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PREF AGE 

The phase-plane delta method is a graphical procedure useful in the 

solution of nonlinear and time varying linear second-order differential 

equations. This paper demonstrates how implementation of a digital com

puter can in many cases simplify or improve the solutions of problems ob

tained by the phase-plane delta method. 

Appreciation is expressed to Dr. R. L. Lowery for the suggestion 

and supervision of this study, and to Associate Professor Edwin J. Waller 

and Robert~. Reed for their assistance. 
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CHAPTER I 

INTRODUCTION 

The phase-plane delta method formulat:ed by L. S. Jacobsen is a graphi-

cal procedure useful in the solution of nonlinear second-order differ-

ential equations. 

Robert Buland (1) gives a summary of the usefulness of the method. 

1. The method offers a powerful means of solving nonlinear 
second order d,ifferential equations and time varying linear differ
ential equations of second order. 

2. Most servo systems can be expres~ed as a series of 
second order expressions. The method can then be used to solve 
for the transient response since any arbitrary forcing function 
is acceptable for solution by this method. Therefore the out
put of one phase-plane plot can be used as the input to the 
next phase-plane plot until the loop is closed. 

3. Nonlinearities and forcing functions are introduced-· 
graphically, in many cases, directly from experimental data, 
thus alleviating the necessity for finding an analytical ex

.pression for them. 

4. The method may be mechanized to solve equations auto
matically on an analog computer. This might prove advantageous 
in solving complicated nonlinear problems. 

Jatobsen .(3) states: "The delta method is extremely simple to apply, 
! 

even to complicated equations. A subprofessional assistant can be in-

structed quickly in how to use the method, and ordinarily will develop 

enough speed to become useful in a short time. 

Buland's suggestton of using an analog computer in solving compli-

cated problems points out a weakness in the phase-plane delta method. 

1 
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The weakness is that the ~ethod caµ become very tedious or difficult if 

the delta function becomes too involved. The solution does not become 

more complicated theoretically, but the graphical difficulties.are multi

plied, This indicates that if the graphical procedures can be performed 

numerically, a solution using a digital computer may be useful. 

Jacobsen's suggestion of using a subprofessional assistant also in

dicates that a digital computer can be useful since the digital computer 

is ideally suited to perform tedious repetive processes iuch as those 

called for in the construction of phase~plane plots, 

A personal search disclosed no successful usage of the digital com

puter with the phase-plane delta method, One previous attempt was evi

dently unsuccessful because of difficulties encountered in crossing axes; 

this difficulty probably arose from some limitation of the particular 

comput;er used, 

This paper will present a successful implementation of the digital 

computer with the phase ... plane delta method. The difficulty of crossing 

axes was dvercome easily using a modern computer. Modification of the 

phase-plane delta method for use with a digital computer consists of con

verting the method from a graphical procedure {nto a numerical one. ):n 

cases in which solution by hand is particularly difficult, the computer 

solution can improve the accuracy of the solution, 



C}W>'.J:'ER II 

BASIC THeOR); OF THE PHASE•PLANE DELTA ME'l'HOD 

The pha.se ... plane delta metpod is a grappical procedure useful in the 

solution of the standard second.,.order differential equation: 

i + f(x, x, t) = 0, (1) 

·The following development is ta~en from Jacobsen's pa.per (1) and his 

book (3), The first step in the procedure consists of rewriting equation 

(1) in the standard delta form, 

.. 2 
X + p· : (x,+ ~) = 0 

2 
This·is accomplished by a.ddiri'g and Stibtracting p x from equation (1). 

then 

" [f( x'., t) ... p2xJ,·+ p2x = 0 X + .x, 

1 . • 2 o = >'."-2 [f(x, x, t:) .,. p x] 
p 

(2) 

(3) 

(4) 

In this paper the variables x, x, and twill represent: displacement, 

velocity, and time. 

The ph~se•plane coordinates are defined as: 

(5) 

'£he foll.owing relationships can be developed from the v coordinate. 

2 p dv/dt: = p·.(d.v/d,x) dx;/:dt = p. V 1dv/dx (6) 

3 
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.. 
SubstittJting for x in equation, (2) yields a. first oi;-der diffe.rential e-

quation. 

· v dv f d~ + x + . 6 = 0 (7) 

This equation leads to the ge~etrical relation 

(8) 

If 6 is held constant c;,ver a Unite time interval, At~ equation (8) can 

be integrated; the result be!ng 

2 2 2 
(X + 6) + V = C , (9) 

This ts tqe eql)ation of a c:i,f:"cle, and the insta.:ntaneous phase trajectory 

is a. cir.cular a.re passing through the pdint (x., v) with its center at -o 

on t.he X axis as shown in Jngu:re 1. 

X 

. 
X 
p 

6 

1 ,. 

