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ON THE REPRESENTATION OF INTEGERS BY

INTEGRAL BINARY QUARTIC FORMS

INTRODUCTION

A binary form of degree n is an expression of the type

-, V n , n-1 , , nf(x,y) = a X + a  -x y + * * * + a y .n n-1 o"̂

If the coefficients a^ are integers (rational numbers), then f is said to

be an integral (rational) form. If f is an integral (rational) form and

f(x,y) > 0 for every pair of integers (rational numbers) (x,y) ^ (0,0),

then f is said to be a positive form (over the rationale).

In the first, second, and third chapters necessary and sufficient 

conditions are given for an integral binary quartic form to be positive.

Thue (1909) proved that the equation g(x,y) = m has at most a 

finite number of integral solutions, where g(x,y) denotes an integral 

binary form of degree at least three which is irreducible over the 

rationale and m is an integer. Recently, Baker [1] has improved Thue’s 

result by showing that a bound can be found for the magnitude of the 

integral solutions of the equation g(x,y) = m.

In Chapter IV the complete solution in integers of the equation 

f(x,y) = m is discussed, where f(x,y) denotes an integral binary quartic 

form and m  is an integer. Emphasis is placed on giving methods of solu

tion which can be completed in a finite number of steps. Although the
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author wanted to avoid using Baker's result in the discussion of the 

solution in integers of the equation f(x,y) = m, it was necessary to use

the result when f is irreducible over the rationale and the zeros of f

are four irrational numbers or two irrational numbers and two imaginary 

numbers.

In Chapter V Baker's result, mentioned above, is used to give a 

bound for the number of integral representations of an integer by an

integral binary form of degree at least three which is irreducible

over the rationale.
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CHAPTER I

SOME SUFFICIENCY CONDITIONS FOR SPECIAL BINARY 

FORMS TO BE POSITIVE AND RELATED RESULTS

4 3 2 2 3 4Theorem 1.1 Let f(x,y) = ax + bx y + cx y + dxy + ey be an

integral form. Suppose 4ae - bd = 0. Then f is a positive form if and
2 2only if a > 0, e > 0, and 4cae - b e - d a > 0 .

Proof. Suppose f is a positive form. Then 0 < f(l,0) = a and 

0 < f(0,l) = e. Therefore a 0 and e f 0, and consequently

2 0 2 ,
(1.1) f (x,y) = ^  (2ax + by) + ̂  (2ey + dx)

y2 2 2 2
+ (4cae - b e - d a).

Since e # 0 and 4ae - bd = 0,
2

(1.2) 0 < f(2e,-d) = ^  (4cae - b^e - d^a).

ed^ 2 2Since —g—  > 0, by inequality (1.2) 4cae - b e - d a > 0 .
2 2Conversely, suppose a > 0, e > 0, and 4cae - b e - d a > 0 .  Since 

ae ^ 0, equation (1.1) holds. Therefore for integers x and y , f(x,y) > 0

and f(x,y) = 0 implies x = 0 and y = 0. Hence f is a positive form. ||
4 3 2 2 3 4Corollary 1.2 Let f(x,y) = ax + bx y + cx y + dxy + ey be an

2 2integral form. If a > 0, e > 0, and 4cae - b e - d e > 0 ,  then f is a 

positive form.

Proof. This is an immediate consequence of the second part of the

1



proof of Theorem 1.1. ||

Lemma 1.3 Let f(x,y) = + a^_^x^ + ••• + a^y^ with n = 2^,

k > 3. Define a = a^^^ and a = a^^^. Let a^^^., , i = 1,""',2^ ^-1,n n o o n-41 n-4i
be constants such that

*n-4i ®n-4i " *n-4i"

Define x° = y° = 1 and h^ = x^ ^*y^^ i = 1,2,'••,2^ Then

(1.4) £(x,y) = hi(*!!4(i-l)X* + an-4(l-l)-l*^y + *!-4(i-l)-4y*''

Proof (by induction). For k = 3 

£(x,y) = a(2)%8 + ... + + a^^'xV + a^^x^y^ + ... + a^^V®

= x4(a(2)x* +  ... +  a(l)y4) +  y ^ a f ^ x ^  +  ... +  a ' « y ^ > .o 4 4 O

Therefore equation (1.4) holds.
kAssume the lemma holds for n = 2 , k > 3. For f(x,y) =

2k+l 2^’*’̂  ( £)^2k+l^ + ••• + a^y and constants a^ satisfying equations (1.3)
k+1with n = 2 , we have

f(x,y) = x2^(a(^)^x2^ + ) +y^(a^J^x2^ + ••• + aj^^y^^).
2 2 2

By the induction hypothesis 

(1.3, £(x.y) = x2'

nk 1. V4.1 „k 1, k-2
Since xr h. = h. and y% h. = h. _k_2 for i,j = 1,2,''",2 , by1 1  J

equation (1.5)



(1.6, 6(x.y, =

For 1 = j + 2^~^, 2^ - 4(j-l) = 2^^^ - 4(i-l). Then the second sum
j=l

in equation (1 .6) may be expressed as 

,k-2 ..k-2

)k-2i=j+2

By equations (1.6) and (1.7)

2*^^-4(i-l)

Theorem 1.4 Let f(x,y) = a x^ + a ,x” ^y + ••• + a y^ be ann n-1 o
k (1)integral form with n = 2 and k > 2. Suppose a = a > 0  and a =

°  - o o n
a^^) > 0. If there exist positive integers a^^)., a^^)., i = """,2^ ^-1, n n-4i n-4i
such that equations (1.3) hold, if

(1.8, A. E 4a,_4i_2 - 1 0
^n-4i ^n-4i-4

k-2for i = 0 ,1,***,2 -1, and if for some i, say i = j, > 0 , then f is a

positive form.

Proof. If k = 2, Theorem 1.4 reduces to Corollary 1.2. For k > 3

equation (1.4) holds by Lemma 1.3. If none of a , a , , a^^,.,^ ■' n o n-4i n-4i
i = 1 ,••*,2^ ^-1, are zero, then



,k-2 ,
(1.9) f(x,y) = I  h1=1 ^ 4a (2) *n-4i-iy)

h-4i

4a(1)n-4i-4
(23^^41-4? a-_A,_?x)2 + An-4i-3

Z.
r

4" “1

By hypothesis > 0, i = 0,1,'"',2^ ^-1, and A^, a^, a^,

i = 1,‘**,2^ ^-1, are positive. Then, by equation (1.9), f(x,y) > 0 for 

every pair of integers (x,y) and f(x,y) = 0 implies x = y = 0. Hence f 

is a positive form. ||

Definition 1.5 An integral binary form f is said to properly 

represent 0 if there exist integers u and v not both zero such that 

f(u,v) = 0.
4 3 2 2 3 4Theorem 1.6 Let f(x,y) = ax + bx y + cx y + dxy + ey be an

2 2integral form with a > 0, e > 0, and 4cae - b e - d a = 0 .  Then

and

(i) f properly represents 0 if and only if 4ae - bd = 0,

(ii) f is a positive form if and only if 4ae - bd f 0. 

Proof. Since a 0 and e f 0, equation (1.1) holds. Then

(1.10) 2 9 2 „ 
f(x,y) = (2ax + by) + ^  (2ey + dx)

2 2 since 4cae - b e - d a = 0 .

If 4ae - bd = 0, by equation (1.10) f(2e,-d) = 0. Since (2e,-d) ^

(0,0), f properly represents zero.

Conversely, suppose f(u,v) = 0 where u and v are integers and 

(u,v) ^  (0,0). Then by equation (1.10) uv f 0, and consequently 

2au + bv = 2ev + du = 0. Since uv f 0, 4ae - bd = 0. This completes the 

proof of (i).



5
If f Is a positive form, then f does not properly represent zero. 

Then by conclusion (i) 4ae - bd ^ 0.

If 4ae - bd ^ 0, by conclusion (i) f does not properly represent 0. 

By equation (1.10) f(x,y) > 0 for every pi.ir of integers (x,y). Hence f 

is a positive form. ||

Definition 1.7 Let f be an integral binary form. A pair (u,v) is 

said to be a solution of the equation f(x,y) = m, m an integer, if u and 

V are integers and f(u,v) = m.
4 3 2 2 3 4Corollary 1.8 Let f(x,y) = ax + bx y + cx y + dxy + ey be an

2 2integral binary form with a > 0, e > 0, and 4cae - b e - d a = 0 .  Then 

the equation f(x,y) = 0 has infinitely many solutions if 4ae - bd = 0 and 

(0,0) is the only solution if 4ae - bd ^ 0.

Proof. If 4ae - bd ^ 0, then by conclusion (11) of Theorem 1.6 f Is

a positive form. Therefore (0,0) is the only solution of the equation 

f(x,y) = 0.

If 4ae - bd = 0, then by the proof of Theorem 1.6 f(2e,-d) = 0.

Clearly f(2et,-dt) = 0 for every Integer t. Since e f 0, the equation

f(x,y) = 0 has infinitely many solutions. |j
4 3 2 2 3 4Theorem 1.9 Let f(x,y) = ax + b x y  + c x y  + dxy + ey be an

2 2integral form with a > 0, e > 0, and 4cae - b e - d a > 0. Then the 

equation

(1.11) f(x,y) = m,

where m is a nonzero integer, has at most a finite number of solutions 

and the solutions (if any) can be found in a finite number of steps.

Proof. Equation (1.1) holds and has no solution when m is negative. 

For m > 0 let (u,v) be a solution of equation (1.11).



that

2 2Suppose 4cae - b e - d a > 0 .  Then from equation (1.1) it follows

2 2 2 2 0 < u V (4cae - b e - d a) < 4am.

If u = 0, ev^ = m. If V = 0, au^ = m. For this case the desired con

clusions now follow.
2 2Suppose 4cae - b e - d a = 0 .  Then equation (1.10) holds. If u = 0, 

ev^ = m .  If V = 0, au^ = m. If 2au + bv = 0, then u = - ^  v and

v^(4ae - bd)^ = 16a^em.

