71-27,621

JAINCHELL, Richard Anthony, 194l-
ON THE REPRESENTATION OF INTEGERS BY INTEGRAL
BINARY QUARTIC FORMS.

The University of Oklahoma, Ph.D., 1971
Mathematics

e * o i VBSOS

bk ol S

. University Microfilms, A XEROX Company , Ann Arbor, Michigan

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED



THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

ON THE REPRESENTATION OF INTEGERS BY

INTEGRAL BINARY QUARTIC FORMS

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
degree of

DOCTOR OF PHILOSOPHY

BY
RICHARD ANTHONY JAINCHELL
NORMAN, OKLAHOMA

1971



ON THE REPRESENTATION OF INTEGERS BY

INTEGRAL BINARY QUARTIC FORMS

_/@_x%,_hAim.i____

RESS

/

/DISSERTATION COMMITTE



ACKNOWLEDGMENT

I gratefully acknowledge the advice, assistance, and encouragement

given to me by Dr. John C. Brixey during the preparation of this paper.

iii



TABLE OF CONTENTS
R Page
INTRODUCTION Y
Chapter
I. SOME SUFFICIENCY CONDITIONS FOR SPECIAL
BINARY FORMS TO BE POSITIVE AND RELATED
RESULTS 4 v « o« o o o o o o o o o o s s o o o o o s o o 1
II. NECESSARY AND SUFFICIENT CONDITIONS FOR
INTEGRAL BINARY QUADRATIC AKND QUARTIC
FORMS TO BE POSITIVE. & ¢ ¢ o ¢ « o o o o o o o o o o o 4 8
III, SOME RESULTS ON THE INVARIANTS OF INTEGRAL
BINARY QUARTIC FORMS. o ¢ ¢ o ¢ o o o o o o o o o o o & 13
IV. THE INTEGRAL SOLUTIONS OF THE INTEGRAL
BINARY QUARTIC EQUATION f(x,y) =M .+ « « o« « o o« &« « « « 18
V. ON THE NUMBER OF REPRESENTATIONS OF
INTEGERS BY BINARY FORMS . & v 4 4 ¢ o« o ¢ ¢ o ¢ « o o o 45

REFERENCES . e o 3 L] L] . e o * o . . . . . L] . . L] . . . . . e . . 56

=\

iv



ON THE REPRESENTATION OF INTEGERS BY

INTEGRAL BINARY QUARTIC FORMS
INTRODUCTION

A binary form of degree n is an expression of the type

_ n n-1 e n
£(,y) =ax +a _x y+ +ay .

If the coefficients a, are integers (rational numbers), then £ is said to
be an integral (rational) form. If f is an integral (rational) form and
f(x,y) > 0 for every pair of integers (rational numbers) (x,y) # (0,0),
then f is said to be a positive form (over the rationals).

In the first, second, and third chapters necessary and sufficient
conditions are given for an integral binary quartic form to be positive.
Thue (1909) proved that the equation g(x,y) = m has at most a

finite number of integral solutions, where g(x,y) denotes an integral
binary form of degree at least three which is irreducible over the
rationals and m is an integer. Recently, Baker [1] has improved Thue's
result by showing that a bound can be found for the magnitude of the
integral solutions of the equation g(x,y) = m.

In Chapter IV the complete solution in integers of the equation
f(x,y) = m is discussed, where f(x,y) denotas an integral binary quartic
form and m is an integer. Emphasis is placed on giving methods of solu-
tion which can be completed in a finite number of steps. Although the
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author wanted to avoid using Baker's result in the discussion of the
solution in integers of the equation f(x,y) = m, it was necessary to use
the result when f is irreducible over the rationals and the zeros of f
are four irrational numbers or two irrational numbers and two imaginary
numbers,

In Chapter V Baker's result, mentioned above, is used to give a
bound for the number of integral representations of an integer by an
integral binary form of degree at least three which is irreducible

over the rationals.
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CHAPTER I

SOME SUFFICIENCY CONDITIONS FOR SPECIAL BINARY

FORMS TO BE POSITIVE AND RELATED RESULTS

Theorem 1.1 Let f(x,y) = ax4 + bx3y + cxzy2 + dxy3 + ey4 be an
integral form. Suppose 4ae - bd = 0, Then f is a positive form if and
only if a > 0, e > 0, and 4cae - bze - dza > 0.

Proof. Suppose f is a positive form. Then 0 < £(1,0) = a and

0 < £(0,1) = e. Therefore a # 0 and e # 0, and consequently

' 2 2
(1.1) f(x,y) = %z (2ax + by)2 + %E-(Zey + dx)2

2.2
+-%—z— (4cae - b2e - dza).
ae
Since e # 0 and 4ae - bd = 0,

2
(1.2) 0 < £(2e,-4d) =-E%— (4cae - b2e - dza).

ed2

> 0, by inequality (1.2) 4cae - bze - dza > 0.

Conversely, suppose a > 0, e > 0, and 4cae - b2e - dza > 0. Since

Since

ae # 0, equation (1.1) holds. Therefore for integers x and y, f(x,y) 2 O

and f(x,y) = 0 implies x = 0 and y = 0, Hence f is a positive form. I

Corollary 1.2 Let f(x,y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 be an

integral form. If a > 0, e > 0, and 4cae - b2e - dze > 0, then f is a
positive form,

Proof. This is an immediate consequence of the second part of the

1



proof of Theorem 1.1. “

- k
Lemma 1.3 Let £(x,y) = anxn + an_lxn ly + s+ 4+ a yn withn= 2",
, _ @ _ W @ ... k-2
k > 3. Define a =a and a, =aj". Let a1 2n-4i’ i=1, »2 1,
be constants such that
b @ _
(1.3) qh-4i ta qn-4i n-4i"

Define x° = yo = 1 and hi = xn—41y41—4, is= l,2,"',2k—2. Then

k 2
- (2) <4 CHPUN € &
@) £6y) = [ig Gt gyt e gy X Y AT oy
Proof (by induction). For k = 3

f(x,y) aéz)x8 + e+ asxsy + aiz) 4y +

f

a(1)x4y4 boee b a8

]

x4(aé2)x4 + e + aél)ya) + yz*(az(}z)x4 4+ v+ aél)y4).

Therefore equation (1.4) holds.

Assume the lemma holds for n = Zk, k > 3. For f(x,y) =

2k+1 2k+l (2)
a,k+1% SRR ay and constants a; satisfying equations (1.3)
with n = 2k+1, we have
X k
1
f(x’y) (a(12<_)l~ X2 RN (l)y )+y (3(2) 2 4 s 4 a( )y2 ).
2ktl ©

By the induction hypothesis

k k-2
(1.5) £(x,y) = x2 “(a X 4+eeeta
’ zi_l i 2k+1_4 (1_1) 2k+1—4 (i—l)-zi
=1 M50k, )" " fdkeg a4
S~ k gkl k-2

Since x2 h = h ~ and y2 hy = hlorp for 4,§ =1,2,00,2° 7, by

equation (1.5)



k~2
2 k+l, (2) 4 (1) 4
(1.6) £f(x,y) = h a X 4+ ¢« +a y)
Y Xi=l 1 Toktlog(i-1) okt (1-1)-4
k-2
+ Z?=1 hk+1k—2(a(i) G s a(i) .
=L 320 2%a(g-1) 2°-4(3-1)~4
k-2 .k et ok~2
For i =3+ 2 s, 2 =~ 4(3-1) = 2 - 4(i-1). Then the second sum 2_ 1
J=
in equation (1.6) may be expressed as
k-2 k-2
a.7) Z?_ = Z§=l h§+l aéill st 1)x4 + v+ a;iil “es y4).
= i=J+2k_2 -4(-1)-4
By equations (1.6) and (1.7)
k-1
2 k+l, (2) 4 (1) 4
f(x,y) = X h “(a x + *** +a y). H
’ i=1 L 2Kl 2K 14 (1-1)-4
-1
Theorem 1.4 Let f(x,y) = anxn + an__lxn y+ o0 + aoyn be an
integral form with n = 2k and k > 2. Suppose a = aél) > 0 and a =
a(z) > 0. 1If there exist positive integers a(l),, a(z)_, i= '--,2k-2—l,
n n-4i’ n-4i

such that equations (1.3) hold, if

2 2
a a
- _ _n-4i-1  "n-4i-3
1.8) Ai ¥ %0 T ) @ 2P
n-4i Bn-4i-4

for i = O,l,“‘,Zk—z-l, and if for some i, say i = j, Aj > 0, then f is a
positive form.

Proof. If k = 2, Theorem 1.4 reduces to Corollary 1.2. For k > 3

. (2) (1)
equation (1.4) holds by Lemma 1.3. If none of a, @8 ;.58 ;.0
k-2

i=1,**",2" "-1, are zero, then



k-2 2
_v2 k X (2) 2
(1.9)  f(x,y) = Zi=1 hy MON (2a Zp x +a . ,v)
n-4i
2 2.2
(1) 2 Xy
o Pt 3-4i-3%) YT Ay
a .
n~4i-4

(1) (2)

By hypothesis Ai 20, 1= 0,1,"-,2k—2—l, and Aj’ as @58 .5 @ s
i-= 1,"',2k-2-1, are positive. Then, by equation (1.9), f(x,y) 2 0 for
every pair of integers (x,y) and f(x,y) = O implies x =y = 0. Hence £
is a positive form. ”

Definition 1.5 An integral binary form £ is said to properly
represent 0 if there exist integers u and v not both zero such that
f(u,v) = 0.

Theorem 1.6 Let f(x,y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 be an
integral form with a > 0, e > 0, and 4cae - bze - d2a = 0. Then

(i) f properly represents O if and only if 4ae - bd = 0,
and

(ii) f is a positive form if and only if 4ae ~ bd # O.

Proof. Since a # 0 and e # 0, equation (1.1) holds. Then

2 2
(1.10) £Ge,y) = &= (2ax + by)Z + L (2ey + dx)?

since é4cae - bze - dza = 0.

If 4ae - bd = 0, by equation (1.10) £(2e,-d) = 0. Since (2e,~-d) #
(0,0), £ properly represents zero.

Conversely, suppose f(u,v) = 0 where u and v are integers and
(u,v) # (0,0). Then by equation (1.10) uv # 0, and consequently
2au + bv = 2ev + du = 0. Since uv # 0, 4ae - bd = 0. This completes the

proof of (i).
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If f is a positive form, then f does not properly represent zero.
Then by conclusion (i) 4ae - bd # 0.

