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CHAPTER I
INTRODUCTION

The imporﬁant problem of maximizing & single response by the
choice of values:for certain variables x,, Xy« eos¥p has received
and is continuing to receive considerable attention. The methods
used in seeking these optimum values of the x;'s may be classified
as sequential or non-sequential. The sequential methods receiving
the most attention are the method of steepest ascent, the method of
parallel tangents, and the one factor at & time method. No comparative
study of thesé three has been published.

The method of steepest ascent was proposed by G. E. P. Box and
K. B. Wilson (l)lin 1951. The method consists of fitting a linear
response function by means of a first order design, and then pro-
ceeding to experiment in the direction of the gradient. The path
thus determined is not invariant under scale transformations of the
x;'s. Nevertheless, it has been used extensively with satisfactory
results.

0. Kempthorne (2) has recently introduced the method of parallel
tangents for seeking the region of maximum response. This method is

illustrated in Figure 1 and consists of the following stepss

INote: ( ) refers to Selected Bibliography.



1. Center a first order design at %0 and from thé‘résulfs
determine the direction of a line L that is tangent to the
response contour at x°,

2. Experiment along a line L, that is parallel to Ly until the
point of maximum response along L, is determined. Let L3 be the
lihe connécting this point and x°.

3. Experiment along LB until the point of meximum response
along L3 is determined. In the ideal situation shown in Figure

1, this will occur in the region for which the response is a

maximum.

Figure 1. The Method of Parallel Tangents

The one factor at a time method is self-explanatory. Its
primary use has been in the engineering fields. It is rather poor
when there is considerable interaction among the effects of the vari-

ables.



The methods described above are often followed by the fitting
of at least a quadratic surface so that the point for maximum response
can be better estimated. This last step, though often in a sequence
of experiments, is not considered as a sequential method. Another
non-sequential method consists of a large experiment conducted at
a random selection of points in the design space and simply selecting
the combination of x;'s which produced the maximum response.

The problem of selecting optimum values for the control vari-
ables xq, XgseeesXy when there are N responses of interest is the
subject of this thesis. As an éxample, suppose an allof is to be
developed for use as an electrical transmission line. It would be
desirable to produce one with maximum conductance, minimum weight,
and meximum strength. We may choose the levels of certain control
variables, such as the amount of copper, amount of steel, ete.,
in order to accomplish these desirable results. However, it is very
unlikely that any chcice of these levels will simultaneously maximize
the conductance, minimize the weight, and maximize the strength. If
the development of this alloy calls for an experimental program, then
the question arises as to the object of the experimentation; that is,
what is meant by optimum values of the control variables X1 x2,...,xb
when there are N responses of interest? We shall find that there will
usually be a set of points such that each of them has some sort of
optimum property associated with it.

Let us consider a simple example in which there are only five
possible combinations of the control variables, say x(l), x(z) ,...,x(s),
and there are two responses of interest. If the responses are as

recorded in the table



and high values of both responses are desired, then it is clear that

x(z) and x(B) are better than x(s), but none of the other points give
response vectors that can be compared. We shall see that x(l),_x(z),
x(3), and x(A) belong to & class of points called the complete set of
efficient points. The description and determination of such sets consti-
tutes the major result of this thesgis.

Since y(x) is minimized when -y(x) is maximized, the problem is

formulated in terms of maximizations only. The problem considered is

that of selecting the values of the p control variables X1, x2,,..,xp
so that the N responses y;(x), yo(%),...,yy(x) will in some sense be

jointly maximized.



CHAPTER IT

EFFICIENT POINTS AND THE COMPLETE
SET OF EFFICIENT POINTS
Let x be a p dimensional vector. Suppose there are N response
functions yl(x), yz(x),o.,,yN(x), and it is desirable to have high

values of all the responses,

Definition 1. A point x° is better than the point x for the
responses yl(x), yz(x),...,yN(x) if
i) yi(xo) 2 yi(x) for all i and

i) yk(xp) > yk(x) for at least one k.

While better than certainly depends upon the set of responses, when
there is no ambiguity the reference "for the responses yl(x),

T5(%) 500 e, 7y ()" will be omitted.

Definition 2. The point x° is an efficient point for ¥4 (x),

T5(%)5e00,yy(x) 1if there exists no x better than xO.

Definition 3. The complete set of efficient points, if it exists,

is the set of all points such that there are none better, and
given any x not in the set there exist an x° in the set that is

better.,



It is easily seen from the above definitions that when the
complete set of efficient points exists, it is simply the set of all
efficient points. It follows then that it is unique and ﬁay be re-
ferred to as the com@lete set of efficient points.

As an example suppose p = 2, N = 2 and the responses are

2 2
100 - (x-2) = 4(xp-3)

e
,._l

)
i

2
50 - 2(x-5)° - (x,-2)%,

e~

NA

z
i

Then the contours are as>shown in Figure 2 and the complete set
of efficient points is given by the section of a hyperbola con-
necting the two points of maximum responses. Note that at each
efficient point the gradients of the responses are in opposite
directions,

It is not difficult to construct a set of responses for which
the complete set of efficient points will fail to exist. For ex-
ample,‘if yl(x) = 1 and yz(x) = |x|, then the complete set of
efficient points does not exist. Hence it is of interest to de-
termine conditions sufficient for the exiéfeﬁce of the complete
éet of efficient points. These conditions are set forth in Theorem
I and it is seen that they are met by many of the response functions
used for models.

Theorem I. If yi(x) is everywhere continuous for all i and at

least one of the sets 8;(C) = {xlyi(x) 2 C} is bounded for all

C, then the complete set of efficient points for yl(x),

y2(x),a,.,yN(x) exists.



Figure 2,

Contours and Efficient Points



Proof: It suffices to show that given any xqi there exists an

x(l)such that _ -

-
y, (1)) ryl<x‘P )
1) : > f
| )
while there exists no x such that
[y, () | (M)
2) . > : ,
¥y (%) y (1)

Let x® be any given point with responses yl(xcp ),..,,yN(xcP ).