If 2ev + du = 0, V = - u and

u^(4ae - bd)^ = 16ae^m.

If u ^ 0, V f 0, 2au + bv f 0, and 2ev + du f 0, then

2 2 0 < u (2au + bv) < 4am

and
2 2 0 < V (2ev + du) < 4em.

2 9Thus 0 < u < 4am and 0 < v < 4em. The desired conclusions are now

immediate. ||

Let f(x,y) = ax^ + bx^y + cx^y^ + dxy^ + ey^ be an integral form with 

a f 0. The transformation x = u - ^ v , y = v carries f(x,y) into the

form

where

g(u,v) = au^ + v^(Au^ + Buv + Cv^),

A - - # .

C - e - M + b ^ c  3bA
16a^ 256a^



since
b

î* 0 , the forms f and g are equivalent over the field of
0 1

rational numbers. Then f Is a positive form If g is a positive form over
2the rationals. If a > 0, C > 0, and 4AC - B > 0, then g is a positive 

form over the rationals since
2

g(u,v) = au^ + ^  [(2Cv + Bu)^ + (4AC - B^)u^].

Therefore we have the following result.
2Theorem 1.10 If a > 0, C > 0, 4AC - B > 0 ,  then f is a positive 

form. II
2k 2 2 3 4Theorem 1.11 Let h(x,y) = Dx + Ex y + Fxy + Gy be a rational

form with k > 2. Suppose F f 0. Then h is a positive form over the
2rationals if and only if D > 0, G > 0, and 4EG - F >0.

2Proof. If D > 0, G > 0, and 4EG - F > 0, then h is a positive, form 

over the rationals since
2

h(x,y) = Dx^^+ [(2Gy + Fx)^ + ^EG - F^)x^] .

Therefore suppose h is a positive form over the rationals. Then 

D = h(l,0) > 0 and G = h(0,l) >0. If x is a nonzero rational number,

h(x,^) = x4[Dx2k-4 + F (4EG - F̂ )] > 0.
16G^

2 =2 Thus 4EG - F > 0  since — r > 0. |
16G



CHAPTER II

NECESSARY AND SUFFICIENT CONDITIONS FOR INTEGRAL BINARY 

QUADRATIC AND QUARTIC FORMS TO BE POSITIVE

Theorem 2.1 Let f(x,y) = be an

integral form. Define g(z) = H- ^ + a^. Then f is

a positive form if and only if a^^ > 0 and g(z) > 0  for every rational 

value of z.

Proof. Suppose f is a positive form. Then for y f 0

y
Thus g(z) > 0 for every rational value of z. Since f(l,0) = a„ ,

Conversely, suppose  ̂ 0 and g(z) > 0 whenever z is a rational 

number. For integers x and y (f 0)

(2 .1) 0 < y^"g(p) = f(x,y).

Now f(x,0) = Therefore f(x,y) > 0 for every pair of integers

(x,y). By inequality (2.1) it is impossible for f(x,y) = 0 and y ^ 0.

2n̂Thus f(x,y) = 0 implies y = 0, and consequently a_ x^" = 0. Since

^2n > 0) % = 0. Hence f is a positive form. ||
2 2Theorem 2.2 Let f(x,y) = ax + bxy + cy be an integral form.



2Define g(z) = az + bz + c. Then f is a positive form if and only if

there exist a rational number a and a real number g (9̂ 0) such that
2 2b = -2aa and c = a(a + 3 ).

2 2Proof. Suppose a > 0, b = -2aa, and c = a(a + 3 ), where a is a

rational number and 3(f 0) is a real number. Then

g(z) = a[z - (a+3i)][z - ( a - 3i)].

Since 3 ^ 0, g has no real zeros. Then g(z) > 0 for all real values of

z since a > 0. Hence f is a positive form by Theorem 2.1.

Conversely, suppose f is a positive form. Then 0 < f(l,0) = a.

There exist complex numbers and such that

g(z) = a(z-a^)(z- Cg).

If and are real numbers and not equal, there exists a rational 

number between and a^. Then g(ag) < 0. This is impossible by 

Theorem 2.1. Therefore, suppose and are equal real numbers. By 

Theorem 2.1 is not a rational number. Now is not an irrational

number since g = -2a^. Thus g has no real zeros. Therefore, let

= a + 3i and = a - 3i where a and 3(f 0) are real numbers. Then
2 2 IIc = a(a + 3 ) and b = -2aa which implies a is a rational number. ||

As a corollary to Theorems 2.1 and 2.2 we have the familiar
2 2Theorem 2.3 Let f(x,y) = ax + bxy + cy be an integral form.

2Then f is a positive form if and only if a > 0 and b - 4ac < 0.

Proof. Suppose f is a positive form. By Theorem 2.2 a > 0,
2 2b = -2aa, and c = a(a + 3 ), where a is a rational number and g(f 0) is
2 2 2 2 a real number. Then b - 4ac = -4a 3 . Since ag ^ 0, b - 4ac < 0.

2 2 Conversely, suppose a > 0 and b - 4ac < 0. Define g(z) = az +bz + c.



. 10
2Since a f 0 and b - 4ac < 0, g has no real zeros. Then g(z) > 0 for

every real value of z since a > 0. Hence f is a positive form by Theorem

2.1. II
4 3 2 2 3 4Lemma 2.4 Let f(x,y) = ax + bx y + cx y + dxy + ey be an inte-

4 3 2gral form. Define g(z) = az + bz + cz + dz + e. If f is a positive 

form, then g cannot have two real and two imaginary zeros.

Proof (by contradiction). Suppose g has two real zeros y , 6 and two

imaginary zeros a ± gi, where a and g(f 0) are real numbers. Since f is

a positive form, by Theorem 2.1 y and 6 are irrational numbers. Now

g(z) = a[z-y] [z-iS] [z - (a+6i)] [z - (a-gi)].

Since f(l,0) = a, a > 0. Then a[z - (a+gi)][z - (a-gi)] > 0 for every real

value of z since a > 0 and a + g i  and a - g i  are imaginary numbers. If

Y f d, then there exists a real number r between y  and 6. Then g(r) < 0.

But this is impossible by Theorem 2.1.

Suppose Y = 6. Since g f 0 and y  is an irrational number, g is
2reducible over the rationals if and only if (z-y) and

[z - (a+gi)][z - (a-gi)] are rational polynomials. Then g is irreducible
2 2 2over the rationals since (z-y) = z - 2yz + y is not a rational poly

nomial. Therefore g(z)/a is a monic irreducible polynomial over the 

rationals, and it has been shown [3], page 192, that g(z) has no multiple

zeros. Thus it is impossible that y = 6. ||
4 3 2 2 3 4Theorem 2.5 Let f(x,y) = ax + bx y + cx y + dxy + ey be an

4 3 2integral form. Define g(z) = az + bz + cz + dz + e. Then f is posi

tive form if and only if a > 0 and the zeros of g are either

Case I four imaginary numbers, or

Case II four irrational numbers â ,̂ a^, a^, a^ with “3̂ “ ®2’ “3 ~ “4 ’
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and

Proof. The necessity part of the theorem is a consequence of Theorem

2.1. For Case I g(z) > 0 for every real value of z since all the zeros

of g are imaginary and a > 0. For Case II g may be expressed in the

form
g(z) = a(z - a^)^(z - a^)^.

Since a > 0 and and are irrational numbers, g(z) > 0 for every

rational value of z. Hence in each case f is a positive form by Theorem

2.1.
Conversely, suppose f is a positive form. Then a = f(l,0) > 0, If

g has four imaginary zeros, then Case I holds. If g does not have four

imaginary zeros, then the zeros of g are four irrational numbers by 

Theorem 2.1 and Lemma 2.4.

Suppose g has four irrational zeros a^, a^, a ^ ,  a ^ .  Then

g(z) = a(z - a^) (z - Qg) (z - a^) (z -a^) .

If no two of the a^'s are equal, there exists a rational number r such 

that g(r) < 0. (If < Og < let r be a rational number between

and a^. The other cases follow in a similar manner.) However this is 

impossible by Theorem 2.1. Therefore at least two of the a^'s are equal, 

say = a^. If 4  a .^ ,  o .^ ^  and f then again there exists 

a rational number r such that g(r) < 0. But this is impossible. There

fore a. = a,, a» = a,, or a, = a,. If a_ = a, and a_ f a,, then Case II3 1’ 3 4 4 1 3 4 3 1
holds. If “3 ” ~ “2 ’ then g(z) = a(z which implies b = -4aa^.

This is impossible since b and 0) are integers. Thus is

impossible. Therefore, if or then f a^. If
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3and Og f a^, g(z) = a(z- a^) (z - a^). Then there exists a rational 

number r such that g(r) < 0. Again this is impossible. Similarly 

and «2 ^ “4 cannot hold. Hence Case II holds if g has four irrational 

zeros. II

Since the zeros of a fourth degree polynomial can be found in a 

finite number of steps and the nature of the zeros can easily be deter

mined, by Theorem 2.5 only a finite number of steps is required to 

determine if an integral binary quartic form is positive.



CHAPTER III

SOME RESULTS ON THE INVARIANTS OF 

INTEGRAL BINARY QUARTIC FORMS

Let f(x,y) = ax^ + 4bx^y + 6cx^y^ + 4dxy^ + ey^, where a, 4b, 6c,

4d, e are integers. It has been sho\m [8], page 139, that two invariants

of f are
2I = ae - 4bd + 3c

and
a b c 

J = b c d 
c d e

Theorem 3.1 If f(x,y) = ax^ + 4bx^y + Scx^y^ + 4dxy^ + ey^ is a

positive integral form, then I > 0.

Proof. Suppose f is a positive integral form. By Theorem 2.5 let 

the zeros of f(z,l) be + g^i, - g^i, «2 + ^2^’ ~ ^2^ ’ where

(i) a^, «2 » ^2' ^2 real numbers and 6jl®2 ^

(ii) g^ = 82 = 0 and and are unequal irrational numbers.

