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CHAPTER I 

INTRODUCTION 

Vapor~liquid contacting operations, such as fractionation, 

absorption, stripping, two~phase conversion, partial condensation, 

and vaporization are prominent in the chemical, petrochemical, and 

petroleum industries. A knowledge of the fundamentals of vapor-

liquid phase equilibria is therefore important to these industrieso 

A complete understanding of the phase equilibria phenomena of these 

operations may be obtained by experimental and theoretical methods. 

Temperature, pressure, and composition of the equilibrium 

phases are independent variables determining the state of phases in 

equilibrium. The thermodynamic treatment of equilibrium vapor and 

liquid phases of an ideal binary system is rather simple, but the 

thermodynamic relationships for real systems are complex. In the 

ease of petroleum fraetions9 the theoretical treatment is impossibly 

difficult, so experimental measurements and empirical correlation 

of data are required. 

Vap9r~liquid equilibrium phase distribution coefficients for 
, 

each component of a system are commonly expressed in the form of 

mole fraction of the component in the vapor phase divided by the 

mole fraction in the equilibrium liquid phaseo Therefore, 

, 
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The main objective of this investigation was the evalll&tion of 

vapor-liquid phase distribution coefficients (k-values) of petroleum 

oils. Except for a few equipment tests, all the experiments were 

made at an isobaric condition of one atmosphere. 

The direct measurement of a great number -0f components existing 

in minute quantities in a petroleum fraction is impractic•l, there-

fore the distribution coefficients were found indirectly and as 

follows: 

1 - Equilibrium flash vaporization of the petroleum fraction at 

some temperature. 

2 - Batch fractional distillation (true-boiling-point distil-

lation) of both vapor and liquid phases. 

3 - Conversion of the results of step (2) from volume per-cent 
.< 

to mole pett-cent, and finally establishment of distillation 

curves (boiling temperature vs. mole per-cent off) for each 

phase. 

4 - Calculation of K-value (at equilibrium pres~ure and 

temperature of step 1) of each component of the mixture 

represented by its distillation temperature, obtained from 

the ratio of the slopes of liquid and vapor phase distilla-

tion curves at that temperature. 

The idea of representing the petroleum continuum by a series of 

hypothetical differential quantities was first suggested by Katz and 

Brown (70), and later improved and applied by Edmister (31) • 

. Evidently this investigation-is the first attempt for experi-

nental evaluation of K-values of petroleum fractio~s, and the p~oject 
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will be. followed for compilation of extensive information, which 

would ultimately lead to general empirical relationships· giving the 

K-value as a function of fraction boiling point and the system tempera• 

ture and pressure. 

During the course of this investigation a theromostatic flow 

and a recirculating type of equilibrium still were modified and used. 

These stills were evaluated, and reli•ble techniques f~r ascertain

ing equilibrium conditions established. Also a new flow equilibrium 

apparatus with good possibilities was introduced. 

An analytical fractional distillation was carried out in an 

efficient sieve plate column. The operational characteristics of 

this column were first evaluated, and then a satisfactory T.B.P. 

distillation procedure was formulated. The average molecular 

weight of each narrow boiling cut of petroleum mixture was measured 

by a cryscopic method. An improved technique for evaluation of this 

physical property, as well as suggestions by a related method for 

characterization of petroleum fractions are given. Chromatography 

was used for determining the equilibrium condition of the 

petroleum fraction, and it was also applied for direct measurement 

of K-values of a relatively si:mp,le petroleum mixture. Finally, 

various techniques and simplifying suggestions are presented for 

calculation of K-values. 

The second c~pter contains 'important thermodynamic relation

ships for vapor-liquid equilibria. The independent nature of the 

subjects presented in Chapters III, IV, V, and VI necessitates 

separate treatments. In each of those chapters, the related theory, 



equipment, procedure, !epresentative results, and discussion are 

giveno Chapter VII deals with calculation of vapor-liquid phase 

distribution coefficients. Some specific usesof these values are 

discussed in Chapter VIIIo 

4 



CHAPTER II 

CRITERIA OF EQUILIBRIUM 

It has been ~hewn thermodynamically that a system is subjected 

:> sp~ntaneous change if there is any conce!yable process for which 

3>0o Consequentlysi a state of equilibrium is one in which every 

:>ssible infinitesimal process is reversfole», or one with a constant 

:>tal entropy o Therefore t-he necessary criterion for:- equi.li.brhe of 

n:y process is dS .i Oo Since it is not aJ.w1,ya eat!iY to study the 

ritropy change of all the systems that may be affected by a certain 

rocess, many thermedynamic functions 9 which are less· fundamental 

rid less general than the .entropy» but are of more practical conven

ence have been invented. In order to have a deeper insight into 

us concept9 some of these thermodynamic functions will be briefly 

iseussed hereo 

A property of the system called its Helmholtz function, A, is 

efined by the equation» 

(2) 

nQther propeJ;"ty of the system called its Gibbs function9 G, or 

ts free energy, shown by the equation» 

G ~ H - TS s (U ,. PV) .. TS ::;;; A + 1'V (3) 

here U is the internal anergy9 H the enthalpy, V the volume, T the 
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temperature, and P the pressure of the system. 

Now considering a closed system on which a constar:rt pregsure is 

1cting as the only external force, then for an infinites!ma? revers

lble process at constant temperature ~nd pressure ( i.e. at eqvili-

:>rium) the Gibbs function of the system should not change. .That is 

~o say 

dG: 0 (4) 

I II 

!.'he- G function o-r the system can be given by tne sum· of (1- , G , 'etc. 

>f the COllStituent phases of the system. So, 

I II Ill ( ) 40 = dG + dG · + dG . + • • • 5 

~e free energy is a state function and depends on all the Vflfl"i-

Lb1es which determine the state of the system. 

(6) 

~or mait chemical engineering purposes the above equation ean be 

•educed to the following equation. 

G = G(T, P, n1, (7). 

dG =(6 G) dT 
PP,~' ~, .. ·, ~ 

+ (s ~dn1 +(~) dn2 + • + p T, P, JI j f.1 0'n2 T, P, nj '/2 

+(~ dnk (8) 
T, P, 

I 

nj f,k 
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llthough the molal free energy makes a very satisfactory quantitative 

measure for criteria of equilibrium, there are certain respects in 

~hich this function is awkward. It is therefore desirable to intro-

iuce another scale of measurement of equilibrium, which is called 

~he fugacity, f (81). The fugacity will be equal to the vapor 

~ressure when the vapor is a perfect gas, and in general it may be 

}onsidered as an •Ideal" or corrected vapor pressure. The fugacity 

Ls partially defined in terms of molal free energy through the 

3quation, 

G ~ RT 1n f + Q( T) (9) 

there 9 is a function of temperature only. 

In a differential form, the fugacity of a component in a 

1olution is thermodynamically defined by the relation, 

(10) 

1 the partial molal free 
0 •11,c 

energy of component one. 

f~ ~ fugacity of component one at temperature T • 
.1. 

It follows by equations (4, 5, 10) that at equilibrium, 

he fugacity of a component in the liquid phase is equal to the 

ugacity of that component in the vapor phase. 

The fugacity of a pure gaseous component is related to its 

ressure by the equation, 

(11) 



'bus, if data are available which relate the compressibility factor Z 

,f a gas,, to P and T for the pure gas, the f ugacity of the pure gas 

.t any chosen temperature and pressure is obtainable from equation 

11). However, in the usual case, these data are not available. 

Hougen and Watson (64), employing the concept of correspond-

ng states, have constructed p'lots of Z as a function of the reduced 

ressure ~nd reduced temperature, using available data for seven 

ases. The same a~thors have constructed plots of ~/P solely as 

function of the.reduced pressure and reduced temperature. The 

:1tio of f/P is termed t.he"fugacity coefficient" l/, and for ideal 

:1s behavior is equal to one. 

Benedict~ al (12) also derive a generalized method for 

redicting fugacity of pure gases. They utilize the virial equation 
,. 

: state and consider the first coefficient, B1, as sufficient to 

cpress the non-ideal behavior of the pure gas, 

(12) 

1e preceding two equations will yield the result, 

(13) 

Le virial coefficients Bare explained by the kinetic theory of 

.ses (113). 

The fugacity of a pure liquid at a pressure other than its 

n vapor pressure is evaluated by means of equation (13) 

rived by Hougen and Watson (63), 

8 



fp Vm(P - p) 1 . ~ - -n--
fp 

(14) RT 

fp::: fugacity of the pure liquid at P and T. 

f ~ fugacity of the pure liquid at a pressure equal to 
p 

the vapor pressure of the pure liquid at T. 

Vm ~ arthmetic mean molal volume of liquid from P top. 

,r problems involving solutions, it is convenient to define a 

1ermodynamic property called "activity", a. 

(15) 

f ~ fugacity in solution. 

f 0 g fugacity in standard state at the same temperature. 

,r vapor-liquid equilibria consideration, it is convenient to 

.oose the standard state for each component in the liquid phase, 

the pure liquid component at the pressure and temperature of 

lutiono Similarly, the standard state for each component in the 

por phase is chosen as the pure vapor at the pressure and tempera-

re of solutiono Thus, 

( fO) g 11 p 
V VP 

(fo) 
L Z/ P e p 

Vm(P - pl 
RT 

(16) 

(17) 

(f0 ) ~ fugacity of pure vapor at P and T ~ fugacity of 
V 

the component in its standard state. 

(f0 ) 1 ~ fugacity af pure liquid at P and T ~ fugacity 

of the component in its standard state. 

9 
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The "activity coefficient in terms of mole fractions"')!, is 

!fined as the ratio of activity of the component in solution to mole 

~action of the component in solution. 

'i= !! 
N 

(18) 

tus for component one in the liquid and vapor solutions, the 

:tivities are expressed in terms of mole fractionso 

(19) 

(20) 

The thermodynamical relation of vapor and liquid at equilibrium 

1 established as follows, 

At equilibrium (f) = (f) 
1 v 1 L 

(21) 

Therefore (22) 

K1 = vapor---liquid equilibrium constant of component one at P 

and To 

uation (22) may also be shown in the following forms, 

(23) 

namic quantities instead of activity coefficients. Howeve~activity 



,efficients are much preferable, since they vary less with tempera-

~e and composition than some other thermodynamic quantities which 

1uld be utilized. For all conditions except those close to the 

•itical point for the solution, (')/1) could be taken as unity • 
•. V 

uation (22) for any two components can be written as follows., 

(24) 

11 

perimental K-valuesr Engineers generally utilize vapor-liquid phase 

stribution coefficients for design purposes, and this subject for 

e case of complex hydrocarbon systems has been fully reviewed and 

scussed by Edmister (32). The sunnnaries of some of the more 

ominent experimental works are presented here. 

Matheson and Cummings (87) studied the vapor pressure of five 
-

w-boiling paraf'fin;hydrocarbons in an absorber oil over a wide range 

concentration. The results indicate positive deviation from 

oults• Law. Katz and Hachmuth (71) deter.mined vapor-liquid 

uilibrium phase distribution coefficients of methane, ethane, 

opane, butanes, pentanes, and hexanes in a system of natural.gas 

~amid-continent crude oil at 4o0 , 120°, and 200°F, over a large 

9ssure range. This work showed that the effect of tempera:t,ure on 

e equilibrium constant is greater at lower. pressures, and ~or 

gher molecular weight hydrocarbons. Sage and Lacey (131) showed 

at the equilibrium constant for methane in various binary systems 

not only a function of equilibrium pressure and temperature, but 

so of the composition of the system. 
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The experimental work of Webber (150) includEBthe determination 

~ vapor-liquid equilibrium constants of methane through hexane in a 

rpical absorption oil, at temperatures.from 33° to 180°F, and 

~assures from 100 to 5000 psia. The experiment showed that at 

·essures above 3000 psia, the composition of the mixtures has a 

~onounced effect on the equilibrium constant values. Vink, Ames, 

Lvid and Katz (149) gave the vapor-liquid equilibrium phase ~is

·ibution coefficientsof methane, ethane, and propane in a crude 

.1. 

Roland et al (121) presented some equilibrium data for the 

Ll.f Coast distillate -·natural gas mixtures at 4o0 , 120~, and 

IO°F, and high pressures with a reasonable degree of accuracy. 

te data indicate that the composite composition· of the mixtures 

• gas and distillate has small effect on the value of the eqUili-

·ium constants, although this may not be considered conclusive so 

r as heptane plus is concernedo 

Eilerts and Smith (35) published equilibrium data at 228°F and 
-

.92 psia, with some considerable variation in the constant for 

rious mixtures. White and Brown (152) reported experimental 

por-liquid phase equilibrium data for petroleum fractions boil

g from 85° to 150°F at temperatures from 300° to 820°F and 

pressures from 50 to 700 psia. The equilibrium phases were 

alyzed by fractional distillation in a Podbielniak column. The 

rresponding cuts from both vapor and liquid phases were analyzed 

r molecular weight and density. K-values are reported !or pentanes, 

xanes, heptanes, and higher boiling cuts, having boiling. ranges 



·om 25° to 100°F. The data. s~ow a consistent trend for the light 

.phtha, while it indicates some discrepancy for the furnace oil. 

Kirkbride and Bertetti (72) published equilibrium constant 

ta for. methane, ethane," propane, n-butane, and n-pentane in 

raffinic, naphthenic, and aromatic typesof absorbing oils, at 

°F, and pressures from 125 to 3100 psia. Tne K-values of these 

~ea at any condition Of equilibrium are dependent on the type of 

ll used. 

Standing and Katz (141) presented equilibrium constant data 

r four mixtures of natural gas - crude oil., at 35°., 250°F, and 

gh pressures. Roland (122) used Katz and Hacl'nnuths' equipment 

d method for study of vapor liquid equilibrium.properties of 

tural gas in contact with.crude oil at 120°.,1 200°F, and pressures 

om 1000 to 101 000 psia. The equilibrium constants are reported 

i- )nethane, ethane, propane., butanes, pentanes, hexanes, and 

ptanes plus. The plots indicate a ratber large scattering of 

sults, which may partially be attribut~l to the grouping of 

e hydrobarbons. 

Rzasa and Katz (129) have studied the vapor-liquid phase 
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b&vior of methane .. Kensol 16 system to pressures of 2,;000 psia, -- . . 
. 0 

d to temperatures of 260 F. Kensol 16 ia a commercial high-~9.fl"OW--. . 

iling oil. The ecµ ilibrium vaporization constants :,ave been 

lculated from the 9:XP5rimental data and extrapolate4 to 700°F. 



CHAPTER III 

VAPOR-LIQUID EQUILIBRIUM EQUIPMENT 

The need for vapor-liquid equilibrium ini'ormation has been 

1tioned. For many systems of industrial importance, the vapor

Luid equilibrium relationships must be determined e~perimentally. 

Although the experi~ental measurement of vapor-liquid equili

.um may at first appear t·o be a rather simple task, it frequently 

rves to be one of the most difficult physico-chemical measurements 

execute precisely. The complete equilibrium study of a system 

L either be done at isothermal or isobaric conditions. 

Thermodynamic consistency testscan only be applied to a 

iple system, and the result is frequently inconclusive. Gilliland 

~) states that it is not uncommon to find experimental deviations 

order of± 10 percent between different investigators using es

~ially the same technique. The experimental study refers to 

~osition measurements of both vapor and liquid while in equili-

um with each other at some known temperature and pressure. Be-

.es the operational errors, the inconsistency in equilibrium study 

· be due toJ purity of sample, the experimental measurements, the 

ure of the system, and/or the design and construction of the 

ilibrium equipment. 

It is almost impractical to make a complete and exhaustive 

vey of the literature on this subject, and evaluate all the 

• I 



'ferent designs of vapor-liquid phase equilibria apparatus. There

oe, a brief review of some of the more common, and reliable types 

presented here. 

Three different equilibrium apparatus were constructed and 

id in this investigation. Complete design and operational details, 

well as their evaluation and comparison are presented in this 

fpter. Two of the equilibrium stills are. modifications of a well 

1wn reeirculatin& (Othmers•), and a thermostatic flow apparatus.(85). 

1 third one which was developed as a result o£ this work, is based 

a radically different and highly satisfactory design. 

Theory 2£ :Equipment Design~ Survey 2!_ Literature 

The discussion in this chapter will only include the.v:apor-

1uid contacting devices, and no reference .will be made to the 

aperature and pressure measuring apparatus. Vapor-liquid 

dlibrium devices are normally classified according to their method 

operation,- and. as followr 

1) Simple distillation 

2) Dynamic, flow 

3) Static or Autoclave 

4) Dew and bubble-point 

5) Vapor-recirculating 

6) Vapor and liquid - recirculating 

7) Flow 

1. Simple Distillation~ This method is the oldest technique 

' vapo:r-liq¢d equilibrium investigation, and it has practically 



n abandoned ever since the invention of the other techniques. 

e thermodynamically consistent results are attributed to this 

hod, an:i with proper equipment modification it may come into 

stence againo As the --name implies, it is basically a simple 

tillation, where the vapor composition is measured at various 

peratures. The corresponding composition of liquid left in the 

is then calculated by material balance. There are many inherent 

ficulties associated with this method, when simple distillation 

d.pment is used. ThP. large quantity of boiling liquid in the 

11 may not be homogeneous , unless a proper heater such as internal 

-wire is used. 

Hanson (58) and co-workers, believe that vapor formed from a 

ling liquid may be slightly super-heated in some instances, and 

s subsequently can cause an erroneous temperature measurement. 

not properly designed, the vapor befo~e entering the condenser 

· cool and partially condense (52,156); th~refore, the vapor 

position would be richer in the more volatile components. The 

or coming from the still can entrain and transport liquid, when 

velocity is sufficiently high, or when the boiling is quite 

orous. This phenomenon, of course, enriches the vapor with less 

atile colflponents. 

There are many different designs and sizes of one theoretical 

ge simple distillation stills (16,19,80,107,145,158). A design 

h the vapor arm extending into the still, which also holds the 

rmometer, has proven to be satisfactory for many systems. The 

,or in the pot is vaporized slowly by both internal and external 

16 
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eaters. Cornell~ al (23), used the tech~ique of Rosano££ (123,124, 

25) and obtained reliable equilibrium relations for binary mixtures 

f ethanol-water, methanol-water, and acetic acid-water. The equip

ent basically consists of two concentric tubes, where the central one 

s provided wtth an internal electric heater, and acts in the capacity 

,£ a small distillation flask. The vapor flows down the annulus and 

.nto a condenser. With the exception of the vapor condenser, the 

1ntire equipment is placed in an oil bath. 

2. Dynamic Flow: In this method the vapor is passed through 

liquid until the composition of the effluent is the same as that 

1f the entering vapor. At this point the composition of liquid is 

1ufficiently changed as to be in equilibrium with the vapor. 

,nother method is one in which the vapor is passed through a series 

,£ liquid containers with liquids of approximately the same composi

:ion. The number of these liquid containers must be such that the 

rapor entering the last one remains unchanged as it bubbles through 

Lt. Entrainment and pressure drop are two of the major difficulties 

>f the dynamic flow me;hod. In some cases an inert carrier gas is 

Lntroduced in the first vessel. This inert gas transports the 

!quilibrium vapor from the last one. In such a case, and when the 

~ressure is high, the effect of total pressure on vapor pressure of 

~he components can not be neglected. 

A well known laboratory size dynamic flow equipment is the 

~athala (20) still. In this equipment, the preheated liquid is fed 

~ontinuously into the mixing section between two layers of fritted 

!lass. Vapor in a super heated state is also fed continuously to 



;he equipment, but below the lower fritted disc. Vapor and liquid 

1ix well together as they pass through the discs, and finally enter 

, short Cottrell pump. Both phases separate at the top, where the 

aquilibrium temperature is measured. More suceessful design varia-

16 

;ions depend on accurate flow of phases,and so~e are vacuum jacketed. 

C-olburn (21) used two insulated concentric chambers, where the 

.nner one contained the liquid. Vapor passes between the two . 

ompartments, and contacts the liquid in the inner chamber. This 

1quipment and its modification (92) have produced some excellent 
-

esults. Aroyan and Katz (6) modified the apparatus of Dodge (29) 

or low temperature and high pressure equilibrium studies. The 

quilibrium gas is recirculated by a magnetic pump through the 

iquid, until the steady state is attained. Similar designs· 

57,90) have produced some satisfactory results. 

3. Static t The liquid sample is placed in an evacuated bomb 

hich is maintained in a constant temperature enclosure, and agitated 

1 rocking or internal mixiµg. The liquid vaporizes in the bomb, 

rid when it is in equilibrium with its vapor, the pressure and 

ompositions of both phases are measured. Theoretically this 

9chnique should produce highly reliable results., although in 

ractice such factors as sampling and stirring upset equilibrium. 

>ng periods of rooking should eliminate the inherent problems of 

~irring, and the use of an especially designed sampling valve in 

mnection with chromatographic anal~is should reduce the sampling 

Lfficulties. This equipment is very adaptable for high pressure 

1vestigation. 
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Sage and Lacey (98,130,132) have used a high pressure bomb very 

1ccessfully for vapor-liquid equilibrium studies,_ of light gases. 

!nedict (13) used a 4000 cc. steel bomb which was kept in an 

iothermal oil bath. The bomb pressure was regulated by mercury 

1jection. The equipment showed consistent results for systems such 

; methane-ethane-isobutane. Katz (71) obtained reliable phase 

Lstribution coefficients for hydrocarbon gases dissolved in a heavy 

Ll. The equipment is a variable volume bomb with an internal 

Lectric stirrer. There are other apparatus of similar designs 

L4,1S,26,61,148) which have produced some consistent results. 

4. Dew and Bubble-Point: This method employs the same .. equip-

lnt as the static method, but with some provisions for changing the 

,1ume. The volume can either be changed by mercury or by piston 

'.splacement. Phase diagrams can be prepared by obtaining a number 

isotherms, or by visual determination of dew and bubble points 

l glass equipment. This technique is often used for the equili-

:ium study of binary mixtures, and it requires no analysis of 

iases. In some cases nucleation may be required, otherwise a 

:essure higher than that of dew-point, or lower than bubble-point 

;n r~sult. 

Young (157) developed the original capillary equipment for 

:udy of equilibrium at dew and bubble-point conditions. Kay (7 ,8) 

,dified the original equipment for investigation of equilibrium 

·operties of petroleum hydrocarbons. The liq~id under investiga-

.on was confined over mercury in a thermally jacketed Pyrex tube. 

tube with 1.5 mm. inside diameter, and an intermediate section 
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f 4 nun. bore was used. To bring about equilibrium between the phases 

uickly, an electromagnetically operated iron rod (1.9 cm.) was 

laced in the liquid space. Pressure was conveyed to the system 

hrough mercury, and it was measured by means of two gas manometers. 

Cummings (24) very successfully measured dew and boiling point 

urves for mixtures of nc5 - nc7,at high pressures. The equipment 

:is a small ''U" shaped quartz tube (0.5 cm. O.D. x 55.0 cm. long), 

ith its closed end in a reflux jacket. Stirring was accomplished 

Lth a small magnet, and the equilibrium pressure was measured by a 

!ad weight tester, having mercury and an oil as the intermediate 

Luids. There are many modifications of these devices (47,71,95,135) 

1ed for equilibrium study of various systems under highly diversi

Led conditions. 

5. Vapor-Recirculation: This is another satisfactory techni-

1e for vapor-liquid equilibrium study, and there are many complicated 

isigns which operate on the same principle. Vapor-recirculation is 

(Sically a continuous simple distillation, where the vapor product 

: totally condensed and recycled back to the still. The recircula

.on rate, and the total amount of charge can be selected so as to 

.ve any desired vapor-to-liquid ratio. 

A vapor-recirculation equilibrium still was used in this investi

tion, and therefore it will be discussed in more detail later. 

Yamaguchi (155) designed the first recirculating equipment for 

udy of ethyl ether-chloroform system. Sameshima. (143) used an 

proved version of Yamaguchi's equipment for successful study of 

e acetone-ether-system. The apparatus consists of a 200 cc. 



rternally heated vessel., submerged in a cryostat. The electrically 

~tad vapor arm is connected to a condenser and a 10 cc. receiver., 

doh are placed directly above the still. The overflow from the 

1ceiver returns to the pot., and any vapor generated in the return 

.ne is also condensed and returned. 

Othmer (100) improved the design further by extending the vapor 

m into the cylindrical still, and placing the condenser-reservoir 

the side of the pot. The return connection in this case is an 

verted •u• line with a siphon breaker. The advantages of this 

sign over the previous ones are rather small, nevertheless it 

rved to popularize the recirculating technique. There are a 

eat number of modifications of this still for serving various 

rposes (l0.,17 918,25.,30,42,47,48,50,51,52.,56,62.,78,101.,102,103, 

5,109,140,143,154). 

The recirculating equilibrium still used in this study is a 

iification of one of the latest design by Othmer (104). It is 

one piece glass equipment, specifically recommended for equili

ium study of petroleum fractions. The still pot is in the form 

two joined hemispheres with a total capacity of 500 cc. The 

ill lower section of the pot serves for vaporization of small 

intities of liquid left in it. The vapor=arm carries saturated 

por to the top of the condenser-receiver. The condensed vapor 

~urns to the bottom of the pot through a small tubing., and its 

)Wis regulated by a 3-way cock. The entire still is thermally 

~ulated. Both vapor and liquid temperatures are measured in the 

~, and the samples are withdrawn through the 3~way cock. 

21 
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Kortum (74) jacketed the flask and the vapor-arm with a fluid 

apor or liquid) about 0.5 °c warmer than the equilibrium tempera-

re. An internal heater, and a magnetic stirrer were used to improve 

e uniformity of the pot liquid. The vapor receiver was fitted with 

swinging funnel to eliminate the interruption in recirculation while 

mpling. Apparatus based on the same princi~le has been designed 

th two or more ideal stages (42,60), and they are highly recounnended 

r systems having low relative volatility. 

Jones (69), in order to eliminate the mixing difficulties in the 

t, superheated the recycling condensate in the tubular vaporize~ 

i then mixed it with pot liquid. The equipment is very satisfactory, 

i there are many modifications of it in use (3,4,9,76,117,136). 

1mer' (101) has .designed a similar still for 'high pressure equilibrium 

1dies, and there are a number of modifications of it also (48). 

6. Vapor and Liquid Recirculation: This differs from the 

~vious technique by the fact that both vapor and liquid are re-

~culated. In the vapor recirculation, the liquid and the vapor 

11peratures are measured independently, and are matched. In the 

:es where both temperatures ~re not the same, neither one can be 
-

1sidered as the eqQilibrium temperature. 

In vapor-liquid recirculation equipment, a Cottrell pump 

.por-_pump) mixes the phases and then pumps slugs of these onto 
., 

: thermometer. The equilibrium vapor an~ liquid. phases are sepa-

ed in a disengaging section, and then recirculated back to the 

11. In this type of apparatus problems associated with the 



mperature measurement, entrainment, and partial condensation of 

por are essentially eliminated. 

The Gillespie still (49) and it'S modifications (46,106,119,126, 

7) have produced many reliable vapor-liquid equilibrium relations. 
. I 

the Gillespie still, a Cottrell pump operates from a boiling flask 

00 cc.), heated both internally and externally. The pump throws 

ugs of both phases on the thermometer well, and the phases are 

en separated for obtaining representative samples. The condensed 

por is finallY; mixed with the liquid, and they are recycled back 

the pot. The design is very sensitive to the nature of the system, 

d details of the still construction (65). The equipment, although 

all, may require many hours to approach the equilibrium state, and 

some instances it may cycle. 

Ellis (36,37) used a spiral Cottrell pump, which caused a much 
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orter time for attainment of steady state condition. In the Thornton 

ill ·(147) and its modification (41), both vapor and liquid receiv-

s are placed below the disengaging section in the vapor space. 

is method eliminates the difficulties associated with the liquid 

oler, ~nd phase mixing. 

The Altsheler still (2) is reliable and fast coming to equilib-

' llDl. A mixture of both phases spurts from one leg of the tubular 

ller into a cyclone separator, located just above the Cottrell 

np. Condensed vapor returning from the condenser mixes with the 

1uid phas,e surrounding the Cottrell pump. 

7. Flow Equil?!ent: In this apparatus, feed is continuously 

lted, and partially vaporized in some sort of vaporizer. The 



tixture of the two phases is then separated in a disengaging chamber, 

here the equilibrium temperature and pressure are measured. Such a 

nit compares with industrial flash vaporizers, and is coDD11only used 

n pilot plant studies of petroleum oils. 

24 

The Bala !E_ al equilibrium still (55), is a small flow apparatus 

here the material is heated for a few seconds.. Feed flows from a 

upply vessel to a short vaporizer, and then it spurts on the thermo

eter well. Both phases pass through the disengaging section, before 

ach is· cooled and ·collected. This all glass. equipment requires at 

east 50 cc. of material, and is specifically'useful for heat sensi

ive substances. 

A constant temperature, high pressure instrument was designed 

y Zinn and Stechel (142) for the equilibrium study.of the 82-N2-cn4 .· 

ystem. This equipment was later modified (54,128) for equilibriuin 

nvestigation of low boiling hydrocarbons. Feed, in this instrument, 

lows through many parallel branches of copper capillary tubes, and 

s then sprayed on the walls of the equilibrium chambei to obtain a 

etter contact between the phases. The entire apparatus is kept 

n a constant temperature jacket. 

Smith~ al (139) used a similar design for study of flash 

aporization of petroleum fractions. The metallic vaporizer is 

acketed with mercury vapor as the thermostatic fluid. The 

isengaging section is over-sized in order to eliminate any possible 

ntrainment. A low pressure, all glaqs ~ersion of this equipment was 

esigned by Lockwood~ al (85). One of the equilibrium stills used 

n this investigation is a modification of the.above equipment. 
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A flow equilibrium flash vaporizer was designed by Edmister_!! 

1 (33) for investigation of equilibrium properties of petroleum frac

ions. In this metallic equipment, feed is continuously pumped 

hrough a lead-pot partial vaporizer. The pressure of the feed is 

hen reduced, and it is finally flashed in a large insulated diseugag

ng chamber. Both vapor and liquid phases are withdrawn in such a rate 

s to have a constant interphase in the flash chamber. 

Okamoto (96) introduced a metallic equilibrium apparatus for 

tudy of petroleum oils. The partially vaporized feed from the 

ipe still is atomized in a large chamber by a rotary nozzle. Vapor 

s then dried in a cyclone, and the phases are cooled for sampling. 

Equipme~t 

odif ied Othmer Recirculating Eq1ailibrium Still (99,104): Figure (1) 

hows the modified unit.adopted for this work, and it is made up of 

our separate parts. The boiler section has a total capacity of 

000 cc., and is made of two joined hemispheres, with the larger one 

n the top and the smaller one on the bottom. The geometry of the 

ntire pot is as follows: 

Distance from bottom (cm.) 