If 4ae - bd # 0, by conclusion (i) f does not properly represent 0.
By equation (1.10) £(x,y) > 0 for every puir of integers (x,y). Hence f
is a positive form. H

Definition 1.7 Let f be an integral binary form. A pair (u,v) is
said to be a solution of the equation f(x,y) = m, m an integer, if u and
v are integers and f(u,v) = m.

Corollary 1.8 Let f(x,y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 be an
integral binary form with a > 0, e > 0, and 4cae - b2e - dza = 0., Then
the equation f(x,y) = 0 has infinitely many solutions if 4ae - bd = 0 and
(0,0) is the only solution if 4ae - bd # 0.

Proof. 1If 4ae - bd # 0, then by conclusion {ii) of Theorem 1.6 f is
a positive form. Therefore (0,0) is the only solution of the equation
f(x,y) = 0.

If 4ae - bd = 0, then by the proof of Theorem 1.6 f£(2e,-d) = 0.
Clearly f(2et,-dt) = 0 for every integer t. Since e # 0, the equation
f(x,y) = 0 has infinitely many solutions. |

Theorem 1.9 Let f(x,y) = ax4 + bx3y + cxzy2 + dxy3 + ey4 be an
integral form with a > 0, e > 0, and 4cae - bze - d2a > 0. Then the
equation

(1.11) f(x,y) = m,

where m is a nonzero integer, has at most a finite number of solutions
and the solutions (if any) can be found in a finite number of steps.
Proof. Equation (1.1) holds and has no solution when m is negative.

For m > 0 let (u,v) be a solution of equation (1.11).
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Suppose 4cae - b2e - dza > 0. Then from equation (1.1) it follows

that
0 < uzvz(hcae - bze - d2a) < 4am.
If u=20, ev4 =m. If v=0, au4 = m. For this case the desired con-

clusions now follow.

Suppose 4cae - b2e - dza = 0. Then equation (1.10) holds. If u = 0,

ev4 =mn. I1f v=0, au4 =m. If 2au + bv = 0, then u = - %% v and
v4(4ae - bd)2 = l6a2em.

If 2ev + du = 0, v = - fi-u and
e
u4(4ae - bd)2 = 16ae2m.

If u#0, v#0, 2au + bv # 0, and 2ev + du # 0, then

0 < u2(2au + bv)2 < 4am
and
2 2
0 < v (2ev + du)” < 4em.

2 < 4em. The desired conclusions are now

Thus 0 < u2 < 4am and 0 < v
immediate. “

Let f(x,y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 be an integral form with

a # 0. The transformation x = u - eV, Y=V carries f(x,y) into the
form
g(u,v) = au4 + vz(Au2 + Buv + Cv2),
where 2
A=rc - 3b_
8a °
3
B d—%—°-+L2,
& 8a
c bd + b2c 3b4
" ba 2~ 3"
1l6a 256a
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b
1 - —
Since if # 0, the forms £ and g are equivalent over the field of
0
rational numbers. Then f is a positive form if g is a positive form over

the rationals. If a > 0, C > 0, and 4AC - 32 > 0, then g is a positive

form over the rationals since

2

44 ¥ [(2cv + Bu)? + (4AC - BZ)u?].

g(u,v) = au

Therefore we have the following result.

Theorem 1.10 1If a > 0, C > 0, 4AC - B2

v

0, then f is a positive

form. ”

Theorem 1.11 Let h(x,y) = Dx2k + Exzy2 + ny3 + Gy4 be a rational

form with k > 2. Suppose F # 0. Then h is a positive form over the

rationals if and only if D > 0, G > 0, and 4EG - F2 > 0.

Proof. If D > 0, G > 0, and 4EG - F2 > 0, then h is a positive form

over the rationals since

2
h(x,y) = Dx?k+-§&5 [(26y + Fx)2 + GEG - FO)x2].

Therefore suppose h is a positive form over the rationals. Then
D=h(1,0) >0 and G = h(0,1) > 0. If x is a nonzero rational number,

2
~Fxy _ 4. 2k-4 F
h(x’_ZG) = x [Dx + —3

16G

(4EG - F2)] > 0.

2 F
Thus 4EG - F* 2 0 since —5 > 0. |
16G



CHAPTER II

NECESSARY AND SUFFICIENT CONDITIONS FOR INTEGRAL BINARY

QUADRATIC AND QUARTIC FORMS TO BE FOSITIVE

2n 2n-1 2n
+ ay 1% y + + ay be an

2n®
integral form. Define g(z) = a 2?0 4 g 22l L oi. 4 a . Then £ is
: 2n 2n-1 o

Theorem 2.1 Let f(x,y) = a

a positive form if and only if a9y > 0 and g(z) > 0 for every rational

value of z.

Proof. Suppose f is a positive form. Then for y # 0

fGxy) _ o x
C < o = g(y).
y
Thus g(z) > 0 for every rational value of z. Since £(1,0) = ay s

a2n > 0.

Conversely, suppose 294 > 0 and g(z) > 0 whenever z is a rational

number. For integers x and y(# 0)

(2.1) 0 < yZ“g<§> - E(x,y).

Now £(x,0) = a x2n. Therefore f(x,y) 2 0 for every pair of integers

2n
(x,y). By inequality (2.1) it is impossible for f(x,y) = 0 and y # O.

Thus f(x,y) = 0 implies y = 0, and consequently 2, ™ = 0. since

X
n

a, >0, x =0. Hence f is a positive form. I

Theorem 2.2 Let f(x,y) = ax2 + bxy + cy2 be an integral form.
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Define g(z) = az2 + bz + ¢c. Then f is a positive form if and only if
there exist a rational number o and a real number B(# 0) such that
b = -2aa and ¢ = a(a2 + 82).

Proof. Suppose a > 0, b = -2aa, and c = a(a2 + 62), where a is a

rational number and RB(# 0) is a real number. Then

g(z) = a[z - (o+Bi)][z - (a-Bi)].
Since B # 0, g has no real zeros. Then g(z) > 0 for all real values of
z since a > 0. Hence f'is a positive form by Theorem 2.1l.
Conversely, suppose f is a positive form. Then 0 < £(1,0) = a.

There exist complex numbers oy and o, such that

g(z) = a(z—-al)(z—-az).
If oy and a,

number aq between oy and ey Then g(a3) < 0. This is impossible by

Theorem 2.1. Therefore, suppose oy and a, are equal real numbers. By

are real numbers and not equal, there exists a rational

Theorem 2.1 al is not a rational number. Now al is not an irrational

number since % = =2a,. Thus g has no real zeros. Therefore, let

1

a, =a + Bi and « o - Bi where a and B(# 0) are real numbers. Then

1 2

c = a(oc2 + 62) and b = -2ac which implies o is a rational number. |

As a corollary to Theorems 2.1 and 2.2 we have the familiar

Theofem 2.3 Let f(x,y) = ax2 + bxy + cy2 be an integral form.
Then £ is a positive form if and only if a > 0 and b2 - 4ac < 0.

Proof. Suppose f is a positive form. By Theorem 2.2 a > 0,
b = -2aa, and ¢ = a(a2 + 62), where a is a rational number and B(# 0) is
a real number. Then b2 - bac = —4a282. Since aB # 0, b2 - 4ac < 0,

Conversely, suppose a > 0 and b2 - b4ac < 0. Define g(z) = azz4-bzi-c.
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Since a # 0 and b2 - 4ac < 0, g has no real zeros. Then g(z) > 0 for
every real value of z since a > 0. Hence f is a positive form by Theorem
2.1. |

Lemma 2.4 Let f£(x,y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 be an inte-
gral form. Define g(z) = az4 + bz3 + c22 + dz + e, If £ is a positive
form, then g cannot have two real and two imaginary zeros.

Proof (by contradiction). Suppose g has two real zeros y, § and two
imaginary zeros a * Bi, where a and B(# 0) are real numbers. Since f is

a positive form, by Theorem 2.1 y and § are irrational numbers. Now
g(z) = a[z-v][2z-8][z - (et+Bi) ][z - (a-Bi)].

Since £(1,0) = a, a > 0. Then a[z - (a+Bi)][z - (0-Bi)] > O for every real
value of z since 2 > 0 and o + Bi and a - Bi are imaginary numbers. If
Yy # 8, then there exists a real number r between y and 8. Then g(r) < O.
But this is impossible by Theorem 2.1.

Suppose y = §. Since B # 0 and y is an irrational number, g is
reducible over the rationals if and only if (z-—y)2 and
[z - (o+Bi)] [z - (a—-Bi)] are rational polynomials. Then g is irreducible
over the rationals since (z--y)2 = 22 - 2yz + yz is not a rational poly-
nomial. Therefore g(z)/a is a monic irreducible polynomial over the
rationals, and it has been shown [3], page 192, that g(z) has no multiple
zeros. Thus it is impossible that y = 8. "

Theorem 2.5 Let f(x,y) = ax4 + bx3y + cxzy2 + dxy3 + ey4 be an
integral form. Define g(z) = az4 + bz3 + cz2 + dz + e. Then f is posi-
tive form if and only if a > 0 and the zeros of g are either

Case I  four imaginary numbers, or

Case I1 four irrational numbers %15 gy gy & with U = @y, 0g = @,
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and oy # oqe
Proof. The necessity part of the theorem is a consequence of Theorem
2.1. For Case I g(z) > 0 for every real value of z since all the zeros
of g are imaginary and a > 0. For Case II g may be expressed in the

form
g(z) = a(z—-al)z(z-a3)2.

Since a > 0 and oy and aq are irrational numbers, g(z) > 0 for every

rational value of z. Hence in each case f is a positivé form by Theorem
2.1.

Conversely, suppose f is a positive form. Then a = £(1,0) > 0, If
g has four imaginary zeros, then Case I holds. If g does not have four
imaginary zeros, then the zeros of g are four irrational numbers by
Theorem. 2.1 and Lemma 2.4.

Suppose g has four irrational zeros Ay oy a3, ah. Then
g(z) = a(z-—al)(z-az)(z-a3)(z ~a4).

If no two of the ai's are equal, there exists a rational number r such

that g(r) < 0. (If oy < o, < oy < s let r be a rational number between

a3 and aa. The other cases follow in a similar manner.) However this is

impossible by Theorem 2.1l. Therefore at least two of the ai's are equal,
say ¢; = a,. If ¢y # @y Oq # s and @, # o then again there exists
a rational number r such that g(r) < 0. But this is impossible. There-

fore a =a,, or o, = a;. 1f ay = a4‘and o, # @5 then Case II

3° % %3

holds. If a3 = a4

This is impossible since b and a(# 0) are integers. Thus Ay =@, = oy is

4
=0, then g(z) = a(z —al)4 which implies b = -4aal.

impossible. Therefore, if ag = @; Or o, = ag, then oq # oy If ay = 0y
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and oq # s g(z) = a(z-—al)s(z-aa). Then there exists a rational
number r such that g(r) < 0. Again this is impossible. Similarly @, = o
and g # @, cannot hold. Hence Case II holds if g has four irrational
zeros. |

Since the zeros of a fourth degree polynomial can be found in a
finite number of steps and the nature of the zeros can easily be deter-
mined, by Theorem 2.5 only a finite number of steps is required to

determine if an integral binary quartic form is positive.