The set S given by

3) S = ‘[ lei(x) 2 yi(XcP ), i=1,2,..,N }

is a closed and bounded non-empty region. Since yy(x) is continuous,

it follows that there exists at least one X(N) in the set S such that
N
4) y (x( )) = mex y,(x)
N X
xeS

Let

(1)
5) Py = {xly;(x) = 5,0}

Now S N PN is a closed and bounded non-empty region over which

yN l(x) is continuous so that there exists at least one x(N_l)in

the set S N PN_ such that



(1-1)
Tyop (% ) = max y o (x),

xeS N PN

We can repeat the above process until

7) y (1) = mex y (),
xeS N PNnPN-l"' N P2
Clearly the method of selecting x(l) assures us that inequality
1 holds and there is no x such that inequality 2 holds. Thus, the

proof is complete.,

It follows from the definitions that if the complete set of
efficient points exists and a convex combination of the responses
has a maximum, then it must be attained at some efficient pdint.
Thus, if a non-negative value 1s assigned to each of the responses,

the sum S given by

S =T ajy;(x), 242 0 for all i

will have its maximum at an efficient point, provided the complete
set exists and S has a maximum value. The following theorems
have been formulated in such a way as to make the identification of

these efficient points particularly simple.

Theorem 2. If vyl(x), Vyz(x),.”, vyN(x) exist at a point

x°, then a necessary condition for x° to be an efficient

point is that there exist a vector o such that

8) Z o V?yi(xo) =, @; 20 for all i, and T a; = 1.



10

Proof: Assume no such vector exists. Then none of the v7yi(x°)

are zero, and the convex hull of the tips of the vectors v 71 (x°) does

not contain x°. Call this convex hull D. Since x° and D are convex
and disjoint, there exists a hyperplane that‘strictly separates them,
Let the normal to this hyperplane that is directed toward D be V.

A11 x7yi(XP) have a positive component in the direction of V, There-
fore, there exists a point x in the direction of V such that all re-
sponses are higher than they were at x°, and thus x° is not an ef-

ficient point.

At this point it should be noted that if the conditions of
Theorems 1 and 2 are satisfied, then the only x which should be
considered are those which are solutions to equation 8, Let the
solution for a given o be written as x(e@). Since there are only
N-1 independent components of o, it follows that when x(o) is single
valued the efficient points have been identified by an N-1 di-
mensional vector. Furthermore, we may without any loss at all

reduce the domain of the yi(x) to that of the efficient points.

Thus, it is clear that the points which should be considered and
thelr responses are a function of the N-1 independent components for
¢, For example; if p =5 and N = 2, then instead of considering
the responses of yl(x) and y2(x) in the 5 dimensional x space, we
can consider them in the 1 dimensional gpace of c.

It would be convenient if Theorem 2 contained sufficient con-
ditions for x° to be an efficient point. That it does not is apparent

when we consider the response functions



2 2
yl(x) = 100 - (xl—l) - (x2-2)

2 2
YQ(X) =X = X3,

Note that the conditions of Theorem 1 are satisfied so that the
complete set of efficient points exists. Also the conditions of
Therorem 2 are satisfied everywhere, and it follows that the com-

plete set of efficient points are among the set E where
E={xlevyx)+ (10) yy) = ¢, 0 sas1,},
The parametric equations of this set are

~1
X = o(20~1) X,

=20.’; O=so=s1,

The graph of these responses as a function of o is given in Figure
3. It is clear from the figure that the x (&) for which o < .5
are not efficient points and the complete set of efficient points

is given by the x(o) for which o 2 .5,

71 Y2
A A
100 4 10L
yo(e)
95 L 5%
%04 o .

¥, (@)

Figure 3. Responses at the Efficient Points

11
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In general the values of « which correspond to efficient points
depend upon the structure of the contours of the response functions.

The following definitions will facilitate the study of these.

Definition 4. A function y(x) is a type I function if the sets

S(C) = {le(x) p-3 C} are convex for all C.

We might think of a type I function of two variables as one
which has at most a single "mound" and no valleys. An example of

a type I function 1is given by

y(x) = c+exp - [(xl-h)2 + (x2~k)2j.

Definition 5. A set of functions such that all convex combi-
nations of the functions result in a type I function will be

called & type I set of functions.

Definition 6. Let y(x) be a type I function and H(x*) a hyper-
plene tangent to the set S'[y(x%)1 = {x[y(x) 2 y(x*)} at x*,
Then Y(x) will be a type IA function if H(x¥)N S Ly(x*)} = x¥*

for all x*,

Note that if y(x) is a type IA function, then every point on
a contour is an extreme point for the set enclosed, that is there
are no straight segments on any of the contours. The function

2 2
y(x) = c +exp - [(xl~h) + (x5-k) ] is also a type IA function.
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Theorem 3. If the functions yi(x), y5(%x),...,yy(x) form a

type I set of functions and vyl(x),vyz(x),..., v‘yN(x) exist

and are non-zero at x°, then a necessary and sufficient condition
for x° to be an efficient point is that there exist a vector o

such that

9) T oay §7yi(x°) = @ where o3 2 0 for all i, and T oy = 1.

Proof: It follows from equation 9 that there exists a non-

Xero oy such that

10) o, 7y, (x°) = - T o, vy, (x°).
ik

Let

11) y(x) = T a3y;(x)

"

so that y(x) is a type I function and

12) e yr ) =~ vk,

Congider the hyperplane

13) (x=x°)° pyy(x0) = 0.

It follows from the type I property of the functions yp(x) and y(x)

that

14) 37.(x) > 7 (x°) = (x-x°) yyR(x®) >0 = (xx0): y(x°) <0
15)  y(x) 2 3 (x°) = (x=x0). gy(x°) 20 = (xx0): py(x°) =0
16) y(x) > y(x°) = (x~x°). ¢y(x°) >0

17) y(x) 2 y(x°) = (xx0). yy(x°) 20,

Now consider the twe ways in which %C could fail to be an efficient

point. First, it could be that there exists an x such that



18) yi(x) > yi(xo) for all i, and yk(x) > yk(xo).

