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PREFACE 

In 1958 Douglas Aircraft Corporation, under contract to 

the U. S. Government, fitted a second stage, de s ignated the 

Delta, to the Thor booster rocket. A 12 inch pipe was weighted 

and machined so as to simulate this two stage rocket dynamically. 

Shake tests were made on this pipe, and it was found that there 

wa s no agreement between these tests and zero air speed modes a s 

calculated by an IBM 701 vibration analysis program. The effort 

to find this discrepancy resulted in the study of nonlinear 

vibrations due to cross sectional distortion as described in 

this thesis. 

I am grateful to my supervisor, Mr. B. M. Hall, Chief of 

the Dynamics Group of Douglas Aircraft Corp. in Tulsa , f or t he 

privilege of using some of the results of my wo r k the r e in the 

pre pa r a tion of this thesis, I am also grateful t o Mr. Hall' s 

leadership in the conduct of this study. I am indebted t o 

Mr. J oe Butler, who shared with me his knowledge during our 

work together on previous related studies and his counsel during 

this study. Finally I wish to thank Oklahoma State University's 

Professor L. J. Fila for checking and reviewing this thesis and 

for his guidance and counsel during its preparation. 
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CHAPTER I 

INTRODUCTION 

When a thin-walled circular cylinder is bent by external 

ooments, the cross section of that cylinder evolves into an 

ellipse. It follows that the area moment of inertia of an 

ellipse about the neutral axis of a bent beam is less than that 

of the circle from which it evolved. Furthermore, the more an 

initially circular cylindrical beam is bent, the less will be 

the area moment of inertia of its cross section. 

In the differential equation for undamped free vibration, 

rnn + kh = o, 

the k, commonly referred to as the spring constant, is not a 

constant for thin-walled circular cylinders under lateral vibra

tions; instead k is a function of t he displacement, h, This is 

because the eccentricity of the elliptical cross section will 

vary constantly during a vibration cycle. Therefore, k is a 

function of the varying moment of inertia of this cross section. 

It may be noted here that a circle is an ellipse with an 

eccentri city that approaches zero; and, therefore, the previous 

definition of varying eccenticity is valid. Since the displace 

ment , h, is a f unction of the time, t, k may be expressed as a 

function of time. Hence, the equation of undamped free vibration 

1 
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of a thin-walled cylinder may be written 

rnh + k(t)h = 0. 

Characteristics of this nonlinear spring constant, to-

gether with an application to rocket vibrations, are discussed 

in this thesis. 

In order to find the effect of cross sectional distor-

t i on on thin-walled cylinders undergoing lateral vibration, a 

search of the literature was made. Since no satisfactory 

lit erature was found on this subject, a search of the literature 

on c ro s_ s sectional distortion of thin-walled circula r cylinders 

under static load was made. The best work that was found on the 

subj ect was written by Theodore von Karman in 1911. 1 This work 

consisted of a derivation of a correction to the elementary 

~e~m equations under static load conditions. S. Timoshenko 

translated and revised a part of von Karman's work. 2 R. A. Clark 

and E. Reissner reviewed von Karman's work and demonstra ted that 

von Karman's assumption in using the semiaxes of an ellipse i n 

the place of the mean geometrical radius of a circle wa s a 

r ea sonably valid mathematical relation. 3 

1Theodore von Karman, "Uber die Form~nderung dtfnnwandiger 
Rohre, insbesondere federnder Ausgleichsrohre", The Collected 
Works of Theodore von Karman, I (Toronto, 1956), p. 304. 

2s. Timoshenko, Strength of Materials, I (New York, 1955) , 
p. 45 5. 

3R. A. Clark and E. Reissner, "Bending of Curved Tubes", 
Advances in Applied Mechanics, II ed. R. von Mises and T. 
von Karman (New York, 1951), p. 120. 



Von Karman's derivation, in effect, describes cross 

sectional distortion in terms of work and energy relationships. 

Because this approach is used in the derivation of matrices for 

c omplex vibration problems, the entire article was translated, 

and reproduced in Appendix A of this thesis. 
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CHAPTER II 

MYKLESTAD'S LINEAR ANALYSIS 

Introduction 

In any beam, regaro.less of the loading configuration, 

the following relation exists: 1 

'I'he moment, M, may be broken into two parts. One of these 

pa rts will be called the external moment. This will consist 

of all moments except those caused by vertical shea r s wh ich 

hitherto had not been included in the external moment. The sum 

of the vertical shears, S, about any point may, by vector 

addi t ion, be considered to be acting at a s ingl e point. The 

product of the sum of the vertical shears , S, times their 

dis t ance , L, to the point considered may be called the shea r 

moment, Ms · Equation (1) then becomes· at a distance f r om 

x = O.in Fig. 1: 

£IA= Me·" f S(L-x) d?f' "I /. (Z) 

1Timoshenko, Strength of Materials , I (New York , 195 5) , 
p . 246. 
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The integra). of {12) , is 

If (3) is integrated, the result is 

(4) 

In the cantilever of Fig. 1 at x = O, dh/dx and hare 

both zero. If these values are substituted into equation (3), 

then c1 is zero. Likewise, if these values are substituted 

into equation (4), C2 is zero; and when xis L, equation (4) 

for the cantilever becomes 

(5) 

dh/dx is the tangent to the bending curve of the beam. 

For small angles of bending, where 9 is the angle of bending, 

dh/dx is very nearly equal to 9. If the values, dh/dx is 9, 

xis L, and c1 is Oare substituted into equation (3) then 

the result is 

L £IB =MexL+r.5 z. . (6) 

The equation for angular distortion from twisting of a 
2 

beam under a torsional moment, T, is given by the formula, 

2Timoshenko and MacCullough, Elements of Strength of 
Materials, (New York, 1952) p. 258. 
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TL= GJ,0, (7) 

where G is the angular modulus of elasticity, J is the polar moment 

of inertia, and ,0 is the angle of twist. 

Equations (5), (6), and (J) are dependent and represent a 

system of stmult~neous equations which may be arrayed as follow s : 

h=~z +ff; ·+ 0 

e = St,. 2. 
2..E.I +Kf-+ 0 

.rd= 0 f-0 +f!r . (8) 

711. is array may . be expressed in matrix form: 3 

h ifr l,. 2. 0 5 
2-E.Z 

f) 2. 

tir- tr 0 M 

0 0 J...,/G T • 0) 

The General Myklestad Matrix 

Since components and structures are different throughout 

the length and breadth of a rocket, analysis cannot be made on 

the basis of any functional continuity. However, an ana l ysis 

3 Compare with R.H. Scanlon and R. Rosenbaum, Aircraft 
Vibration and Flutter, (New York, 1951), p. 21. 
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can be made by an approximation. Consider a rocket divided into 

sections of finite length as shown in Figure 2. The masses of 

the chosen sections are considered to be concentrated at the 

selected reference points. The structural rigidity is assumed 

to be a constant between adjacent mass reference points; and 

the length, i-lLi, between adjacent mass reference points is 

considered to constitute the length of a cantilever beam with 

the concentrated mass of the higher numbered section at its 

free end. With the nomenclature of Fig. 3, equation (9) is, for 

the ith section, 

h1 'Jti' tefl 0 s,-

B/ - .. t.. 2. . L· 0 M, ,., ,-,~, 
2.£.I E.[ 

Ar/J/ 0 0 I L. 7, t,-l-l 
GJ 

Likewise, these relations may be seen from Fig. 3: 

and 

hi-1 = hi - ~hi - i-1 Li C 9i - A9i), 

9i-l = gi - A9i, 

(lo) 

( lla) 

(llb ) 

(llc) 

