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PREFACE 

A generalization of the concave function concept is the super-(L) 

function concept introduced by F. F. Bonsall [1 ].. (The number in the 

bracket refers to the bibliography.) Certain properties of super-(L) 

functions are investigated in this paper. The basic definitions and 

some properties of super-(L) functions are given in Chapter I, with the 

fundamental result being the fact that the set of non-negative super-(L) 

functions on [0,1] forms a convex cone C. Chapters II through VI are 

devoted to consequences of this result, with continuity of the functions 

at the end points assumed in Chapters II through V. 

In Chapter II, the extremal structure of the convex cone C is 

characterized, and a type of integral representation for the elements 

of C in terms of the extremal elements of C is developed in Chapter III. 

The structure of the linear space C-C is partially determined in 

Chapter IV. The relationship between the extremal elements of C and 

Green's function is discussed in Chapter V. In Chapter VI, the ex­

tremal structure of the convex c.one of discontinuous super-(L) functions 

on [o, l] is characterized. In Chapter VII, a partial solution is ob­

tained to the problem of extending the preceding results to super-(L) 

functions on a convex compact dom.ain in E2, and the paper is ended with 

an indication of some unsolved problems .• 

Indebtedness is ackn.owledged to the members of my advisory com­

mittee; to Dr. L. Wayne Johnson, Head of the Department of Mathematics, 
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for my graduate assistantship, for his friendly counsel, and for his 

thoughtfulness in the arrangement of my teaching assignment; and espe­

cially to Professor E .. K. McLachlan for the inspiration and encourage­

ment he provided before and during the writing of this paper. 
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CHAPTER I 

INfRODUCTION 

One. of the more interesting generijlizations of the notibn of a real­

valued concave function of one real variable is that due to F. F. 

Bonsall [1]. It is this generalization that is investigated in this 

thesis. 

Definition 1. ~et y and z be arbitrary real numbers, and let u and 

v be real numbers such that OS u < v ~ 1. L.et L( y) = d 2 y/dx 2 + 

p(x)·'dy/dx+q(x}y = 0 be such that there exists a unique splution F on 

[0,1] (where the appropriate one~stded derivatives are used at the end­

points O and 1) for which F(u) = y and F (v) = z. Then a real-valued 

function f is sy~er-(L) on [0,1) if f(x) ~ F(f~u,v;x) for all x, u, 

and V such that O~u<v~l rnd u~x~v, where F(f,u,v;x) is the 

solution of L(y) = 0 such that F(f,u,v;IJ) = f(u) and F(f,u,v;v) = f(v). 

Definition 2. A function f is CQQcaye on [a ,b) , where a< b, if 

f(tx+(l-t)y) ~tf(x)+(l-t)f(y) for all x and yin [a,b] and all t 

such tha t O 45 t ~ 1 • 

Obse+ve that the ordinary concave function definition, Definition 2, 

is the special case of Definition 1 obtained by using L( y) = d 2 y/dx 2 • 

Definition 3. A function f is sub-(Ll on (0,1] if -f is 

super-(L) on [o, 1] . 

1 



2 

Definition 4. A function f is ~9nvex if -f is toncave. 

Bohsall studied properties of sub-(L) functions on an arbitrary 

(bounded) open interval; however, it was found to be more fruitful in 

this thesis to use a closed interval. For convenience, the closed inter­

val (o,1J was chosen., All the results obtained are also valid in any 

closed interval. The definitions and results due to others have been 

rephrased, when desirable, to fit the particular setting used. 

Generalizations of the convex function definition which contain 

the sub-(L) function definition as a special case have been considered 

by Valiron [2] and Beckenbach [3]., 

Bonsall _characterized sub-(L) functions by proving that if f is 

sub-(L) in (a,b) then f has a second d'erivative almost everywhere in 

(a,b) and L(-f) ~ 0 at each point where the second derivative exists, 

and that if f has a continuous second derivative and L(f) > 0 in (a ,b), 

then f is ~ub-(L) in (a,b). Be pointed out that this characterization 

makes it possible to use sqb-(L) functions as an analytical tool in a 

manner similar to the use of convex functions. 

Some basic properties of super-(L) functions are given in the next 

two- • theorems due to Bonsall. 

Theorem L 0., p. 101] • J;f f h svper-(L) on [o, 1] , then 

f(x) .~ F(f,u,v;x) for all x in [o,u] and [v,1] , where u<v. 

Theorem 2 [l, P• 102] • If f is super-(L) on [0,1] , then f 

is continuous in (0,1). 

By Theorem 2, a super-(L) function is continuovs in (0,1). Unless 

stated to the contrary, it will be assumed in the remainder of this 



thesis that the super-(L) functions considered are also continuous at 

0 and at 1. 
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The basic result which forms the starting point of the investiga­

tions made in this thesis is the fact that the set of non-negative 

super-(L) functions on [0,1] is a convex cone. 

Definition 5. Let A be a set in a real linear space. Then A is 

a convex rn if 1) for every f and gin A and every non-negative real 

number k, f+g and kf belong to A, and 2) f in A and -f in A imply f==O, 

the origin of the real linear space. 

Lemma 1. If f -and g are ·super-(L) functions on [o, 1] and k is 

a non-negative real number, then kf and f+g are super-(L) functi.ons on 

[0,1] . 

Proof. Let u and v be such that O < u < v < 1. Since L( y) == 0 is 

a linear homogeneous differential equation, kF(f,u,v;x) and F(f,u,v;x) 

+F(g,u,v;x) -are soluti·ons. Then F(kf,u,v;x) == kF(f,u,v;x) for all x in 

[0,1] is the unique solution of L(y) == 0 such that F(kf,u,v;u) == 

kF(f,u,v;u) == kf(u) == (kf) (u), F(kf,u,v;v) == kF(f,u,v;v) == kf(v) == 

(kf)(v), and (kf)(x) == kf(x) > kF(f,u,v;x) == F(kf,u,v;x) for all x in 

[u,v] • Thus kf is a super-(L) function on [0,1]. 

Next, F(f+g,u,v;x) == F{f,u,v;x)+F(g,u,v;x) for all x in [0,1] is 

the unique soluticm of L(y) = 0 such that F(f+g,u,v;u) == F(f,u,v;u) + 

F(g,u,v;u) == f(u)+g(u) = (f+g)(u), F(f+g,u,v;v) = F(f,u,v;v)+F(g,u,v;v) 

== f(v)+g(v) == (f+·g)(v), and (f+g)(x) == f(x)+g(x) ~F(f,u,v;x) +F(g,u,v;x) 

= F(f+g,u,v;x) fur Qll x in [u,v]. Thus f+g is a super-(L) function on 

[o, 1] . 
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Theorem 3. The set of non-negative super-(L) functions on [0,1] 

forms a c.onvex cone C. 

Proof. Let k be a non-negative real number. Let f and g belong 

to c. By Lemma 1, kf and f+g are super-(L) functions on [0,1] • Since 

k ~ o, f ~ O, and g > O, it follows that kf ? 0 and f+g > o.. Thus kf 

and f+g belong to c. Leth be any element of C such that-his also an 

e 1 ement of c. Then h ~ 0 ·and -h ~ 0 imply h = 0, the non-negative 

sl;lper-( L) function which is identically O on [ 0, 1 J . Thus C is a 

convex cone. 



CHAPTER II 

EXTREMAL STRUCTURE OF C 

In this chapter, those elements which are extremal elements of the 

convex cone C of non-negative super-(L) functions on [o, 1] will be 

charactertz-ed. 

Definition 6. Let A he a convex cone. An element f of A is called 

an extremal element of A if for every pair of elements g and h of A 

such that f = g+h there exists a real number k such that g = kf. 

McLachl:an [4] has completely characterized the extremal structure 

of the convex cone of non-negative concave functions on [0,1]. It 

w.ill be shown in this chapter that the extremal structure of C is analo­

gous to that obtained by McLachlan. 

Definition 7. A real-valued function f on [0,1] is said to be 

(L);:fJ.in~ar QJ1 [u,v] if f(x) = F(f,u,v;x) for all x in [u,v], where 

O~u<v<1. 

Theorem 4. If f, g, and h are super-(L) functions on [o, 1] such 

that f(x) = g(x)+h(x) for all x in [u,v] , where O ~ u < v-=: 1, and 

f is (L)-line-ar on [u,v], then g and hare (L)-linear on [u,v J. 
Proof. Since f is (L)-linear on [u,v], f(x) = F(f,u,v;x) for 

all x in [u,v J by definition. Then g(x)+h(x) = (g+h) (x) = f(x) = 

F(f,u,v;x) = F(g+h,u,v;x) = F(g,u,v;x)+F(h,u,v;x) as in the proof of 

5 
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Lemma 1. Since g and hare super--(L) on [0,1], g(x) > F(g,u,v;x) and 

h(x) c:!!' F(h,u,v;x) for all x in [u,v]. If g(w) > F(g,u,v;w) or 

h(w) > F(h,u,v;w) for -some·w in [u,v], then g(w)+h(w) > F(g,u,v;w) + 

F(h,u,v;w), which contradicts g(x)+h(x) = F(g,u,v;x)+F(h,u,v;x) for all 

x in [u,v]. Thus g(x) = F(g,u,v;x) and h(x) = F(h,u,v;x) for all x 

in [u,v], and hence g and hare (L)~linear on [u,v]. 

Theorem 5. If f, g, and hare elements of the convex cone C such 

that there exists au in [0,1] for which f(u) = g(u)+h(u) and f(u) = O, 

then g(u) = 0 and h(u) = Q. 

Proof. Since· g and h are elements of C, ·g(u) > 0 and h(u) ~ O. 

Thus g(u)+h(u) = 0 implies g(u) = 0 and h(u) = O.. 

Definition 8. A real-valueu function f on [0,1] is an (L)-conical 

function with its vertex over w in [o·,1] if 1) f(w) > O, 2) f(O) = 
. f(l) = 0 if w f O,l; f(O) = 0 if w = l; or f(l) = 0 if w = O; and 3) f 

is (L)-linear on [o,w] and on [w,1]. 

Theorem-6. If f is an element of the convex cone C such that 

f(w) = 0 for some w in (O, 1), then ·f = 0 .• 

Proof. Suppose there exists a u in [0,1] such that f(u) > o. 

Assume u < w. ( A similar proof holds for the case u > w). Suppose 

there is a v in (w,1] ·such that f(v) = o. Since f is super-(L), 

F(f,u,v;w) ~ f(w) == 0 and F(f,u,v;u) = f(u) >O, so there exists a z in 

(u,w] such that F(f,u,v;z) = 0 since F(f,u,v;x) is a continuous function. 

· (See Figure l.) Then F(f ,u,v;x) = O, the unique solution of L(y) = 0 



" " 

0 

"'\ F(f,u,v;x) 
\ 

u 1 

Figure 1. Theorem 6 proof., The assumption that 
f(v) = o. 
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which has zero function value at two distinct points, since F(f,u,v;v) = 

f(v) ::;:: o. This contra-diets F(f,u,v;u) = f(u) > O, so that f(x) > 0 for 

all x in (w,1]. Since f is super-(L), F(f,O,l;w) < f(w) = O. Suppose 

F(f,O,l;w) < O. Now F(f,O,l;l) = f(l) > O, so that there exists a z 

in (w,1) such that F(i.O,l;z) = o, since F(f,O,l;x) is a continuous 

function. Also, since F(f ,0,1;0) = f(O) > 0 there exists a t in [o,w) 

such that F(f,O,l;t) = O. Thus F(f,O~l;x) = O, the unique solution of 

L(y) = 0 which has zero function value at two distinct points which 

contradicts F(f,0,1;1) = f(l) > O. Therefore F(f,O,l;w) = 0 = f(w). 

