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NOMENCLATURE

The nomenclature used is patterned after the standard nomenclature
and symbols of the American Standards Associationl. Capital letters are

used to represent the Laplace transforms of the time functions.

a, A, b, B, c, d Arbitrary constant and/or coefficient for
differential equation

e(t) Controlled variable (function of time)

cp Peak value of c(t)

e(t) Actuating signal (function of time)

i i%h term in a series, used as subscript

J Complex number \/r_:i

k Gain constant

m Used as a subscript to denote n® term in
series and/or m'B power

M Maximum value of l% (jw)|

n

Used as a subscri%t to denote n®® term in
series and/or n h power

N Number of oscillations up to settling time
2

P, p2,... Differential operator, p = %{, p2 = 322"°'

pnc0 Initial value of the n'® derivative of e(t)

Pn nth pole

r(t) Reference input variable (function of time)

Al
Letter symbols for Feedback Control Systems, ASA Y 10-13-1955,
American Stendards Association, New York, July, 1955.
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NOMENCLATURE (Cont.)

s Laplace Transform Operator =g~ + jw
t Time seconds
tr Rise time, seconds
tq Delay time, seconds
tp Time to first peak of transient
tg Settling time, seconds
T Time constant, seconds
u(t) Disturbence variable (function of time)
x(t), y(t) Variables used when standard terminology for
feedback system is not applicable
th
Zn n =~ zero

Relative damping, damping factor
Product sign

Summation sign

E ™~ = v

Angular frequency radians/second

w, Angular frequency at which M_ occurs, radians/
second m

Wy Natural angular frequency radians/second

. Therefore



CHAPTER I

INTRODUCT1ON

1.1. Subject

It is known that the initial conditions do not affect the stability
of a linear feedback control system as a whole but they do affect its
transient performance. The present trend in the design of linear feed-
back control systems is to design a system with the assumption that the
initial conditions are absent. But this is an idealized assumption and
the control system that meets the performance specificationé under ideal-
ized conditions will not necessarily be within allowable tolerances
when the initial conditions are present. Thus the designs based solely
on neglecting the initial conditions may at times prove to be disastrous
in actual working as either the system itself may be damaged and lose
its accuracy or the departure from the designed characteristics of
systems such as emergency control systems like fire control systems may
 result in heavy losses. For underdamped systems such as used for regu-
lators, meters and position servomechanisms, apart from stability, peak
transient overshoot is one of the most important design criteria. It
can be shown that the presence of the initial conditions considerably
changes the magnitude of the peak overshoot. For systems which require
rapid synchronization like fire control systems settling time is an im-

portant point to be kept in mind while designing. For overdamped systems



such as used in process controls, rise time and dead time are important
criteria in judging the performence. An attempt, therefore, is made in
this thesis to explore the effects of initial conditions on these
parameters grouped under criteria for judging transient performance in
Section 1.2. In the disicussion here onward both the qudlitative and

the quantitative aspects of the effects of initial conditions are pointed
out and it is also shown how the components of the system govern the
effects of the initial conditions.

Methods have been developed which show how these effects can be taken
into account while designing a control system and a large number of
curves for response of a control system with different initial conditions
have been plotted to serve as a general guide. A method has also been
shown by which a transfer function can be approximated for a control
system with the initial conditions present when output and input charac-

teristics are available from experimental results.
1.2. Criteria for Judging Transient Performence, (1)

1. Peak transient overshoot Cpe

2. Time tp to reach peak overshoot.

3. Delay time ty required for the response to reach fifty percent
of its final value.

4. Rise time t, required for the response to rise from ten percent
tc ninety percent of its final value.

5. Settling time tq. The 1limit used in this thesis is  + 2 percent

of final wvalue.

6. Number of oscillations N up to settling time.

INote: ( ) refers to Selected Bibliography.



1.3. Plan of Development

Before attempting to explore the nature of the effects of the
initial conditions on the performance of a control system, a detailed
analysis of linear feedback control systems is performed in Chapter III
and a general transform equation is derived which includes the initial
conditions. An analogy is shown between the effects of initial conditions
and those due to impulse disturbances.

Both the qualitative and the quantitative aspects of the effects of
initial conditions are discussed in Chapter IV using pole-zero configu-
ration analysis. Various methods such as analytical, graphical and
numerical have been discussed to show how these effects can be deter-
mined. Dependence of the effects of the initial conditions on various
control system components is also pointed out.