If we note that this requires

19) y(x) 2 y(x°) and yp(x) > 5y (x°)

we see from inequalities 14 and 17 that this is not possible. The
other way in which x° could fail wouid oeccur if

20) yi(x) 2 yi(xo) for all i, apd yj(x) > yj(xo) for some j # k.,
This would redﬁire an x such that

21) ¥(x) 2 37 (x°) and y(x) > y(x°)

and it follows from inequalities 15 and 16 that there is no such x.
Therefore, we must conclude that x° is an efficient point. Since the

necessity of equation 1 follows from Theorem 2, this completes the

proof.,

The conditions of the theorem may be weakened somewhat when
N = 2. In the proof of the:théorem the condition that the fuﬁctions
form a type I set of functions was used in order to—make y(x) a type
I function.l However, when N = 2 and yl(x) and yz(x) are type I
functions, it follows that y(x) is & type I function, Thus 1t is
not necessary to require y,(x) and y,(x) to form a type I set of
»functionsa ‘We state this in the fofm of a coroilaryq

Corollary: If yq(x) and'yz(x) are type I functions and §7yl(x)

and yy,(x) exist and are non-xero at x°, then a necessary and

sufficient condition for x° to be an efficient point for yl(x)

and yz(x) is that there exist an o such that
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22) o v y1(x°) + (1-a) Vyz(xo) =@, 0<a=<l,

Theorem 4. If the functions yy(x), yo(x),...,yy(x) are type

IA functions and vyl(x), Vyz(x),..o, \V/ yN(X) exist and are
non-zero at xo, then & necessary and sufficient condition for x°
to be an efficient point is that there exist a vector o such
that

23) = o; yi(xo) = ¢, z oy = 1, and o5 2 0 for all i,

Proof: The necessity follows immediately from Theorem 2. For
the proof of the sufficiency, first note that since yi(x) is a type
IA func£ion it follows that for all i
24) (x-x°)+ T y;(xP) >0 if y;(x) = y;(x°) and x £ x°.
Thus we have
25) T a3(x-x°). V¥ yi(xo) >0 if yi(x) > yi(xo) for all i, and x # x°
which requires that
26) (x-x°)- T a3 yyi(x®) >0 if y,(x) 2 yi(xo) for all i, and x # x°,
Equations 23 and 26 combine to tell us that there is no x # x° such

that y;(x) = yi(xo) for all i, Thus x° is an efficient point.

We note that Theorem 4 places the requirements on the individual
response functions while ThebIEm 3 requires something of the set of
response fumctions. We shall see that there are times when each will
be useful,

We recall that y(x) is a concave function if
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y [(l-a)x(l) + orx(‘?)] 2 (l-a)y(x(l)) + dy(x(z))

" for all x(l), x(z) and O s @ <1, Then it is seen that a concave
function is also & type I function, that is its contours enclose
convex sets, It is also seen that the sum of two concave functions
is a concave function so that any set of concave functions is also
a type I set of functions. A concave funcﬁibnjwill be a type IA

function if it is a strictly concave function{‘ (

Theorem 5. All strictly concave functions are type IA functions.

Proof: It is necessary to show that x° is the unique solution
of the simultaneous equations

27) o (x~x0). 7 y(x°) = ¢

28) y(x) = y(x°),

Suppose there is an x(l) # xO such that the above equations

are true., If we let x(z) = ox® -+ (l-a)x(l) with 0 < @ < 1, then

it follows from the strictly concave property of y(x) that y(x(z)) >
y(x°). Clearly, x(z) is on the supporting hyperplane of the convex
set S [y(xo)]u Since a concave function is always continuous, it
follows that there are points on both sides of the hyperplane for
which y(x) > y(x®). Since this is not possible, we must conclude
that x0 is the unique solution of equations 27 ana 28, and therefore,

y(x) is a type IA function,
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A further property of concave functions that-will also be useful

ig given in the following theorem.

Theorem 6. If all §7y&(x) exist everywhere and all yi(x) are
concave, then every efficient point maximizes some convex combi-

nation of the y;(x).

Proof: Assume x° is an‘efficient point., Then from Theorem 2
it follows that there exists a vector o such that
29) T o1 Vyy(x°) =n¢,‘2 @; =1, and @3 2 0 for all i,
Now consider the function y(x) given by
30) y(x) = £ oyy5(x),
Clearly y(x) is a concave fundtion with yy(x°) = g. It follows

that‘y(x)'attains its maximum value at xO,

Let us return to the problem of meximizing the sum S(x) where

S(x) = £ oyy5(x), @y 2 0 for all i and ? o= 1,

If the y;(x) satisfy the conditions of Theorem 3 or Theorem / and

S(x) has a maximum value, then it occurs at a point x° for which
VS8(x0) =% oy Vyi(xo) =0,
It follows that the maximum occurs at the efficient point corre-
sponding to the vector o, that is at x(e). 'Thus, if we have used
| Theorem 3 or Theorem 4 to find the complete set of efficient points,
then we can immediately obtain the x that will meximize a convex combi-

nation of the responses.
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QUADRATIC RESPONSE SURFACES

Quite often the response surfaces obtained from an experiment
will be quadratic functions. -The special properties of these will
now be investigated. Let the quadratic response be written as

31) y(x) = a-xfAx+ Bix

where A is a pxp symetric matrix and B is a pxl vector.

Theorem 7. If y(x) is given by equation 31, then y(x) is a
concave function if and only if A is either positive definite
or positive semidefinite, If A is positive definite, then

y(x) is strictly concave.

Proof: Let x0 = ax'*), (1-0)x?) where 0 < & < 1. Then it
follows from equation 31 that
» 1

32) y() = a-[oxM) L (1-0)x B ] 4 [ P 4 (1-0)x(?)]

+ B! [ux(l)+ (l—a)x(z)],

It follows from equation 32 that

33) y(x°) = & [a~x(l)le(l)+.B'x(l)] +(1-a) [a—x(z)'Ax(2)+ B'x(z)~

(1)_(2)1, (2)°

X

) [l 12 1) 1)

o(l-o

it

3) 3(°) = oy(x™) + (1-a)y(x'?) v al1-0)[xH =P

Thus, when A is positive definite or positive semidefinite
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35) (2 2 ay(xY) + (1-a)y(x'?)

and if A is positive definite the strict inequality holds. This

completes the proof,

'Since all concave function are type I functions, and all
strictly concave functions are IA functions, we have the following

corollary,

Corpllary 1. If the matrix A in equation 31 is positive definite
or positive semidefinite, then y(x) is a type I function. If

A is positive definite, then y(x) is a type IA function.

Since the sum of two concave functions is a concave function,

we have the additional corollary.

Corollary 2. If yi(x) = a, - x'Aix + B.x for i = 1,2,...,K,
and all the A; are positive definite or positive semidefinite,

then -{yl(x), yz(x),...,yK(x)} is & type I set of functions.