If ~hi, as given in line l of matrix (10) is substituted into 

equation (lla), then there follows the expression: 

s M. Lz.. . . s, , - L, I ,-, I .. , -. • , .. I h h . . . . . . 8- l L ,-, = I - ae1 - ZeI - I I-I r f 4811-1 I, 
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If ..t:19i from line 2 of matrix (10) is substituted into (12a), 

then the result is 

3 
M· l-1L~· 

h/-1 = h/ $· /-1L/ - e;· i-1L1 3£I Z.E.T 

S/ · L3 z 
+ I /-/ / -f fa{ /-1 L ;_ 

ZEI EI • 

This is equivalent to 

Now, ,Lj.Qi from line 2 of matrix (10) is substituted into 

equation (llb), and the result is 

s;. . L2· n. _ .c,. - .:::::4 1-11 _ C:T,_, - (.// 2.EI -

(/26) 

(12d) 

Finally L\~i of line 3 of matrix (10) is substituted into 

(llc), and the following expressior i s obtained: 

~ 1-/ I ~ 1;- ·L· 
·-1 = .. / - G JI . (Ice) 

(12c), (12d), and (l~e) are dependent s imultaneous equations 

and may be written in matrix form : 

L3 2. . . 
/-LC./ 

hl-1 
L-l I 0 I -;-,L, 0 5; 6EI c.EI 

- [z, 'J_ . /vi/ 
B1'-1 /-t.- l ' - 1.-_1 0 0 I 0 1/ 2-EI £I J;,-
~·-1 0 0 -6-f' 0 0 I ,r. ~3) 
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This matrix may be abbreviated to 

hi-, S; 

Mi 

ei-, = [Gl] T,· 

hl 
B/ 

/Ji-1 ¢; • Q3a) 

The kinetic energy just to the right of mi-l' due to the 

concentrated mass,mi, is 

where Tis the kinetic energy of the ith section, and 1/ is the 

distance from the reference point to the point of torsional 

distortion. 

The forces in the q directions may be found by the Lagrange 

operator, 4 

For the h, g, and ·,0 di;rections, equations are found by performing 

the Lagrange operations respectively as indicated: 

4Timoshenko & Young, Advanced Dynamics, (New York, 1948) 
p. 214. 



Where s¢. 

Se 

I¢ 

Ie 

is the static unbalance in roll, mi L¢i; 

is the static unbalance in pitch, 

is the moment of inertia in roll, 

is the moment of inertia in pitch, 

10 

04a) 

(/41,) 

(14c) 

Ie¢ is the product of inertia in roll pitch, m2 i-lLi L¢i; 

then '\iJith1:1the.! preceding hotati orr, ·equat;[ons' ( 1(4a'.),, ; ( l:4b.) r anct:' 

( 14c) . become 

{/Sc;) 

(/5/J) 

(/5c) 

The right hand terms of this system of equations, (15a, 

15b, 15c), may be written in matrix form : 

mi s . ei s¢i 
•• h• 1 l-

I . Ie¢ ' 
., 

8ei Q. 1 ... ei l -

•• 
S¢. 1e¢i I¢i ~i-1 : (16) 1 • 
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For small deflections, since q is equivalent to qlA,>2 , matrix (16) 

may be writtenS 

mi 8ei 8¢i h • 1 1-

8ei 1ei Ie~· Q. 1 1-
w2 

8¢i Ie¢i Iei ¢i-l ~ (17) 

Matrix (13a) substituted into matrix (17) yields 

S, 
1 

8ei S9Si 
Mi 

mi 

8ei Iei 1_e¢i (GLD Ti 
4)2 

hi 
si6i Iej!Si I¢i 

Q. 
1 

¢i • (18) 

Th:i,s may be abbreviated to 

S, 
1 

M. 
1 

[Mi] ( GLj) 
T , w2 1 

hi 

Q. 
1 

¢i (18a) 
• 

The potential energy resulting from the generalized forces in 

the hi-l' Qi-l' and ¢i-l directions at the cantilevered mass, 

5see Scanlon and Rosenbaum, p. 66. 



. 6 m. ,is 
l 

to be 

12 

V: :S·h- + £I(Aa,f + GJ &fz!,-)2· 
I I I ? I L· ? . I • 

~ -I t C- l-1 / f 

From the preceding equation the inertia forces are found 

Equations (19) may be written in matrix form: 

1 0 

1 

0 

0 

S· l 

M· l 

03a) 

(/9b} 

(/3c) 

( 20) 

The sum of matrix (18a) and matrix (20) is the sum of 

the inertia and elastic forces of the ith section. The sum of 

(18a) and (20) may be equated to the generalized forces of the 

(i-l)th section: 

6Timoshenko & Young, Pr 214. 
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s; 

Si-,~ 
r , 0 0 s; Mi 

T; 
Mi~t - [-~L1 0 Mi + wi. (MJ [GL~ -
Ti-1j 0 T• Yli 

I 

9j 

¢,,J (21) 

When (21) is augmented to the equations of restraint, (13a), 

the following system for a cantilever is obtained: 

s,_, , s,· I 
Mt'-r fl· -1 ¢, [M :J [GLJ<l Mi 

' -· I 
~ Ti-, 7,· 

- ___ i ____ 
+ 

_ __ .;;.._ 

bi-, - h,' 
@l-J Gl,- 4- e:· 
tA·-, rA· (22) 

where GLi and Mi are previously defined and 

I 0 0 0 0 0 

H, = i-• L,- I O otnd ¢1 :- 0 0 0 

0 0 I 0 0 0 • 

The second term right of the equal sign of equation (22) 

is, in fact, 
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S· ]. 

[Mi] [G1] M· ]. 

Ti w2. 
0 0 0 0 0 0 h· : ,J. 

0 ·o 0 . a 0 0 

0 0 0 0 0 0 

Hence by adding the two terms to the right of the equal 

sign of equation (22), a square matrix is formed. This matrix 

leads· to the equation 

S, 
J.-

S, 
]. 

M· 1- M· ]. 

T, = (n1] T, 
J.- ]. 

h. 1 .J.-
h , 

]. 

Q, 1 J.-
Q, 

]. 

¢i- l ¢i 

It follows, for example, that for a cantilever analysis of three 

sections, there will be a rea1U.onship for each of 

the three sections: 

S, 
1- S· ]. s. ') 

].-'- s. 1 ].- So Si~ 

M· . J.- Mi Mi-2 M- 1 J.- Mo Mi-2 

Ti- T, Ti-2 (n2] 
'I'i-1 To T· 2 

[n1J J. 

[n3J 
].-

:.:; = ::;:: 

i- hi hi-2 h , 1 ho h· 2 J. - ].-

Q, 
J.-

Q, 
1 Qi -2 Q. 1 ].- Qo 9i-2 

¢i- ¢i ¢i-2 ¢i - l ¢0 ¢i-2 (23) 
• 
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The continued substitution of equations (23) reduces to 

the single equation: 

s 
0 

s. 
l 

Mo M· l 

To T· 
(D1) (D2) [ D~ 

l 
= 

ho h· l 

gi g. 
l 

¢· l ¢· ( 24 ) 

Now the free end conditions, M = S = T = O, and initial 

condition7 h0 = 90 = ¢0 = O, may be utilized to produce! 

0 S· l 

0 M· l 

0 

(D1] (D2] [ DJ 
T· l 

= 
0 h. 

l 

0 g .. 
J.. 

0 ¢i ( 25 ) 
• 

Solutions of equation ( 25) exist only for values of W 2 

that cause the determinant [D1) [ D2) [ D3) to vanish. 7 Expans ion 

of the determinant of·theequatim . will ·yield a determinanta l equation 

. w2 in · W11e expansion of this determinant will not be attempt ed 

here. After expansion, the determinental equation may be solved 

7 
.Frazer, 

A~alications ~o 
1 . 6 ) p. 5 7' p. 