Chapter V shows how the conventional frequency response methods (2)
can be extended to evaluate the transient response of systems when initial
conditions are present. A method has been shown by which a higher order
feedback control system with non-zero initial conditions can be approxi-
mated by an equivalent second-order or first-order system. The accuracy
and the.ease with which a problem can be tackled is illustrated by an
example. A mathematical explanation of the nature of the effects of
initial conditions is given which explains the results obtained in
Chapter IV.

A method has been developed in Chapter VI, by which given the re-
quired response c(t) and excitation r(t), both with the initial conditions
present, in graphical form, a linear differential equation representing

the system can be determined. Although the method developed allows



approximation by a second-order system, it may be extended to determine
a higher order approximation; but the accuracy of the method may be
deteriorated.

The results and conclusions are contained in Chapter VII.

l.4. Limitations

The effects of initial conditions on linear feedback control systems
only are considered. Also the effects on system optimization are not
considered. Several graphical methods which are usually associated
with non-linear systems but which can be also applied to linear systems,
such as the phase-plane method, are not discussed here as they have been

treated fully elsewhere (3,4).



CHAPTER II
PREVIOUS INVESTIGATIONS

The effects of initial conditions on performance of feedback
control systems have been discussed in a wide variety of literature on
control systems but almost in all the cases the treatment is super-
ficial.

Francis Raven (5) , J. C. Truxal (3) and many others have shown
that the initial conditions do not affect the stability of a linear
feedback control system as a whole, where a stable system may be
defined as one, the real parts of the roots of whose characteristic
equation are either negative or zero and whose response practically
attain a steady state value after some time interval has elapsed.

They have also indicated that the initial conditions affect only the
transient performance and that these effects are of the same nature
irrespective of the type of the input signal. Further, they mention
that the response due to each initial condition can be found out sepa-
rately, just in the same manner as that due to the external excitation.
Evans (6), without going into further details, has suggested that the
effects of initial conditions can be looked upon as similar to those

due to impulse disturbances introduced at suitable points in the control

Joop.



CHAPTER III

GENERAL THEORY

Fels

Control System

A feedback control system can in general be represented by the

block diagram shown in Figure 3.1. in which the control elements have

been cascaded to produce the over-all forward and feedback transfer

functions G;(p), Go(p), and H(p).

Controlled

Varjable ;

e(t)

Reference Actuating Control F;gtrolle%
t Error Elements Svstem |____
r(t) 2 (/ e(t) Gl(P) <G GQ(P) l
| Disturbance
u(t)
Feedback
Elements
H(p)
Figure 3.1. Block Diagram of a Feedback Control System.




3.2. Mathematical Representation of Control Systems

The equations describing the control system shown in Figure 3.1.

may be expressed as:

o(t) = [e(t) G1(p) +u(t) | Gy(p) (3.1)
e(t) = r(t) - c(t)H(p) (3.2)

The combination of Equations (3.1) and (3.2) gives controlled
variable

e(t) G1(p)G2(p) r(t) + GZ(P)

- t 3.3
1+ G1(p)G2(p)H(p) 1+ Gy(p)Go(gp)H(p) R 33

It follows from Equation (3.3) that the effects due to reference in-
put r(t) and disturbance u(t) may be superimposed to have combined output
c(t). Again, since the characteristic equation is the same in both the
cases, the response due to u(t) can be calculated in the same manner as
that due to r(t). Hence for further discussions disturbance u(t) is
neglected.

The Equation (3.3) can now be written as:

e 6,(p)Gy(p) ) 6(p)
RG] Y ® T

r(t)

(3.4)
where G(p) = G1(p)Go(p)

and is known &s combined forward transfer function.

The function G(p) and H(p) can be expressed as:

W
K11 (piey)
G(p) = —'%E]-—
M(p+b
o)



U
K (p +cy)
PEET%
n (p +dv)
V=1
where Kl = open loop gain
K,K5> = static loop sensitivity

a's, b's, c¢'s and d's may be real, complex or zero.
Substitution for G(p) and H(p) into Equation (3.4) and simplifying,

c(t) can be expressed as

m m-1
Agp™ + Ap qp T - +A1p +40

c(t) = r(t) (3.5)

n . n-1
Byp~ + B, P Fornommmicn +B,p +B,

where A's and B's are real constants and m and n are positive integers,
and because of the nature of the functions G(p) and H(p), in general
ns m

The Equation (3.5) can also be written as:

m
E Aspt
e(t) = 20 r(v) (3.5)

! Bipi
1=0
Since Lpy(t) = SPy(s) - $"7F yo-§" “pyo-----p"¥o.
The Laplse transform of Equation (3.5) can on simplification be written

ass:



(3.6)