1.5 

2.5 

3 

4 

Approximate volume (cc.) 

50 

100 

150 

200 

5 Converging from the small to the 250 

5.5 large hemisphere 300 
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Distance from bottom (cm.) Approximate volume (cc.) 

s.s 
7 

10 

16 

ll cm. wide 

Recommended maximum operating 
capacity 

maximum possible hold-up 

500 

500 

950 

1500 

2000 

, 2)50 

The 100 cc. mark on the condenser is equilevel with 

the 2000 cc. mark on the pot. 

A ball J oint ( ! 12/5) is provided at the boi:.tom of the pot to 

Ike a convenient connection for the condensed vapor return line. 

large evacuated ball joint ( ~ 65/40) is at the top center of the 

•t, am on. one eide of it a thermometer well ( I 19/38) is providE!d, 

lile on the other side the long vapor-line (1 inch I.D.) is con-

1cted. A short thermometer well for measuring the vapor temperature 

• fixed to the central Joint. The side thermometer well e:t't,ends to 

Le cent:er of the extended section of the pot for measuring the 

quid temperature. The vapor-arm at the top is connected to a 

rved return line by. means of a large ball joint ( ~ 65/40)~ One 
- -

de of the cUl"V'ed Tapor-line-extension has a small thermometer 

ll, and the other side is connected to the top of the vapor con-

nser. 

The condenser consists of five balls, and the last one is 

ovided with a side opening to an auxiliary condenser, and a 

ort tapered inlet to the receiver. This tapereci 'nozzle: allows 



~r flow manifold and 
~lon needle valve return 
1es 

nsulation 

l ...J..11 
4 vapor 

·arm 

Condenser 

•0 
{) r-1 
{) 
~ 

0 .p 
0..-t s ); 

Jacket nozzle 

Scale 1/4 

1 

'--~~~Return line (with 3-way 
cock) 

Figure 1 = Othmer Equilibrium Still 
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counting of drops of condensate to the reservoir, which servesto 

1ure the boil-up rate. The condenser and the condensate-reservoir 

placed in a single water cooled jacket, which extends down to the 

joint of the return line. Three water nozzles are provided for 

1 cooling jacket, one being at the top, and one at the end of the 

lenser, while the third is located at the end of the receiver. 

A water connection from a constant head and constant tempera-

tank is ma.de to the central nozzle. The c::-ondensate reservoir 

~raduated from 20 cc. to 1000 cc. in 10 cc. divisions. Either 
\ 

Luxiliary condenser or a cold trap, depending on the nature of 

roleum fraction under study, can be attached to the side-arm by 

lS of a tapered ground glass joint (924/40). 

Three different types of condensate return lines were ma.de, 

each one was examined independently. A three-way regulating 

t similar to the original one used by Othmer, but with ball con-

~ions to the pot and the reservoir, comprised one of the condensate 

1m lines. The second one is similar to the first one, only it 

a highly sensitive Teflon needle valve in the line for control 

the recirculation rate. The third one is of entirely different 

1ciple, and simply consists of a manifold of overflow connections. 

manifold has eight equally spaced connecting cross flow lines, 

re each one is controlled with a cock. The_drainage of both pot 

the reservoir are through the three way cocks. 

The pressure regulating line is connected to the top of the 

iliary condenser or the cold trap, and the siphon breaking 



Ktension of the naaifold. 

A thilllayer of asbestos paper is molded over the entire pot 

Dd the vapor-arm. The asbestos paper is coated with graphite im

regnated asbestos cement. The small extension of the pot, the main 

ody of the pot, and also the entire va~or-arm, are wrapped with 

tlree 1000 W. heaters. Each of these heaters consists of 30 Ft. 

Lomh/Pl:.)of asbestos insulated Nichrome wire. The wires are wound 

l.lliforml.y over and around the pot and the vapor-arm. The heating 

ires are covered with a layer of asbestos cement, and then many 

ayers of asbestos paper. The entire heating section is covered 

1th asbestos cloth tape, and fipally with aluminµm foil to make a 

1tisfactory heat insulator. 'lhe Nichrome wire is more closely 

oumd at the lower section of the pot. The power input to each of 

~e three heaters is controlled by three independent variable power

&ats. 

Modified Thermostatic Flow Equipment (85,68): The equipment 

onsists of a 100 cm. integral, vacuum jacke,ed still with a constant 

amperature heater. The silvered vacuum jacket is made of 10 cm. 

lass tubing, and 14 expansion bellows are made into it. It is also 

rovided with two l cm. wide vertical windows for visual observation 

11d iaspection. Heat is supplied by condensation of a saturated 

Lpor to a heater-vaporizer, which consists of about 16 Ft. of 

)Uble-coiled 8 mm. glass tubing. A small distillation flask (300 cc. 

r 500 cc.} provides the saturated vapor, aDd a condenser at the top 

r the reflux jacket, condenses the excess vapor. 
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Feed at a constant rate passes through an auxiliary pre-heater, 
.. 

nd enter.s the heater-vaporizer coil at the top of the reflux jacket. 

he auxiliary heater is an electrically heated glass U tube, which is 

onnected to the column by a ground tapered joint •. As feed flows into 

he column, it distributes itself between the two helical coils, and 

hen nows down to the flash ·chamber. The flash chamber is. located 

lmost at the bottom of the heating jacket, and· is about 5 cc. in 

iameter and 7 cm. high. Feed enter, the flash chamber from both 

ides through two small (12 mm., E.C.) fritted glass plugs. The 

iquid outlet from this chamber is a small siphon tube, which 

asses through both walls of the jacket, and has a ball joint at 

ts end. The 22 mm. glass vapor line exten4s from the flash chamber 

all'vay through the column, inside the heater coils, and then bends 

ut at about Bo degree angle. The vapor line is connected to an 

specially designed vapor condenser by means of a ground joint. 

The vapor condenser is made of many small bulbs, alternately 

ocated on both sides, which procures an effective method for eon-

.ensation of vapor in a short cond.tmB;with minimum of liquid hold-up. 

he liquid outlet is connected to a 10 inch liquid cooler through a 

mall crank by means of ground ball joints. The crank can be revolved 

bout the axis of licp.id outlet, and therefore change the· relative 

osition of the cooler. lih.en the crank is at its highest position., 

he liquid hold-up in the flash chamber is at its maximum, and it 

overs the fritted plugs. As the crank is turned from its highest 

osition, the.amount of liquid hold-up in the flash chamber de

reases. The sintered plugs (extra coarse, pore size 170-220 
.. 

licrons), break-up the vapor into a great number of infinitely snail 



a;eater and vaporize-----1r-,""I..<' 
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rhermostatic Jacke----
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{ac;uum Jacket 
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1igure 2 - Thermostatic Equilibrium Eq~ipment 
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Figure 3. Picture of Flow Equilibrium Apparatus 
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ubbles. This, therefore, creates maximum contact between vapor 

nd liquid phases before they are separated from each other. 

The important changes in the equipment are: a new design for 

ondensers, a separate boiling flask, the crank arrangement for the 

ontrol of liquid hold-up, and the addition of the sintered plugs. 

his equipment is shown i~ Figures (2) and (3). 

New Flow Equilibrium Flash Vaporizer: Figures (4)SB:\($) show 

ae design and the set up of this all glass equipment. The apparatus 

onsists of a heater-vaporizer, a flash chamber, a vapor condenser, 

nd a liquid cooler with a small crank attachment. 

The heater-vaporizer is made of 50 cm. of 7 mm. glass tubing 

1th a ball joint at the inlet end, and a fritted glass plug (12 mm. 

n diameter, extra coarse) at the other end. This heater is at

ached to the flash chamber by a tapered ground glass joint (i 24/40), 

hich holds the fritted plug inside the chamber. A thin layer of 

18bestos paper is molded over the glass heater, .aDd is coated with 

raphite impregnated cement for improving heat conduction and dis

ribution. An asbestos covered Nichrome heating wire is wound 

niformly around this heater. The heating wire is covered with 

sbestos cement, abd then completely covered with three layers of 

sbestos paper. The heater has outer layers of glass tape, and 

luminium foil. A removable 2 mm. glass rod is placed inside the 

eater. 

The flash chamber is isothermally insulated by the vapor, 

ml the entire internal section is adiabatically insulated by a 

acuum Jacket. The jacket is 4o cm. lang, and 10 cm. in diameter 
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~h two expansion bellows at the upper section. The v~cuum jacket 

completely silvered with the exception of two narrow observation 

1dows. A thermometer well extends from the top of the jacket down 

the flash chamber. A condenser similar to the one used for the 

1er flow equipment is connected to the vapor out-let by means of 

,all joint. As the feed flows from the heater-vaporizer to the 

tsh cpamber, the vapor portion of it is divided into a large number 

very small bubbles in the narrow (25 mm.) ~ection of the flash 

tmber. Vapor then passes through the disengaging section (55 mm. 

). x 8o mm. high) with a much reduced velocity, where it loses 

3 liquid droplets. The vapor finally flows downward around the 

:1.sh chamber, and in between the composite walls to the condenser. 

The liquid line with a small U-shaped trap is attached to 

~ bottom of the flash chamber in such a way as to eliminate any 

3Sible de$d space. The liquid outlet is connected to the crank 

l the liquid cooler by ball joints. The position of the crank 

1trols the amount of liquid hold-up in the contacting section of 

~ flash chamber. Th.is governs t,he extent of contact between the 

:1.ses. 

Liquid Flow: A well controlled flow of feed is essential 

r flow equilibrium apparatus, and Figures (3), (6) show the 

~cess«'ul flow system used in this work. The flow rate was easily 

i accurately controlled over a wide range (from 1 cc./min. to 

cc./min.) with a negligible variation during a long period of 

eration. Liquid feed is transported by a small gear pump (Eastern) 

om the bottom of a large glass surge tank to a one liter constant 
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ad tank, located at about 10 ft. above the pump. The constant 

ad tank has an over-flow connection at the top, which returns the 

cess liquid to the surge tank. 

From the bottom of the constant head tank, the feed may flow 

either one of the two flow equilibrium apparatus, depending on 

e selected position of a three-way cock. 

Control of flow is accomplished by two sensitive Teflon 

edle valves, placed on both sides of a rotameter in the transfer 

ne. All the connecting lines are of 1/4 inch heavy wall poly

hylene tubing. Two fine screens are placed on each end of the 

tameter for keeping the fritted plugs free from any solid particles. 

ed was always filtered through glass wool, and its contact with air 

s kept to a minimum. 

Atmospheric Pressure Correction: The atmospheric pressure 

the labor!ltory is variable and usually less than 760 rrnn. Hg. 

dependable and accurate pressure compensator was designed to elimin

e this discrepancy (Figures 3, 7). Air from a high pressure line 

reduced by means of a pressure regulator, and is dried and cleaned 

it passes through a bed of silica-jel. The air pressure is then 

rther reduced by a needle valve, before it enters into a surge tank. 

essure in the surge tank is controlled and regulated by a sensitive 

a-bubbler. 

The bubbler consists of an approximately 30 inches of 2 mm., 

D. glass tubing, partially immersed in al 1/2 inch glass pipe 

1ntaining water. The other end of the small gla-s.s tubing which is 

~ in the water, is connected to the surge tank. Air pressure is so 
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;ulated as to cause a very small flow (one or two bubbles/sec) 

:ough the glass tubing. Air bubbles which are released from the 

• of the tubing pass through water, and into the atmosphere. The 

LSS tubing can be moved up or down to change the static head of 

:er at the point where air is released. The immersion dept of the 

LSS tubing in water is equivalent to the air pressure in the surge 

1k, because the pressure drop due to a small flow of air through 

bubbler is negligibly small. 

Lines which convey the pressure to the equipment, and to a 

1sitive manometer, are also.connected to the surge tank. The 

:ferential pressure measured by this manometer, plus the baro

:ric pressure constitute the absolute pressure of the equipment. 

Vacuum System: A simple but adequate vacuum system which was 

id in this investigation, is shown in Figures (3, 8). The vacuum 

11p is directly connected to a large metal surge tank, provided 

:ha vacuum release and drain valve at the bottom. The surge tank 

connected to a Cartesian manostat, which controls the vacuum. A 

:rogen bubbler, located between the manostat and the cold traps, 

leases enough nitrogen into the,system to eliminate any possible 

:tion of hydrocarbons, therefore loss of products. Nitrogen 
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,ma high pressure cylinder is reduced, and bubbled at the rate of 

or two bubbles per secqnd through a liquid of very low volatility. 

percolation of nitrogen facilitates its rate control by visual 

1ervation. Atmospheric air can also be used successfully, when 

ire is no possibility of material oxidation. The vacuum line can 

:her be connected to the cold trap of the recirculation still, or 
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the traps of th~ flow apparatus. One system of traps and re
! 

;vers is designed for,··the flow apparatus, land it can be attached 

either of the two flow apparatus. 
j 

In the vacuum connection for the flow systems, there are 

Lnches for vapor and for liqu~d sides. There is a cold finger trap 

each vacuum line, which insures against loss of volatile compon-

;s. The cold traps can either be kept in ice or solid CO2, as 

LUired. A three-way cock can connect any one or both of the cold 

LPS to a mercury manometer. Heavy rubber lines connect the cold 

Lps to product receivers and collectors. 

F.ach product receiver is a small 50 cc. glass container, 

.ch at one end can be connected to the product condenser, and at 

t other end to a 500 cc. collector, by means of ball joints. A 

·ee-way cock connects eaca product collector to the vacuum system. 

:h product collector can be removed from the system by first 
i 

>sing t~e glass stop cock between the receiver and the collector, 

l then releasing the vacuum. 

All the vacuum lines are made of a sufficieRtly large tubing, 

the connections are sealed with special rubber cement. 

Temperature Meas.urements: Temperature measurements were made 

;h both calibrated thermocouples and thermometers. Figure 9 shows 

t thermocouple circuit as it was used in the experiment. The 

irmoeouples are made from Chromel-Copnic wires, and ar~ flash 

.ded together. The cold junctions, as well as cop~r lead June-

ms were placed inside of individual oil filled glass tubing, 

.ch were kept in an ice bath. The lead lines were then connected 



1. two-gang-multipole selecting switch, and finally to a very sensi

! Leeds and Northrup_ type K potenti~meter. Standard accessories, 

1 as a sensitive Leeds and Northrup galvanometer, batteries, and a 

1dard cell, .were used. 
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Procedure an4 Tests 

Othmer Still: This still was testec;l for pressure drop by 

necting one leg of an inclined manometer to the thermometer well 

ning of the pot, and the other leg to the auxiliary condenser. 

manometer liquid was selected to be the same as the pot liquid, 

the vapor condensing in the leg of manometer connected to the pot 
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ld be of the same composition as the manometer liquid. Two liquids, 

uene and water, were used for this purpose, and it was noticed that 

n at the highest flow rate (2.4 liter/hr) the pressure drop 

ctuated between 0.8 and 1.0 mm. of liquid. The pressure drop at 

operating rate is even smaller, therefore, quite negligible. 

Entrainment, which often causes trouble in many stills was 

mined by a colorimetric method. A.known quantity of dye was 

solved in the pot liquid, and after distillation at various 

es and wt-th various levels in the pot, the reservoir liquid was 

mined for dye. Toluene and water which have different inter-

ial properties, were arbitrarily chosen for this test. Tests 

·e conducted at 200, 1000, and 2000 cc. pot hold-ups, and boil

rates ranging from ·the normal operating condition (1-2 drops/sec) 

the maxtmum rate of about 2.5 liter/hr. The complete absence of 

in the reservoir liquid, even at the most severe condition was 

erved. This test clearly indicates that entrainment is not a 

:tor for the equipment. 

The material loss (as vapor or decomposition) was investigated 

:h the following typical results: 



Charge 2000 cc. 

Rate l drop/sec. 

Water temperature 23 - 25 °c 

duration of operation loss 

benzene (B .•. P. 8o.l °C) 5 Hr. 8 cc. 

toluene (B.P. ll0.8 °c) 5 Hr. 3 cc. 

o-xylene (B.P. 144 °c) 5 Hr. 3 cc. 

o-xylene 10 Hr. 8 cc. 

n-decane (B.P. 174 °c) 2 Hr. 2 cc. 

With 2" Hg positive pressure 

toluene l Hr. 5 cc. 

toluene 3 Hr. 9 cc. 

toluene 5 Hr. 12 cc. 

Test for thermal decomposition, using a heavy petroleum.cut 

ith A.S.T.M., I.B.P. 132 °c, E.P. 311 °c, flashed at 218 °c 

time - Hr.: l 3 7 
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condition no discolorlng or yellow color light brown 
loss 

A very important factor in all the recirculating st~lls is the 

ime which the system requires to come to equilibrium, and tlle follow-

ng test was devised for this purpose.·. In the case of biDary mix.;. 

ures, the returning vapor condensate to the pot was analyzed at 

·arious time intervals ~nd was plotted versus time to ascertai"n the 

rue equilibrium condition. 'l'he ·same technique was applied to the. 

ase of muiticomp'onent mixtures, but here only the rela\ive •mounts. 

,f some · o-t: the co.mponents wer~ plotted. The experiments showed that 

,he determiDation of the relative quantities of only two predomiDantly 
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1ccurring componeats {preferably one near eacla end) are adequate for 
.. 

,his.,test. '!'Aese relative quantities were de'\ermined by the metJacd 
~ 

1f Chapter V. The identification of these components evidently is 

Lot necessary. The representative curves are shown in Figure {10). 

Equilibrium tests were conducted under various conditions 

Appendix B), and the results can be judged from Figures {ll, 12), 

~ich co~are very favorably with those of literature. Two binary 

.ystems of acetic acid-toluene, and benzene-toluene were selected. 

he acetic acid-toluene system was analyzed wita 0.0965N - •aOH. 

'or the titration, sufficient quantity of water was added to tae 

;ample to reduce the concentration of the acid and also to aid in 

.ts extraction from the organic pnase. The time required for the 

:xtraction of the acid from the organic phase was noted. Tae possi-
' 

1ility of interference of atmospheric co2 in tae titration due to 

,he ex:l,stance of organic layer on the top was nil. · 

The benzene-toluene system was analyzed by caromatograpay. 

vo sets of experiments were performed, one with the overflow mani-

'old, and the other with the Teflon neddle valve connection. As 

:xpected, the results were in agreement. Tlle procedure for studying 

quilibrium vaporization of petroleum fractions was conducted 

~actly as the test runs, and by use of the overflow manifold. The 

,ame method for knowing the true equilibrium condition {plot of 

:on.ceatration vs time) was applied. Under all operatiq conditions, 

,he maximum quantity of liquid in the pot was never more tllan 20<X>cc. 

he analytical requirement was such that at .least 1000 cc.~ eaca 

1hase wa, aeeded. For instance, for.a 10 percent vaporization, tae 
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experiment was repeated six times to collect enough santples. It is 

important to establish exact heat inputs by trial runs. In the case 

of even the smallest amount. of leak, the experiment was repeated again. 

A s~ll amount of carbon was deposited each time inside the flask 

Vhenever a long period a.ad.high temperature were used. This layer of 

carbon lias removed by heating the empty pot, and raising its tempera-

ture very slowly, and at the same.time blowing air into it. ID. some 

instances it became necessary to treat the pet with a cleaning 

solution. 

Thermostatic Flow Equilibrium Equipment: Tlae two important 

tests for this equipment are entrainment and equilibrium. The same 

colorimetric technique was used to stu·dy eatrainmem.t cl:t.aracteristics. 

A series of tests was conducted at various vaper rates and at various 

liquid hold-ups in the flash chamber, using water, toluene:, benzene, 

and a light naphtha as the test liquids. Tb.e experiments show that 

vapor rates up to about 1.3 liter/ml.n. (at the stamdard condition) 

wa..ild not cause any entrainment. 

Figures (13,14) show the comparison between the equilibrium 

data obtained with this equipment, and those which were taken from the 

literature. The benzene-toluene system was analyzed as before, wllile 

refractometry was used in the case of toluene - n-octane sy&ftem. Re-

' fractive imdices were measured by an Abbe refractometer (Spencer 1591) 

e at 25.0 C, and using a yellow light. Thirty six standard solutions 

were prepared by volumetric method at a co~stant room temperature, 

and with a maximum possible error of less than o.5i. The calibra-

tion curve was prepared on a large graph paper for improving its 
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accuracy. All the samples were kept im a refrigerator, and they were 

analyzed as soon as possible. The small glass sampling containers 

were cleaned with a cleaning solution, and were dried in an oven. 

Two techniques were used to establish the desired operating 

conditioms whenever petreleum fractions were flash vaporized. A 

plot of Ci) versus feed rate was prepared to iavestigate the operating 

(~) range at which ~ ratio is independent of the feed rate. The second 

test consisted of plotting the relative quantities of some of the 

components versus feed rate. These relative quantities of components 

were measured by chromatography as before. The trial test was 

conducted for each case, before collecting 1000 cc. samples. Figures 

(15, 16) show some representative plots. 

The jacket temperature was maintained by refluxing one of the 

following organic l'l'.$.terials, at 760 mm. Hg.. Atmospheric pressure 

compensation was accomplished as already described. 

2, 2, 4 - trimethyl pentane 

2, 3, 4 - trimethyl pentane 

n - octane 

ortho xylene 

ortho toluene 

n - decane 

n - dodeca.ne 

l, 2, 4, 5 - tetrametbyl benzene 

Naphthalene 

n - tridecane 

2 - methylnaphthalene 



a - cl1loronaphthalene 

l - bromoma.phthalene 
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Some of the high boiling thermostatic materials were not 

stable with heat, therefore two thermometers were placed inside the 

jacket to detect any possible change of temperature. Although, the 

discoloring of thermostatic materials with heat is not an indication 

of a large conversion, nevertheless, these materials were often dis

tilled or replaced. The thermostatic system was always cleaned after 

each use, by refluxing benzene or toluene for some time and drying 

with air. 

The time required to bring the column to the operating 

temperature depends only on the boiling point of the refluxing liquid,

and is often short. ,,. 

New Flow Equilibrium Equipment: In the eperation of this 

equipment, beth feed and heat flows to the vaporizer must be. kept 

absolutely constant during each run. The flow of feed to the vapori

zer, as explained before, was highly dependable. The input of elec

trical power through-a variable powerstat, as it was tested by sensi

tive meters, changed but insignificantly at all times. 

Entrainment, and equilibrium tests were conducted as for the 

other flow equipment. Figures (17, 18) show the equilibrium data 

ebtained by this equipment, using benzene-toluene, and toluene-n 

octane systems. Figure (19) compares the results of equilibrium 

vaporization of a petroleum fraction, obtained by the menti~n~d 

devices. 

Tae procedure for vacuum operation is basically the same for 
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both flow appar~tus. Tl:i.e vacuum receivers and collecters were 

attached to the condensers, ana. the manostat was adjusted to produce 

the desired vacuum. The equipn\ent was then tested for leaks befere 

the test 'itas started. After a sufficient start-up time, the cel

lectors were detached from the umit) cleaned, and placed back for· 

collectioil of samples. Traps were kept in ice te ensure the col

lection of any escaping vapors from tae comdensers. The results ef 

these v4cuum operations are sh8W}ll in Figures (20 ,·21), and are given 

in tlile appendix. 

Discussien 

Because of the complexity ot petroleum.fractiens, the thermo

dynamic ceasi~~ncy tests (59, 118) can not be applied, therefore it 

has been the practice of the investigators te operate the appa~atus ., 

within tlae limits which produce reliable results for seme binary 

mixtures. For instance Okamoto (96) establisaed a limit for atemiza

tion ef a binary feed, and applied this to the case of petroleum 

fractieas. Evidently these tests, and also the smeothDess ef tae 

plot of the fraction of feed vaperized as a function of equilibrium 

temperature, can be qu~~e misleading in seme instances. Here some 

satisfactory tests llave been devised, and presented in this sec,iem. 

It is evideat that each apparatus must be iavestigated illdepeDdeatly, 

and all of the variable facters be studied, before it can be satis

facterily used for equilibrium investigatien. 

OtluDer still: 0th.mer recirculating still was the first 

equilibrlum equipment cemstructed. It was selected because it llas 



been highly recemmeaded by previeus·iorkers, and_for its sim-

plicity of design. It also a~ared-te lnave advanta.es fl!D.r the 

type of investigation in question. In ord~r to meet the large 

sample requirement, i'!:; was decided to construct a 2000 cc. still. 

Although this did not eliminate the meed for repeated operations 
~ . ,. 

it neverti,1ess teducea the number of runs for each c~se. Tb.e 
' I 

equipment 'becaus• ot its great bull. liad to be co11lstructed in three 

separate parts. 

othmer in his si~ilar desigll used an internal heater and 

insulated the 1D.eated portion with electrical la.eater~. Here tlae 

heat in~ut te the still was regulated by extermal heaters e-i.y. 
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Tb.is technique of exteraal heat input, as found Jm t~is study.is 

mere advaatageeus than tl!t.e other method. AD internal heater, ,=3upplies 

heat for vapor1zatien of liquid in the pot, and also generatesenough 

heat to compensate for the heat losses from the walls. On the otaer 

hand, the external aeaters transfer Just enough aeat to the liquid 

to cause tae 4esired vaporization. Therefore, f'er an identica 1 

operating condition, an internal heater must transfer mere heat to 

the liquid than the external heaters. In.termal heater must be small 

in size, therefore with a much smaller heat transfer surface than 

the external heaters, whica cover the entire aeated section of the 

equipment. All these necessitate that the surface temperature of 

the internal heater be much higher than the wall temperature. Tae 

conclusion is that an internal heater causes much greater thermal 

decomposition than whea heat is applied externally. Tlaermal de-

composition for each petroleum fractien depends on the equilibrium 



:emperature, and the duration of operation. Studies show that the 

:hermal decomposition, even at an equilibrium temperature as high 

LS 250 oC is not significant. 

In all the cases the vapor in the vapor-ai.:m was kept.a few 

legrees superheated. If even a small amount of yapor condenses 
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>n the.large vapor an;n, it would enrich the vapor in a manner similar 

:o that in a wetted wall distillation column. When vapor enters the 

rapor-arm, it can only return to the pot by molecular diffusion, 

rhich is definitely insignificant as compared to the flow transport. 

~herefore the superheating of vapor in the vapor-arm is definitely 

Ldvantageous. 

Three different return connections, over-flow manifuld, Teflon 

1eedle valve, and a simple regulating cock were compared. It was 

:ound ,that the regulating cock was inadequate for this type of work, 

LS it did not offer an accurate control of back flow to the pot. 

,lso, it was almost impossible to duplicate an experiment satisfac

:orily by this technique. The Teflon needle valve gave excellent 

:ontrol of back flow, even though the liquid head was never more 

:ban a few inches. The re·producivility of this method was satisfac-: 

:ory, and it needs very little attention. 

The aver-flow system as would be expect~d, was the easiest to 

Ldjust and to reset. It is possible to replace the extensive over

:low manifold by a simple- inverted 'U' tube with a siphon breaker. 

'.be level of liquid in the condenser reservoir can be al~ered by 

1winging the 'U' tube around the axis of its ball connections to the 

1ot and the vapor reservoir. 



Condition of Equilibrium: In order to reflect on what takes 

place duri:mg the equilibrium operation, it weuld be necessary to 

consider a sufficiently ideal case for this purpose. Assuming a 

mixture is to be equilibrium flash vaporized at seme temperature and 
Y1 

pressure to prcduce molal vapor to liquid rati& ef ~· The over-
1 

flow cormectien is therefore set for~ condition, and the predeter-
1 

mined power input is such as to cause a constant vaporization rate 

. Moles ( / ) of b hr. eg - l or 2 drops sec •• From the time when vaperization 

starts until the time when over-flow begins, the precess is a simple 

batch distillation. The average composition of liquid in the vapor 

reservoir, and in the pot may then be calculated as follows: 

thus 

-yt d(X+ Y) = -d (X + Y) x: 
dx* 

p.(X + Y) = _a__.__ 
(X + Y) Y! - x* 

X lxla a.,. dx* a 
ln 1 -a 

(x + Y) 9 ~ - xi 
. a 

(25) 

(2511) 

(26) 

where (X + Y = x1 -1- Y1) is t?re total moles e>f feed, and xci,a the mele 

fraction of component A. 

* x a • mole fraction c:lfflIPOnent A in the pet 

y*a = mole fraction ef vapor in equilibrium with x*a, 

-
(y*a/x* • Ka(x,Te,Pe)) - a 

x18 • average mol~ fra-ctien of component A in the ce:ndensate 

reservoir at the time when over-flow just starts 
_, 

x18 = pet composition, corresponding te x1a 



Now, the recirculation starts with the same csnstant rate, 

and the ameunt ef the most volatile c@mpenent in the reservoir is 

higher at this time than during all the recirculati~n period. 

Material balance for component A in the reservoir weuld 

result, 

(27) 

(27a) 

xa = average mole fraction of component A in tae reservoir 

(assuming a complete mixing) 

Q = time 

For the still pot, 

(28) 

Where__ tl!le limits are: 

Xa frem x:18 t• ~ 
~-
* I 

te x~ xa frl'ID xla 

By material balance at equilibrium, 

( f) f *f 
Y1 + ~1) x a = Yi y a • Xi x a (29)' 
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*f f 
Xa, Ya are the final composition of component A in the pot and the 

reserveir respectively. 

At the steady state condition, the compositions in the p~t 

and the reserveir remain constant, that is, 

dx*f dy f 
a =_a_:O 

dQ dQ 

.Also by material balance, 

(30) 



f - 'If 
(31) bya - bya 

f *f (J2) or Ya : Ya 

thus dy *f : 
dx *f 

0 (33) a a = 
dQ dQ 

*f 
is the vapor in equilibrium with xs:!f Ya 

Equatien (32) shews that at equilibrium the flewing vap~r and 

cendemsate are cf the same composition, and de not change with ~tme-. 

By assuming a satisfactery equilibrium relatien, the time required 

fer the operatie• can be calculated from the given equations. 

~tis evident, that if the condensate be mixed at all time~, 

a shorter recirculaticn period is needed. Th.is can be achieved by' 

providing tlle condensate reserveir with a mixer. ·visual observa-

tion indicated that diffusion and gravity mixing is inadequate. 

It is also quite evident that, during the recirculation t!Ille', 

the compositien gradually changes toward equilibrium, without going-

bey~nd. Therefere, a plot of compQsitien versus time, at the pc!trtr 

where it is independent ef time (Equatiens 30, 33, Figure 10) in-

dicates the true equilibrium condition. 