Duncan , Collar, Elementary Matrices and~ 
Dynamics and Differential Equations ,-nfew York, 
61, p. 288. 
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for lt) 2 in a variety of ways on a digital computer.8 For any 

chosen value of hi, gi and 0i can be found. The unknown deflec

tions, moments and forces of equations (23) can be found in 

order from right to left; the values of ()) 2 are substituted i nto 

each determinant. 

Bsee for example, Chapter XV, Muir and Metzler, Theory 
of Determinants, (New York, 1933) p. 603. 
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Fig. 1 The Bending of a Cantilever . 



Fig. 2 Typical Sectional Breakdown 

s;·_, 
t .. I • 

/-/A,,/ 

• ·,-

S,, 

' l 

----, 

Fig. 3 Nomenclature for Bending of Adjacent Sections 

- -



CHAPrER III 

THE DISTORTION OF THE CROSS-SECTION 

Consider a thin-walled tube with a circular cross-section 

that is bent by a moment, Mb. See Figure 4. The angle of curva

ture of this bent circular tube is designated as (91 - gi_1 ). A 

moment of magnitude Mb, however, would distort the cross section 

of an initially straight, unbent circular tube into an ellipse. 

The elliptical cross section has a smaller section modulus, EI, 

about its major axis than the circular cross section from which 

it evolved as a result of the application of the moment, Mb. 

Therefore, the actual angle of curvature of the more limber 

elliptical tube is greater than the angle of curvature of a 

circular tube by an angle, .AC gi - gi-1), 

Because of the external moment, Mb, there are tensile 

forces, T, at the convex side of the tube and compressive 

forces, C, at the concave side of the tube which form a couple. 

The compressive and tensile forces of this couple have result

ants, Rand -R, in the direction of the neutral axis. These 

resultants cause the outer fiber ab to be displaced a distance, 

W, toward the neutral axis and to a position a1b1 . 

If,A(91 - f\_1 ) and W of Fig. 4 are small, then 

e1b1 ~ eb. Then, from Fig. 4 the following relation is ob

served: 

19 
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(1) 

Likewise, the following relation may be observed: 

(2) 

If the ratio r/R is small then (r - W) ~rand equation (2) may 

be written as 

(3) 

From Fig. 4 it is evident that the following relation exists: 

(4) 

When equations (3) and (4) are substituted in equation (1), the 

result is 

Now, (ab 2a1e1) is the total elongation of the fiber ab, which 

is defined as 

The unit elongation or strain may be found by dividing the 

elongation of the fiber ab by its length : 

(6) 

The first ·term of equation (6) is t he st rain in the outer fiber 

f rom the rotation of the cross section bd with respect to the 

cross section ac. The second term of equation ( 6 ) is the result 



of the flattening of the cross section. The maximum stress 

(which .is in the outer fiber) is, from equation ( 6) and Hooke's 

·law, 

(7) 

The effect of the second term may be of considerable 

importance. For example, .if (R + r) is 60 inches and Wis .02 

inches, then W/(R:+ r) . is 1/3,000; and the corresponding stress 

in steel is 10,000 psi. This value :i,s nearly equal to the 

fatigue working stress for mild steel, (15,000 psi). 
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Fig. 4, The Bending of Thin-Walled Circular Cylinders. 



CHAPTER IV 

NONLINEAR MODES 

Introduction 

In Chapter II, a method of linear modal analysis, suitable 

fordigital computers, was developed. In Chapter III, a method 

of calculating the effect of cross sectional distortion on the 

stresees a'nd , stra:rrrs of thin-walled cylinders under static loading 

conditions was developed. It is the purpose of this chapter to 

show how the distortion of the cross section as discussed in 

Chapter III, can be combined with the linear modal analysis of 

Chapter Il to evaluate the nonlinear lateral vibration modes 

of thin-walled cylinders. 

Von Karman's Correction During 

A Vibration Cycle 

In Appendix Ba correction factor is given to be multi

plied by the area moment of inertia of thin-walled cylinders. 

This correction fa ctor is needed when the cross section of 

a thin-walled cylinder is distorted. Therefore, this factor 

is needed when the cross section of a thin-walled cylinder is 

distorted during lateral vibrations. This correction at any 

time, t, during a vibration cycle is 

23 



.9 
~: I- ~l J~ 10-12. · · · r (!) • 

Now, in order to simplify the presentation, Q shall be a constant 

equal to ~2(gLl~J!. 'I Using thi~ con~~ant, Q, the preceding equa

tion may. be written 

This is equivalent to 

This maybe further simplified: 

If the terms of the numerator are collected, the _expression be-

comes 

The numerator and denominator are multiplied by Q - 10(~9)2 , 

which yields 

In the case of rockets of cylindrical shape, ~9 is small. For, 

.· example, even c1s small a value of A.9 as . 01 is too large to be 
I 

encountered under all designed for conditions. Therefore, iall 
·~ 



powers of A,9 to the fourth power may be dropped without ap

preciable error. It follows that, with (~9)4 dropped, the 

preceding equation is approximately 

The equation may now be written in a form like that of the von 

Karman correction: 

25 

, I< = I - ,9(AQ,)2. 
I$ Q. • (I) 

Since the maximum angular deflection is given at each 

mass reference point in the usual linear modal analysis, this 

factor, Ag = g. - g. 1 shall be used in a dynamic correc-
~ max i i-

tion factor to the linear modal analysis. Over a complete 

cycle, according to linear vibration theory, the angular dif-

ference, .D.9, varies in a sinusoidal manner. This may be 

expressed, at any time in a cycle, as 

A9 = Agmax sin 2,rft; (2) 

where f is the frequency in cycles per unit time, and tis the 

time from the beginning of a vibration cycle. Then combining 

(1) and (2), the value of the correction factor, K, is 

~ = 1- -9(A8me,1xSin 21rff)' 
:s a . (3) 

By the substitution of the double angle equivalent of 

sin2211'ft, equation (3) becomes 



i',. _,::: 1 _ .9 C,t. 9,-x)' (f -i C o.s 2.rrf "P 
. . ~ . (4) 

In order to find the effective va l ue of equation (4) over a 

vibration cycle, th~ second term of that equation may be intregated 

over the time interval of one cycle while it is divided by the 

time interval, 1/f, of one cycle as follows: 

The integration of this dynami c cor rection f actor:.yields . 

When the limits are taken the equation becomes 

which reduces to 

( 5 ) 

Thus the second term of the dynami c correction factor is~ 

of the value of the 2nd term of the stat ic correction factor. 
'.'.\ 

Since equations (1) and (5 ) are in the fo~ of the von Karman equa-

tion it follows that von Karma.n's factor may be used in place of 

eqpation (5). If the von Ka rman corr ection factor, K5 , is taken 

from Pig. 1 of Appendi x B, then the d1nami c correction factor, 

ka, is 
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-. -~-\ 1 l 

1<ct = 1 + Ks 
: 2,,) , ' i 

Hoop Modes 

When the cross section of a thin-walled cylinder is 

distorted into an ellipse, the mass in the shell has inertia 

toward and away from the longitudinal axis of the cylinder. 

This inertia is resisted by opposing stresses in the pipe walls. 

This balance of kinetic and strain energy can affect the lateral 

modes, with or without the distortion correction factor. For 

this reason, it is believed that hoop mode equations should be 

a part of the modal linear analysis. 1 Then when the dynamic 

cros? sectional correction factor, Kct, is applied to each mass 

reference point's area moment of inertia, possible coupling of 

lateral bending and hoop modes will be combined with the effect 

of cross sectional distortion to expose any dangerous condition. 