It follows from Theorem 3 and the above corollary that if the
responses are as given in Qorollary 2, then except for those pointsb
at which some ¥ yﬁ(x) = ¢, the complete set of'effipient points

is given by the set

36) fxlx =5 [= aiAiJ'l TaB;; 0oy <1, Toy =1 J,
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In the event N = 2, this set may be written

37) {xlx = .5 [aAl+ (l—oz)Az:I“l [aBl +(1-a)32]; 0<oc< 1,}.
Note that the points for which v y;(x) = $ are efficient points
if and only if A; is positive definite.

The simplicity with which the possible responses of interest
may be obssrved in this case should be noted. Though the space
spanned by the x vectors may be p dimensional, the choice of the x
may be made by considering the responses as a function of an N - 1

dimensional vector. For example, let the response functions be

2 2 2 2
yl(x) = 46~4xl —AX? Xy —xz +24X1-+16X2+2X3 +2X4

yz(x) =100-x12—4x22—4x32—x22.
Then the complete set of efficient points will be given by the set

{X‘Xl =12a(3a-+l)nl, Xy = R20,%3 =a(4«3a)—l, %, =0; 0as< l}'

The responses at the efficient points may then be plotted as a

function of & as shown in Figure 4.

1007

757

50

7 >
o5 1.0
Figure 4. Responges at the Efficient Points
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EFFICIENT POINTS SUBJECT TO RESTRICTIONS

We now congider the effect of restricting the domain for x

to & set F,

Definition 4. The point x is a feasible point if it is con-

tained in the set F.

Definition 5. The.complete set of feasgible efficient points
is the complete set of efficient points when only feasible

points are considered.

It follows from the definitions that the complete set of feasi~
ble efficient points includes all the feaéible efficient pbints.
Furthermore, if all the efficient points are feasible, then the
complete set of feasible efficient points is simply the complete
set of efficient poihts. However, if some efficient pdints are not
feasible, then some new points may become members of the complete
set of feasible efficient points. It is clear from the proof of
Theorem 2 that any neﬁ‘efficient pointé must»lie on the restricting
boundary or be at interior points where I oy Vvyi(x) = ¢‘with o3 2 0
and ¥ @3 = 1, provided the conditions in Theorem 2 are satisfied.

The above considerations suggest thé following procedure.
Firgt obtain the complete set of efficient poinfs without consider-
ing the restrictions., Then if the efficient points are all feasible,

the restrictidns are of no concern. Furthermore, if from the complete
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set a feasible efficient point is the choice for the operation, then
do not consider the additional efficient points that may be intro-
duced because some were not feasible, The additional éfficient points
introduced when some were not feasible will not be as good as the

ones they replace. In the eventthe efficient point desired for the
oberation is not feasible, the new ones must be considered. The

following theorem will be an aid in finding these new efficient points.

Theorem 8. Suppose all ¢ yi(x) exist everywhere and all
yi(x) are concave. Let the set of feasible values of x be
the set {x}Q(x) 2 O} where Q(x) is a concave function and
T Q(x) exists everywhere. Also let x° be an efficient point
introduced by the restrictions upon x. Then there exists a
vector o with o; 2 O and T &4 = 1 such that T aiyi(xo) is

the maximum of ¥ aiyi(x) over the feasible values of x.

Furthermore, x° is on the restricting boundary,

Proof: The conditions imposed upon the yi(x) are sufficient
for Theorem 3. Thus no points such that £ o3 yys(x) = ¢ are
introduced as efficient points because they are already efficiént
points, It follows from the considerations preceding the theorem
that x© must be on the boundary. Thus Q(x°) = Q.

Now suppose Q(x) is considered as an N + 1 response. Let
us show that x° is also an efficient point for y;(x), ya(x),...,.
yy(x), Qx). Assume %° is not an efficient point for the N+ 1

responses. Then there is an x? that is better than x° for y1 (%),
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yz(x),...,yN(X), Q(x). However, x' cannot be better than x° for
71(x), yo(x),..e,yy(x), s0 Q(x?) must be greater than Q(x°). Thus
x? is not on the boundary and therefore was not introduced by the
restriction as an efficieht point for yl(x), yé(x),...,yN(x). How-
ever, x? is a feasible efficient point for the N responses. Thus
it was an efficient point for the N responses before ﬁhe restriction
of the x. It would then follow that x° was also an efficient point
for.yl(x), ¥o(%),e0.,yy(x) before the restriction of the x. Since
this contradicts the definition of x° it follows that the agsumption
is not correct and x° is an efficient point for the responses y1(x),
To(x)5eee,yy(x), Qx).

Theorem 6 assures us that there is a B such that

N
Z Bj‘_yi(xo) + BN+1Q(XO) 2 z Biyi(x) +BN+1 Q(X) fOI‘ all X

where
N+L
L By =1, and 83 = 0 for all i,

Since Q(x°) = 0 it follows that
N N '
% giyi(xo) 2% B;y;(x) for all x such that Q(x) = 0.,

N N .
Thus % B;¥y4(x°) is the maximum value of I B;y;(x) when only feasible
values of x are coﬂsideréda The proof is completed by iétting o

be a vector with
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It should be emphasized that if T @;y;(x) has a maximum value,
then it occurs at an efficient point., However, it is not true that
all efficient points maximize some such function. For example if
x is a one dimenéional vector and yy(x) = [AJ-lx‘, va(x) = [4J~|X?1l,
then the complete set of efficient points is given by the set
{X‘O Sx = 1}, but the point x = .5 aoes not maximize any convex
combination of yl(x)'and yz(x). In fact, the only efficient points
which maximize some convex combination of the responses are the
points x = 0 and x = 1. However the conditions of Theorem 3 are
satisfied and the theorem provides the efficient points except for
x =0 and x = 1 at which the gradients fail to exist.

When the conditions of Theorem 8 are satisfied, we can éﬁploy
any of the standard methods for maximizihg a function subject to
certain restrictions and be assured that all of the efficient poihts
" can be obtained by this method. If the conditions of the theorém
are not satisfied; as in the above example, there may be efficient
poiﬁfs that cannot bs obtained through the maximization of convex

combinaticns of the responses.



CHAPIER III

EXPERIMENTAL DETERMINATION OF
THE EFFICIENT POINTS

' In the previous chapter it was assumed that the responses
were certain known functions and from these the complete set of
efficient points was obtained. However, the N'responSe:probiémS‘
we are most likely to encounter will be those in which the response
functions are not known. In this event it will be necegsary to
estimate the response functions, or at least their gradients, in
order to apply‘the theory developed in Chapter II. This will be
accomplished by means of an experimental program.

