+g)(h(e),8) = f(h(8),8)*g(h(8),8) = 0,

To complete the proof it will be shown that kf and f+g satisfy the
last condition of the definition of Q. Let Z be such that z = 7 inter-
sects V(kf), Assume k > 0, since the function which is identically
zero clearly belongs to Q. Then the boundary of the intersection of
z = Z/k with V(f) has equation r = mh(8) for some m in [0,1] since f is

in Q, so that the boundary of the intersection of z = Z with V(kf) has

i

equation r = mh(®), since the boundary of {(r,a): f(r,9) !‘/!{} is the

boundary of {(r,0): kf(r,8) = Z}. Let z' be such that z = z* intersects
V(f+g)., Let (r',8!z') be a point in the boundary of this intersection.
Let u = f(x*,8') and v = g(x',0'). Then the boundaries of the inter-
sections of z = u with V(f) and z = v with V(g) have equations r = mh(8)
and r = nh(8) respectively, for some constants m and n. Note that

' = supiiz (f+g)(r,0%): = z{} , and that (f+g)(r,8') < z' for all r > r'
since f+g is concave, Similarly, mh(e') = sup{}: £(x,8') = u} and
nh(et) = supEr: g(r,8*) = v}, f(r,0') < u for all r >mh(8'), and
g(r,8') < v for all r >nh(8*), If mh(8') < r' or nh(8') < r', then
f(xr*,8') <u or g(r*,8') < v, which contradicts the definitions of u and

ve Thus mh(®') = r* and nh(8') Zr'. If mh(8') > r' then f(r,8%) = u
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for all r in [?‘,mh(e')] since f(r*,8%) = u, f(mh(8"),8%)

i

u and f is
 non-increasing., Similarly, if nh(®8') > r* then g(r,8%) = v for all T |
in [x*,nh(8%)]) . Let ¥ =’min{@h(9’),nh(9’)}'. Then ¥ >r' and
(f+g9)(T,0") = u+v = z*', which contradicts r* = sdp{i: (£+g)(z,8") = z{},
Therefore either r' = mh(e’) or r* = nh(8*). Since m and n are inde-
pendent of * andLB','the equation of the boundary of the interéection
of z = z* with'V(f¥g) is T = mh(8) or r = nh(8). Therefore.kf and f+g

are in Q, and hence Q is a convex cones

Lemma 2D, Let F be a3 concave fungtion on [b,a], where a >» 0, for
which F(0) € 0 and F(a) = 0.- Then f(r,8) = F(ax/h(8)) belongs to Q.

Proof. Since’(Q,ﬁ).iS‘an interior point of D, h(e) >0 for all
8 in [D,Z?t), and since D is a convex set each'9—cooidinate‘1inevinter—
sects the boundary of D in exactly one poiﬁt;'hence,»f(i,e) is well
defined for all (r,e) in D, Let (rlgei)7andv(12,92) be any two distinct
points in D, where 0 € 89 € 8; < 2w, Let R(r;,8;,f(r1,8;)) and
S(rz,eé,f(r‘,ez)) be the corresponding.pbints on fhe graph of f. Let
RS be the line segment joining R and S, If 8] = 32 then RS lies below
the graph of f since F is concave, If 8] = By*#r then RS lies below the
graph of f since F is concave and F,:;(O) < 0.

The intersection of z = 3] with V(f) will now be shown to be a
convex set. Let r; ='sup{}: F(r) = zi}. Note that F cén only be
constant on [b,@] for -some u in (O,a) since F} is monotdne non—

increasing and F}(0) € 0, If r'= rjh(8)/a then £(r,8) = £(r;h(8)/a,0) =

B

F(rl) = zl,' If"1~:gtih(9)/é then f(r,8) = F(ar/h(8)) < zy since r; is

H

the maximum T for which F(r) = zj. Thus 1 = rlh(e)/a is the equation

zy with V(f), and hence that

1

of the bouhdary of the intersection of z



intersection is gonvex since D is convex and a positive homothety of a
convex set 1s convex., Thus if R and § lie in a plane z = Zl; RS lies
in V(f).