In addition t o hoop modes, there exists the possibility of 

exciting stringer modes . This i s true especially i f the 

stringers are spaced somewhat widely apart. In this mode the 

stringers combined with the skin to which they are welded may 

be thought of a s fixed ended beams t hat are rigidly attached 

to t he stiffer sections of a rocket. These modes could 

1This mode i s discussed as the vibration of a cir cula r 
ring: S . Timoshenko, Vibration Problems in Engineering, (New York, 
1955) p. 425. 
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conceivable occur in addition to the modes associated with the 

bending of a thin shell. 

The Effect of Cross Sectional Distortion 

On the Modes of the Thor-Delta Rocket 

In order to find the effect of cross sectional distortion 

on the Thor booster Delta second stage combination, a linear 

Myklestad analysis was made. 2 The two stage rocket was divided 

into a total of 20 mathematical mass reference sections; and 

masses, moments, moments of inertia, and area moments of inertia 

associated with each section and its mass reference point were 

calculated. An initial deflection was assumed and modal 

frequencies and maximum deflections at each mass reference point 

we1'e obtained. 

It may here be observed that equation (5) may be written 

2. f 
It' = / - -2 (. 707 .66'~'() r 
'''d IZ (gL) • 

This shows that if .707..6.gmax is us8d in place of 

Ag that the static von Karman distortion correction ~ max' 

factor, Ks, as shown in Fig. 1 of Appendix B may be used. The 

hoop and stringer modes were not included in this analysis. In 

general, the neglect of degrees of freedom results in a low 

frequency which i s on the high side. The neglect of modes is 

2This analysis was run under the direction of Burt Hall, 
Chief of the Dynamics Group, Douglas Aircraft Corporation in 
Tulsa, Oklahoma in 1958. 



equivalent to an increase of stiffness which should result in 

smaller distortions. Consequently, it was decided to increase 

the term .707 ~gmax to simply ~gmax· Thus, in effect, the 
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static correction factor, Ks, was used in place of the dynamic 

1 + K 
correction factor, Kd. The relation Kct = 2 s, should be kept 

in mind. 

Ag is the difference between the maximum longitudinal 
~ max 

angular deflections, gmax , of adjacent mass reference points. 

The values of ~max found in this manner were used in the von 

Karman correction factor, Ks, as taken from Fig. 1 of Appendix 

B. This correction factor multiplied by the area moment of 

inertia at each mass reference point gave a new, or corrected, 

area moment of inertia. The linear analysis was then repeated 

using these new or corrected area moments of inertia at each 

mass reference point. 

The results of this linear simulation of the nonlinear 

case discussed showed that the first bending mode was quite 

c lose to the uncorrected bending mode. The second bending 

mode, however, changed from a frequency of 11.45 cps to a 

frequency of 9.43 cps. Fig. 5 shows a shifting of the node 

point after considerati on of cross sectional distortion. This 

node point moved from t he booster stage, through the conical 

transition r egion and to the base of the delta second stage 

after the linear analysis was corrected for cross sectional 

distortion. 
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Closing Comments 

It should be observed that each lateral bending mode 

studied requires a separate correction for cross sectional 

distortion. Thus a corrected modal analysis is valid only for 

the deflections of the mode being studied. This is because the 

deflections of other modes would be quite different causing 

quite different area moments of inertia to be used in the 

analysis. 

Bending modes may be obtained independently by 

Myklestad's method and lower modes need not be computed. 3 How-

ever, these modes should not be left out of the mass or spring 

matrices. Particularly adjacent mode s should not be left out. 

These adjacent modes may be torsional, stringer , hoop, for e and 

aft or any other conce i vable mode. By ad jacent modes it is 

meant modes that have the next higher and next lower frequency 

to t hat of the mode being studied. Studies on this subj ect by 

J oe Butler and W. J. Slagle at Dougla s Aircraft Co . of Tulsa, 

Oklahoma reveal t hat the leaving out of adjacent mode s can 

cause e r~ors up to 10% in f requency. These errors in fre-

quency could cause even greater errors in deflections, particu-

l arly in the case of self-excited vibrations . fresent linear 

3 
R. L. Bisplinghoff, H. Ashley, and R. L. Halfman, 

Aeroelasticity, (Cambridge , 1955), p . 163 . 
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programs for the analysis of vibrations in rockets could be 

modified to feed in increments of initial end deflections. For 

each end deflection a linear analysis would be run. This linear 

analysis could be corrected from tables in core storage of the 

computer for each mode desired. Present day high speed computers 

make such an analysis feasible. 

The thickness, g, _of the skin was calculated as the 

equivalent thickness that the ribbed cylinder actually used 

would have if its cross sectional area moment of inertia were 

the same as an equivalent thin-walled cylinder. However, for 

mass and inertia terms the actual masses were used. Periodic 

longitudinal stiffeners should have little effect on the bending 

for the first two bending modes. 4 

4 . 
This statement is due to Mr. William Pierpont, 

Dynamics Group, Beech Aircraft Corp, Wichita, Kansas. 
Pierpont has been a vibration engineer since 1945. 

Chief 
Mr. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

The purpose of this thesis is to show a method of making 

vibration modal analyses of thin-walled cylinders that have 

nonlinear characteristics which are due to dynamic cross 

sectional distortions. It is possible that this method of 

analysis may utilize existing computer programs designed to 

perform linear vibration modal analyses. 

The method consists of first dividing the cylinder into 

several mathematical sections and performing the linear modal 

analysis for a given end deflection. The deflections at each 

mass reference point, as found by the linear analysis for a 

given mode, are then used to calculate new area moments of 

inertia about a transverse axis. These new area moments of 

inertia represent the effective value of the area moment of 

inertia over a vibration cycle. These new moments of inertia 

may be found by 

where g is the thickness of the cylinder wall, r is the radius 

of the cylinder, Lis the distance between mass reference points 

and ~g is the difference between two successive angles, at 

their reference points, with the horizontal. 



In the case considered, a loading configuration of the 

Thor-Delta rocket, there is a marked change in the deflection 

curve and the frequency as a result of considering the cross 

sectional distortion. 
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THE DEFORMATION 

OF THIN-WALLED PIPES 

ESPECIALLY SPRING COMPENSATOR PIPES* 

The reason for writing the following article is found in 

a research paper by Professor A. Bantlin on the deformation of 

spring compensator pipes. This paper was published in the 

second issue, 1910, of this periodical (Zeitschrift fur des 

Vereines deutcher Ingenieure) and in the ninety-second issue 

of "Mitteilungen uber Forschungsarbeiten." This investigation, 

which is worthy of the utmost consideration, led to the remark-

a ble result that the measured deflection was four to five times 

greater than that which had been ascertained by calculation. 

In the following pages I would like to show that this signifi-

cant difference between theory and measurement arises solely 

because the customary bending theory, which remains mostly 

silent on the assumed hypothesis that the cross section of a 

rod remains unchanged, can lead to very great errors if 

applied directly to the bending of thin-walled pipes having an 

initial curvature. Now consider that if an initially curved 

*Spring compensator pipes are pipe bends in which the 
spring or elasticity of the bend is used to compensate for 
thermal, pressure, shock, or vibration strains of connected 
unbent pipes or attached plant equipment. 

37 



rod is bent, the individual fibers will be distorted to conform 

to the expected new curvature provided that these fibers are not 

displaced toward the neutral axis; and that the actual displace-

ment will be insignificantly larger than such displacement as 

will be indicated by the usual bending theory. 