Since f is super-(L), f(x) > F(f,O,w;x) for all x in [o,w] and 

f(x) > F(f,w,l;x) for all x in [w,1] • (See Figure 2.) By Theorem 

1, f(x) ..c. F(f,O,w;x) for all x in [w,1]. and f(x) < F(f,w,l;x) for all 

x in [o,w]. Then F(f,O,w;O) = f(O) = F(f,O,l;O), F(f,w,l;l) = f(l) ~ 

F(f,0,1;1), and F(f,O,w;w) = F(f,w,l;w) = F(f,O,l;w) = f(w), so by 

uniqueness of solution to L(y) ~ O, F(f,O,w;x) ~ F(f,w,l;x) E F(f,O,l;x). 
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' ' F(f,O,w;x) ' -' F(f,w,l;x) 
,.,..,,.. 

' ' / 
' / \ ' ' / '\ f', 

'- ' / 

"' ' / ,, 
' / 

" ' I / 

' / 

" \ I ,/ ,, 

" \ 
.,, 

I 
, 

' ' 
.,, ,,,. 

-......: \' 
,.,,. 

0 w l 

Figure 2. The.orem 6 proof. The proof that f is 
(L)-linear. 

Thus f(x) = F(f,O,l;x) for all x in [0,1]. 
Let u and v be such that O ~ u < w < v ~ 1. Let r and s be arbi-

trary positive real numbers. There exist non-negative real numbers m 

and n such that r =mF(f,O,l;u) ands= nF(f,O,l;v), since F(f,O,l;x)>O 

for x f win [0,1]. Since L(y) = 0 is a linear homogeneous differen­

tial equation, mF(f,O,l;x) and nF(f,O,l;x) are solutions. Let G be the 

sol1,.1tion of L( y) = 0 such that G( u) = r and G( v) = s. If m :2::: n then 

mF(f,O,l;v) > nF(f,O,l;v) = s = G(v). (See Figure 3.) Suppose 

G(w) <: O. Then since G is continuous and G(v) > O, there exists a z 

in (w, v) such that G( z) = O, and since G(u) > 0 there exists a t in 

(u,w) such that G(t) = O. This implies G(x) = O, the unique solution 

of L(y) = 0 having O function value at two distinct points, which con-

tradicts G(u) > O. Therefore G(w) > 0 = F(f,O,l;w). Then since G(v)~ 

mF(f,O,l;v) and mF(f,O,l;x) is continuous, there exists a z' in [w,v] 

such that G(z') = mF(f,O,l;z'). Then G(x) =mF(f,O,l;x) by uniqueness 



r 

s 

0 u w 

I 
I 

/ 
/ 

I 

mF(f,O,l;x) _,,,...,. 
/ 

/ 
/ 

I ,x) 

V 

Figure 3... Theorem 6 proofl> Contradiction of f 
being positive;, 

1 

of solution to L(y) = O, since G(u) = r = mF(f,O,l;u). Similarly, if 

9 

n :::m then G(x) = nF(f,O,l;x), so that in either case G(w) = O. Thus 

any solution of L(y) = 0 taking a positive function value in [o,w) and 

a positive function value in (w,1] is Oat w, which contradicts the 

existence of a solution taking arbitrary positive function values at 

wand at u f w, since such a solution would be positive in an open 

interval containing w. Therefore there does not exist a u in [o, 1] for 

which f(u) > O, and the theorem is proved. 

It is now possible to characterize concisely the extremal struc-

ture of C; however, the proof of the characterization is long, so it 

will be developed in a series of lemmas. 

Lemma 2. If f is an (L)-conical function with its vertex over O or 

1, then f is an extremal element of C. 

Proof. Let g and h be elements of C such that f = g+h. By 
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Definition s, f is (L)-linear on [o, l] , and thu-s is super-(L) on (o, 1]. 

Since f is zero at one end-point and posi t:i,ve a:j:. the other end-point, it 

is non-neg?tive by uniqueness of solution to L( y) = o.· Hence f belongs 

to C. Assume f has its vertex over O since the proof for the other case 

is similar, By Theorem 4, g and h are (L)-linear on [o, 1] • By 

Theorem 5, g(l) = 0 and h(l) ;:: 0 since f(l) = o. Since g I, O, g(x)>O 

for all x in [0,1). Let k = g(O)/f(O). Then g and kf :i,ntersect in 

two distinct points since g(O) = kf(O) and (kf)(l)1 ·.=(o· =;:(g(lh D 

and so by uniqueness of solution to L(y) = O, g = kf. Thus f is an 

extremal elern(;mt of c. 

If f is an (L)-conical function which has its vertex over w in 

(O,l), then by Definition 8, f(x) = F(f,O,w;x) for all x in [o,w] and 

f(x) = F(f,w,l;x) for all x in [w,1] • The relationship between these 

two (L)-linear functions is given -j,n the following lemma. 

Lemma 3. If f is an (L)-conical function which has its vertex 

over win (0,1), then F(f,O,w;x) > F(f,w,l;x) ·for all x in (w,1] and 

F(f ,O,w;:x:) < F(f ,w,lrx) foT all x in [o,w). 

Proof. If F(f,O,w;x') = F(f,w,l;x') for some x' in (w,1], then 

F(f,O,w;x) = F(f,w,l;x) for all x in [0,1] by uniqueness of s_olution 

to L(y) = 0, ~ince F(f,O,w;w) = F(f,w,l;w) -and x' f w. Then F(f,0,w;O) = 
0 and F(f,O,w;l) = F(f,w,l;l) = 0 imply F(f,O,w;x):: o, the unique 

solution of··L( y) = 0 which is O at tw9 distinct points. This contra­

dicts F(f,O;w;w) = f(w) > O. If F(f,O,w;x') < F(f,w,l;x') for some x' 

in (w,l), suppose that F{f,O,w;l) > F(f,w,l;l). Then there exists an 

xn in (:x:',1] such that F(f,O,w;x") = F(f,w,l;x'') since F(f,O,w;x) and 

F(f,w,l;x) are continuous functions of x. Then by uniqueness of 
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solution to L(y) = O, F(f,O,w;x) = F(f,w,l;x) for cill x in [o,1] since 

F(f,O,w;w) = F(f,w,l;w), which, as before, leads to the contradiction 

that F(f,O,w;x) E O. Thu.s F(f,O,w;l) < F(f,w,l;l) = o. Since 

F(f,O,w;w) = f(w) > 0 and F(f,O,w;x) is continuous, there exists a t 

in (w,l) such that F(f,O,w;t) = O. Then F(f,O,w;x) = 0 for all x in 

[0,1] by uniqueness of solution to L(y) = 0 since F(f,O,w;O) = f(O) = o. 

This contradicts F(f,O;w;w) = f(w) > O. Therefore F(f,O,w;x) > F(f,w,l;x) 

for all x in (w, 1] . 

The proof for F(f,O,w;x) < F(f,w,l;x) for all x in [O,w) is similar 

to the above proof. 

Lemma 4. If f is an (L)-conical function which has its vertex 

over w in (0,1), then f is an extremal element of C. 

Proof. The proof will be given in two parts: (i) it will be 

shown that f belongs to c, and (ii) it will be proved that f is an 

extremal element of C by showing that every (non-zero) decomposition 

of f is proportlonal to -f. 

(i). In order for f to be an element of c,' it mu.st be both non­

negative and -super-(L). 

By uniqueness of solution to L( y) = O, an (L)-linear function 

which is nnt identically zero can have zero function value at only one 

point. Thu~ f is non-negative on [o,w] and [w,1] and hence on [0,1]. 

It will now be shown that f i-s super-(L). Let u and v be such 

that O = u < v ~ 1. If u and v are both in [o,w] or both in [w,1], 

the result follows immed~atel y since f is (L)-linear on [o,w] and on 

[w,1]; hence it will be assumed that u < w < v. The proof will be by 

contraposi tton. Suppose there exists a z such that u < z < v and 
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f(z) < F(f,u,v;z). Suppose there is also 13. z' such that u< z' < v and 

F(f,u,v;z'') ~ f(z'). Then there exists an x' in (u,v) such that f(x') = 

F(f,u,v;x') since f(x) and F(f,u,v;x) are continuous functions of x. If 

x' is in (u,w], F(f,u,v;x) = F(f,O,w;x) for all x in [0,1], since 

F(f,u,v;u) = F(f,O,w;u) = f(u). Then F(f,O,w;x) = F(f,w,l;x) for all 

x in [0,1] by uniqueness of solution to L(y) = 0 since F(f,O,w;w) = 
F(f,w,l;w), F(f,O,w;v) = F(f,u,v;v) = F(f,w,l;v), and w / v. This 

implies F(f,O,w;x) = 0 since F(f,O,w;O) = f(O) = 0 and F(f,O,w;l) = 
F(f,w,l;l) = f(l) = O, which contradicts F(f,O,w;w) = f(w) > O. Simi-

larly, taking -x' in [w,v) leads to a contradiction. Thus F(f,u,v;x) > 

f(x) for ~11 ~ in (u,v). 

In particular, F(f,u,v;w) >f(w) = F(f,O,w;w). Then there exists 

an x' in {w,v) such that F(f,O,w;x') = F(f,u,v;x'), since F(f,O,w;v) 

F(f,w,l;v) = F(f,u,v;v) by Lemma 3, and since F(f,O,w;x) and F(f,u,v;x) 

are continuous. (See Figure 4.) Then F(f,O,w;x) = F(f,u,v;x) for all 

0 

F(f,w,l;x) 

I 
I 

I 

u 

F(f,u,v;x) 
'>("-- ..... ...._ 

' '\ 
/ 

/ 
I 

~ 

w 

F( f, O~,~w..,_•--'xs----1 

V 1 

Figure 4. Lemma 4 proof. 
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x in [0,1] by uniqueness of solution to L(y) = 0 since F(f,O,w;u) = 
F(f,u,v;u) and u / x'. Then F(f,O,w;x) = F(f,w1 l;x) for all x in [0,1] 

since F(f,O,w;w) = F(f,w,l;w) and F(f,O,w;v) = F(f,u,v;v) = F(f,w,l;v). 

Now F(f,O,w;l) = F(f,w,l;l) = 0 implies F(f,O,w;x) ~ O, which contra­

dicts F(f,O,w;w) > O. Therefore F(f,u,v;x) ~ f(x) for all x in [u,v], 

and hence f is super-(L). 

{ii). In this part it will be shown that every non-zero decompo­

sition off is proportional to f. Let g and h be any elements of C 

such that f =::= g+h. By Theorem 4, g and h are (L)-linear on [o,w] and 

on [w,1]. Let k = g(w)/f(w). Note that g(w) / 0 since g(O) = 0 and 

g is not identically zero. Then kF(f,O,w;x) is the unique solution of 

L(y) = 0 such that kF(f,O,w;O) = 0 = g(O) and kF(f,O,w;w) = g(w). So 

g(x) = F(g,O,w;x) = kF(f;O,w;x) = kf(x) for all x in [o,w]. Similarly, 

kF(f,w,l;x) is the unique -solution of L(y) = 0 such that kF(f,w,l;w) = 
g(w) and kF(f,w,l;l) = 0 = g(i). So g(x) = F(g,w,l;x) = kF(f,w,l;x) = 

kf(x) for all x in [w,1] • Thus g(x) = kf(x) for all x in [9,1] , and 

the decomposition is proportional. Therefore any (L)-conical function 

for which w is in (0,1) is an extremal element of C. 

Lemma 5. If f is an element of C which is not (L)-linear on [0,1] 

and is such that either f(O) > 0 or f(l) > O, then f is not an extremal 

element of C. 

Proof. It will be assumed that f( 0) > 0 since the proof for the 

case where f(O) = 0 and f(l) > 0 is similar. 

Let g(t) ~ F(f,O,l;x) and h = f-g. (See Figure 5.) Suppose 

F(f,O,l;u) < 0 for some u in [0,1] • Then since F(f,O,l;x) is con­

tinuous, and ·since F(f,0,1;0) = f(O) > 0 and F(f,O,l;l) = f(l) ~ O, 
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Figure 5. Lemma 5 proof, 

there exist an x' in (O,u) and an x" in (u,1] such that F(f,O,l;x') = 0 

and F(f,O,l;x") = o .. Thus F(f,O,l;x) = 0 by uniqueness of solution to 

L(y) = o, which contradicts F(f,0,1;0) = f(O) > O. Therefore g is non­

negative. Since F(f,O,l;x) is (L)-linear, g is super-(L). Thus g be-

longs to C. 