CHAPTER III

SOME RESULTS ON THE INVARIANTS OF

INTEGRAL BINARY QUARTIC FORMS

Let f(x,y) = ax4 + 4bx3y + 6cx2y2 + 4dxy3 + ey4, where a, 4b, 6c,

4d, e are integers. It has been shown [8], page 139, that two invariants

of £ are
I = ae - 4bd + 3c2
and
b
J=1|b d| .
c d e

Theorem 3.1 If f(x,y) = ax4 + 4bx3y + 6cx2y2 + 4dxy3 + ey4 is a
positive integral form, then I > O.
Proof. Suppose f is a positive integral form. By Theorem 2.5 let

the zeros of f(z,1) be oy + Bli, a; - Bll, a, + Bzi, @, = 821, where
(i) ajs Oy Bl, 32 are real numbers and 6162 # 0, or

(ii) Bl = 82 = 0 and @y and a, are unequal irrational ﬁumbers.

In each case we have

4b

—2a(0tl + az),

6¢c

2 2 2 2
a(al +oay + 4ala + Bl + 82),

2

2

2 2 2
4d = —2a(ala2 + a0, + a162 + aZBl),

13
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22 22, 22 2.2
esn a(ala2 + 3182 + uzsl + nlﬁz).

Then
2
a 4 4 2,2 4 2 2, ,,2 2
I= ii-[(al-az) + 8, + 1478, + B, + ZBl(al az) + ZBz(al az) 1.
It is clear that in each case I > 0. |
Theorem 3.2 If f(x,y) = ax4 + 4bx3y + 6cx2y2 + 4dxy3 + ey4 is a
posiﬁive integral form and Case II of Theorem 2.5 holds, then J < 0.

Proof. Suppose f is a positive integral form. As in the proof of

Theorem 3.1 let the zeros of f(z,l) be oy + Bli, @ - Bli, a, + Bzi,

az - 821. Then
3
___a” _ 6 2, 4 2, 4
(3.1) J = - 716 [(cxl az) + 3Bl(al a2) + 382(al a2)
4 4 4 2 6 6
+ 331(a1—a2) + 382(al—a2) + 31 + 32

2

2.2 2,2,.2 2
- 30 Blsz(al—az - 33 8182(81 + 82)].

If Case 11 of Theorem 2.5 holds, al # ey and Bl = 82 = 0. In this case
the quantity inside the brackets in equation (3.1) is positive, and
consequently J < 0. |

Theorem 3.3 If f(x,y) = ax4 + 4bx3y + 6cx2y2 + 4dxy3 + ey4 is a
positive integral form, then I3 - 27.J2 2> 0.

Proof. Let a, B, Y, 6 denote the zeros of the polynomial f(z,l).

It has been shown [2], page 142, that
256(1%-270%) = a®(8-v) % (v-0) 2 (a-8) 2 (0-6) 2 (8-6) 7 (v-8) .

If f is a positive integral form, then with the aid of Theorem 2.5 one

can easily verify that 3 - 2752 2 0. I

Theorem 3.4 Let f(x,y) = ax4 + 4bx3y + 6cx2y2 + 4dxy3 + eya be an
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integral form with a > 0, H = ac - b2 >0, and J > 0. Then

(i) f is a positive form,
(ii) the equation f(x,y) = m, m an integer, has at most a finite

number of solutioms,

"(iii) the solutions (if any) of the equation f(x,y) = m can be
found in a finite number of steps, and
(iv) only a finite number of steps is required to find the smallest
positive integer represented by f£.
Proof. By hypothesis a, H, and J are positive. Under these condi-
tions it has been shown [2], page 126, that all zeros of f(z,l) are
imaginary. Then f is a positive form.

Define the polynomial gy by

(3.2) gy(x) = f(x,y) ~ m

= ax4 + 4(by)x3 + 6(cy2)x2 + 4(dy3)x + ey4 -m

= ax4 + 4b'x3 + 6c‘x2 + 4d'x + e'.

Now
(3.3) Hy = ac! - (b')2 = Hy2
and
(3.4) a b' c
- ] ] 1 2 4
Jy 2 b' e’ d'| =y (y J-Hm).
c! d' e!

Suppose s and t are integers such that f(s,t) =m. If t =0,
as4 = m, and consequently there are at most two integral values of x such
that £(x,0) = m. Therefore suppose t # 0. Then by equation (3.3) H > 0
since H > 0. It may be shown [2], page 126, that if Jt > 0, Ht > 0, and

a > 0, then 8¢ has no real zeros. But gt(s) = 0 and s is an integer.
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Therefore Jt < 0, and by equation (3.4) taJ-Hm < 0. Then

(3.5) 0 < t:4 < %

since J > 0. Now s is zero or a divisor of the first of the terms et4-m,
4dt3, 6ct2, 4bt which is not zero. (Note that d = ¢ =b = 0 cannot hold
since in this case J = 0 which is contrary to hypothesis. Therefore at

3 2

least one of the terms eta-m, 4dt~, 6ct”, 4bt is not zero.) Thus

(3.6) 0 < |s| < max{|et® -m|,|4at>],|6ct?],|4bt]}.

Conclusions (ii) and (iii) follow from inequalities (3.5) and (3.6).
Since £(1,0) = a > 0, an integral pair (s,t) which furnishes a posi-

tive integral minimum for f satisfies either

or

4

o]

0<t s?f(s,t)s—

J

and s = 0 or s is a divisor of the first of the terms eta-f(s,t), 4dt3,

6ct2, 4bt which is rot zero. Thus

0< t4 =

[ an)

a

and

o < lol = manClacl] + o, 4adl] [ach] [t

Conclusion (iv) is now immediate. ll
_ A 3 2 2 3 4
Corollary 3.5 Let f(x,y) = ax + 4bx"y + 6¢cx’y + 4dxy”™ + ey be
.an integral form with e > 0, ec - d2 > 0, and J > 0. Then the conclusions
of Theorem 3.4 hold.
Proof. Define the form h by h(x,y) ='f(y,x). Then h is equivalent
to f. Therefore the conclusions of Theorem 3.4 hold for £ if and only if

they hold for h. Now
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0<J=

0 o
o0
v T N
"
=
.

Since e, ec =~ d2, and L are positive, the conclusions of Theorem 3.4 hold

for h. Therefore they hold for f. ||



CHAPTER IV

THE INTEGRAL SOLUTIONS OF THE INTECRAL

BINARY QUARTIC EQUATION f(x,y) =m

Let f£(x,y) = ax + bx3y + cxzy2 + dxy3 + ey4 be an integral form.
Any reference to the form f in this chapter will mean the form f defined

above. The complete integral solution of the equation

(4.1) £(x,y) =m,
where m is an integer, will be discussed. By a solution of equation (4.1)
we mean an integral solutiomn.

Definition 4.1 If g is an integral binary form, then g is reducible
over the rationals if and only if there exist rational binary forms h and
2 of positive degree such that g(x,y) = h(x,y)2(x,y).

Definition 4.2 If g(x,l) denotes the polynomial

n-1

n
a x + a _q¥ + + ags then

n-1

- n . n
g(x,y) = ax +a _x 7y + + ay .

Theorem 4.3 If g(x,l) is an integral polynomial, then g(x,1l) is
reducible over the rationals if and only if g(x,y) is reducible over the
rationals.

Proof. If g(x,1), h(x,1), 2(x,l) are polynomials of positive degree
in one indeterminate, then it is clear that g(x,l) = h(x,1)2(x,1) if and
only if g(x,y) = h(x,y)2(x,y). |

18
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Theorem 4.4 Let the zeros of f(x,l) be @15 Coy Ogy Oy Then
f(x,y) is reducible over the rationals if and only if for some permuta-
tion (i,j,k,%) of the integers 1,2,3,4 (x—ai)(x—aj) and (x-ak)(x—al) are
rational polynomials or (x-ai) and'(x-aj)(x—ak)(x-ax) are rational
polynomiais.

Propf. This follows from Theorem 4.3 and from the fact that every
complex fourth degree polynomial has exactly four zeros.”

Theorem 4.5 Let g(x,1) be an integral third degree polynomial with

Then g(x,y) is reducible over the rationals if

zeros @,, O,, and o

1 3°
and only if for some permutation (i,j,k) of the integers 1,2,3 x -,
and (x-aj)(x-ak) are rational polynomials.,

Proof. This is immediate by Theorem 4.3 and from the fact that
every third degree polynomial has exactly three zeros. ”

A theorem of Baker [1l], page 174, which we will need is

Theorem 4.6 Let g(x,y) denote a homogeneous polynomial in x, y of
degree n 2 3 with integral coefficients, irreducible over the rationmals.
Suppose that k > n+1 and let m be any positive integer. Then all solu-

tions of the equation g(x,y) = m in integers x, y satisfy

k
max(lxlsl}'I) < e(log m) ,

where ¢ is an effectively computable number depending only on n, k, and
the coefficients of g. ”

The phrase "c is an effectively computable number" means that c can
be found in a finite number of steps.

If m = 0 and g(x,y) is irreducible over the rationals, then x = 0,
y = 0 is the only solution of the equation g(x,y) = 0.

An immediate consequence of Theorem 4.6 is



20

Corollary 4.7 Let g(x,y) denote a homogeneous polynomial in x, y
of degree n > 3 with integral coefficients, irreducible over the rationals.
Suppose k > n+1 and let m be any negative integer. Then all solutions

of the equation g(x,y) = m in integers x, y satisfy

k
max(|x|,|y|) <ec e[log(-m)] ,

where ¢ is an effectively computable number depending only on n, k, and
the coefficients of -g. H i

The zeros of polynomials of degree at most four can be found in a
finite number of steps. This fact will be used implicitly throughout the
remainder of this chapter. For rational polynomials of degree at most
four it is easy to determine if the zeros are imaginary, rational, or
irrational numbers.

The solution of equation (4.1) with m = 0 will now be given. With-
out loss of generality we may assume that at least one of the coefficients
of f is not zero. Suppose a or e is not zero, say a # 0. Then let Gy

Gys Ogs O be the zeros of f(x,l). Therefore

(4.2) f(x,y) = a(x-aly)(x-azy)(x—a3y)(x—a4y).