In each case we have
4b = -2a(a^ + a ^),

6c = a(a^ + ^2 + ^“1*̂ 2 ^ + g^) »

4d = -2a(a^a2 + “l®2 ^ “2^1^’

13
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aCoJa^ + 0^02 + ’

Then

I ■ ^  [(a^-Og)* + 0* + ^ ^2 + + 202(ctj^-a2)^],

It Is clear that in each case I > 0. |j
4 3 2 2 3 4Theorem 3.2 If f(x,y) = ax + 4bx y + 6cx y + 4dxy + ey is a

positive integral form and Case II of Theorem 2.5 holds, then J < 0.

Proof. Suppose f is a positive integral form. As in the proof of

Theorem 3.1 let the zeros of f(z,l) be + Gî i, - 0^i, + 02i,

“2 " ^2^* Then
a^ r ,  v6 . . . 2 ,  , 4  . _ 2 ,  \ 4

(3.1) J = - 2Ï6 ^^2^“l~“2^

+ 30̂ (0^-0 2 )̂  + 302(«̂ ““2 ^̂  1̂ ^ 2̂

- 30 0^02(0^-02)^ - 33 0^02(3^ + 02)].

If Case II of Theorem 2.5 holds, f 02 and 0^ = 02 = 0. In this case 

the quantity inside the brackets in equation (3.1) is positive, and 

consequently J < 0. ||
4 3 2 2 3 4Theorem 3.3 If f(x,y) = ax + 4bx y + 6cx y + 4dxy + ey is a

3 2positive integral form, then I - 27J > 0.

Proof. Let a, 0, y, 6 denote the zeros of the polynomial f(z,l).

It has been shown [2], page 142, that

256(I^-27J^) = a*(0-Y)2(y_a)2(a-0)2(a-6)2(e_5)2(y_5)2.

If f is a positive integral form, then with the aid of Theorem 2.5 one

can easily verify that I - 27J Z 0. ||
4 3 2 2 3 4Theorem 3.4 Let f(x,y) = ax + 4bx y + 6cx y + 4dxy + ey be an
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2Integral form with a > 0, H = ac - b > 0 ,  and J > 0. Then

(i) f is a positive form,

(ii) the equation f(x,y) = m, m an integer, has at most a finite

number of solutions,
•(iii) the solutions (if any) of the equation f(x,y) = m can be 

found in a finite number of steps, and 

(iv) only a finite number of steps is required to find the smallest 

positive integer represented by f.

Proof. By hypothesis a, H, and J are positive. Under these condi

tions it has been shown [2], page 126, that all zeros of f(z,l) are 

imaginary. Then f is a positive form.

Define the polynomial by

(3.2) gy(x) = f(x,y) - m

= ax^ + 4(by)x^ + 6 (cy^)x^ + 4(dy^)x + ey^ - m

J. /.k X= ax + 4b’x + 6c ’x + 4d*x + e'.

Now

(3.3) Hy = ac' - (b')2 = Hy2

and

(3.4) a b' c'
b' c' d'
c' d' e'

= y^(y^J- Hm)

Suppose s and t are integers such that f(s,t) = m. If t = 0,
4as = m, and consequently there are at most two integral values of x such 

that f(x,0) = m. Therefore suppose t f 0. Then by equation (3.3) > 0

since H > 0. It may be shown [2], page 126, that if > 0, > 0, and

a > 0, then g^ has no real zeros. But g^(s) = 0 and s is an integer.
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4Therefore < 0, and by equation (3.4) t J ~ H m  < 0. Then

(3.5) 0 < Ç
4since J > 0. Now s is zero or a divisor of the first of the terms et -m, 

3 24dt , 6ct , 4bt which is not zero. (Note that d = c = b = 0 cannot hold 

since in this case J = 0 which is contrary to hypothesis. Therefore at

least one of the terms et^-m, 4dt^, 6ct^, 4bt is not zero.) Thus

(3.6) 0 <  |s| < max{ |et^-m| , |4dt^| , lôct^l , |4bt| }.

Conclusions (ii) and (iii) follow from inequalities (3.5) and (3.6).

Since f(l,0) = a > 0, an integral pair (s,t) which furnishes a posi

tive integral minimum for f satisfies either

t = 0 and s = 1

or
0 < t^ < I f(s,t) < I a

and s = 0 or s is a divisor of the first of the terms et^-f(s,t), 4dt^,
26ct , 4bt which is not zero. Thus

0 < t* < ja

and

0 < |s| <max{|aejl + a,|4adj|,|6ac||,|4abj|}.

Conclusion (iv) is now immediate. ||

Corollary 3.5 Let f(x,y) = ax^ + 4bx^y + 6cx^y^ + 4dxy^ + ey^ be
2an integral form with e > 0 ,  e c - d  > 0,  and J > 0. Then the conclusions 

of Theorem 3.4 hold.

Proof. Define the form h by h(x,y) = f(y,x). Then h is equivalent 

to f. Therefore the conclusions of Theorem 3.4 hold for f if and only if 

they hold for h. Now
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0 < J =
e d c
d c b
c b a

= L.

Since e, e c - d  , and L are positive, the conclusions of Theorem 3.4 hold 

for h. Therefore they hold for f. ||



CHAPTER IV

THE INTEGRAL SOLUTIONS OF THE INTEGRAL 

BINARY QUARTIC EQUATION f(x,y) = m

Let f(x,y) = ax' + bx^y + cx^y^ + dxy^ + ey^ be an integral form.

Any reference to the form f in this chapter will mean the form f defined 

above. The complete integral solution of the equation

(4.1) f(x,y) = m,

where m is an integer, will be discussed. By a solution of equation (4.1)

we mean an integral solution.

Definition 4.1 If g is an integral binary form, then g is reducible

over the rationals if and only if there exist rational binary forms h and

& of positive degree such that g(x,y) = h(x,y)£(x,y).

Definition 4.2 If g(x,l) denotes the polynomial

ax'^ + a _x" ^ + a , thenn n-1 o

g(x,y) H a^x" + a^_]X* ^y + ••• + a^y".

Theorem 4.3 If g(x,l) is an integral polynomial, then g(x,l) is 

reducible over the rationals if and only if g(x,y) is reducible over the 

rationals.

Proof. If g(x,l), h(x,l), &(x,l) are polynomials of positive degree

in one indeterminate, then it is clear that g(x,l) = h(x,l)&(x,l) if and

only if g(x,y) = h(x,y)&(x,y). ||

18
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Theorem 4.4 Let the zeros of f(x,l) be «g» “3* “4 * I'hen 

f(x,y) is reducible over the rationals if and only if for some permuta

tion (i,j,k,&) of the integers 1 ,2,3,4 (x-a^)(x-a^) and (x-a^)(x-a^) are 

rational polynomials or (x-a^) and (x-a^) (x-â )̂ (x-a^) are rational 

polynomials.

Proof. This follows from Theorem 4.3 and from the fact that every 

complex fourth degree polynomial has exactly four zeros. (|

Theorem 4.5 Let g(x,l) be an integral third degree polynomial with 

zeros a^, a^, and a^. Then g(x,y) is reducible over the rationals if 

and only if for some permutation (i,j,k) of the integers 1,2,3 x -

and (x-a.)(x-a ) are rational polynomials.J K
Proof. This is immediate by Theorem 4.3 and from the fact that 

every third degree polynomial has exactly three zeros. ||

A theorem of Baker [1], page 174, which we will need is 

Theorem 4.6 Let g(x,y) denote a homogeneous polynomial in x, y of 

degree n Z  3 with integral coefficients, irreducible over the rationals.

Suppose that k > n + 1  and let m be any positive integer. Then all solu

tions of the equation g(x,y) = m in integers x, y satisfy

max(|x| , |y|) < c e^^°® ,

where c is an effectively computable number depending only on n, k, and 

the coefficients of g. ||

The phrase "c is an effectively computable number" means that c can 

be found in a finite number of steps.

If m = 0 and g(x,y) is irreducible over the rationals, then x = 0, 

y = 0 is the only solution of the equation g(x,y) = 0 .

An immediate consequence of Theorem 4.6 is
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Corollary 4.7 Let g(x,y) denote a homogeneous polynomial in x, y 

of degree n > 3 with integral coefficients, irreducible over the rationals, 

Suppose k > n + 1 and let m be any negative integer. Then all solutions 

of the equation g(x,y) = m in integers x, y satisfy

max(|x|,|y|) < c ,

where c is an effectively computable number depending only on n, k, and 

the coefficients of -g. ||

The zeros of polynomials of degree at most four can be found in a 

finite number of steps. This fact will be used implicitly throughout the 

remainder of this chapter. For rational polynomials of degree at most 

four it is easy to determine if the zeros are imaginary, rational, or 

irrational numbers.

The solution of equation (4.1) with m = 0 will now be given. With

out loss of generality we may assume that at least one of the coefficients 

of f is not zero. Suppose a or e is not zero, say a f 0. Then let 

Ug, a^j be the zeros of f(x,l). Therefore

(4.2) f(x,y) = a(x-a^y)(x-a^y)(x-a^y)(x-a^y).

The trivial solution of

(4.3) f(x,y) = 0

is (x,y) = (0,0). By equation (4.2) equation (4.3) has a nontrivial 

solution if and only if at least one of the zeros is a rational number. 

Suppose this is the case and let be rational numbers. Thus

= p^/q^, 1 < i < j, where p^ (possibly zero) and q^ are relatively 

prime integers. Therefore (x,y) = (p^t,q^t) is a solution of equation

(4.3) for each integer t. These values for x and y are the only
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solutions of equation (4.3).

Suppose a = e = 0 and b or d is not zero, say b f 0. Then there

exist complex numbers and such that

f(x,y) = bxyCx-g^yjCx-ggy).

Clearly (x,y) = (0,t) and (x,y) = (t,0), t an integer, are solutions of 

equation (4.3). Now the form (x-g^y)(x-g2y) properly represents zero 

if and only if g^ and g^ are rational numbers.