Figul;'e 1. Construct~on of Circular Arc$ in the Phase~Plane. 
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An e:iq;,li~it .expr-e$sion for t,ime ,may b~· obtained from .equation (6). 

dt = dx/pv. (10) 

Referring ag1in.to Figure 1, it can;be seen that arc length is given by 

and that theradiu~ of curvature, R, :l.s given PY 

. so 'that the incremental angle of swing i.s 

i 

Since 

2 . 2 
(~~ ~ (,_v ) , 
\Av) \x + 6 

i' 

equat.:1-oll (13) reduces to 

;:: 

Sub$ti.tutJng !!! = d0 into eq"11',t:l.Oil (10) yields 
: : V i 

1 ' 
dt = - d0, . p 

or for finite increments 

dk, ........ 
V 

Thus ~ngular arcs on the phase .. ph.ne p.re proportional to time. 

(11) 

(12) . 

<P) 

(14) 

(15) 

(16) 

(17) 
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Proceeding with the graphical integration, it is necessary to plot 

the a.function.or .£.unctions. This plot or plots may be superimposed on 

the .phase-plane diagram. However, if the :·o- function is time dependent 

it.may be neces.sa.ry to make an auxiliary plot.of o versus time. 

Then, given initial conditions, the phase-plane plot can be construct-

ed (see Figure 2) .. For example, suppose that at time zero the displace-

ment and velocity are represented by point F1 on Figure 2. In this ex

ample o had been taken as a function of x only. 

o = f(x) 

X 

p 

Figure 2. Construction of the Phase-Plane Trajectory. 

An average value of o for a small art {s easily approximated here so 

that the center on the x axis can be located and the arc constructed. This 

establishes a new point p2 which determines new values for x and x/p. By 

successive construction of these circular arcs the phase-plane trajectory 

can be traced out. For a more thorough discussion of this procedure the 

reader is referred to Jacobsen (2) and {3) or Buland (1). 



-CHAPTER II I 

MODIFICATION OF THE DELTA ~THOD FOR USE 

WITH THE DIGITAL COMPUTER 

As explained in Chapter II, the phase-plane delta method is a graphi-

cal procedure useful in solving the differential equation 

i + f (i, x, t) = o. (18) 

To set up the problem for programming on a digital computer the first 

step is to determine the o function just as in the graphical procedure. 

In general o will be a function of x, x, and t. Now consider a general 

point on the phase-plane diag;ram. It can be seen that, in g.enera.l, this 

point will be a function of~' -i/p, and t (see Figure 3). 
X 

X P (x,p, t) 

X 

X 
p 

0 

t 
X 
p 

Figure 3. Phase-Plane·Construction Used with _the·l)igital Computer. 

7 



The p function can be programmed into the computer so that for any 

point P, a v~lue of o may be calculated. As explained in Chapter II the 

8 

instantaneous phase trajectory is a circular arc passing through the point 

P, with·its center at ~o,on the x axis. When.o has been calculated the 

center of the arc can be located. 

It can be seen from the figure that the radius of the arc may be cal-

culated from the equation 

(19) 

Now, if an arc through the point P with the center at--o on the x 

I 
·axis is swung through a small angleA9 a new pointP can be established~ 

P establishes a new value for each of the variables x, x/p, and t. These 

new values are given by the following equations: 

·, 
(x) - = R COS (I/I +49) - o 

0)' - -R SIN (Y,+49) 

:where 

·I 

t. = t +.49 
p 

'/' -· Arctan (~ -v ?\. 
\.x• + o) .. 

If the above equations are programmed into the computer a new set of 

variables can be obtained. The pro9ess can then be repeated until a full 

set of points for a pha•e-plane plot hss been obtained. 

In the graphical solution the·angle.49 ~ust be reasonably large (on 
' . 

the order of five to ten d~grees or more) in order to keep the figu·re from 

becoming too confused and the labor involved prohibitive. Also, Jacobsen. 
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(3) notes that cumulative.graphical-errors increase as the number of steps 

he.canes large. At the same -time the angle must not be made too large as 

this invalidates the assumption that 6 remains constant for the.increment. 

Jacobsen (3) discusses at length various means of obtaining an average 

value of p so that larger apgular increments can be taken. 

In the. digital computer solution it is possible to take much smaller 

angular increments since the~e is no plot to become too confused or clut

tered with construction lines and no cumulative graphical errors to build 

up. If ve1;y great accuracy is desired in the solution it might be advis

·able to introduce some sort of iterative procedure for averaging o over 

the angular increment 49, However, in most cases the desired accuracy 

can be obtained by simply taking sn:ialler angular increments. 

In almost any case where phase-plane plots can be made by the graphi

cal procedure, these same plots could be made by the digital computer al

though in many cases it would'not be advantageous to use the computer. 

One must use a little common sense to determine when the use of the com

puter is justified, 

There are several types ;of problems for which the advantage of a 

· computer.solution can be seen immediately. 

Consider equations of t~e form 

x + f(x, x) = O. (21) 

In this case o will not be a function of time. It is possible to program 

a general 6 function, consisting,for example, of polynomial terms, trigono

metric terms and exponential.terms for both x,.and x/p. Then by choosing 

coefficients this general program could be used for solving a great number 

of problems. This sort of program is illustrated by the first example in 
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Chapter IV, There are several advantages this type of program might have 

over a solution by hand. First, a great number of problems can be solved 

with one computer program by simply changing coefficients, If 6 is a 
. 

function of both x and~' a suitable averaging of.6 which is necessary for p 

the graphical solution may prove to be very difficult or tedious. With 

a computer solution no such difficult averaging procedure is necessary. 