The trivial solution of

(4.3) f(x,y) =0

is (x,y) = (0,0). By equation (4.2) equation (4.3) has a nontrivial
solution if and only if at least one of the zeros is a rational number.
Suppose this is the case and let al,-",aj be rational numbers. Thus
a, = pi/qi, 1 <1ig j, where P (possibly zero) and q are relatively
prime integers. Therefore (x,y) = (pit,qit) is a solution of equation

(4.3) for each integer t. These values for x and y are the only
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- solutions of equation (4.3).

Suppose a = e = 0 and b or d is not zero, say b # 0. Then there

exist complex numbers Bl and 82 such that
£(x,y) = bxy(x-8;y) (x-8,y).

Clearly (x,y) = (0,t) and (x,y) = (t,0), t an integer, are solutions of
equation (4.3). Now the form (x-—Bly)(x-BZy) properly represents zero
if and only if Bl and 62 are rational numbers.

Suppose this is the case. Then 8, = pi/qi’ 1<ic< 2, where Py
(possibly zero) and q; are relatively prime integers. Therefore (x,y) =
(pit,qit), i = 1,2, are solutions of the equation (x-Bly)(x—Bzy)-= 0
for each integer t. These solutions are the only solutions of this
equation.

If a=b=d=e=0, then ¢ # 0 by hypothesis and f(x,y) = cx292.
Then (x,y) = (0,t) and (x,y) = (t,0), t any integer, are the solutions of
equation (4.3).

We now discuss the solution of equation (4.1) with m # 0. Suppose

a=e= 0. Then for a solution (u,v) of the equation
(4.4) f(x,y) = m(# 0),

uv|m. Therefore u and v are divisors of m. Equation (4.4) has at most a
finite number of solutions and the solutions (if any) can be found in a

finite number of steps.

Suppose a or e is not zero. Without loss of generality we may assume
a # 0. Also we may assume a > 0 since f(u,v) = m if and only if
~f(u,v) = -m.

Theorem 4.8 If f is a positive form and Case I of Theorem 2.5
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holds, then equation (4.4) has at most a finite number of solutions, and
the solutions (if any) can be found in a finite number of steps.
Proof. Suppose f is a positive form and Case I of Theorem 2.5
holds. Therefore let ay + Bli, 4 = Sli, a, + Bzi, a, = Bzi be the

zeros of f(z,1), where aj and Bj are real numbers and BlBZ # 0. Then

4.5)  £G,y) = alxmayy) 2emagy)® + 85y (emayy)? + Boy% (eay ) 4 87855°1,
and

2
(4.6) f(x,y) = a {[(oz +8 )y a ] [(oc +82)y azx]

(o2 +82) (o3 + 85)

2 2
2.2 2 2 2 2 4
le [(a2+32)y-a2x] + 82 [(a +Bl)y alx] + Blszx}

If £(u,v) = m, then by equations (4.5) and (4.6)

(4.7) 0<vt <0
ap’p?
172
and
,  ©24ed) (s +eom
(4.8) 0<u < .

618,
Since inequalities (4.7) and (4.8) restrict u and v to a finite number of
integral values, the desired conclusions follow. |

Conclusion (i) of Theorem 3.4 was proved first in the proof of
Theorem 3.4, In the proof of conclusion (i) of Theorem 3.4 it was pointed
out that all the zeros of f(z,1) are imaginary. Therefore the proof of
Theorem 4.8 could have been used to prove the remaining conclusions of
Theorem 3.4.

Theorem 4.9 If £ is a positive form and Case II of Theorem 2.5
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holds, then equation (4.4) has infinitely many solutions if it has a

solution.
Proof. Suppose f is a positive form and Case II of Theorem 2.5

holds. Then there exist unequal irrational numbers &y and e, such that

b = —2a(a1 + az),

C a4 od + e = a2+ 200)
c =a(a +a, a0, 432 a0,),
(4.9)
d = -—2a(a1 + az)alaz = balaz,
e = aaza2
172°

Suppose b = 0. Then ¢ = -2aa2 and e = aai. Therefore

1
(4.10) f(x,y) = ax4 - Zaalz_xzy2 + aaiy4,
and
2 2 2.2
(4.11) 4af (x,y) = (2ax” - Zaaly ) .
Define D, = Zaaz and D, = 4a2a2 Since ¢ = -2aa2 and o, is an irrational
1 1 2 1 1 1
number, D2 is a positive integer. D2 is not a perfect square since
4a2ai = k2, k an integer, implies @ =t k/2a which implies a, is a

rational number.
If (x,y) is a solution of equation (4.4), then there exists an

integer n such that n2 = 4am and

(4.12) 2ax2 - Dly2 = n,

Clearly equation (4.4) has infinitely many solutions if equation (4.12)
has infinitely many solutions.
Assume (xo,yo) is a solution of equation (4.4). Then equation (4.12)

holds with (x,y) = (xo,yo) and some integer n such that n2 = 4am. Now
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Dz.is a positive integer which is not a perfect square. It may be shown

[6] that there exist infinitely many distinct integers p, and infinitely

many distinct integers d i=1,2,+++, such that

2 2

Define for i = 1,2,°+"

X; = %Py T Y9430
and
yi = 2ax0qi + yopi.
Then
2 2 _ 2 2., 2 2, _
2axi - Dlyi = (2axo-Dlyo)(pi-D2qi) = n,

and consequently (xi,yi) is a solution of equation (4.12).

- . . . £
Suppose (xi,yi) (xj,yj) with i # j. Then Py # pj and q; ¥ qj.

Since x, = xj and y; = yj,

(4.13) xo(pi—pj) = yoDl(qj-qi)
and
(4.14) 2ax (4;-95) =y, (P5-p;)-

T . =0 3 . _ - . . . -
hen X # 0 since X 0 implies yo(p._i pi) 0 which implies Y, 0.
This implies n = 0 which is impossible. Therefore by equations (4.13)

and (4.14)

%, (p; - pj) = Zax_

ax Dl(P‘- pj)

1

which implies 2ax§ - Dlyg = 0, This is impossible since n # 0. Thus
(x5y;) # (xj,yj) if 4 # j. Hence there are infinitely many pairs of

integers (xi,yi) such that f(xj,yi) =m if b = 0 and equation (4.4) has
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a solution.

We now consider the case b # 0. By equations (4.9)

b3 + 8a2d _ ad2
¢ s ————— and e = 7 -
4ab b
Therefore
: 2
(4.15) 4ab2f(x,y) = (2abx® + bixy + 2ady’)
2 2
- {ﬁ%ﬁ” [aabx + b7 - (b‘*-leazbd)yzj} :
Define D, = b4 - 16a2bd Since b = =2a(o, +0a,) and d = ba,a
3 * 1 2 l 29
’ _ .22 2
(4.16) D3 = 4a"b (al-a2)
and
2 b d _ .
(4.17) al + 7 %4 tg= 0, i=1,2.

Since gy # Cys by equation (4.16) D3 is a positive integer. By equations
(4.17), let

. 3 5
_-b (-1)*\| b’ - 16a%d .
ai—Ta + 5 7 s i=1,2.
4a"b

b” -~ l6a2d
Then — is a positive irrational number since ¢y is an
4a”b

irrational number. Now

3 2
b, - 4a22 (B -;6a |
4a"b

Therefore D3 is not a perfect square. Thus D, is a positive integer

3

which is not a perfect square.

If (x,y) is a solution of equation (4.4), then there exists an

2

integer n such that n” = 4ab2m and

(4.18) (4abx + bzy)2 - D3y2 = 8abn.
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Clearly equation (4.4) has infinitely many solutions if equation (4.18)
has infinitely many solutions.
Assume (xo,yo) is a solution of equation (4.4). Then equation (4.18)
holds with (x,y) = (xo,yo) and some integer n such that n2 = 4ab2m. Now
D3 is a positive integer which is not a perfect square. It is shown in

[6] that there exist infinitely many distinct integers r, and infinitely

many distinct integers Sy i=1,2,+++, such that
2 2 _
ry; - DBSi = 1.

Define for i = 1,2,**"

_ 2
(4.19) x; = (4abxo + b yo)ri + y,5;D,
and
(4.20) v; = (4abx + b Yo )s + Y s
Then

2 2 2.2 2.
(4.21) X, = D3 [(4abx 4—b Yo ) - D3y0][ri-D35i] = 8abn.

f’
Define w, = y, and v, by the equation 4abv, + b“w, = x,, 1 = 1,2,
i i i i i i

By equations (4.19) and (4.20)

4abv 4ab(-b2x s; + X Ty - 4y S, ad),

and consequently A is an integer since 4ab # 0. By the equation

n2 = 4ab2m and equations (4.15) and (4.21)

2
{Sab [(4abv + b Ww. ) - D ]}

2
1.2 2
{Sab [x; - D3yi]}

2
=n

2
4ab f(vi,wi)

4ab2m.
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A Y

Therefore f(vi,wi) = m for each pair of integers (vb;wi;.
Suppose (vi,wi) = (vj,wj) with i # j. Then (xi,yi) = (xj,yj), and

consequently by equations (4.19) and (4.20)

) .
(4.22) (4abx°4-b yo)(ri-rj) = yoDB(sj-si)
and

2
(4.23) (4abxo-kb yo)(si-sj) = yo(rj-ri).

If 4abxo + b2yo =0, Yo = 0 by equation (4.23). Then X, = 0. This is

0 # m. Therefore 4abx0 + bzyo # 0, Then by

impossible since £(0,0)

equations (4.22) and (4.23)
2

2 2 _
(4abxo + b yo) - D3yo = 0.
This is impossible since
(4abx_+ b )2-D2=8ab
abx, Yo 3yo n

and 8abn # 0. Thus (Vi’wi) # (vj,wj) if i # j. Hence equation (4.4)

has infinitely many solutions if b # 0 and equation (4.4) has a solutionm.

Corollary 4.10 If f is a positive form and Case II of Theorem 2.5
holds, then a necessary condition for f to represent m is am and em are
perfect squares.

Proof. Suppose f represents m. If b = 0, by equation (4.11) 4am
is a perfect square. If b # O, by equation (4.15) 4ab2m is a perfect
square. Therefore in each case am is a perfect square. By symmetry em
is a perfect square. “

If £ is a positive form and Case II of Theorem 2.5 holds, then by
equations (4.11) and (4.15) f represents m if and only if a certain

quadratic form sz + Bxy + Cyz, where B2 - 4AC is a positive integer
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which is not a perfect square, represents n where n2 = 4am if b = 0 or

n2 = 4ab2m if b # 0. A method will be given to determine if the equation

sz + Bxy + Cy2 =n

has a solution. By equations (4.11) and (4.15) we may assume without
loss of generality that A > O.