Since f is super-(L), f(x)">F(f,O,l;x) for all x in [0,1]. Thus 

h(x)::f(x)-F(f,O,l;x) is non-negative. By Lemma 1, his a super-(L) 

function since h(x) = f(x) + (-F(f,O,l;x)) and -F(f,O,l;x) is an 

(L)-linear function. Thus h belongs to C. 

The decomposition is non-proportional since g is an (L)-linear 

function, but kf is not (L)-linear for any non-zero real number k. 

Therefore f is not an extremal element of c. 

Lemma 6. If f is an element of C which is (L)-linear on [9,1] 

and such that f( 0) > 0 and f (1) > O, then f is not an extremal element 

of c. 



15 

Proof. Let h be the (L)-linear function such that h(O) == 0 and 

h(l) == f(l). Let g be the (L)-linear function ~uch that g(O) == f(O) 

and g(l) == 0, (See Figure 6.) By uniqueness of s.olution to L(y) == O, 

a not-identically-zero (L)-linear function can be O at only one point, 

so that g and hare non-negative. Since g and hare (L)-linear they 

are super-(L). Thus g and h belong to C. Now g+h is the solution of 

L(y) == 0 such that (g+h)(O) == g(O)+h(O) == f(O) and (g+h)(l) == g(l) + h(l) 

== f(l), so that f == g+h by uniqueness of solution to L(y) == 0, 

Let k be any positive real number. Xhen kf(O) / 0 == h(O), so 

h I kf. Thus g and h form a non-proportional decomposition of f, and 

hence f is not an extremal element of c. 

To complete the characterization of the extremal structure of C, 

it will be shown in Lemma 8 that the non-(L)-conical functions which 

a~e Oat both end-points are not extremal elements of c. For such a 

function, the non-proportional decomposition exhibited in the proof of 

Lemma 8 will be based on the following lemma. 

f 

h --- ---

0 1 

Figure 6. Lemma 6 proof. 
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Lemma 7. If g is a super-(L) function which is positive on (w,l) 

for some w in (0,1) and is such that g(w) == g(l) == O, then there exists 

an (L)-linear function F which intersects g at least once in (w,l) and 

is such that F(x);::: g(x) for all x in [w,1] and F(O) == o. 

Proof. Let X == {F: Fis (L)-linear, F(O) == O, FI O, and F(u) == g(u) 

for at least one u in [w, 1]} • By Definition 1, X is not empty. If 

Fis in X, then F(x) > 0 for all x in (0,1] by uniqueness of solution 

to L(y) == O. Let P(Fg) == (x: x is in [0,1] and F(x) == g(x)} • The 

structure of P(Fg) will be considered in three cases: 

Case A: There exists an Fin X for which there exists an x' such 

that P(Fg) =={x'}. 

Case B: There exists an F in X for which P(Fg) consists of more 

than two points. 

Case C: Fo:r every F in X, P{Fg) consists of exactly ·two points. 

If a function of the type described in Case A exists, then it ·will 

be used as the function F in the statement of the lemma. If no such 

function exists, then it will be proved that a function of the type de­

scribed in Case B must exist and that it may be used as the function F 

in the statement of the lemma. 

It will first be shown that for the Fin Case B, p(Fg) is a closed 

interval. Let u< z < v be three points in P(Fg). Then since Fis the 

solution of L(y) == 0 such that F(u) == g(u) and F(z) == g(z), and since g 

is super-(L), it follows that g(x) ~ F(x) for all x in [u,z]. Also, 

since Fis the solution of L{y7 == 0 such that F{z) == g(z) and F(v)-== g(v), 

it follows that g(x) ~ F(x) for all x in [u,z] by Theorem 1. Thus 

g(x) == F(x) for all x in [u,z]. Similarly g(x) == F(x) for all x in 
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[z,v] , so P(Fg) is a convex set in [0,1] and hence is an interval. Let 

x' < x" be the end-points of the interval. Since F and g are continuous, 

F(x') == g(x') and F(x") == g(x"). Therefore P(Fg) is a closed interval. 

Next, it will be shown that Case C is impossible. Let A be an index 

set such that X =={:'Fe,(: o< is in A} • For each F~ in X, let xO( be the 

smaller point in P(Fo< g), and let Y<X be the larger. 

If FD<f F/3 , then x<X, yo<, x(J, and y/3 are all distinct since 

Fo<' and F(:3 can have no more than one point, (O,O), in common by unique­

ness of solution to L(y) == o ... (e,.g., if xo<== xr,, then Foe(xO<) == g(xoe')== 

g(x/s) == F13 (x,8).) 

Let F« be in x. Suppose there exists an Ff?> in X such that y/3 ~ xcx 

and F18 / Fo<. Then F13 / F« implies y/3/ xo< by the above remark, so 

Yt3 < xO<'. Since g is super-(L), F13 (x) > g(x) for all x in (y 13 ,1J by 

Theorem 1. Since P(F fs g) == f x/3 , Yt3} and x13 < y (3 , F /3 ( x) >g( x) for all 

x in (y,B,1]. In particular, F/3(x«)>g(xo<). Similarly, Fo<(x)>g(x) 

for all x in [w,xO<), and in particular, Fcx(Y/3 )>g(y~). (See Figure 7.) 

F {?l ----

/ 

0 

/ 
/ 

/ 

/ 
/ 

/ 

w 

F / 
o<,,----/ 

/ /', 

-

XO( y 0( 

Figure 7. Lemma 7 proofo Assumption that 
y (3 ~ XO(° 

...... .... 
' " 

1 



Then Fl'( (y ~ )-F (3 (yf.?,) > g(y (3 )-F,$ (y/3) ::: g(y/3 )-g(y/3) ::: O, and 

FDC(xo<)-F/.3(xo<)< Foc(xO<')-g(xO<)::: g(xo<)-g(xcx)::: o. Thus there 

exists an x' in (y 13 ,x,x) such that Foe(x')::: F;.3(x') since Fix and F~ 

are continuous. Since F 0< (0) ::: 0 ::: F /3 (0), F<X::: F(3 by uniqueness of 

solution to L(y) :::: O, which contradicts the assumption that Fcxf F/3. 

Therefore for every F /3 in X, x IX < y /3 • 
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Then fxo<: 0( 1s tn·11.J has an upper bound (any y/3 ~, -s-o bythe 

completeness property of real numbers there exists a least upper bound 

z. Similarly, lYC>(': o< is in A} has a lower bound (any x /3 ), so that 

it has a greatest lower bound z'. Since xO< < y~ for all o<.,(3 in A, 

z ~ z'. Suppose z <-z'. Then there is an x' in (z,z'), and the points 

(O,O) and (x', g(x')) determine a solution of L( y) ::: 0 which is in X. 

This is a contradiction since then x• would have to be in [xD<": o( is in 

A] or fy o<: o( is in Aj , but be less than the greatest lower bound of 

[Yo< : G>< is in AJ and greater than the least upper bound of f « :cxi.s 

in A} • Thus z ::: z' .. 

Let F be the solution of L( y) ::: 0 determined by the two points (O,O) 

and (z,g(z)). Then F belongs to X, so F intersects g in a second point, 

say (z', g(z')), where z' f z and z' is in (w,l). There are two possible 

cases: 

Case 1: Suppose z' < z~ Let u be such that z' < u < z.. Let G be 

the solution of L(y) ::: 0 determined by the two points (O,O) and (u,g(u)). 

Then Gisin X, so that G intersects g at a second point, say (v,g(v)). 

Suppose v >z. (See Figure 8.) Since g is super-(L), G(u)::: g(u) >F(u) 

and F(z)::: g(z)':2 G(z). Then there exists au' in [u,v] such that 

F(u') ::: G(U') since F and G are continuous. Thu.s F ::: G by uniqueness of 
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Figures. Lemma 7 proof. Assumption that z'<z. 

solution to L(y) = 0~ This contradicts z' < u < z since F intersects 

g in only two distinct points. Similarly, assuming v < z' leads to a 

contradiction, so that z' < v < z. Then the larger of u and v is in 

{yo<: o< is in A] and less than z, the greatest lower bound off()(: o< 

is in A}, a contradiction. 

Case 2: Suppose z' > z. Let u be such that z < u < z'. Let G 

be the solution of L(y) = 0 determined by the two points (O,O) and 

(u,g(u)). Then as in Case 1, G intersects g at a second point v such 

that z < v < z'. The smaller of u and v is in -[xtX: ex is in A} and 

greater than z, the least upper bound of {xo<: ex is in AJ, a contra-

diction. 
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Thus F intersects g only at (z,g(z)), and Case C is impossible. 

Suppose for the Fin Case A that F(u)-< g(u) for some u in [w,1]. 

Then F(x) < g(x) for all x in [w,1] such that x -j: x' 
' 

since P(Fg) = 
{x'} • This contradicts F being non-negative. In Case B, let 
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x' ::: sup P(Fg) and x" ::: inf P(Fg). Then F(x) :2: g(x) for all x in [w,xj 

and~,, 1] by Theorem 1. Thus in either case, F(x) c?; g(x) for all x in 

[w,i], and the proof of Lemma 7 is completed,. 

Lemma 8., If f / 0 is an element of C which is not (L)-conical and 

is such that f(O) ::: f(l) ::: 0, then f is not an extremal element of c. 

Proof. Let w be in (0,1). Since f is not (L)-conical, it is 

either non-(L)-linear on [o,w] or on [w, 1]. It will be assumed that 

f is non-(L)-linear on ~, 1], since the proof for the other case is 

similar. 

Let g(x) ::: f(x)-F(f,w,l;x) for all x in [o,1]. (See Figure 9 .. ) It 

will be shown that g satisfies the hypotheses of Lemma 7,. The (L)-linear 

function of the conclusion of Lemma 7 will then be used to exhibit a 

non-proportional decomposition off. By Lemma 1, g is a super-(L) 

function since -F(f,w,l;x) and fare super-(L) functions., Next, 

g ( w) ::: f ( w )-F ( f, w, l ; w) ::: f ( w )- f ( w) ::: 0 and g ( l ) ::: f ( l) -F ( f, w, l ; l ) ::: 

O. Finally, it is necessary to show that g is positive on (w,l). 
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Figure 9,. Lemma 8 proof. The function g~ 
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Since f is super-(L), f(x) ~ F(f,w,l;x) for all x in (w,l), so that 

g(x) 20 for all x in (w,l) .. Suppose there exists au in (w,l) for 

which g(u)::: 0:. Then F(f,w,l;u)::: f(u) and F(f,w,l;wO::: f(w) imply by 

uniqueness of solution to L(y) ::: 0 that F(f,w,l;x) = F(f,w,u;x). Similarly, 

F(f,w,l;u) == f(u) and F(f,w,1;1) ::: f(l) imply by uniqueness of solution 

to L(y):;;: 0 that F(f,w,l;x) = F(f,u,,l;x). By Theorem 1, f(x) ~ F(f,u,l;x)::: 

F(f,w,l;x) for all x in [w,u] and f(x) < F(f,w,u;x) ::: F(f,w,l;x) for all 

x in [u,1]. Since f is super-(L), f(x) ~ F(f,w,l;x) for all x in [w,1]. 

Thus f(x) ::: F(f,w,l;x) for all x in [w,1], which contradicts the assump­

tion that f is non-(L)-linear on [w, 1]. Therefore g(x) > 0 for all x in 

(w,1). 

By Lemma 7 there exists an (L)-linear function F which intersects g 

at l~ast once in (w,l) and which is such that F(O) == 0 and F(x) ~ g(x) 

for all x in [w,.1] • Let z ::: sup P(Fg,).. Suppose z ::: 1. Then F(l) ::: 

g(l)::: f(l)-F(f,w,1;1)::: f(l)-f(l)::: O, and since F(O)::: O, F::: 0 by 

uniqueness of solution to L(y) ::: 0::. This contradicts F(x) > g(x) for all 

x in (w,l). Thus z < 1. Now, f(z)-F(z) ::: f(z)-g(z) ::: F(f,w,l;z) > 0 

and f(l) ::: 0 <F(l), so that there exists an x' in (z,1) such that 

f(x')::: F(x'). That is, F(x) = F(f,O,x';x). 