The following case applies particularly to pipes with 

wall thicknesses that are small in comparison to their internal 

diameter. 1 It is easy to see that a proportionally small flatten-

ing of the cross section is enough to alter considerably the 

entire stress distribution. Thus a pipe with a radius of curva-

ture of 800 millimeters, flattened one millimeter in diameter, 

already has a diminishing of the stress of about 

(2,000,000 x .5)/800 = 1250 kg./cm. 2 

(by the definition of the modulus of elasticity). That is to 

say, that the outer fibers, which carry the greatest tensil and 

compressive stresses according to the conventional bending 

theory, will be greatly relieved under these conditions. It is 

easy to understand beforehand from Figures 1 and 2 that there 

must be a tendency of the cross section to flatten. It may be 

seen that as long as the resultant of the tension as well as 

the resultant of the compression in the outer fibers run perpen-

1 
Very commonly the bending theory can lead to very great 

errors if one dimension of a cross section is smSll compared to 
its other dimension. It is a pleasant duty for me to mention 
that this point, and particularly the case of thin-walled cylin
ders, had already been brought to my attendion several years ago 
by Professor Prandtl. 



, 39 

dicular to the pipe wall, that a bending moment so applied as ,to 

increase the curvature will press together the inner and outer 

pipe walls toward the neutral axis, and that a moment in the 

opposite sense will tend to pull them apart. It may be seen in 

either case that there will be a decrease in strain. It follows 

that a pipe, distorted by bending, having a known measured 

circumferentially distributed stress and a small bending moment 

will behave as indicated in the usual bending theory: a given 

moment will not significantly increase the cross sectional 

distortion. In the case to be shown, the following typical 

calculation, together with formula II which follows, will develop 

a completely logical measurement for the difference between 

theory and practice by consideration of the flattening of the 

2 cross section. The then still rerraining difference of about 

20% is probably due to the difference in the thickness of the 

pipe and other geometrical assumptions not actually true in the 

physically tested body. 

The Theorem of the Minimum Work of Distortion 

It would present no fundamental difficulty to develop 

again the formulas for calculating the distortion by the so-

named theory of thin shells as they would be developed by the 

mathematical theory of elasticity. It should be kept in mind 

2It follows that due to this flattening, the moment of 
inertia will decrease. This effect is, however, of very little 
importance. 
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that this method will succeed but has little practical value 

because of the long tedious calculations involved. Fortunately 

for the art, the extremely simple, exact, and complete theorem 

of the minimum work of distortion has been adopted. It was 

namely W. Ritz3 who developed a different and very valuable method. 

This consists of approximate relaxations by the method of varia-

tions. I believe that the approximate solution of Gottinger, who 

died too early in life, should merit the special attention of all 

engineers as it creates a somewhat different approach to the 

theories of elastic stability and hydrodynamics; and since there 

are many other directly applicable cases in ideal theory in 

which this fundamental formula will achieve with simplicity the 

4 complete exactness required by technology. 

Before I present the applications of these methods, I 

would like to present completely the simplest form of the pro-

blem. A pipe with a circular cross section and circular center 

line, Fig. 1, will be uniformly bent so that the angle .. between 

both end cros s sections that previously had a value of 8 will 

have a value of 8 + A8. 

(a) How will the circular form of the cross section 

change? 

( b) How l arge is the change in t he angle, A8, in re-

lation to the bending moment and in relation to 

4 Recently, the Ritz approximation was modified by 
Mr. Timoshenko of Kiev so as to give a linear solution. 
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the work of distortion which is the half product of 

the change . in the angle and the bending moment? 

By not considering the cross section it may be seen, by 

·the common bending theory, that the approximate value of the 

moment is 5 

(1) 

where I is the manent of inertia of the cross section; 

Eis the modulus of elasticity of the material; and 

R is the radius of curvature of the centerline. The work 

of distortion ;is found by ·the common formulas, 

and 

W- E.IJAef 
- ·2: · R9 • (Z) 

Otherwise, the theorem of the least work of distortion 

gives the following reply to our questions: the cross section 

will be distorted in such a manner that the work of distortion, 

using equal values of AQ, becomes the minimum value ~etermined 

by the work actually requireo by the necessary moment,~' needed 

5'i'he formulas do not indicate the influence of the finite 
curvat.ure on the stress distribution; it is merely .,ind:i.cat~o, in 
these first fo.rmulas, , that only a large initial curvature can 
cause any .appreciable effect. See Z. · 1910 s. 1675. · 
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for the bending of the pipe. 

The work of distortion, in the case where the distortion 

of the cross section occurs, falls into two parts: that work 

done in strairiing- the longitudinal fibers, and that work done in 

distorting the cross section. It is now clear that, in a 

curved rod, the longitudinal strain of the fibers will steadily 

decrease as the elements of the cross section are displaced to

ward the neutral axis. Now with solid rods or with thick-

walled pipes having no increase in transverse strain, this is 

impossible; so that if the first part of the work of distortion 

decreases, the second part will increase approximately the same 

amount. In fact, the smallest significant value for the work 

of distortion that can be easily calculated for especially 

simple forms of solid rods and thick-walled pipes differs very 

little from the value yielded by the usual bending theory, so 

that both comp~tation procedures agree closely. However, the 

rela tions are entirely' different concerning t h in-walled pipes 

(or more genens:.11~/ when a measurement of the solid part of the 

cross section is small compared to that which is left over). In 

this case the resistance to the distortion of the cross section 

is relativel:,' small, so tra t it may be expected that the result

ant work of distortion obta ined by distorting the cross section 

can be considerably less. One need not consider, therefore, 

distortions in which the centerline of the pipe wall is not 

changed. Of course, it is easy to comprehend that the transverse 

strain of the pipe wall that is caused by the work of distor

tion will likewise increase approximately in the same magnitude 
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as is taken away by the decrease of the longitudinal strain, so 

that thereby no considerable decrease of the work of distortion 

can occur. 

With these reservations, the entire work of distortion is 

divided into two parts, which are: 

(a) the longitudinal strain of the fibers, and 

(b) the transverse bending of the pipe wall. 

In the following pages we would like to calculate the 

sum of both of these work factors. 

The Expression for the Work of Distortion 

In Figure 3, R is the radius of curvature of the center

line, 

r is the mean radius of the pipe cross section, 

and 

g is the thickness of the pipe wall. 

We next place a coordinate system, xy, through the 

center, O, of the pipe cross section, so that they axis is 

coincident with the center of curvature . The angle, B, is shown 

between the radius, OP, and the x a xis. See Figure 4. We repre

sent the displacement of the point, P, first as the components 

wx, wy in the directions of the x and y a xes and then in the 

directions of t he tangent and the r adius of curvature . See 

Fig. 5. 

We next calculate the strain of a fiber that is perpen

dicul ar to the plane of the figure a nd t hat goes through P. 