Assume now that 6) # 85, 8] # 8,7, and R and S do not lie in any
plane z = zj. Let Hy be the plane z = f(ry,8;), and let Hjip be the

P
half-plane 8 = 8:, for i = 1,2, Denote by ARCD the section of the graph

is
of f bounded by Hj, Hp, Hy, and Hy which is nearest RS, where A, B, C,
and D are the points of intersection. Take A =R, D =S, B in z =
f(rl,el), and C in z = f(rpy85). (See Figure 20.) Denote projection
onto the (r,8)-plane by P. Choose r] = sup {r: f(r,8;) = f(rQ,GQY}
and r4 = sup {r: £(r,85) = f(rl,el)}. (See Figure 21.,) Then
F(ary/h(87)) = £(r1,8;) = £(r},85) = Flarh/h(8,)) and P(arQ/h(‘92)‘) =
f(ry,8,) = f(ri,@l) = F(ari/h(el) imply arL/h(Gl) = ari/h(ez) and
ary/h(8y) = ar}/h(8;) since F is strictly monotone decreasing on [0,a)
or constant on [O,d] and strictly monotone decreasing on [ﬁ,é] for some

u in (0,a)s Then rl/ri = ré/rQ, and hence P(4)P(B) is parallel to

*(0,8)

: ) N
Figure 20, The section ABCD,
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P(A)=(x1,8)) | P(AB)

P(C)=(x},8,) P(B)=(x} ,8,)

P(D) = (12'92)

(0,8)

~~
Figure 21. Projection of ABCD,

P(C)P(D). Since H; and Hy are parallel to the (r,8)-plane, AB is paral-
lel to CD. Thus conv{h,B,C,ﬁ}, the convex hull of the points A, B, C,
and D, is a plane surface. As shown previously, the intersection of
z = f(r;,8;) with V(f) is a convex set, for i = 1,2, Hence AB and CD
~ ~ N S~

lie inside the arcs AB and CD of ABCD, The intersection of ABCD with
® = 8 1is a concave function graph for all 6 in [bz,ai} since F is a
concave function, so the intersection of conv{},B,C,ﬁ} with 8 = B is
inside that graph since AB and CD lie inside the arcs ﬁ% and EB of
o ot
ABCD, Thus conv{B,B,C,ﬁ}, and hence RS, lies inside V(f). Therefore f
is concave on D,

Clearly f is non-negative, and f(h(8),8) = F(a) = 0 for all 8 in

(0,27r), Hence f belongs to Q.

Definition 14, If f is an element of Q such that for each 8 in [b,2ﬂﬂ
f is constant (# 0) on ((0,8),(kn(8),8)]) and linear on [(kh(e),a),(h(e),e)]

for some k in [b,l), then f is a ifruncated conical function. If k =0



f will be called a gonical function.

The following result due to MclLachlan will be used in the character-

ization of the extremal structure of Q.

Theorem 21 [11]. Let f be a real-valued convex function on (a,b]
such that fl(a) and f!(b) are finite. Suppose f is not piecewise
linear on three or fewer non-overlapping segments whose union is [é,b].
Then there exist real-valued convex functions g and h on [},b] that
differ from f on [a,ﬁ], but have the same values and derivatives as f
at the end-points and for some k, 0 < k < 1, kg(x)¥l-k)h(x) = £(x) for

all x in [a,b].

Theorem 22, A function f is an extremal element of Q if and only
if f is a truncated conical function or a conical function.

Proof. First, it will be shown that if f is a truncated conical
function or a conical function, then it is an extremal element of Q.
By Definition 14, f belongs to Q. Let G and H be any two elements of Q
such that f = G+H, By Theorem 4, G is linear on I(8) = [(0,8),(kh(8),8)]
and on E(h(@),e),(h(e),G)] for each 8 in [0,210. Note that ﬁ$+ac;/argo
and lirg+ dH/ 9xr €0 for each © in [0,2m), since G and H are concave,

b«

lim;BH/ar = 0, and

Then 1im 3f/3r = 0 and f = G*H imply lim 3G/or =
0" 0

-0
hence G and H are constant on I(8) for each ®. Let f = b and G = mb on
1(8) for ®. Then for each 6, the graph of mf is the unique line seg-
ment determined by (h(®),8,G(h(8),8)) and (kh(®),0,G(kh(8),08)) since
mf(h(8),8) = 0 = G(h(8),8) and mf(kh(8),8) = mb = G(kh(8),8). There-

fore g = mf on [(0,8),(h(8),8)] for each ©, and hence G and H form a
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proportional decomposition of f. Thus f is an extremal element of Q.