Let G(x) ::: F(f,O,x';x) for all x in [o,z] and f(x)-F(f,w,l;x) for 

all x in (},1] • Let H == f-G. 

To complete the proof that f is not an extremal element of C, it will 

be shown that G and H belong to C and that f is not proportional to G. 

The proofs that G and H belong to C are each given in two parts: (i) each 

function is shown to be non-negative, and (U) each is shown to be 

super-(L). 
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(i). Suppose there exists a u in (O,l] such that f( f ,O,)C' ;u)~o. 

Then F(f,O,x•·;l)>g(l) == 0 and continuity of F(f,O,x';x) imply that there 

exists av in~,,D-such that F(f,O,x';v) == o. So F(f,O,x';x)::O by 

uniqueness of solution to J,.(y) ==r O, since F(f,O,x';O);= o; Thi's i-COnt.ra.di.cts 

P(f,O,x';l) > o. The~efore F(f,O,x';x) 's;_O for all x in [O,z]. Since 

f is super-(L), f(x)~F(f,w,l;x) for all x in&,.JJ, so f(x)-F(f,w,l;x)~O 

for all x in {!1,1]. Thu-s G is non-negative. 

By its definition, H(x)::;: f(x)-F(f,O,x';x) for all x in [o,z] and 

F(f,w,l;x) for all x in~,1]. 

Since f i$ super-(L), f(x) ~ F(f,O,x';x) for all x in [O,x'], so 

H(x) == f(x)-F(f,O,x';x) ';a:Q for all x inlQ,z]since z<x'. Since 

F(f,w,l;z) > 0 and F(f~w,l;l)::; O, F(f,w,l;x) ~ 0 for all x in[z,1] 

because otrerwise F(f;w,l;xJ would be zero at some u < 1 and by unique­

ness of solution to L(y) = 0 F(f,w,.l;x) would be identically zero, a 

contradicti~n. Thus His non-negative on [0,1]. 

(ii). Since F(f,O,x';x) -is (L)-linear, -c; is super-(L} on (o,,]. 

By Lel)1llla 1, G is svper-(L) on [z,1]. Let u be in [O,z) and v in (z,i]. 

Suppose F(G,u,v;u') >G(u') for some u' in (u,v). (See Figure 10.) 

Then F(G,u,v;z) > G(z), since if F(G,u,v;z) ~ G(z), F(G,u,v;u•) >G(uf) 

and continuity of F(G,u,v;x) and G imply the existence of a v• ·:· between 

z and u' such that F(G,u,v;v') = G(v'). If v' is in (u,~], F(G,u,v;x)= 

F(f,O,x';x) by uniqueness of solution to L(y) = O, sin9e F(G,u,v;u) == 

F(f,O,x';u) and u f v·'. This contradicts F(f,O,x';v) > G(v) == F(G,u,v;v). 

If v' is ;i.n (z,v), then u < z ~ v' < u' < v and G{u '')<F(G,u,v;u') == 

F(G,v' ,v;u1 ) cont:padict G being super-(L) on [z,1]. Then F(G,u,v;z) > 

G(z) == F(f,O,x'rz), F(G,u,v,v) == G(v) < F(f,O,x';v), and continuity 

of F(G,u,v;x) and F(f,O,x';x) imply the existence of a~· in (z,v) 
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such that F(G,u,v;z') = F(f,O,x';z'). By uniqueness of solution to 
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L(y) = O, F(G,u,v;x) 5 F(f,O,x';x) since F(G,u,v;u) = G(u) = F(f,O,x';u) 

and u f z'. This contradicts F(f,O,x';v) > F(G,u,v;v). Therefore 

G(x) > F(G,u,v;x) for all x in [u,v], and G is super-(L) on [0,1]. 

Therefore G belongs to C. 

In order to prove that H is super-(L) on [o, 1], it is first 

necessary to show that H(x) < F(f,w,l;x) for all x in [o,z]. Suppose 

there exists au in [9,z) sUch that F(f,w,l;u) < H(u) - f(u)-F(f,w,l;u). 

Then F(f,O,x';u) < f(u)-F(f,w,l;u) for some u in [o,z). As shown 

previously, F(f,O,x';x) >O for all x in (0,1], so F(f,O,x';w)> 

f(w)-F(f,w,l;w) = 0~ By continuity of f(x)-F(f,w,l;x) and F(f,O,x';x), 

there exists av between wand u such that F(f,O,x' ;v) = f(v)-,f(f,w,l;v). 

SuRpbse u < v < w. Then since f is super-(L), f(v)~F(f,w,l;v) by 

Theorem 1. Then F(f,O,x' ;v) = f(v)-F(f,w,l;v) ~ O, which c.ontradicts 

F( f, O, x' ;v) > O. If w < v < u then P(Fg) contains v and z but not u, 



which contradicts P(Fg) being a single point or a closed interval. 

(Recall that F(x) = F(f,O,x';x) and g(x)-= f(x)-F(f,w,l;x).) Thus 

F(f,O,x' ;x) > f(x)-F(f,w,l;x) for all x in [O,z), or in other words, 

F(f,w,l;x)~H(x) for all x in [o,z]. 

Since F(f,w,l;x) is (L)-linear, His super-(L) on [z,1]. By 

Lemma 1, His super-(L) on [o,z]. Let u be in[O,z) and v in (z,1]. 

Suppose F(H,u,v;u') > H(u') for some u' in (u,v). (See Figure 11.) 
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If F(H,u,v;z) < H(z) then there exists a v' between u' and z such that 

H(v') = F(H,u,v;v') since Hand F(H,u,v;x) are continuou~ .• If v' is in 

(u,z), then u< u' < v' < z <v and H(u') < F(H,u,v;u') = F(H,u,v';u') 

contradict H being super-(L) on [o,z]. If v' is in [z,v), then 

F(H,u,v;x) = F(f,w,l;x) by uniqueness of soluti.on to L(y) = 0 since 

F(f,w,l;v) = F(H,u,v;v) and v' f v~ This contradicts F(f,w,l;u) > H(u) = 
F(H,u,v;u). Thus F(H,u,v;'z) > H(z). Then F(H,u,v;z) > H(z) = F(f,w,l;z) 

and F(f,w,l;u) > H(u) = F(H,u,v;u) imply the existence of a z' in [u,z) 

such that F(H,u,v;z') = F(f,w,l;z') since F(H,u,v;x) and F(f,w,l;x) are 

continuous. By uniqueness of solution to L(y) = O, F(H,u,v;x)E 

F(f,w,l;x) since F(H,u,v;v) = H(v) = F(f,w,l;v) and z' f v .• This contra­

dicts F(H,u,v;z) > H(z) = F(f,w,l;z). Therefore H(x) '2: F(H,u,v;x) for 

all x in [t.J,v], and H is super-(L) on [0,1]. Thus H belongs to c. 

Suppose th.ere exists a real number k such that G = kf. Since 

G f O, k f O. Then f is (L)-linear on [o,z] since G is. Since f = G+H 

and Hf O, it follows that k f 1. Then H = f-G = f-kf = (1-k)f, so 

that f is (L)-linear on [z,1] s.ince H is.. Thus f is (L)-conical since 

f(z) > O, which contradicts the original assumption that f is not 

(L)-conical. Therefore G and H form a non-proportional decomposition 

of f, and hence f is not an extremal elenent of C. 
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0 w u z• z V 1 

Figure 11.. Lemma 8 proof., The function H, 

Note: The function O is trivially an extremal element of C; hence, 

t)1e not-identically-zero extremal elements will be called "non-triv:j.al. 11 

Theorem 7,. A function f is a non-trivial extremal element of C if 

and only if f is an (L)-c.onical function. 

Proof.. The proof follows directly from Lemmas 2, 4, 5, 6, and 8 .. 



CHAPTER III 

INTEGRAL REPRESENTATION 

This chapter is concerned with the existence of a type of integral 

representation (Radon measure) for the elements of the convex cone C 

based on the following theo:rem due to Choquet .. 

Theorem 8 [5, p. 237]. If the linear space L is a locally convex 

Hausdorff space, and if A is a convex compact subset of L, then for 

every x in A there exists a non-negative Radon measure [6] on the 

closure of the set of extreme points of A whose center of gravity is x .. 

Definition 9. Let A and B be subsets of a real linear space L .. 

Then A+B = [x+y: x is in A, y is in B}, -A = [x: -x is in A}, and 

A-B = A+(-B). 

The theorem w.ill be applied in the following way., First, it is 

known that C-C is a real linear space such that the vertex of C is the 

origin of C-C [7, p. 47]., It is also known that when C-C is topologized 

w.i th the topology of simple convergence, it is a locally convex 

Hausdorff space [5,p~ 23aj. (The topology of simple convergence is the 

induced product topology of R [O, IL A neighborhood basis at O for C-C 

consists of the sets ff: jf(xi)l<e for i = l,., ... ,n}, where c is a 

positive real number.,) Then it w.ill be shown that B = {f:: f is in C, 

f(w) = 1}, where w is a fixed real number in (0,1), is a convex compact 
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sub.set of C-C which meets each ray of C once and only once and does not 

contain O.. It will also be shown that t.he set of extreme points of B is 

closed in C-C for the topology of simple convergence,. So by Theorem 8, 

there will exist an integral representation of each f in B in terms of 

extreme points of B,. It will then follow that there is an integ:ral 

representation of each g in C in te.rms of extremal elements of C, since 

B meeting e.ach ray of C once and only once implies that there exists a 

r.eal number k such that kg belongs to B and that the set of extremal 

elem.ents of C is the same as the set fmf: f is an extreme point of B, 

m is a non-negative real number},. 

The proof that B is closed will be based on the following theorem 

and lemmas .• 

Theorem 9 [s, p .. 218]. In order that a family F of functions on a 

set X to a topological space Y be compact relative to the topology of 

simple convergence it is sufficient that 

(a) F be pointwise closed in Y~, and 

(b) for e.ach point x of X the set F[x] == {f(x).: f is in i} has a 

compact closure, 

Lemma 9.. Let B == [f: f is in C, f(w) == 1}, where w is a fixed real 

number in (0,1). Let G be the soluti.on of L(y) == 0 determined by the 

points (w,1) and (1,00, and let H be the solution determined by the 

points (O,O) and (w,1). Then for eiich x in [o,w], {f(x): f is in 

B}:= [H(x),G(x)], and for each x in [w,1], {f(x): f is in B} == [G(x),H(x)],. 

Pr.oaf. Suppo:se there is an x1 in [o, 1) for which G(x') < O,_ Then 

G(w) ==land continuity of G imply that there exists an x" between wand 

x' such that G(x") == O, and hence G == 0 by uniqueness of solution to 
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L( y) = Q. This contradicts G(w) = 1. Thus G(x) > 0 for all x in [o, 1). 

Similar.ly, H(x) > 0 for all x in (0,1], s·o that G and H belong to B. 

Suppose there exists an x' in @,w) such that G(x') < H (x').. Then 

G(O) > 0 = H(O) and continuity of G and H imply that there exists an x" 

in (O,w) such that G(x11 ) = H(x~). Then G(w) = 1 = H(w) implies G = H 

by uniqueness of solution to L( y) = O,t1 Therefore G(x) > H(x) for all x 

in [o,w ). Similar.I y, H(x} > G(x) for all x in (w, 1] .. 

Note that since G and H are continuous on [o,i], each assume.s its 

max.imum on [o,.1J. 

Let f b.e any element of B., It will be shown that f is bounded be­

tween G and H., Supp·ose there exists a u in [o,w) such that f( u) > G(u). 