The problem is no more difficult than one for which 6 is a simple func-

tion of x alone. This constitutes a very significant advantage of com~ 

puter procedures over tlw graphical one. Also variation of parameters 

for one particular problem can be accomplished ec!.sily. In some pro bl ens it 

may be that the parameters are such that the graphical solution becomes 

very difficult or awkward whereas the computer solution presents no problem 

at all. This last advantage arises from the ability to take very small 

angular increments easily when using the computer. 

It may be th,;it in solving a particular problem of the form 

.. 
X + f (x, x) = 0 (21) 

the 6 function which is needed cannot be obtained from any general program 

which is available or there may be no svch program available. Still it 

may appear that a computer solution will be advantageous, For example, 

it might be that it is desired to study the variation of parameters or to 

obtain phase-plane plots for•a large number of different starting condi-

tions. In this case a computer program can very easily be written by tak-

ing the general program mentioned above and inserting a specialized 6 

function in the place of the general one, This is actually not a great 

alteration since most of the computing and incrementing sections of the 

program will not be changed. The advantages that apply in the previous 
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cas.e. als.o apply .here. This sort of problem is illustrated by example two 

in Chapter·IV. 

Consider .now the more general case 

~ + f(x, ~' t) = o. (22) 

In this case 6 is in general a function of all three variables also. In 

this type of problem, determination of a suit~ble average value of 6 for 

an arc may be even more difficult or tedious than the case where 6 is as 

function of x and x. Again in most cases this presents no problems using 

the computer since no averaging of 6 is necessary. A computer program 

for this type of problem can be developed in exactly the same manner as 

in the previous example. That is, it is only necessary to substitute a 

new 6 function into the same general program. Example three in Chapter 

IV illustrates this type of probl~m. 

Another type of problem which might be handled advantageously by 

computer procedures is the forced vibration problem. The differential 

equation to be solved in this case is 

X + f (x, X, t) ! F ( ) t . (23) 
m 

As indicated by Jacobsen (3), this type of problem can be handled quite 

easily by rearranging the equation. 

X + 2 
(x + 6 1 (t)) 0 p - kF = (24) 

then 

6eff 
6 - !F (t) 

k 
(25) 

A problem of this type is solved in example four in Chapter IV. 

The output from a computer program will usually be in digital form. 

In the programs which have been written the output may be either typed, 
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or punched on cards, or both. The important variables included in the out-

put are x, v, and total angular displacement 6. In most cases angular dis-

placement is related to time by the equation 

(26) 

The output data from the computer program is numerical and can be 

analyzed in the numerical form or it can be plotted for easier study or 

better presentation. If xis plotted against v, a conventional phase-

plane plot results. Velocity or displacement versus time plots as well as 

an example of the digital output are included in Chapter IV. The variable 

or coordinate which is labeled velocity in the ~igures presented is actu-

ally the phase-plane coordinate, v = x/p. 

Plotting can be done by hand, or some sort of mechanical plotter may 

be used. Most of the plots included in this paper were made with the auto-

plotter system which is an off-line plotter used with the IBM 1620 computer 

system. This system plots points with a resolution of one hundreth of an 

inch and also prints labels and scales. 



CHAPTER ·.IV 

EXAMPLE PROBLEMS 

Example Number~-

Consider the solution of the equation 

"i + f(x, i/p) = 0, (27) 

such that the delta function turns out to be the sum of two functions, 

f (x) and f (x/p). In order to facilitate the solution of a large number 
1 2 

of ·problems of this sort with one computer program it is possible to set 

up general functions f and f consisting of a sum of polynomial, trigona-
l 2 

metric, and exponential terms. A block diagram, outlining in general terms 

the operation of a computer program for the phase-plane delta method, is 

given in Figure 4 and an example computer program, written in Fortran is 

given in Table I. 

As an example of the use of this program, consider a system with . . 
linear restoration and quadratic velocity damping. The equation of motion 

for such a system can be written as 

0 (28) 

so that the delta function is 

6 (29) 

13 



Increment 
Angular 

Displacement · 

Read in Problem Con
stants and Parameters 

Read in Starting Con
ditions Initialize 

Compute 6 

Compute the Arctangent 

G: o) 

Compute R from 
Equation 19 

I 

Compute X and (x/p) 
from Equation 20 

No Yes 

Yes 

Type and/or 
Punch Output 
V, X, e, 0 

Figure 4. Block Diagram for Phase-Plane Delta Computer Program. 
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TABLE I 

10RTRAN PROGRAM, 6 = f. (x, x) 

C PHASE PLANE DJn.TA, SlMPSON 
DIMENS;tON A(6l) 

3 DO 4 1 = 1,61 
4 A(l) =: 0.0 . 
5 . liEAD, JJ, AD~ 

If .(JJ .:.62) 61 7,6 
6 I·a JJ . . 