Now that the response functions are to be obtained from &n
experiment, we nmust recogniZe that the response for & given x will
be & random variable. The response functions for ﬁhich we shall seek
efficient points will be either the surfaces which represent the
expected values.of the responses or the medians of the responses.

For example, if we essume the model

. ' 2
y(x) =g +3 Bixi+§5§ Byg Xj%5 *85 © .Y N(o0,0%)

then the corresponding response function will be E[y(x)]. Here-
after when:we refer to an efficient point for a set of responses,
we shal% mean &n efficiéht point for either their expected or median

responses.
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Three methods for estimation of the efficient points are pre-

sented. Each is in some way suggested by the results of Chapter II.
Methods 2 and 3 are sequential methods.

Method 1. Fitted response functiong are obtained from an
experiment and the efficient points for the fitted responses are
then used as estimates of the efficient points for the expected
responses. It is clear from the results of Chapter II that fitted
quadratic functions would be desirable for this purpcse. Another
possible surface that may be useful is given by

y{(x) = k+ exp [Bo* L Byxy+ T Bijxixj],
isj
It seems that some responses could be better represented over a
large region by this surface than by & quadratic surface, especially

if the responses are all non-negative. If we assume the model

yix) = k+ exp Lao PE B v 2 BNy ve]

with sn:N(O,<52) and k known, then we can obtain the minimum vari-

ance unbiased estimates of the B's by considering z = log [y(x)—k]

as the response. Furthermore, since z is a strictly increasing
function of y(x) we obtain the complete set ofvefficienf points for
yl(x), yz(x),,,,,YN(x) when we obtain the complete set of efficient
points for z, yz(x),...,yN(x). Since z is a quadratic function, it
follows that the special methods developed in Chapter II for quad-
ratic response functions may also be used with these response functions.

Thig model will be used in a later example.
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It is important to obtain good estimates of the gradients in
the region of the efficient points of interest. If this region
of interest is large, as it may well be when we seek the complete
set of efficient points, then lack of fit of the model may be a serious
problem. In this event we must either choose a better model, or
pértition the region and fit a response surface in each of the sub-
regions. The efficient points thus determined probably will not be
connected, but this is of no great concern to us. It would provide
some Indication of the variability of the estimates. An example
illustrating Method 1 is given in the Appendix.

Method 2., Suppose the unknown reponse functions are type IA
functions. Then according to Theorem 3 when <7y1(x), §7y2(x),...;
<7yN(x) exist and are non—tzerOiat x°, a necessary and sufficient
condition for x° to be an efficient point is that there exists a

vector o such that
38) T oy Pyy(x°) =0, @y 20 for all i, and £ o; = 1.

This suggests that response surfaces be fitted by means of a first
order design and then the resulting g??i(x) examined to see if there
is a vector o such that equation 38 is approkimately'true for the
V;;r\i(x)s If such a « is obtained and the decign is centered at x°,
 then x° is a reasonable estimate of an efficient point for the ex-

pected résponses° If there is no such ¢, then we should choose a

vector B such that 9F;(x)-28; ¥ §;(x°)> O ror a1l i, and then

930
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proceed to experiment at the points

39) <8 o,z I

: | 9§;(x2)]
until at least one response decreasges.

The choice of B is rather arbitrary and should be defermined by
conSidering the relative importance of increasing the various re-
sponses. It may be changed at any step in the experiment. This
is an advantage of this method in that it permits us to work toward
~an efficient point of our choice. When‘N = 2 we could choose all
components of B to be positive and equal. It follows that

v 71 (x°)

7o (x0): | By
v | To3,)]

_'z 0 for i = 1,2
because x(k) as glven by equation 39 is then along the angle bisector
of the angle between V;)?l(x) and vgrz(x). This method is illustrated
in Figure 5 where B is taken to have equal positive components. Note
that in some cases we can expect to find an efficient point very
quickly by this method, and furthermore, we can exercise a good deal
of control over the cholce of the efficient point,

When at least one response dgcreases, the experimenter must
decide if he wishes to use another first order design and repeat the
above process, or if he wishes to perform a larger experiment. Even
though it appears that an efficient point has been obtained, the
experiment probably should not be terminated. It would be desirable
to estimate the complete set of efficient points for the expected
responses, or at least a subset of the complete set in the region of

interest.
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¥y (x) Yo (x)

Figure 5. Method 2 for Seeking an Efficient Point

Method 3., Let

y(x) = £ B3y;(x), By 20, Ep; =1

and find all x such that y(x) is maximized for some fixed B. If
there are any such x, then there is at least one efficient point
among them. This is true because if the complete set of efficient
points exists and a convex combination of the yi(x) has a maximum

value, then it occurs at an efficient point, Thus the method of
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of.steepéét ascent, the method of parallel tangents, or any other
method fdr experimeﬁtal determination of maximum responses may be
used to locate the corresponding efficient point.

In a sense this method is iﬁdependent of the hature of the

reéponsé suffaces.i However, there exiét response functions such

that this method cannot lead to some of the efficient points. Such
'a set is'given as an example on page 24 of Chaptér II. If tﬂe
response surfaces are all concave, then we do obtdin all of ﬁhé
" efficient points by this method. \

The choice betweeh Methods 2 and 3 depends largely upon the use
énticipatea for the efficient point. If we desire the efficient
point corresponding to a particular g, then we should use Méthqd 3.
However, if convex combinations of the responses have no partiéular
meaning, and it is the individual responses that are iméortant, then
we should use Method 2. For example, if the responses are the amounts
of A, B, and C produced by a given process and the values of each
per unit response are a, b, and ¢, then we would desire the efficient
point that maximizes [a‘ +b 4c J_l[ayl(x) . byz(x) . cyB(x)] and
thus we would choose Method 3. On the other hand, if the responses
are certain current measurements on a transistor, then we would
not be interested in maximizing a convex combination of the responses
and we would employ Method 2 in an attempt to reach a useful efficient‘
point.

Ohce the experimenter has estimated an efficient point of interest,
he should be interested in a joint confidence region for the responses

at this point. This is the subject of the next chapter.