Then suppose there exists a v in [o,w) such that f ( v) < G( v ).. Now 

f(u) >G(u), f(v)..:::: G(v), and continuity of f and G imply that there 

exists an x' between u and v for which f(x") = G(x·•). If v < x' < u 

then G(x)-=: F( f,x·1 ,w;x),. (Se.e Figure 12.) By Theorem 1, f(x) < G(x) 

for all x in [w,1]. Then f(l)<G(l) = 0 implies f(l) = 0 since f 

0 V x' u w 1 

Figure 12.. Lemm,a 9 proof. The case v~x''<. u .. 
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is non-negative .. So G(x) = F(f,w,l;x), and by Theorem l f(x) < G(x) for 

all x in [o,w], which contradicts f(u) > G(u). Thus v..::::: x' < u is im-

possible. Suppose then that u < x• < v. (See Figure 130) Now G(x) = 
F(f,x',w;x) and f super-(L) imply that f(x) < F(f,x' ,w;x) for all x in 

[o,x~ by Theorem 1, which contradicts f(u) > G(u). Thus f(u) > 0 

implies f(x) > G(x) for all x in [O,w). Suppose there exists a z in 

(w,l] for which f(z) < G(z). (See Figure 14.) If f(l) ~ G(l) = O, 

then f(z) .C:::G(z) and continuity off and G imply the existence of a z' 

in [z,1] such that f(z') = G(z'). Then since G(x) = F(f,w,z' ;x) and f 

is super-(L), f(x) < G(x) for all x in [o,w) by Theorem 1, which con­

tradicts f(u) > G(u). Thus f(l) < G(l) = O, which contradicts f being 

non-negative. Thus f(x) > G(x) for all x in (w,l],. Since -G is a 

super-(L) function, f-G is a super-(L) function by Lemma 1. Now 

(f-G)(w) = f(w)-G(w) = 0 and w is in (0,1), so f-G = 0 by Theorem 6 

since f-G is non-negative. This contradicts f(u) > G(u). Therefore 

f(x) ~ G(x) for all x in [o,w]. 

u V w 

Figure 13. Lemma 9 proof. The case u<x•< v. 



u w z zt 

Figure 14.. Lemma 9 proof,. Assufllption that 
f(z)~G(z). 

Similarly, f( x) < H (x) for all x in [w, 1] .. 
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Suppose there exists a u in [O,w) such that f(1.,1) < H(1.,1). (See 

Figure 15.) If f(O) 6 H(O) then continuity off and H implies that 

there exists an x1 such that O -:: ~· < u and f(x') == H(x'). Now H(x) = 
F( f,x' ,w;x), f(u) < F( f ,x' ,w;u) and x' < u < w contradict f being super-(L). 

Then f(O) < H(O) contradicts f being non-negative. Thµs f(x) > H(x) for 

all x in [o, wJ.. Similarly, f(x)~G(x) for all x in [w, 1]. 

Therefore for each x in [o,w], [f (x): f is in BjC [H(x) ,G( x2], and 

for each x in [w, 1], { f(x): f is in B} C [G(x) ,H(x)] .. Let x and y be 

such that O ".:: x < w and H(x) < y < G(x). By Definition 1, there exists 

a unique (L)-linear function F such that F(w) == 1 and F(x) == y. Since 

F is in c, it follqws that F is in B.. Thus for each x in [O,w), 

[H(x),G(x)] == ft(x): f is in B}., For x == w, [f(w): f is in B} == 

{1} == [i-I(w),G(w)]. Similarly, for each x in [w,1] {f(x): f is in B} == 

[G(x) ,H(x)], and the lemma is proved. 
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G 

-------

f -- - .-.. __ 

x' u w 

Figure 15., Lemma 9 proof., The case f(u)<H(u),, 
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Lemma 10,.. The convex cone C is closed in R[O,]J for the topology of 

simple convergence .. 

Proof,, Let f belong to the c0mplement of c... It will be shown that 

the complem<=;nt of C is open by exhibiting a neighborhood off contained 

entirely in the complern<=;nt., The proof will be given in two parts based 

on the fact that if f is not in C, then either f is non-negative and not 

super-(L) or f is not non-negative,, 

Case L Suppose f is not non-negative.. Then there exists an x1 in 

[0,1] such that f(x') < 0,. Let e. = -(f(x')/2),, Let g be in U(f;x'; e), 

an e-neighborhood of f in the topology of simple convergenqe., Since 

I g(x• )-f(x1 )I< c , g(x~ )-f(x') < -f(x' )/2, and so g(x') < f(x' )/2 ..:::::: O .. 

Thus g is not non-negative and hence not in c.. Therefore U( f; x:11; c) is 

contained in the complement of C .. 

Case II,. Suppose f is non-negative and not super-(L)., Then there 

exist u,z, and v such that u < z < v and f(z) < f(f,u,v;z)., For 
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convenience, denote F(f,1,1,v;x) by F(x). 

If F(u) = f(u) :;> 0 and f(v) = f(v) > O, let 

€ =[J./~in {F(u) [F(z)-f(z)] /[F(u)+F(ziJ, F(v)[F(z)-f(ziJ/[F(v)+F(z)]}" 

Observe that c>O since F(u) > O, F(v) > O, and F(z) > f(-i) ~ o. 

Then: e< F{u) [F(z)-f(z)] /[F(u)+F(zD 

[F(u)+F(z)]i< F(u) [F(z)-f(z)] 

F( 1,1)~-t-F( z)€ < F( u)F( z)-F( u) f (z) 

F(u)f(z)+F(u)E < F(u)f(z)-F(z)~ 

F(u) [f(z)+ e]< ;F(z) [F(u)-e] 

F( u) [f( z)+~/F(z) < F( u)-S • 

Similarly, F(v) [f(z)+~/F(z) < F(v)-S, Let k = [f(z)+~F(z). 

By Lemma l, kF is an (L)-Unear f1,mction. Note that kF(z) = f(z)+e. 

Suppose there exists a g in C/'IU(f;u,v,z; 6 ). (See Figure 16.) Then 

g(t,1) >. f(u)-e::; F(u}-e > kF(u), g(v) >-f(v)-s= F(v)-.S-::> kF(v), ·and 

g(z) < f(z)-+e = kF(z). Since g and kF are continuou$, there exists an 

x' in (u,z) such that g(x') = kF(x'), and there exists an x" in (z,v) 

E F E 

kF--

0 u x' V 

Figure 16. Le!Qlla 10 proof. 
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such that g(x:"') == kF(xit)., Then kF(x): F(g,x' ,x»Tx) and g(z) < F(g,x-' ,x'';z) 

contradict -g being super-(L). Thus U(f;u,v,z;c) i-s in the complement of 

c. 

If F(u) = O, then F(v) == 0 impli·es F == 0 by uniqueness of -s:olution 

to L(y) :;:; O, an_d F(z) =+ O contradicts F(z) > f(z) 3 o. Thus F(v) > o. 

Let e==[)./~(v) [F(z)-f(z)]/[F(v)-+f(z)] .. As-shown in the preceding 

paragraph, E>O and kF(v) < F(v)- e"' if there ex_ists a g in 

C"U(f;u,v,z; e), then g(v) > f(v)-cS== F(v)-S > kF(v). Since g and 

kF are continuous, there exists an x' such that g(X:') == kF(x') and 

u ~ x' < z, --an_d there exis·ts· ·an ·x'' such that g(xtt) = kF(xn) and 

z < x" < v. Then kf(x) = F(9,x•,x11 ;x) and g(z) < F(f,X:' ,x11 ;z) c_ontra­

dict g being super-(L), s.o that U(f;u,v,z;e) is in the complement of C,. 

Similarly, if F(v) = 0 then F(u) > 0 and U(f;u,v,z; e:) is in the 

complement of C, where e ==[1/~(u) [F( z)-f(z)] /[F(u)+F( v )] • 

Thus the complement of C is open in R©~ilfo;r the topology of simple 

convergence, and the lerrma is proved,. 

Theorem 10. The set B == {f: f is in C, f(w) == 1}, where w is a 

fixed real number in (0,1), :i;s a convex compact subset of C-C which 

meets each ray of C once and only once and which does n.ot contain 0-. 

Proof,. Fi;rst, it will be shown that B is a convex set. Let f and 

g belong to B, and let k be any real number such that O < k < 1. Then 

by Lemma 1, kf+(l-k)g is in c. Since (kf+(l-k)g)(w) == kf(w)+(l-k)g(w)== 

k+l..-k == 1, kf+(l-k)g is in B., Thu_s B is convex. 

Next, compacrtne·ss of B will be p:roved by applying Theorem 9. To 

prove that B i$ closed, it will be shown that the complement of B 

relative to C is op~n.. Then since C is closed relative to R[O, Dby 
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Lemma 10, B will be closed relative to RID,D, Let f be any element in 

the complement of B relative to C., Then since f is super ... (L), f(w) f i. 

Let E = I f(w)-1 I. The neighborhood U(f;w; B )nc off is in the comple­

ment of B relative to C, since if g is any element in U(f;w;e)() C, 

I g(w)-f(w) l<e implie-s !g(w)-f{w)j < I f(w)-1 j .. Then f g(w)-Jj;:: 

I g(w)-.f(w)+f(w)--1 j > I f(w)-1 l - lg(w)-f(w) I > a, so that g(w) f 1, and 

henc:;e g is not in B. Thus f i's an interior point of the cpmplement of 

B relative to c.. Therefore -B is clO"Sed r.e],ative to RW, :0. Then by 

Lemma 9 and Theo:rem 9, B is compact..~ 

Clearly f = 0 is not in B~ince f(w) = 0 f 1. 

To complete the proof of thf:l theorem, it will be shown that B inter-

sects each ray of C in -one and only one point. L~t H be any ::i;-ay of 01 

Then there exists an f I, 0 in C such that H = [l<f; k is a non-negative 

real number}• Since f is continuous on [o,!] f(w) is finiteio By 

Theorem 6, f(w) f O since w is in (0,1). Then k ;:: 1/f(w) is the unique 

real number such that kf(w) = L. Thus the intersection of B with H 

exists and is unique .• 

Lemma 11., If f is an element of B\. e(I3), the complement of etB) 

relative to B (where e(B) is the set of extreme points of B), then 

either there exists a u in [o,w) such that H(u) < J(u) < G(u) or there 

exists a u in (w,1] such that G(u) < f(u) < H(u), where G and H are the 

functions of Lemma 9. 

Proof. · Suppo-se the conc;lusion of th!:! lemma is false.. By Lemma 9, 

H(x) < f(x) ~ G(x) for-all x in [o,w] and G(x) ~ f(x)::;; H(x) for all x 

in [w,1] , Since f is continuous and G(x) / H(x) for any x in [o,w) or 

(w,1], there are four possible cas~s: 1) f(:x:) ;;:: G(x) for all x in 
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[o,w] and f(x) == H(x) for all x in [w,1] , 2) f(x) == H(x) for all x in 

[o,w] and f(x) == G(x) for all x in [w, 1], 3) f(x) == G(x) for all x in 

[0,1], and 4) -f(x) == H(x) -for all x in [0,1]. In cases 2, 3, and 4, f 

is an (L)-conical function and thus in e(B), which contradicts f being 

in B ,e(B). In ca-se 1, it will be shown that f cannot be super- (L),. 

Let u be in [o,w), v in (w,l]. Then ;F(f,u,v;w) ~ f(w) == G(w), 

F(f,u,v;v) == H(v) > G(v), and continuity of F(f,u,v;x) and G(x) imply 

the existence of an x' in [w,v) such that F(f,u,v;x') == G(x'). Then 

F(f,u,v;x) = G(x) by uniqueness of solution to L(y) == O. This contra­

dicts G(v) < H(v) == F(f,u,v;v), and the lemma is proved .• 

Theorem 11. The set e(B) o·f extremal elements of B is closed in 

C-C for the ·topoio-gy -of ·simple convergence,. 

Proof. By Theorem 10, Bis closed relative to C-C, so to show 

e(B)is clo-sed relative to C-C it is cnly necessary to prove e(B) is 

closed reta't'ive to B. It will be shown that B,e(B) is open relative 

to B. Let f belong to B '\. e(B). Using the conclusion of Lemma 11 and 

the fact that f is continuous, it will be assumed that there exists a 

u in [O,,w) such that H(u) < f(u) < G(u). The proof for u in (w,1] such 

that G(u) < - f(u) < H(u) is similar, and will be omitted. 