Where L(S) = 5 BiSi and is called the characteristic equation.
i=0

The first term on the right hand side of Equation (3.6) represents

response due to reference input r(t) only, terms in the first [ h|represent

response due to c, pco,———pn'lc respectively and the negative of the

terms in the second [ ] represent response due to Py pro,--—pm"lr

0

0

respectively.
Case I: All the initial conditions are zero. In this case, the

Equation (3.6) reduces to ,

Z Aisi

i=0

o(8) & =—— R(8) (3.7)
L(8)
Since fPY(t) = S7Y(S), with all the initial conditions zero.
%
cy(t) = Jw(t)dt (3.8)
o
4
cp(t) = JCA(t)dt (3.9)
(o]
t1
cg(t) = TJCA(t)dtldt (3.10)

[o]e]
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Where w(t)

response due to unit impulse

c,(t) = response due to unit step input

cg(t) response due to unit reamp input

and co(t)

response due to unit parabolic input
Case II: All the initial conditions except c, and r, are zero.

The Equation (3.6) can now be written as

& m
} J"tj_Si SAisi
c(s) = 29 R(S)+ Lcp - =17
L(s) s (s) S
m
> a;st
j= c
= 1= R
c(s) (s) (&+0)1-§a_ .
where  R(Syo) = Lr(t,,)

Also L —1Eg =C
Hencelgesponse c(t) can easily be obtained by finding response due to
r(ti,) and adding ¢/ to it.
Case III: Non-zero initial conditions. In this case the system is
represented by Equation (3.6). A study of Equation (3.6) indicates that:
1. Effects of initial conditions are the same irrespective
of the type of the input signal.
2. By superposition theorem, response due to each initial
condition can be found out separately and added together
to that due to input r(t) to have the resultant output
e(t).
3. Effects of initial conditions are the same as those due to

impulse disturbances. Hence initial conaitions can be



11

included in the block diagram by applying impulse disturbances at suitable

points in the loop; e.g.,

2
w

o(t) = —= , T(t) ¢,k 0, peo £ O

PT+28wp e

can be represented by the block diagram of Figure 3.2. where uq indicates

unit impulse.

!é¥° U,
“n
R(S) 4 & W ¥ ; C¢s)
T E© | srzpe = S

Figure 3.2. Block Diagram Representation of Initial Conditions.

2
c(t) = 5 “n ~ r(t),cc# o,pco'*o
P +2Fwnp-|-wn

S + Zgwn &

2
G(8) = = “n » R(S) +
S -|-2§wnS -I-wn

1 c
52 +2§wh5+.wh2 Fio 82+2§wns+wn2




CHAPTER IV

POLE-ZERO CONFIGURATION ANAYSIS

4.1. Introduction

A qualitative, as well as quantitative measure of the effects of
initial conditions on performance of a control system can be easily
obtained by pole-zero configuration anaylsis.

The Equation (3.6) indicates that r,, pro,-—-,pm_lro affect the
system in the same manner as cg, pco,---,pn'lco. Hence for further
analysis only effects of c, PCys= pn'lc0 are considered; ro,

pro,——-,pm r, being assumed zero.
4.2, Qualitative Anaysis

Qualitative anaysis can be explained best by considering a specific
problem.
Example: Consider a closed loop control system with

K(p +Zl) 5
ae e e ey (4-1)

H(p) = 1 (4.2)

Substituting in Equation (3.4), output c(t) can be expressed as

K(ptz1)
p(ptp1) (ptp2)tK(ptay) (4.3)

e(t) =

12
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which on simplification gives

K(p4z7)

5 r(t) (4.4)
p>+(p1+p,) PEH P1poHK) piKzy

c(t) =

Taking Lapace transform of both the sides and rearranging the terms

as in Equation (3.6).

K(S421) sy 4 $%(p14P2)S 4(p1py+K) ¢

o = L(S) L(S)
SH(p; 4p,)
P e P it P (4.5

where L(8) = 83+-(p1+p2)52+ (p1p2+ K)S +Kzq

The Equation(4.5) can be further simplified to

_ G(8) (S+g7) (S+q,) G(S)
¢(8) = 1r5ts) MO “(smy 1+(G(s) ©
S (py#py)  G(S) 1 g G(s) -2
K(S427) 146(s) = ° K(S4ap) 1+ G(8) °
(4.6)
where q and q, are roots of the equation
s + (p1+p2)s + (pypptK) = 0 (4:7)
and are given by
-(P-kP)i\/(P'P)z-AK
q1,q, = ———% = (4.8)

2
Equation (4.6) provides the base for the discussion of qualitative

effects of cg, pe, and pzco, for the given control system.
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(S+q1) (S+q2)

(S +2q)
network, i.e., if q and q, are much smaller than 1, the effect of c,

describes a lead

1. Effect of c If the ratio

will be more pronounced. Thus the effect of c  is governed by relative
values of poles and zeros of GH. Presence of zeros of the control
ratio %{%} meke the effect of c, less pronounced.