We first consider the equation

(4.24) x% - Dy? =1,

where D is a positive integer which is not a perfect square. The follow-
ing material may be found in {6]. Equation (4.24) has an infinite number
of solutions. There is a positive solution (xl,yl) of equation (4.24)

with x. > 0 and yy > 0 such that X <%, and ¥1 <Y, if (x ) is another

1

positive solution of equation (4.24). Since D is a positive integer and

2272

not a perfect square, YD is a quadratic irrational. Then YD has a simple
periodic continued fraction expansion. Let /D = <@ 389577, where
<ao,al,'--> denotes the continued fraction of vD. Define

r, = <a +¢«s,a,> for & » 0. Then r, may be expressed as r, = hz/kz,

% 0*%1° 2 2

where hz and kg are relatively prime positive integers for ¢ > 0. Let r
denote the period of the expansion by vD. If r is even, (xl,yl) =

(h k .). If r is odd, (xl,yl) = (h

r=1°%r-1 k ). 1If r is even, all

2r-1’"2r-1

positive solutions (x,y) of equation (4.24) are given by the formula

(x,y) = (b, _;5k, ;) where & = 1,2,-++. If r is odd, all positive solu-

tions (x,y) of equation (4.24) are given by the formula (x,y) =

(h ) where ¢ = 2,4,6,-++-, The positive solutions (xi,yi) of

2r—1’k2r-l
equation (4.24) can also be found by the formula (xi4-yi/ﬁ)1 where

i=1,2,>++, Here Xy is equal to the rational part of (xli-yl/ﬁ)l, and
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Yyq is equal to the purely irrational part of (xl4-y1/5)i. If r is even,
all solutions of equation (4.24) are given by the formulas (x,y) = (+1,0)

and (x,y) = (+h k ), 2 =1,2,°**, and in the second formula we

pr-1"Tpr1

take the four combinations of plus and minus. Similarly if r is odd,
all solutions (x,y) of equation (4.24) are given by the formulas

(x,y) = (+1,0) and (x,y) = (ihzr—l’ier—l) where & = 2,4,6,°+, Clearly
the formulas (x,y) = (+1,0) and (x,y) = (ixi,tyi), i=1,2,+++, also
give all the solutions of equation (4.24).

The solution of the equation

(4.25) x% - Dy? = G,

where G is a nonzero integer and D is a positive integer which is not a
perfect square, is discussed by Nagell [5], pp. 204-208. We give some of
the results concerning the solution of equation (4.25). First u + v/D

is called a solution of equation (4.25) if (u,v) is a solution of equation

(4.25). -+yl/5 is called the fundamental solution of equation (4.24).

*1
If x + y/D is a solution of equation (4.24) and u + vv/D is a solution of

equation (4.25), then
(u+ v/D) (x +y/D) = ux + vyD + (uy+vx)/D

is a solution of equation(4.25), and it is said to be associated with

u + vwD. If two solutions of equation (4.25) are associated in this way,
they are said to belong to the same class. Each class contains infinitely
many members since equation (4.24) has an infinitude of solutions. Two
solutions u + v/D and u' 4 v'/D are associated if and only if

(uu' - vww'D)/G and (vu' - uv')/G are integers. If class

K= {ui + vi/ﬁ li =1,2,-++}, then the conjugate class K is defined by
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K =~{ui— vi/5'|i =1,2,---}. If K=K, then K and K are said to be
ambiguous classes. For a given class K, there exists a member u* + v¥/D
such that v* is the smallest nonnegative value of the vi's. If K is not
ambiguous, u® is unique. If K is ambiguous, u* is unique if u* > 0. The
solution u* +_v*/5-determined in this manner is called the fundamental
solution of the class K.

Let N be a positive integer. In addition to the above material the
next three theorems are discussed by Nagell [5]}, pp. 205-208.

Theorem 4.11 If u + v/D is the fundamental solution of the class

K of the equation

(4.26) u? - v = N,

and if Xy + yl/ﬁ'is the fundamental solution of equation (4.24), we have

the inequalities

(4.27) 0gve —3L N
VZ(xli-l)

(4.28) 0 < |ul s\’%(xli-l)N .”

Theorem 4.12 If u + v/D is the fundamental solution of the class

K of the equation

(4.29) u2 - sz = -N,

and if X * yl/ﬁ.is the fundamental solution of equation (4.24), we have

the inequalities

(4.30) 0<ve—2t U,

1
(4.31) 0 < |ul = 3G DN [
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Theorem 4.13 If D and N are natural numbers, and if D is not a
perfect square, the Diophantine equations (4.26) and (4.29) have a finite
number of classes of solutions. The fundamental solutions of all the
classes can be found after a finite number of trials by means of the
inequalities in Theorems 4.11 and 4.12. If u* + v*/D is the fundamental
solution of the class K, we obtain all the solutions u + v/D of K by the

formula

u+ vh = (u* + v*/ﬁ)(x + yVﬁ),

where x + y¢5-runs through all the solutions of equation (4.24), includ-
ing + 1. The Diophantine equation (4.26), or (4.29), has no solution at
all when it has no solution satisfying the inequalities (4.27) and (4.28),
or (4.30) and (4.31), respectively. ||

Again let sz + Bxy + Cy2 be an integral form, where A and Bz - 4AC
are positive integers and B2 - 4AC is not a perfect square. Consider the

Diophantine equations

(4.32) sz + Bxy + Cy2

= N’
2 2
(4.33) Ax” + Bxy + Cy~ = =N,
2 2 2 _
(4.34) (2Ax + By)“ - (B - 4AC)y” = 4AN,
2 2 2
(4.35) (2Ax + By)” - (B" - 4AC)y” = - 4AN,

where N is a positive integer. Integers x = u and y = v satisfy equation
(4.32), or (4.33), if and only if they satisfy equation (4.34), or (4.35),
respectively. We prove

Theorem 4.14 Equation (4.34) has a solution if and only if there
exist integers x* and y* such that

(4.36) y* = v¥, 28x* + By* = u*,
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where u* + v*»’B2 - 4AC is a fundamental solution of tne equation

(4.37) w2 - (82 - 4aC)v? = 4AN.

In this case (x*,y*) is a solution of equation (4.34). Only a finite
number of steps is required to determine if equation (4.34) has a solu-
tion. If equation (4.34) has a solution, all solutions (x,y) are given
by the equations

(4.38) y = vt + u*s, 2Ax + By = u*t + v*s(B2 - 4AC),

where t + sV/BZ - 4AC runs through the solutions of equation (4.24) and
u* + v*/B2 - 4AC is restricted to the fundamental solutions of equation
(4.37) such that equations (4.36) hold.

Proof. 1If there exist integers x* and y* such that equations (4.36)
hold, then equation (4.34) has a solution, namely (x*,y*). Therefore
suppose equation (4.34) has a solution, say (x,y). By Theorem 4.13

there exist integers u and v such that y = v, 2Ax + By = u, and
u + wB% - 4AC = (u* + v*V/B2 - 4AC) (¢ + s/BZ - 4AC),

where u* + v*v’B2 - 4AC is a fundamental solution of equation (4.37) and

t + sVB2 - 4AC is a solution of equation (4.24). Then
y = vt + u*s and 2Ax + By = u't + V*s(B2 - 4AC)

which implies
(4.39) 24x = (u”* - Bv*)(t - Bs) - 4ACv*s.
Since
2 - 8%- sac)s? = 1,
(t +Bs)(t+Bs) 2 1 (mod 2A),

*
and consequently t - Bs and 2A are relatively prime. Thus 2A|(u - Bv*) by
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equation (4.39). Therefore there exists an integer x* such that 2Ax* =
u* - Bv*. Define y* by y* = v¥. Then equations (4.36) hold, and (x*,y*)
is a solution of equation (4.34). This completes the oof of the first
part of the theorem.

Since the fundamental solutions of equation (4.37) can be found in
a finite number of steps by use of the inequalities in Theorem 4.11 with
D= 32 - 4AC and 4AN in place of N, then by the first part of this theorem
only a finite number of steps is required to determine if equation (4.34)
has a solution.

By Theorem 4.13 equations (4.38), where t + svB2 - 4AC runs through
the solutions of equation &.24) and u* 4+ v*/B2 -~ 4AC runs through the
fundamental solutions of equation (4.37), give all possible values of x

and y such that (x,y) is a solution of equation (4.34). Now by the proof

of the first part of this theorem equations (4.38) give all possible

2 _ saC

values of x and y such that equation (4.34) holds with u* + v*VB
restricted to the fundamental solutions of equation (4.37) such that
equations (4.36) hold. Therefore let x and y be given by equations (4.38)
with u” + v*V/BZ - 4AC restricted to a fundamental solution of equation
(4.37) such that equations (4.36) hold. By equations (4.38) equation
(4.39) holds. Since equations (4.36) hold, 2Akh* - Bvﬁ. Therefore by

equation (4.39) x is indeed an integer. Now
(2Ax + By)? - (8% - 4AC)y?

[u*t + v*s(B2 - 4AC)]2 - [32 - 4AC][v*t + u*s]2

2 2
(W™ = 82 - sa0) (v™) 112 - 82 - 4aC)s?]

= 4AN. |



34
Corollary 4.15 Equation (4.34) has a solution if and only if there

exist integers x and y such that y = v and 2Ax + By = u, where
u? - (8% - 4AC)vZ = 4AN
and u and v are integers which satisfy the inequalities in Theorem 4.11.
Proof. The sufficiency part of the corollary is obvious. The
necessity part of the corollary is immediate by the first part of Theorem
4,14 since u* and v* satisfy the inequalities in Theorem 4.11 if

u* + v*/Bz - 4AC is a fundamental solution of equation (4.37)."

The proofs of the following theorem and corollary are very similar
to the proofs of Theorem 4.14 and Corollary 4.15, respectively. There-

fore the proofs will be omitted.

Theorem 4.16 Equation (4.35) has a solution if and only if there

. . *
exist integers x~ and y* such that

(4.40) y* = v¥, 28x% + By* = u¥,
where u* + v*/BZ — 4AC is a fundamental solution of the equation
(4.41) u? - (8% - 4ac)v2 = -4AN.