Let P be the (L)-conical function in e(B) determined by the points 

(O,O) and (u,-f(u)). Note that any (L)-conical function in e(B) is 

either 1) identical with Hon [o,r] and identical with the (L)-linear 

funqtion determined by the points (r,H(r)) and (1,0) on [r,1], where 

r is in [w, i], o-r 2) identical with G on [r, 1] and identical with the 

(L)-linear function determined by the points (O,O) and (r,G(r)) on 

[o,r] where r is in [o,w]. Let z be the x-coordinate of the vertex of 

P. Note that z < w, since if P intersects H at any point in [o,w], then 



uniqueness of solution to L( y) ::; 0 implies P(x) = H(x) for all x in 

[o,w], which contradicts P(u) = f(u) >H(u) .• Suppose f(x) = P(x) for 
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all x in [o,z], Then f ~uper-(L) and G(x):: F(f,z,w;x) imply-f(x) ::'.: G(x) 

for all x in [z,w]and f(x) ~ G(x) for all x in [w,1], by Theorem 1. By 

Lemma 9, f(x) .c::: G(x) for aH x in [o,w] and f(x) >-G(x) for all x in 

[w,1]. Thus f(x) ::; G(x) for all x in [z,1], and hence f = P, which 

contradicts f not being in e(B). There-fore there exists a v in [O,z] such 

thqt f(v) l P(v), 

It will now be determined how e may be chosen so that U( f;u,v; e) 

is a neighburho.od off contained entirely in B'.e(B),. (See Figure 17.) 

Let Q be the (L)-conical function in e(B) determined by the points (O,O) 

and (v,~/iJ[f(v)+P(v)] ). Now I Q(v)-P(v) I ::; IIJ./~(v)+[/~(v)-P(v) I = • 

ij/i} l.f(v)-P{v)I > o. Thus Q(v) l P(v), which implies by uniqueness of 

s.olution to L(y) ::; 0 that Q(u) f. P(u) :;:: f(u), since Q(O) = P(O). Let 

S = [J./3nin[lf ( v )-P( v) I , If( u)-Q(u) I}. 
Suppose there exists a gin u(f;u,v; e)f\e(B). Then lf(u)-g(u)I<£ 

---

0 \1 u z w 

Figure 17. Theorem 11 proof,. 

H ---
f ---

1 
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and I f ( v }---g ( v) I < ·e .. · Suppo:s·e ··firs-t · that P( v) > Q(v) ., Then -·f ( u) -::: 

P(u) > Q(u) by uniqueness of solution to L(y) ::: O, and Q(v) :::[j./~(v)--tU./~(v)> 

[Y~(v)-tg/~(v), so that Q(v) > f(v)... Thus f(u}-g(u) < e< f(u)-Q(u) 

implies g(u)-Q(u)> O, -and Q(v)-f(v) :::(J,/~(v)-t{i/~(v)-f(v)::: 

(yi)(p(v)~-f(v)] ~ E > 9~v)-f(v) implies g(v)-Q(v) < 0_,, Also, G(v) > 

P(v) > Q(v} ::::{}/~[}(v)+P(v)J::: f(v}+(j/2J1(p(v)-f(v)] > f(v)-+E., so that G 

is not in u(-f;u,v; e:). ·Suppose next·that P(v) <Q(v)., Then f(u) = 

P( u) < Q( u) by uniquenes-s of solution to L( y) = O, a'hd Q( v) = 
(i/~(v)t{y~(v) < a/'.?)f(v).+[/~(v), so that Q(v) < f(v) .. Thus g(u)-f(u)<:::1: 

c < Q(u)-f(u) impli.es g(u)-Q(u) < O, ·and f(v)-Q(v) ::: f(v)-li/~(v)-[i/:W(v) -

~/i](t(v)-P(vD ~ e > f(v}-g(v) implies g(v)-Q(v) > o. Also, G(u) > Q(u)c;: 

Q(u)-f(u)+f-(u) ~f(u)+E., s_o that G is not in U(f;u,v; e). Thus in both 

cases, g-Q chang:es sign between u and v, and G is not in U(f;u,v; s). 

Since g--Q is continuous, there exists an x' strictly between u and 

v such that g(x:t) = Q(x')., Then since g f G, g(O) ;::: Q( 0) and unique-

ness of soluti-on .to L-( y) ::: 0 im:pl y g ;::; Q.. This is a contradict.ion 

since lf(u)~(u)I >C: implie-s Q i:s not in U(f;u,v; £) .. Thus f is an 

interio:r: point of B '-.e(B), and e(-13) is clo,sed relative to C-C.,, 

It now follows from Theorems--8, 10, and 11 that there ex::tsts an 

integral representation (Radon measure) for each f in G in terms of 

extremal elements of C., 

Note,. If e(B) i-s dense in -B, then the integral representation of 

Theorem 8 is of little value., By the above theorem, e(B) is closed, 

so th_at if -e(B) i-s dense in B -then e(B) ::: B.. To see that this is not 

the case, observe that (j/~(G+H), where G and H are the functions of 

Lemm~ 9, be-i-on-g-s to B but not to e(B) since [1/~ G+H)(O) f O and 

IV~(G+H) (1) /- o .. 



CHAPTER IV 

THE STRUCTURE OF C-C 

Let K be the convex cone of non-negative concave functions on 

[o, 1]. The relationship between the real linear spaces C-C and K-K 

will be investigated by considering some results obtained by Hartman[9] 

and Bonsall [1J .. 

Def!nition 10. A real-valued function f defined on a convex 

domain Dis a d 0 c. function on D if there exist continuous convex 

functions g and hon D such that f = g-h .. 

Definition lL. A real-valued function f is ~ tl a. 12oini u in 

D if there exists a convex neighborhood U of u such that f is d., c. on 

un D. When f is d~ c .. at every point in D, it is called lo cap v !hh QD. 

12., 

Theorem 12, [9,p;, 707],. If f is locally d,.c., on an open interval I, 

then f is d.c. on I. 

Theorem 13 [i,p., 105]. If f is super-(L) on [9,1], then, given a 

and bin (0,1), f is d.c. on (a,b). 

Theorem 14.. If f is super-(L) on [9,1], then f is d .. c. on (O,l))~ 

Proof,. Let u be tn (0,1). Then there exist a and b such that 

0 <a< u < b < 1$ By Theorem 13, f is d.,c., on (a,b).,. Thus f is locally 

d.c. on (0,1), and by Theorem 12 f is d.,c. on (0,1). 
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!heolrem 15,i,. If L{y) is such that all non-negative (L)-linear 

func,tions are convex, then K-K is a subspace of C'<..C.,; 

Proof<> Let f belong to K-K,. Then there exist g and h in K S:Uei'h 

that f=g-h.. Let u.< v be i:n [05.l]., S"ince g is concave, the line seg­

ment joining the points (u,g(u)) and (-v,11g(v)) lies below g(x) for all 

x: in [u,v],.. S'inee F(g,u,vp;:) is convex, it lies below the line seg­

ment, and thus below g(:x) fer all x in [u,v]« Thus g i1! super-(L) .. 

Similarly, his super-(L), a.11d henee f belongs to C-C., Therefore 

K ... KCC-C:, and hence JC .... K is a subspace of C~,C,,, 

To see thaJt not a.ll L(y) satisfy the hypothesis of Theorem l.5, 

observe that L(y)E=d2y/ax2-[1/(x-25] dy/dx=O satis.t'h:s Definition 1, 

but the ~olµt:i.on y=-(x-2)2+4 is non-negartive and not e@nvex on [0,JJ~, 



CHAPTER V 

REPRESENTATION IN TERM.S OF GREEN'S FlJNCTIONS 

This Qhapter i-s concet>ned with the demonstration o-f the existence 

of a type o-f integ:ral representation in terms of Green's functions re­

lated to L(y) = 0,,, This -representation wi.11 be for simple modifications 

of e_lements of the convex c-on-e C. 

Let c• = [t: f is inc, f(O) = f(l) ~ o} .. Clearly ct is a subcone 

of c. Let Jt;; Bl'\ 0-' 0 

Lemma- -12.. A function f is an extremal element of C' if and only 

if f is an (L)-conical function with it~ vertex over win (0,1). 

Proof. If f b not an (L)-conical fun.ction, then f is not an ex­

tremal element of C' by Lemma 8 since the functions used for the non­

proportional decompo-si tion in the proof of Lemma 8 are elements of c•. 
If f is an (L)-conical function with its vertex over O or 1,- then f is 

not an elemBnt of C1 and· hence not -an extremal element of C'. 

If f is an (L)-oonical function with its vertex over win (0,1), 

then f is an extremal element of G' by Lemma 4 since the proof of 

Lemma 4 4se$ only elements of C'. 

Definition 12.. -A real-valued function K(x, t) is a Gre!in's funct3,qn 

of L(y) = O wfth boundary conditions y(O) = y(l) = 0 if 1) for e_ach t, 

K(x,t) is a continuous function of x and satisfies the bqundary 
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conditions, 2) for xft the first and ·second derivatives of K(x,t) with 

respect to x are continuous functions of x in [O, 1], and at x = t the 

first derivative has the jump discontinuity lim dK/dx-lim dK/dx;;::; -1, 
x ... t+ x-t-

and 3) K(x,t) as a function of x ·satisfies L(y) = 0 throughout [0,1] 

except at x = t. 

Lemma 13,. For each x in (O,w], {f(x): f :is in Bi}= [H(x),G(x)], · 

and for each x in [w, 1), [f(x): f is in B'} = [G(x),H(x)].. Also, 

£f(O): f is in B'} = fo} and t_f(l); f is inB'} = fo}. 

Proof. Let f be an element of B'. Since B' is a subset of B, 

H(x) < f(x) < G(x) for all x in (O,w] and G(x) -:: f(x) < H(x) for all x 

in [w,O) .. Let x and y be such that O < x < w and H(x) S: y ~ G(x). - - By 

Definition 1, there extsts a 1-)nique (L) .... linea:r function F such that 

F(O) = 0 and F(x) = y.. Then there exists an x• in (O,w] such that 

F(x') = G(x' ). The (L),,...conical fonction defined as F(x) on [O,x'] and 

G(x) on [x',1] belongs to B'. Hence for each x in (O,w), {f(x): f is 

in B'} .:::: [H(x),G(x)] • Simila:t:l y, [ f(x): f is in B'} = [G(x) ,H(x)] for 

each x in (w,l). For x = w {f(w)-: f is in B'f = [1]. Fo:r x = 
O {f(O): f is in B'} = fo}, and fo:t: x = 1 ff(l): f is in B'} = fo]. 

Lemma 14.. The convex cone c~ i-s clo-sed in RID' J] for the topology 

of simple c:cmve:rgence. 

Proof.. Let f be an element in the complement of C' relative to 

R IQ,JJ. If f is in the complement of C, Lemma 10 applies directly to 

show that f is an interior point of the complement of C'. Let f be in 

c,c•. Then f is a non-negative super""'(L) fµnction which is non-ze:;ro 

at O or at 1. Let c =[j/anax{f(O),f(l)}. Then U(f;0,1;€) contains f 
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but does not intersect C' • Thus the eomplement of C' relative to R(o,l] 

• d h C' . d · R(O ' +J is open, an. ·· ence · is close in . ,. 

Theorem l61t The $et B• = {f; f is in c•, f(w) = 1}, where w is 

some point in (O,l), is a convex compact subset of C'-C' which meets 

each rayo-f·C' onc-e ·and only once and which does not contc1in Q,. 

Proof. The proof i-s the· same as the proof of Theorem 10 with B 

replaced by B', C by C', Lemma 9 by Lemna 13, and Lemma 10 by Lemma 14. 

Lemma 15. If f ls an element of B''-e(B'), then eith~ there exi-sts 

a u in (O,w) such that H(u) < f(u) < G(u) or there exists a \.l in (w,l) 

such that G(u) < f(1.,1) < H(u), where G and H are the functions of 

Lemma 9,. 

Proof. The 11qppo-sition that the conclusion i$ false implies 

f ( X) = H ( x) -for all X in [0, w] and ·f ( X) = G ( X) for all X in [ W, 1] • 

This· f is an (L)-conical fl,mction, which contradicts f being in B1 ,e(B' ). 