The cal cul ation consists of two parts. For the first part, we 



44 

may set by the conventional bending theory: 

(3a) 

The second part results from the displacement of the point in 

they direction and obviously amounts to 

II \M, 
e, :: !f +~. (36) 

We would like, in order to simplify the summation, to 

neglect y next to R, and thus write approximately6 for the 

resultant long·itudinal strain: 

(3c) 

or ty7 introduction of the equation, wy = wt cos B +wr sin E: 

We must restrict ourselves to the strainless movement of 

the pipe wall by setting the transverse strain equal to zero 

a nd thereby succeed in finding a relation between both of the 

components of the displacement. If the points are displaced 

6This a pproximation gives results of exactly the same 
accuracy as the approximate values found by formul a (1). One 
may easily be convinced since if, by the examination of the 
stress distrib~tion, an error of the order of (r/R) is committed ; 
that the error of the resulting distortion is only of the order 
(r/R)2 , 
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to Wt and wr in the directions of the tangents and the radius, 

the transverse strain of a circularly formed ring is given by 

the expression, 

(4) 

Therefore, if we set 

then there results 

(5) 

Therefore, the result is that the distortion of the pipe cross 

section will be fixed by one component, wt. Finally, in order 

to find the transverse bending of the pipe, we must calculate 

the change of curvature of the pipe centerline. This is likewise 

given by the theory of the bending of curved rods and particularly 

for circular cylinders by the formula, 7 

(6) 

7 Compare, for example, B. Foppl, 11Vorlesungen uber tech-
nische Mechanik, 11 Bd. III, Absatz #36. Moreover, the formula can 
easily be derived by noticing that the first term expresses the 
rate, -d2w/ds2; that a straight rod becomes curved; and that the 
second term, however, represents the change in curvature caused 
by the distortion, wr, from its original finite curvature. 
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where r• means the radius of curvature of the pipe wall after 

distortion. Putting in the value of Wr from formula (5) we 

finally obtain the expressions: for the longitudinal strain, 

and for the transverse bending, 

_J(?J 

With the use of these formulas, we are now ready to write the 

expressions for the work of distortion, which are obvious enough 

if we consider only cylinders of length, 1. 

The first expression, the magnitude of which is dependent 

upon the longitudinal strain for a unit length cylinder is given 
2 

for a unit arc length by ~Ee1 , so for an entire cylinder of 

unit length~ 

The second expression, the magnitude of which is dependent 

12:,?on the transverse bending component, is, for an element of 

the ring of Fig. 4 equal to 

f u/f (f,- /; Jr dB; 

where g3/12 is the moment of inertia of a cylindrical section of 

unit length and of unit arc length. Hence for the entire 



47 

(unit length) cylinder, 

So, with this we have the expression of all the work: 

4fz.11' w~W,t-vv~>=z~2. ('tf~ +WtCosB-fft-51;,B)dg 
0 1-7/' . a!Ll ( ~ dJl4_) ol/3 + :8Ffi3: ~ Id a.1~ f d !!> / • 

or 

In order to determine how (I) might be made a minimum, we have 

obtained the displacement, wt, as a function of B. The minimum 

value of (I) would then give the correct value of the work of 

distortion; and the function, wt, which makes the integral a 
I 

minimum will result in a valid flattening of the cross section. 

We would like to solve this problem by an approximation, 

The approximation should be correct if we substitute into the 

integral expression for the work of disto~tion, (I), the approxi-

mate expression with undetermined coefficients, 

(8) 

and calculate the unkown coefficients, c1 , c2 , 

so that expression (I) will be a minimum. We, therefore, have 

not used all possible functi ons of wt that would yield a 

compatible solution, but have confined ourselves to such functions 
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as would give us the trigometric series of equation (8). So, we 

do not actually get the exact value of the displacement, wt, but, 

so to say, the best approximation by means of the trigometric 

functions. In general, it is not necessary to use only trigomet-
r 

ric functions; but we may choose the functions that give the 

easiest solution. The better that one chooses, the faster will 

be the reduction to a good approximation. Theoretically, it is 

necessary only to choose functions that develop a solution and 

satisfy the boundary and symmetric conditions. Practically, 

however, it is necessary to choose those functions that lead 

to the easiest calculations. In this case, the above mentioned 

series expansion is especially useful. Next, it is clear from 

the statement of the initial conditions that the distortion of 

the cross section is of the same magnitude in both the x and 

y directions. Because of this, equation (I) may be calculated 

easily, and the firs t approximation from a single term gives 

a value of sufficient accuracy for practical purposes. 

We set as the first approximation 

wt = c sin 2B (9) 

and place this in equation (I ) of the work of distortion and 

determine the constant c in such a manner t hat the result, 

W:: f,g#-[[0~12 + cS1nZ8 Cas./3-Zc Cas: 2!35inB)2dB 

+ j:,1.,_36cy;2Cosz.2B d~ (i) 
will decrease in value. 
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w~ set 

sin 2B cos B = ~(sin 3B + sin"B), 

cos 2B sin B = ~(sin 3B - sin B), and 

and remembering that 

hence 

~~ B sin 3B dB= O; 

so the work becomes 

W contains, as a single variable, the unknown constant, 

c, and we get the minimum of W if we set dW/dc = 0. Performing 

this operation gives 

from which it follows: 
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The value for the minimum of W then becomes 

Or if we replace 7fr3g for the moment of inertia, I, we have 

Otherwise, in most cases, the work of distortion has the 

value 

from which the bending moment may be seen to be 

Ml, _ 2 Wmir1 Re; 
r1. - A8 

Therefore, we get as a first approximation, the relation 

between the bending momer:t, Mb' and the change in the angle, 

AG/9, 

instead of, by the usual bending theory, 

(JI.) 

The two equations differ from each other by the correction 

f actor, 



This depends, as we can see, only upon the factor, 

that is to say, upon the ratio of the wall thickness times the 

radius of curvature to the geometric average radius of the 

cross section. 

We get the second approximation from the relation, 

As in the first approximation of relation (I) for the work of 

distortion , we determine the value of the constants c1 and c 2 

so that W will become a minimum. The minimum value of Wis 

found to be 

so that the bending moment for the expres s ion becomes 

These equations ,. differ from the equation of the usual 

bending theory again by a correction factor: 

51 
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If we replace the expression for the correction by its 

symbol, Ks, the form of the equation remains 

but we now have a somewhat more accurate value of the correction 

factor, Ks. However, the following table and the corresponding 

Figure 6 show that the first approximation has already obtained 

sufficient accuracy for most practical cases of importance. 

The table contains values of the factor, Ks, for the first 

three approximations. A noticeable difference between the 

first and second approximations occurs only for small values 

of the factor, ).. = gR/r2 ; approximately when .A is less than 

0. 3. For ~ > 0. 3 the difference is less than • 01. The second 

and third approximations differ mostly in the fourth or fifth 

places, and only when). is less than .02 in the third place. 

Thus, the approximation coverges well even for very small 

values of 'X. 'I'he convergence is somewhat slower for A = 0. 

The first three approximations run about 0.1, 0.029 and 0.012, 

while the real value is Ks= 0. Meanwhile, we find for 

practical spring compensator pipe cases, and for other thin

walled pipe cases, ~hat A is greater than 0.3; so that we 

can, for the most part, obtain a satisfactory correction from 

the first approximation. 

We can, therefore, sum up the results of the preceding 

investigation by stating that for originally bent pipes of the 

usual bending equation, 



AA - EIA9 
r,b - ~B , 

the moment of inertia, I, is replaced by a corrected value, 

KsI. Ks may be approximated by 

~s ~ 1- /or 1z{ff/: 
Instead of the change of the angle, /;;.9/9, the change 

in the curvature may be used so that the equation is 
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(III) 
instead of 

as found by the usual bending theory. 

The predicted change due to the flattening of the cross 

section is very accurate if 1\ = gR/r2 is very small, that is, 

when the wall thickness compared to the internal diameter is 

very small and at the same time, however, the radius of 

curvature compared to the internal diameter is not too large. 

We shall see how this case behaves as a wrought iron spring 

compensator pipe. 

Considera tion of a Spring Compensator Pipe 

By considering the research of Mr. Bantlin on compensa-

tor pipes, we must keep in mind that the pipe has two parts with 
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distinguishably different radii of curvature. We should pause 
i 

for a moment to reconnoiter and use the value of the corrEFction fac-

tor that corresponds to the larger radius of curvature (so that 

a correction that is still too small occurs). Doing this gives 

R = 831.0 cm, r = 10.43 cm, g = 0.665 cm, 

A= 0.507, and Ks= 0.312. 