In this case (x*,y*) is a solution of equation (4.35). Only a finite
number of steps is required to determine if equation (4.35) has a solu-
tion. If equation (4.35) has a solution, all solutions (x,y) are given
by the equations

y = vt + u*s, 2Ax + By = u*t + v*s(B2 - 4AC),
where t + s/BZ — 4AC runs through the solutions of equation (4.24) and
u® + v*»’B2 - 4AC 1is restricted to the fundamental solutions of equation

(4.41) such that equations (4.40) hold. ”

Corollary 4.17 Equation (4.35) has a solution if and only if there
exist integers x and y such that y = v and 2Ax + By = u, where
u2 - (B2 - 4AC)V2 = =4AN

and u and v are integers which satisfy the inequalities in Theorem 4.12. "



35

Theorem 4.18 If f(x,1) has at least one imaginary zero, then there
are at most a finite number of solutions of equation (4.4), and the solu-
tions (if any) can be found in a finite number of steps.

Proof. Suppose f(x,1) has at least one imaginary zero. Then f(x,1)
has two or four imaginary zeros. Recall that a > 0 by hypothesis.
Suppose f(x,l) has four imaginary zeros. Then by Theorem 2.5 f is a
positive form and Case I of that theorem holds. By Theorem 4.8 the
desired conclusions are immediate.

Suppose f(x,1) has exactly two imaginary zeros. Then let oy and o,
denote the real zeros and o + Bi and o - Bi denote the imaginary zeros.
Assume oy and a, are irrational numbers. By Theorem 4.4 f(x,y) is
reducible over the rationals if and only if

g(x,1) = (x-ce))(x-a,)
and

h(x,1) = [x - (@+Bi)][x - (a-Bi)]

are rational polynomials. If this is not the case, f(x,y) is irreducible
over the rationals. Then by Theorem 4.6 and Corollary 4.7 the desired
conclusions follow. Therefore suppose g(x,l) and h(x,l) are rational
polynomials (if g(x,1) or h(x,l) is a rational polynomial, the other
polynomial is rational since f(x,1) is an integral polynomial). Then
there exist integers Kl # 0 and K2 > 0 such that Klg(x,y) andvath(x,y)

are integral forms. Now for integers xandy f(x,y) = m if and only if

Klef(x,y) = K1K2m. Therefore, suppose x and y are integers such that
Klsz(x,y) = Klem. Then ath(x,y) = D, where D is a divisor of Klem.
Therefore

2 22
ak,h(x,y) = aK,[(x-ay)” + 8%y“] = D < IKllez-
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Thus
K
(4.42) 0<y?s —l—ﬂ;‘l
ag
since aK2 > 0 and 82 > 0.
Also
ak
ak,h(x,y) = —_—2 {[(a2-+82)y - ax]2 + Bzxz} =D < ]K le .
2 2,2 1712
(™ +87)
Thus
2,2
(4.43) 0<x>< IKlmISQL—%;i—l
aB

Since inequalities (4.42) and (4.43) restrict x and y to a finite number
of integral values, the conclusions of the theorem follow.
Assume ay and @, are rational numbers. Then g(x,l) and h(x,l) are

rational polynomials. Therefore there exist integers Kl # 0 and K, >0

such that Klg and aK,h are integral forms. As in the case with @y and Ay

2
irrational numbers, f£(x,y) = m implies inequalities (4.42) and (4.43)
hold, and the desired conclusions follows.

Suppose oy is a rational number and o, is an irrational number. Then
s(x,1) = [x-o,][x - (@ ~Bi)][x - (a-Bi)]

is a rational polynomial. Therefore there exist nonzero integers Kl and
K2 such that Kl(x-aly) and aKzs(x,y) are integral forms. Suppose

f(x,y) = m. Then Klef(x,y) = KlKZm’ and consequently
D

X =0y +—,
T

where D is a divisor of Klem. Solving for y, we have
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2
(4.44) [al-aZ][al- (a—Bi)][al- (a-Bi)Iy3 + ED— [(al-a)(Bal-Zaz—a) + ley
1
2 3 Kim
D . D 1
+ (El-) (3(11— 0.2- 2Ct)y <+ (‘RI) - ‘;ﬁ—

= O.

Since oy is a rational number and Ay O + Bi, and o - Bi are not rational
numbers, the coefficient of y3 in equation (4.44) is not zero. Then
there are at most a finite number of solutions of equation (4.4) since
there are a finite number of divisors of Klem and equation (4.44) restricts
y to a finite number of values for each divisor of Klem. Clearly the
solutions (if any) can be found in a finite number of steps. |

Assume the zeros Ups Ggs Ogs O of f(x,1) are real numbers. The
zeros cannot be four equal irrational numbers or three rational numbers
and one irrational number since f(x,1) is an integral polynomial. In
order to complete the discussion of the solution of equation (4.4) we
consider six cases.

I. oy g O3 T Oy, 04 # g, and 1 and a, are irrational numbers,

Then £ is a positive form and Case II of Theorem 2.5 holds. The

= a,, a
solution of equation (4.4) has already been discussed. See Theorems 4.9,
4,14, and 4.16 and the material between Theorems 4.9 and 4.14.

II. « = 0y and o is a rational number.

1-% 7%
Then f(x,y) = a(x-aly)4. Since oy is a rational number, there exists

a nonzero integer K such that Kx -~ Kaly is an integral form. For integers

u andv, f(u,v) = m if and only if Ku - Kalv = D, where D is a divisor of

4 4 4

Kam and aD = Km. If there is no integer D such that aD = Kam, then

equation (4.4) does not have a solution. Let (K,Kal) denote the greatest
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" common divisor of K and Kal. If there exists an integer D such that

aD4 = Kém but (K,Kal),k D, then equation (4.4) does not have a solution.

Therefore, suppose there exists an integer D such that aD4 = K4m and
(K,Kal) |D. Then -D is the only other integral solution of the equation
aw4 = Kam. By the Euclidean algorithm there exist integers s and t such
that Ks - Kalt = (K,Kal). Then all integral solutions (x,y) of equation
(4.4) are given by the formulas

D D

x,y) = (s W + eKal, t '-(mi)— + ekK),
(x,y) = (-s ——-ll———'+ eKa,, -t I + ek)
’ (K,Kal) 1’ (K,Kal) ’

where e is any integer.
III, @ = 0py O3 = 0y, O # ®gs and gl and a, are rational numbers,
Then

2
2 2
f£(x,y) = a[x” - (dl'¥a3)xy + &0y 1,

and there exists a nonzero integer K such that

) 2
g(x,y) = Kx" = K(a; +az)xy + Ko o,y

is an integral form. For intégers X and Y1 f(xl,yl) = m if and only if
g(xl,yl) = D where D is a divisor of sz and aD2 = K2m. If no such

integer D exists, then equation (4.4) does not have a solution, If there
exists an integer D such that aD2 = sz, then -D is the only other solu-

tion of the equation aw2 = sz. Therefore, suppose X1s Xgs Y15 Yo» and D

are integers such that g(xl,yl) = D, g(xz,yz) = -D, and ap? = sz. Then

(4.45) [2Kx; = Ko, +0g)y,1% = [K(a, -a,)y,]? = 4kD,

(4.46) [2Kx2 - K(al+-u3)y2]2 - [K(al- a3)y2]2 = -4KD.
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By equation (4.45)

(oq + 0g)
[ 4xD 1t o 4KD
(4.47) X, = |—=—+L, ++—7——% (L - ———> 4K,
1 L1 1 (al a3) \1 Ll
T 4KD
(4.48) y; = L1 -1 //EZK(al-QB)],
i 1
where Ll is a divisor of 4KD. By equation (4.46)
(o, +0a,)
4KD 1 3 4KD
(4.49) x, = |L, - + — <L + 2220\ Jak,
2 [ 2 L2 (al a3) 2 L2
(4.50) v = |t /[ZK(al a1,

where L2 is a divisor of 4KD.

Since there are a finite number of divisors of 4KD, equation (4.4)
has at most a finite number of solutions. For rational numbers X5 and Yy
defined by equations (4.47) and (4.48), respectively, g(xl,yl) = D.

Similarly, for x, and Y, defined by equations (4.49) and (4.50), respec-

2
tively, g(xz,yz) = -D. Therefore equation (4.4) has a solution if and
only if there exists an integer D such that aD2 = sz and Xy and y, are
integers for some divisor Ll of 4KD or X, and y, are integers for some
divisor L2 of 4KD. Clearly the solutions (if any) of equation (4.4) can
be found in a finite number of steps.
Iv. @15 Oy, Qg, a, are irrational numbers, and (x-ai)(x—aj) and
(x-ak)(x-az) are not both rational polynomials for each permuta-

tion (i,j,k,%) of the integers 1,2,3,4.

Then by Theorem 4.4 f(x,y) is irreducible over the rationals. By
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Theorem 4.6 and Corollary 4.7 equation (4.4) has at most a finite number
of solutions, and the solutions (if any) can be found in a finite number

of steps.

V. Either Vl’ all the zeros are rational numbers, and neither case II
nor case III holds,

or VZ’ ay and o, are rational numbers and Cg and @, are irrational

2
numbers,

or V3, all the zeros are irrational numbers, (x-al)(x—az) and
(x-a3)(x-a4) are rational polynomials, and Case I does not hold.
If case V2 holds, then (x—a3)(x—a4) is a rational polynomial since

ey and @, are rational numbers and f(x,1) is an integral polynomial.

Therefore in all cases there exist nonzero integers K. and K, such that

1 2
(4.51) g(x,y) = aK, (x-a.y)(x-0,y) = A x2 + B.xy + C y2
: ’ 1% 2 1 1 1
and
(4.52) h(x,y) = K.(x-0.y) (x-a,y) = A.x° + B.xy + C.y°
. 1Y) = By l¥TAg R A 2V T B

are integral forms. Also

(4.53) Klef(x,y) = g(x,y)h(x,y).

For integers u and v, f(u,v) = m if and only if there exist divisors

Dl and D2 of Klem such that

K.K,m K,K.m

12 172
. = K.K, m,
Dl D2 172
K,K.m
(4.54) g(u,v) = 1D2 ,
1
K.K.m
(4.55) h(u,v) = 1D2
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Suppose this is the case. Define the form Q by

2 2
(4.56) Q(x,y) = (DlAl-DzAz)x + (DlBl-DZBZ)xy + (chl_ D2C2)y .
By equations (4.51), (4.52), (4.54), and (4.55)

(4.57) Q(u,v) = 0.

If the coefficients of Q are all zero, by equations (4.51), (4.52),

and (4.53)

D

D 2
f(x:}') = DzKle' [g(X,Y)] .

This implies case I, II, or III holds. But this is impossible by
hypothesis. Therefore at least one of the coefficients of Q is not zero.