Theorem 17. The ·set e(-B') of extremal elements of B' is closed in 

C'-C' for the topology of ·simple convergence. 

Proof. The proof i-s the same a-s the proof of Theorem 11 with B 

replac,.ed by B', C by ct, Ll;lmma 9 by Lemma 13, Lemma 11 by Lemma 15, and 

Theorem 10 by Theo·r-em i-6"' 

Theo-rem 18. Iff is an element of C, then the:;re exists an integral 

represent9 ti:on (~adon·measi;re) for f(x)-F(f,O,l;x) in terms of Green's 

functions of L(y) = 0 with boundary conditions y(O) = y(l) = o. 

Proof. By Lemma 1, f(x)-F(f,O,l;x) belongs to c•. By Th.eorem 8, 

the;re exists. an integral representation for each function in B' in terms 

of extreme points of B',. It then follows that there is an integ:ral 
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representation for each function in C' in terms of 19xtrem1;1l elements of 

C', since Bt meets each ray of C' onc;e and only onc~jt Since the extrem.al 

elements o·f C' are (L)-co11ical functions with vertices over. points in 

(0,1), and since for each such function g there exists a posHive real 

number k such that kg 1,.s a Gr19en' s function of L(y) ::,; 0 with boundary 

conditions y(O) = y(l) = o, it follows th9t the integral representation 

for f(x)-F(f,O,l;x) is in terms of G:reen•s functions of L(y) = 0 with 

boundpry conditions y(O~ = y(l) = o;. 

Note. Martin [lo] ha-s obtairied a result -similar to that of 

Theorem lB for the special convex cone K of non.,..ne9at.ive concave 

functions on[o, !] • 



CHAPTER VI 

DISCONTlNUOUS SUPER-(L) FUNCTIONS 

Tne larger cone en pf non-negative super-{L) functions which may 

be discontirn;ous at O cil:' at l will be consi~ered in this chapter. For 

f in C", F(f,O,u;~) ~ f(x) for all x in [o,u] and continuity of 

F(f,O,u1x) imply f(O) :;::: lim+F(f,O,u;x) <::: lim+f(x), Similarly, 
x-+O ~~o 

f( l) ~ lim--f(,d ~ -F~m this and from TheC?rem 4 it is easy to see that 
~-1-

any (L)-coni~l -function is al-so an extremal element of C". Also, since 

C is a svbcone of G", any element of G which is not an extremal element 

of C is not· ·an extremal elem·ent o·f c•t. Therefore to determine the ex.,. 

tremal stxucture pf C" it is only necessary to consider tho!;le elements 

which are d:iscontinuous at O or at 1. 

Lemma 16. If f is an element of C" 51,.1ch that O < f(O) C:::. lim f(x) 
. x...o+ 

or O < f(l) < Um f(x), then f is n,ot an extrem~l element of Cit-. 
x~- . 

Proof. Let g(x) = F(-f,O,l;x) for allx;in (o,i), and :J.et h = f.-g,. 

Then g is in en since F( f,O, l ;x) i:s a non-negative (L)-1inear function. 

Since f(x) ~ F(f,O,lpc) fer all x in [0,1], h is non-negative .. By 

i.emma 1, h :is -super-(L) am~ hence i's in G" • Suppose there exists a 

positive real number k suc;h that g i kf. Them f(O) = g(O) f O or 

f(l) = g(l) f O implies k = l, which contradicts lim f(:x) > f(O) or 
x-+0+ 
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lim f(x) > -f(l) since lim 9(x) ;:: 9(0') and lim g(x} -= 9(1).. Thus 9 and 
x-+1- x-+O+ x-1-

h form a non-pro-purlional d0ec;ompo-si tion of · f, an_d hence f i-s not an ex-

t;remal element of C" .• 

Lemma 17. If -f i-s -an element of C" -such that f(O) == 0 < lim f(x) 
:x:...o+ 

or f(l) == 0 <: lim f(x) and f is n.ot (L)-linear on (O,l), then f i.s not 
x-1-

an extremal -element of ca. 
Proof.. Let g on (0,1) be tne (L}-Unear function dete:,rmined by 

the two point:s (O,lim -f(x)) and (1,um-f{x)) .. Define g(O) == f(O) and 
x..0+ . X-+1- . 

g(l) == f(l).. Let h == f-g. {See Figure lB,.) -Since g is (L}-linear on 

(0,1), 9(0) ~ lim+g(x) and g(l) ~ lim g(x), g i-s a non-negative super-(L) 
x-t>O x~l- · 

function,., Define G(x) :::; f(x) for all x in (0,1), G(O) == lim f(x) and 
x..o+ 

0 

---
--

---
-....-

f 

---
9_...­---
h ____ -. __ _ 
- ....... 

Figure 18 .. Lerrmij 17 proof. 
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G(l) = lim-~(x). Then g(x) = F(G,O,l;x) for all x in (0,1), so that 
x-+1-

h(x) = f(x)-g(x) = G(x)-F(G,O,l;x) > 0 for all ?C in (0,1) sinc·e G is 
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super-(L). Since h( 0) ::;: h( l) = O, h is non-negative. By Lemma 1, h is 

a super-(L) function. Sinc;e g is (L)-linear on ( O, 1) and f is not, 

g f kf fox any real number k. Thus g and h form a non-proportional 

decomposition of f, and hence f is not an extremal element of C''• 

Lemma ±B.. I-f f i-s an element of G" such that f is (L)-linear on 

( 0, l) , f ( 0) = 0 < lim f ( x) and O < 1 im f ( x) , or f ( 1) = 0 < lim f ( x) and 
· x..o+ x-+1- x-1 -

0 < lim f(x-), th-en -f is not an extremal element of C". 
x+o+ 

Proof. en1 y -the fi-rst ca-se will ·b~ proved, since the proof for 

the other case is similar. Let g on [0,1) be the (L)-linear function 

determined by the two points (O,O) and (l,lim f(x)), and define 
x+l-

g(l) = f(l).. Let h on (O,.U be the (L)-linear function determined by 

the two points (O,lim f(x)) and (l,O), and define h(O) = o,. (See 
x~+ 

Figure 1 9,.) Then (g+h)(O) = g(O)+h(O) = liµi f(x) and (g+h)(l) z 
x .. o+ 

g(l)+h(l) = lim f(x), so g+h is the unique solution of L(y) = 0 which 
x .. 1-

is lim f(x) at O and lim f(x) at 1,. Thus f(x) = g(x)+h(x) for all x 
x+o+ x+l-

in (0,1). Now f(O) = 0 = g(O)+h(O) = (g+h)(O) and f(l) = g(l) = 

g(l)+h(l) =· (g+h)(l), so that f = g+h. Suppose there exists a positive 

real numbe-r-k such that g = kf. Then limkf(x) = lim g(x) = 0 which 
x-+O+ x..0+ 

contradicts lim -f(x) > OJt Thu-s g and h form a non-proportional · · 
x..O 
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f 

' 
0 

Figure 19 •. Lemma 18 proor. 

decompos.ition of f, ~nd hence f fa~ not an extJ;'empl element ()f C''• 

Lenma 19,41 If f · is an e_lement of C" which h either (J;.) ... iin.ear on 

(O,l] and such_ that .f(O) = 0 < lim f(x) ~nc;l 
. x.,.Q+ 

f(l) :;: o, or CL)~linear on 

[0,1) and such that f(l) = 0 ~. Um f(x) and f(O) ::.: O; then f is an 
X.+l ... 

extre111al element of C". 

Proof. Let g and h be any two elements of G" such that f = g+h. 

Only the proof for the fi:rst case will be g,iven, since the p;r;-oof for 

the other case is simUar. l3y Theol'em 4 g and h are (L)-linear on 

(0,1}., Let.k = li,m+g(~)/lilll+f{x). Thim kf(x)::: ~(x) fo-:r all x tn 
x-.0 x..,,o · . 

(0,1] by 1.,miqueness 9f solut_ion to L(y) = O since g(l) = 0 = kf{l) and 

lim+g(x) ;::; llm~f{x)~ Also, kf(O) = 0 :;; g(O), so that g = kf ~nd the 
x..O x~. . 

. de-composition ifi! p;opo:rrt:i;onal• Thus f h an extremal element of c11. 
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Theorem l9. A function f is .an extremal elemEJnt of C" ~f and only 

if it is an ext,remal element of C or a fµnction of the type deiscribed in 

the statement of LE,Jmµia 19;. 

Proof. The prc;,of follows di:rect1 y from Lemmas 16, 17, 18 and 19,. 



CHAPTER VII 

A CONE OF COf'CAVE FUNCTIONS 

One extension of the concave function definition (Definition 2) to 

domains of -dimension higher than one is the following. 

Definition 13. Let D be a convex compact set, in a real linear 

space L. Then a real-.valued function f is a cqncav@ funcUoo .QJl !2 if f 

is a concave fum;"tton when restricted to any line interval contained in 

D. 

It is known that the set -K(n) of real-valued non-negative concave 

func;tiol)s on a convex compact dom,ain in En h a convex cone. McLachlan [ 4] 

has obtained some results concerning the extremal structure of this cone. 

In this chapter a certain ·subcone of this cone will be investigated and 

its extremal structure completely characterized. 

Unless stated to the contra-ry, the domain of the real-valued 

functions considered in this chapter will be a compact convex subset D 

of E2, and the functions will be assumed to be continuous on D. For 

each such function ·f, defJne V(f) ={(r,9,z): (r,9) is in D, 0 € z~ 

f(r,9)}, where r, 9, and z are cylindric;al coordinates, with O ~ 9 < 2'1f 

and r ~ o. It w.ill be assumed that the point (0,9) is an interior point 

of D and that -r = h(9) is the equation of the bol.lndary of D. 

Let Q = {f: f is a non-negative conc~ve fl.lm;tion on D which is 

continuous on the boundary of D, f(h(9),9) == 0 for all 9 in [0,21Q, and 
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for each z ·such that o< z"= sup {f(r,9)s (r,e) is in D} the boundary of 

the intersection of z = z wHh V( f) has equation r = kh( eJ for some 

constant k in [0,1]}. 

Theorem 20~ The set ~ is a convex cone. 

Proof. Let f and g belong to Q, and let k be a non-negative real 

number. Since K(2) i-s a convex cone, kf and f+g are non-negative concave 

functions on D. For all 0 in [0,27r), (kf){h(0),e) = kf(h(0),e) :;: 0 

and (f+g)(h(e),e) = f(h(e),e)-+g{h(e),e) = o. 

To complete the proof it will be shown that kf and f-+g satisfy the 

last condition of the definition of Q. Let z be s1.,1ch that z = z inter­

sects V(kf). As-sum-e k > · O, -since the · function which is identically 

zero clearly belongs to -Q. Then the boundary of the intersection of 

z = z/k with V( f) has equation r = mh( e) for some m in [o, 1] since f is 

in Q, so that the boundary of the intersection of z = z witn V(kf) has 

equation r = mh(e), since the boundary of {(r,e) 1 f(r,e) = ~/Jg is the 

boundary of f(r,-e)s kf(r,0) = z}. Let z-' be such that z = z' intersects 

V( f+g). Let E-r• ,e:zt-) b·e-a -po-int in the boundary of this intersection. 

Let 1.,1 = f(r•,e•) and v = g(r·•,e·•). Then the boundaries of the inter,.. 

section,s of z ::;: u with V( f) and z ::;: v with V(g) have equations r = mh( 0) 

and r = nh(e) -respecti v-el y, ·for some constanFs m and n. Nott;! that 

r• = supfr.i (f+g)(r,e!r= z'}' and that (f+g){r,e•) < z' for all r > r' 

since f+g is concave. Similarly, mh(0') = su_p{r1 f(r,e•) = u} and 

nh{0') = sup{r1 g(r,e•) = v}, f(r,e•) < u for all r >mh(9'), and 

g(r,9') < v for all r >nh(e•). If mh(9') < r' or nn(e•) < r', then 

f(r' ,e•) < u or g(r' ,.e•) < v, which contradicts the definitions of u and 

v. Thus mh(9') > x• and nh(0') c!!' r'. If mh(9') > r• then f(r,e•) = u 
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for all r in [r~ ,mh(e•)J since f(r• ,e') ::: u, f(mh(e•) ,9') ::: u and f is 

non-increa~ing. Similarly, if nh(9•) > r• then g(r,91 ) == v for all r 

in [:i:-•, nh( 91 )] • Let f ::: minfmh(e·•) ,nh(9')} • Then r >r' and 

(:f+g)(r,9') = u+v :,t: z', which contradicts r• = sup{r: (f+g)(r,9') = zt}. 