A (1) = ADAM 
co W s 

7. CONTINUE 
8 REAP, XSTAR, VSTAR, ·DBETA, XSTl'; BESTP, BTYPE 

lF (XSTAR - 44444. 4) 9, .3 1 9. . . 
9 JlETA ., 0.0 . . 

.. DTHET = DBlttA * Q,Ol745Ja92 
X = XS'l'AR 
V = VSTl\ll. 
DEL= Q •. O 
Pl,= o.o 
GO TO 75 

10 nm .. o.o · 
DEl,V =. 0,0 
IF (A(53)) ll,12,U 

11 t>!ttJt = DELX + A(i) + A(2)*X + A(3)*(X**2) + A(4)*(X**3) 
DELX ~ D:WC + A(S)*(X.**4) + ,A(6)*(X**5) 
IF (X) 87,88,89 

87 XX= .. x . ' 
DELX = ·»ELX • A(7)*(KX**A(8)) 
GO TO 12 

88: PELX = DJn.X + O.O 
GO TO 12 . 

89 DELX = PELX + A(7)*(l( (A(8)) 
12 lV (A(54)) 131 · 1s 1 1.3 
13 lF (X) 141 16 1 15 
14 PELX = DELX ~ A(9)*(X**2) -.. A(lO)*(X**4) 

GO TO 18 
15 DELX = D!ll,l( + A(9}*(l**2) + A(lO)*(X**4) 

GO TO 18 
16 DELX = DELX + 0,0 
18 U' (A(55)) 19, 20, 19. . . 
19 DELX = DEµ + A(ll)*S1N(.\(l2)*X + A(lJ)) 

DELX • DELX + A(l4)*SlN(A(15)*X + ,Mi6)) 
t>Jn.X • DELX + A(l 7)*X*S1N(M18)*X + 4(19).) 

20 IF (A.{56)) 9l,i2,9l . 
91 IF (X) 9/l,941;.U 

. 92 n = .. x 
DELX ~DELK .. A(20)*~(A.(21)*XX) "A(22}*XX*E:Xr(A(23)*l0t) 
I)~ • DITT.X " A(24)*EXP(A(~5)*()Qt*~A(26))) + A(20) + A(24) 
GO TO 22 . 

94 DELX = DELli: + O.b 
oo T022 

21 DELX = t>ELX + A(20)*EXP (A(2i)*ii'.) + A(2·2)*I*EXP (A(23)~X) 
i)ELX '" DELX + A(24)'l\'m<l' (A(25)*(X**A(26))) ~ A(20) - .A(24) 

2~ lF (,\(97)) 23,,?4,ia 
23 l)Ei.V "" DEl.V + /1:(27) t A(28)*V + 4C2?)*(V**2l t- A(30)*(V**3) 

DiilLV = UELV + A(3i)*(V*"14) + A(.32)*(\1**.S) . 
tr (V) l0l,l02J103 . 

lOl W'" -V 
DEi.V = DEtV .~ A($1)*(\/V**A(5~)) 
GO 'rO 24. . . . . 

l.02 t>JitV "' i>E:t\1 + 0, 0 · 
GO TO 24 

103 DELV = OELV + a(5l)*(V**A(52)) 
24 lf(A(58)) 25,30,25 
25 tF (V) 26, 28, 2 7 
26 DELV = DELV - A(33)*(V**2) • A(34)*(V**4) 

GO TO 30 
21 OELV = iiELV + A(33)*(V#2) + A(34)f(V**4) 

GO TO 30 

15 



TABLE I (Continued) 

28 DELV = DELV + 0.0 
30 IF (A(59)) 31,32,31 . 
31 DELV = DELV + A(35)*XIN(A(36)*V + A(37)) 

DELV = DELV + A(38)*SIN(A(39)*V + A(40)) 
DELV = DELV + A(4l)*V*SIN(A(42)*V + A(43)) 

32 IF(A(60)) 95,35,95 . 
95 IF (V) 96,97,33 
96 VV = - V 

DELV = DELV - A(44)*EXP(A(45)*VV) - A(46)*VV*EX1'(A(47)*VV) 
DELV =DELV - A(48)*EXP(A(49)*(VV**A(50))) + A(44) + A(48) 
GO TO 35 . 