Suppose DA, - DyA, = D,C; - D,C, = 0. Then D.B. - D,B, # 0. By

1 11 272
equations (4.56) and (4.57) u or v is zero. If u = 0, by equations (4.51)

and (4.54)

2 _
DlaKlalazv = Klem.

If v = 0, by equations (4.51) and (4.54)

2 _
DlaKlu = Klem.

Assume DlAl - D2A2 # 0. Then Q may be expressed in the form

Qx,y) = (DlAl— D2A2)(x-Rly)(X-R2y),
vhere R1 and R2 are the zeros of Q(x,1). Therefore by equations (4.57)

u = Rlv or u = R2v. If u = Rlv, by equations (4.54) and (4.57)

2 _
DlaKl(Rl-al)(Rl-az)v Klem.

If u = R,v, by equations (4.54) and (4.57)

2 _
DlaKl(Rz-al)(Rz— az)v = Klem.
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Similarly, if D,C, - D,C, = O, then

171 272
2
v = Slu and DlaKl(l—alsl)(l-azsl)u —'Klem,
or '
2
v = Szu and DlaKl(l-alsz)(l-aZSZ)u = Klem,

where S1 and 32 are the zeros of Q(1,y).

Since there are a finite number of divisors of Klem and in each
case the equations for u and v have a finite number of solutions, equa-
tion (4.4) has at most a finite number of solutions. To determine the
solutions of equation (4.4) one has only to solve the respective equations
for u and v and see if these values for u and v (if any, since the
coefficients in some of the equations may be zero) are integers and
solutions. Thus the solutions of equation (4.4) can be found in a finite
number of steps.

VI. is a rational number and Gy Ogs and a, are irrational numbers.

%

Since @y is a rational number and f(x,l) is an integral polynomial,

there exist nonzero integers K; and K, such that Kl(x—aly) and
aKz(x—aZy)(x-a3y)(x-a4y) are integral forms. Suppose f(x,y) = m. Then

Klef(x,y) = KlK m, and consequently

2

where D is a divisor of Klem. Solving for y, we have

(4.58)
(al—az)(al—a3)(al-a4)y34-%1[(al-az)(al—a3)+(al—a2)(al—a4)+(al-a3)(al—a4)]y2

2 3 Km
D —a by _ -
+ (K;) (Bal ,=0q a4)y + (K ) o

= 0.
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Since oy is a rational number and Gys Cg, and @, are irratioqal numbers,
the coefficient of y3 in equation (4.58) is not zero. Then there are at
most a finite number of solutions of equations (4.4) since there are a
finite number -of divisors of Klem and equation (4.58) restricts y to a
finite number of values for each divisor of KlKZm' Clearly the solutions
(if any) can be found in a finite number of steps.

The above results are summarized in the following two theorems.

Theorem 4.19 If the zeros of f(x,1) are four equal rational
numbers or two distinct pairs of equal irrational numbers, then equation
(4.4) has an infinite number of solutions if it has a solution. In each
case only a finite number of steps is required to determine if equation
(4.4) has a solution. Also, in each case there are formulas for x and y
wvhich give all the solutions of equation (4.4). |

Theorem 4.20 If the zeros of f(x,l) are real and neither four
equal rational numbers nor two distinct pairs of equal irrational numbers,
then equation (4.4) has at most a finite number of solutions and the
solutions (if any) can be found in a finite number of steps. "

Theorem 4.21 If the zeros of f(x,1) are neither four equal rational
numbers nor two distinct pairs of equal irrational numbers, then equation
(4.4) has at most a finite number of solutions and the solutions (if any)
can be found in a finite number of steps.

Proof. This follows immediately from Theorems 4.18 and 4.20. "

Note that Theorems 4.19, 4.20, and 4.21 remain valid if a < O.

Theorem 4.22  Equation (4.4) has infinitely many solutions for

some nonzero integer m if and only if f£(x,y) can be expressed in the form

(4.59) £(x,y) = A(Bx> + Cxy + Dy%)2,
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where A # O, B # 0, C, D are integers and C2 - 4BD = 0 or C2 - 4BD is a

positive integer which is not a perfect square.
Proof. Suppose equation (4.59) holds where A # 0, B # 0, C, D are
integers, C2 - 4BD = 0, or C2 - 4BD is a positive integer which is not a

perfect square. Then

) 1 2 2 2
(4.60) £(x,1) = Al7g [(2Bx + ©)7 - (¢” - 4BD) ]}

Since AB # 0 and 02 - 4BD = 0 or C2 - 4BD is a positive integer which is
not a perfect square, by equation (4.60) the zeros of f(x,1) are four
equal rational numbers or two distinct pairs of equal irrational numbers.
By Theorem 4.19 equation (4.4) has infinitely many solutions with

m = £(1,0) = AB # 0.

Conversely, suppose equation (4.4) has infinitely many solutions for
some nonzero integer m. By Theorems 4.19 and 4.21, f(x,1) has four equal
rational zeros or two distinct pairs of equal irrational zeros. Then by
the proof of Theorem 4.9 and the discussion of case II (f(x,1) has four

equal rational zeros) f(x,l) may be expressed in the form

2 2.2
f(x,y) = a(Ex” + Gxy + Hy") ,

where E, G, and H are rational numbers. Then there exist integers A,
B, C, D such that

2 2.2
f(x,y) = A(Bx” + Cxy + Dy") .

Now AB # O since a # 0. Since the zeros of f(x,1) are four equal
rational numbers or two distinct pairs of equal irrational numbers,
C2 - 4BD = 0 or C2 ~ 4BD is a positive integer which is not a perfect

square. ||



CHAPTER V

ON THE NUMBER OF REPRESENTATIONS

OF INTEGERS BY BINARY FORMS

Let g(x,v) be an integral binary form with degree n 2 3,
irreducible over the rationals. If (u,v) is an integral solution of the
equation

(5.1) g(x9Y) = m,

where m is an integer, then there are at most n integral solutions with
v the second component of the solutions. If v = 0, there are at most two
integral solutions. If m > 0, let B denote the bound in Theorem 4.6 for
the integral solutions (x,y) of equation (5.1). Then 2nB + 2 is an upper
bound for the number of integral solutions of equation (5.1). If m < O,
let D denote the bound in Corollary 4.7 for the integral solutions (x,y)
of equation (5.1). Then 2nD + 2 is an upper bound for the number of
integral solutions of equation (5.1). If m = 0, there is only one
integral solution of equation (5.1), namely (0,0), since g(x,y) is
irreducible over the rationals. The remainder of the chapter will be
devoted to improving the above upper bounds.

Theorem 5.1 Let g(z,l) be a real n-th degree polynomial with only
imaginary zeros, say AL Then there exists a positive constant §

such that there are no real numbers z which satisfy any of the inequalities

45
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|z—aK|<6,
where K = 1,¢**,n.

Proof. Since A is an imaginary number for each K, there exist real
numbers ay and nonzero real numbers bK’ K=1,""",n, such that ay = aK4-bKi.
Then there exist positive constants g, such that leI - e 0. Define
8§ = min(lbl‘ —el,-°-,[bn[-en). For each K there are no real numbers z
such that ]z-aKl < ]bKl-eK. Thus for each K there is no real number z
such tﬁat Iz-aK[ <&, |

Theorem 5.2 Let g(z,l) be a real n-th degree polynomial with

distinct zeros, say o TS0, and at least one real zero. Then there

l’

exist positive constants § and M such that
1
eV (2,0 >

whenever Iz-ai| < 8§, z real, for some i. *t

Proof. If o, = a, + bKi, where a, and bK # 0 are real numbers, then

K K K
there exists a positive comstant e, such that IbKl - gy 2 0. Then there
are no real numbers z such that Iz-aK| < ]bKI - ey For imaginary zeros

o, define §, = bl - ¢

zeros. It may be shown [3] that g(l)(ai,l) # 0 for i = 1,**+-,n. Then

K and MK = 1. By hypothesis g(z,1) has no multiple

for each real zero @, there exist positive constants Mi and Gi such that
1
|g( )(z,l)l > M, whenever Iz-—ai| < Gi, z real,

since gcl)(z,l) is a continuous function. Define § = min Gi and M = min Mi’
i=1,*,n. Suppose Iz -ail < § for some i and z real. Then Iz—-ail < éi
since § < Gi. Therefore |g(l)(z,1)| > Mi > M. “

In the following theorem the method of proof is suggested by Mordell [4], 188

Theorem 5.3 Let g(z,1) = anzn + °r* +a_ be a real polynomial with

+ g(r)(z,l) denotes the r-th derivative of g(z,l) with respect to z.
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1/n
, Wwhere m is

m
distinct zeros Uys Qs °°% @, n > 2. Define B1 = Ian
a nonzero integer, and B2 = min|ai-aj|, i,j = 1,+++,n, 1 # j. Suppose

2B
g(x,y) = m with |y| > i—l-and x and y real numbers. Then

2
for some i
2| |m (.Z;]n'l 1
i a {|B n °
y n'\"2 |yl

Proof. Since g(x,y) = m,

m

a
n

lx —(!1YI lX- CLZYI "'IX.— any] =

Then for at least one zero of g, say s 0 < Ix-alyl < Bl' Since

2B
Iyl >-—§l s for i = 2,+++,n

B
2
loy - a; Iyl = Ix=eyyl 2 log=ey [yl =By 2 Bylyl - 3, > 5 Iyl > 0.

Therefore for i = 2,***,n
2
lx-e,y| = [(@~e)y + xayy| > || (eg-ay] - [x-ayy|| > 5= |y].

Thus

B -
Ian(x-aly)(j?'-) v 1| < |m|,

and consequently

n-1
5ol <RI =
y a {8,y y n

Theorem 5.4 Let g(z) = a z 4 o0 4 a, be a real polynomial with

v

distinct zeros @ys°te50 5 N 2, and at least one real zero. Suppose

n

g(x,y) = m, where m is a nonzero integer and x and y are real numbers.

Let 8 be defined as in the proof of Theorem 5.2. Define



Then for some i

Since |y| >

48

2

lyl > ma{q

1 2B
5 B,

Also

or equivalently

'§ - oy < é.
2By
B , by Theorem 5.3 for some i
2
x_ | o m]f2)*t 2
3 a. B = -
2 |yl
n _g_n—ll
s> | (& 3

Thus for some i

Theorem 5.5

with distinct zeros o

a nonzero integer, and B

Proof (by contradiction).

m 2\1‘1—1 1

—_—) | <

®n (BZ) |y|n
Ig-% <. |

Let g(z,1) = anzn + o

LN I
1’ >"n

defined as in the proof of Theorem 5.1.