Thermostatic Flaw Equilibrium Equipment: The constant 

temperature flow apparatus has to be operated within the experi-

mentally determined flow range. When the flow rate is higher than 

the maximum allewable rate, then ene of the two follewiag und~ir-

able phenomena will occurg (1). The flew rate may exceed the 

pessible capacity ef the heat exchanger, and in such a case the 

percent vaporization would be less than the true value fer-the 

temperature. The pre-heater can effectively improve the range ef 



,eration, by aiding the column heat exchanger (2). The second 

,ssibility is that the vapor velocity may become high enough to 

.use an appreciable amount of entrainment. This would of course, 

lrich the vapor with the less volatile components. 

The thermostatic materials must be replaced or purified, 

1enever it is necessary. For obvious reasons, the presence of a 

bH 

1&.ll quantity of lower boiling components in the thermostatic material 

very critical. Pressure regulation of the thermostat was found to 

necessary. The two thermometer wells, one in the middle of the 

,lumn and the other next to the flash chamber were used to avoid 

1y possible error. Because of the heat transfer requirement, the 

[uilibrium temperature is slightly less than the temperature of the 

Lcket. 

Experiments revealed that-when the porous plugs were not sub

!rged in liquid, true equilibrium could not be established in many 

lses. When the plugs are submerged, the vapor and liquid are 

:-ought into intimate contact with.each-other, at a constant tempera-

1re and pressure. 

·In order to investigate the working nature of such an equi

lbrium equipment more systematically, it is advisable to construct 

column with only one heater-vaporizer coil, which would eliminate 

1e undesirable uncertainty of feed distribution between the two 

,us. 

New Flow Equilibrium Equipment: The need for simple reliable 

lUilibrium equipment motivated the design of this apparatus. 

1 this equipment both feed and heat flow must be very closely 



~gulated, in order to obtain uniform products. The control systems 

lready discussed served this purpose. This equipment, because of 
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ts small mass can be brought to operating temperature rather quickly. 

tis very simple in design and easy to construct and operate. The 

ritted plug can be removed, and easily cleaned with a cleaning 

olution. 

The nature of liquid vaporization in a tubular heat exchanger 

s such, that even at the best condition true equilibrium can not be 

!tpected. First nucleation at some favorable locations ta_kes place, 

nd then some of these nuclei grow into large vapor bubbles, as the 

lugs of vapor and liquid discharge from the exchanger. Becaµse the 

iqui9, is not homogeneous, and the slugs of vapor are rather large, 

n intimate cOlll\tact between the two phases is not possible. As a 

apor,bubble moves forward in the vaporizer, the average temperature 

f_ fluid increases, and it grows at the.-_interface, becoming enriched 

n the less volatile components. The main factors which govern the 

pproach to equilibrium therefore are: the size of heat exchanger 

nd the rate of heat transfer, the number and the size of.vapor 

ubbles, and the transfer coefficient. The need for a final and 

omplete contact between the phases, is .well known by now, and it 

an be accomplished easily by porus p~ugs. The existence of the 

ritted plug at the end of the vaporizer, and also the crank arrange

ent, provide some excellent means for study of the importance of 

ood contact between the phases. Figure (18) shows that when liquid 

old-up in the flash chamber is nil, equilibrium is poor, while at 

igh hold-ups satisfactory results were obtained, The fritted 

lug breaks the vapor slugs into a great number of infinitely 
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1mall bubbles. When the plug is partially or totally submerged in 

.iquid the small vapor bubbles then create a foam, promoting maxi

rum contact between the pha$es. Since both temperature, and pressure 

,re constant, and phases separate immediately after contact, then it 

.s reasonable to expect a true equilibrium between them. 

To investigate the uniformity of temperature inside the 

'lash cham~er, the thermometer well was replaced by a cork stopper 

rith a thermometer passed through it. Under various equilibrium 

:onditions, the thermometer was moved up or down to make a complete 

;emperature survey. The results indicated that the flash chamber 

.s completely isothermal at any equilibrium condition. 

Figures (20,21) show the equilibrium study of a petroleum 

~raction at various pressures, and the plot is well within the ex

>ected limits. In Chapter V, vapor-liquid equilibrium phase distri

>ution for some components of a hydroformer product are presented. 

The present design is well suitable for atmospheric and 

racuum studies. Its capacity decreases with the reduction of pres

;ure as expected. At high vapor rates, some slugging occurs, and 

~his can be eliminated by placing a deflector in the disengaging 

,ection, or replacing the porous plug with porous disc (fritted 

iisc with solid glass on the upper side). The thermometer well 

lnd the fritted plug can be fixed to the flash chamber if desired. 

rhe placement of the glass core in the vaporizer improved the heat 

;ransfer property, as well as causing a better phase mixing. 

A high pressure equipment based on this design should be 

,xpected to give satisfactory results (fritted glass can be replaced 
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3y sintered metal). 

Finally it should be mentioned that from the view-point of 

equilibrium study of petroleum fractions, the Othmer still requires 

a long period to come to equilibrium and,moreover, the condition of 

equilibrium should be investigated by the methods given here. Large 

samples can only be collected at the expense of repeated runs. 

The modified flow equipment (the thermostatic flow equilibrium 

equipment) is complicated in design and fragile, therefore it has to 

be handled with great care. It is easy to operate, but its operat

ing range for each equilibrium condition should be determined first 

by the methods already pres·ented. The equilibrium temperatures are 

limited to the available thermostatic materials, and this in some 

instances create a great handicap. The high temperature thermostatic 

materials are often unstable and costly. The start up time is 

short, and large samples can be collected without difficulty. 

The flow equilibrium equipment, which has been designed as 

a result of this investigation, is simple and reliable. It can be 

constructed to be operated at all temperatures and pressures satis

factorily. Tile start up time is short, and large samples can be 

collected wita ease. 



CHAPTER J.V 

DISTILLATION ASSAYS 

In this chapter batch fractional distillation assays, as 

:lated to this work, will be discussed. The components of petroleum 

·actions (continuum) can be separated according to their boiling 

1ints by means of batch fractional distillatioq • 

Both the petroleum feed and the products of equilibrium 

ash vaporization were analyzed by simple (A.S.T.M.*) and fractional 

,tch distillation, and the results are given in the appendix. 
I , I 

Batch fractionations were performed by means of an efficient 

.eve plate column (Oldershaw), and a comparison was made with a more 

,mmonly used appartus (Sarnia MK II). 

Since the apparatus and the procedure for fractional distil-

Ltion of petroleum fractions are not standardized, it therefore be-

Lme necess$ry to evaluate the fractionator and formulate a reliable 

>eratin~ technique. 

THEORY AND SURVEY OF LITERA'IURE 

Petroleum is a complex mixture of various hydrocarbons with 

ich close physical properties, that complete separation of ind.ivi-

~al components is not practical by means of distillation. Even if 

American Society for Testing of Materials 
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1e components are separated, the treatment of so many components pre

ent in insignificant quantities is impractical. Therefore, it be

ame customary to characterize complex petroleum mixtures by their 

oiling points (distillation curve), density, viscosity, etc.; rather 

ban the amount of each individual components they contain. 

Simple or Rayleigh (116) type distillation has been standard

zed in petroleum industry (A.S.T.M., D-86, D-158, D-216), and the 

esult is expressed in the form of volume percent of distillate col

ected (abscissa) versus distillation temperature (ordinate). The 

emperature is actually the condensation temperature of the vapor 

lowing out of the tlask, and because of the nonideality of the 

olution it is not simply related to the volatility of components 

nvolved. Also in the petroleum industry an efficient batch fraction-

1 distillation is referred to as true boiling point (T.B.P.) distil

ation, which is an attempt to separate the complex petroleum mixture 

nto its components according to boiling point. Under the ideal con-

1tion of maximum column efficiency, and close to the total reflux 

II)eration, it; would be conceivable to produce a step..iwise distillation 

~rve (T.B.~.), where each step would represent an individual com

>onent. In practice, these numerous steps are not discrete, and 

~pear as a continuous curve. The equilibrium f~~s~ vaporization 

:t.F.V.-), the simple distillation (A.S.T-.M.), and the fractional 

lfstillation (T.B.P.) curves generally appear in the order of in

:nasing slopes, and are empirically related to each other. Many 

malytical and empirical equations are available for all the three 

Lifferent curves (94,120). 



JJrr :tractioaatiag apparatus which accomplishe• a goocl. degree 

f separation ia ~roadl.7 termed T~B.P. equipment. In actuality, for 

omplex petroleum mixtures, the slight variation in efficiency and 

perating coll41tioa causes no significant change in the position and 

he shape of T.B.P. curve or properties of distillate when it i• per

ormed ia a sufficiently effective column. True boiling point diatil

ation can be conducted at various sub-atmospherio pressures up to 

'6o DUD. Bg., a:ad at constant or variable rate, of distillatioa. The 

urves obtained by constant distillation rate are more smooth, and 

re more useful for design purposes. 

T.B.P. distillation is generally carried out ia aa et'~lcient 

.nd insulated packed column at a high reflux ratiais. There are some 

'ew widely used packed colwms (11,86,93,110.,112,146), each with some 

.dvantages. other types, such as sieve plate, spiuing band, and 

retted wall columns are less common. 

APPABA'lUS 

The fractionating equipment (T.B.P. still) selected for this 

1tudy was an Oldershaw (22,97) column. 'l'hese colwms are l!l&de in 30, 

!0,15,10, and 5-plate sections, and are provided with integral vacuum 

lack.et to approach adiabatic coadi tioa. The vacuum jacket is totally 

ailvered with the exception of two narrow longitudi11&l observation 

rindows on both sides of the column. The column is normally made ot 

?yrex glass, and sufficient number of expansion bellows are constructed 

Lato the outer shell to allow safe operation even up to 300 °c. 
Cach section of the Oldershaw colWllll consists of certain number of 



.ass sieve plates sealed into a glass tube of 26 to 28 mm. in inner 

.ameter. 
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Figures (22,23,31) show the details of sieve plate, weir and 

,wn-pipe. There are 82 holes in each plate, and they are arranged 

l three circular rows. The holes have low tolerance, and are dril

:d with red hot tungstan wire of 0.89 mm. in diameter. The baffle 

.pe which is placed in the center of the plate, is 10 mm. high, and 

, mm. in diameter. A small section (4 mm.) of the baffle is cut 

'.fat 1 mm. above the plate to form the weir. The baffle directs 

Le flow of liquid to the weir, which maintains a proper liquid seal 

1 the plate. The down-comer or the drain-pipe is bent and tapered 

·om 10 mm. to 3.5 mm. to prevent any vapor-lock. A bead of about 0.5 

a. is sealed to the lower section of the drain-pipe to regulate the 

~stance between the end of the drain-pipe and the plate bellow. As

~nding vapor passes through the holes in the form of small bubbles, 

1d the descending liquid from the plate above flows over the plate 

,fore it enters the drain-pipe. The lower most plate in any column 

,ction has a uniform weir, and without drain-pipe. F.a.ch section can 

! connected to the other parts by means of 29/42 ground tapered joint 

nale joint at the bottom). 

Figure (23) shows the details of design of liquid trap used 

~ the operation and the evaluation of the column. The trap is a 

odification of other commercially available designs. It is basically 

~ integral vacuum jacketed 50 cc. reservoir installed between the 

istillation flask and the column. Vapor flows through the central 

ipe, passes around the deflector and enters the column at the base. 

he liquid from the column drips on the deflector, and finally falls 
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Figure 22 - Oldershaw Distillation Column 
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ato the reservoir which surrounds the vapor pipe. The annular reser

oir has' a narrow neck at the top, where the calib.ration mark is 

ocated. At the bottom, the reservoir can be connected to the central 

apor-pipe, or to a sampling line by means of a three-way cock. At 

he normal operating condition, the column liquid flows from the trap 

o the vapor-pipe through the cock. When the cock is closed, the 

iquid collects in the trap till it-reaches the 50 cc. mark, and 

inally over flows to the flask. By proper regulation of the three

ay cock, the vapor going into the column, and the returning liquid 

an be sampled. 

A reflux regulating valve is located between the top of the 

olumn and the reflux condenser. There are two different designs of 

eflux dividing heads, vapor-dividing, and liquid-dividing; and of 

hese the former was found to be more suitable for this work. The 

till top temperature is measured by a partial immersion thermometer 

onnected to the lower section of the automatic vapor-dividing still 

ead with a ground tapered joint (i 10/30). 

The vapor flowing into the automatic vapor-dividing head 

rom the column is selectively directed either to the reflux conden

er at the top, or to the product condenser on the side of the column, 

y means of a glass valve plunger. When the plunger is seated, the 

apor condenses in the reflux condenser and returns to the column, 

nd when it is unseated the vapor flows to the product condenser. The 

alve has a long glass stem, which passes through the reflux condenser, 

nd at the other end is attached to a soft iron rod enclosed in a glass 

nvelope. The entire vapor-dividing head is vacuum jacketed. 



The selective operation of the valve is by a small solenoid, 

1ich encloses the end of the valve stem. A powerstat controls the 

>wer input to the solenoid, and its operation is regulated by an 

Lectric timer (Flexopulse, Eagle Signal). This time switch is operate~ 

r a small synchronous motor, with on or off periods from 1 to 120 

~conds. The time switch can produce reflux ratios from 1/119 to 

L9/l, with the maximum cycle duration of 120 seconds and a minimum 

rcle duration of 2 seconds. 

The reflux condenser is a large (six balls) water cooled 

)ndenser, which is attached to the top of automatic vapor-dividing 

ead with ground joints(~ 29/42). The product condenser is also an 

~ective one, having a 100 cc. reservoir, and is connected to the 

ipor-dividing head by a ball joint. 

Distillation flasks of various sizes, from 1000 to 7000 cc., 

ith one or three tapered joint necks (W 29/42) were used. 

The heating mantles are hemispherical and metallic, and 

ere supported by a small automobile scissor-jack. The power in

ut to the heater is through a 1000 W variable powers tat. 

OPERATION AND TESTS 

Since neither the T.B.P. still nor the operating proce-

ure are standardized, it therefore became necessary to invest some 

ffort in that direction. Although each individual Oldershaw column 

ection may have certain inherent characteristics, each section does 

ave properties that are reproducible. The results of these cornpre

.ensive tests are given in the appendix, and some are shown in this 
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napter in the form of plots. 

Heat Loss: The column set-up for measuring heat loss con

isted of a two neck 2000 cc. flask, the reflux trap, a section or 

ections of the column to be tested, the vapor-dividing head (valve 

emoved and a plug used in place of the reflux condenser), product 

ondenser, and a return line from the product reservoir to the flask. 

ith this set-up and under steady state operation the liquid hold-up 

f the column is constant. 

Any amount of vapor generated in the flask, (99 mole% pure 

iquids) should flow to the product condenser, and then return to 

1e flask. But because of the small amount of heat loss from the 

olurnn, a portion of ascending vapor condenses and is collected in 

~e reflux trap. The heat loss can be calculated from the time which 

~quires to collect 50 cc. of condensate in the trap. By this methocf, 

~at losses from two 30-plate column sections were measured and com

lred. Benzene, and toluene were used to compare heat losses from 

Late, and empty packed columns at various boil-up rates. Heat loss 

1aracteristics of 40-plate T.B.P. column (two sections) was investi

ited at 1000, 2000, and 3000 cc./IJr. boil-up rates. The following 

ire liquids were used for this purpose. 

benzene 

toluene 

methylpentane 

2 - 2-4 trimethylpentane 

o-xylene 

o-ethyl-toluene 

N-B.P. 8o 0 c 

111 

60 

99 

144 

165 
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ire was taken as to eliminate any air draft in the laboratory, and 
I 

1e ambient temperature was measured at close to the middle of the 

)lumn. In order to ascertain the reproducibility of the results, 

Leh test was repeated at least three times. Figure (24) shows the 
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~feet of vapor temperature on the heat loss from the T.B.P. column. 

By this technique, the thermometer was also checked and 

Llibrated, as it came in contact with the highly pure and saturated 

Lquids at the top of the column. 

Start-Up Characteristic: For this test a 7000 cc. flask, a 

)-plate column section, and the condensers were used. A known mix-

ire of benzene and toluene was placed in the flask and then heated 

; some predetermined rate. At the start the distillation column 

LS completely dry and at room temperature. As the vapor mixture 

lpeared at the top, a representative sample of it was obtained 

irough the sampling three-way cock, located at the top of return 

~ne. The samples were taken at various time intervals, from the 

Lme when vapor first appeared on the top and to the time when 

~eady state condition was reached. The experiment was carried out 

lr the conditions of: total reflux, total take-off, and one to 

1e reflux ratio. The test for the condition of total take-off was 

!peated to check the reproducibility of the result. In this ex-

iriment .care was taken to secure representative samples, and they 

!re immediately analyzed by chromatographic technique. The quan-

.ties of components in the pot were such as not to be effected 

r the liquid hold-up in the column. 
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Pressare Drop: The apparatus set-up for this test is exactly 

1e same as before, with the exception of using pure liquids in a 

llliller flask. The distillation return line, which has a liquid seal 

)Op at the bottom, and returns the liquid from the product reservoir 

) the flask, was used as the manometer for measuring pressure drop 

:ross the column. $a.Ifie liq,uids and operating conditions as in the 

lrst part were used here. 

Hold-Up: Another important characteristic of the column is 

~s capacity for retaining liquid while under operation, and also 

)me times after the completion of operation. The arrangement of the 

iuipment was the same as before, except that heat was supplied to 

1e flask by a Nichrome wire through one of its necks. Because of 

1e negligible heat ca~city of the heating wire, the vaporization 

in be stopped almost instantly in th~ flask, as soon as the heat is 

it off. 

Pure benezene, n-octane, and toluene were used for this work. 

1e dynamic hold-up of the column at various boil-up rates and reflux 

1tios were measured by suddenly cutting off the heat and at the same 

lme closing the three-way cock of the trap. The liquid collected in 

1is fashion in the trap was carefully drained and measured as the 

fTDB,mic hold=up of the column. The static hold-up is that portion of 

1e dynamic hold-up which does not drain even after many hours. The 

~atic hold-up was measured by placing 200 cc. of some other material 

1 a clean flask, and refluxing it for some time, before analyzing 

1e binary mixture for the amount of original liquid in it. Figure 

25) shows the effect of boil-up rate on columa hold-up. 



Effect of Electric Timer on the Actual Reflux Ratio: For 

bis experiment an empty packed column with integral vacuum Ja~ket 

ostead ·-:>f plate column was used. The amount of internal reflux and 

ne protuct for each condition of operation was measured by the reflux 

rap ani the product receiver respectively. Benzene was used for 

~is experiment, and although it produced a small amount of internal 

ondenstion because of its low boiling temperature, nevertheless 

nis effect was taken into con.&1.deration. Reflux ratios from 1/15 

D. 15/1, atld fperating cycles from 2 to 120 seconds, with various 

ower inputs to the solenoid were investigated. '?he operating 

u;racteristice of A.C. and D.C. solenoids were compared. For each 

on4ition of operation, the actual reflux ratio was compared to the 

orresponding electric time switch setting. Tb.e boil-up rate was 

:>out 2000 cc./Hr. throughout the test. 

Column Efficiency: The column set-up for the etf.icien~y 

!asurement consisted of 5000 cc. pot, the reflux trap, a section 

r the Oldershaw column (10 or 30-plate),~ the vapor-dividing head, 

1e condenser, and the return line. Benzene-toluene, arid toluene-n

::tane systems were used for this purpose, and the araalymas were 

arrled out as before. At least three samples for each condition 

,re obtained aad all&lyzed. The Y&riables for this test were: the 

)il-up rate and .the reflux ratio. The operation consisted of 

Llowing the column to retlu.x under the desired condition for at 

,ast 45 minu.tes, &114 thea taking samples of' tae top condensate, the 

1por flowing into the oolunll frads the flask., and the liquid flowing · 

1ck to the pot; then the column was operated. for another 10 "'1-nutes 



get the second sample, and the same for the third sample. A 

presentative plot is shown in Figure (25). 

Effect of the Cycle of Intermittent Operation: This test 

nsisted of measuring the effect of cycle of operation on the ef-

ciency of the column. That is, for instance, the efficiency of a 

lumn can be measured at reflux ratio of l/1, but with cycles of 

eration from 2 to 120 seconds. The column set-up and the proce-

re was exactly the same as the previous case, but with various 

me cycles. In one case the compositions at the beginning and at 

.e end of each cycle, as well as the average value were measured. 

nerally not less than 30 minutes were allowed between each sue-

ssive sampling. Some of the representative plots are shown in 

gures .(26,27). 

T.B.P. Distillation: The operation consisted of charging 

.e still pot with exactly 1000 cc. of sample, and attaching it to a 

1-plate Oldershaw column (two sections). The heat input was so 

:gulated as to produce a boil-up rate of about 2200-2500 cc./Rr., 

d then the column was put under the total reflux for not less 

~n 45 minutes. At this time the top temperature was constant, 

d a reflux condition of 12 parts reflux and one part product was 

iposed. The top column temperature was recorded at every 25 cc. 

·oduct take off (2.5% by volume), up to 9oi or even 95% over. 

Le exception to this was, when the top temperature exceeded 

. 0 d. >0 C. Each 5~ cut was collected for density measurement by 

istphal balance. Small samples were taken from every 2.5i cut 

ld at every 5% over for molecular weight measurement. Generally 
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a trial or duplicating run was found to be useful. The last 10~ 

was distilled in an A.S.T.M. type distillation equipment. 

The fractionation equipment was cleaned after each run by 

refluxing in it either toluene or benzene for at least 10 minutes. 

When precise analytical work was to be performed, the column was 

also cleaned with a cleaning solution. 

Discussion of Results 

Heat transfer from any section of the column can be ex

pressed by the following general equation 

(34) 

Q = heat loss from column section - ~~· 

~T = T - Ta= average column temperature - ambient temperature, °C 

Experiment shows that U is some function of tower temperature, 

therefore, 

Q = U(T) ·D T (35) 

Equation (35) for the T.B.P. column is, 

Q = (0.121T - 95.7)(T - Ta) (36) 

For each plate, q = Q/n = heat loss in cal./Hr.-plate 

So q • (.003 T - 2.39)(T - Ta) (36a) 

Equation (36a) can be used to calculate the additional internal 

reflux caused by heat loss from the vacuum jacket. The above equation 

also suggests that the over-all heat transfer coefficient is directly 



related to the column temperature, and at high temperatures the heat 

loss becomes exces·sive. When a large column is operated at very 

nigh temperature, then the top plate may become dry while the bottom 

plate may flood. 

Start-up characteristics of the column is another factor of 

importance in the field of batch fractional distillation. Starting 

with a cold column, at the beginning the product had the highest 

concentration of the more volatile component (benzene), then it de

creased to a minimum and finally the concentration increased with 

time till it reached the steady state conditi,on. The fact that the 

concentration of benzene(benzene-toluene) was highest at the start 

is indeed a logical one. That is, when vapor· rises in a cold column 

it condenses on all surfaces, and therefore it fra.ctionates itself 

as it moves up in the column. 

In other words the efficiency of a column is the highest 

when it is cold, which is due to its high effective surfaees. As 

a colunm approaches its operating temperature the "cold efficiency" 

decreases, therefore the concentration gradient reduces. Finally 

the concentration gradient logarithmically increases with time due 

to increasing reflux and hold-up in the column. This ~henomenon is 

essentially some function of relative volatility of the system, 

number of plates, hold-up, and boil-up rate of the column. It was 

for this fact that in T.B.P. distillation, the column was first 

operated at total reflux till the steady state was attained, and 

the uncertainty due to the start up condition was eliminated. 

Figure (28) shows the start-up characteristic of the column. 
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Pressur~ drop and dynamic hold-up depend on physical pro-

perties of fluid and the boil-up rate. Pressure drop across. the 

column has basically no consequence on T.B.P. distillation, unless 

it is commenced at very low pressure. High hold-up on the other hand 

is rather undesirable, firstly for the large feed requirement and 

secondly for the reduction of efficiency. Static hold-up depends on 

physical properties of liquid only, and its e.ffect on T.B.P. distil-

lation was found to be insignificant. 

The result of comparison of electric reflux timer and the 

measured reflux is rather capricious~ 'lhe D.C. solenoid was free from 

vibrations, and consequently produced better results than the A.C. 

solenoid. The power input and the position of the solenoid must so 

be adjusted as to give a quick and firm motion to the vapor dividing 

valve, and in such a case the reproducibility is very high. 

The plate efficiency of Oldershaw column is very high, and 

almost in all cases is more than 60~. Experimental work shows that 

efficiency increases with the boil-up rate, till flooding condition 

occurs. Column efficiency was measured at total reflux, and by use 

of Fenske (43) equation. 

where; n 

log [C'A/x:s Ip • (XB/xA),] 
log a ave. 

n Iii 

(37) 

is the number of theoretf·eaI plates in the column. 

is the average relative volatility of the system. 

is the ratio of mole fraction of the components in 
distillate. 

is the ratio of mole fraction of the components from 
the first plate 
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One of the neglected factor effecting the efficiency of both 

batch and continuous dietillation is intermittent or cyclic product 

take-off. Since the product take-off of many small industrial and 

almost all of the analytical columns are done intermittently, there

fore it was considered necessary to make some preliminary experi

mental inquiries. It was ascertained that in all the cases examined, 

the intermittent product take-off is more advantageous than the con

tinuous operation and an optimum time cycle exists for each condition. 

Under steady state operation, the concentration gradient in a column 

depends on D/L, (distillate/reflux). The smaller D/L, the larger 

would be the gradient or the composition of the most volalile compon

ent at the top of the column. Therefore, the greatest concentration 

~adient exists at the total reflux. 

Considering a column operating continuously at some D/L 

condition, then the concentration gradient throughout the column 

would remain constant at all times. Now if the column be operated 

intermittently at the same D/L condition as before, then it has to 

perform at total reflux for s.L seconds, and at total take-off for 

s.D seconds (sis a factor, and s~L 4 s.D is the cycle of intermit

tency). During the L period, the concentration gradient increases, 

while it decreases during the D period, and these depend on the 

rate of approach to ste~dy state. Therefore at the end of suf

ficiently long Land D periods, the concentration gradient would 

be the same as in the cases of total reflux or total take-off 

respectively. When a col~ is operating intermittently, then 

at the beginning of the take-off period the concentration of pro-

duct, which is extracted from the enriched top plat~s, is the highest. 



The effective maximum L period is equal to the time required to create 

the maximum concentration gradient in the column. The optimum cycle 

of intermittent operation depends on the column's capacity, rate of 

approach to equilibrium, and reflux ratio. 

T.B.P. distillation was performed most carefully, and in 

order to avoid any possible mistakes, a duplicate run was also made. 

In almost all c•ses the readings were done at every 2.5% cut, al

though1 it is more desirable to record the temperature continuously. 

The duplicate runs showed that the reproducibility is quite high and 

is within the limits of accuracy of measurements. The operation was 

so close to the total reflux, that if at any time during the distil

lation had the column been switched to the total reflux condition, 

the top temperature would not have had altered noticeably. The 

T.B.P. distillation curves of the products of flash vaporization 

operation of each petroleum stock appear on both sides of the feed 

curve, and in the order of their E.F.V. temperature, as is shown in 

the representative Figure (29). Figure (29) indicates that the 

distil lati')n curves of vapor fractions are below, and those of 

liquid fractions are above the feed curve. As the E.F.V. temperature 

increases the T.B.P. distillation curve of the vapor approaches the 

feed curve, while the liquid curve departs from it. When a petroleum 

fraction is distilled into many product cuts, then the total volume 

of product is always more than that of the original feed. This, 

however, did not introduce any difficulty in this work, because 

ultimately the volumes were converted into moles. One of the ma.in 

requirements of T.B.P. distillation is to produce a good and 
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~eprod.ucible separation. A rather simple petroleum fraction (a hydro--···.· .. •,' . . 
rormer product) was used to investigate the sharpness of separation 

~Dd its reproducibility in both liquid and vapor products of E.F.V. 

operation. These preliminary trial runs indicated that the sharp-

ness of separation was essentially the same for both vapor and 

liquid fractions. The T.B,P. distillation curve of this petroleum 

fraction, as is revealed from its chromatographic analysis. (Chapter 

V), indicates a sharp separation, and small overlapping of the 

major components. The investigation also indicated that the degrees 

of separations are fundamentally the same for 60 and 40 plates Older-

shaw columns. 

This hydroformer product has also been used to compare the 

performances of the Oldershaw column and a very commonly used packed 

column (Sarnia MKlI, 15 theoretical plates - 86). The results in-

dicate that the separation obtained by the Oldershaw column is 

superior to that of the Sarnia still (Figure 30). 
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CHAPTER V 

CHROMATOGRAPHY 

Chromatography is a simple analytical method and produces 

·apid and effective separation leading to exact analyses of complex 

1ixtures of high relative volatilities. Small samples (about one 

1icrogram) may be used for both quantitative and qualitative analyses, 

l relatively large quantity can be separated into its components. 

:'he technique can also be used for studying a variety of physico

~hemical phenomena, associated with gas, liquid, and solid phase 

!quilibria. 

Tswett was credited in 1903 for inventing the chroma

;ographic technique, and in 1952 James and Martin (67) introduced 

;he idea of moving gaseous phase, after which several thousand 

,ublications have appeared on the subject. 

In this work, gas chromatography was used as an analytical 

;echnique for equilibrium studies of petroleum fractions. The dis

~ussion of chromatographic theory and the survey of literature have 

,een kept to a minimum in this chapter. The equipment, procedure, 

ind finally the discussion of results of this research are presented 

tiere. 

Theory 

In all the chromatographic techniques, there are two phases, 

a statiomry and a-- moving one. ~s chromatography covers all those 
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:1.ses where the mobile phase is gaseous. The fixed phase may be an 

isorbent (gas-adsorption, or gas-solid chromatography, G.S •. C.), or 

n absorbent liquid held on inert supporting substance (gas - liquid 

artition chromatography, G.L.C.). Gas chromatography can also be 

lassified according to the means of moving the gas phase through the 

ixed phase; such as displacement, elution, and frontal methods. All 

hese three methods can be applied to the gas adsorption, while only 

lution is used with gas-liquid partition chromatography. The elution 

.nalysis, which was used in this study, consists of passing a carrier 

~s (Hydrogen, helium, nitrogen, •) continuously through the 

iystem. A gaseous or liquid sample, which will vaporize in the 

iystem, is introduced into the flowing carrier gas. The carrier gas 

;ransports the sample over the fixed phase, which may either be a 

Liquid or a solid, confined in a suitable container (column). 

Each component of the sample distributes itself in a 

~haracteristic fashion between the moving and the stationary phases, 

is it proceeds through the column. In a favorable condition, the 

3ample components separate and issue from the column in the effluent 

stream at different retention times. The concentration of each 

component may be detected in the effluent stream by any one of the 

many means, such as: automatic PH meter, thermal conductivity cell, 

infra-red gas analyzer, surface-potential detector, hydrogen flame 

detector, or gas density balance. 