It is evident from Equations (4.6) and (4.7) that increasing the
gain K reduces the effect of Cqe This is true irrespective of the type
of the system.

2. Effect of pc,. Here again effect of pe, depends upon the ratio

S +(pt
sz P2) , the effect being more pronounced if the ratio represents a
2
1

lead network. Also increasing the value of gain K reduces the effect
of pc,.

3. Effect of p°c_. Remarks for effect of c, apply here too. A
higher value of the zero of the control ratio makes the effect of pzcO

less pronounced, while decreasing the gain increases this effect.
General Conclusions

It follows from the discussion in Section 4.2. that

1. Effect of initial conditions depend upon the relative
values of poles and zeros of GH.

2. 2Zeros of control ratio %%%% make the effect of the
initial conditions less pronounced. Higher the values
of the zeros the less pronounced this effect will be.

3. Increasing the gain K reduces the effects due to initial

conditions.
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4. Effect of the initial condition pnc0 decreases as n in-

creases.

4.3. Quantitative Analysis

Quantitative analysis consists of determining the roots of the
characteristic equation and evaluating the coefficient of each expo-
nential and power series term in the inverse Laplace transform. If the

open-loop transfer function is expressed as

I{Iill1 (p +32p)
o) ats) =~ -

I (p+p,)
n=1 A

where the a's and b's may be real, complex or zero and K is defined as
static loop sensitivity or simply gain, the characteristic equation may
be written as

n m
n (S+pn)+ KN (S+zm) =0 (4.20)
=1 m=1

jai

Various methods are available to determine the roots of the Equation
(4.10) as gain K is varied from zero to infinity or some large value.
This process is known as root-locus finding. All these methods are based
on the fact that the roots of the characteristic Equation (4.10), are
related to the poles and zeros of the open-loop transfer function GH.

More precigely, this fact may be expressed as

G(S)H(S) = 1 )

G(S)H(S) = (1+42i) 180° (4.12)
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where 1 =0,%1,%*2, ---
e Methods for Plotting Root-Locus

1. Graphical Method. This method has been discussed in much
detail by Evans (6). Specific points on root-locus are determined
using geometrical short-cuts. These points are then plotted and connected
by the use of a French curve or other means to form the root-locus.

Use of Spirule (6) facilitates this procedure. However, the accuracy
is limited by the skill and experience of the person performing the
calculations and manipulating the Spirule.

2. Automatic Computation of Root-Locus Using Digital Computer.
Numerical methods (7) employed for computation involve iterative pro-
cesses in which an initial approximation z, to & real root S = x is
estimated by graphical methods or other means, and & recurrence relation
is used to generate a sequence of successive approximations X)5 X2,==,
Xn, which converges to the limit x. Unfortunately, in all these methods
convergence is either uncertain, slow and excessively laborious or critical
concerning the initial-estimate of the root.

The problem of uncertain convergence may be overcome by using two
different methods simultaneously. A combination of the Bairstow and
Newton-Raphson methods results in a powerful iterative process for
solving polynomial equations because the class of polynomials for which
the Bairstow Method fails is generally not the same class as that for
which the Newton-Raphson Method fails. The equation should be scaled
and coefficients should be reversed, when necessary, to prevent loss

of significance in the synthetic division.
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A method has been developed by Stuart Brown Herndon (8) in
Fortran language which simultaneously employs Bairstow and Newton-
Raphson Methods. The Bairstow iteration is performed to find a quadratic
factor of the type 52 + PS + Q of the polynomial and a consecutive
Newton-Raphson iteration is performed to find the linear factors
before attempting another Bairstow iteration with corrected values of
P and Q. Figure 4.l. shows a general flow chart of the composite program.
The gain K cannot be varied from zero to infinity because the largest
permissible number in Fortran is 1050, however, gain K can be varied
to a sufficiently large value to obtain the useful part of the root-
locus.

3. Automatic Computation of Root-Locus Using Analog Computer (9).
The points which lie on the root-locus must satisfy Equation (4.12).
However, for values of S which are not on the root-locus the relation-
ship may be expressed as

/ G(S)H(S) - (1 + 21) 180° = E (4.19)

where angle E represents the error in satisfying the angle condition.

The vector S can also be represented as
S=8,+AS (4.20)

where So is measured from the origin to one of the open-loop poles and
AS is an increment measured from that open-loop pole.