CHAPTER IV

JOINT CONFIDENCE REGIONS
ON THE N RESPONSES

In this chapter we shall obtain joint confidence regions for
the means of k future observations of the N responses at any given
choice of the control variables. Some special uses for these are:

1. When we let k = 1, we obtain a joint tolerance region for
the responses at any chosen x. This is a region which, on the
average, contains (l-o) of the population of responses at the chosen
X,

2. When we let k = » we obtain a joint confidence region on
the expected values of the future observations at any point x.

This will be the smallest of the regions, and may be all that is
needed for a decision,

3. When we use some k such that 2 € k < » , we obtain a joint
confidence region on the means of the k future observations at the
given value of x. If we multiply by k we have a joint confidence
region on the sum of k futurs observations. Whether this is of inter-
est depesnds upon the nature of the responses. If they are the amount
of chemicals A, B, and C produced, then we may wish to have a joint h
confidence region on the totals of each produced in the next month,

On the other hand, if ﬂhey are the various responses of a transistor,

31
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then their sums may be of no interest at all. In this event, we
would be interested only in the joint tolerance region obtained by
letting k = 1.

Three statigtical models are considered for the responses. They
differ only in the covariances of the errors. The models are of
the form
41y 7i(%) = q'B; « &5, 1 =1,2,..,,N
where

B: is a vector of unknown parameters

ey 1s & random variable with normal distribution about zero

42) gt

i

(1, %, Xyy...,%_) if the model is = linear function of

1 29 *p
the control variables
43) q'= (1, %, x %, X %2, xx X_ -%x_) if the model
= 3 By Bnsecey old 12002 p? 1000 p—l P

is a gquadratic function of the control variables, etc.

While we shall be primarily concerned with q as given by one of
these equations, the resulting confidence regions are not restricted
to these forms for the model,

The covariances of the errors will be given in terms of the

matrix models for the observations. The structure of the n values

of each regponse observed in an experiment is given by

’Y1~ TX Bl\ rei‘ 'el
i, X By ey ey

44) : = | D e |1 where| (| N WN(q %)
w L J N/ « J
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where
Y; is an nxl vector of the observed values of the :'L-Jg’-h response
X is the nxr matrix of known constants and rank (X) = r

B; is an rxl vector of unknown parameters.

Model 1. The observed responses are given by equation 44 with

N

0'111 U “oo P
ﬂ 0221 soe v
= .
Sym. P
L GNNI

This model calls for complete independence of the responses. This
is a very strong assumptibn and should not be made unless substantial
information concerning the responses indicates that it is reasonable.
However, when the model can be used, the joint confidence regions
are especlally easy to obtain., We could obtain confidence regions

of size (l-af)N for each of the N responses and the collection would

be a joint confidence region of size (l-&) for the N responses.
This approach would provide a joint confidence region for the means

of k future observations of the form
{(yl’ y29°°°;yN)3 I = Gi, 1= 1:2,”",N}.

This form of a confidence region seems particularily desirable when
it is important to obtain large values of all responses.
The above approach will also provide a bounded confidence region

if desired. Such a regicn is certainly easy to use, but contains
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mofe volume than an elliptical confidence region with the same
confidence, If the o;; are known we have for a joint confidence
region of the size (l-t) for the means of k future observations of

the N responses.

il a2 2 ' -1 -
45) {(y:L, yz,oao,yN)z E.: (yi"qo Bi) S XQJ(N)[% +qo (X'X) qo J}
i P
i1

where
~ '-l
By = (X'X) XYy
and q° is the vector given by equation 42 and 43 with the co-ordi-

nates of x° for the X, , and Xz is such that

[>-]

I £(Fma K = a,
2
¢

The problem of obtaining an elliptical confidence region when
the o;4 are not known is more difficult. Such regions are obtained

for Model 2 which follows.

Model 2. The observed responses are given by equation 44 with

GllI Gl2I°'"°lNI

ﬁ _ 022I°°°02NI
Sym. voa

UNNI




In general it seems that Model 2 should be the most useful.
Note that the N responses for a given trial may be correlated, but
from trial to trial the responses are independent. With this model

the maximum likelihood estimates of the parameters are

-

46) By = (X'X) K'Yy, 1=1,2,...,N

4’7) 5.,. :‘:._]_'...Yi.
n

-1 .
1) i [:I-X(X’X) X':] Yj’ i, J =1, 2,...,N,

If q corresponds to X as in equation 42 or 43 and ﬁi(x) is the

mean of k future observations of the 1% response variable, then

r_‘ N ~,
yl(x) - qvﬁl
\§2(X) - q'8s
. AJ MVN(op, V)
:)_TN(X) - qvéN
where
"o o] o]
11 "12°°°TIN
: o
- 22... RN
V= [q“(X‘X) q + ~] .
' Sym. ...
o
Thus L NN;

f; ?A ~ r < ~1 /_. S
YI(X) - q Bl O’ll 012.00011\]- yl(x) - qlel
§2(X> - Q“§2 OpneeeOoy §2(X) - q'§2

o Sym. oos .
Fu(x) = q'B » o y(x) - q'B
N N j . NN A N N)

q' (X3X) "Lkt



is distributed as X°(N), and it follows that when all o5

are
J
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known the desired joint confidence region on the means of k future

observations is given by

?91(X) - '8,
48) .

If the o, ,
1]
bution of

,§1(X) -

iz(x)'

49) U= ’

be obtained,

50)

q'f

q'd

2

2

-

r
Gll Glz.oaﬁlN

0220 o °G2N

Sym. oss

L .

q'(X'X)'JQ+k7

©

P

-

0'11 O’lzu . -ClN

8 ...6'

A
a.