Gas chromatography may be most directly compared with 

batch fractionation. In both, the separation depends on repeated 

distribution of each component between the phases. The theoretical 



late cohcept, and the height equiyalent to a theoretical plate has 

lso been adopted in chromatography. Therefore, the over-all separa

ion achieved with a chromatography column depends on the number of 

lates, and the extent of separation per plate. A gas chromatogr~phy 

olurnn may posses many thousand theoretical plates as compared to 

.ess than a hundred plates in a fractionating column. 

A temperature gradient must exist in distillation and the 

:eparations are according to the volatilities of components. The 

:olurnn temperature in chromatography is normally constant, and the 

>rder of separation depends on many factors. The main difference 

>etween the two may be due to the fact that in gas chromatography 

iach component is separated and transported individually by the 

!arrier gas, and overlapping of the components can totally be elirni

J.ated. It is believed that no molecular rearrangement takes place 

Ln gas chromatography, while this is a serious problem in high 

Gemperature distillation. 

Survey of Literature 

There are a number of books (27,79,108,111) on chromatog

raphic technique, which discuss the fundamentals, and give references 

to more than 2000 publications on the subject. 

Attempts have been made to determine vapor-liquid equilibrium 

phase ratios by chromatographic method, by a few investigators (73,91) 

and as yet it is far from practical use. Here, the equilibrium phase 

ratios are measured by detecting the component distribution between 

the stationary (liquid) phase and the moving phase. 



Shively, Morris, and Roberts (137) analyzed a petroleum 

fraction in the range of gasoline for its components. More than 

' 100 components ranging from c3 to c9s were identified, with a maxi-

mum deviation of 3.2 percent, when different analytical techniques 

were applied. The gasoline was first fractionated into seven cuts, 

and then each cut was analyzed independently. 

Apparatus 

Figure (32) shows the chromatographic equipment used in 

this study. It consists of a few standard components, and those 

which were made to fit the specific needs of this work. The carrier 

gas, helium, is supplied from a storage cylinder, and it passes 

through two pressure regulators before it enters the reference thermal 

conductivity cell. The carrier gas then immerges to the sample in-

jection block, passes through the column, and finally it enters the 

measuring thermal conductivity cell. Before the effluent gas escapes 

into the atmosphere, its pressure is regulated by a sensitive needle 

valve, and its flow may accurately be measured as it passes through 

a soap-bubble flow meter. The column is constructed from l/4-inch 

copper tubing (6 or 8 Ft. long) and packed uniformly with 35 to 8o 

mesh chromosorb-red coated with liquid (20% ~~C.P.). The column is 

wound in a spiral coil to fit inside the constant temperature bath. 

A 28-inch long horizontal and well insulated reflux jacke~ consti-

tutes the main part of the bath. A small distillation flask supplies 

saturated vapor to the jacket at one end, and a condense~ at the 

other end condenses and returns the thermostatic liquid to the 
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rlask. A sensitive thermometer is placed in the condenser, and 

irrangement is made for manual control of its pressure. The thermal 

~onductivity cells and injection block are also located in the con

stant temperature jacket. Samples can be injected into the injection 

chamber through a rubber plug by means of a syringe. The detecting 

block holds two (8ooo ohm) thermistors, one in the reference chamber, 

and the other in the measuring chamber. The thermistors are heated 

by a battery, and lose heat mostly by conduction through the carrier 

and effluent gases. The difference in compositions, therefore thermal 

conductivities of the two gas streams unbalances the Wheatstone brige, 

which has these two temperature sensitive thermistors as its compon

ents. This electrical unbalance is automatically recorded by a one 

millivolt Bristol Recorder (Mod.el 560). 

Procedure 

The bath temperature was regulated by boiling a pure liquid 

such as water, toluene, or cyclohexane, under a constant pressure 

(760 mm. Hg.). The flow of the carrier gas was controlled to 50.00 

cc./Min., and its outlet pressure was held constant at 760 mm. Hg. 

The identification of each peak representing each component was made 

by superposition, that is, by addition of a small amount of a pure 

material to the sample and noticing the possible growth of one of 

the peaks representing that component in the mixture. In the case 

of multi-component mixtures, with wide ranges of volatilities, more 

than one temperature was found to be necessary for adequate separa

tions. 



Calibration graphs based on either the peak height or peak 

~rea, depending on the nature of components, were prepared for each 

:::onstituent. A 10 microliter (l{-liter) syringe with O.l l{-liter cali

bration was used. Since the capacity of the column was limited to 

about 30 ~-literof liquid sample, and since some of the multi-compon

ent samples. contained a small percentage of some of their constituents, 

it became necessary to extend the charts to the amounts less than 

0.1 q-liter This was realized by injecting a sample consisting of a 

known mixture of two or more components. For instance, to find the 

peak height corresponding to 0.01 q-liter of benzene, O.l q-liter of 

10~ mixture of benezene and toluene was used. 

The attenuator in all cases was set to produce a large 

peak on the recorder chart. 

Discussion of Results 

At the present time, the chromatographic technique is not 

well enough developed to be conveniently used in the exact analysis 

of complex petroleum fractions; however its future possibilities in 

this direction should not be questioned. 

A petroleum fraction can be fractionated into a few 

narrow cu.ts, and each can be divided into groups of hydrocarbons 

by means of L.S.C. or G.S.C. or both. The results can then be 

analyzed by some suitable G.L.C. 

In Chapter III the use of G.L.C. in connection with 

equilibrium study of petroleum fractions was discussed. Ther,, 

only the relative amounts of some of the components of the mi~tures, 



ther than the exact analysis was the objective. In Chapter VI the 

cessity of G'.L.C. gnalysis of solute oils for possible presence of 

nzene as a cumponerrt; shall be discussed. 

In ApPendix B, the approximate G.L.C. analysis of a hydro-

1rmer-product ~s given. More than 25 components were identified, and 

· those only 15 occurred in measurable quantities, with aroma.tics as 

le prominent pOl"tion. Figure (33) shows the results of T.B.P., and 

Le instantaneous G.L.C. analysis of T.B.P. products. The overlap-

.ng of the componentg, which is one of the disadvantages of T.B.P. is 

ill illustrated here. This subject has already been presented in the 

~evious chapter, and also will be discussed from the view point of K 

Llue calculation in ~apter VII. 

Equilibrium 'flash vaporization of the hydroformer-product 

~s. s~udied in ?Toth of the flow equilibrium equipment~ and the re-

ilts were analyzed by G.L.C. The consistency of the work for the 

romatics part o'f it can be judged from Figure (34), and the complete 

esults are giVl?n in the appendix. 

From this exploratory study it is evident, that this techni-

ue can be developed to such a state of perfection, where exact analyses 

f complex petraleum f'ractions would be possible. The advance of this 

ethod would assist in the equilibrium investigation of petroleum frac-

ions in the following ways: 

1. Reauction in size of sample required • 

"2. Use of small equilibrium stills • 

3. More exact and complete analysis of products o 

4. Better foundation for theoretical work in complex 
systems. 

5. Much faster, easier, and more reproducible • 



technique. 

6. Indication of the true equilibrium operating 
condition of some equilibrium stills. 
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CHAPTER VI 

MOLECULAR WEIGHT AND MOLAL VOLUME 

The molecular weight and molal volume of an oil are physical 

properties that are interrelated by density. These properties can 

only be measured indirectly. 

Cryscopic technique was chosen for measuring molecular 

weishts of petroleum fractions, which are mixtures of molecules of 

diversified sizes and kinds existing in some sort of molecular ag

gregation even at infinite dilution. The measured "apparent average 

molecular weight at infinite dilution obtained by cryscopic method" 

was found to be in close agreement with the calculated average mo

lecular weight. 

In this chapter, the subject is first treated theoretically. 

This is followed by a brief account of the research steps. The 

equipment and the procedure adopted for this study proved to be 

highly dependable, and are given in detail. The final section of 

the chapter is devoted to the discussion of results. A few typical 

graphs are shown to aid the presentation, while the bulk of informa

tion is kept in an appendix. Suggestions are made for characteriz

ing petroleum stocks. The usefulness of some of the techniques pre

sented becomes more evident in the next chapter. 

Theory 

Certain physical properties of liquid solutiona are ini,er

related, without regard to the particular solute or its concentration, 



the value of any one of these properties can be evaluated, witt a 

high degree of accuracy from the observed value of any one of the 

others. These "colligative properties" of solutions include: t're

ezing-point depression associated with the presence of a solute that 

does not enter into solid solution or form a solid compound with the 

solvent, the boiling-point elevation, the vapor pressure depression 

associated with the existance of a relatively nonvolatile solute, 

and the osmatic pressure. 

These properties have been predominently used in simplified 

forms for the purpose of estimating the molecular weight of solute 
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in a dilute solution. Ea.ch of these properties is proportional to 

the molal concentration of the solute in a sufficiently dilute 

solution. The molecular weight of a substance may either be deter

mined in a gaseous state by the use of Avogadro's law, or in a dilute 

solution by detecting any of the mentioned colligative properties. 

The freezing-point depression method has been selected for 

estimating molecular weights, because it has the advantages of ac

curacy and ease of operation over the others. This technique has 

commonly been used for molecular weight determination of petroleum 

oils. 

The freezing-point is that temperature at which the solid 

solvent exist in equilibrium with solution. At freezing-point of 

a liquid (solvent), the solid and liquid phases are in equilibrium, 

and their vapor pressures are equal. The addition of a nonvolatile, 

and non-soluble solute in the solid solvent phase to an equilibrium 

mixture of solid and liquid solvent, would reduce the vapor pressure 



of liquid solvent, and thus disturb the equ~librium. In ord~r to 

restore the equilibrium, a part of solid niust melt to liquid. Thia 

change is accompanied by gain of some heat from the mixture, and 

consequently lowering the equilibrium temperature. 

Figure (35) schematically represents the change of the 

l.12 

vapor pressure of pure liquid-solvent, solid-solvent, and a solution. 

The curves indicated by "liquid-solvent" and "solution" represent 

the vapor pressures of pure solvent and solution with a fixed ~oncen-
I 

tration, respectively. Poi~ts F and F represent the freezing points 

of pure solvent, and the solution. 

Solid solvent 
_,...... __ liquid solvent 

T' T 
f f 

temperature 

Fipre 35 
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From the geometrical consideration, and for very dilute solu-

tion, 
I p - p I d Psolution pf - pf = d Psolid 

' 
f 

. I I dT Tf - Tf dT Tf - Tf 
(38) 

d Psolvent ...., dPsolution 
also, dT • dT (39) 

Pf - p • · d Psolid d Psolvent 
Then I 

Tf - Tf dT dT (40) 

applying the Clapeyron equation to the case of solid, and solvent, 

where 

d Psolid 
dT 

= 6H(s-v)dT 
R Tf2 ' 

d Psolvent 
dT 

= 6H(l-v)dT 
RT 2 

f 

6H(s-:v) _ D H(l-v) is the molal heat of fusion of 

solid solvent, then, 

but 

where: 

Finally: 

Therefore, 

Pf - P ,: DH(s-1) p 

Tf - Tf' R Tf2 

w 
m 

vr w 
-M + -- m 

xis the mole fraction of solute in solution. 

w, m and W, M are the weights and the molecular 
weights of solute and solvent respectively. 

X = kf X 

the freezing point depression 6Tf, the cryscopic 

constant 'kf', and the mole fraction of ·solute can be related as 

(41) 

(42) 

(43) 

(44) 
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follows: 

,6.Tf = kf X (45) 

6Tf = kf wLm 
-w + w/m 
J1I 

which for very dilute solution, reduces to 

: kf wLm 
w 
M 

(46) 

(47) 

The freezing point-depression caused by the addition of a 

small quantity of solute to a solvent is usually detected by a highly 

sensitiYe differential thermometer. The exact procedure which was 

adopted in this investigation will be fully discussed after the pre-

seatation of some of the previous pertinent studies. 

Previous Works on The Measurement of Molecular Weight of 

Petroleum: Iwamoto (66), used a miniature Beckman apparatus in which 

2 or 3 cc. of solvent and 2 to 10 M.Gr. of solute may be used. 

Kubata and Yamane (77), introduced a design which uses a sensitive 

thermocouple instead of a Beckma.n microthermometer. This equipment 

gives good results with 5 M.Gr. of solute in l cc. of solvent. Wilson 

and Wylde, (151), determined molecular weight of petroleum fractions 

by cryoscopic method, using a Beckman equipment and benzene as the 

solvent. For low concwatltrations 6 Tr : 65.50 'wfm is suggested. 

They recommend a 6 Tf of 0.5 to 2 °c, and a better result may be ob

tained if 6 Tf is plotted as the function of observed molecular 

weight and extrapolated to zero. Fitz Simmons and Bahlke (44,45), 



measured molecular weight of some petroleum oils by freezing-point 

depression, Victor Meyer, and Menzies-Wright methods. The results 
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of various method checked well, and they were plotted as the func

tions of A.P.I. gravity, logarithm of viscosity, and A.S.T.M. 

distillation midpoint. Steed (144), determined molecular weight of 

petroleum fractions by freezing-point depression, using nitrobenzene 

as solvent. Cryscopic constant was found to be a linear function of 

the temperature depression, and it was taken at infinite dilution. 

The mean molecular weight of crude oils and their fractions were 

determined by Gullick (53). Pure nitrobenzene dried insitu by 

anhydrous sodium sulphate was used as the solvent.· The mean mole

cular weight is expressed as a function of other physical properties. 

Epperson and Dunlap (38), measured the molecular weights of 

ten fractions of lubricating oils by cryscopic method. The results 

were checked by means of three solvents: benzene, nitrobenzene, and 

ethylbromide. 25 cc. of dry solvent and enough solute to cause O.l 

to 0.2 °c freezing-point depression were mixed in a regular Beckman 

apparatus, and the results were plotted as the function of viscosity. 

The cryscopic equipment which probably gives the most accurate re

sult for petroleum fractions was developed by Adams (1), and then 

improved by Kraus and Vingee (75). This apparatus employs two 

cells, one for pure solvent and the other for solution. The 

temperature differential may be measured by thermopiles. Rall 

and Smith (114,115), used a modified Beck.nan apparatus, with a low 

temperature flow bath. Four types of dry and wet solvent benzene 

were used to investigat& the effect of moisture and impu~ities. 
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Also the results of eleven laboratories for the same oils in benzene 

solution were compared. They concluded that the deviation of results 

from different laboratories is greatest for the highest molecular 

weight oil. A direct relationship is claimed between the slope of 

molecular weight versus concentratio~ plot, and the value of extrap-

olated molecular weight for the-same solvento They ~lso suggest that 

molecular weight of viscous oil be determined by f.irst diluting it 

with the solvent. Lipkins ani Martin (84), and Lipkin and Kurtz 

(83), present equations which relate molecular weight to other 

physical properties with a fair degree of accuracy. 

Apparatus 

Figures (36,37) show the equipment used for measuring the 

freezing-point depression. It consists of a Beckman thermometer 

graduated to 1/100 °c, placed inside of a 125 cc. test tube. The 

thermometer is held in place by a cork stopper, as to be detached 

from the wall of the test tube. A Nichrome stirring wire with 

either a ring or a spiral end is placed in the test tube and around 

the thermometer. This stirrer may be moved up or down without con-

tacting the sides of either the thermometer or the test tube. The 

other end of the Nichrome wire passes through the cork, and is 

attached to a small weight and a flexible Nylon cord. The cord 

passes over two small pulleys, and finally is attached to a wire 

which is loosely connected to one of the holes oT a metal disc. 
-

The disc is mounted on the shaft of a small 32 r.p.m. electric 

motor. The arrangement is such that the rotational motion of the 
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motor may be transformed into the reciprocatine; movement of the 

stirrer. The variously positioned holes in the disc provides a 

convenient means for adjusting the amplitude of the stirring motion. 

The test tube is suspended by a cork ring in a larger test tube, wit! 

a small air space between the two. These:inturn are placed in one 

of the two cylindrical compartments of a small refrigerating 

machine. The temperature of this refrigerator can be closely con

trolled by adjusting the pressure of its evaporator. 

Procedure 

The solvent, a 99 mole percent pure benzene, was further 

purified in an efficient fractionating column, and the middle 

8o percent cut of each batch was collected over calcium carbonate. 

This purified benzene was stored in a dark glass container, and 

was kept closed with a cork stopper. A calibrated 25 cc. pipet 

was kept in benzene by passing it through the cork, and the other 

end was connected to a short rubber tubing. The test tubes were 

cleaned with hot cleaning solution (concentrated H2 S04, K-chromate) 

after each use, then rinsed with distilled water, and finally dried 

in a low temperature oven. 

The operation started for each series of molecular weight 

determinations by setting the Beckman thermometer for the freezing 

point of benezene, and then thoroughly rinsing the thermometer 

and the stirrer with it. 25.00 cc. of solvent benzene was care

fully pipetted in a clean 125 cc. test tube, and then irmne.iately 

the thermometer and the stirrer were inserted in it. These were 
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placed inside the larger test tube, which was maintained within the 

refrigerator. The stirring motor was then started, and the tempera

tures were read to 2/1000 °c with the assistance of a reading lens at 

every 15 second intervals. 25 cc. of benzene sufficiently covers the 

thermometer, and the amplitude of the stirring motion was so adjusted 

to give a full movement inside the liquid. 

A plot of temperature versus time shows cooling and super

cooling of solution, and then a rapid rise of temperature to the 

freezing point. The temperature of the evaporator of the ma.chine 

was kept at 3 °c below the freezing point of be~zene. This small 

temperature differential, plus the arrangement of the test tubes 

gave a desirable slow cooling rate. The small temperature dif

ferential,together with the rather rapid movement of the stirrer, 

eliminated the possibility of excessive supercooling. During the 

cooling period the Beckman thermometer was tapped occasionally, 

and the entire mercury thread of the thermometer was inspected in 

order to detect any possible discontinuity in it. The accepted 

freezing temperature of benzene is the average of three readings 

for each of the three samples used. A maximum deviation of 5/1000 

0c was tolarated. The solutions were prepared by adding exactly 

0.250 cc. of solute into 25.00 cc. of solvent. The accurate trans

fer of solute was made possible by a calibrated 0.25 cc. syringe. 

The test tube containing the solution was covered with a 

cork and was placed in one of the compartments of the refrigerator. 

The solution was removed after total crystallization, and was then 

melted to a temperature of about 2 or 3 °c above the freezing-point 
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if benzene. The thermometer and the stirrer were swiftly placed in 

:his solution, and the freezing-point was measured as before. While 

:he freezing point of one solution was being measured in one of the 

:ompartments of the refrigerator, another solution was being cooled in 

;he other compartment. 

In all the experiments, one solution was investigated for 

iach sample, and a maximum deviation of 5/1000 °c was accepted for 

;hree readings. 

Discussion of Results 

It is quite indubitable that petroleum oils do not possess 

~he characteristics of ideal solutes in solvents. Evidently these 

petroleum solutes have some appreciable vapor pressures at the freez

ing-point of solution, and may crystallize with solvent, and as well 

iS forming some complex molecular groups in solutions. Although 

these non-idealities, particularly the latter one,tend to create 

some discrepancy in the results, nevertheless the ~apparent" mean 

molecular weights have been found to concur with the mean molecular 

weights in sufficiently dilute solutions. An extremely dilute solu

tion gives a very small freezing-point depression, with a. rather 

large percentage of error. 

It has been a common practice for the previous workers to 

measure solvent volumetrically, and weigh the liquid solute in a 

sealed glass capsule. In this study, both the solvent and the 

solute were measured volumetrically with a constant solute to sol

vent ratio of 1~0 , (0.250, 25.00 cc.). This method essentially 
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eliminates the discrepancy due to thernal expansion of solvent, when 

both solvent and solute are measured at the same temperature. More-

over this technique is fast and reproducible, and also provides a 

highly satisfactory method for converting the volume percent T.B.P. 

into the mole percent. 

The cryscopic constant for benzene was calculated from equa-

tion (46 ), by measuring freezing-point depression caused by add-

ing some small quantities of naphthalene to benzene, and it agree~ 

with the values given in literature. 

The method of Rall and Smith (115) was used to correct the 

calculated molecular weight for non-ideality of solution. A plot 

of uncorrected molecular weight 'm"' as the function of concentra-

'w' tion w gives a straight line for each solute. The general equa-

tion of these lines in terms of the extrapolated molecular weight" 

to zero concentration 'm' and the slopes 'S' is: 

(48) 

Where for solvent benzene S: 1.150 m. The substitution of these· 

two in equation (47) would result the following equation, which 

has been used in this work. 

(49) 

This equation can be simplified for the case of 0.250 cc. solute 

and 25.00 cc. benzene to: 

m = 58.838 PsJ 6Tf 

1 + 0.0132 Ps 
(50) 
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Where 'Ps• is density of the solute. 

~ome petroleum fractions contain benzene as.one of the:fr 

constituents, which reduces the value of 'w' while increases 'W'. 

Presence of benzene in solutes were detected and its amounts were 

measured by chromatographic analysis. Suitable corrections were 

then applied to the measured values of 6 Tf. It appears that this 

type of correction has been neglected by the previous investigators. 

The experimental technique, the equipment, as well as the 

validity of the equation,were tested by means of solutes consisting 

of measured quantities of pure organic compounds (2,2,4, tri-methyl 

pentane, n-heptane, n-dodecane, n-~ridecane, and cyclo-hexane). The 

average deviation for two different samples, and a total of six 

determinations was found to be 1.8 percent. 

Equation (50) can be simplified without loss of any ac-

curacy to: 

m = 
1 + 0.0132( Ps>ave. 

(51) 

where: ( Ps>ave. is the density of the petroleum stock, 

and Psis the density of a fraction of it from T.B.P., which its 

molecular weight is 'm'. Therefore for each stock of petroleum, 

equation (51) would be 

or 

m = k/ ( Ps/6Tf) 

6Tr = kf' ( Ps/m) 

(52) 

(53) 

where= kf' is a constant, and varies insignificantly for dif

ferent •tocks. 
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:quation (53), as it will be discussed in the next chapter,is highly 

,ppropriate for transformation of T.B.P. volume percent to the mole 

>ercent. It is also apparent from the above equation that the value 

>f cPs/m) can be measured more readily and accurately than the molec-

1lar weight. It should be recognized at this time that (Pa/m) is 

;he reciprocal of molal volume, which is an important physical 

1uantity. 

Figure (38) shows the plots of (Ps/m) for various homo-

Logue series of hydrocarbons as a function of their nortpal boiling 

points. Curve 'A' is for n-paraffines and to its left is for 

branched paraffines. The curve for normal monoolefines runs parallel 

to 'A' and just to its right, and curve 'B' represents n-acetylenes. 

Normal alkyl benzenes are represented by curve 'C', where to its 

right lies the location of branched alkyl benzene depending on the 

number of branches, and then the other aromatics. I.B.M. 650 

computer was used to find the following equations for the mentioned 

curves, and they are: 

The general equation is: 

(54) 

Where Psis the density at 25 °c in Gr./cc., and TB is the normal 

boiling temperature in °c. 

Thus, for n-parafines, 
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For alkylbenzenes, 

( ~m)x1000=18.1534-11.151o(~B/100)+ 3.4681(TB/100 )2- ~54389,,T:e/100)3 + 

.033139(TB/100)4 (54b) 

for n-monoolefines, 
. T 3 

(~m)Xl000=8.6954-3.2153(TB/lOO)t.6683(TB/100)2.o 7893( B/100):+ 

for n-acetylenes, 

(~/m)XlOOO=B.18ol-2.6752(TB/l00)+.4655(TB/l00)2-.o4398(TB/l00)3+ 

(54c) 

.001664(TB/100)4 (54d) 

for n-alk.ylcyclo hexanes and cyclo pentanes, 

(~/m)X1000=8.::684-2.5065~TB/lOO ).i.. 390l~TB/100 >2-.. 03258(TB/lOO )3 4, 

.00l087(T:8/100 )4 (54e) 

for oil G 

(~/m)Xl000=8.0721-. 7884(TB/100 )- .3794(T:s/1oolt .08603( TB/100 )3 -

.oo4972(TB/100)4 (54f) 

for oil A 

(~/m)x1000=2.6251+.07469(TB/100)-.0039455(TB/100)2-.01304(TB/100)3+ 

(54g) 

Thie type of plot can easily be prepared for a petroleum sock by simply 

measuring (6Tf)'s of its fractions at various T.B.P. temperatures. 

Such a plot not only furnishes the molecular weight information, but 

it can serve as an excellent and yet a facile technique for character-

ization of petroleum stocks over their entire boiling range. The utili-

ty of equations similar to (54) for petroleum stocks will be mentioned 

in the next chapter. 

Figure (39) shows a representative plot, relating together 
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molecular weight, T.B.P. temperature, and the volume percent distil

led-off for one of the petroleum stocks investigated. Similar infor

mation for the other stocks are given in the appendix. 

In Figure (40), (6Tf)B of each of the twenty equal volume 

(5~) T.B.P. cuts are plotted in the step-wise fashion, as the 

function of their T.B.P. temperatures and volume percent. A smooth 

curve is passed through these steps, in a fashion as to balance the 

area on both sides of each one. The (6Tf}'s of very small samples 

taken at various T.B.P. temperatures are also plotted on the same 

curve. From this and the similar graphs for the other stocks (with 

20 or 40 T.B.P. cuts), it becomes quite evident, that the mean 

(6Tf'6 of fractions can be satisfactorily obtained from the cor

responding point 6Tf plot, or· vice-versa. 

Figure ~l) is a representative plot, which clearly indi

cates that6Tf vs. T.B.P. temperature curves for various flash 

vaporization cuts of the same petroleum stock plot into a single 

curve. 

These experimental results coincide well with the theore

tical reasoning, and therefore, evidently for each petroleum stock 

a single plot of6Tf as a function of its T.B.P. temperature would 

be sufficient to characterize it. 
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CHAPTER VII 

EXPERIMENTAL K-VALUES AND DISCUSSION 

In the previous chapters the apparatus and the experimental 

techniques for obtaining the equilibrium vapor and liquid, the T.B.P. 

distillation curves, chromatographic analysis, density, and molecular 

weight of petroleum fractions have been fully discussed. This chapter 

deals with the calculation of vapor-liquid phase distribution coef

ficients (K-values) of petroleum fractions. As has been stated 

earlier, the proper design and operation of any vapor-liquid con

tacting equipment require accurate knowledge of equilibrium phase 

distribution coefficients. The technique presented through this 

investigation is sufficiently easy and realiable to be used for de

sign purposes. 

K-Values of Petroleum Fractions: For convenience in present

ing the method, a hypothetical petroleum mixture composed of six 

components, 1, 2, 3, 4, 5, and 6 with normal boiling points TB1, TB2 , 
·, TB6 are assumed. It is further assumed that this hypotheti-

cal petroleum fraction is batch fractionated in a highly efficient 

column, giving a plateau for each component and with no overlapping. 

The result is converted from the volume percent into mole percent, as 

is shown by the distillation curve in Figure (42). This petroleum 

fraction is equilibrium flash vaporized at some pressure (e.g. l .Atm.), 

and some temperature (e.g. Te• TB3), to produce equilibrium vapor-

, ~() 
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iquid phases with distillation curves as shown in Figure (42). The 

.B.P. distillation curves of these phases indicate that the mole 

ercent of the components are Y1, y2, •. • ·, Y6, and x1, x2, . . . , 
6 in vapor and liquid phases respectively. Then the vapor-liquid 

:quilibrium phase distribution coefficient of each component of the 

1ixture at the condition of equilibrium(Pe : l, Te = TB3) would be, 

Component Normal-B.P. K(Te,Pe) 

l TBl ·K l : Y1/x1 

2 TBg K2 = Y2/x2 

3 TB3 K3 = Y3/x3 = l 

6 TB6 

To this point two ass~mptions have been made, the complete 

absence of ove~-lapping in the distillation analysis, and the small 

number of components present in the petroleum fraction. In ijeneral 

the physical properties of the components existing in most petroleum 

fractions change gradually with boiling temperature. Therefore, for 

example, the physical properties of component 3 in the former example 

is close and in between those of components 2 and 4. Then corise-

quently, K3 is close and in between K2 and K4 • This condition is 

more true when the petroleum mixture is composed of nearly the same 

type of hydrocarbons, and of very close boiling constituents. Fi~e 

(43) shows T.B.P. distillation curves of equilibrium phases, but for a 

less hypothetical condition then the former example~ Here the number 

of constituents are more, and some over-lapping of components exist. 
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herefore, the K-value for a component of the mixture, such as the 

ne which boils between~ and (T + 6T)B would be 

y YT 
(6Yi ) (K~e)T 

(T+6T)B - B = x'% = e Bi x(T+6T)B - 6xi 
(55) 

(I(e) =· (6Yi/6~i) 
Te TB 

6xi/6TB, i 
1 

(56) 

In actual cases the number of these distillation steps or 

;he number of components are so high, that the T.B.P. plots appear 

LB smooth curves. Then equation (56) takes the following form: 

) 
· Pe, Te, x 

at '11:a 
i 

(57) 

ror a constant equilibrium condition (Pe, Te, x), equation (57) 

~an be simplified to, 

(K)T = 
(dy/dTB) at TB (58) 

Bi dx/dTB i 

or 

(K)T • 
dTBLdx ( ) -
dTB/dy -Bi 

slope of T.B.P. distillation curve (temperature-VS~mole percent) 
of liquid phase 

slope of T.B.P. distillation curve of vapor phase in equilibrium 
with liquid at Pe, Te· 
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both slopes are taken at the distillation temperature TB .. 
l. 

(58a) 

The transformation of T.B.P. volume percent into mole per-

cent, can either be done by analytical technique or by incremental 



nethod. In the case of the former technique, the experimental data 

nust be expressed in analytical form, which is often unsatisfactory 
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!nd with reduction of accuracy. The latter method, however, has been 

round to be more reliable, when sufficiently small increments are used. 

Conversion of T.B.P. Volume% to Mole% (with 40 cuts) 

\folume~ T.B.P. 
off Temp. 

_.(1) (2) 

5.0 

7.5 

100 T 
B.l.fo 

Ave. 
Densi

ty 
(3) 

. 
Rio 

Ave. 
M.Wt. 

(4) 

m, 

Moles Mole% 

(5) 

2.5n;m / 1-/ I 

2.{1/m~ 

10~/mi 100 
I 

(6) 

100 

Mole% 
off 

(7) 

0 

Columns (1), (2), (3), and (4) are results of the experimental measure-

ments, and plot of (2) versus (7) gives T.B.P. mole percent distilla-

tion curve. All the T.B.P. readings were done at equal volumetric 

intervals, and the M. wt~were measured with a constant volumetric 

ratio of 1/100, then the following simplification can be applied for 

the conversion of T.B.P. curves. 