For the given force our calculations already give, for 

the first approximation, 1/0.312 = 3.2 times the distortion of 

the usual bending theory. That is to say, this has already 

accounted for a considerable part of the difference between 

measurement and theory. 

For a closer agreement with the measurement, we should 

use, in our calculations, different correction factors for both 

parts of the compensator pipe. We obtain: 

For R = 831.0 cm, 

For R = 558,5 cm, 

/I= 0.507 and Ks = 0.312; 

.it= 0.340 and Ks = 0.212. 

We have, consequently, divided the translation, A x , 

of the point F, Fig. 7, into two parts and inserted, for the 

part corresponding to the bending of arc, EG, 0.312 I, and 

for the part c orre sponding to the bending of arc, GJ, 2 .10 I , 

instead of I, or multiplying the values of displacement as 

found by the usual bending theory by 1 / 0.213 = 3.2 and 

1/2.10 = 4 .75 , re spectively and then adding the results. We 
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shall now turn from these quite involved formulas to the graphic 

method of von Bauman. 8 For a load of 300 kg one may obtain 

for the first part . 

for the second part 

The final displacement will therefore be: 

by the bending theory 

by our formula . . . 
resulting from observation . 

. 

A x 1 = 0. 3 9 7 cm, 

~x2 = 0.033 cm. 

Ax1 + .6..x2 = 0.43 

3.2lix1 + 4.75Ax2 

. . . . . = 1. 72 

The ratio, Measurement is found from this to be 
Calculation' 

for the usual bending theory 4.00, 

for our formula 1. 20. 

cm, 

= 1.43 

cm . 

It may be seen that a discrepancy of about 300 per cent for the 

distortion of the cross section has become only 20 per cent. 

It is similar with a compensator pipe which is 125 mm 

in inside diameter. Its dimensions are given as 

r = 6.55 cm, and g = 0 . 419 cm; 

for R1 = 802.4 cm, 

8see for example, 1910 issue of this periodical page, 
1675. A simple example of the Bauman method is obtained: if 
the work is taken first as the product of the force P and the 
distance ~x, and second as the true value of the work of dis
t°lti9n~ This gives a relation betwe~ ~he two as ~P.Ax = 
~ (P~b~/EI)ds and from this ~x = PJ(b /EI)ds. If we re-
p ace I with KsI, corresponding to the actual radius of curvature, 
our result can be generalized for any variable radius of curvature. 

cm . 



~l = 0.811 and Ksl = 0,497, 

for R2 = 0.440 and Ks2 = 0.269. 

Th'e resulting displacement of the point of application 

of the force will be for a load of 100 kg: 

by the bending theory 

by our formula 

obtained from observation 

'I'he ratio, Measurement, from this is, 
Calculation 

for the bending theory 

for our formula 

0.691 cm, 

1.44 cm, 

1. 75 cm. 

2.54, 

1. 21. 

As we can see, the measured value of the distortion is 

still about 20 per cent greater than that which was calculated 

by the correction theory. One cannot expect a very close 

a greement because the unmachined pipe that was purchased had 

an irregular form and an unequal wall thickness. Furthermore, 

no doubt, springing on the internal wall causes a roll of dis-

cernable waves and depressions, which was already known by 

Mr. Bantlin. Of course, I cannot altogether agree with Mr. 

Bantlin that the large difference between measurement and 

theory is due to the heretofore mentioned springing. From the 

above divided calculations, it appears to me that, certainly, 

the results come from the known characteristics of the 

flattening of the cross section. One can determine an 

56 
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approximate estimate of the influence of these waves, if one chooses 

the seeming coefficient of elasticity for calculations on a 

pipe with a corregated wall. If the half amplitude of the wave 

is indicated by d, the wall thickness again by g, and the 

coefficient of elasticity by E; we have for the apparent coef

ficient of elasticity, the formula 

. E' = E 
l - 6(d/g)2° 

We shall use as our example a spring canpensator pipe 

with an inside diameter of 200 mm and a thickness; g = 6.65 mm 

and by hindsight note that the deepest corregation, d = 1 mm. 

From this we work out that the decrease of the coefficient of 

elasticity due to the waves is about 13 per cent. The in-

fluence of the depressions is, therefore, not . . large enough to 

account for the difference of 300 per cent between the usual 

bending theory and the measurement. 

The Stress Distribution 

I will likewise remark that one can only hope for a 

first approximation for the bending stresses in a bent pipe, 

since we have permitted the displacement of the neutral axis 

of the cross s ection toward the center of curvature. This, 

like the case of solid rods, is a very small influence in the 

final deformation, but on the other hand, it may cause a 

considerable error in the assertainment of the stress distri-

bution. 
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We have, for the strain of a longitudinal fiber, accord-

ing to equation (7) 

and for wt, in the first approximation, we have placed 

wt= c sin 2B. 

We found by the method of the least value of the work of 

distortion that for the constant c, 

If we place this value of c in e1 , we obtain 

By using the relation of the corrdinate y = r sin B we obtain 

from the previous equation 

instead of 

e,=f/1? 
by the usual bending theory. 

In Fig. 8 the stress distribution for three pipe cross 

sections is shown for .A= 0.2, 0.5, 1.0 and for one full 
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circular cross section A =Oo; and also shown is the correspond

ing change in the radius of curvature. 9 It may be seen, for 

example, that for ~= 0.5 (for the spring compensat0r pipe of 

200 mm inside diameter), the stress in the outer fiber is only 

about 1/13 of the stress as calculated on the basis of the usual 

bending theory. Furthermore, the highest stress, that is 

calculated from the bending moment, is higher than the real 

stress occurring in the outer fiber. The highest stress does 

not usually occur in the highest fiber, Fig. 9; and for a small 

value of ~ · (occurring with very thin pipe walls) the stress 

can be considerably larger than that of the outer fiber. 

Discussi~n of the Theory of the Borden-Manometer 

Professor H. Lorenz in the "Zeitschrift des Vereines 

Ingenieure" in 1910 on page 1865 and the following pages has 

shown a relation between the pressure and the distortion by 

means of the well known elastic properties of pipes as used 

in the Borden Manometer. He uses for the usual relation 

where Mb is the bending moment, 

9The second approximation should also be kept :in mind for 
the curve ~ = 0.2. 



I is the moment of inertia of the cross section, 

R, R', is the radius of curvature before and after 
bending. 

Since he used here a pipe with an elliptical cross 

section, we cannot turn directly to our formula. We raise, 

60 

however, the first assumption that instead of the radius of the 

cross section of the circle, we may use the mean of the large 

and small half axes in the formula: 

For the example given by Professor Lorenz we will get for 

R = 6.0 cm, g = 0.02 cm, a= 1.0 cm, b = 0.3· cm; 

rm = (a +b)/2 = 0.65 cm, 7\= (Rg/r:) = 0. 285 and 

Ks= 0.18. 

We could substitute 0.18 I f or the moment of inertia, I. 

It is now easy to see that the resistance agaiB-st the transverse 

bending is somewhat smaller with the flattened ellipse than with 

the circl e , so tha t the difference between the published bending 

theory a nd that obtained by a f l a ttened ellipse might be larger 

than that obtain by a corresponding circular cross section. 

Instead of the value of the distortion as calculated by 

Professor Lorenz we obtained a value about five times a s much , 

although, naturally, the relation, worked out by Professor 

Lorenz between the pres sure and the bending moment and ex -

pecia lly t he proof of the proportionality between pres sure and 

distortion, remains unchanged. 
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Summary 

(1) In general, the bending theory gives much too small 

a value for the distortion, when thin-walled pipes with origin-

ally curved centerlines are considered; since in following the 

flattening of the cross section the actual strain is signifi-

cantly smaller than the value obtained by the unusual bending 

theory. The real relation is obtained between the bending 

moment and the distortion, if in the equation 

11, =£I(1f -~), 
the moment of inertia, I is replaced by the corrected value, 

KsI; since Ks can give a good approximation (if gR/ r2 is greater 

than O. 3): 

( 2) The difference between calculation and measurement 

is decreased from about 300 per cent to about 20 per cent by 

consideration of the relations concerning spring compensator 

pipes made of wrought iron. 