Suppose this is the case. Then g^ = p^/q^, 1 ^ i < 2, where p^

(possibly zero) and q^ are relatively prime integers. Therefore (x,y) =

(put,q^t), i = 1,2, are solutions of the equation (x-g^y)(x-g^y) = 0

for each integer t. These solutions are the only solutions of this 

equation.
2 2l f a = b = d = e = 0 , then c f 0 by hypothesis and f(x,y) = cx y . 

Then (x,y) = (0,t) and (x,y) = (t,0), t any integer, are the solutions of 

equation (4.3).

We now discuss the solution of equation (4.1) with m ̂  0. Suppose

a = e = 0. Then for a solution (u,v) of the equation

(4.4) f(x,y) = m(f 0),

uv|m. Therefore u and v are divisors of m. Equation (4.4) has at most a

finite number of solutions and the solutions (if any) can be found in a

finite number of steps.

Suppose a or e is not zero. Without loss of generality we may assume

a ^ 0. Also we may assume a > 0 since f(u,v) = m if and only if

-f(u,v) = -m.

Theorem 4.8 If f is a positive form and Case I of Theorem 2.5
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holds, then equation (4.4) has at most a finite number of solutions, and

the solutions (if any) can be found in a finite number of steps.

Proof. Suppose f is a positive form and Case I of Theorem 2.5

holds. Therefore let + 6^i, - g^i, + ggi) “2 ~ ^2^ the

zeros of f(z,l), where a, and 0. are real numbers and f 0. Thenj J -L 6

(4.5) f(x,y) = a[ (x-a^y)^(x-a2y)^ + ^^^^(x-agy)^ + 32y^(x-otj^y)^+3^02^^] »

and

(4.6) f(x,y) = 2 2* 2 :2 v ]  [<»2 + e ^ y - v ] ^»l+3i)(ot2+ 3z) L

3^x^ |(a2 + 02)y-* “2^1 + 3^x^ [(a^ +e^)y-a^xj

If f(u,v) = ra, then by equations (4.5) and (4.6)

(4.7) 0 < V* <

and
, (a^+3^)(a^ + 3^)m

(4.8) 0 < u* < — --------  —  .
*91*2

Since inequalities (4.7) and (4.8) restrict u and v to a finite number of 

integral values, the desired conclusions follow. |

Conclusion (i) of Theorem 3.4 was proved first in the proof of 

Theorem 3.4. In the proof of conclusion (i) of Theorem 3.4 it was pointed 

out that all the zeros of f(z,l) are imaginary. Therefore the proof of 

Theorem 4.8 could have been used to prove the remaining conclusions of 

Theorem 3.4.

Theorem 4.9 If f is a positive form and Case II of Theorem 2.5
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holds, then equation (4.4) has infinitely many solutions if it has a 

solution.

Proof. Suppose f is a positive form and Case II of Theorem 2.5 

holds. Then there exist unequal irrational numbers and such that

b = -2a(a^ + Ug),
22 2

c = a(a^ + Ug + ~ — 2 ̂  ^^1^2 '̂
4a(4.9)

d = -2a(a^ + " ^“l“2’
2 2e = aa^Ug.

2 4Suppose b = 0. Then c = -2aa^ and e = aa^. Therefore

4 2 2 2 4 4(4.10) f(x,y) = ax - 2aa^x y + aa^y ,

and

(4.11) 4af(x,y) = (2ax‘" - 2aa^y“)

2 2 2 2 Define = 2aot^ and = 4a a^. Since c = -2aa^ and is an irrational

number, is a positive integer. is not a perfect square since 
2 2 24a = k , k an integer, implies = ± k/2a which implies is a

rational number.

If (x,y) is a solution of equation (4.4), then there exists an 
2integer n such that n = 4am and

(4.12) 2ax^ - D^y^ = n.

Clearly equation (4.4) has infinitely many solutions if equation (4.12)

has infinitely many solutions.

Assume (x ^ jXq ) is a solution of equation (4.4). Then equation (4.12)
2holds with (x,y) = (x^.y^) and some integer n such that n = 4am. Now
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D_ is a positive integer which is not a perfect square. It may be shown 

[6] that there exist infinitely many distinct integers p^ and infinitely 

many distinct integers q^, i = 1,2 , * such that

Pi ■ “a’l “

Define for i = 1,2,

and

Pi “ 2a*o4i + PoPr
Then

2ax^ - D^yJ = (2ax^ - D^y^)(pj - Ü2q?) = n,

and consequently (x^,y^) is a solution of equation (4.12).

Suppose (x.,y.) - (x.,y.) with i ^ j. Then p f p. and q f q .

Since x. = x. and y . = y .,1 J 1 ]

(4-13) %o(Pi"Pj) " yo^lCSj-qi)
and

(4.14) 2ax^(q^-q^) = y^(p^-p^).

Then x ^ 0 since x = 0  implies y (p, - p.) = 0  which implies y = 0.o o o j i o
This implies n = 0 which is impossible. Therefore by equations (4.13)

and (4.14) 2
Yo

*o(Pi-Pj) ' 2 5 ^ “l A ' P j ’

2 2which implies 2ax^ - D^y^ = 0. This is impossible since n ^ 0. Thus 

^^i’̂ i^ ^ (Xj'Yj) i 5̂ j • Hence there are infinitely many pairs of 

integers (x^,y^) such that f(x̂ , ,y^) = m if b = 0 and equation (4.4) has
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a solution.

We now consider the case b ^ 0. By equations (4.9)

3 2 2+ 8a d , adc = ---------  and e = — ^ .
4ab b

Therefore
2

(4.15) 4ab^f(x,y) = (2abx^ + b^xy + 2ady^)

^ 8^  |^(4abx + b^y) - (b^ - 16a^bd)y^]^ .

Define = b* - ISa^bd. Since b = -2a(a^+a2) and d = ba^a^,

(4.16) = 4a?b^(a^-Ü2)^

and

(4.17) + -^ + g = 0, 1 = 1,2.

Since ^  «2» by equation (4.16) is a positive integer. By equations

(4.17), let

- 16a^d 
4a^b

, i = 1 ,2 .

A
b3 _ ^g^2^
 =----  is a positive irrational number since a is an

4a^b
Then

irrational number. Now

B . «,2̂ 2 jbiiieafd 
^ ' 4arb

Therefore is not a perfect square. Thus is a positive integer

which is not a perfect square.

If (x,y) is a solution of equation (4.4), then there exists an 
2 2integer n such that n = 4ab m and

(4.18) (4abx + b^y)^ - D^y^ = 8abn.
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Clearly equation (4.4) has infinitely many solutions if equation (4.18)

has infinitely many solutions.

Assume (x^,y^) is a solution of equation (4.4). Then equation (4.18)
2 2holds with (x,y) = (Xg,y^) and some integer n such that n = 4ab m. Now

is a positive integer which is not a perfect square. It is shown in

[6] that there exist infinitely many distinct integers r^ and infinitely

many distinct integers s^, i = 1,2, * such that

2 2 ri - DjS. = 1 .

Define for i = 1,2,'"'

(4.19) x^ = (4abXg + b^y^)r^ + y^s^D^

and

(4.20) y^ = (4abx^ + b^y^)s^ + y^r^.

Then

(4.21) x^ - D„y^ = [(4abx +b^y )^ - D„y^] [r^ - D s^] = 8abn.

2Define w. = y. and v. by the equation 4abv. + b w .  = x., i=l,2,***. 1 1  1 1 1 1
By equations (4.19) and (4.20)

24abv, = 4ab(-b x s. + x r. - 4y s.ad),1 O 1 O 1 o 1

and consequently is an integer since 4ab f 0. By the equation 
2 2n = 4ab m and equations (4.15) and (4.21)

4ab^f(v^,w\) = [(4abv^ + b^w^)^ - D^w^]j

= [4. -

2= n
2= 4ab m.
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Therefore f(v^,w^) = m for each pair of integers .v^) .

Suppose (v^,w^) = (Vj,Wj) with i f j . Then (x^,y^) = (x^.y^), and

consequently by equations (4.19) and (4.20)

(4.22) (4abx^ + b^y^) (r^-r^) = 

and

(4.23) (4abx^ + b^y^) (s^-s^) = y^(r^ - r^) .

If 4abx + b^y = 0, y = 0 by equation (4.23). Then x = 0 .  This is o o o o2impossible since f(0,0) = 0 f m. Therefore 4abx^ + b y^ ^ 0. Then by

equations (4.22) and (4.23)

(4abx + b^y ) - D_y^ = 0.o o 3 o

This is impossible since

2  ̂ 2 (4abx + b y ) - D„y = 8abno o J o

and 8abn f 0. Thus (v^,w^) f  ̂ 1 f j « Hence equation (4.4)

has infinitely many solutions if b f 0 and equation (4.4) has a solution.

Corollary 4.10 If f is a positive form and Case II of Theorem 2.5 

holds, then a necessary condition for f to represent m is am and em are 

perfect squares.

Proof. Suppose f represents m. If b = 0, by equation (4.11) 4am
2is a perfect square. If b f 0, by equation (4.15) 4ab m is a perfect 

square. Therefore in each case am is a perfect square. By symmetry em 

is a perfect square. ||

If f is a positive form and Case II of Theorem 2.5 holds, then by

equations (4.11) and (4.15) f represents m if and only if a certain
2 2 2 quadratic form Ax + Bxy + Cy , where B - 4AC is a positive integer
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2 2n = 4ab m if b f 0. A method will be given to determine if the equation

2 2 Ax + Bxy + Cy = n

has a solution. By equations (4.11) and (4.15) we may assume without

loss of generality that A > 0.