The molecular weight of each cut of a petroleum fraction can 

,e calculated from equation (52), 

- I p 
mi - kr ~Tf)i (52a) 

To convert volume quantity to mole quantity, 

(59) 

~~rev is volume percent T.B.P. cut, and ...:!.._, is the same for all - ~ . 

volume fractions. Thus, the general T.B.P. conversion formula is, 

(60) 

So, the previous table can be reduced to the following form: 

Volume% T.B.P. Ave-6_Tf of Mole. Fraction Mole '/o off. 
off Temp. each cut 
(1) (2) (3) (4) (5) 

0 TB 0 
0 

'6Tf)1 ®r)1; L(L::rf>1 

2.5 TBl 100 ~Tf)1 
~ {6Tf)i 

~f)2 (6Tf) 2/ L (!jrf) i 

5.0 1132 100 (bTr_) t + (6Tf) 2 
L ,6Tr>1 

'6Tf)3 ®f)3/L®f>i 
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7.5 TB 100 ~f)i+(.6Tf)2+~Tf)3 
3 2 ~Tf)i 



• 

100 

• 
• 

• • 
~Tf)l.fO ~Tf) 40/'Z~Tr) i 

TB 100 

!~r>i 
l 

The advantages of this technique are, 

1. No need for density measurement of each cut 

2. No need for calculation of average molecular weight 
of each cut 

3. Ease of computation 

4. ~f)1, can be obtained from the general equation 
or the plot (Chapter V) with a minimum of experi
mentation. 

The T.B.P. distillation curves on the mole percent basis for 

both vapor and liquid equilibrium phases were plotted on large graph 

papers for obtaining the proper slopes. 

K-Value Calculation From T.B.P. Temperatures vs. Volume Percent Curves: 

(61) 

Where: 6.V1 is the volume of the 1th component in the vapor phase; 

A_, m1 are the respective density and molecular weight 

6,L1 is the volume of the 1th component in the liquid phase; 

p'1, m' 1 are the respective density and molecular weight 



Equation (61) can be rearranged to, 

(62) 

where: t6,v i is the volume fraction of the ith component in the 
vapor phase; 

P, m are the average properties of that phase 

61. is the volume fraction of the ith component in the 
,l. 

liquid phase; 

Pl I 

, m are the average properties of that phase 

But m\ = mt,(Ji =pi ; and using equation (52a), then 

(63) 

waere:~Tr,6Tr' are the freezing point depression of the equili-

brium vapor and liquid phases respectively, and are pro-

portiooa.l to the corresponding molal volumes. 

When the number of components increases to infinity, then equation 

(64) 

'Illus 

(65) 

Where:dTB/av, d'D:e/al are the slopes of the volumetric T.B.P. 

curves of equilibrium vapor and liquid phases respectively. 
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Figures (62,63,64) show the comparison between the K-value 

curves calculated by equation (65), and the previous method. Some of 

the advantages of this method are: 



138 

1. No need for measurement of density and molecular weight 
of each cut. 

2. F.ase of calculation 

3. Temperature-volume recorder chart can be used directly. 

other Techniques: F.d.mister(34) suggests that appropriate 

horizontal lines be drawn on the graph of molar T.B.P. curves o~ 

equilibrium phases, and the ratio of the corresponding mole percent 

of phases be taken as the average K-value for that cut. If the 

T.B.P. curves consist of plateaux, then the horizontal should be 

placed about halfway between each two succeeding oRes. Evidently, 

the ~thod presents a sound technique for the cases where T.B!.P~ 

curves have plateaux. For smooth T.B.P. curves, this method is· 

basically the same as those presented here, and at the limit they 

are identical. Figure (63) shows the K-values obtained by this 

method with small temperature increments of 2.5 °c, and those cfu-

tained by the use of equation (58). 

White and Brown (152) calculated K-values for pentanes, 

hexanes, heptanes, and a few higher boiling cuts, with an average 

boiling range of 50 OF. As it has been stated in Chapter II, the 

method failed in the case of light hydrocarbons - furnace oil m1x-

ture, while it produced consistent results for light naphtha. 

Pentanes, hexanes, and heptanes IJl84ie up the major portion of the 

feed, and the heavier hydrocarbons constituted the rest. The 

results were presented as a straight line, with log Kand average 

boiling temperature as the coordinates. The K-values calculated 

from White and Brown's experimental data by the use of equation (5$) 

arecompared with their K-values in figure (47). Evidently 



White and Brown's technique has the following dilladvantagei:,: 1 

1 .. More experimental and c•lculational work i~ required 

2. It is highly dependent on the accurQcy of Molecular 

weight and dens.i ty measurements 

3. The technique may f'ail when one cut or mortt coataias 

a large percent of' the total quantity 

4. The K-values are the average values f'or the cuts, 

rather than the instaataaeous quantities; and 

therefore are less th~oreticaily sound 

5. A very limited number of' experimental K-values can 

be obtained 

6. The presentation of results in graphical f'orm, be

cause of' the above limitations and the spread of' 

points, is quite difficult. 
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Measurement of Slopes: In general the errors of differentia

tion of a functioa f'rom tabulation of experimental or calculated 

values, are exaggerated, whereas integration improves them. Dif

ferentiation is concerned with a limit process carried out on the 

quantity [t(T + 6.T)-f(T)] /6T, and as the magnitude of D. T gets 

s•ller, the uncertain.ty in the result gets greater. Experimental 

data may be differentiated analytically, numerically or sraphically, 

and some of' the techniques are briefly iadica,~ here. 

The experimntal T~B.P. data can be represented by an 

equation (polynominal) fit to the data points by a suitable -computer, 

and then differentiated. In general the curve fitting of' T.B.P •. data 

is a complex operation, and yet this method my not have any added 
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accuracy. 

'rhe differentiation by numerical method (113,153) is often 

very time consuming, and not desirable for this type of work. 

The graphical differentiation of this type of experimental 

data is usually more satisfactory, if the applied technique is suf-

ficiently sound. Evans (39), and Lipka (82') describe mechanical 

devices for performing differentiation with a good degree of accuracy. 

Evans' seems to be more exact, while Lipka's gives a continuous curve. 

One of the reliable graphical method is by connecting the 

equal-distance near-by points P1, P2 • • • ,tc. on both sides of 

61 x,62 X 
(x, T) and as P approaches T, the slopes~ 62 T • • •etc.may 

then be plotted as a function of ~T. The value of ~ hT +o Qbtained 

from ~; = f~) is equal to (~)'1'. This method is very reliable 

but rather time consuming. Figure (64) shows the close comparison 

between the K-values calculated by this technique and the following 

one. 

Graphical Differentiation: A small flat mirror was mounted 
I 

on wood in such a way that it can be placed on the graph paper with 

its surface precisely perpendicular to the paper and extend right 

down to it (Figure 44). The instrument was set so as to intersect 

the curve at the point at which the slope was desired. The mirror 

was then rotated around the point until there appeared no discon-

tinuity in the direction between the curve and its immage in the 

mirror. At this condition the mirror is perpendicular to the curve 

at the point. The slopes were then determined directly from the 

intersection of the plane of mirror with the grid lines of the graph 
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paper. The slope of each point was checked from both sides of the 

curve, by just turning the face of the mirror 18o degrees. In this 

0 0 fashion slopes of T.B.P. curves were measured at every 5 or 10 C 

intervals. With great care and experience these settings were made 

with an accuracy higher than that to which the curves could be drawn. 

Trial tests of this technique with relatively large circles indicated 

that with this simple device an experienced operator can measure 

slopes with deviation of about two parts per one hundred. Through-

out the work this technique has been applied for differentiating of 

T.B.P. curves. 

Mirror 
~Curve 

Curve 

Figure 44. Mirror Differentiator 
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dY, ·dx dv dl 
The values of ~ -dT or dT , dT , so obtained were plotted 

cl~ :B B · B 
I as functions of their corresponding T.B.P. distillation temperature 

(TB). In the case of all normal petroleum fractions, the plot grad

ually increases to a maximum and then decreases. The curves ~ = 
dTB 

f(TB),:. :. f 1 (T:e) of vapor and liquid phases in equilibrium with 
B 

each other intersect at only one point, and that temperature should 

be the same as the equilibrium temperature. These curves can serve 

to smooth the values of measured T.B.P. slopes, and therefore improve 

the consistency of K-values. 

Presentation of K-values: With a few exceptions, equations 

(58) or (65) or both were used for calculation of K-values through-

out this work. Because of the existance of many accumulated experi-

mental and calculational discrepancies, the results are somewhat 

scattered. Therefore, the smoothing of data is desirable. More-

over, the result would be more useful, if correlated in the form of 

equations as well as charts. Equations serve as a satisfactory means 

for interpolation and extrapolation of the experimental data, which 

is often necessary. 

Although the empirical presentation of experimental informa-

tion is often unreliable, a semi-empirical correlation is most suit-

able for the present problem of petroleum fractions. The problem is 

to present the K-values of each component as a function of equilibrium 

temperature, and the normal boiling temperature (here equilibrium 

pressure is not a factor, since all measurements were made at atmos-

pheric pressure). 

In order to achieve the above objective, it is necessary to 
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start from the basic equations. For low pressures and ideal solutions, 

the K-value of each component can be found as the ratio of its vapor 

pressure pi and the equilibrium pressure P. Therefore, 

(dPi 
dT 

From the in~egration of the Clausius-Clapeyron equation 
·6H:1, = TVi), the vapor pressure of any substance can be related to 

the saturation temperature as follows: 

log Pi : Ai_ Bi 
T 

( 67) 

Where A and Bare constants, aad Tis the absolute saturation temper-

ature. It is evident from the assumptions made in deducting the 

above equation from the Clausius-Clapeyron equation, that (67) would 

be limited to short temperature intervals at low pressures. 

Contrary to expectations, the experimental data show that 

the equation is applicable to a much wider range of pressure and 

temperature. Equation (67) can better be adapted to the real condi-

tions as follows: 

1 __ Ai Bi 
og Pi - T-i---+_,,C_ (·68) 

Where C is a constant with small variations for all hydr o carbons. 

By combining equations (66) and (67), 
bi 
:re 

Ki= ai 10 (69: 

Equation (69) suggests, that the vapor-liquid equilibrium constant 

of each component of a mixture can be expressed by log Kasa ,function 
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of Te· 

Also, an attempt should be made for correlating Ai and Bi 

e.s some functions of normal boiling temperature,TBi,of all the 

components of the mixture. Figures (45,46) show the plot of Ai and 

Bi of equation (68) as functions of TB for various groups of hydro

carbons. These values are taken from the A.P.I. tables (5). As can 

be judged f'rom t~e graphs, B can be successfully presented as a 

direct function of the nornBl boiling temperature. A can be appr~i

mately expressed as a direct function of the normal boiling point up 

to moderate temperature ranges, or in form of some exponential tune-

tion for nigher temperature ranges. 

Thus 

or 

B =Bo+ 81TB 

A= Ao+ SA'fB 

A : Ao -t- Ai TB + ~TB 2 -t- • • • 

(70) 

(7:1) 

(-72) 

Combining equations (66),- (67),(70), and (71), the following general 

equation would result. 
B + SBTB 

1 (Ac,+ SATB - o ) 
K • (p) 10 Te (73) 

Usina equation (73) for a more general case, then 

( 2 Bo + SBfB) 
1 Ao + ~ TB -1- ~TB + • 0 • -

K • (p) 10 Te_ (74) 

_Equation (74) c•n J>e written i~ a mo:.e useful form as follow, 

log(PK) = Ac, + SATJ3 • ~ ..:_ 5B TB (7,) ~ 
'Pe f~ 

For a constant e,uilibrium teniperature Te, equation (75) can be 

simplitied to, 
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(76) 

or (76) 

Equation (77) suggests that, for any fixed condition of equilibrium. 

logKof all the components of a mixture can be expressed as a direct 

function of the normal boiling temperature. For computer utility 

equation (77) can be expressed as follGWs: 

• • (77a) 

From equation (75a), the K-value of any component of the mixture 

represented by its normal boiling temperature T:a, can be expressed 
i 

as a function of the absolute equilibrium temperat';ll"e Te. Thus, 

log(PK)i (75a) 

or 

(78) 

where C's are constants. 

Equations (77) and (78) were satisfactorily used for the 

analysis and the presentation of the experimental results. Figures 

(48) through (71) show the physical properties curve, the equili-

brium T.B.P. curves, and the K-values plots for some of the petro-

leum fractions tested in this work. 

Experimental K-Values: The first set of curves belong to 

oil A, which its physical properties are presented by appropriate 

plots. The recirculating still was used to prepare the equilibrium 
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phases at atmospheric pressure in this case. 

The K-values calculated from the experimental results (by 

the use of equation 58), are presented as plots of lo©Kversus T.B.P. 

temperature for each equilibrium temperature Te• The plots indicate 

that the experimental results can well be expressed by equation (77). 

The graphs also show that the deviations of the points over the 

0 8o 0 T.B.P. temperature range of 70 to l Care very meager. A small 

equilibrium temperature change of 2.5 °c has caused a definite 

variation in K-values. This clearly indicates that for such a low 

boiling petroleum fraction, the presented method for K-values calcu-

lation is very sensitive to small equilibrium temperature variations. 

Log K for varibus T.B.P. temperatures are plotted as the 

functions of.!.... in figure (53). This plot, shows a good agreement 
Te 

between the experimental data and equation (78). Finally the 

extrapolated and the interpolated values of log K as the functions 

of T.B.P. temperature are given in figure (54). These curves are 

obtained by cross plotting the experimental results (equations 

77 and 78), and are useful for engineering applications. 

The experimental K-values can best be expressed by the 

following equations (Figures 49, 50, 51, 52): 

Oil A, Pe= l Atm. 
-2 

qK: -1.038 x 10 TB+ 1.383 Te : 134.o oc 
-2 

log K • -l.038 X 10 'l1J3 + l.463 Te• 141.2 OC 
-2 

OC log K = -1.038 X 10 Tj3 + 1.150 Te = 144.5 
-2 

147.0 OC log K = -1.038 x 10 TB+ 1.517 ; Te = 
where TB is the T.B.P. temperature in °c. 
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The slopes of these lines changed insignificantly and capri-
-2 -2 

ciously (1.045 x 10 to 1.032 x 10) over the entire range of Te; there-

fore,the average value was selected as a better representative quan-

tity. Evidently a definite trend in variation of these slopes with 

Te should be expected over a much wider range of equilibrium tempera-

ture. 

Oil B, which is a higher boiling cut than Oil A, was vapor-

ized in the Othmer equilibrium still. The physical properties of 

this oilarealso presented in graphical form (Figure 55). Figures 

(56,57,58) show plots of log K vs. T.B.P. temperature for this oil. 

The curves indicate that the experimental data well follow the 

trend of equation (77) over the entire boiling range. Figure (59) 

shows plot of log K as the function of -1:...., which is the graphical 
~ 

representation of equation (78). Each line on the graph indicates 

a material boiling at a constant T.B.P. temperature. These lines 

have negative slopes, which increase with T.B.P. temperature. The 

experimental K-value equations for this oil are, 

Oil B, Pe= 1 Atm. 
-2 oc log K = -1.693 X 10 TB+ 2.660 Te = 162.0 
-2 

log K: -1.625 X 10 TB~ 2.608 Te = 165.0 Oc 
-2 

log K = -1.465 X 10 TB~ 2.488 Te - 174.5 OC -
Both slope and intercept decrease with increase in Te, and they 

can be related to~ as should be suspected from equation (75a). 
~ 

Oil B1, is a blend of Oil B, and has essentially the same 

physical properties. The experimental K-values of this oil are 

expressed as before. The results are rather scattered, and do not 



coincide with those of Oil B (Figures 60,61). 

Oil B1 , Pe = l Atm. 
-2 

log K = -o.88o x 10 TB+ 1.425 
-2 

log K = -0.560 x 10 TB~ 0.783 

Te = 169.5 °c 

Te= 176.0 °c 

These equations for no obvious experimental reasons have dubious 

values of slopes and intercepts. The data as it may be observed 

from the plots, are uniformly scattered throughout the boiling 

range. 
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Figures (39 and 62 through 71) show the physical properties . 
and K-value curves for heavy boiling kerosenes (oils G and F), and 

their blend (oil F-G, 50/50 by volume). The thermostatic flow 

equipment was used to flash vaporize these oils at atmospheric 

pressure. Here the various methods of obtaining slopes of T.B.P. 

curves, therefore K-values such as ddyT I ddxT ' r iTY/ ~ ~ J 
B B [ B B ~TB : 2.51 

. (dv / dl ) ( . , / ) are compared w1 th dTB' cITi .6. Tf .6. Tf p • 

The results indicate that the accuracy of the techniques are basi

cally the same, with<!; / !~ )(.6.T:r /.6.Tf\ method being favored 
B B 

for its greater ease of application and higher consistency. 

Oils G and F have basically the same characteristics, and 

their vapor-liquid equilibrium constants differ but little from each 

other. The K-values of the blend, as it should be expected, are 

in between those of oils G and F. The scattering of data is notice-

ably greater for these high boiling oils, as compared to the previous 

fractions. The results indicate that equations (77,78) also apply 

to these oils over their entire large boiling ranges. Contrary to 
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the f~ll q•••, a difference of 3.5 °c in Te produced no noticeable 

changes in T.B.P. curves of equilibrium phases, therefore the K-

values. 

The experimental K-values of these oils can be expressed by 

the following equations: 

Oil G, l Atm. 
-2 

log K = -1.554 X 10 TB+ 3.230 
-2· 

log K • -1.500 X 10 '1',s + 3.300 
-2 

log K = -1.395 x 10 TB + 3.253 

Oil F, 1 Atm. 
-2 

log K = -1.550 x 10 TB + 3.340 

Oil F-G, 1 Atm. 
-2 

log K = -1.563 x 10 ~ + 3.250 
-2 . 

log K = -1.610 x 10 TB + 3 .640 

Te = 218.o oC 

Te• 234.0 °c 

Te = 244.o 0 c 

Te• 218.o 0c 

Te = 234.o 0 c 

In the cases investigated, the T.B.P. boiling temperatures 

correspo~;ng to K = l are less than their respectiv, equilibrium 

temperatures. These temperature differences are higher (about 

10 °c) for high boiling oils, and are lower (about l 0c) for low 

boiling oils. 

K-values of a hydroformer product (oil D) were obtained by 

the use of both flow equilibrium apparatus. 'fh.e equilibrium phases 

were directly analyzed by G.L.c., and the results are presented in 

Chapter V and Appendix B. 

K-values obtained by the methods of this chapter, although 

in reality somewhat differ from the original concept, but have 

greater engineering applications, as will be shown in the next c~apter 
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For most engineering calculations, the temperature ranges 

involved are not greater than those which are showa here; however 

for higher temperature ranges, equations such as (77a) instead of 

(77) may become useful. 

The validity of these experimental K-values can be best 

examined by the methods of Chapter VIII, however they are compared 

with some of the values given in literature (88,89,138). As it is 

shown in the next chapter, the measured K-values are consistant. 

Figure (72) shows the good agreement between the experimental 

K-values of oil A, and those of Smith and Smith (138), and Maxwell 

and Bonnell (88,89). The characterization factor of oil A is 12, ana 

the literatu~e values are also for the oils of that nature. 

The Smith and Smith's K-values are taken from their K-value 

plot for paraffines. Maxwell and Bonnell present charts of vapor 

pressure (for characterization factor of 12), and corr~ction charts 

for various characterization factors. Here the K-values were calcu

lated as the ratios of vapor to system pressures. 

Figures (73,74) compare the experi~enta.l K-values of non

paraffinic oils and the values calculated from the vapor pressure 

charts. The disagreement is evidently caused by insufficient 

characterization factor corrections, and also by taking the K

value as the ratio of partial to the system pressures. 

The disagreements between the evaluated and the literature 

K~values for some oils indicate the existance of a great need for 

experimentation. These experimental K-values can subsequently be 

generalized into charts and equations. 
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Suggested Empirical F,quations for Slopes of T.B.P. Curves: 

From equation (77), it becomes quite evident, that the slope of the 

T.B.P. curve must be a continuous function of normal boiling tempera-

ture. Therefore, 

log (77b) 

Thus 

(79) 

and 

(Bo) 

Similar equations can also be written for~, and d~---• If 
dTB -dTB 

lp(~) can be determined, then appropriate •mpirical equations 

can be deduc ed . for 'f. B. P. curves, by simply integrating the above 

equations. With the exception of hydroformer product,. the other 

petroleum fractions examined produced a continuous T.B.P. and 

slope- curves. Evidences indicate that for these petroleum frac-

tions the slopes of T.B.P. curves as functions of boiling tempera-

ture are Gaussian distributions. Therefore in such cases, 

2l.... • b(C10 - TB) lf/(TB) • 1 e [-(TB-µ)%a.2] 
dTB crJPfr 

(81) 

and 

Where a 's and f-L' s are parameters. 

In order to prove the validity of conditions of equations (~l) and 



{82), they must be examined with the available experimental data. 

Therefore, 

{83) 

By'ass~ming tae coatimuity of equation {83) amd differentiating it 
,. 

with res-pect to T.B.P. temperature,, thetl: 

~ 
d( lll '0.'1)._) = 

dTB 

Similarly 

ln dx I 

d( -) 11-T dTB ,. ... a 
----=- = -----dTB (1.::'. 

dy 
d ( ln a'l'j3) 

Equations (84) and (85) suggest, that plots of 

dx 
d ( ln ""'ifii) 

d~ 
as fuactiol'lS of TB, should be straight lines. 

(84) 

(85) 

and 

In the 

cases where the above condition is true, then the limitations of 

equations (81) and (82) are satisfied. 

The measured values of log!; were plotted versus the 
B 

correspomding 'f.B.P. temperature, and then differentiated to 

obtaia d(log ~) • Figures {77 and 78) show representative plots 

dTB 

4(1og ~) 

lt1l 

of dTB and as straight line functions of T.B.P. 
dTB 

temperature. Because of the repeated differentiation and plotting 1 

the points are rather scattered, but however they satisfy the condi-

tion of equations (84) and {85). 



The liaes for each equilibrium vapor and liquid are parallel 

r nearly so. 
I 

Tltis means that the values of a aad a are equal. 

ntegratiag equation (84), the following equatiol!l. would r~sult. 

~ f-1-TB 
T 2 

B +y 1n d13 = az. iaz. (86) 

,r 

( f:;_ '!!B T 2 
dy B + y) 

= e a2 - 2a2 dTB 
(86a) 

~us 2 t.. 2 [ (n _ TB + y )-( µ·.i:B _ T.B + ')0 
a. 2 2a2 7 2<£, 1 

e (87) 

[a order to compare equations ( 87) and (77), a 2 must be equal to 

d? , which has already been proved to be so. This may mot be the 

By 

~ase when larger T.B.P. temperature ranges are iavolved (equation 75). 

Also, the value of ~ is equivalent to c1 of equation (77). 

It is evident that equations similar to {81) and (82) can be 

~sed to express the slopes of most T.B.P. curves, al!ld can be utilize~ 

to improve the measured values. 

Since equations (84) and (85) for most petroleum oils are 

parallel lines, therefore it is expected that the slopes of these 

lines and their average boiling points constitute useful parameters 

for geaeralized charts. However, because of insufficient experimental 

data, the above objective is not included in this work. 
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J..VI 

CHAPTER VIII 

APPLICATIONS OF INTEGRAL TECHNIQUE 

».a validity o:f the experimerrta·l va:p'or--liquid phase distribu-

tion coefficients presented in the previous part are ascertained in 

this chapter. Techniques for some of the more common vaporization 

calculations are also given. These computations indicate that the 

K-values so obtained for the continuums are suitable for integral 

vaporization calculations, which otherwise can not be satisfactorily 

performed by some conventional methods. Integral calculations for 

more complicated processes, such as fractionation>can be performed 

with the same relative degrees of ease and accuracy. The latter 

were not inc~uded in this work. 

Calculation of EquilibriumCumposition: As b~:f'ore, for any 

component of a mixture boiling at TBi 

By differentiating the above equation 

dyi = Ki dxi + Xi d.Ki (88) 

But,as it has been stated before, Ki= Ki(Pe,Te,x) which is more 

conveniently given by Ki= Ki(Pe,Te,Ko). Thus 

(89) 



l.OQ 

At low pressures and at azzy- constant equilibrium condition, equationg 

(88) and (89) may be replaced by equation (90) 

(90) 

For continuum 

(91) 

Since both Kandy are functions of normal boiling temperature, then 

plot of 1/K(~) versus y('rJ) can be used to obtain ~.JS.P. curve for 

equilibrium liquid. :Equation similar to (91) can be written for 

equilibrium vapor. A representative figure {79) shows the close 

comparison between the T.B.P. curve calculated by the use of 

equation (91) and the experimental curve 

T.B.P. curves of equilibrium phases on the convenient volu-

metric basis, and the phase ratio,can be calculated at any equili-

brium cowlition as follows: 

f:::. Vi 

Ki : 6ii 
L 

where ~i is the volume fraction of the ith component in the feed. 

fi 
So (92a) 

For continuum 

V: I 1 df (93) 



J.O~ 

Similarly 

~e above equations should be integrated between the limits of zero 

and 100 instead of zero and one, if the T.B.P. curve of feed is 

expressed in volume percent rather than volume fraction. 

For each condition of equilibrium, f and Kare continuous 

functions of T.B.P. temperature, and (6.T/ / 6.Tr)p is a constant. 

In order to solve equation (93) for V, the volume fraction of vapor 

phase, f should be plotted as the function of 1/ Ll+l/K(6Tr'/6Tf):pi]. 

The total area under the curve is obviously equal to V, and the area 

above it is the result of equation (94). 

The volumetric T.B.P. curves of equilibrium phases can be 

calculated from the following equations, 

l f 
V - df 

1 + (1/t/..6 Tr' I 6 Tr)~~ 

Similarly 

df I[ 1 

l+K(6Tf/ f::,Tf' >1t'y .io 

df. 

1 +(1/~6.Tr' I 6 Tr)pI/, 

(95) 

df 

1 + K(6 Tf/ 6 Tf' )PV/L 

(96) 

The plot of equation (93) is also used here, and v and 1 

functions (T.B.P. plots of equilibrium phases) are calculated by 

addition of the successive increments. Figure{Bo) is a representative 

application of the technique, and it shows the close agreement between 



190 

the experimental value of L/V and T.B.P. curves, and those calculated 

from equations (93,94,95,96). 

Evidently a minimum of calculational effort and experimental 

data (T.B.P. curve of feed and K-values) are required to solve the 

equilibrium vaporization problem. Since (/::,Tf//::,Tf)p changes but 

very little with equilibrium temperature Te, therefore the need 

for trial and error solution of the above equations has basically 

been eliminated. The upper limit of (/::,Tf'/1::,Tf)p is one and its 

lower limit for most petroleum oils is about o •. 8, and it cm be 

conveniently expressed as a function of Te• 

F.dmister (31) has proposed methods whereby equilibrium 

flash vaporization, fractional distillation, bubble and dew point 

calculations can be performed graphically and with a minimum of 

labor. Some of these techniques are-presented in the following 

pages. 

The integral flash vaporization calculation for a continuum 

is essentially the same as that for a finite mixture. It involves 
y 

the finding of the mole ratio of equilibrium phases x by trial 

and error. The following vaporization equations can be used for 

this purpose • 

• 



ft fz 
dy. = 

0 0 

>r 

f.· fz 
. 0 dx""' 0 

dz 
1 + KY 

X 

* (97) 

(9S) 

l'he procedure simply consists of assuming a I ratio, then plotting 
X 

1 versus the mole fraction of. feed (equation 97). The area 

+l 
KY 

mder the curve is obviously equivalent to the moles of vapor Y, 

J.';IJ. 

~hile the area above the ctirve is equal to the moles of equilibrium 

liquid x. The calculated! should then be compared with the assumed 
y 

value, and the calculation must be repeated until a satisfactory 

check is obtained. 

Assuming that the error caused from the measurement of the 

* Equations (97) and (98) appear in the original paper (31) by the 
following nomenclature (This nomenclature is not the same as that of 
this thesis), 

v/f = 1 
l+ _1_ 

KV 

(97*) 1 = . 1 
' f ' KV L+y;-

(98*) 

where: Land V are moles of liquid and vapor mixtures; also v, 1, and 
fare moles of infinitesimal increments of vapor, liquid, and feed 
respectively. 



area under the curve and piotting is l:::,Y, then the calculated i would 

be equal to y + 6 y. Therefore if X is very small relative to Y 
x-6.y 

or vice-versa, then the calculational error would be highly magnified. 

The accuracy of this method is obviously highest when X and Y are 

very close, and it decreases when the ratio is either very low or 

very high. Evidently only a few points are needed to draw a smooth 

curve, although greater accuracies can be obtained with more points. 

T.B.P. distillation curves on mole percent basis for both 

equilibrium phases can easily be obtained by solving the above 

equation for successive increments. Figure (81) gives a comparison 

between the calculated and the experimental T.B.P. distillation 

curves. The comparison as it should be expected is within the 

limits of the expectancy, and the usual uncertainty in the first 

and the last few percent are also indicated there. 

Bubble and dew point calculations for continuums are 

principally the same as for finite mixtures, and the above discus-

sion applies to these cases as well. The integral relationship for 

bubble point calculation of continuum is 

(99) 

Values of K(T:B) at an assumed Te for a few T.B.P. points are 

plotted as a function of z ( T:a), and a smooth curve is then drawn 

through these points. In order to satisfy the condition of equa-

tion (99), the assumed Te must be such as to produce an area under 

the curve equal to unity. 

The integral relationship for dew point calculation is 



dz : l 
IC 

(100) 

Values of KtTJ3~ at an assumed Te for several points on the molar 

T.B.P. distillation curve are plotted versus z (TB), and the 

area under the curve as before must be equal to unity. 

T.B.P. curves for bubble-point vapor and dew-point 

liquid can be determined by solving equations (99) and (100) at 

their respective equilibrium temperatures by successive increments. 



l 
I 
I -------t- . 

I 
I 
I 

20 

Experimental T.B.P. 

o Equation (91) 

40 6o 80 lOO 
Mole per~ent disttlled 

Figure 79 - Typical ~.Application o-f E4\ia~ion · (91'), - .. Oil A,, .Te • .. 3r41. 2 °c 



liquid 
------ ---- -Phase---- -
~ 

t 
~ 
~ 

20 40 

0 

0 

vapor 
phase 

60 

-· .... r . 
I 

Experimental T.B.P. 
V'{o: 46.8 

o Equation {95) 
v'I, = 48.1 

8o 

volume percent distilled 

195 

100 

rigure 8o - Typical Application of Equation {95) - Oil A, Te= 141.2 °c 



I 

I 

vapor 
liquid phase phase 

,-
0 

/ 

20 
Mole percent distilled 

Experi~enta.l T.B.P. 