1

-~

2N

NN

=

-1

1 -1
q'(X'X) Tg+k

For convenience let

5

f‘} @ o0
11 12

22
Sym. .o

1N

Crvvedl

~
~

A

2N

N

(_. AN
yl(X) - Q'8

5’2(}{) - q’éz

e A
y1(x) - q'B;
7,(x) - '8,
:YN(X) ~q'BNJ

< xi@ql

are not known, the above suggests that the distri-
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- ] ;X
! - 1Y) -yt ! - Yo Nke ¢ R PS !
o! [I X(X'%) "X :|el el [1 X (X%) :|e2...el
v [ “X(x _IXI} ...0!
. e [I (X1X) €010}
S ==
n Sym. e
e!
N

which may be written as

re{\
1 2 - -1
s=2 |- [I-X(X’X) Xﬂ] [el, T
°1)
Let
51) | z; = Pleg

where P 1s an orthogonal matrix such that

37

T-x(x1x) "

I-X(X1%) " Tx

[Tx(xrx) ™ x

I @
P! [I—X(X’X)—lX'} P= X rank (X) = r,
o o
Then
r u\
%]
z} I ¢
S = H : I:Zl’ 22,..°,ZNJ
° 0P ®
Z'
L

—

}GN
}GN

e
N




52)

Let

53)

so that

’n—r 2 n-r n-r h
L2157 I 213%p5...L 29523
nir 2 nir a
s= 1 a1 v PPy
n N
‘ Sym' ]
n-r
2.
i T zNi |
- N - ~
214 elJ
%21 n 23
Z — . = z p' Y
i J=1 ij .
z ey,
~.NiJ L NJ)
1n-r
S = T z Zizi

and from page 51 of (3) it follows that

54)

Thus

55)

( 1) O1p 100y
022..'02N
Zy M ONID 4 o,
- Sym. ses
k\ . CNNJ

nS n-r
- — 1
(nr) [n"r} ™ i=l A%
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and from Theorem 5.22 of (3) it follows that
56) 3'1_;.1..‘U ~s T2(n-r)
and

U (n-r-N+1)

57) - -

~ F(N, n-r-N+1),

Therefore & confidence region of size l-oon the means of k future

observations is given by

Nn .
58) U $ m : FQ(N’ n-r-N+1)

with U given by equation 49,
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Model 3. The observed responses are given by equation 44 with

) ='V02

where V is the known matrix

(
vllI vlzl...lei7
VZZI"'VZNI
V = )
Sym. a e
b~ VNNIJ

{vij} is a non¥singular matrix, and I is an nxn matrix., Note that

the structure of I is the same as for Model 2, However, it is
convenient to consider this as a distinct model.

The maximum likelihood estimates of B; and o” are

59) 8; = (X)) x0yy



r—»rll[l-x(xrx)‘lx'] le[I-X(X'X)_lX']

60) &° =L y!| Sym. Y
Na NN -1
v [I-X(X'X) X']

- -

where
) = ol
If we let
B = (B, BueeuBy) and B'= (B, By, By

thén we find

61) 8 v MVN [a, (x'x)'l{vij} o ]
and . 5
62) NZ;’ ~o o [N(aer) ], v = rank(X).

Furthermore f and & are independent.
Let the mean of k future observations at x be given by the

vector §(x) where

¥, (x)

7, (x)

y(x) = y .

Q

Yy (x)
SR
Then according to the model

63) y(x) nv MVN.[u'B, k_loz{vij}]
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whete
q Pe..tp
u = ¢qao.¢4

? 9...q
and q is the vector corresponding to x and given by equation 42 or 43.

Since ¥(x),  and &% are independent, it follows that

- A 2 - - ‘
64) [y(x)—u'e] ~J MUN {cp,c [k Lot (X1X) 1q] {vij}}
and hence :

[ixx)-u'é]'{vii}[§<x)-u'6]
_ , ~

? [k e

65) X2(N),

Thus a joint confidence region of size l-o on the means of k future

~-responses at x is given by

) [70)-u'6] {vH)[700-u'8] = [%q (xrm) ] ¥28” Fer [y, (o)



CHAPTER V

SUMMARY

In considering the N response problem in which it ig desirable
to have all responsges as large as possible, it was first neces-
sary to recognize that we probably cannot simultaneously maximize
all N responses. This led to the definition of an efficient point
as any x whose responses are not dominated by those for some other
x. The set of all such x usually constitutes the complete set of
efficient points. It was seen that this set may be a very small
subset -of the set of all pdssible X, This is an important propérty
of the complete set of efficient points.

Means for obtaining the efficient points from known response
functions were presented in Chapter II. Since quadratic response
functicns are frequently used for models, these were given special
consideration., It was seen that the complete set of efficient
points is readily obtained when the responses are quadratic functions,
especlally when they are positive definite. In this case a formula
is obtained which provides the complete set of efficient points.
The set is indexed by a vector « which contains N~1 independent
components. When the response functions are restricted to the
domain of the efficient points, they also becdme functions of the

vector &, Since the efficient points are the only ones which should
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be considered, no loss results froﬁ this restriction., When the
dimension of x is larger then N-1, this permits us to considef'the
smaller problem of selecting the N-1 components of o instead of the
P éomponents bf Ko

The problem of locating the effiecient points for unknown re-
sponse functions by experimental means. was considered in Chaptér
ITT. Sequential and non-sequential methods were presented. The
choice of method was seen to depend upbn the structure assumed for
the response functions and the nature of the responses. 1In genéral
it seems that Method 2 will be the better choice of the sequential
methods as it assumes less regarding the structure of the responses
and allows the experimenter:cohsidérable freedom in the selection
of a particular efficient point.

Joint confidence regions for the future responses at a par-
ticular value of x (th necessarily an efficient point) are ob-
tained in Chapter IV, Three statistical models for the responses
are considered. The most general of these is Model 2, and it would
seem to be the most useful for that reason., These regions provide,
among obther things, a B expectation joint tolerance region for the

responses at a given value of x,
Areag for Future Research

The lack of fit of the dquadratic statistical models may be
a serious problem when the regions at which the N responses attain

their maxime are widel§\separated, In this event it‘may'be desirable
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to use cubic or quartic response models. Although the results already
obtained will apply to these models also, the work involved in apply-
ing them mayvbe prohibitive. Other possible models should be in-
vestigated.

There are situations in which it may be desirable to choose
two or more of the efficient points. For example, if the responses
are simply the amounts of A and B produced énd the responses are
as given in Figure 6 , then we may wish to choose #(1) ang x(?)
equally often in order to produce the desired amounté of A and B
most efficiently. In other words, the problem of selecting one or
more points from the complete set of efficient points should receive

further attention.