We first consider the equation

2 2(4.24) - Dy^ = 1,

where D is a positive integer which is not a perfect square. The follow

ing material may be found in [6]. Equation (4.24) has an infinite number 

of solutions. There is a positive solution (x^jy^^) of equation (4.24) 

with > 0 and y^ > 0 such that < x^ and y^ < if (%2,y2) another

positive solution of equation (4.24). Since D is a positive integer and 

not a perfect square, /F is a quadratic irrational. Then /D has a simple 

periodic continued fraction expansion. Let / d = <a^,a^,-**>, where 

<a^,a^,""'> denotes the continued fraction of Æ . Define

= <a^,a^, • • • ,â >̂ for £ ^ 0. Then r^ may be expressed as r^ = h^/k^, 

where h^ and are relatively prime positive integers for £ > 0. Let r 

denote the period of the expansion by /d . If r is even, (x^,y^) =

(h^_^,k^_^). If r is odd, (x^^y^) = . If r is even, all

positive solutions (x,y) of equation (4.24) are given by the formula 

(x,y) = ) where £ = 1,2,**-. If r is odd, all positive solu

tions (x,y) of equation (4.24) are given by the formula (x,y) =

(h >k ,) where £ = 2,4,6,'"'. The positive solutions (x.,y.) of

equation (4.24) can also be found by the formula (x^ + y^/D)^ where 

i = 1,2,'"'. Here x^ is equal to the rational part of (x^+ y^Æ)^, and
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is equal to the purely irrational part of (xĵ  + y^/D)^. If r is even, 

all solutions of equation (4.24) are given by the formulas (x,y) = (+1,0) 

and (x,y) = (+h^^_^,+kg^^ ^), Z = 1 , 2 , ' ” , a n d in the second formula we 

take the four combinations of plus and minus. Similarly if r is odd, 

all solutions (x,y) of equation (4.24) are given by the formulas 

(x,y) = (±1,0) and (x,y) = (±̂ jii--l’-^Jlr-l^ where Z = 2,4,6,--'. Clearly 

the formulas (x,y) = (±1,0) and (x,y) = (±x^,±y^), i = 1,2,---, also 

give all the solutions of equation (4.24).

The solution of the equation

(4.25) x^ - Dy^ = G,

where G is a nonzero integer and D is a positive integer which is not a 

perfect square, is discussed by Nagell [5], pp. 204-208. We give some of 

the results concerning the solution of equation (4.25). First u + v/o 

is called a solution of equation (4.25) if (u,v) is a solution of equation

(4.25). x^ + y^/ü is called the fundamental solution of equation (4.24).

If X + y/5^ is a solution of equation (4.24) and u + v/D is a solution of 

equation (4.25), then

(u+ v/F) (x +y/D) = ux + vyD + (uy + vx)/F

is a solution of equation(4.25), and it is said to be associated with 

u + vÆ^. If two solutions of equation (4.25) are associated in this way, 

they are said to belong to the same class. Each class contains infinitely 

many members since equation (4.24) has an infinitude of solutions. Two 

solutions u + v/o and u' 4 v'/d are associated if and only if 

(uu' - w'D)/G and (vu' - uv')/G are integers. If class 

K = {u^ + v^/d I i = 1,2,---}, then the conjugate class K is defined by
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K = {u^- I i = 1,2,•••}. If K = K, then K and K are said to be

ambiguous classes. For a given class K, there exists a member u* + v*/F 

such that V* is the smallest nonnegative value of the v^'s. If K is not 

ambiguous, u* is unique. If K is ambiguous, u* is unique if u* i 0. The 

solution u* + v*/D determined in this manner is called the fundamental 

solution of the class K.

Let N be a positive integer. In addition to the above material the 

next three theorems are discussed by Nagell [5], pp. 205-208.

Theorem 4.11 If u + v/F is the fundamental solution of the class 

K of the equation

(4.26) u^ - Dv^ = N,

and if x^ + is the fundamental solution of equation (4.24), we have

the inequalities

(4.27) 0 < V < /N ,
/2(x^+l)

(4.28) 0 < |u| i(x^+l)N

Theorem 4.12 If u + v/F is the fundamental solution of the class 

K of the equation

(4.29) u^ - Dv^ = -N,

and if x̂  ̂+ y^/F is the fundamental solution of equation (4.24), we have 

the inequalities

(4.30) 0 < V <  ---—  - /N ,
/2(x^-l)

(4.31) 0 < |u| 5 (x ^ - 1)N
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Theorem 4.13 If D and N are natural numbers, and if D is not a 

perfect square, the Diophantine equations (4.26) and (4.29) have a finite 

number of classes of solutions. The fundamental solutions of all the 

classes can be found after a finite number of trials by means of the 

inequalities in Theorems 4.11 and 4.12. If u* + v * / û  is the fundamental 

solution of the class K, we obtain all the solutions u + v/D of K by the 

formula

u + v/F = (u* + v*/D)(x + y/D),

where x + y/F runs through all the solutions of equation (4.24), includ

ing + 1. The Diophantine equation (4.26), or (4.29), has no solution at

all when it has no solution satisfying the inequalities (4.27) and (4.28),

or (4.30) and (4.31), respectively. ([
2 2 2 Again let Ax + Bxy + Cy be an integral form, where A and B - 4AC

2are positive integers and B - 4AC is not a perfect square. Consider the 

Diophantine equations

(4.32) Ax^ + Bxy + Cy^ = N,

(4.33) Ax^ + Bxy + Cy^ = -N,

(4.34) (2Ax + By)2 _ (B^ - 4AC)y^ = 4AN,

(4.35) (2Ax + By)2 - (B^ - 4AC)y^ = - 4AN,

where N is a positive integer. Integers x = u and y = v satisfy equation

(4.32), or (4.33), if and only if they satisfy equation (4.34), or (4.35), 

respectively. We prove

Theorem 4.14 Equation (4.34) has a solution if and only if there 

exist integers x* and y* such that

(4.36) y * = V*, 2Ax* + By* = u*.
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where u* + v * Æ ^  - 4AC is a fundamental solution of the equation

(4.37) u^ - (B^ - 4AC)v^ = 4AN.

In this case (x*,y*) is a solution of equation (4.34). Only a finite 

number of steps is required to determine if equation (4.34) has a solu

tion. If equation (4.34) has a solution, all solutions (x,y) are given 

by the equations

(4.38) y = v*t + u*s, 2Ax + By = u*t + v*s(B^ - 4AC),

where t + s /b ^ - 4AC runs through the solutions of equation (4.24) and 

u* + v */b ^ - 4AC is restricted to the fundamental solutions of equation

(4.37) such that equations (4.36) hold.

Proof. If there exist integers x* and y *  such that equations (4.36) 

hold, then equation (4.34) has a solution, namely (x*,y*). Therefore 

suppose equation (4.34) has a solution, say (x,y). By Theorem 4.13 

there exist integers u and v such that y = v, 2Ax + By = u, and

u + v /b ^ - 4AC = (u* + v */b  ̂ - 4AC) (t + s/b  ̂ - 4AC) ,

where u* + v */b  ̂- 4AC is a fundamental solution of equation (4.37) and 

t + s/b  ̂ - 4AC is a solution of equation (4.24). Then

y = v*t + u*s and 2Ax + By = u*t + v*s(B^ - 4AC)

which implies

(4.39) 2Ax = (u* - Bv*)(t - Bs) - 4ACv*s.

Since

t^ - (B^- 4AC)s^ = 1,

(t+Bs)(t+Bs) 5 1 (mod 2A), 

and consequently t - Bs and 2A are relatively prime. Thus 2A|(u - Bv*) by
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equation (4.39). Therefore there exists an integer x such that 2Ax =

u* - Bv*. Define y* by y* = v*. Then equations (4.36) hold, and (x*,y*)

is a solution of equation (4.34). This completes the oof of the first

part of the theorem.

Since the fundamental solutions of equation (4.37) can be found in

a finite number of steps by use of the inequalities in Theorem 4.11 with 
2D = B - 4AC and 4AN in place of N, then by the first part of this theorem 

only a finite number of steps is required to determine if equation (4.34) 

has a solution.

By Theorem 4.13 equations (4.38), where t + s/b^ - 4AC runs through 

the solutions of equation (4.24) and u* + v */b ^ - 4AC runs through the 

fundamental solutions of equation (4.37), give all possible values of x 

and y such that (x,y) is a solution of equation (4.34). Now by the proof 

of the first part of this theorem equations (4.38) give all possible

values of x and y such that equation (4.34) holds with u* + v */b ^ - 4AC 

restricted to the fundamental solutions of equation (4.37) such that 

equations (4.36) hold. Therefore let x and y be given by equations (4.38)

with u* + v*/B^ - 4AC restricted to a fundamental solution of equation

(4.37) such that equations (4.36) hold. By equations (4.38) equation

(4.39) holds. Since equations (4.36) hold, 2a |(u* - Bv*). Therefore by 

equation (4.39) x is indeed an integer. Now

(2Ax + By)2 - (B^ - 4AC)y^

= [u*t + v*s(B^ - 4AC)]2 _ [B^ - 4AC][v*t + u*s]^

= t(u*)^ - (B^ - 4AC)(v*)^][t2 - (B^ - 4AC)s^]

= 4AN. II
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Corollary 4.15 Equation (4.34) has a solution if and only if there 

exist integers x and y such that y = v and 2Ax + By = u, where

u2 - (b 2 - 4AC)v^ = 4AN 

and u and v are integers which satisfy the inequalities in Theorem 4.11.

Proof. The sufficiency part of the corollary is obvious. The 

necessity part of the corollary is immediate by the first part of Theorem 

4.14 since u* and v* satisfy the inequalities in Theorem 4.11 if

u* + v */b ^ - 4AC is a fundamental solution of equation (4.37). ||

The proofs of the following theorem and corollary are very similar 

to the proofs of Theorem 4.14 and Corollary 4.15, respectively. There

fore the proofs will be omitted.
Theorem 4.16 Equation (4.35) has a solution if and only if there

exist integers x* and y *  such that

(4.40) y* = V*, 2Ax* + By* = u*,

where u* + v*/B^ - 4AC is a fundamental solution of the equation

(4.41) u^ - (B^ - 4AC)v% = -4AN.