F.quation (97) 

100 

Figure 81 - Typical Application of Equation.(97)·- Oil G - Te= 234 °c 



CHAPTER IX 

SUMMARY AND SUGGESTIONS FOR FUTURE STUDIES 

The main objective of this investigation was the develop-

ment of apparatus and techniques for evaluation of vapor-liquid 

equilibrium phase distribution coefficients (K-values) of petroleum 

fractions. These coefficients were to be presented in a useful and 

reliable form, and to be used in calculation of equilibrium vaporiza

tion process by some integral techniques. In order to achieve the 

goal, '!Dllny related branches were studied independently, and they 

were finally consolidated in Chapters VII and VIII. To avoid 

duplications, the extensive discussions which are incorporated in 

Chapters III through VIII, are not reproduced here. The follow-

ing are the summary of the main contributions of this investiga

tion. 

1. Survey of previous works in the fields of theory of 

equilibrium, vapor-liquid equili~rium apparatus, T.B.P. 

distillation, chromatography, molecular weight measurement 

of petroleum, and integral tec~nique. 

2. Modification and complete evaluation of the Othmer 

still, and a thermostatic flow equilibrium equipment. 

3. Design and evaluation of a new flow equilibrium apparatus. 

4. Suggestion of reliable techniques, used for ascertaining 

the condition of equilibrium in connection with the operation 



of the apparatus. 

5. Evaluation of the Oldershaw column, introduction 

of intermittent and transient distillation, and formula

tion of a sound technique for T.B.P. distillation. 

6. Use of chromatography for analysis of simple petroleum 

fractions, and its application in conjunction with molecu

lar weight measuremen~ and equilibrium apparatus operation. 

7. Introduction of some improved techniques for measure

ment and presentation of molecular weight _of petroleum 

fraction. 

8. Suggestion and comparison of various techniques for 

K-value derivation from experimental flash data and 

analytical assays. 

9. Development of equations for K-values of petroleum 

oils, and T.B.P. curves. 

10. Presentation of an integral formula (based on volumetric 

T.B.P. c1:&ta), and application of the existing one for test

ing the experimental K-values, and equilibrium vaporization 

process. 

Suggestions for Future Investigations 

There are many prbblems encountered in any investigation. 

198 

The researcher must set an over all objective and not deviate too 

far from it. However this is often difficult, because many of these 

relevant problems are both important and interesting. Since the 

objective must be achieved under some limited conditions, therefore 



these problems must be merely noted and be intrusted to the 

researchers to come. This section serves to point out the fields 

-where further investigations should be desired. 

199 

1. Equilibrium Equipment: Although great efforts have been 

directed toward vapor-liquid equilibrium equipment design and opera

tion, further systematic studies along the following lines invest

igated are needed: 

a) Study of theory of equipment design, leading to a 

more objective a~ch in design, evaluation and 

operation of apparatus. 

b) Further investigation of the techniques for 

ascertaining the condition of true equilibrium 

2. Improvement of T.B.P. Equipment: It has already been 

mentioned that the consistency of results depend greatly on the 

accuracy and the reproducibility of T.B.P. distillation curves. 

Although Oldershaw distillation column, and the presented operat

ing method have proved to be quite satisfactory, nevertheless· the 

following suggestions are constructive. 

a) Use of automatic recorder, where the turning of the 

chart would be proportional to the volume distilled, and 

the top temperature be continuously recorded on it. This 

should noticeably improve the accuracy of T.B.P. plot, and 

practically eliminate the personal attention required 

during the entire operation. 

b) When the column is used for analysis of high boiling 

oils, then it should be operated at a constant reduced 



200 

pressure. Also the column must be insulated with proper 

heating mantle. 

c) Use of efficient spinning band and wetted wall 

columns in connection with smaller sample quantities. 

3. Chromatography: Extensive use of chromatography for 

direct analysis of some simple petroleum fractions, and its applica

tion for indicating the true equilibrium condition of vaporization 

of petroleum oils should receive some additional attention. 

4. Empirical Relationshipa: The techniques and the appara

tus which are presented in this work, have made the experimental 

determination of K-values of petroleum oils an easy task. The K

values taken from the generalized charts are evidently less ac

curate than the experimental values. Therefore it is recommended 

that the K-values be evaluated experimentally, whenever possible. 

However, the empirical relations are useful for interpolation, 

extrapolation, and improvement of data. The followina are a few 

important aspects of this phase of work, where further investigations 

are helpful. 

a) Further study in the direction of characterizing 

petroleum oils by their molal volume-boiling temperature 

curves. 

b) Study of the trend of variation of slopes and inter

cepts of K-value equations (77,78) as functions of 

equilibrium temperature, over some much wider temperature 

ranges. 

Also application of equation (74) to represent data with 



wider boiling ranges. 

c) Continuation of this study at other pressures. 

d) Further study of the effect of blending of petroleum 

fractions on K-values. 

e) Computer application of the suggested equations. 

5. Integral Technique: The engineering importance of 

integral technique has already been discussed. Therefore, additional 

extension of this method would have a great industrial utility. 
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APPENDIX A 

DEFINITION OF TERMS 

A :: Helmholtz function, Total heat transfe!I" area' 

a = Activity 

B = Virial coefficient of state 

b = Vaporization rate in the recirculation still 

C = Constant 

D : Distillate 

dl/dTB - Reciprocal of slope of T.B.P. curve of liquid phase qn volume 
basis 

dv/dTB - Reciprocal of slope of T.B.P. curve for vapor phase on volume 
basis 

dx/dTB - Reciprocal of slope of molal T.B.P. curve· for liquid phase 

dy/dTB - Reciprocal of slope of molal T.B.P. curve for vapor phase -
(the ,numerical values of these slopes are relative quantities: 

F = Total volume of feed 

f = Fugacity, Mole percent (T.B.P. analysis) ot feed 

G : Gibbs function 

H = Enthalpy 

K • Vapor~liquid equilibrium phase distril;>Ution coef'f'"icient 

kf = Cryscopic constant 

L = Total volume of liquid phase 

1 = Volume percent (T.B.P. ana],ysis) of equilibrium liquid phase 

M = Molecular weight of solvent (Chap. VI), molecular weight of 
each fraction · 

2ll 



rn = Molecular weight of solute,, (Chap. VI) 

N = Mole fraction in solution 

n = A component of system, Number of distillation plates 

P = System pressure 

Pe• Equilibrium pressure 

p = Partial pressure 

Q = Total heat loss 

q = Heat loss per actual plate 

R = Universal gas constant 

S = Entropy 

T 

TB 

Te 

= 

= 

= 

Temperature 

T.B.P. temperature, the normal boiling point - 0 c 

Equilibrium temperature - 0 c or 1/oK 

2J.2 

6Tr= Freezing point depression (for l to 100 volumetric solvent-benzene 
to solute ratio) - oc 

{6:f~£rf)P • Ratio of~Tf of liquid and vapor phases in equilibrium with 
each other 

U = Internal energy, Over-all heat transfer coefficient 

V ::: Total volume of vapor phase 

v = Volume percent (T.B.P. analysis) of equilibrium vapor phas'e-

W = Watt, Weight of solvent 

w = Weight of solute 

X : Total moles of liquid phase 

x = Mole percent (T.B.P. analysis) of equilibrium liquid phase 

Y = Total moles of vapor phase 

y = Mole percent (T.B.P. analysis) of equilibrium vapor phas-e 

Z = Total moles of feed 

z • Mole percent (T.B.P. analysis) of feed, Gas compressibility fact01 



0.. - Relative volatility, A constant 

P = Density 

lJ = Fugacity coefficient 

e = A function, Time 

lJ; = A function 

f-l = A constant 

"f = Activity coefficient, A constant 

Subscripts 

a Ii Ambient condition 

f :: Freezing point 

1 = Liquid 

m • Mean value 

s = Solid 

V = Vapor 

1, 2, • • • i, j, k = Number of component 

Superscripts 

"' Liquid phase 

' ' ' ' ' I :: A phase 

o = Standard state 

* :: In equilibrium 

f = Final condition 

Specifications 

A.S.T.M. American Society for Testing of Materials 

B.P. Boiling point 

Cal. Calorie 

cc. Cubic centimeter 
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:m. • Centimeter 

~.c. = Extra coarse 

~.P • = Final boiling point 

i't. = Foot 

1.L.C. = ~s-liquid chromatography 

}.S.C. : Oas-solid chromatography 

}r. = Gram 

ffr., hr :.: Hour 

I.B.P. - Initial boiling point 

liter = Liter 

L.s.c.,: Liquid solid chromatography 

min. : Minute 

mm. • Millimeter 

T.B.P. = 'lxue boiling point 

~ - Ball joint 

; = ~pered joint 

GJ."t' 
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EXPERIMENT.AL AND CALCULATED DATA 



TABLE I 

EVALUATION OF VAPOR-LIQUID EQUILIBRIUM APPARA'lUS 

WITH BINARY MIX'!URES 

Othmer still 
Toluene and acetic acid mixture at l Atm. 
total charge=· 1 Lit. 
(Literature - D. F. Othmer, Ind. Engr. Chem., 35, 614, 1943) 

Equilibrium Mole percent toluene 
Temperature 
in °c Liquid · 

105.0 38.90' 
105.5 38.09 
107.5 30.06 
107.5 30.00 
106.5 92.80 
106.7 89.05 

othmer still 
Benzene~and. Toluene mixture at 1 Atm. 
Total charge 1 to 2 Lit. 

Vapor 
22.20 
22.20 
14.61 
13.75 
95.25 
95.05 
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(Literature - E. Kirschbaum, "Distillation and Fractionation", Chem. 
Pub. Co., N. Y. 1948) 

Over flow manifold 
Equilibrium Mole percent benzene 
Temperature 
in °c Liguid tsp or 

99.0 2 .20 30 
97.5 34.55 55.50 

105.5 11.50 25.50 
90.0 56.8o 77.20 
8'5.5 75.00 88.40 

100.5 24.70 43.60 
84.5 90.Bo 96.00 
98.5 28.30 47.&> 

106.0 9.15 21.65 

Thermostatic flow equipment 
Benzene and toluene mixture at 1 Atm. 
With various feed compositions 

Teflon needle valve 
Equilibrium Mole percent·benzene 
Temperature 
in °c Liquid VaEor 

81.0 95.00 97.50 
84.5 79.20 90.Bo 
82.0 90.75 96.00 
88.5 73.55 84.50 
97.0 35.20 56.8o 
93.0 47.60 70.20 

105.0 12.60 27.45 

Equilibrium 
Temperature 
in oc 

Mole percent benzen1 

1,00 
100 
100 
100 

Li~uid 
2 · .05 
26.15 
25.85 
26.10 

Vapor 
45.10 
45.00 
45.00 
45.20 



Cont. 

Thermostatic flow equipment 
Toluene and n-C8 mixture at l Atm. 
(Literature - Bromiley, E. c., and 
Do Quiggle, Ind. Eng. Chem., 25, 
1136, 1933) 

Constant feed composition 
Equilibrium temperature= B.P. of 

2, 3, 4 trimethyl-C5 

The new equilibrium flow equip
ment 

Benzene and toluene mixture at 
l Atmo 

(with max. hold-up in the contact
ing section) 

Feed Rate 
in 

ml/min. 
11.0 
14.o 
16.5 
20.5 
22.5 
28.0 
31.0 
39.5 
47.0 
55.0 
65.0 
70 .. 0 
90.0 

110.0 
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Mole percent toluene 

Liquid 
83.70 
83.70 
84.40 
84.40 
84.40 
84.40 
84.15 
83.70 
83.70 
84.oo 
83.75 
84.oo 
84.10 
84.10 

~ 
87.25 
87.25 
87.25 
87.25 
87.25 
86.70 
86.75 
86.60 
87.10 
87.10 
87.10 
87.10 
87.10 
87.10 

Equilibrium Mole percent benzene 
temperature 
in °c Lijuid Vapyr 

108 
107 
107 
106 
106 
103 
103 
102 

100 
96 
96 

96 
93 
92 
90 
90 
96 
86 
84 

,4-3 
,5.6 
.6.4 
10.5 
10-3 
15.5 
15.4 
19.6 
21.3 
28.0 
37.2 
38-3 
38.5 
41.2 
48.8 
52.2 
60.5 
61.2 
72.5 
73.6 
84.2 
85.2 
87.0 

12.5 
16~0 
17.5 
23.8 
23.5 
31.6-' 
31.6 
37.0 
36.T 
47.5 
59-.6 
59.8 
60.5 
63 .. 5 
7L,2 
74.o 
79.3 -
8o.o 
86.4 
87.8 
93.0 
93.2 
94.5 



Cont. 

The new equilibrium flow equipment 
Toluene and n-C8 mixture at 745 nnn. Hg. 
(with min. hold-up in the contacting section) 

The new equilibrium flow equipment 
Toluene and n-C8 mixture at 745 mm. Hg. 
(with max. hold-up in the contacting section) 
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MeLe fercent toluene 

L.iquid Vapor 

25.5 37.5 
3L3 48-3 
31.0 49.3 
31-3 51.2 · 
28.7 41.,3 
27.1 37.7 
26.3 36.3 
43.9 53.7 
44-3 ·56.5 
46.o 61.5 
57.1 69.2 

Mole percent toluene 

Lig,uid Vapor 

4L5 52.6 
38.7 49.7 
38.7 50.2 
41.2 52.5 
41.1 54.3 

.. 50.2 61.5 
48-3 59.1 
58-3 68.4 
65.0 73.2 
70.4 77.8 
69.1 76.0 
33.7 45.2 
33-3 43.7 
17.2 25.2 
21.0 30.0 
74.5 8o.l 
8o-3 84.8 
81.2 85.1 
81.0 85.0 
92.1 93.7 
93.9 95.0 
93.4 91.0 
27.3 39.2 
91.0 92.5 
29.2 4o.8 
27.6 38.9 
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TABLE II 

COMPARISON OF THE EQUILIBRIUM APPARATUS 

BY MEANS OF A PETROLEUM FRACTION 

Oil C Vol. '{o Sp.Gr. T..-B.P. A.S6T.M. 
Sp. Gr. = 0.811 oc C -

I.B.P. 126.0 190.5 
2.5 162.0 
5 .770 172.5 

10 .781 185.0 202.5 
15 .786 192.5 
20 .787 197.5 213.0 
25 0 799 207.0 
30 .799 212.5 221.5 
35 .795 217.5 
40 .805 224.o 230.0 
45 .812 230.0 
50 .808 234.o 239.0 
55 .814 242.5 
60 .819 249.0 248.o 

A.S.T.M. 
60 250.0 
65 266.0 
70 269.0 256.0 
75 270.0 
80 273.5 261.0 
85 276.0 
90 280.0 271.0 
95 287.0 288.0 
E.P. .834 300.0 300.0 

Othmer still Thermostatic flow equipment The new equilibriffl!l 

Te in °c v'I, Te in °c ~ 
eg,uipmei:rt 

Te in °c WJ 
230.5 14o3 234.o 18.2 236.0 i9.5 

.23·8~5 25.9 244.o 50.8 234.o 16.8 
243.0 43.5 236.0 21.6 
245.0 59.4 239.0 29.8 

240.0 32.5 
242.0 42.1 
245.0 54.4 
247.0 64.8 



Oil E 
Sp. Gr. : .805 

TABLE III 

VACUUM OPERATION OF THE lfEW EQUILIBRIUM EQUIPMENT 

A.S.T.M. 
voi.i be 
I.B_.P. lbO.O 

10 18o.5 
20 196.0 
30 205.5 
4o 214.o 
50 220.5 
60 229.5 
70 239.0 
8o 251.0 
90 272.0 

E.P. 323.0 

· · -~uilibrium Fllfsh 
250 mm.Hg. 
vii, Te in be 

o 145 
9.1 154 

15.9 160 
21.0 162 
36.4 171 
64.8 182 
86.2 193 

100 20-9 

4 -----~~-~---- ~~~ 

50 nnn. Hg • -r-r"".J mm. Hg. 
V% Te in cc ~ Te in °c 

0 166 0 186 
11.1 176 13.5 198 
35.0 189 47.5 213 
45.9 193 48.4 214 
74.2 205 67.3 220 
94.3 218 100 238 

100 224 

I\) 

~ 



TABLE IV 

HEAT LOSS AND PRESSURE DROP OF OLDERSHAW DISTILLATION COLUMN 

40dpla.te Oldershaw, as it was used for T.B.P. distillation 

Boiling Pressure Loss in Heat Loss in ml. of Heat Loss in Over Head Rate Boil--up 'fower Ambient 
Material inches of Liquid boiling liquid/Hr. K Calo/Hr. in ml./Hr. Rate in ~mp. Temp. in 

ml./Hr. ~ Oc 

Benzene 15.0 122.5 9-32 1000 1111 8o 35 
It 20.0 104.o 7.95 2000 2096 8o 35 
II 23.0 lll.O 8.47 3000 3102 8o 35 

Toluene 15.5 270.0 18.35 1000 1244 110 32 
If 20.0 270.0 18.35 2000 2244 110 ' 32 
II 23.0 266.0 18.20 3000 3240 110 32 

0-xylene 14.5 440.0 28.23 1000 1388 144 35 
It 17.5 460.0 29.55 2000 2405 144 31.i-.5 
II 22.5 452.0 29.00 3000 3398 144 34 

0-Ethyl- 14.o 645.0 39.50 1000 1582 165 36 
Toluene 15.7 636.0 39.00 2000 2575 165 36 

" 17.5 634.o 38.80 3000 3572 165 36 

2,2,4 Tri 15.0 373.0 14.8o 1000 1338 99.8 33 
methyl-C5 15.5 370.0 14.68 2000 2335 99.8 33 

" 17.0 357.0 14.13 3000 3230 99.8 34 

n-Cio 14.o 960.0 38.20 1000 18o2 174 35 
14.5 1015.0 4o.6o 2000 1848 174 35 

" 15.0 1000.0 40.10 3000 3835 174 34.5 
I\) 
I\) 
I-' 



TABLE V 

START-UP CHARACTERISTICS OF OLDERSHAW COLUMN 

Testing mixtures benzene and toluene 
Boil-Up rate~ 2.25 Lito/Hr. 

Condition of Operation 
Time 3o~plate 30-plate 15-plate 15-plate 15-plate 15-plate 15-plate 

in Total Reflux Total take Total Reflux Total take 1/1 Reflux 1/1 Reflux 1/1 Reflux 
off off (4 Sec.cycle) (10 Secocycle) (20 Sec.cycle) 

Min. Pot.Cornp•l0.48 10.48 9.50 8.50 7.50 7o50 9.14 
Over-head concentration in mole Eercent benzene 

0 97 97 95 94 88 88 95 
1/3 93 91 74 -- 69 fo -73 
2/3 89 88 61 -- 59 59 62 
1 83 60 50 21 50 50 50 

11/3 73 -- 46 18 
1 2/3 71 -- 47 17 -- -- 43 
2 69 30 48 18 32 34 41 

2 1/3 69 -- -- -- -- -- 40 
2 2/3 68 22 50 -- -- -- 39 
3 69 -- 52 19 27 28 38 

3 1/3 70 22 53 
3 2/3 71 -- 54 
4 73 23 56 20 27 
5 79 -- 60 21 26 -- . 33 
6 83 -- 63 
7 87 -- 66 -- -- -- 32 
8 90 -- 70 -- -- -- 32 

10 97 -- 77 21 25 -- 32 
12 98 -- 83 -- -- -- 32 I\) 

15 98 90 21 32 
f\) -- -- -- I\) 

20 99 23 --· 21 
C.I'\ aa_A -- gs 



TABLE VI 

EFFECT OF BOIL-UP RATE AND REFLUX 

RATIO UPON OPERATING 

(DYNAMIC) HOLD-UP 

-0-plate Oldershaw column, as it was used for T.B.P. distillation. 

~eating material - iso-octane 

loil-Up Rate Operating 
in 

ml{Hr Condition 

650 Total Reflux 
1500 Total Reflux 
2220 Total Reflux 
2820 Total Reflux 
485 Total Take off 

1500 Total Take off 
2220 Total Take off 
2820 Total Take off 

resting material - n-heptane 

1500 
1810 
2000 
2240 
2550 
3140 

Static Hold~Up 

Total Reflux 
Total Reflux 
Total Reflux 
Total Reflux 
Total Reflux 
Total Reflux 

Total Hold-Up 
in 
ml. 

58.0 
64.5 
66.2 
67.0 
25.5 
32.0 
33.0 
34.2 

63.5 
64.2 
65.0 
65.8 
66.7 
68.5 

Total static hold=up (average value)s o.86 ml. _2 
Static hold-up/plate (average value)~ 2.15 x 10 ml. 

Hold .. Yp/Plate 
in 
ml. 

1.450 
1.612 
1.652 
1.675 

.637 

.Boo 

.825 

.855 

1.588 
1.604 
1.625 
1.645 
1.665 
1.712 

223 
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TABLE VII 

EFFECT OF CYCLE OF INTERMITTENT PRODUCT TAKE-OFF ON EFFICIENCY 

,O-plate Oldershaw column 
3oil-Up Rate= 2.25 Lit/Hr. 
~sting mixture= benzene and toluene 

'roduct DL'.L=lL'.l 
~ake-off D/L=4/l D/L~2/l D/L=l/4 at the begin- at the end Product 
:ycle in ning of take of take off Concen-
3econds off cycle cycle tration 

mole percent benzene in over~head 

5 41.5 25.0 16.0 25.0 25.0 25.0 
10 42.0 27.0 27.0 27.0 
15 27.0 
20 30.0 27.5 28.5 
25 49.0 16.0 
30 30.0 33.0 27.5 29.5 
40 50.0 33.0 16.0 35.0 27.0 30.5 
50 50.5 16.0 39.0 26.0 31.0 
60 51.5 35.5 42.0 23.5 31.5 
8o 54.o 16.0 
90 55.0 35.0 

100 55.0 49.0 20.0 32.5 
120 55.0 35.0 16.0 50.0 20.0 33.0 
140 55.0 33.0 

ote: The pot composition of each run is different. 
= Broduct Rate, L = Reflux Rate 

0-plate Oldershaw column 
esting mixture= toluene and nC8 

roduct D/L~l/4 1/2 2/1 1/2 2/1 
ake-off Rate=3.o Lit./Hr. 3.0 3.0 2.9 2.9 
ycle in Pot.Comp .... 14.2 !hl 15.5 17.0 17.0 
econds mDle percent tolnene in over-head 

3 35.2 26.7 37.2 27.6 
5 49.5 
9 41.0 

10 52.7 
15 40.2 27.8 28.8 
25 56.1 
60 27.6 28.5 

100 62.2 
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:ont. 

Product D/L .. 1/2 2/1 1/1 4/1 
take-off Rate~ 1.08 Lit./Hr. 1.08 1.08 1.08 
cycle in Pot.Comp. s 22.5 22.5 21.5 22.5 
seconds mole percent toluene in over-head 

2 33.8 
3 35.8 
5 48.7 33-3 
6 36.5 41.3 
9 37.3 

10 42.7 33.9 
15 51.5 34.o 
16 44.1 
20 44.5 34.o 
25 34.o 
30 37.5 35.0 
40 34-3 
45 37.5 
75 34.3 
90 37.5 

100 34.3 
125 34-3 



TABLE VIII 

EFFECT OF BOIL-UP RATE UPON EFFICIENCY 

10-plate Oldershaw column 
rest mixture= toluene and nC8 
Condition of Operation= Total Reflux 
Bottom composition= 28.8 percent toluene 

Boil-Up rate Over-head composi-
in Lit./Hr. tion in mole% of 

toluene 

.42 75.8 

.89 77.7 
1.04 78.0 
1.38 78-3 
1.41 78.7 
1.76 78.9 
2.21 79.8 
3.02 8o.o 
3.75 78.5 
4.21 75.0 

at flooding 61.2 

226 

Plate 
efficiency 

61.0 
63.7 
64.5 
65.2 
65.7 
66.1 
67.7 
68.o 
65.5 
59.6 
40.4 
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TABLE IX 

COMPARISON OF PERFORMANCES OF DISTILLATION 
APPARATUS 

Oil D (hydroformer product) at 1 Atm. 

Vol.<{o 40-plate Sarnia Sarnia 
distilled Oldershaw 

D/L = 12/1 D/L = 12/1 D/L ~ 5/1 
0 T.B.P. temperature in C 

0 60.5 61.0 61.0 
5 61.5 71.5 8o.o 

10 71.0 1e.o 88.o 
15 78.5 81.0 90.0 
20 79.5 85.0 93.0 
25 88.5 89.0 96.0 
30 97.0 91.0 99.0 
35 108.0 93.5 102.0 
40 109.0 97.0 105.0 
45 109.5 100.d, 
50 109.5 1o6.o 
55 110.0 112.0 
60 110.0 116.0 
62.5 120.0 
65 134.o 119.0 
70 138.0 123.0 
75 138.0 126.5 
8o 138.5 129.5 
85 139.0 131.5 
87.5 140.0 
90 141.0 132.0 
92.5 143.0 
95 156.0 
97.5 171.0 

100 196.0 



TABLE X 

COMPARISON OF T.B.P. AND G.L.C. ANALYSES 

Oil D (hydroformer product) 
40-plate Oldershaw - at l Atm. 

Analysis of Charge 
Mole! 

light 
n-C5 
i-C6 
i-C6(6o0c) 
n-C6 
hexene-1 
i-C7 
3m-C6 
n-C7 
3-Cyclo-C6 
n-C8 
Benzene 
Toluene 
(p,m)xylene 
o-xylene 
Heavy 

trace 
0.133 
1.823 
1.657 
2.154 

.928 
2.552 
3.248 
2.088 

.895 

.265 
11.468 
31.058 
34.471 
6.463 
trace 

T.B.P. 
Vol.% 0c 

0 60.5 

10 71.0 

20 79.5 

30 97.0 

40 109.0 

50 109.5 

60 110.0 

70 138.0 

8o 138.5 

90 141.0 

100 196.0 

G.L.C. 
mole :e_ercent 

benzene 4.42; i-C6 11.60; i-C6(6o0 c) 17.30; n-C6 66-30; 
hexene-1 .28; C5 1.0 
benzene 28.3; i-C6 7.42; i-C6(6o0c) 15.12; n-C6 34.36; 
hexene-1 6.87; m-C6 7.97 
benzene 78.09; m-C6 10.46; 3m-C6 10.46; hexene-1 .57; 

n-c7 2.0; m-C6 9.20; 3m-C6 1.25; benzene; toluene 

benzene .41; toluene 95.36; n-c7 .12; m-Cyclo-C6 .3 

toluene 97.31; m-Cyclo-C6 2.68; n-c7 

toluene 97.96; m-Cyclo-C6 1.32; n-c7 .7; xylene 

(p, m) xylene 95.2; 0-xylene 4.7; toluene 

(p, m) xylene 89.20; o-xylene l0.8o 

(p, m) xylene 43.04; o-xylene 56.96 

heavy; o-xylene - trace 
I\) 
I\) 
(X) 
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TABLE XI 

EQUILIBRIUM FLASH VAPORIZATION OF OIL D (HYDROFORMER PRODUCT) 

AND CALCULATION OF K-VALUES BY G.L.C. ANALYSIS 

lz'essure = 740 :rmn. Hg. 

.ight 

Te=ll0.6°c 
y/x p/P 

l-C5 16.796 
.-C6 ll.310 --
>C6(6o0c) 8.006 --
1-c6 5.255 --

T =99.8°c 
yix p/P 

10.400 --
7.334 --
5-322 --
3.905 --

Te,=125.7°c Ti= 105.2°c Te=119.8°c 
y/x y x p/P y/x p/P 

27.100 
18-352 8.233 5.274 
17.944 6.248 4.817 
16.000 4.297 4.945 

1exene-1 4.983 3.785 2.411 2.840 14.308 3.547 3.620 4.45 
L-c6 2.972 l.930 2.772 --
3m· 6 2.860 1.770 1.344 1.310 
1-C7 l. 577 1.468 
n-cyclo-C6 1.165 1.720 

.862 1.090 

.910 .985 
1-c8 1.431 -- .537 .487 
)enzene 2.477 2.462 2.181 1.840 
~oluene 1.056 1.053 
(p,m)xylene .497 .457 
o-xylene .389 .385 
tleavy 

light 

T =116°c 
y7x p/P 

.896 

.287 

.249 

n-C5 16.523-- 7.879 
i-C6 5.718-- 6.765 
i-C6(6o°C) 4.936-- 4.105 
n-C6 5.174-- 5.250 
hexene-1 4.053 4.090 3.470 
i-C7 2.9ll6 2.120 2.412 
3m-C6 2.554 4.020 1.988 
n-C7 2.138 1.700 1.590 
m-cyclo-C6 1.453 1.521 .8o4 
b-C8 1.267 .810 · .837 
benzene 2.833 2.780 2.300 
toluene 1.243 1.210 .768 
(p,m)xylene .6o6 .535 .159 
o~xylene .412 .413 .124 
·heavy 

.764 
-314 
.265 

8.739 2.604 2.872 2.350 
6.414 2.084 2.449 2.220 
4.615 1.540 1.260 2.165 1.89c 
1.858 1.106 1.140 1.318 1.69c 
1.552 .891 .582 1.264 l.031 

2.449 2.110 3.043 3.081 
1.554 1.047 .906 1.429 1.35c 

-397 -387 .379 .599 .6oJ 
-361 .281 .218 .491 .501 

T,=111.2°c T,=105.5°c 
y x p/P y x p/P 

Te=116.5°c 
y/x p/P 

11.583 -~ 6.077 
5/fl3 -· 4-394 
·8.97-9 -- 4.659 
5.666 -- 3.916 
4.256 3.68 4.313 
2.329 1.90 a.830 
2.427 1.75 2.486 
2.062 1.4~ 2.182 
1.202 1.35 1.8811.140 

.824 .68 i.813 --
2.858 2.46 ~.555 2.110 
1.347 1.06 1.166 .906 

.467 .45 .383 .379 

.376 .38 .325 .318 

4.088 
3.773 
3.119 
30346 
1.934 
2.246 
2.068 
1.155 

.848 
2.460 
1.417 

.6oo 

.427 

4.o~ 
2.1: 
2.0: 
1.71 
1.5: 

.8 
2.7 
1.2 

.5 

.4 

The new equilibrium equipment Te=125.7, 105.2, 119.8, 116, 91.5, 111.2, l 
116.5°c. 

The thermostatic flow equipment Te=99.8, 110.6°c. 