( 3 ) Also, by the relations of pipe springs as developed 

for the Borden-Manometer, the difference between the bending 

formulas is used to prove that the neglected effect of the 

flattening of the cross section, as practiced in the usual bend-

ing theory, can lead to large errors . 
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Figures 1 and 2. The Bending of Thin-Walled Pipes. 
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Fig. 3. The Pipe Cross 
Section. 

Fig. 4. The Distortion of the 
Cross Section 

Fig. 5. The Coordinates of 
the Displacement. 
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TABLE I 

A TABLE OF VALUES FOR THE CORRECTION FACTOR n 

}\- ~ 0 Oo 1 Oo2 0 o.3 Oo4 Oo5 1o0 1.,5 2.0 3.0 - 2 r 

First 
ApprOXo .100 .111 0141 .188 0245 .308 .5910 .757 .845 .926 
n1 

Second 
ApprOXo 0029 0060 0115 0175 0238 .304 .5905 .757 .845 .926 
n2 

Third 
Approxo .012 .058 0115 .175 .238 .304 .5905 .757 .845 .-926 
n3 

1.0 I 

I 
l .----
l ~ 

' 

/ 
V" 

I 
l 
I 

' / l 
l 
l 

' / 1 
l / l 

~ · · II 
I III 

o.B 

o.6 

0.4 

. (/) 

~ 0.2 

0 
0 0.5 1.0 1.5 2.0 2.5 3.0 

Fig. 6. The Correction Factor,Ks, as a f~ction of 
the Proportional Numb er, ).. = gR/r • I, 
II, and III are the First, Second and Third 
Approximations respectively. 
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~ I 
Fig. 7. The distortion of 
a pipe used as an elastic 
compensator [or an elastic 
coupling]. · 

y 

Fig. S. Stress Distrib
ution in the cross sec
tion of a pipe for differ
ent values of the ratio 
~ = gR/r2. 

Fig. 9. Stress Distrib
ution in the cross sec
tion of a ;hin-wailed 
pipe (gR/r = 0,5) 

(a) by the usual bending 
theory. 

(b) with consideration 
of the flattening. 
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APPENDIX B 

VON KARMAN'S CORRECTION 

The following statement quoted from Timoshenko1 indi-

cates that a correction might be applied to the area moment of 

inertia of thin-walled cylinders: 

The fibers of the tube fartherest from the neutral axis do not 
t ake the sha re of the stresses which the ordinary theory of 
bending indicates. This effects the bending in the same way 
a s a decrease in its moment of inertia. 

As stat ed in the introduction, work on the bending of 

thin-walled cylinders subsequent to von Karman's work have 

either verified that work or a pproximated it. The potential 

energy of strain as given by von Karman is2 

(1) . 

Vis defined as the potential energy of strain; I is defined 

as the moment of inertia of the cross section of the circular 

cylinder (i.e. a pipe bend radius of cur vature ); g is the 

central angle of curvature of the bend as found by the usua l 

1Timoshenko, Strength of Materials, I (New York, 1955), 
p. 45 5 . 

2 von Karman, p. 312 . 
66 
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linear binding theory; Jg is the increase of angle of curvature 

due to the distortion of ·the cross section into an ellipse; 

and -;\ 2 is given by 

(Z) 

g is the thickness of the thin-walled cylinder, and r is the 

radias of the thin-walled cylinder prior to bending. If Lis 

the length of an arc on the center line of the thin-walled 

cylinder, then it follows that 

L = R9. . 3 ' ( 3 ) 

The value, L, .is conveniently used as the distance between . mass 

points in a typical linear analysis. ~g is easily found as an 

output on most linear analysis programs. To obtain the 

potential energy of strain in terms of ~g and L, (2) and (3) 

may be substituted into (1) to obtain 

. Von Karman then gives the bending moment acting on a 

thin-walled cylinder as, 3 

3 ·ct Ibi • p. 312. 

(4) 
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Then if (2) and (3) are substituted into (5) the moment is 

(h) 

In the case of a rocket there is no initial curvature. 

'Iherefore, 90 = 0. At any time g is the same as ~gin the pre~ 

ceding equations. 'Iherefore, equation (4) for the potential 

energy .of strain of a rocket, at any time, t, and for any length, 

L, is 

(?) 

Likewise, the moment causing a given angular distortion for a 

length, L, a long a rocket is, at any time, t, 

(8) 

The preceding equations were derived for the convenience 

of the reader. It seems possible that other more direct calcula-

tions might, eventually, use these equations instead of the 

correction f actor approach. The term on the right, 

~ = I- __ .9 __ _ 
's /0 + 12. fgL )'Z. 

\.~8) 

is termed the von Karman correction factor. 'Ihe von Karman 

factor, Ks,wa s calculated for two cases indicated, by table I . 

It wa s found that by plotting these values, as shown on Fig. 1, 
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that the graph could be used instead of further calculations. 

Thus, the reader may use this graph for values of von Karman's 

factor instead of calculating them himself. Since Wis a known 

property in the correction factor of equations (7) and (8), 

it follows that this factor may be found if ( g. - g. )= ~g 
l l.-1 

is known for a given value of L. See Fig. 3 of Chapter III. 



TABLE I 

TABULATION OF THE CORRECTION FACTOR 

Ks = 1 - 9/ (10 + 12(gL/r2A9) 2J 

Mode 1, Case 19 Mode 2, Case 24 
Point 

tL/r2 
A9 

tL/r2A9 No. g. - g. 1) K A9 tL/r2 .6. g K l l-

· l . 021230 +.00003896 547.00QOO . 9999 +.00064249 33.10000 .9993 
2 .018260 +.00022633 80.60000 .9999 +.00271901 6.72000 .9837 
3 .018260 +.00013888 12.13000 .9949 +.00187394 .90030 .5439 
4 .000957 +.00016808 5.70000 .9774 +.00200892 .47680 .2926 
5 .003260 +.00027035 12.08000 .9948 +.00291056 1.11870 . 6403 
6 .003920 +.00028943 13.54000 .9957 +.00278806 1. 40500 . 7331 
7 .005810 +.00041172 14.11000 .9963 +.00240203 2.41868 .8878 
8 .005810 +.00060290 9.65000 .9920 +.00166887 3.48200 .9421 
9 .008370 +.00073160 11. 42000 . 9938 +.00040458 20. 70000 .9983 

10 .002930 +.00014929 15.10000 .9967 -.00030155 9.72400 .9921 
11 .001318 +.00028826 4.56500 .9654 -.00083359 1. 58000 .) 750 
12 .001630 +.00067285 2.42500 .8886 -.00268748 .60700 .3759 
13 .004520 +.00035143 12.86000 .9955 -.000127735 3.53800 .9438 
14 .003120 +.00025139 12.43000 .9952 -.00102322 3.05000 .9260 
15 .000578 +.00007361 7.85000 .9880 -.00032836 1. 76100 .8094 
16 .003692 +.00019462 18.96000 .9979 -.00099167 3.72000 .9490 
17 .003520 +.00000613 53,20000 .9997 -.00049920 7.06000 .9852 
18 .000946 +.00000223 424.00000 .9999 -.00005629 16.82000 .9974 
19 .001756 +.00000044 3994.00000 .9999 -.00001243 141.30000 .9999 

-....J 
0 
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