97 DELV = DELV + 0.0 
GO TO 35 

33 DELV = DELV + A(44)*EXP(A(45)*V) + A(46)**V*EXP(A(47)*V) 
DELV = DELV + A(48)*EXP(A(49)*(V**A(50))) - A(44) - (48) 

35 DL = DELV + DELX 
IF (X+DL) 54,40,50 

40 IF (V) 42,46,44 
42 ALPHA= 0.5 * 3.14159265359 

GO TO 70 
44 ALPHA= 1.5 * 3.14159265359 

GO TO 70 
46 zz = 99999.9 

TYPE, ZZ 
GO TO 8 

50 IF (V) 60,52,57 
52 ALPHA= 0.0 

GO TO 70 
54 IF (V) 59,56,58 
56 ALPHA= 3.14159265359 

GO TO 70 
57 ALPHA= ATN((X + DL) /V) + 1.5 * 3.14159265359 

GO TO 70 
58 ALPHA= ATN(V/( -1.0 *(X + DL))) + 3.14159265359 

GO TO 70 
59 ALPHA= ATN((X = DL)/V) + 0,5 * 3.14159265359 

GO TO 70 
60 ALPHA= ATN((-V)/(X+DL)) 
70 RAD= SQR ((X+DL)**Z + V**2) 

V =RAD* SIN (ALPHA+ DTHET) *(-1.0) 
X =RAD* COS (ALPHA+ DTHET) - DL 
BETA= BETA+ DBETA 
.IF (BETA - DEL*BTYPE) 1,75,7~ 

75 IF (A(61)) 72,74,76 
72 TYPE, V, X, BETA, DL 

GO TO 78 
74 PUNCH, V, X, BETA, DL 

GO TO 78 
76 TYPE, V, X, BETA, I)J:. 

PUNCH, V, X, BETA, DL 
78 IF (XSTP - X) 80, 80, 82 
80 zz = 88888.8 

TYPE, ZZ 
GO TO 8 

82 IF (BESTP - BETA) 84,83,83 
83 DEL= DEL+ 1.0 

GO TO 10 
84 zz = 77777.7 

TYPE, ZZ 
GO TO 8 
END 

16 
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An eJCact ~olution exhts for this problem (S) and Jacobsen. (2) uses 

the problem as an e~ample illustrating the accuracy of the phase•plane 

delta method. He varies the number of steps used and compares the ·results 

with.the exact solution. The sa,me type of procedure will serve to evalu-

ate the accuracy 0£ th~ digital computer solution. 

For the computer solution the parameters and .initial conditions were 

taken a~ in Jacobsen (3): 

q ;:: 0.3 

X ·* 5 ,Q 
0 

X = 0.Q, 
0 

rarameters fed into the computer progr1;1.m were: 

A(58) = 1.0 

A(33);:: 0,3 

A(6l) .:: 1,0. 

The exact solution (5) indicates that the phase•plal).e trajectory 

should ~ross the x axis at the following points; 

X = -1.54 

X = 0,942 

0 = 205° 

a= Ja9°. 

The data obtained by taking litngular increments of thirty degrees is 

presented in T~ble I~. This is the form in which the results come from 

the computer, It can.be. seen that the velocity becomes zero for a value 

<:>f x of about; -1,2 t;o -1.3, l'he results t):len are not very accur.ate. This 

is a consequence of the relatively.large 1;1.ngular increments which were 

taken, which demonstrates that small angular increments must.be used in 



18 

the computer solution. Since no method of averaging of & is employed in 

.the computer solution, the angle of swing must be small enough so that 

there is very little variation of&. 

Figure 5 is a plot of x and i/p versus angular rotation a, for data 

obtained by using 5 degree computation increments. The velocity becomes 

zero at approximately 

X = ~1.45 e = 200° 

and 

X = 1,0 a= 395°. 

Figure 6 is a similar plot of data obtained by using 1 degree incre

ments with printout of results every 10 degrees. The cross over points 

in this case are approximately 

X -1.52 

X = .95 

a 205° 

a= 190°. 

Figure 7 is a conventional phase-plane plot of the same data. 

Figure 8 is a plot of x and x./p versus 9 for data obtained by using 

0.5 degree increments with printout every 5 degrees. This figure is hard

ly distinguishable from Figure 6. It is extremely difficult to read these 

plots to more than two significant figures; consequently, the accuracy of 

the solutions can.be inferred much more readily from the numerical data. 

The numerical data for 0.5 degree computation increments and 5 degree 

printout increments yields cross over points which compare very favorably 

with exact solution. 

X = .. 1,53 

X = :94 

a 205° 

a= 388° 

(-1.54, 205°) 

(-.942, 389°) 
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TABLE II 

OUTPUT DATA AS IT COMES FROM THE COMPUTER 

'FOR 30 DEGREE COMPUTATION INCREMENTS 

X e p X 

.(0)0000000 5. OIQOHOOOO .00000000 0 (Q) (Q) (Q) (Q) (I) ((J) (Q) ((J) 
=2.4999998 4.3301269 30.000000 • ((J)(Q)OOOOOO 
=3.3926267 2.7512025 60.000000 =] .8749997 
-2.5872150 1. ]489093 90.000000 =3.4529748 
=1.8H»9966 =2.9587400E=02 120.00000 =2.008]045 
-L0616192 =. 799.302 10 ]50.00000 =.9839]26] 
-.35068309 =L1777271 ]80.00000 -.338nos9 

. .30360959 =L ]90.3403 210.00000 -3.6893589E=02 

.84427613 =.88276517 240.00000 2.7653635E=02 
L06562.7 l -. 37 HJJ08] 3 270.00000 .21384096 
.93803((]09 0 ]6587005 300.(Q)(Q)(Q)OO .34066833 
.59743791 .57729721 330.00000 .263970~4 
• 1752(0)825 .78432707 .360.(()0000 • t0707962 