2

Define B, =

¢ , n2 2, and no real zeros.

1

there is no real solution (x,y) of the equation g(x,y)

m

a

ly| > maX{{,

L&}'lz
n BZ S

Suppose there is a real solution (x,y)

2B1
2

> B

o1 =fl 2] (2)

n-1 l‘
8

2B,

’ B

2

= min|ai-aj|, i,j =1,***,n, i # j. Suppose

HE

« + a, be a real polynomial

Let § be

1/n )
, Wwhere m is

=min|ai-aj], i,j=1,-++,n, i # j. Then

m such that
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2By
Since |y| > 5 by Theorem 5.3 for some i
2
X m|f2\™1 1
y = % a_|\B, n °
Y ' \"2 lyl

Now

or equivalently

Then for some i

This is impossible by Theorem 5.1. "

Theorem 5.6 Let g(z,1) be a real polynomial with distinct zeros
@y Cpy *°%y @ 5 D > 2, and at least one real zero. Define B = 1-¢, where
0<e<l. Supposé'(x,y) and (p,q) are integral solutions of the equa-

tion g(x,y) = m, m a nonzero integer, 3 # g, ly| # |q], ya > 0,

.
ly] > 6’1%#-, |q|:>\p%9j , where M is defined as in the proof of

Theorem 5.2. Assume

X

= - a, < $
y i

< § and ie - a.
q 1

for some i, where § is defined as in the proof of Theorem 5.2. Then

|yln—2+€ lqln—2+8

< lal or < |yl.

n-2+¢ |n—2+e

< lyl holds.

Proof. Suppose neither |y]| < lq] nor |q

Without loss of generality we may assume |y! < |q|. Since neither

In~2+s

inequality holds, |q| < |y . If £ is between 3 and g, then
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< § and < §. Then by Theorem 5.2

i i

le - Gil < § since 3 -a g -«

we have Ig(l)(ﬁ,l)l > M. By hypothesis g(x,y) = m. Therefore

g(?,l) =-E% « Similarly g(g,l) = E% . Then by the mean value theorem
y q

there exists &0 between 3 and 5 such that

m_m| _ (D) |>_< _D
an - g™ (g, 1) | 5 q|'
Therefore
lyal |55 - & > T |xq - yp]-
" n " mf

Since |xq - yp| is a positive integer,
val | = L > M
lyall5 -1 > oy -

q y

Now |yl_< lq[ and yq > 0. Then

Thus

Iyln—2+e ln-l

M
> Jal > Gr ly
which yields
1 M

> .
lyl® Tm]

vl_ﬁl_> M

This is impossible by hypothesis. Hence at least one of the desired

Equivalently

inequalities holds."
Theorem 5.7 Let g(z,1l) = anzn + e + a, be a real polynomial

with distinct zeros @gstetsa s N > 2, and no real zeros. Let & be

m l/n

.defined as in the proof of Theorem 5.1. Define B1 =

n

swWhere m is a
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nonzero integer, and 32 = minlai- aj|, i,j=1,°",n, 1 #3j. Letl

denote the number of integral solutions of the equation g(x,y) = m. Then

n n-1 2B
H £ 2n max {\JV (EL) 1 i 3 + 2.

-]
B ) B2
Proof. If fu,v) is an integral solution of the equation g(x,y) = m,
then by Theorem 5.5

2
n-1 2B
vl <naflE|2) 7 3
n 2) 2

The desired conclusion now follows. "

m
a
n

Theorem 5.8 Let g(z,1l) = anzn + oo + a, be an integral polynomial
of degree n 2 3, irreducible over the rationals, with zeros Ayt ts0 and
s > 1 real zeros. Suppose mis a nonzero integer. Let B and D be defined

as in the first paragraph of this chapter and § and M be defined as in

1/n
Theorem 5.2. Set B =1 - €, where 0 < ¢ < 1. Define Bl = gL and
n
B2 = minlai-ajl, i,j =1,***,n, 1 # j. Denote the number of integral

solutions of the equation g(x,y) = m by K. Define

B_IEL n Zn—ll ZBl n
R'“‘a"{\/; {7;;(;-) 30 B :

2 2
Suppose R < B if m > 0 and R < D if m < 0. Assume R > 1. Then

o
a
o

nZnB-annR+l]

(5.2) K < 2nR + 2 + 2ns['q' TS

ifm>0, and if m < O

(5.3) K< 2R+ 2+ ons[2ARDotn 0 Ry

gn(n-2+¢)

Remark. The proofs that inequalities (5.2) and (5.3) hold are very

similar. Therefore we will only prove that inequality (5.2) holds.
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Proof. By hypothesis g(z,1) is irreducible over the rationals. It
has been shown [3] that the zeros of g(z,l) are distinct. The number of
integral solutions of equation (5.1) such that 0 < |y| < R is at most
2nR + 2. Let Ll denote the number of integral values of y with R < y < B
such that y is the second component of an integral solution (x,y) of
equation (5.1). Then there are at most nLl integral solutions of equation
(5.1) with R < y < B. Let L2 denote the number of negative integral
values of y with R < |y| < B such that y is the second component of an

integral solution (x,y) of equation (5.1). Then there are at most an

integral solutions of equation (5.1) with y < 0 and R < |y| < B. Thus
K< 2nR + 2 + n(Ll + L2).

To complete the proof we show

n ¢n B-4n &n R + l].

maX{Ll’LZ} <8 ¢n(n -2 +¢)

Define
T = {y|y is an integer, R < y < B, and there exists
an integer Xy such that g(xy,y) = m}.

1If y € T, by Theorem 5.4 for some i

< 8.

o,
y

i
By the proof of Theorem 5.2 a, is a real zero. For i = 1,'**,s define

< 8§},

X
T, = {ylyeT and lE; -a

i i

For a set V let "order of V" denote the number of elements of V. Then

- - ]
T = U§=l Ti and L1 order of T < Zi=1 order of Ti.

Suppose otrder T 2. Then let

12
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Tl = {yl’YZ,"':yh}

X X
with Yy <Yy < tre < Y Now —%i-f —%% if i # j. To prove this
J
Xy .

y .
suppose —= = f§l with i # j. If xyi = 0, then aoyz = m which implies
J

,n’
Iyil = EL . This is impossible since y. > R. Therefore there
S i

exist nonzero integers a, b; c, d such that ac = Xy ad = Yy bc = x, ,

i 73

bd = yj. Then a"g(c,d) = b%(c,d) which implies a = b or a = -b. If
a=b, y; = yj. This is impossible. Therefore a = -b, and consequently
y; = -yj. Then y; or yj is a negative integer. This is impossible by

the definition of Tl. Therefore by Theorem 5.6

(n-2+¢) (n-2+¢) <y, (n-2+¢)

yl < y2’ y2 32 ’yh—l < yh

since n-2+¢€¢ > 1 and y; < Vi1 i=1,+++,h-1. Now R < Yy and Yy < B.
Thus

h-1 h-1
rlG@2:0)"  Le20)™

and consequently

_ n &n B-4n &n R
order of Tl = h < in(n-2+¢)

+1.

Clearly this inequality holds if order of T, < 1. Similarly for

1

i = 2,.-.,5

en &n B~ 2n 4n R

Therefore
2n 2n B~ 4n 2n R
f *
Ll = order o T <s In(h-2+5) + 1|_

By a similar argument

gn 2n B~g%n 4n R ]
s
I"2< tn(n-2+¢) + 1.
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Hence

L, +L

gn 4n B-¢n gn R
Lt L, +1]. I

<2 max{Ll,LZ}‘< 2 G550

Theorem 5.9 Assume the hypotheses of Theorem 5.8 hold. Suppose
the degree of g is three or four. Then the right-hand members of
inequalities (5.2) and (5.3) can be found in a finite number of steps.

Proof. By Theorem 4.6 and Corollary 4.7 it remains to prove that
M and § can be found in a finite number of steps. To do this we show
that for each real zero a; of g(z,1) there exist positive constants Mi

and Gi which can be found in a finite number of steps such that

(1)

g™ (z,1)| > M, whenever ]z-—ail <85 2 real.

Let o, be a real zero of g(z,l). By hypothesis g(z,1) is irreducible
over the rationmals. It may be shown [3] that g(l)(ai,l) # 0. Suppose

g(l)(ai,l) > 0. If there are no real numbers r, orr, such that ry <oy

and g(l)(rl,l) =Qorr, > oy and g(l)(rz,l) = (0, define Gi =1, If

2
there exists a real number r < oy such that g(l)(r,l) = 0 and if there

does not exist a real number r, > oy such that g(l)(rz,l) = (0, then let

(1) -
< oy and g (rl,l) =0

r1 be the nearest real number to ai such that rl
os: ~ T,
and define 61 = —l—i—l . If there exists a real number r > ai such that

g(l)(r,l) = 0 and if there does not exist a real number ry < o such that

g(l)(rl,l) = 0, then let r, be the nearest real number to a such that
(1) _ . ™% -
r, > oy and g (rz,l) = 0 and define Gi = 5. If there exist real

¢
numbers r and S such that r < a; < S and g‘l)(r,l) = g(l)(S,l) = 0, then
let ry and r, be the nearest real numbers to ay such that r; <o <r,

1 1 ] ey Trp Ty -0y
and 8( )(rl’l) = g( )(rz,l) = 0 and define §, = mln{ 1 5 22 1}.
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Then for whichever of the above cases holds by the continuity of g(l)(z,l)
we have g(l)(z,l) > 0 for each element z of the closed interval

[ai-Gi,ai-+Bi]. Suppose there exists a real number z & [ai-éi,ai-PGi]
such that

(5.4) ez ,1) < minle™ (o - 6,,1),8M (o, + 6,101

Then g(l)(z,l) has a relative minimum on the open interval (ai-éi,ai-fﬁi),

say at z,. Therefore g(l)(zl,l) > 0 and g(z)(21J) = 0. Define

M, = —————l——g(l)éz 1)
1

inequality (5.4) holds, then define 2Mi to be the right-hand member of

If there does not exist a real number zg such that

inequality (5.4). Therefore for whichever case holds g(l)(z,l) > Mi
whenever z is real and Iz-ai| < Gi. Since the degree of g is three or
four, only a finite number of steps is required to determine which
definitions of di and Mi apply. Clearly Mi and 6i can be found in a
finite number of steps.

Suppose g(l)(ai,l) < 0. Then -g(l)(ai,l) > 0. By the above
argument positive constants 51 and Mi can be found in a finite number of
steps such that —g(l)(z,l) = |g(l)(z,1)| > M, whenever z is real and

2magl <o |
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