The Equations (4.19) and (4.20) are used to determine the computer
setup. A functional block diagram of the computer setup is shown in
Figure 4.2, In order to make E go to zero, the computer setup must-

operate as a Type I system. By means of a potentiometer, the rate of in-

crease |AS|, and therefore, the speed of plotting the root-locus can be
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controlled. The real and the imaginary parts of the open-loop
poles and zeros are inserted by means of the potentiometers. The sign
of these terms is determined by the polarity of the 100 V source.

This method has been described in detail by Liethen (9). The
system requires one more resolver than the total number of poles and
zeros of the open-loop transfer function. The large number of resolvers

required may be considered the major objection to this method.

Example: Consider a type 1 position control servomechanism whose

open-loop transfer function is given by

K

StalEie) = p(1+Tm;)(1+TfP) (4.13)
where
H(p) = 1 (4.14)
T, =1 (4.15)
Te =0.2 (4.16)
The Equation (4.13) mey be written as
G(p)H(p) = (4.17)

p(p&l%((p-w)
where gain K is equal to 5K1.

The characteristic equation is obtained with the help of Equation
(3.10) as

L(S) = S(541)(8-5) + K =0 (4.18)

The root-locus plot is shown in Figure 4.3.



Accept from typewriter the factors of the
open-loop transfer function

f
&

Compute coefficients of sub-polynomials
formed by numerator and denominator

®

Accept from typewriter the initial value
of open-loop gain and progression ratio

©

Compute coefficients of nth degree
| polynomial as function of open-loop gain

®

Perform simultaneous Bairstow and Newton-
Raphson iterations

®

Evaluate roots from factors as computed
by simultaneous iterations

®

Print value of open-loop gain and value of
roots for open-loop gain

®

Vary open-loop gain by geometric or
arithmetic progression

(é) Go to 'e! and repeat process

Figure 4.1. General Flow Chart of Composite
Program.
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Figure 4.3. Root-Locus for Illustrative Problem.
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4.3.2 Transient Response for Non-Zero Initial Conditions

Various methods are available to determine the transient response
of a control system with non-zero initial conditions.

1. Analytical Method. Having determined the value of the gain K
and the roots of the characteristic equation the transient response can
be evaluated by finding out the coefficients of the expotential and
power series term of L'lc(s) by the method of partial fraction expansion
(3). The following example illustrates the method.

Illustrative example: The example of Section 4.3.1 1is con-
sidered here to find out the transient response due to unit step input.
The root-locus plot for this system is given in Figure 4.3. A value
of gain K equal to 4.25 will be a fair choice. The roots of the charac-

teristic equation can be obtained from the root-locus plot as

S, = -0.40 + j 0.80 (4.21)
S, = =-0.40 - j 0.80 (4.22)
S3= -5.20 (4.23)

The Equations (3.17) and (2.4) give the control ratio

- K
r(t) p(p+l)(pt5)4K

which can be simplified as

c(t) - 4.25
r(5) = pItbpt5pth.25

(4.25)



23

The Laplace transform of Equation (4.24) is given by Equation

(3.6) as
425 5246845 s46 1 2
6(8) = 70 R(S)+ 1(S) et L(S)pcd+£(§T poo; (4.25)
where
L(S) = S + 65° + 65 + 4.25
= (8-51)(5-8,)(5-83)
= (840.40 - j0.80)(S40.40 +j0.80) (8+5.20) (4.26)

As R(S) = % fecr unit step input, substituting for R(S) and re-

arranging the terms Equation (4.25) reduces to

0053 % (6 coipdo)sz + (5 c, + bpc, + pzco) S+ 4.25
S(S + 0.40 - jO.80)(S + 0.40 + j0.80)(S + 5.20) k4:27)

c(s) =

Using the partial fraction expansion method, Equation (4.27) can

be written as

ofsl} =12 4 K2 " 5 50 (4.28)
S S 10.40 - j0.80 ' S 40.40 # j0.80 5 ¥ 5.20

where K,, K,, K3 and K4 are determined as

K = oo [sc(s) =1

X 1in  [(S 4 0.40 -30.80)6(8)|= _L_K(-0.40+10.80)
S—(-0.40+3j0.80) 1.6j
where K(0.40#j0.80) = lim [(31-0.40-—3'0.80)0(8)]

S—(-0.40+30,80)

K - o>

5 = K(-0.40-j0.40) and is complex conjugate of K,
-0J




2L

K, = Mo (s + 5.20)(s) |
§-5.20 -

The response c(t) can be written as

e(t) =1 ¢4 %63 |K(-0.40 + j0.80) e O:4tsin (0.8t+ &) + K49-5'2t (4.29)

-1 0 89)
h =ta g
where o- n (rO.LO

The method involves laborious numerical calculations. Also, the
quantities of practical importance to us, namely peak overshoot, time
at peak overshoot, delay time, rise time, settling time and number of
oscillations up to settling time cannot be obtained directly unless a
curve of c(t) versus t is plotted for the transient period.