Next, let f be any element of Q which is not a truncated conical
function or a conical function, Let F(r) be the restriction of f to M =
((0,0),(n(0),0)] . There are three cases to consider:

Case A. Let f be such that F is not piecewise linear on three or
fewer non-overlapping segments whose union is M. Clearly there exists a
u in (0,h(0)) for which F*(u) is finite. By Theorem 21 there exist
doncave functions G and H on J = [I0,0),(u,OiJ that differ from F on
J but have the same values and derivatives as F at r = 0 and r = u, and

such that for some k in (0,1) kG(x)+(1-k)H(x) = F(x) for all x in J.

Define G(x) = H(x) = F(x) for all x in K = [(u,0),(h(0),0)]. Since
G!(u) = H2(u) = F*(u) and G(u) = H(u) = F(u), G and H are concave on M,
By Lemma 20 the functions g(r,8) = G(rh(0)/h(8)) and h(r,8) =
H(rh(0)/h(8)) belong to Q since G}(0) = HI(0) = F1(0) = 0. Now £(0,8) =
9(0,8), but f # g since F differs from G on J, so kg and (1-k)h form a
non-proportional decomposition. of f. Thus f is not an extremal element
of Q.

Case B, Let f be such that F is piecewise linear on three segments
in M, say J = [(0,0),(u,0)], K = [(u,0),(v,0)], and L = [(v,0),(h(0),0)].
Let k = 1-(F*(v)/Fi(v)). Since Fl(v) <F!(v)<0, 0<F!(v)/Filv)<1
and so 0 <k < 1. Let G(x) = kF(v) for all x in [0,v] and G(x) = kF(x)
for all x in [v,h(0)]. By Lemma 20 g(r,8) = G(rh(0)/h(8)) belongs to Q.
Let H(x) = F(x)-G(x) for all x in M. Since H*(v) = F(v)-Gl(v) = F!(v) =
(1-k)Fi(v) = Fi(v)-G}(v) = H}(v) and HX(u) = F2(u)-Gt(u) = F2(u) >E}(u) =
F!(u)-G!(u) = H!(u), H is concave on M. By Lemma 20 h(r,8) = H(rh(0)/h(8))
belongs to Q. Since G is linear on J WK and F is not, g and h form a

non-proportional decomposition of f, and hence f is not an extremal element,
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Case C. Let f be such that F is piecewise linear on two segments
in M, say J = [{0,0),(v,0)] and K = [(v,0),(h(0),0),0)], and F2(0) < O,
Let k = 1-(F*(v)/Fl(v)) as in Case B, Define g and h as in Case B,
Since Hfis linear on M and F is not, g and h form a non-proportional
decomposition of f, Hence f is not an extremal element of Q, and the

theorem is proved.

This thesis will be concluded with some remarks concerning unsolved
problems, It would be interesting to know if the integral representation
developed in Chapter III is unique, The characterization of C-C has
been only partially determined in Chapter IV, A converse to Theorem 18
would be of some value in the application of the results of Chapter V.
The bulk of the unsolved problems occur in the present chapter. The
ultimate aim is the extension of the results of the previous chapters to
the cone of non-negative super-(L) functions on a compact convex subset
of En, where the super-(L) function is defined analogously to the con-
cave function of Definition 13, Two sub-problems leading in this
direction are : 1) the extension of the results of this chapter to the
cone of non-negative concave functions on D, and 2) the generalization
of the results of this chapter to a set of super-(L) functions defined
analogously to the set Q. An important step in this generalization

would be the proof of an analogue to Theorem 21.
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