TABLE XII 

K-VALUES CALCULATED FROM EXPERIMENTAL WORK OF WHITE AND BROWN (152) 

Material - light naphtha ~ ~ 
Conditions - 700 °F, 65() psia Exp. No. 8, (152) 

T.B.P. Temp. Moles of vapor Moles of liquid K This method 
Range - °F -- -~~--- - --~-- ---------

(Brown) Tu - OF K 

86-95 43.78 31.49 1.39 350 .91 
135-156 10.72 13.74 1.22 375 .85 
175-209 10.25 8-30 1.24 400 .Bo 
209-300 2.13 1.85 1.15 425 .78 
300-350 1.95 2.15 .91 450 .72 
350-400 3.95 fi.06 .78 475 .71 
400-450 4.oo 4.35 .92 500 .67 
450-500 3.30 5.3§ .62 525 .59 
500-550 3.16 4.9 .64 550 .58 
550-600 4.14 8.18 .51 575 .52 
600-650 3.72 7.13 .52 600 .51 
650-700 1.88 4.50 .42 625 .50 
700-750 1.02 2.98 -34 675 .42 

~ 
0 
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TABLE XIII 

PHYSICAL PROPERTIES OF OIL A 

Fol. '/o T.B.P. 6Tf '6Tf)ave. (Sp. Gr. >ave. M.wt. 
Li stilled 'fe)np • OC oc oc 

I.B.P. 64.o .531 87.0 
.495 

5 95.5 .462 .725 94.4 
.453 

10 105.5 .440 99.8 
.432 

15 117.5 .419 .735 104.o 
.413 

20 122.0 .410 108.0 
.406 

25 125.5 .402 .742 109 .• 2 
-397 

30 133.5 .390 111.5 
.387 

35 137.5 -382 .766 114.2 
-38o 

4o 142.0 .376 116.7 
-370 

45 146.5 -368 .750 118.3 
-365 

50 149.0 .363 121.0 
.360 

55 151.5 .359 .766 122.8 
-358 

60 155.0 .353 123.2 
-352 

65 159.0 .347 .771 125.0 
.345 

70 162.0 -342 127.2 
-340 

75 165.5 -338 .776 132.5 
.335 

8o 169.0 .332 132.0 
-330 

85 171.5 .329 .767 134.o 
-323 

90 178.0 .320 136.3 
A.S.T.M. -317 

95 182.5 .314 .775 142.0 
-306 

E.P. 190.5 .302 
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TABLE XIV 

~UILIBRIUM PROPERTIES AND K-VALUES OF OIL A 

:quipment - Othmer still 
:onditions - Pe= l Atm.; Te=l4l.2°C; percent vapor• 46.8 

Vapor Lig,uid 
rol.~ T.B.P. Sp.Gr. ®r>ave. Mole% T.B.P. Sp.Gr. ®r>ave.Mole% 
)istilled OC ;o 

C 
I.B.P. 95.5 0 69.0 () 

5 87.0 .716 .470 104.o .742 .420 
10 96.0 12.1 120.0 11.6 
15 100.5 .741 .441 125.5 .747 .4oo 
20 111.0 23.4 132.0 22.7 
25 118.0 .734 .420 137.5 .756 -382 
30 121.0 34.2 j..42.0 33.3 
35 124.o .739 .408 146.o .759 .370 
40 127.0 44.7 148.o 43.5 
45 132.5 .764 .390 150.0 .772 .363 
50 137.0 54.8 153.0 53.6 
55 141.0 .760 -377 156.0 .773 -353 
60 145.0 64.5 159.0 63.3 
65 148.o .751 .367 162.0 _.779 .342 
70 150.5 73.9 166.0 72.8 
75 153.5 .765 .353 168.0 .779 -337 
8o 158.5 83.0 170.5 82.1-
85 163.0 .780 .340 172.0 .78o -330 
90 168.0 91.8 175.0 91.2 
95 173.0 .772 -322 182.0 .78o -320 
E.P. 182.0 100.0 193.0 100.0 

Conditions - Pe= 1 Atm; Te = 134°c; percent _vapor = 31.9 
I.B.P. 65.0 0 0 

5 87.0 .716 .482 100.0 .738 .452 
10 95.0 12.1 118.5 12.2 
15 99.0 .734 .455 123.5 .737 .408 
20 105.0 23-3 129.0 23.4 
25 115.0 .735 .431 133.0 .764 -391 
30 119.0 33.6 140.0 34.4 
35 122.5 .730 .410 145.0 .752 -368 
40 125.0 43.6 147.0 44.5 
45 129.0 .752 .397 149.0 .753 -363 
50 134.o 52.5 151.0 54.2 
55 137.5 .763 .382 155.0 .755 -353 
60 143.0 62.7 157.5 63.9 
65 146.5 .751 -370 161.0 .772 -348 
70 149.5 72.2 164.o 73.4 
75 162.0 .758 -361 168.0 .776 -328 
8o 157.0 81.7 170.0 82.4 
85 162.0 .773 -343 172.0 .765 -323 
90 167.0 90.9 174.o 91.2 
95 172.5 .774 .328 _ 18o.o .777 .318 
E.P. 18o.o 100.0 192.0 100.0 
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::ont. 

~quipment - Othmer still 
~onditions - Pe= l Atm.; Te= 144.5°c; percent vapor= 53.9 

Vapor Lig,uid 
v'ol.~ T.B.P. Sp.Gr. {0.Tf)ave. Mole% T.B.P. Sp.Gr. (2STf} v Mole% 
Distille9: oc oc a e. 

I.B.P. 66.o 0 84.o 0 
5 90.0 .720 .470 112.0 .731 .450 

10 97.0 12-3 121.0 11.8 
15 108.0 .742 .440 127.0 .742 .425 
20 114.o 23.7 133.0 22.9 
25 119.0 .733 .410 135.0 .756 .• 408 
30 122.5 34.4 143.5 33.6 
35 125.0 .738 .4oo 147.0 .747 -390 
40 131.5 44.8 150.0 43.6 
45 136.0 .769 .38o 151.0 .750 o38o 
50 140.0 54.7 155.0 53.5 
55 142.0 .757 .370 158.5 .767 -370 
60 148.o 64.4 161.0 63.2 
65 150.5 .752 -355 164.o .771 .360 
70 153.0 73.6 166.0 72.6 
75 156.5 .769 -350 169.0 .770 -355 
8o 161.0 82.8 171.0 81.8 
85 165.0 .776 .335 173.0 .760 .350 
90 169.0 91.5 175.0 91.0 
95 177.0 .772 -320 184.o .779 .335 

E.P. 185.0 100.0 203.0 100.0 

Conditions - Pe= l Atm.; Te= 147.0°c; percent vapor= 59.5 

I.B.P. 82.0 0 86.o 0 
5 92.0 .717 .46o 109.5 .730 .430 

10 99.0 12.2 121.5 12.1 
15 108.0 .741 .430 128.0 .745 -393 
20 112.0 23.7 130.0 23.2 
25 121.0 .731 .405 139.5 .751 -373 
30 124.o 34.4 145.5 33.8 
35 128.5 .748 .392 148.o .747 -360 
40 133.0 44.8 150.5 43.9 
45 137.0 .766 -378 153.0 .753 .350 
50 142.0 54.4 156.0 53.8 
55 146.o .752 -362 158.5 .769 -346 
6o 149.0 63.8 162.5 63.5 
65 151.0 .755 .355 165.0 .770 .335 
70 154.o 73-3 167.5 73.0 
75 158.5 .772 -345 170.0 .769 .321 
8o 163.0 82.4 172.0 82.2 
85 167.0 .777 -330 174.o .759 .320 
90 171.0 91.l 175.0 91.2 
95 178.0 .769 -318 184.o .778 .308 
W._1)_ , 84.o 100.0 193.0 100.0 



Cont. 
Te= 134.0 °c T = 141.2 °c 

~~ dy7dTB dx.7dTB K K-Values of Lit. dy,dTB dx.7dTB K 
(138) {88) 

60 - 7.0 LO 7.1 
75 16.0 3.7 4.30 4.40 13.0 2.2 5.90 
8o 18.5 5-3 3.49 3.70 15.0 3.0 5.00 
85 22.5 7.5 3.00 17.0 4.2 4.o4 
90 25.0 8-3 2.94 3.05 19.0 6.o 3.17 
95 28.5 11.5· 2.48 22.0 8.o 2.75 

100 31.2 14.2 2.20 2.40 2.30 25.0 10.5 2.38 
105 34.2 17.2 2.01 30.0 14.9 2.16 
110 36.0 20.5 1.75 1.75 36.0 17-3 2.08 
115 37.0 25.2 1.51 41.0 22.0 1.86 
120 43.0 29.3 1.47 1.35 45.0 26.5 1.69 
125 45.5 35.0 1.30 48.2 33.0 1.82 
130 47.2 43.0 1.09 1.10 51.0 4o.o 1.27 
135 47.5 51.5 .92, 55.0 47.0 1.17 
140 49.2 59.5 .83· .83 56.0 52.0 1.08 
145 49.1 65.2 .75 55.0 57.0 .96 
150 47.5 78.0 .61 .68 .64 50.0 61.5 .81 
155 45.2 78.0 .58 43.0 65.0 .66 
160 41.7 76.2 .55 .52 39.0 66.6 .59 
165 34.o 65.7 .52 
170 30.0 62.0 .48 
175 25.0 55.0 .45 
18o 18.2 45.0 .40 

T = 147 .0 Oc Te• 144.5 °c 

70 6.o 6-3 
85 22.0 5.0 4.40 17.0 4.o 4.25 
90 24.o 7.0 3.43 3.6 18.5 5.0 3.70 
95 27.0 8.o 3-38 20.5 6.5 3.17 

100 29.0 11.0 2.64 3.0 3.1 23.5 8.o 2.95 
105 32.0 13.0 2.46 -... 27.0 ll.O 2.46 
110 36.0 14.5 2.48 2.5 33.0 14.5 2.28 
115 37.5 20.0 1.88 87.0 20.0 1.86 
120 44.o 23.5 1.87 1.8 42.0 25.0 1.68 
125 44.5 26.0 1.71 44.o 33.0 1.33 
130 45.0 30.5 1.48 1.4 49.0 35.0 1.40 
135 46.o 41.0 l.12 52.5 42.0 1.25 
140 52.0 43.0 1.21 1.15 54.5 46.o 1.16 
145 56.0 48.2 1.15 55.5 52.0 1.06 
150 54.o 55.0 .98 .97 .90 55.0 62.0 .89 
155 50.5 62.5 .81 50.0 68.5 .73 
160 46.o 71.0 .65 .75 45.0 70.0 .64 
165 44.5 72.0 .62 39.0 73.0 .53 
170 39.5 72.5 .54 .55 36.0 64.o .56 
175 32.0 62.5 .51 26.0 50.0 .52 
l8o 17.0 36-3 .47 .43 16.5 37.0 · .45 
185 10.0 22.0 .45 
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TABLE XV 

PHYSICAL PROPERTIES OF OIL B 

Condition - 1 Atm. 

Vol.~ T.B.P. 
Distilled Temp. 0c S;e. Gr. 6Tf M.wt. E.F.V. 

T 0c v~: e-
I.B.P. 60.0 .640 69.2 

5 127.5 .750 .427 102.5 161.5 12.1 
10 137.0 .4oo 108.9 
15 142.5 .755 -380 112.5 162.0 15.6 
20 146.8 -379 115.3 
25 149.0 .760 .375 118.5 165.0 50.9 
30 151.5 .370-, 120.7 
35 155.0 .766 -360 123.5 174.5 70.5 
40 158.0 .'354 125.3 
45 161.0 .776 -350 129.0 196.0 86.2 
50 163.2 -346 132.0 
55 166.0 .780 -340 133.2 212.0 89.1 
60 168.5 ·- .334 135.2 
65 170.5 .772 -330 136.5 
70 172-3 -327 137.9 
75 175.0 .768 .320 139.5 
8o 179.0 -312 142.5 
85 185.0 .787 .302 151.2 
90 200.0 .276 161.0 
95 213.0 .Boo .253 186.0 

E.P. 275.0 .230 212.0 
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TABLE XVI 

EQUILIBRIUM PROPERTIES AND K-VALUES - on. B 

~quipment - Othmer Still at 1 Atm. 
~ondition - 162.0 °c 

VaEor L@id 
fol.~ T.B.P. Sp.Gr. ~Tr)ave. Mole% T.B.P. 
Distilled oc oc 

Sp.Gr.~)ave. Mole% 

I.B.P. 62.0 0 116.0 0 
5 115.0 .718 .532 6.96 136.3 .756 .425 6.42 

10 124.o .730 .450 12.87 143.2 .767 -398 12.35 
15 129.0 .732 .440 18.64 147.3 .757 o38o 18.10 
20 134.o .756 .418 24.13 149.7 .755 -345 23.75 
25 136.3 .774 .405 29.44 152.0 .757 -360 29.28 
30 139.5 .770 .4oo 34.69 155.0 .767 -355 34.71 
35 142.7 .760 -395 39.87 158.2 .773 -355 4o.o4 
40 145.5 .753 .387 44.95 161.0 .777 -350 45.30 
45 147.8 .748 .38o 49.93 164.o .780 .345 50.43 
50 149.5 .749 .376 54.87 166.5 .783 -330 55.51 
55 151.0 .749 .371 59.73 171.0 .779 -335 60.50 
60 153.7 .754 -368 64.56 172.7 .774 .330 65.35 
65 156.7 .765 .360 69.28 174.6 .769 .325 70.18 
70 159.5 .773 -355 73 .. 93 178.3 .773 .320 74.97 
75 162.5 .776 .350 78.52 183.0 .786 .315 79.72 
8o 166.0 .777 .342 83.00 189.5 .791 .315 84.20 
85 169.5 .778 -335 87.49 196.0 .787 -327 88.50 
90 173.0 .774 -330 91.91 203.0 .• 787 -397 92.68 
95 183.0 .770 -318 96.28 222.0 .8o5 .270 96.53 

E.P. 202.0 .770 .287 100.00 283.0 .8o5 .270 100.00 
0 

Te= 165.0 C 

I.B.P. 83.0 0 124.o 0 
5 123.3 .732 .500 6.90 141.0 .764 .413 6.32 

10 131.7 .750 .427 12.79 146.6 .758 .385 12.23 
15 136.7 .774 .411 18.46 152.8 .756 .372 17.91 
20 140.5 .772 -397 23.94 155.8 .764 -363 23.47 
25 143.5 .764 -390 29-33 159.0 .774 -356 28.92 
30 148.2 .753 -382 34.59 162.0 .777 .350 34.28 
35 150.0 .752 .375 39.77 164.8 .78o .343 39.53 
40 151.5 0 753 -371 44.93 167.0 .781 .340 44.74 
45 153.2 .760 -368 49.97 169.2 ,782 .335 49.87 
50 156.0 .770 -362 54.97 171.0 .777 .330 64.92 
55 158.8 .774 -355 59.87 172.8 .771 .327 59.93 
60 161.5 .778 .350 64.69 174.o .765 -323 64.88 
65 164.o .779 .346 69.71 177.0 .769 .320 69.77 
70 166.8 .783 o34o 74.16 181.5 .779 -314 74.68 
75 169.0 .783 -335 78.78 185.0 .789 -305 79.25 
8o 171.5 .777 -330 83.34 191.0 .789 .298 83.82 
85 174.o .770 -324 87.81 195.2 .790 .aaq 88.21 
90 179.0 .771 .316 92.17 204.3 .793 .275 92.42 
95 192.0 .790 .300 96-31 240.0 .816 .260 96.40 

- - --- - n~ / 
'"''"' I"'" , "" r\r\. 
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:::ont. 

Condition - Te= 174.5 °c 

Vapor Li9.uid 
Vol.% T.~.P. Sp.Gr. QSTf) ave. Mole% T.B.P. Sp.Gr. QSTf.)ave. Molei 
Distilled. C OC 
I.B.P. 90.0 0 120.0 0 

5 126.0 .480 6.81 140.0 .420 6.56 
10 135.3 .745 .416 12.72 149.0 .760 -385 12.57 
15 140.0 .4oo 18.40 152.5 .370 18-35 
20 145.0 0 755 .389 23.92 156.5 .762 -363 24.03 
25 147.5 .380 29-31 160.0 .355 29.57 
30 150.0 .756 .375 34.64 163.0 .775 .347 34.99 
35 152.0 -370 39.89 165.5 -340 40.30 
40 155.0 .757 .364 45.05 169.0 .782 -335 45.53 
45 158-3 -357 50.12 170.0 -330 50.68 
50 160.5 .776 -352 55.12 173.0 .772 .328 55.So 
55 164.o -347 60.05 175.0 .321 60.81 
60 166.0 .780 .340 64.88 178.0 .768 -318 65.77 
65 169.0 -335 69.64 182.0 -311 70.62 
70 171.0 .780 .330 74.32 186.5 .• 785 .304 75.38 
75 173.0 .327 78.96 191.6 .295 79.99 
80 176.3 .765 -323 83.54 198.0 .785 .285 84.44 
85 182.2 .315 88.01 211.0 .270 88.66 
90 185.0 .780 .305 92.34 218.0 .797 .255 92.64 
95 200.0 .290 96.46 255.0 .242 96.42 

E.P. 215.0 .792 .245 100.00 285.0 .818 .230 100.00 



:ont. 

~ondition - Te= 162.0 0 
Te• 165.0 °c C 

TB dyfdTB dxfdTB K K-Values from Lit. T dyfdTB dx/d'r.:B K: 
~13Sl ~S~l t,B oc C 

L20 24.8 6.2 4.02 2.5 125 20.0 5.7 3.52 
L25 37.0 11.0 3o36 130 30.2 9.5 3.:1.€ 
l30 48.o 15.5 3.10 2.3 135 44.o 16.0 2.15 
l35 55.0 18.0 3.05 140 54.o 21.0 2.51 
140 59.0 27.0 2.18 145 56.0 26.0 2.1; 
145 70.2 49.0 1.43 150 84.5 55.8 1.51 
150 90.3 69.5 1.30 155 72.1 6o.o l.2t 
155 66.o 64.o 1.03 160 67.2 66.o l.Oi: 
160 54.8 63.2 .87 1.0 165 62;2 78.8 .7~ 
165 57.0 64.o .73 170 64.o 91.7 • 7( 
170 41.0 59.3 .69 .78 175 45.0 81.5 .5~ 
175 27.1 56.3 .48 180 20.0 50.0 •'4~ 
18o 16.5 4o.o .41 185 15.2 40.1 o31 
185 11.l 32.0 .23 190 10.5 31.0 • 31 
190 7°5 28.0 .27 195 7.0 25.0 .2l 
195 5.0 22.4 .22 200 5.2 22.2 .z. 
200 4.2 17.5 .23 o38 .29 

Te= 174.5 °c 

130 22.0 5.8 3.98 3.0 
135 30.2 8.7 3.49 
140 46.5 18.6 2.56 2.3 
145 56.0 22.4 2.51 
150 75.0 37.2 1.98 
155 75.0 44.2 1.70 
160 77.0 55.8 1.38 
165 71.0 61.2 1.16 
170 69.5 66.8 l.o4 1.2 1.0 
175 52.4 64.o 1.82 
18o 35.0 53.0 .66 .98 
185 26.1 44.3 .59 
190 17.0 31.0 .55 
195 11.0 26.2 .42 
200 6.5 18.q .35 .48 .50 
210 3.6 13.9 .26 
220 2.0 9.5 .21 
230 1.0 7.0 .14 .22 



TABLE XVII 

VAPOR-LIQUID EQUILIBRIUM PROPERTIES OF OIL B1 

~quipment - Othmer Still 
Condition - Pe • l Atm.'; Te • 176.0 °c 

Vapor Lig.uid 
Vol.~ T.B.P. Sp.Gr. Mole~ T.B.P. Sp.Gr. Mole 1, ~~ K 
Distilled OC oc 
I.B.P. 98.0 0 105.0 0 130 l.62 

5 130.0 .743 6.66 135.0 .750 6.73 135 l.71 
10 137.5 .768 12.58 143.0 .767 12.73 140 1.46 
15 143.0 .765 18.27 148.o .757 18.53 145 l.09 
20 147.0 .757 23.77 150.8 .755 24.18 150 l.28 
25 149.5 .753 29.19 154.2 .761 29.75 155 1.21 
30 151.5 .756 34.56 158.0 .772 35.18 160 1.11 
35 155.0 .764 39.85 161.0 .777 40.50 165 .97 
40 157.0 .771 45.04 164.o .777 45.72 170 1.03 
45 160.0 .776 50.15 167.0 .779 50.87 175 .94 
50 162.8 .779 65.18 169.0 .782 6'5.93 180 .86 
55 166.0 .782 60.10 171.8 .778 60.92 185 .81 
60 168.0 • 783 64.94 173.5 .771 65.82 190 .69 
65 170.5 .781 69.72 176.0 .768 70.66 195 .72 
70 172.3 .775 74.46 18o.o .778 75.44 200 .59 
75 175.0 .769 79.12 185.0 .789 8o.09 210 .57 
8o 178.0 .771 83.71 191.5 .792 84.57 220 .54 
85 182.5 .783 88.21 197.0 .785 88.89 230 .47 
90 192.5 .791 92.53 211.5 .8ol 92.98 
95 208.0 .794 96.53 251.0 .813 96.23 

E.P. 260.0 .8o4 100.00 295.0 .826 100.00 

Condition - Te g l Atm.; Te= 169.5 °c 
I::s.-P. 94.0 u o 115.0 0 130 1.61 

5 127.0 .740 6.76 134.o .759 6.61 135 1.39 
10 131.0 .769 12.81 145.0 .767 12.~5 140 1.30 
15 142.0 .769 18.56 149.5 .757 18.46 145 1.32 
20 146-3 .758 24.10 162.0 .762 24.12 150 1.40 
25 148.5 .755 29.57 154.5 .767 29.69 155 1.15 
30 152.0 .754 34.91 160.0 .778 35.14 16o 1.07 
35 154.8 .764 40.16 163.0 .782 4o.46 165 .86 
4o 157.8 .774 43-33 165.8 .785 45.71 170 .96 
45 160.0 .777 50.41 168.0 .785 50.83 175 .94 
50 162.5 .78o 55.42 170.2 .781 55.93 18o .93 
55 165.0 • 783 60.35 172.0 .776 60.94 185 .65 
60 168.0 .784 65.12 174.o .771 65.90 190 .57 
65 170.0 .784 69.97 177.2 .773 70.79 195 .5e 
70 172.0 .78o 74.69 181.8 .785 75.57 200 .48 
75 174.o .774 79.36 187.0 .794 8o.20 210 • -38 
Bo 178.0 .768 83.94 193.0 .790 84.70 220 -32 
85 182.2 .772 88.41 199.5 .787 89.01 
90 190.0 .782 92.72 215.0 .8()5 93.05 
95 211.0 .791 96.56 254·.'.;j_ .817 96.74 

E.P. 240.0 .795 100.00 298.0 .828 100.00 



240 

TABLE XVIII 

PHYSICAL PROPERTIES OF OIL F 

Pressure :a: 1 Atm. 

Vol.~ T.B.P. A.S.T.M. Sp. Gr. 6Tr M.Wt. 
Distilled oc oc 

I.~.P. 170.0 175.0 -- .463 94.7 
5 166.0 188.0 .753 -341 128.5 

10 180.0 195.0 .767 -319 140.5 
15 188.5 199.0 .779 -311 146.o 
20 193.0 202.0 -7~9 -307 147.9 
25 196.0 204.5 .7 1 -305 149.2 
30 200.0 207.0 .784 -302 151.0 
35 203.0 209.5 .792 -300 154.o 
40 210.0 311.0 .799 .295 157.8 
45 213.0 213.0 .794 .293 158.2 
50 215.0 215.0 .790 .290 159.0 
55 217.2 217.0 .790 .289 159.5 
60 221.0 219.5 .796 .287 161.5 
65 225.0 222.0 .801 .285 163.9 
70 229.0 224.o .808 .281 167.2 
75 232.5 227.0 .8oo .28o 166.7 
80 235.0 230.0 .798 .278 167.4 
85 239.5 234.o .806 .275 171.0 
90 246.5 237.5 .818 .272 175.5 
95 251.0 243.5 .829 .269 179.5 

E.P. 276.0 252.0 .829 .257 188.0 

(Oil Fis a sweet kerosene, from Texas) 



TABLE XIX 

EQUILIBRIUM PROPERTIES AND K-VALUES - OIL F 

Equipment - Thermostatic flow 
Condition - Pe• 1 Atm.; Te• 214.5 °c; %V = 47.4 

VaEor Li9.uid 
es.Tf)ave. Moleij Vol.1, T.B.P. A.s6T.M. Sp.Gr. es.Tr)ave. Mole~ T.B.P. A.S.T.M. Sp.Gr. 

Distilled Oc C oc OC 
I.B.P. 109.0 162.0 -- ~- 0 154.o 208.0 -- -- 0 

,2.5 134.o .460 3.76 177~0 .338 2 .. 95 
5 150.0 175.0 .746 .392 6.96 187.2 210.0 .774 .318 7.73 
7.5 159.0 -361 9.90 192.0 -310 B-.4~ 

10 166.3 187 .. 0 .762 -345 12.72 194.o 212.0 .783 .307 lI.12 
12.5 170.0 .336 12.46 196.2 .305 lJ.~ 
15 174.o 191.0 .766 .330 18.16 199.0 214.o .786 .303 ltr;.4J 
17.5 177.5 .325 20.81 201.5 -301 19-.-00 
20 181.0 194.o .771 -321 23.43 204.o 215.0 .796 .299 21,.67" 
22.5 184.o .317 26.02 206.5 .297 24-.2&· 
25 187.0 196.0 .782 -314 28.59 209.0 217.0 .Boo .295 2~.8tt 
27.5 189.5 -312 31.13 211.0 .294 23.40 
30 191.5 198.0 .783 .310 33.66 213.0 218.0 .799 .292 31.95'-
32.5 193.0 -308 36.18 214.o .291 34.50 
35 194.o 200.0 .781 -307 38.69 215.5 219.5 .794 .290 3,.03 
37.5 195.0 .306 41.14 216.5 .290 39.,6 
40 196.5 201.0 .781 .305 43.67 218.0 221.0 .793 .289 42.097 
42.5 198.0 .303 46.15 219.0 .288 41f.~6o 
45 200.0 204.o .789 .302 48.61 221.0 222.5 .799 .287 47.12 
47.5 202.5 .300 51.06 222.5 .287 49.51 
50 204.5 206.0 .798 .299 53.50 225.0 224.o .8o6 .285 5~.10 
52.5 206.2 .297 55.93 226.5 .284 54.58 
55 208.5 208.0 .8o2 .296 58-35 228.0 225.5 .8o8 .283 57.05 I\) 

.=--
57.5 210.5 .294 60.75 230.2 .282 59.51 I-' 



Cont. 

Vapor Li9.uid 
Vol.% T.B.P. A.S.T.M. Sp.Gr. Q'.STf)ave. Mole% T.B.P. A.S.T.M. Sp.Gr. ~Tf)Ave. Mole 1, 
Distilled OC OC Oc oc-
60 212.5 210.5 .799 .293 63.14 231.0 227.5 .866 .281 61.96 
62.5 213.5 .292 65.52 232.0 ~28o 64.41 
65 ,· 215.0 213.0 .794 .291 67.90 233.0 229.5 .8o2 .28o 66~86 
67.5 216.0 •. 290 70.28 234.o .279 69.29 
70 217.5 216.0 .793 .289 72.63 235.0 231.5 .8o2 .279 71.73 
72.5 219.5 .288 74.98 237.2 .278 74.16 
75 220.0 218.5 .Boo .287 77.32 239.0 234.o .8o8 .277 76.58 · 
77.5 224.o .286 79.66 241.8 .275 78.98 
8o 227.5 221.5 .809 .284 81.97 245.0 236.5 .819 .274 81.37 
82.5 230.0 ~2·82 84.28 247.0 ~272 83~75 
85 232.0 225.0 .805 .281 86.57 249.0 240.0 .819 .271 86.11 
87.5 234.o .28o 88.56 251.0 .270 88.47 
90 237.0 229.0 .8o3 .278 91.13 253.0 245.0 .814 .269 90.82 
92.5 241.0 .276 93-38 261.0 .266 93.14 
95 249.0 234.o .819 .273 95.61 263.0 248.5 .827 .264 95.45 
97.5 252.0 .270 97.82 266.5 .263 97.75 
E.P. 258.0 242.0 .819 .267 100.00 286.0 247.0 .827 .257 100.00 

~ 
I\) 



:ont. 

)il Fat Pe• l Atm.; Te= 214.5 °c;pTr~Tr)P = 0.940 

~~ dv/dTB dl/d'I'B K K-Lit. 
(138) 

170 11.5 
175 14.o 
180 15~5 
185 17~0 
190 20.0 8.o 2.50 
195 41.0 19.0 2.03 
197.5 30.0 19.5 1.45 
200 24.o 20~0 1.13 1.35 
202.5 21.0 20~0 .99 
205. 23.0 20~0 1.08 
207.5 25.0 20.0 1.,17 
210 26~0 22~0 1.11 
212.5 32.0 26.o Ll5 
215 38~0 37~0 ~97 1.00 
217.5 30.0 38.5 ~13 
220 23~5 3L5 .69 
222.5 19.5 28~0 .64 
225 21.0 27~5 ~71 
227.5 21.5 27.0 ~74 
230 2LO 32~0 .62 .77 
232.5 2LO 25.0 .79 
235 16.5 37~5- .42 
237.5 13~0 24.5 .50 
240 11.0 2LO .49 .54 
242.5 ... 8.8 19.0 .43 
245 7.5 19.0 .37 



::ont. 

)il Fat Pe= 1 Atm.; Te• 218 °c; vi= 51.2 

VaEor L19.uid 
Vol.'1, T.B.P. 'A.S.T.M. Sp.Gr. T~B.P. A.S.T.M. Sp.Gr. 
Distilled OC oc oa OC 

I.B.P. 109.5 168.-0 160.0 195.0 
2.5 135.5 177.0 
5 153~5 176.0 .751 188.5 210.0 .777 
7.5 159.0 192.5 

10 167.0 1-86.5 .760 196~0 214.5 .763 
12.5 171.0 198~0 
15 174.5 191.0 .762 200.5 215.5 .• 788 
17.5 178.0 201.0 
20 181;.5 193.5 .764 205.5 217.0 .797 
22.5 1~~5 208.5 
25· 187.7 195.0 .782 211~0 218.5 .soo 
27.5 190.0 212.5 
30 192.0 197.5 .783 213.5 219.5 .795 
32.5 193~0 214.2 
35 194~5 200.0 .78o 215.5 221.0 .791 
37.5 195.5 21~.5 
40 197.0 202.0 .781 218.0 222.5 .792 
42.5 198.8 219.0 
45 201.0 203.5 .790 221.0 223.5 .799 
47.5 203.0 223~0 
50 205.0 205.0 .799 225.0 225.0 .8o7 
52.5 207.0 226~5 
55 209.2 207.5 .Boo 228.5 22,.0 .8o7 
57.5 210.5 230~0 
60 212.5 210.0 .798 231.0 228.5 .8o7 
62.5 213.5 232~5 
65 215.2 212.5 .793 233~5 230.0 .790 
67.5 216.0 234;0 
70 218.0 215.0 .793 235.0 232.0 .798 
72.5 220.0 237.0 
75 223.0 217.0 .8ol 238.5 235.0 .8o6. 
77.5 225.5 241.2 
8o 228.0 219.5 .Bo9 244.o 237.5 .820 
82.5 230.0 247.0 

.8:(9. 85 232.2 223.0 .8o5 248.5 240.0 
87.5 234.o 259.5 
90 237.0 228.0 .8o2 252~5 .244.o .813 
92.5 242.0 261~0 
95. 248.o 229.0 .820 262~5 250.0 .828 
97.5 250.5 265.0 

E.P. 260.0 240.5 .820 284.5 260.0 ~828 



TABLE xx· 

PHYSICAL PROPERTIES OF OIL G 
I 

Condition: l Atm. 