Figure 6. Amounts of A and B Produced

The joint tolerance regions'developed were of the B expec-
tation type. It would also be desirable to have joint ¥ probability

of B content toclerance regions.
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We would like to have a confidence region on the complete set
of efficient points. If this is not possible, then we would like to
have a confidence region for the particular x that maximizes a convex
combination of the responses. By considering this convex combination
as a function of X, we see that when the response functions are
quadratic the problem is the same as the one considered by Box and
Hunter (4) in which they attempt to obtain a confidence region for
the x that meximizes a quadratic function of x. However, the confi~
dence region they derive is really a confidence region on the expected
value of the estimated x, Since the estimated x for maximum response
is a biased estimate of the x that maximizes the desired funection,
it follows that the confidence regions are not really confidence
regions on the x that maximizes the function. The bias in the’
estimated point for maximum response is a problem worthy of investi-
gation.,

There are situations in which it would be helpful to know if
the complete set of efficient points is connected. No general results

have been obtained for this problem.
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APPENDIX
AN EXAMPLE

The following problem will illustrate the ideas presented in
this thesis. Suppose there are two responses of interest denoted

by y;{x) and ¥o(x). Let the model for these responses be

- - x'A '
67) yl(X) al X 1x + 8 1x + el
68) ¥o(x) = explay - x'Aox + B'ox + ep)
where
°1 91 %12

~J NID ?,
€2 O12 %22

-

when the associated y1(x) and y,(x) are observed simultaneously.

If we let
Zy = 1n Yo
it follows that
= - %A t
69) , zz(x) =a, - x'hx + Bl x +e,,

Now let us suppose the results of a 33 experiment are as given in
Table 1. We shall use these experimental results to

1. Estimate the parameters in the model,
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2. Estimate the efficient points for the responses yl(x) and
z5(x),

3. Estimate the future responses for any given x, and

L. Provide a (l-o) joint confidence region on the means of

k future observations at any given x.

TABLE I

THE RESPONSES FOR A 33 EXPERIMENT

X7 Xo X3 y1(x) 2o (x)
1 1 1 64,84 4.62
1 1 0 71.09 5.14
1 1 -1 66,65 5.61
1 0 1 78.88 477
1 0 0 81.54 5.74
1 0 -1 78.25 5.93
1 -1 1 78.91 Lo b2
1 -1 0 87.70 5.28
1 -1 -1 82,82 5.5

0 1 1 75.82 3.85
0 1 0 81.55 4.70
0 1 -1 73.04 4.96
0 0 1 87,64 4. 20
0 0 0 92,93 5.02
0 0 -1 86.77 5.32
0 -1 1 91.13 3.79
0 -1 0 98.63 4,72
0 -1 -1 91.23 L.86
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TALBE I (Continued)

X X, Xy yl(x) zz(x)
-1 1 1 78,05 2,15
-1 1 0 84.65 3.21
-1 1 -1 77.25 3.13
-1 0 1 89.77 2.49
-1 0 0 96,20 3.32
~1 0 -1 90,03 3.49
-1 -1 1 92,16 1.95
-1 -1 0 100.30 2.79
-1 -1 -1 93.78 v 3.43

Since the complete set of efficient points for yl(x) and yz(x)
is also the complete set of efficient points for y,(x) and z,(x),

we shall consider the estimate obtained for yi(x) and z,(x) as our
estimate for the complete set of efficient points for yj(x) and
yo(x)e

The least squares estimates of the aj, Aj, and B; obtained in

the usual manner are

i, = 93,44 &, = 5.04
3.59 025 .16 .55 .01 00
Ay = 413 -.31 A2 - 36 -,02
Sym. 6,23 Sym. .30
6.2 | (117
Bl = |[-7.98 Bz = .03
- 015) \" 556)
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Since Rl and ﬁz are positive definite, the complete set of efficient

points for §;(x) and Z5(x) is given by
-1
{X | x=.5 [Al + (1—&)A2] [Bl. +(1—a)32] ; 0o < 1},

When the necegsary matrix operations have been carried out the

resulting parametric equations of the complete set of efficient points

are
3 2
< ~155,948 a0~ + 2.908a" + 3.07¢ + .1259
L=
67,700 + 22.140° + 2.120 .06
_ -136,0620° - 3/.0220° - 1.3750 + .005
X2 o
67.700 + 22.140R + 2.12 4 .06
x5 = 2.10° - 7.1460% - 1,844 - .11
67e703 + 22.14&2 + 2,120 + .06
whers

0 sewsl,

The most convenient presentation of the predicted responses
is the one in which F,(x) is plotted as a function of ﬁl(x) as in
Figure 7. This is possible when we restrict x to the complete set
of efficiént points.

The graph of the predicted responses at the efficient points
illustrates the situationrwhen one attempts to simultaneously maximize

two or more responses and the need for a compromise. Now suppose
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Figure 7. The Predicted Responses at the Efficient Points
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the predicted responses at the efficient point for which o = .1
are considered the most desirable, Then let us obtain a joint toler-
ance region on the future responses at the x associated with o = .l.

It is seen that the responses y1(x) and zy(x) observed in the
experiment satisfy the conditions for Model 2 aé defined in Chapter IV.
The quantities used with that model in calculating the joint tolerance
region for yl(x) and z,(x) are 611> 0125 Oon, q'(X'X)—lq,ﬁl(xo), and

ﬁz(xp).

The experimental data for the problem considered yield the following

values:
A~ 1 "l
81 =21 [I—X(X'x) Xf] ¥, = .808
o _ 1 i - 1 -1 1 - -
Sp =211 [1 X(X'%) X ] Z, = -.00263
A - _]_- 1 Rde'd) -1 1 -
6,, =% 12} [I X(X'X) X J I, = 00665
-1
q' (X'X) "q = .297
yl(XO) = 94.2
%2(}{0) = 5935.

When Model 2 applies, the joint confidence region of size

(1-o) for the means of k future responses at x° is given by

F1(20) = $1)] * 817 6 F [Fa(x®) - §(x0)
70)

- O—A e} ~ ~ — -l\ o}
zz(x ) zz(x_) 015 95 z2(x°) 22(x )

<B-T-N*L P (4, n-r-N+l),
Nn o
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In this problem N = 2, n = 27, r = 10, and we shall take o = .10
and k = 1., Then the confidence region is a tolerance region for the

future responses. The region is given by

y1(x) = 94.2 " [1.239 .49 y1(x°) = 9%4.2
' < 1.026,
22(x9) -~ 5,35 49 150,57 z2(x°) - 5,35
.This region is sketched in Figure 8.
T2
1
22’
1 228.0
5.43+
+ 211.0
5.35 +
41
5.27 + 740

} t

93.3 94.3 95.1
Figure 8, A B Expectation Tolerance Region for the Future
Responses
The interpfetation of this region as a tolerance region is
that, on the aversge, & region obtained in this manner will contain
.9 or more of the population of responses at the x a550éiated with

the efficient point for which o = .1.
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