Th ere fore either r • ::: mh (e') or r' = nh (9' ) • Si nee m a nc:I n are ind e-

pendent of rt and 9 1 , the equation of the boundary of the intersection 

of z ::: z' with V(f+g) i$ r == mh(9) or r = nh(S). Therefore kf and f+g 

ape in Q, and hence Q is a convex cone. 

L.e. m= 2n Let F l:J-c c1 concave function on ro. a] where a - D fo"' ''"""' vi. -. . .. . . . . . , .. . . t.: ; ' , ' ... 

which F!(O) ~ O an<, F(a) = 0... Then f(r,9) = F(ar/h(9)) belongs to Q. 

Proof~ Since (0,.9) is an interior. point of D, h(9) > 0 for aU 

9 in [0,27f), and since D is a convex ~et each 9-..coo-rdinate line inter­

sects the boundcp:y of D in exactly one point; hence·, f(r,9) is well 

defined for all (r,.9) in D., Let (rf;'ei) and (r2,e2) be any two distinct 

points in D, where. 0 ~ 92 ~ 91 < 27r. Let R(r1,91,f(ri,S1)) and 

S(r2,e2,f(r2,e2)) be the c.orresponding points on the graph of f. Let 

RS be the line ·segm;ent joining R and s. lf e1 = e2 then RS lies below 

the graph o-f f since F is c·oncave.. lf e1 :;: e2+?r then RS lies below the 

graph of f since F is concav,e and F?( 0) °' 0,,. 

The intersection of z :;:: z1 with V(f) will now be shown to b.e a 

convex set. Let r 1 :;; $Up{r: F(r) = z i}., Note that F can only he 

constant on [o, u] for -"$ome u in {O,a) since F! is monotone non-

increasing and F.t(O) ~ t);. If r.'.:. rih(9)/a then f(;r,.9) ::: f(r1h($)/a~9) """ 

F(r1) = Zp If r >-r1h(9)/a then f(r,e) :z F(ar/h(9)) < z1 since r 1 is 

the maximum r :for which F(r) ::;; z1., Thus r ::;; r 1h(9)/a is the equation 

of the poundary of the intersection of z == z1 with V( f), and hence that 
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intersection is convex since D is convex and a positive homothety of a 

convex set is convex., . Thus if R and $ lie in a plane z = z1, Rs lies 

in V(f) .. 

Assume now that e1 /. e2, e1 f:. 82+7(, and R and S do not lie in any 

plane z = z1• Let Hi be the plane z = f(r1,81), and let Hi+2 be the 
,,-...... 

half-plane 9 = 81, for i = l,2s1 Denote by ABCD the section of the graph 

of f bounded by H1 , H2, H3 , and H4 which is nearest RS, where A, B, C~ 

and D are the points of intersection,. Take A = R, D = S, B in z = 
f(r 1,.e1), and C in z = f(r2,e2). (See Figure 20d Denote projection 

onto the (rie)-plane by P. Choose ri = sup [r: f(r,B1) = f(r2,e2)} 

and r 2 = sup[r: f(r,92) = f(r1,81)]. (See Figure 21.) Then 

F(ari/h(e1)) = f(r 1,e1) = f(r2,e2) = F(arY'h(B2)) and F(arjh(e2)) = 
f(r2,e2) = f(ri,e1) = F(ar1/h(.e1) imply ar1/h(e1) = ar2i'h(92) and 

ar2ih(92) = ari/h(91) since F is strictly monotone decreasing on [o,a] 

or constant on [o, u] and strictly monotone decreasing on [u,a] for some 

u in (O,a)., Then r 1/rj = r;Yr2 , and hence P(lL)P(B) is parallel to 

z 

(o,e) 
........... 

Figure 20. The section ABCD* 



'"'"' Figure 21. Projection of ABCD. 
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P(C)P(D). Since H1 and H2 are parallel to the (r,9)-plane, ~ is paral­

ie1 to CD. Thus conv{A,B,C,D}, the convex hull of the ppints A, B, C, 

and D, is a plane surface. As shown previously, the intersection of 

z = f(ri,ei) with V(f) is a convex set, for i = 1,2. Hence AB and CD 

" ~ ,-.... ~ 
lie inside "the arcs AB and CD of ABCD. The intersection of ABCD with 

9 = 9 is a concave funct.ion graph for all 9 in [02,eiJ since F is a 

qoncave function, so the intersection of conv,{ji.,B,c,o} with 9 = 9 is 
,... ,... 

inside that graph since AB and CD lie insid€ the arcs AB and CD of 

AECD. Thus. conv.Q.,B,C,D}, an.ct hence RS, lies inside V(f). Therefore f 

is concave on D. 

Clearly f is non-negative, and f(h(-G),-9) = F(a) = 0 for all 9 in 

[0,27f). +tenc€ f belongs to Q. 

Definition 14. If f is an element of Q such that for each 9 in [0,2?Q 

f is constant- (f O) on [(o,e),(kh(9),e)] and linear on C{kh(9),e),(h(9),e)] 

for some kin [0,1), then f is a truncated conical function. If k = o 
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f will be c~lled a conicpl fync;tioo. 

The following result <,:lue to ·McLachlan will be used in the character-

ization of the extremal structure of Q. 

Theorem 21 [11]. Let f be a real-valued convex function on [a,bJ 

suc,h that f!(a) and f~(b) are finite. Suppose f is not piecewi$e 

linear on three -o·r fewe-r · no·n..,overtapping segments whose union h [a,b]. 

Then there exist real-valued convex functions g and h on [a,b] that 

differ from· f on [a ,b], but have the same values and derivatives a-s f 

at the end-points and for some k, 0 < k < 1, kg(x)+O.-k)h(x) = f(x) for 

all x in [a,bJ. 

Theorem - 22. A function-£ ts an ·ext-remal el'ement of Q if and only 

if f is a truncated conical function or a conical function. 

Proof. First, it will be shown that if f is a truncated conical 

function or a conical function, then it is an extremal element of Q. 

By Definition 14, f belongs to Q. Let 6 and H be any tw.o elements of Q 

such that f = G+H. By Theorem 4, G is linear on !(9) = [(o,a),(kh(9),ajJ 

and on [I<h(9),e),(h(9),a)] for each 9 in [o,2n,. Note that lim c}G/ar ~ 0 
~+ 

and lim+ aH/ or ~ O for eac.h 9 in [0,411'), since G and H are concave. 
r~ 

Then lim of/or = 0 and f = G+H imply lim oG/ch = lim 3H/dr = 0, and 
r..o+ ~o+ r-.o+ 

hence G and H -are constant on I ( 9) for each a. Let f = b and G = mb on 

!(9) for 9. Then for each 9·, the graph of mf is the unique line seg-

ment detennined by (h(G),e,G(h(Q),9)) and (kh(9),9,G(kh(9),e)) since 

mf(h(9),9) = O = G(h(9),e) ·anq mf_(kh(9),9) = mb = G(kh(9),9). There­

fore g = mf on [{o,a),(h(9),a[I for each a, and henc~ G and H form a 
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proportional dec-ompo~;ition of f~ Thus f is an extremal eleme·nt of Q. 

Next, let f be any element of q which is not a truncated conical 

function or a conical function. Let F(r) be the restriction off to M = 
[(o,o),(h(O),o)]. There are three (;ases to consider: 

Cas e A. Let f be such that F i-s not piecewise linear on three or 

fewer non-overlapping segments whose union is M. Clearly there exists a 

u in (O,h(O))-for which F'(u) is-finite-. :Sy Theorem 21 there exist - -

dp ncave functions G and Hon J = [(o,o),(u,O)] that diffeT from Fon 

J but have the -same values ·and derivatives a-s F at r = 0 and r = u, and 

such that for some kin (0,1) kG(~)+(l-k)H(x) = F(x) for all x in J. 

Define G(x) = H(x) = F(x) for all x in K = [(u,O),(h(O),o)J. Since 

G~(u) = H~(u) = F~(u) and G(u) = H(u) = F(u), G and H are concave on M. 

By Lemma 20 the functions g(r,9) = G(rh(O)/h(e)) and h(r,9) -

H(rh(O)/h(9)) belong to Q since G!(O) = H!(O) = F!(O) ".:: o~ Now f(0,9) = 

g(0,9), but ff. g since F differs from G on J, so kg and (1-k)h form a 

non-proportional decomposition . of f. Thus f is not an extremal element 

of Q. 

Case B. Let f be such that Fis piecewise linear on three segments 

in M, say J = [(o,o),(u,o)], K = [(u,o),(v,o)], and L = [(v,o),(h(O),o)],. 

Let k = 1-(F!(v)/Ft·(v)). Since F!(v) < F~(v) < O, 0 < F~(v)/Ft(v) < 1 

and so O < k < 1. Let G(x) = kF(v) for all x in [o,v] and G(x) = kF(x) 

for all x in [v,h(O)]. By Lemra 20 g(r,9) = G(rh(O)/h(9)) belongs to Q. 

Let H(x) = f(x)-G(x) for all x in M. Sin,ce H~(v) = F~(v)-G~(v) = F~(v) = 

(1-k)F!(v) = F!(v)-G!(v) = H!(v) and H~(u) = F~(u)-G~(u) = F~(u) > F.!(u) = 

F!(u)-G!(u) ~ H!(u), His concave on M. By Lemma 20 h(r,9) = H(rh(O)/h(9)) 

belongs to Q. Since G is linear on J V K and F is not, g and h form a 

non-proportional decomposition of f, and hence f is not an extremal eiement~ 
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Case c. Let f be such ·that. F io piec-ewhe li:nea-r on -two ·segments 

in M, say J == [(o,o),(v,o')] and K == [(v,o),(h(O),o),o)], and F!(O) < o. 

Let k == 1-(F!(v)/Ft(v)) as in Case B. Define g and has in Case B. 

" Since H is linear on M ani:I F is n.ot, g and h form a non-proportional 

decomposition o{ f. Hence f is not an extremal eiement of Q, and the 

theorem ;is proved. 

This thesis will be concluded with some remarks concerning unsolved 

problems. It would be interesting ,fo know if the integral representation 

developed in Chapter III is unique. The characterization of C-C has 

been only partially determined in Chapter IV. A converse to Theo-rem i s 

would be of some value in the application of the r .esults of Chapter V. 

The bulk of the unsolved problems occur in the present chapter. The 

ultimate aim is the extension of the results of the previous chapters to 

the cone of non-negative super-(L) functions on a compact c.onvex subset 

of En, where the super-(L) function is defined analogously t.o the con-

cave function of Definition 134 Two sub-problem,s leading in this 

~irection are: l) the extension of the results of this chapter to the 

cone of non-negative concave functions on D, and 2) the generalization 

of the res\11 ts of this chapter to a set of super-(L) functions defined 

analogously to the set Q. An important step in this generalization 

would be the proof of an analogue to Theorem 21. 
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APPENDIX 

NUMBERED RESULTS 

Theorem Page Lemma Pa~e 

l 2 l 3 
2 2 2 9 
3 4 3 10 
4 5 4 11 
5 6 5 13 

6 6 6 14 
7 25 7 16 
8 26 8 20 
9 27 9 27 

10 33 10 31 

11 35 11 34 
12 38 12 40 
13 38 13 41 
14 38 14 41 
15 39 15 42 

16. 42 16 44 
17 42 17 45 
18 42 18 46 
19 48 19 47 
20 50 20 51 

2J. 54 
22 54 
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