2., Graphical Method. When the transient response due to a step
input is to be evaluated, a graphical method based on the pole-zero con-
figuration, usually employed (2) for systems with zero initial conditions,

can be extended to determine peak overshoot c_, time t_ to reach peak

p’ P
overshoot, settling time t  and number of oscillations N up to settling

time. If the system has & dominant complex pole p, = u"*'jwd’ then tp,

Cps tg and N are given by

Sum of angles from ~/ Sum of angles of all other \|

o & [T - c(s) les of &8 to dominant |
tp_ og| 2 zeros of R(S) to i po R(S) ,
dominant pole p, po%e Po, including conjugate!

pole A

(4.30)
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[Product of distance

from all poles of g(S) [Product of distancga |
to origin excluding from all zeros of R(S)
distances of two domi- to dominant pole p,
c(s) - Lnant poles from originl x - “x e(rtp
Cpn = 5 o o =
P R(S) 8=0 ¥ Iproguet of distances Product of distances
from all other poles from all zeros of
c(s) :
of R(S) to dominant %%g; to origin

pole py, excluding
distance between
| dominant poles

- (4.31)
g t.:]ﬁ[ (4.32)
w3 (4.33)

N =
T o]

Illustrative Example: The illustrative problem treated by analytical

method is used to explain this method. Using Equation (4.27) the ratio

§L§l can be expressed as
R(S) .

c(s) - cns3 + (6co:j-pco)s2 + (5c°+6pco+p2co)s + 4.25 (4.34)
R(S) (S + 0.40-3j0.80) (S + 0.404j0.80) (5 45.20)
2

For the sake of simplicity, c_ and p“c, are assumed zero and pc,
is assumed equal to unity.

The Equation (4.34) can be written as

c(s) _ pc, [S(S + 6) + %Efﬁ ]
R(8) =~ T(S+ 0.40-30.80) (S+ 0.40+j0.80)(S + 5.20)

Substituting for pc, and simplifying,

c(s) _ (S 4+ 5.,18)(S + 0.82) (4.35)
‘R(8) ~ (8 + 0.40-30.80)(S + 0.40+j0.80)(S + 5.20)

Where P, = -0.40 + j0.80 is a dominant complex pole.
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The values of poles and zeros of %%g% are plotted in Figure 4.3.

With the help of this figure and using Equations (4.30),(4.31), (4.32)

and (4.33), the values of tp, Cps tg and N may be determined as:
1 T _ (gO44ED 0,00 ] i
t, = ——| = 0 = 2,51 secs
p= a5 | 5 (9°165%) + (%0°49°) | 155

20 x 4,8 x0 -0.4 x 2,51 _
°p =1+ 7.8 x 5.18 x 0.82 ° " il

t _‘_!*...._ = 10 secs
8  0.40

_ 2 x 0,80 _
N = yo0.40 = 1975

These values are in agreement with those obtained by using an
analog computer.

3. Using Analog or Digital Computer. The use of computers has
supplanted much of the paper design study. This approach allows rapid
and complete evaluation of the expected system performance. Also, if
gain K is determined from other considerations, one can avoid drawing of
a root-locus plot to determine the roots of the characteristic equation.

Various methods (7) for the numerical solutions of ordinary differ-
ential equations can be used to evaluate the transient response of a
feedback control system with non-zero initial conditions using a digital
computer (10). Methods generally used, namely the Euler's Method and the
Runge-Kutta Method are self starting and require the knowledge of initial
conditions only in order to start the solution. Other methods like
Euler's Modified Method, Adam's Method, etc. are non-self-starting and

depend on knowledge of the value of the function at two or more points.
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These values can be determined using Taylor series expansion or by
graphical means.

A feedback control system can be simulated and its transient response
can be automatically plotted using an electronic analog computer (11).
The relative ease with which systems can be simulated allows analysis
and design calculations which would be otherwise practically impossible.
The initial conditions can be varied by varying the initial voltage
input to an integrator. Similarly, the gain K can be varied by using
a potentiometer. Thus & family of curves ¢an be easily plotted for
various initial conditiors and gain K.

Illustrative Example: Problem of Section 4.2,1 1is considered here
to show the relative ease with which this problem can be solved using
an analog computer.