In this case (x*,y*) is a solution of equation (4.35). Only a finite 

number of steps is required to determine if equation (4.35) has a solu

tion. If equation (4.35) has a solution, all solutions (x,y) are given 

by the equations

y = v*t + u*s, 2Ax + By = u*t + v*s(B^ - 4AC),

where t + s /b ^ - 4AC runs through the solutions of equation (4.24) and

u* + v */b ^ - 4AC is restricted to the fundamental solutions of equation

(4.41) such that equations (4.40) hold. ||
Corollary 4.17 Equation (4.35) has a solution if and only if there

exist integers x and y such that y = v and 2Ax + By = u, where
u^ - (B^ - 4AC)v2 = -4AN 

and u and v are integers which satisfy the inequalities in Theorem 4.12.
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Theorem 4 1 8  If f(x,l) has at least one imaginary zero, then there 

are at most a finite number of solutions of equation (4.4), and the solu

tions (if any) can be found in a finite number of steps.

Proof. Suppose f(x,l) has at least one imaginary zero. Then f(x,l) 

has two or four imaginary zeros. Recall that a > 0 by hypothesis.

Suppose f(x,l) has four imaginary zeros. Then by Theorem 2.5 f is a 

positive form and Case I of that theorem holds. By Theorem 4.8 the 

desired conclusions are immediate.

Suppose f(x,l) has exactly two imaginary zeros. Then let and

denote the real zeros and a + 8i and a - gi denote the imaginary zeros. 

Assume and are irrational numbers. By Theorem 4.4 f(x,y) is 

reducible over the rationals if and only if

g (x, 1) E (x - a^) (x - Og)

and

h(x,l) E [x - ( a + 3i)][x - (a-Bi)]

are rational polynomials. If this is not the case, f(x,y) is irreducible 

over the rationals. Then by Theorem 4.6 and Corollary 4.7 the desired 

conclusions follow. Therefore suppose g(x,l) and h(x,l) are rational 

polynomials (if g(x,l) or h(x,l) is a rational polynomial, the other

polynomial is rational since f(x,l) is an integral polynomial). Then

there exist integers f 0 and Kg > 0 such that K^g(x,y) and aKgh(x,y) 

are integral forms. Now for integers x and y f(x,y) = m if and only if 

Kj^Kgf(x,y) = K^Kgm. Therefore, suppose x and y are integers such that 

KjKgf(x,y) = K^Kgm. Then aK2h(x,y) = D, where D is a divisor of K^Kgm. 

Therefore

aKgh(x,y) = aKg[(x-ay)^ + 6^y^] = D < |K^m|Kg.
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Thus

(4.42)

since aKg > 0 and g > 0.

0 < y ' <  W
ag

Also
aK.

aK-h(x,y) = — 5--- 5-
^ (a +gZ)

[(a^ +g^)y -  ax]2 + g V ]

Thus

(4.43) 0 < < Ik m|
ag

Since inequalities (4.42) and (4.43) restrict x and y to a finite number 

of integral values, the conclusions of the theorem follow.

Assume ot̂  and are rational numbers. Then g(x,l) and h(x,l) are 

rational polynomials. Therefore there exist integers ^ 0 and > 0

such that K^g and aKgh are integral forms. As in the case with and

irrational numbers, f(x,y) = m implies inequalities (4.42) and (4.43) 

hold, and the desired conclusions follows.

Suppose is a rational number and is an irrational number. Then

s(x,l) H [x-UgjLx - (a-gi)][x - (a-gi)]

is a rational polynomial. Therefore there exist nonzero integers and

Kg such that K^(x-a^y) and aKgs(x,y) are integral forms. Suppose 

f(x,y) = m. Then K^Kgf(x,y) = K^K^m, and consequently

where D is a divisor of K^Kgm. Solving for y , we have
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(4.44) [«̂ ^-«2] [a^- (a-3i)][a^- (a-3i)]y^ + ^  [(a^-o)(3a^-2a2-a) + 6^]y

K,m
(]^) ” “i ‘ “2 - + ( ^ ]  ‘ in

= 0.

Since is a rational number and o^, a + 3i, and a - 3i are not rational
3numbers, the coefficient of y in equation (4.44) is not zero. Then 

there are at most a finite number of solutions of equation (4.4) since 

there are a finite number of divisors of K^Kgm and equation (4.44) restricts 

y to a finite number of values for each divisor of K^K^m. Clearly the 

solutions (if any) can be found in a finite number of steps. j

Assume the zeros a^, üg, of f(x,l) are real numbers. The

zeros cannot be four equal irrational numbers or three rational numbers 

and one irrational number since f(x,l) is an integral polynomial. In 

order to complete the discussion of the solution of equation (4.4) we 

consider six cases.

I. = Og, «2 = a^, f a^, and and are irrational numbers.

Then f is a positive form and Case II of Theorem 2.5 holds. The

solution of equation (4.4) has already been discussed. See Theorems 4.9, 

4.14, and 4.16 and the material between Theorems 4.9 and 4.14.

II. = üg = «2 = and is a rational number.

Then f(x,y) = a(x-a^y)^. Since is a rational number, there exists 

a nonzero integer K such that Kx - Ka^y is an integral form. For integers

u andv, f(u,v) = m if and only if Ku - Ka^v = D, where D is a divisor of
4 4 4 4 4K m and aD = K m. If there is no integer D such that aD = K m, then

equation (4.4) does not have a solution. Let (K,Ka^) denote the greatest
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common divisor of K and Ka^. If there exists an integer D such that

aD^ = K^m but (K,Ka^) J' D, then equation (4.4) does not have a solution.
4 4Therefore, suppose there exists an integer D such that aD = K ni and 

(K,Ka^) I D. Then -D is the only other integral solution of the equation 

aw^ = K^m. By the Euclidean algorithm there exist integers s and t such 

that Ks - Ka^t = (K,Ka^). Then all integral solutions (x,y) of equation

(4.4) are given by the formulas

(x,y) - (s (K.Ka^) '''

where e is any integer.

III. = Œg, Og = a^, f a^, and and are rational numbers.

Then
2 2  ̂f(x,y) = a[x - (o^+ag^xy + a^a^y ] ,

and there exists a nonzero integer K such that

2 2 g(x,y) = Kx - K(a^+ag)xy + Ka^a^y

is an integral form. For integers x^ and y^ f(xĵ ,yĵ ) = m if and only if
2 2 2g(x^,y^) = D where D is a divisor of K m and aD = K m. If no such

integer D exists, then equation (4.4) does not have a solution. If there
2 2exists an integer D such that aD = K m, then -D is the only other solu-

2 2tion of the equation aw = K m. Therefore, suppose x^, Xg, y^, 72» and D
9 2are integers such that g(x^,y^^) = D, g(x2,yg) = -D, and aD^ = K m. Then

(4.45) [2Kx^ - K(a^+a2)yj ]̂  ̂- [K(a^^ag)y^]^ = 4KD,

(4.46) [2KXg - K(a^+a2)y2^^ ” = -4KD.
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(4.47) f4KD
h

(«2+ Otg)
+ + (a;-a^) 1^1 -

4KD> /4K,

(4.48) 4KD
- L [2K(o2 “ “3)]>

where is a divisor of 4KD. By equation (4.46)

(4.49) 4KD + / 4KD
^2 - -L: + (a,-O') r z  + T "1 3' 2,

/4K,

(4.50) [2K(a2 ~ Gg)] ,

where is a divisor of 4KD.

Since there are a finite number of divisors of 4KD, equation (4.4) 

has at most a finite number of solutions. For rational numbers and y^ 

defined by equations (4.47) and (4.48), respectively, “ D-

Similarly, for x^ and defined by equations (4.49) and (4.50), respec

tively, g(x2,y2) = -D. Therefore equation (4.4) has a solution if and
2 2only if there exists an integer D such that aD = K m and x^ and y^ are 

integers for some divisor of 4KD or X2 and are integers for some 

divisor L2 of 4KD. Clearly the solutions (if any) of equation (4.4) can 

be found in a finite number of steps.

IV. «2» “2* “3’ “4 irrational numbers, and (x-a2)(x-Gj) and 

(x-Gĵ ) (x-G^) are not both rational polynomials for each permuta

tion (i,j,k,&) of the integers 1,2,3,4.

Then by Theorem 4.4 f(x,y) is irreducible over the rationals. By
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Theorem 4.6 and Corollary 4.7 equation (4.4) has at most a finite number 

of solutions, and the solutions (if any) can be found in a finite number 

of steps.

V. Either all the zeros are rational numbers, and neither case II 

nor case III holds,

or Vg, and are rational numbers and and are irrational 

numbers,

or V^, all the zeros are irrational numbers, (x-a^)(x-a2) and 

(x-a^)(x-a^) are rational polynomials, and Case I does not hold.

If case Vg holds, then (x-a^)(x-a^) is a rational polynomial since 

and are rational numbers and f(x,l) is an integral polynomial.

Therefore in all cases there exist nonzero integers and such that

(4.51) g(x,y) = aK^(x-a^y)(x-a^y) = A^x^ + B^xy + C^y^

and

(4.52) h(x,y) E (x-a^y)(x-a^y) = + BgXy + C^y^

are integral forms. Also

(4.53) K^K2f(x,y) = g(x,y)h(x,y).

For integers u and v, f(u,v) = m if and only if there exist divisors 

and of K^K2m such that

K-K_m K-K-ra
 dT  =

K^K_m
(4.54) g(u,v) = — -—  ,

K-K„m
(4.55) h(u,v) = — -—

2
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Suppose this is the case. Define the form Q by

(4.56) Q(x,y) = ( D ^ A ^ - - D2B2)xy + (D^C^^-D2C2)y^.

By equations (4.51), (4.52), (4.54), and (4.55)

(4.57) Q(u,v) = 0.

If the coefficients of Q are all zero, by equations (4.51), (4.52), 

and (4.53)

h  2
f(x,y) = h i? F' [g(x.y)] •

2 1 2

This implies case I, II, or III holds. But this is impossible by 

hypothesis. Therefore at least one of the coefficients of Q is not zero.

Suppose DyA^ - D2A2 = - ^2^2 ~ Then D^B^ - ^2^2 ^ By

equations (4.56) and (4.57) u or v is zero. If u = 0, by equations (4.51) 

and (4.54)
2D^aK^a^a2V = K^K2m .