Vol.'/,. T.B.P. A.S.T.M. Sp.Gr. Tr M. Wt. 
Distilled % oc 

I.B.P. 115.0 175~0 .473 93~5 
5 166.5 190.5 .765 .374 120~8 

10 18o.o 197~0 .780 ~352 · 129.1 
15 189.0 204.o • 7f;6· .337 136~0 
20 194~0 206.0 .784 ~330 139.5 
25 198~0 210~0 .794 .324 142.2 
30 203~5 212.0 .8o2 .317 147.;i. 
35 210.0 215.5 .806· ~309 151.5 
40 214.o 218.0 .802 ~305 152.9 
45 218~0 222~5 .Boo .301 154.5 
50 222.0 224.o .8o3 .297 158~5 
55 229~0 227.5 ;-815 ~297 163\18 
60 232~5 231.0 .816 ~287 166~0 
65 238.0 235.0 ~817 ~283 168.5 
70 245.5 240.0 .823 .277 177.0 
75 252:0 244.5 .826 .271 178.0 
8o 265~0 249.0 .840 .262 183.0 
85 267.5 265.0 ~840 ~260 188.5 
90 269.0 260.0 .841 .252 190.0 
95 274.o 268.o .842 .255 192.5 
E.P. 289.0 28o.o .842 ·-

(Oil G is a kerosene after hydroforzning:, from Texas) 



TABLE XX.I 

EQUILIBRIUM PROPERTIES - AND K-VALUES - OIL G 

Equilibrium Equipment - Thermostatic Flow 
Condition - Te a 218.0 °c; Pe• 1 Atm.; v'fr, • 26.3 

Va;eor 
~Tf)ave. Mole~ T.B.P. 

Li9.uid 
Vol.1, T.B.P. A.S0T.M. Sp.Gr. A.S.T.M. Sp.Gr. esTflave. ~le~ 
Distilled oc C oc Oc 
I.B.P. 162.0 0 143.0 200.0 0 

2.5 120.5 .478 3.62 170.0 .394 3.37 
5 127.0 169.0 .764 .456 7.07 18o.o 207.0 .78o .360 6.48 
7.5 141.0 .436 10.38 188.0 .345 9.44 

10 147.5 175.0 .7.87 .416 13.53 192.5 210.0 .782 .335 12.31 
12.5 156.0 .• 403 16.57 195.0 .330 15.13 
15 163.0 18o.o 0 775 .388 19.51 197.0 2lp.O .783 .327 17.90 
17.5 168.0 .377 22.37 199.5 .323 20.70 
20 172.5 184.o .778 .369 25.17 203.0 218.0 .794 .320 23.44 
22.5 176.0 .361 27.90 206.0 .316 26.15 
25 179.0 187.5 .776 .356 30.60 208.5 220.5 .8o8 .309 2~.83 
27.5 182.0 .351 33.26 211.0 .309 31.47 
30 185.5 191.0 .783 .346 35.88 2i4.o 224.o .8ol .306 3Jf..09 
32.5 188.0 .341 38.46 215.5 .303 36.70 
35 191.0 195.0 .789 .336 41.01 217.5 226.0 .790 .301 39.29 
37.5 192.5 .• 333 43.53 21,9.5 .298 41.87 
40 194.o 198.0 .785 ~330 46.03 222.0 228.0 0 795 .295 44.42 
42.5 195.0 .329 48.52 225.5 .292 46.95 
45 197.0 201.0 .783 .327 51.00 229.0 231.0 .811 .289 49.45 
47.5 198.5 .325 53.46 231.0 .288 51.94 
50 200.0 204.o .789 .323 55.91 233.0 234.5 .813 ·.286 54.40 
52.5 202.0 .320 58.33 234.o -~5 56.85 
55 205.0 207.5 .8o3 .317 60.74 236.Q 237.0 .-Si{) .263 59.29 
57.5 207.0 .314 63.il ~39.0 .28o 61.71 ro 
60 210.0 212.0 .8o9 .311 65.47 243.0 240.5 .817 .277 64.11 .J:" 

0\ 



Cont. 
Vapor 

( Trlave. Mole~ T.B.P. 
Lig,uid 

Vol.~ T.B.P. A.S.T.M. Sp.Gr. A.S.T.M. Sp.Or. C Tr>a.ve. Mole% 
Distilled oc oc oc OC 
62.5 212.0 .308 67.S6 246.o 

~-~ 

.275 66.49 
65 214.o 214.o .Boo .306 70.12 249.0 244.o .821 .273 68.84 
67.5 216.0 .304 72.32 251.5 ~271 71.18 
70 218.5 218.0 .792 .302 74.71 253.0 248.5 .820 .270 73.50 
72.5 221.0 .299 76.98 254.o .269 75.81 
75 226.0 222.0 .8o3 .295 79.21 256.5 253.0 .838 .268 78.12 
77.5 229.5 .292 81.42 260.0 .264 8o.4l 
8o 232.5 226.0 .816 .289 83~61 263.0 258.0 .840 .261 82.67 
82.5 236.0 .286 85.78 268.0 .257 84.91 
85 241.0 233.0 .817 .283 87.92 275.0 263.0 .840 .255 87.11 
87.5 247.5 .278 90.03 276.5 .254 89.29 
90 252.0 242.5 .826 .273 92.09 277.0 268.5 .84o .253 91.47 
92.5 261.0 .268 94.12 278.5 .252 93.64 
95 265.0 -- .840 .263 96.11 28o.o 277.0 .S4o .250 95.49 
97.5 270.0 .260 9.8.08 284.o .244 97.93 

E.P. 286.0 272.0 .840 .253 100.00 300.0 -- .84o -- 100.00 

~ 
-...:i 



Condition= Te= 23.0 -G; re•~ ~~w.; v~ - u~·~ 

Vapor 
C6Tr>ave. 

Lig,uid 
Vol.% T.B.P. A.S.T.M. Sp.Gr. MoleJ, T.B.P. A.S.T.M. Sl).Gr. es.T:f)ave. Mole 1, 
Distilled OC oc oc ..... 
I.B~P. 103.0 185.0 0 129.0 197.0 0 
2.5 138.5 .463 3.68 188.5 .387 3.44 
5 155.0 189.0 .763 .412 6.95 196.0 203.0 .791 .333 6.41 
7.5 165.0 .387 10.03 201.0 .323 9.29 

10 171.0 191.5 .778 .373 12.99 206.5 227.5 .Bo3 .317 12.11 
12.5 176.0 .363 15.88 210.0 .311 14.87 
15 18o.o 194.5 .779 .355 18.76 213.0 229.5 .Bo6 .307 17.61 
17.5 183.5 .349 21.54 215.0 .305 20.32 
20 187.0 197.5 .787 -343 24.26 217.0 232.5 .799 .303 23.03 
22.5 189.5 .338 26.96 220.0 .300 25.69 
25 192.0 201.0 .788 .334 29.61 223.5 235.0 .8o7 .297 28.3 
27.5 193.5 .332 32.25 227.0 .294 30.95 
30 195.0 204.o .787 p330 · 34.87 229.0 237.0 .817 .291 43.54 
32.5 196.0 ~328 37.48 231.0 .289 36.11 
35 197.5 206.0 .787 -326 40.07 332.0 239.0 .817 .288 38.86 
37.5 199.0 .324 42.65 334.o .287 41.23 
40 201.0 209.0 .798 .321 45.20 235.5 241.0 .815 .285 43.77 
42.5 204.o .318 47.73 238.0 .284 46.29 
45 206.5 211.5 .811 .315 50.24 241.0 242.5 .821 .281 48.Bo 
47.5 208.5 .312 52.72 244.o .279 51.28 
50 211.5 213.5 .810 .310 _ 55.18 247.0 244.5 .826 .276 53.74 
52.5 213.0 .307 57.62 249.0 .275 56.18 
55 214.5 216.5 .Boo .305 60.04 249.5 248.o .825 .274 58.62 
57.5 216.0 .304 62.46 251.5 .273 61.05 
60 217.5 220.0 .794 .302 64.87 253.0 250.5 .828 .271 63.46 
62.5 220.5 .300 67.25 255.0 .270 65.86 
65 244.o 223.0 .Bo3 .296 69.61 257.0 253.5 .836 .268 68.25 
67.5 226.5 .294 71.95 268.0 .265 70.65 
70 229.5 226.0 .818 .291 74.26 271.5 260.0 .844 .260 72.92 

~ 
C 



Cont. 

Va;eor Li9.uid 
Vol.~ T.B.P. A.S0T.M. Sp.Gr. t:'.S!r )ave. Mole 1, T.B.P. A.S.T.M. Sp.Gr. Q'.ST;>ave. Mole 1, 
Distilled oc C OC OC 

72.5 232.0 .289 76.56 272.0 .. 257 75.21 
75 234.o 232.0 .817 .287 78.84 272.5 259.5 .844 .257 77.49 
77.5 237.5 .284 81.10 273.0 .256 79.78 
8o 242.5 237.0 .820 .281 83.23 273.5 266.0 .844 .256 82.06 
82.5 249.0 .279 85.55 274.o .256 48.34 
85 251.5 242.0 .828 .273 87.72 275.0 267.0 .844 .255 86.6o 
87.5 253.5 .271 89.87 275.5 .255 88.87 
90 259.0 250.0 .836 .267 91.99 276.5 271.8 .844 .254 91.13 
92.5 271.0 .262 94.08 278.0 .253 93.38 
95 273.5 267.0 .846 .257 91.12 281.0 276.0 .844 .251 95.62 
97.5 289.5 .251 98.11 293.0 .248 97.82 
E.P. 297.0 273.0 .846 .244 100.00 298.0 287.0 .844 .243 100.00 

~ 
\0 



Condition - Te= 244 °c; Pe: 1 Atm.; V'1o = 77.6 

Va;eor 
5Tr>ave. Vol.'/; T.B.P. A.S.T.M. Sp·.Gr. 

Distilled OC OC 
I.B.P. ,100.0 159.0 

5 159.5 183.0 .763 .443 
10 157.0 189.5 .779 ~375 
15 184.o 195.5 .782 .352 
20 190.0 200.0 .784 .340 
25 194.o 203.0 .786 0 333 
30 197.0 206.0 .789 .328 
35 201.5 208.5 .196 .323 
40 206.0 311.5 .8o4 .316 
45 210.5 214.o .8o5 .311 
50 214.5 216.0 0 799 .3o6 
55 218.0 219.0 0 793 -302 
60 224.o 222.5 .8o3 .298 
65 230.0 226.0 .814 .292 
70. 234.o 230.0 .815 .288 
75 240.0 234.o .817 .283 
8o 249.0 238.5 .825 .277 
85 253.0 246.o .828 .272 
90 260.0 253.0 .836 .267 
95 278.0 262 • .5 .846 .259 

E.P. 291.5 271.0 .846 .249 

Mole1, T.B.P. 
Lig,uid 

A.S.T.M.. 
oe . oC 

0 108.0 200.0 
7.13 200.0 227.0 

13.16 212.5 232.0 
18.83 220.0 235.0 
24.30 227.0 238.0 
29.66 23L5 24Lo 
34.94 236.0 243.0 
40.13 242.0 245.5 
45.22 247.5 248.o 
50.22 250.0 250.0 
55.15 252.5 252.0 
6o.01 257.0 254.5 
64.81 261.0 257.0 
69.51 272.0 259.0 
74.15 274.o 262.0 

· 78.70 275.0 264.5 
83.16 276.0 268.0 
87.54 277.5 271.0 
91.83 279°5 275.0 
96.00 283.5 281.5 

100.00 294.5 --

Sp-.Gr. (&Pave. 

.797 ~343 
~803 ~314 
.8o4 ~303 
~811 ~295 
.812 ~290 
.816 .286 
.820 .282 
.823 .277 
.825 .274 
.827 .272 
.833 .270· 
.837 .266 
.841 .261 
.841 .256 
.841 .255 
.841 .254 
.841 .253 
.H41 .252 
.841 .250 
.841 .245 

Mole 1, 

0 
6.24 

11.59 
17.46 
22~83 
28.10 
33.30 
38.43 
43.47 
48.45 
53~40 
58.31 
63.15 
67.89 
72.55 
77.19 
81.81 
86.41 
91.00 
95.55 

100.00 

I\) 
\.Jl 
0 



mdition - Te = 218.o 0c; Pe • 1 Atm.; ~;/t:::,.Tf)p: .885 

3 dy/dTB dx/dTB K dv/d'fi3 dl/dT:e K , , 
55 7.70 1.10 6.18 
5o 8.70 2.00 3.62 
55 10.1 2.10 4.26· 
70 11.5 3.25 3.13 
72.5 12.9 3.51 3.26 
75 15.4 5.35 2.88 13.4 3.20 3.71 
77.5 16.1 6.50 2.48 14.2 4.83 3.61 
80 17.0 6.51 2.62 14.8 6.oo 2.19 
82.5 17.5 7.80 2.24 16.6 6.75 2.16 
85 18.1 9.10 1.98 17.7 7.45 2.10 
.87.5 20.0 10.2 1.96 19.6 9.17 1.89 
,90 22.2 12.2 1.83 22.5 11.2 1.77 
.92.5 29.0 14.9 1.94 27 .5 14.o 1.74 
,95 33.0 23.0 1.43 31.5 19.0 1.46 
.97.5 32.2 21.2 1.51 44.o 18.0 1.67 
!00 24.5 21.0 1.17 29.0 18.4 1.39 
~2.5 21.0 18.5 1.13 21.0 18.3 J..01 
~5 19.6 16.5 1.18 19.0 18.3 ..• 92 
~07 .5 18.8 19.0 0 99 19.5 18.2 .95 
~10 18.0 17.1 .90 19.0 18.2 .92 
~12.5 20.0 20.8 .96 22.0 18.0 1.07 
~15 22.0 24.o .92 26.0 22.6 1.02 
217.5 19.0 27.8 .68 24.o 33.0 .65 
220 16.2 22.0 .73 19.5 21.5 .80 
222.5 13.0 18.3 .72 16.5 18.5 .78 
225 14.5 21.5 .6o 
230 13.2 22.0 .53 
232.5 12.3 31.0 .34 
235 11.5 23.5 .43 



... ., ... 

ldition - Te = 234.o 0 c; Pe= 1 Atm.; ~Tf~Tf)p = .894 

dy/dTB d.x/dTB K dv/dTB dl/dTB K K-s; ~) 6TB=2. 5-' 
0 11.0 l.50 7-33 9.50 I.61 5.31 
2.5 11.5 2.00 5.75 10.7 1.90 5.03 
5 12.0 2.20 5.45 11.2 2.20 4.55 
7°5 12.6 3.02 4.20 12.0 2-30 4.66 
iO 13.8 3.51 3.94 12.9 2.74 4.19 
12.5 15.5 4.50 3.45 14.1 3.10 4.03 
15 17.2 5.00 3.44 15.2 3.71 3.67 
~7 °5 20.1 5.82 3.43 18.0 4.30 3°73 
~o 22.5 6.20 3.63 20.1 5.44 3-37 4.oo 
~2.5 28.0 7.70 3.63 23.7 6.68 3.17 4.43 
~5 29.6 8.50 3.47 26.6 8.14 2.92 4.75 
n.5 26.5 9.62 2.75 4.14 
)0 24.o 10.2 2.35 20.7 8.95 2.07 2.55 
)2.5 19.2 11.6 1.66 18.0 9.00 1.78 1.53 
:>5 18.7 13.0 1.44 19.1 10-3 1.64 1.33 
07.5 21.0 14.8 1.42 20.0 12.0 1.48 1.42 
10 22.1 14.o 1.58 21.8 14.o 1.39 1.45 
12.5 29.0 21.0 1.38 24.8 16.8 l.31 1.32 
15 28.0 26.0 l.07 32.7 23.0 1.27 1.08 
:17 .5 22.0 23.0 1.10 24.o 21.0 1.02 .88 
i20 16.5 19.0 .87 19.7 17.4 1.01 1.00 
!22.5 14.o 14.o 1.00 14.8 14.o .94 1.00 
!25 14.5 14.2 l.02 14.5 13.5 .96 1.05 
?27 .5 18.0 20.0 .90 18.0 20.0 .80 .90 
~30 19.0 24.o .79 22.0 25.5 .77 .67 
~32.5 21.2 33.3 .64 22.0 31.0 .63 .57 
235 15.5 29.0 .53 18.0 28.5 ... 56 .53 
237 .5 12.0 22.0 .55 14.2 21.2 0 59 .57 
240 9.5 16.8 .56 10.8 17.6 .54 0 59 
242.5 7.5 15.5 .48 9.50 17.0 .49 .44 
245 6.2 16.2 -38 7.8o 17.0 .41 .36 
247.5 7.4 20.0 .37 8.oo 20.0 .36 .25 
250 .48 



-.,,,J 

:idition - Te• 244.o 0c; Pe= 1 Atm.; ~Tr/~Tf)p = .895 

dy/<;lTB d:x./dTB K dv/dTB dl./dTB K Lim~v/d~_,!t1/dit . 
0 8.51 1.23 6.88 
2.5 9.60 1.48 6.50 
5 10.1 1.75 5.77 
7 .5 11.3 2.00 5.65 
,0 12.7 2-35 5.42 11.6 1.85 5.61 11.68 1 .. 845 5.62 
i2.5 14.5 2.75 5.28 
>5 16.5 3.25 5.07 
>7 .5 19.0 3.75 5.06 
10 20.0 4.40 4.55 20.2 4-38 4.12 
~2.5 20.7 5.10 4.06 
~5 21.5 5.80 3.72 
n .5 21.7 6.71 3.24 25.5 7.00 3.26 
)0 21.8 7.50 2.91 25.5 8.oo 2 .. 85 24.42 7.92 2.88 
)2.5 22.0 8.50 2.59 24.o 8.20 2.62 
)5 22.0 9.51 2.30 22.5 8.40 2-39 22.50 8.365 2.41 
)7.5 22.0 10.5 2.09 22.5 9.02 2.24 
10 22.1 11.6 1.90 22.5 9.60 2.10 22o35 9.71 2.06 
12.5 22.2 12.7 1.73 22.2 10.4 1.92 
15 22.1 13.7 1.60 22.0 11.0 l.79 
17.5 21.7 15.0 1.45 21.3 12.0 1.59 
20 21.5 16.0 1.35 21.8 12.7 1.54 21.73 12.66 1.53 
22.5 20.7 17.2 1.20 21.0 14.o 1.34 
25 20.2 18.2 1.11 21.0 16-3 1.15 
27.5 19.5 19.0 1.03 21.8 17.5 1.12 
30 18.8 20.0 .94 22.5 20.4 .90 22.67 19.50 1.0'4 
32.5 18.5 20.5 .90 
:35 17.8 22.5 .79 21.5 ·21.8 .88 
!37 .5 16.0 21.0 .76 
!40 14.8 20.8 .71 16.0 17.0 .84 
!42.5 14.2 21.6 .66 
145 12.8 21.2 .60 15.5 22.5 .68 
147 .5 12. 7 23.3 .55 15.0 25.0 .54 
~50 12.0 22.7 .53 14.2 24.o 0 53 
~52.5 11.2 22.8 .49 13.0 24.5 .48 
~55 10.5 22.5 .46 12.1 24-3 .44 
~57 .5 9.7 22.0 .44 11.2 23.0 .43 
260 9.2 21.5 .43 9.6 22 .. 0 .39 



TABLE XXII 

PHYSICAL PROPERTIES OF OIL F-G 

ssure 8 1 Atm. · 

• <fo T.B.P. A.S.T.M. Sp. Gr. 6,Tr M.Wt. 
tilled oc Oc 

l.P. 120.0 
5 149.5 

165.0 191.0 .759 .375 116.2 
,5 :).73.0 

179.0 197.0 .773 .354 127.5 
,5 184.5 

188.5 201.0 • 783 .343 133.4 
.5 191.0 

193.5 206.0 .785 .338 13505 
.5 195.0 

196.5 208.0 .785 -336 136.4 
.5 198.5 

201.0 210.0 .794 .330 140.5 
.5 203.5 

206.0 213.0 .806 .326 144.5 
.5 208.5 

211.0 215.0 .8o6 .322 146.2 
i. 5 213.0 
i 214.o 218.0 .797 .319 146.o 
r • 5 215.5 
) 216.5 220.0 .793 -317 146.2 
~. 5 218.5 
) 219.5 222.5 .798 -315 148.o 
r. 5 223.0 
) 226.5 225.0 .812 .309 153.4 
2.5 228.5 
5 230.5 229.0 .814 -305 155.7 
7.5 232.0 
0 233.5 232.0 .8o9 -304 155-3 
2.5 235.0 
5 237.0 235.5 .8o7 -301 156.5 
7.5 240.5 
0 244.o 240.5 .823 .296 162.3 
12.5 248.o 
15 251.5 246.o .822 .291 164.7 
~7 .5 254.o 
)0 257.5 251.5 .826 .287 168.2 
}2. 5 269.5 
}5 272.0 263.0 .841 .277 177~5·. 
17.5 277.0 
~oPo 293.0 272.0 .841 .264 186.2 

)il F=G is a 50/50 by volume blend of oils F and G 
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TABLE XXIII 

EQUil.IBRIUM PROPERTIES AND K-VALUES OF on. F-G 

~quilibrium equipment= Thermostatic flow 
~ondition 8 Pe~ 1 Atm.; Te~ 218.o 0c; V% = 35.6 

Vapor Li9.uid 
~ol.% T.B.P. A.S.T.M. Sp.Gr. T.B.P. A.S.T.M. Sp.Gr. 
Distilled OC Oc oc oc 
I.B~P. 99.5 155.0 153.0 202.0 

2.5 128.0 147.5 
5 144.o 172.0 .752 185.0 205.0 .775 
7.5 153.5 191.0 

10 162.5 179.0 .762 194.o 212.5 .785 
12.5 166.0 196.0 
15 170.0 184.o .773 198.5 215.0 .786 
17.5 173.0 201.0 
20 176.0 187.5 .773 204.o 216.0 .798 
22.5 179.5 206.5 
25 183.0 191.0 0 779 209.0 218.0 .Bo2 
27.5 186.0 211.0 
30 188.0 194.o .787 213.0 220.0 .798 
32.5 191.0 214.5 
35 193.0 197.0 .787 216.0 221.5 0 795 
37.5 194.o 217.5 
4o 195.5 199.0 .783 219.0 223.5 .792 
42.5 196.5 221.0 
45 198.0 201.5 .784 223.5 225.0 .8o5 
47.5 200.00 225.5 
50 202.0 204.o .795 228.0 227.0 .814-
52.5 204-.o 229.5 
55 207.0 2o6.5 .Bo6 231.0 229.5 .811 
57.5 209.0 232.5 
60 211.0 209.0 .Bo5 234.o 232.0 .Bo5 
62.5 213.0 235.5 
65 214.5 212.0 .796 238.0 235.5 .Bo8 
67.5 216.0 240.5 
70 217.5 216.0 .791 243.5 238.5 .820 
72.5 219.5 246.5 
75 223.0 219.0 .Boo 249.0 243.0 .824 
77.5 226.5 250.5 
Bo 229.5 223.0 .815 253.0 246.5 .821 
82.5 232.0 256.0 
85 234.o 229.0 .810 260.0 251.5 .833 
87.5 238.0 264.o 
90 244-.o 235.0 .815 267.5 258.0 .837 
92.5 249.0 277.0 
95 258.0 243.0 .833 279.0 266.0 .845 
97.5 268.5 283.5 

E.P. 284.5 256.0 .833 301.0 275.5 .845 



Equipment :.i Thermostatic r.1.ow 
Condition 8 Pe 8 1 Atm.; Te~ 234.o 0 c; vi 8 77.0 

Vapor 
~f}ave. Mole~ T.B.P. 

Li9.uid 
Vol.i T.B.P. A.S.T.M. Sp.Gr. A.S.T.M. Sp.Gr. (6.Tf)ave. Mole% 
Distilled DC oc oc oc 

I.B.P. 120.0 182.0 0 164.o 212.0 0 
2.5 143.5 .520 3.97 190.5 -360 3.01 
5 159.0 186.0 0 759 .406 7.06 198.5 223.5 .786 .342 5.86 
7.5 165.5 o38o 9.96 204.o -340 8.70 

10 174.o 192.'5 .774 -367 12.76 209.0 227.5 .8ol -325 11.42 
12.5 178.0 .358 15.49 2llo5 -322 14.11 
15 183.0 197.0 .778 .353 18.18 214.o 230.0 .Boo .320 16.78 
17.5 186.5 -348 20.83 216.5 .318 19.43 
20 190.0 200.5 .787 .344 23.46 219.0 232.0 .797 .316 22.07 
22.5 191.5 -340 26.05 221.5 -314 24.70 
25 194.o 203.5 .786 .339 28.64 224.o 234.5 .8o5 .312 27.30 
27.5 195.0 -337 31o61 226'.5 -318 29.89' 
30 196.5 206.0 .782 -336 33.78 229.0 235.0 .812 -308 32.46 
32.5 198.0 -334 36-31 230.0 -307 35.03 
35 199.5 208.5 .789 -333 38.85 231.0 237.0 .810 -307 37°59 
37.5 202.0 .331 41.38 233.0 -305 40.14 
4o 204.5 210.0 .8o3 -329 43.89 234.o 238.5 .8o5 .J04 42.67 
42.5 207.0 .326 46.37 235.5 -303 45.21 
45 209.0 212.5 .8o9 .324 48.84 237.5 240.5 .8o7 -302 47.73 
47.5 211.5 -323 51.30 239.0 .}01 50.24 
50 213.0 215.0 .8ol .320 53.74 242.0 243.0 .818 .299 52.47 
52.5 214.5 .320 56.18 245.0 .297 55.22 
55 215.5 216.5 .794 -319 58.61 246.5 235.0 .823 .295 57.68 
57.5 217.0 -317 61.03 238.0 .294 60.14 
60 218.0 219.5 .793 .316 63.44 250.5 246.o .820 .293 62.59 
62.5 219.5 -316 65.85 251.5 .291 65.02 
65 222.5 222.5 .8ol .314 68.25 253.0 248.5 .822 .290 67e144 
67.5 225.5 -312 70.63 254.o .29.0 69.86 I\ 

\J 

70 228.0 226.5 .814 .309 72.98 255.0 251.0 .827 .289 72.27 C 



1.,;om:;. 

Vapor 
e;:_Tf')aveo Vol.1, ToB.P. A.S0T.M. Sp.Gr. 

oc Distilled C 

72.5 230.0 0308 
75 232.0 222.8 0811 .306 
77o5 233.5 .304 
8o 236.0 232.0 .8o4 .303 
82.5 238.5 -301 
85 24-3.0 238.0 .814 -300 
87.5 247.5 .296 
90 251.0 248.5 .821 .292 
92.5 260.0 .288 
95 263.0 252.5 .836 .284 
97.5 266.0 .282 
E. P. 276.0 254.o .836 .278 

Mole1,. T.B.P. 
Li9.uid 

A.S.T.Mo 
oc 0 C ., 

75.33 .267.0 
77.67 268.0 · 254.5 
79.98 269.5 
82.29 270.5 258.0 
84.59 271.0 
86.88 272.0 262.0 
89.14 273.0 
91.36 274.o 267.0 
93.56 276.0 
95.72 279.0 272.b 
97.88 282.5 

lQ0.00 302.0 284.o 

Sp.Gr. C2S.T:r>aveo 

.285 
• 839 .281 

.279 
.829 .278 

.278 
.839 .277 

.277 
.839 .276 

.275 
.-839 .273 

.272 
.839 .268 

Mole1, 

47.40 
76. 75 . 
79.08 
81.40 
83.73 
86.04 
88.35 
90.66 
92.95 
95.23 
97.51 

100.00 

ro 
V1 
-.J 
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'!' :: 218.0 OC T : 234.0 °c e e ( TrL T:d = .914 ( Tr.L T:d = • 215 
dvfdTB dlfdTB K dvfdT:e dlfdT:9 K 

~ 16.5 12.0 2.2 5.02 
~2.5 17.2 
~5 18.0 16.0 3.1 4.76 
~7 .5 19.5 9.8 1.82 
)0 22.1 12.1 1.67 20.0 4.2 4.36 
~2.5 27.2 14.5 1.71 22.1 5.0 4.oo 
~5 29.1 16.3 1.63 24.3 5.7 3.90 
n.5 29.3 18.0 1.49 26.0 7.2 3.31 
)0 28.0 19.3 1.33 27.1 8.8 2.82 
)2.5 27.2 20.7 1.21 24.7 9.2 2.46 
)5 25.5 22.0 1.06 33.9 10.5 2.08 
)7.5 24.o 23.0 .95 23.7 13.0 1.67 
10 23.5 24.o .90 24.7 15.5 1.46 
12.5 23.0 26.0 .81 28.4 18.4 1.41 
15 22.8 27.0 .77 31.2 22.0 1.31 
17.5 22.0 28.0 .72 30.5 19.0 1.46 
20 21.5 28.3 .69 31.0 19.0 1.49 
22.5 20.1 28.3 .66 26.0 19.0 1.28 
25 19.1 27.2 .64 22.0 20.8 .98 
27.5 24.o 25.0 .88 
30 17.2 31.3 .50 26.01 30.0 .79 
32.5 22.2 27.8 .73 
35 14.5 32.5 .41 19.0 27.1 .64 
:37 .5 17.5 22.8 .70 
!40 11.2 31.6 -32 16.5 23.4 .64 
!42.5 15.7 23.2 .62 
!45 7.2 21.8 .28 13.1 23.0 .52 
?47.5 13.2 24.5 .49 
!50 5.2 18.0 .26 10.0 27.0 .34 
?52.5 
?55 3.5 16.0 .20 
?60 
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