From Equations (4.14) and (4.17)

e) = S8 = )
and
H(p) =1
[ +6p%45p | c(t) = K e(t) (4.36)
and e(t) = r(t) - c(t) (4.37)
Equations (4.36) and (4.37) are used to determined the computer
setup.

Figure 4.4 shows computer setup for a step input r(t) = 100 units.
Amplitude and time scaling is employed to prevent any of the amplifiers
from being overloaded. Figure 4.5 shows the computer setups for

obtaining ramp, parabolic and sinusoidal input signals. Amplitude
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scaling of the computer setup shown in Figure 4.4 may be modified for
a ramp, parabolic or sinusoidal input. Results obtained for value of
gain K equal to 4.25 and different initial conditions for a step, ramp,
parabolic and sinsusoidal input are shown in Figures 4.8 through 4.17.
Plots for c(t) when system is excited only by the initial conditions
are given in Figures 4.6 and 4.7.

Tables 4.1 through 4.3 give values of peak overshoot Cps peak time
tp, delay time ty, rise time t,, settling time tg and number of

oscillations N for different values of c_,, pc, and pzco respectively

0?

for the case of step input signal.
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TABLE 4.1

COMPARISON OF TRANSIENT RESPONSE EUNIT STEP INPUT)
p

WHEN THE c, VARIES (pcD = p<c, = 0)
S.No c, c, % tp secs. ty secs. t. secs. tg secs, N
overshoot
1 0 1.20 20.0 3.80 1.42 1.60 9.80 1.295
2 +25 Lold 1L.3 3.80 0.95 = 2.50 1.255
3 +.50 1.10 10.0 3.80 0.0 - 9.20 1.215
4 =25 1,25 25.0 3.80 1.80 1.26 9.80 1.295
5 =.950 1.31 321.0 3.80 1.95 1.10 9.80 1.295
TABLE 4.2

COMPARISON OF TRANSIENT RESPONSE (UNIT STEP INPUT)
WHEN THE pc, VARIES (c, = p<c, = 0)

S.No ¢ ¢ % tp secs. ty secs. t, secs. bt  secs. N
overshoot

1 0 1.20 20.0 3.80 1.42 1.60 9.80 1,295

2 0.5 1.24 24.0 3.00 0.85 1.26 8.80 1.260

3 1.0 1.38 38.0 2.40 0.31 0.80 8.20 1.185

4 =0.5 1.22 22.0 4,18 1.90 1.50 9.90  1.305

5 =1.0 1.30 30.0 4.58 2.35 1.20 10.20 1.345




COMPARISON OF TRANSIENT RESPONSE (UNIT STEP INPUT)
WHEN THE p2co VARIES (c_ = pey = 0)

TABLE 4.3

S.No p?c0 °p overﬁhoot t secs. t; secs. t_ secs. t_ secs. N
1 0 1.20 20 3.80 1.42 1.60 9.80 1.295
2 0.50 1.20 20 3.5 1.26 1.65 9.60 1.270
3 1.00 1.21 21 2375 1.05 1.27 9.20 1.215
4L -0.50 1.20 20 3.95 L. 55 1.70 9.90 1.305
5 -1.00 1.21 21 Le21 1.65 1.70 10.00 1.32




CHAPTER V
FREQUENCY RESPONSE ANALYSIS
5.1. Introduction

The conventional frequency response methods (2) used to analyze
the feedback control system with zero initial conditions can be extended
to analyze the control systems with non-zero initial conditions. The
method is based on the assumption that the transient behavior of a higher
order system for which the maximum closed-loop frequency response
e(jo) is greater than one, may be approximated by a second-order

r(jw)
system.

o(t) _ wn2 (5.1)

r(t) 5212Ewnp + mn‘d

where damping ratio £ and natural frequency w, are given by the

equations
c(jw) 1
Mﬂl = T(jw) = 2€ 1_52, MIIl z 1 (502)
o= 0y 1262, M > 1 (5.3)

Wy is the frequency at which the maximum value My occurs. This

assumption is practical since the roots of the characteristic equation
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which are located nearest the imaginary axis have a predominant
effect upon the transient behavior. The systems for which My is less
than one, the transient behavior can be approximated by a first order
system

c(t) o1
r(t) 1+ Tp (5.4)

where time constant T = %, w being the frequency at which the magni-

tude of the forward transfer function G(jw) of the system is unity.
5.2. From Frequency Response to Transient Response

It has been already shown that the effects of initial conditions
'die out' once the steady state is reached. Hence by replacing p for
jwand applying the conventional methods (2) the values of the maximum
closed-loop frequency response My and the frequency w, at which it
occurs can be determined. If M, is found to be greater than or equal
to unity, the system will be approximated by the second-order system
represented by Equation (5.1). If M, is less than unity, it will be
approximated by the first-order system of Equation (5.4).