If V = 0, by equations (4.51) and (4.54)

D^aK^u^ = K^K^m.

Assume D^A^ - 1>2^2 ^ Then Q may be expressed in the form

Q(x,y) = (Dĵ Ajj-Ü2A2)(x-R^y)(x-R2y),

where and Rg are the zeros of Q(x,l). Therefore by equations (4.57) 

u = R^v or u = R2V. If u = R^v, by equations (4.54) and (4.57)

D^aK^(R^- a^)(R^ - ~

If u = RgV, by equations (4.54) and (4.57)

D^aK^(R2 - â ) (R2- “2 '̂̂  ̂~ K^K2m.
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Similarly, if - DgCg = 0, then

2V = Sĵ u and D^aK^Cl-a^S^ÏCl-agS^ïu = K^K^m,

or

V = SgU and D^aK^(l-a^S2) (1-0282)0  ̂= K̂ K̂2m, 

where and S2 are the zeros of Q(l,y).

Since there are a finite number of divisors of and in each

case the equations for u and v have a finite number of solutions, equa

tion (4.4) has at most a finite number of solutions. To determine the 

solutions of equation (4.4) one has only to solve the respective equations 

for u and v and see if these values for u and v (if any, since the 

coefficients in some of the equations may be zero) are integers and 

solutions. Thus the solutions of equation (4.4) can be found in a finite 

number of steps.

VI. is a rational number and Ü2 , , and are irrational numbers.

Since is a rational number and f(x,l) is an integral polynomial, 

there exist nonzero integers and K2 such that K^(x-a^y) and 

aK2(x-U2y)(x-a^y)(x-a^y) are integral forms. Suppose f(x,y) = m. Then 

- K^K2m, and consequently

, D
* - «1? + K[ ' 

where D is a divisor of K^K^m. Solving for y , we have

(4.58)
3 D  2“̂l~“2  ̂(«1-03) (81-04)7 + (8i““2  ̂(a^-a2)+(a^-a2) (aj^-a^)+(a^-a2) (Oi-o^) ] y

.... 2 /n \ 3 K,m
(13 (30^-02-03-0.4)7 + (£-) - 

= 0.
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Since is a rational number and a ^ ,  ot̂ , and are irrational numbers,

3the coefficient of y in equation (4.58) is not zero. Then there are at 

most a finite number of solutions of equations (4.4) since there are a 

finite number of divisors of K^Kgm and equation (4.58) restricts y to a 

finite number of values for each divisor of K^Kgm. Clearly the solutions 

(if any) can be found in a finite number of steps.

The above results are summarized in the following two theorems. 

Theorem 4.19 If the zeros of f(x,l) are four equal rational 

numbers or two distinct pairs of equal irrational numbers, then equation

(4.4) has an infinite number of solutions if it has a solution. In each

case only a finite number of steps is required to determine if equation

(4.4) has a solution. Also, in each case there are formulas for x and y

which give all the solutions of equation (4.4). |

Theorem 4.20 If the zeros of f(x,l) are real and neither four 

equal rational numbers nor two distinct pairs of equal irrational numbers, 

then equation (4.4) has at most a finite number of solutions and the 

solutions (if any) can be found in a finite number of steps. ||

Theorem 4.21 If the zeros of f(x,l) are neither four equal rational 

numbers nor two distinct pairs of equal irrational numbers, then equation

(4.4) has at most a finite number of solutions and the solutions (if any) 

can be found in a finite number of steps.

Proof. This follows immediately from Theorems 4.18 and 4.20. ||

Note that Theorems 4.19, 4.20, and 4.21 remain valid if a < 0.

Theorem 4.22 Equation (4.4) has infinitely many solutions for 

some nonzero integer m if and only if f(x,y) can be expressed in the form

(4.59) f(x,y) = A(Bx^ + Cxy + Dy^)^,
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2 2where A ^ 0, B f 0, C, D are integers and C - 4BD = 0 or C - 4BD is a

positive integer which is not a perfect square.

Proof. Suppose equation (4.59) holds where A f 0, B ^ 0, C, D are 
2 2integers, C - 4BD = 0, or C - 4BD is a positive integer which is not a 

perfect square. Then

(4.60) f(x,l) = A { ^  [(2Bx + C)^ - (C^ - 4BD)]}^

2 2Since AB ^ 0 and C - 4BD = 0 or C - 4BD is a positive integer which is 

not a perfect square, by equation (4.60) the zeros of f(x,l) are four 

equal rational numbers or two distinct pairs of equal irrational numbers. 

By Theorem 4.19 equation (4.4) has infinitely many solutions with 

m = f(l,0) = AB^ ^ 0.

Conversely, suppose equation (4.4) has infinitely many solutions foi 

some nonzero integer m. By Theorems 4.19 and 4.21, f(x,l) has four equal 

rational zeros or two distinct pairs of equal irrational zeros. Then by 

the proof of Theorem 4.9 and the discussion of case II (f(x,l) has four 

equal rational zeros) f(x,l) may be expressed in the form

f(x,y) = a(Ex^ + Gxy + Hy^) ,

where E, G, and H are rational numbers. Then there exist integers A,

B, C, D such that

f(x,y) = A(Bx‘‘ + Gxy + Dy^) .

Now AB ^ 0 since a ^ 0. Since the zeros of f(x,l) are four equal

rational numbers or two distinct pairs of equal irrational numbers,
2 2C - 4BD = 0 or C - 4BD is a positive integer which is not a perfect 

square. ||



CHAPTER V

ON THE NUMBER OF REPRESENTATIONS

OF INTEGERS BY BINARY FORMS

Let g(x,y) be an integral binary form with degree n > 3, 

irreducible over the rationale. If (u,v) is an integral solution of the 

equation

(5.1) g(x,y) = m,

where m is an integer, then there are at most n integral solutions with 

V the second component of the solutions. If v = 0, there are at most two 

integral solutions. If m > 0, let B denote the bound in Theorem 4.6 for

the integral solutions (x,y) of equation (5.1). Then 2nB + 2 is an upper

bound for the number of integral solutions of equation (5.1). If m < 0, 

let D denote the bound in Corollary 4.7 for the integral solutions (x,y) 

of equation (5.1). Then 2nD + 2 is an upper bound for the number of 

integral solutions of equation (5.1). If m = 0, there is only one

integral solution of equation (5.1), namely (0,0), since g(x,y) is

irreducible over the rationals. The remainder of the chapter will be

devoted to improving the above upper bounds.

Theorem 5.1 Let g(z,l) be a real n-th degree polynomial with only 

imaginary zeros, say Then there exists a positive constant 6

such that there are no real numbers z which satisfy any of the inequalities

45
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|z -a^l < 4,

where K = I,"'»,n.

Proof. Since a is an imaginary number for each K, there exist real K
numbers a^ and nonzero real numbers b^, K = l,"'',n, such that = aj,+ bĵ i.

Then there exist positive constants ê, such that jb^j - > 0. Define

6 = min(|b^l -e^,""",|b^j -c^). For each K there are no real numbers z 

such that Iz- I < |b^J -c^. Thus for each K there is no real number z 

such that I z - I < 5. |(

Theorem 5.2 Let g(z,l) be a real n-th degree polynomial with 

distinct zeros, say at least one real zero. Then there

exist positive constants 6 and M such that

(z>l) 1 > M

whenever |z-a^| < 6, z real, for some i. t

Proof. If = a„ + b„i, where a„ and b^ f 0 are real numbers, thenK K. K. ix
there exists a positive constant such that |b^j - G^ > 0. Then there 

are no real numbers z such that |z- | < |b^| - G^. For imaginary zeros

Oj, define 5^ = |b̂ ,| - G^ and = 1. By hypothesis g(z,l) has no multiple 

zeros. It may be shown [3] that g^^^(ot^,l) f 0 for i = l,''-,n. Then 

for each real zero there exist positive constants and 6^ such that

|g^^\z,l)| > whenever lz-a^| < 6^, z real,

since g^^^(z,l) is a continuous function. Define 5 = min 6^ and M = min M^, 

i = l,'"',n. Suppose |z-o\| < 6  for some i and z real. Then |z-a^| < 6^ 

since 6 < 6^. Therefore |g^^\z,l)j > i M. |

In the following theorem the method of proof is suggested by Mordell [4], 188

Theorem 5.3 Let g(z,l) = a^z^ + *•* + a^ be a real polynomial with

t g^^^(z,l) denotes the r-th derivative of g(z,l) with respect to z.
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, a^, n > 2. Define = m

n
1/n , where m is

a nonzero integer, and B^ = min|a^-aj|, i,j = l,'"',n, i j . Suppose
2Bg(x,y) = m with |y| > g— ^ and x and y real numbers. Then

for some i

7  - "i
m
n in

Proof. Since g(x,y) = m,

|x-a^y||x-a2y|""'|x-a^y| = m
n

Then for at least one zero of g, say a^, 0 < |x-a^y| < B^. Since 
. , 2Bi|y| > , for i = 2 ,'"',n

l“i" |y| - |x-G^yl > |y| ~ - B^lyl - |y| > o.

Therefore for i = 2,***,n
Bn

|x-a^y| = I (a^-a^)y + x-a^y| > 1 j (a^-a^)y| - |x-a^y| > ~2 iyi

Thus

and consequently

lan(x-aiy)(^) y""^| < |m| ,

X m- - a. <y 1 an
f2 1

n

Theorem 5.4 Let g(z) = â z"̂  + ••• + a^ be a real polynomial with

distinct zeros n > 2, and at least one real zero. Suppose

g(x,y) = m, where m is a nonzero integer and x and y are real numbers. 

Let 6 be defined as in the proof of Theorem 5.2. Define
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m l/n

|y|
(H-l 1 28^

ô ’ B„ ]•
Then for some i

< 6 .

2BiProof. Since |y| > , by Theorem 5.3 for some 1
2

2 vn-l 1 
B„) I m  ■

Also

X m
y “i

< an

m I  2 An-1 1
a B- 6n \ 21

or equivalently
m
n

2 n-1
in < 6 .