=.2450333(0) .]6561753 390.00000 9.20937931E=03 
=.58600764 .54294081 420.00mm ~ 1. 8CH 23951E=02 
-.12745718 . 19099901 450.00000 =. HJJ302149 



Figure So Displacement and Velocity (x/p) Versus Angular Rotation for 5 Degree Computation 
Increments" 
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Figure 6. Displacement and Velocity (x/p) Versus Angular Rotation fo+ 1 Degree Computation In
crements and 10 Degree Printout Increments. 
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Exact evaltiati.on of the accuracy of the method in cases where exact 

solutions do not exist is not possible. One must simply accept that very 

small increments yield good answers for problems of short time duration. 

Jacobsen (1) sums up the accuracy evaluation problem very well: 

Accuracy of the graphical method depends on the judicious 
choice of the·size of steps. Test cases involving elliptic inte
grals, Bessel and Neumann functions, show good accuracy for practi
cal size of steps, In a general case the degree of approximation 
can be inferred empirically only. 

Solutions involving long durations, as for instance in the 
·Mathieu types of equations, will suffer in accuracy by the many 
steps necessary, Consequently, the method is not recommended 
for long-duration phenomena, 

Use Qf the digital computer re1duces considerably the restriction on 
I 

the numbei- of steps which can be used, and seems to give the best answers 

if large numbers of very small increments are used, 

Example Number Two, 

Consider Van Der Pol's equation 

mx + b(a2 -x2) x + kx = 0. (30) 

The delta function in this case i.s 

b 
(a 2 x2) X 

6 = -- .. 
mp p (31) 

where 

2 
k/m. p (32) 

This problem cannot be handled by the general program which was used 

in example number one; hence, it will be necessary to write a program spe-

cifically for the solution of thi.s problem. However, this does not mean 

that it is necessary to start completely anew, The needed program can.be 

developed quite easily by modifying the program used for example number 



TA.l3LE III 

FORTRAN PROGRAM VAN DER POL'S 

EQUATION 

C PHASE PLANE DELTA, SIMPSON 
C SOLUTION TO VAN DER POLS EQUATION 
3 READ, B, A2, AMASS,AP· 

TYPE, B, A2, AMASS,AP 
PUNCH, B, A2, AMASS,AP 

8 READ, XSTAR, VSTAR, DBETA, XSTP, BESTP, BTYPE, CAT 
If (XSTAR - 44444,4) 9,3,9 

9 BETA= 0.0 
DTHET = .DBETA 1, O.OP453292 
X = X:STAR 
V = VSTAR 
DEL= 0.0 
PL = o.o 
GO TO 75 

10 DL = -1.0*(B/AMASSi<AF)*(A2 - X**2)*V 
IF (X+PL) 54,40,50 

40 IF (V) 42,46,44 
42 ALPHA= 0.5 * 3.14159265359 

GO TO 70 
44 ALPHA = 1. 5 * 3 .• 14159265359 

GO TO 70 
46 zz = 99999;9 

TYPE, ZZ 
GO TO 8 

50 IF (V) 60,52,57 
52 ALPHA= 0.0 

GO TO 70 
54 IF (V) 59,56,58 
56 AU'HA = 3.14159265359 

GO TO 70 
57 ALPHA= ATN((X + DL) /V) + 1.5 * J.14159265359 

GO TO 70 
58 ALPHA* ATN(V/( -LO *(X + DL))) + 3.14159265359 

CO TO 70 
59 ALPHA= ATN((X + DL)/V)+ 0.5 1, 3.14159265359 

GO TO 70 
60 ALPHA= ATN((-V)/(X+DL)) 
70 RAP = SQR ((X+DL)'~*2 + y1,i,2) 

V =RAD* SIN (ALPHA+ DTHET) *(-1.0) 
X = !lAJ) * COS (ALPHA+ DTHET) - DL 
BETA= BETA+ DBETA 
IF(BETA - PEL*BTYPE) 10, 75, 75 
IF(CAT) 72,74,76 

75 IF(CAT) 72,74,76 
72 TYPE, V, X, BETA, DL 

GO TO 78 
74 PUNCH, V, X, BETA, DL 

GO TO 78 
76 TYPE, V, X, BETA, DL 

PUNCH, V, X, BETA, DL 
78 IF (XSTP - X) 80;80,82 
80 zz = 88888.8 

TYPE, ZZ 
GO TO 8 

82 IF (BESTP - BETA) 84,83,83 
83 DEL* DEL+ 1.0 

GO TO 10 
84 tz = 77777.7 

TYPE, ZZ 
GO TO 8 
END 

25 



Figure 9. Phase-Plane Trajectory of Van Der Pol's Equation for a Pure 
Displacement Start Inside the Limit Cycle. 
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one. The incrementing and computing parts of the program remain the same 

so that it is only necessary to define a new delta function. A Fortran 

program for the solution of this problem.is given in Table·III. For a nu-

merical example let the constants be 

b - 1.0 

m - 1.0 

a 2 = 1. 0 

k = 1.0. 