Thus for some i

< 6 .

Theorem 5.5 Let g(z,l) = a^z^ + ••• + a^ be a real polynomial 

with distinct zeros ^ > 2, and no real zeros. Let 6 be

defined as in the proof of Theorem 5.1. Define B^ = m
n

1/n , where m is

a nonzero integer, and B^ = min|a^-a^|, i,j = l,-**,n, i 5̂ j. Then 

there is no real solution (x,y) of the equation g(x,y) = m such that

B2

P r o o f  (by contradiction). Suppose there is a real solution (x,y)

with

I" '
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2BiSince |y| > , by Theorem 5.3 for some i

,n-lX ma. <ÿ " i an 4 )  ly|"

Now
m
n

2 1

or equivalently

Then for some i

< 6 .

This is impossible by Theorem 5.1. ||

Theorem 5.6 Let g(z,l) be a real polynomial with distinct zeros 

Og, •••, a^, n > 2, and at least one real zero. Define 6 = 1-e, where 

0 < e < 1. Suppose (x,y) and (p,q) are integral solutions of the equa

tion g(x,y) = m, m a nonzero integer, p ^ |yj ^ |q|, yq > 0 ,

t / ¥  ■ 1̂ 1 , where M is defined as in the proof of

Theorem 5.2. Assume

< 6 and q " “i < 6

for some i, where 6 is defined as in the proof of Theorem 5.2. Then

|yin-2+e ^ |q| Qj. |q|*-2+G < |y|.

Proof. Suppose neither |y|^ < |q| nor |q|^ < jy| holds.

Without loss of generality we may assume |yj < |q|. Since neither 

inequality holds, |q| < |y|^ If Ç is between ^ and then
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< 6 and < 6. Then by Theorem 5.2

we have |g^^^(C,l)| > M. By hypothesis g(x,y) = m. Therefore 

g(p,l) = ~  • Similarly g(-,l) ~ ^  • Then by the mean value theorem
y " q

there exists Ç between - and - such that o y q
m m = |ĝ ^̂ (£ ,1)| _ E
q" y"

' o y q

Therefore

M  ■ yp

Since |xq - yp| is a positive integer.

I'll l ^ - ^ l  ' Mq y ' '
Now |y| < |q( and yq > 0. Then

1 >

Thus
-  :

which yields

I In-2+e II M I In-1
|y| > |q| > lyl

1 M
|y|6 ’ W

Equivalently

> y .

This is impossible by hypothesis. Hence at least one of the desired

inequalities holds.

Theorem 5.7 Let g(z,l) = a^z^ + ••• + a^ be a real polynomial 

with distinct zeros n > 2, and no real zeros. Let 6 be

defined as in the proof of Theorem 5.1. Define = m 1/n where m is a
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nonzero integer, and = m i n | 1, i,j = l,***,n, i f j . Let II 

denote the number of integral solutions of the equation g(x,y) = m. Then

m
a (b - 1 6n V 2/

Proof. If (u,v) is an integral solution of the equation g(x,y) 

then by Theorem 5.5

' ' 2Bll

= m,

V < maxi
W t l ©  -  i • B,

The desired conclusion now follows.

Theorem 5.8 Let g(z,l) = a^z^ + ••• + a^ be an integral polynomial 

of degree n > 3, irreducible over the rationals, with zeros and

s > 1 real zeros. Supposerais a nonzero integer. Let B and D be defined 

as in the first paragraph of this chapter and Ô and M be defined as in

Theorem 5.2. Set B = 1 - e , where 0 < e < 1. Define = m
n

1/n and

B„ = min|a.-a.|, i,j = l,'"',n, i f j . Denote the number of integral ̂ 1 J
solutions of the equation g(x,y) = m by K. Define

R = max m
n

n-1 2Bi
B. Ô ’ B,

m
ao21 2

Suppose R < B if m > 0 and R < D if m < 0. Assume R > 1. Then

(5.2) K < 2„R +  2 + ^ + l]

if m > 0 , and if m < 0

(5.3) K < 2nR + 2 + 2ns"̂in 2n D - 2n 2n R 
&n(n- 2 + e) + 1]•

Remark. The proofs that inequalities (5.2) and (5.3) hold are very 

similar. Therefore we will only prove that inequality (5.2) holds.



52
Proof. By hypothesis g(z,l) is irreducible over the rationals. It 

has been shown [3] that the zeros of g(z,l) are distinct. The number of 

integral solutions of equation (5.1) such that 0 < |y| < R is at most 

2nR + 2. Let L^ denote the number of integral values of y with R < y < B 

such that y is the second component of an integral solution (x,y) of 

equation (5.1). Then there are at most nL^ integral solutions of equation

(5.1) with R < y < B. Let L^ denote the number of negative integral 

values of y with R < |y| < B such that y is the second component of an 

Integral solution (x,y) of equation (5.1). Then there are at most nLg 

integral solutions of equation (5.1) with y < 0 and R < |y| < B. Thus

K < 2nR + 2 + n(L^ + L^).

To complete the proof we show

Define

T = {y|y is an integer, R < y < B, and there exists 

an integer x^ such that g(x^,y) = m ) .

If y e T, by Theorem 5.4 for some i

< 6 .

By the proof of Theorem 5.2 is a real zero. For i = l,***,s define

Tĵ  = {y|y €. T and ^y
y “ “i < 6 ).

For a set V let "order of V" denote the number of elements of V. Then

T = ui T T, and L, = order of T < T® . order of T..1=1 1 1 ^1=1 1

Suppose order T^ > 2. Then let
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Ti = (yi.y,.

Xy. Xy4
with y, < y_ < ••• < y, • Now — -  é  if i ^ j. To prove thisT ^ n y^

X y , Xy, ^
suppose — - = — 1 with i i. If x» = 0, then a y, = m which implies y^ y. "i 0^1

lYil

3
ra
ao

This is impossible since y .  > R. Therefore there

exist nonzero integers a, b, c, d such that ac = , ad = y., be = x^ ,
^i ^ 'j

bd = y^. Then a^g(c,d) = b^g(c,d) which implies a = b or a = -b. If

a = b, y^ = y^. This is impossible. Therefore a = -b, and consequently

y^ = ~yj• Then y^ or y^ is a negative integer. This is impossible by

the definition of T^. Therefore by Theorem 5.6

< y,.

since n - 2 + e  > 1 and y^ < i = l,*’*,h-l. Now R < y^ and y^ < B.

Thus

and consequently

order of T^ = h < ^\n(n-2+c) ^  ^  '

Clearly this inequality holds if order of T^ < 1. Similarly for 

i = 2,••• ,s

, m , &n 2n B - & n  &n R . , 
order of < to(„:2 + o)----- +

Therefore

L, = order of T < s ^  ^ + ll .L £,n(n-2 + e) J1 L jLn (n - 2 + E )

By a similar argument
, &n B - & n  &n R . ,1
^  i n { n -  2 + l )  + y  •
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Hence

Lj + < 2 maxfLi.L,} < ^ + Ü  ' «

Theorem 5.9 Assume the hypotheses of Theorem 5.8 hold. Suppose 

the degree of g is three or four. Then the right-hand members of 

inequalities (5.2) and (5.3) can be found in a finite number of steps.

Proof. By Theorem 4.6 and Corollary 4.7 it remains to prove that 

M and 6 can be found in a finite number of steps. To do this we show 

that for each real zero of g(z,l) there exist positive constants 

and 6^ which can be found in a finite number of steps such that

|g(^^(z,l)| > whenever |z-a^| < 6^, z real.

Let be a real zero of g(z,l). By hypothesis g(z,l) is irreducible

over the rationals. It may be shown [3] that g^^^(a^,l) f 0. Suppose

g(^)(a^,l) > 0 .  If there are no real numbers r^ or r^ such that r^ <

and g(^)(r^,l) = 0 or tg > and g^^\r2>l) = 0, define 6^ = 1. If

there exists a real number r < o\ such that g^^^(r,l) = 0 and if there

does not exist a real number r^ > such that g^^^(r2 ,l) = 0 , then let

r^ be the nearest real number to such that r^ < and g/^^(r^,l) = 0 
“i “and define 6^ = --- 2'-=̂ • If there exists a real number r > such that

g^^\r,l) = 0 and if there does not exist a real number r^ < such that

g^^^(r^jl) = 0 , then let r2 be the nearest real number to such that
fl^ r„ - ex.

^ 2  ^ ”i S (r2,l) = 0 and define 6^ = —^ — - . If there exist real

numbers r and S such that r < < S and g^^^(r,l) = g^^^(S,l) = 0, then

let r^ and r2 be the nearest real numbers to such that r^ < < tg

and g^^)(r^,l) = g^^^(r2 »l) = 0 and define 6^ = min^a. -ri
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Then for whichever of the above cases holds by the continuity of g/^^(z,l)
we have g^^\z,l) > 0 for each element z of the closed interval
[a  ̂- 6^,a^+6^]. Suppose there exists a real number z^ 6 [â  “ + 6̂ ]

such that
(5.4) g^^\(z^,l) < min{g(^)(a^-6^,l),g(^)(a^+6^,l)}.

Then g^^^(z,l) has a relative minimum on the open interval (â  - 6^,a^ + 6^),

say at ẑ . Therefore g(^^(z^,l) > 0 and ĝ \̂zĵ ,l) = 0. Define 
g (zi 1)= ----2—  —  • If there does not exist a real number ẑ  such that

inequality (5.4) holds, then define 2M^ to be the right-hand member of 
inequality (5.4). Therefore for whichever case holds g^^^(z,l) > 
whenever z is real and |z-a^| < 6̂ . Since the degree of g is three or 
four, only a finite number of steps is required to determine which 
definitions of 6^ and apply. Clearly and 6^ can be found in a 
finite number of steps.

Suppose g(^^(a^,l) < 0. Then -g^^^(a^,l) > 0. By the above 
argument positive constants 6^ and can be found in a finite number of 
steps such that -g^^^(z,l) = |g^^^(z,l)l > whenever z is real and

|z-“il < <5̂ - II
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