For any starting condition, the phase plane trajectory very quickly 

converges to a limit cycle. This is illustrated in Figure 9 for a start 

inside the limit cycle and in Figure 10 for a start outside the limit 

cycle. The data for these plots was obtained using one degree computa-

tion increments and ten degree printout increments. The plots were made 

using the autoplotter system. The system uses a polynomial fill which 

causes some difficulty when data points are too far apart. Also the system 

will not plot points of a second curve which is very nearly superimposed 

on a.first curve. This makes the trajectory appear to converge on the 

limit cycle faster than it actually does; however, these plots do define 

the·limit cycle very well. In this case slightly better plots could be 

done by hand. For further discussion of the VanQer Pol equation as solved 

by the phase-plane method see Jacobsen (1) or Ku (4). 

·. Example Number Three. 

As an example with a time dependent delta function consider Weber's 

equation and its associate. 

- 2 2 x + (n +~+\at) x - 0 (33) 
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A computer program can be developed as in.the case of Van Der Pol's 

equation by substituting a new value of delta. A Fortran program for the 

problem is given in Table IV. 

The delta function for this case is 

1 - 2 2 2 6 = p2(n +\+·\·at · -p) .x. (34) 

Setting 

and letting 

the delta function becomes 

- 2 2 
0 =+a fJ X, (35) 

The negative sign goes with Weber's equation while the positive sign goes 

with its associate. 

Phase-plane plots of these two equations ~re given in Figures 11 and 

12 for a pure displacement starting condition. 

Example Number Four. 

As an example of a forced vibration problem consider the linear case 

nix + ex+ kx P SINwt. 
0 . 

Taking t = e/p the equation for the delta function becomes 

where 

2 
p 

k 
= -m· 

(36) 

(37) 

The Fortran program is set up again by simply substituting the new 

delta function into the same program which has been used before. This 



TABLE IV 

FORTRAN PROGRAM WEBER I s 

EQUATION 

C PHASE PLANE DELTA, SIMPSON 
C SOLUTION TO WEBER, S EQUATION 
3 READ, AN, A2, AP2, C 

TYPE, AN, A2, AP2, C 
PUNCH, AN, A2, AP2, C 

8 READ, XSTAR, VSTAR, DBETA, XSTP, BESTP, BTYPE, CAT 
IF (XSTAR - 44444.4) 9,3,9 

9 BETA= 0.0 
DTHET = DBETA * 0.017453292 
X = XSTAR 
V = VSTAR 
DEL= 0,0 
DL = 0,0 
GO TO 75 

10 DOG = (l.O/AP2)*((BETA*0,017453292)*t•2) 
DL = (l,0/AP2)*(AN + 0.5 + 0.25*C*A2•~DOG - AP2)*X 
IF (X+DL) 540 402 50 

40 IF (V) 42 1 461 44 
42 ALPHA= 0,5 * 3,14159265359 

GO TO 70 
44 ALPHA= 1.5 * 3,14159265359 

GO '.J;O 70 
46 zz = 99999.9 

TYPE; ZZ 
GO TO 8 

50 . IF (V) 60 1 52,57 
52 ALPHA= 0.0 

GO TO 70 
54 IF (V) 59 0 56 0 58 
56 ALPHA= 3.14159265359 

GO TO 70 , 
57 ALPHA= ATN((X + DL) /V) + LS * 3.14159265359 

GO TO 70 
58 ALPHA= ATN{V/( -1.0 *(X + DL))) + 3,14159Z65359 

GO TO 70 
59 ALPHA = ATN (.(X + DL) /V) + 0. 5 * 3 .14159265359 

GO TO 70 
60 ALOHA= ATN((-V)/(X + DL)) 
70 RAD = SQR ( (X + DL)**2 + V*i<2) 

V = RAD * SIN (ALPHA+ DTHET) * (•l,O) 
X =RAD* COS (ALPHA+ DTHET) - DL 
BETA= BETA+ DBETA 
IF (BE'rA - DEL•~BnPE) 10 0 75, 75 

75 IF (CAT) 72,74,76 
72 RYPW1 V, X, BETA, DL 

GO TO 78 
74 PUNCH, V, X; BETA, DL 

GO TO 78 
76 TYPE, V, X, BETA, DL 

PUNCH, V, X, BEtA, DL 
78 IF (XSTP ., X) 80 1 801 82 
80 zz = 88888,8 

TYPE, ZZ 
Gu TO 8 

82 IF (BEST!' - BEtA) 84,83,83 
83 DEL= DEL+ 1,0 

GO TO 10 
84 zz = 77777.7 

TYPE, ZZ 
GO TO 8 
END 
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program is given in Table V. Figure 13 is a plot of x and x/p versus F) 

or time, for the nondamped case with initial velocity and displacement 

equal to zero. The exact solution for this case is 

SINpt + xst · W SINwt 
1-{W/p) 2 

(38) 

where 

The parameter values used to obtain the data plotted in Figure 12 were 

P 0 = 16.0 

K 16.0 

m LO 

C = 0.0 

(I)= /8 . 

The plot agrees very well with the exact solution. 



TABLE V 

FORTRAN PROGRAM 

mx +ex+ kx = po .sinwt 

C FORCED VIBRATIONS WITH VISCOUS DAMPING 
C LINEAR SYSTEM ONE DEGREE OF FREEDOM 
C PHASE PLANE DELTA, SIMPSON 
3 READ, AMASS, C, AK, APO, W 

TYPE, AMASS, C, AK, APO, W 
PUNCH, AMASS, C, AK, APO, W 

8 READ, XSTAR, VSTAR, DBETA, XSTP, BESTP, BTYPE, CAT 
IF (XSTAR - 44444.4) 9,3,9 

9 BETA= 0.0 
DTHET = DBETA * 0.017453292 
X = XSTAR 
V = VSTAR 
DEL= 0.0 
DL = 0.0 
Al= C/AK 
A2 = APO/AK 
AP= SQR (AK/AMASS) 
W2 = (W/AP_ * 0.017453292 
GO TO 75 

10 DL = Al*V - A2•'<SIN(W2>'<BETA) 
IF (X+DL) 54,40,50 

40 IF (V) 42,46,44 
42 ALPHA = 0. 5 1, 3 .14159265359 

GO TO 70 
46 zz = 99999.9 

TYPE, ZZ 
GO TO 88 

SO IF (V) 60,52,57 
· 52 ALPHA = 0.0 

GO TO 70 
54 IF (V) 59,56,58 
56 ALPHA= 3.14159265359 

GO TO 70 
57 ALPHA = ATN((X + DL) /V) + 1.5 ,., 3.14159265359 

GO TO 70 
58 ALPHA= ATN(V/( ... }.O i<(X + DL))) + 3.14159265359 

GO TO 70 
59 ALPHA= ATN((X + Dt)/V) + 0.5 * 3.14159265359 

GO TO 70 
60 ALPHA= ATN((-V)/(X+PL)) 
70 RAD = SQR ( (X+DL) **2 + V>'<>',2) 

V =RAD* SIN (ALPHA+ DTHET) * (-1,0) 
X =RAD* COS (ALPHA+ DTHET) - DL 

$8 BETA= BETA+ DBETA 
!F (BETA - DEL* BTYPE) 10,75,75 

75 IF (CAT) 72,74,76 
72 TYPE, V, X, BETA, DL 

GO TO 78 
74 PUNCH, V, X, BETA, DL 

GO TO 78 
76 TYPE, V, X, BETA, DL 

PUNCH, V, X, BETA, DL 
78 IF (XSTP.,. X) 80,80,82 
80 zz = 88888.8 

TYPE, ZZ 
GO TO 8 

82 IF (BESTP ... BETA) 84,83,83 
83 DEL= DEL+ 1.0 

GO TO 10 
84 zz = 77777.7 

TYPE, ZZ 
GO TO 8 
END 
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CHAPTER V 

CONCLUSIONS 

In almost any case where a differential equation can be solved suc

cessfully with the graphical phase-plane d~lta method, it can also be 

solved by the phase-plane method as-adopted to the digital computer. How

ever, it should.be kept in mind that use of a computer will not always re

sult in an easier or faster solution. In some cases use of the computer 

will representa definite improvement of the method in terms of speed and 

ease of solution while in other cases the computer solution may be ~ore 

difficult. 

Several possible advantages of the digital computer solution can be 

·enumerated •. A general program such as the one given in example number one 

of Chapter IV.allows the solution of a great number of different problems 

very quickly by merely changing coefficients. Any program which allows 

for variation .of parameters ~nd of starting conditions can be used quite 

·effectively to study the results of variations of parameters-and starting 

conditions. In cases where it is difficult to obtain a suitable average 

value of o for a reasonable size arc with the graphical method, the com

puter may greatly reduce the difficulties of solution and may very well 

produce greater accuracy. 

The restriction of the graphical procedure to short time phenomena 

due to the build up of graphical errors resulting from a large number of 

steps can be relaxed a little with the computer solution at least in the 

36 
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respect that a much greater number of steps may be employed. However a"!

cumulative numerical errors can be·expected to build up with the number 

of steps taken just as in the graphical procedure except at a much slower 

rate with respect to the number of steps. 

One of the advantages of the graphical method is that a 6 function or 

a forcing function need not be expressed in mathematical form. This allows 

experimental data to be introduced into the solution in a graphical form 

making it unnecessary to find an analytical expression for such data. This 

advantage does not apply to the computer solution .. In general if the 6 

function can be handled more easily graphically and less easily expressed 

as a mathematical function, the problem can probably be solved more easily 

with graphical procedures. . In cases where the 6 function or th,e averaging 

procedure become difficult to manage graphically, and yet is easily ex

pressed mathematically the numerical computer methods will probably be 

superior. 
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