Case I. My 2 1. The values of € and w, can be determined by
using Equations (5.2) and (5.3). € can more easily be determined if &
plot of M against £ is available (2). It is evident from the
Equation (5.2) that the value of £ for this case must lie in the
range of O to 0.707.

For the purpose of analysis it will be assumed that the initial

conditions of the approximated Equation (5.1) are identical to those

of the system under consideration. It will be possible only to explore
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the effects of < and pc, but it has been already indicated in Section
4.2 that the effect of pncO decreases as n increases. The results
of Section 4.3.2 also show that the effect of p2co is negligible.
The block diagram representation of Equation (5.1) which includes
the initial conditions is given in Figure 3.2. From this block
diagram or by taking Laplace transform of Equation (5.1), C(S) can be

expressed as

2
6(s) =%n R(S) 5+ 28 o 4 1
L(S)

L(8) L(8) P (5.5)

where L(S) = s2 + 2Ew S + wn2 (5.6)

For unit step input r(t),

R(S) = %

Therefore, substituting in Equation (5.5)

2
(52 + 2§mn5) co + S pcy + W,

5 L(S) (5:7)

c(s) =

Taking Laplace inverse transform (12), the response c(t) is

given by
Wt
c(t) =1 +Me 0" Sin (w,/ 182t + o) (5.8)
where
. [(1-a§wn-bwn2+ 20820 2)? + w_2(1-£2) (a-2bFuy)? ]%
s g2 (5.9)
2!§wnco + pcgy
a = )
W, (5.10)

5.11
wn
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© = tan™t [ wn\/—l—-? (a-2bgwy,) ]  Waa [ 1-£2 ]

(5.12)
b wy(25%-1) + 1-aFw, -g

Equations (5.8) through (5.12) give the transient response of the
system under consideration.

Case II. My < 1. The value of t in Equation (5.4) cen be determined

from the Bode plot representation of G(jw) by taking the frequency
w at which the maegnitude of G(jw) is unity.

The Laplace transform of Equation (5.4) gives

T
C(8) = —L— R(S) + —2— (5.13)
1+7T8 1+7T8
For unit step input r(t),
1l ¢c.T8
B(B) = mmevicsom e
(8) S(1 + T8) (5.14)
Inverse transform of Equation (5.14) gives
e(t) = 1 - (1-cy)e¥/T | (5.15)

In this case it will be possible only to explore the effects of
Coe But it can be shown that the effect of pnco where n > 0 will be

negligible for this type of systems.
5.3. Mathematical Analysis of the Effects of Initial Conditions

The results obtained in Section 4.3,2 can now be explained
mathematically.

Case I, Eﬂ > 1. The maximum and minimum values of c(t) and the
time at which they occur can be obtained by equating QE%LII equal to
gero and substituting the value of t thus obtained in Equation (5.8),



d c(t)

Equating at to zero gives

-Ew, Sin(wn\/ 1—52’0 + o) + wn\/ 1—-52 cos(wn\/ l—§2t+ @) =0

SRR —E°
"tan(wn 1—52t+@) - ‘/E;E:;

Substituing for ¢ from Equation (5.12) and simplifying

v N [ wpV/ 1-6% (a-2bFwy)

th=w ~ 0 b ) T | (5.16)
where tm indicates time for maxima or minima,
w = wﬁv/i:gz and n =0, 1, 2,....
Substituting t = ty in Equation (5.8)
cp = 1 el ~ntn) sin (wnﬁ?tm+ ®) (5.17)

where it may be noted that the peak overshoot c. corresponds to

P
value of t; when n = 1.
n
Effect of cg. (p c, =0 where n > 0)
Substituting for a and b from Equations (5.10) and (5.11), the

Equations (5.9) and (5.16) may be simplified to

(1-c,)

Moe %2
V1-22 (5.18)
o

bty = w (5.19)

Substituting for M and t; in Equations (5.8) and (5.17)

e(t) =1 + (I“_C_O) etnt gin (0 1-F24 + o) (5.20)
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(%)
s 1 & {ise D)8 oo (5.21)
A study of Equations (5.19) and (5.20) indicate that c  does not
affect the times at which the response c(t) reaches its maximum or
minimum values or the times at which c¢(t) is unity. Thus for any value

of c¢,, time t, at peak overshoot is the same and effect of c, is zero

o’ P
at times when c(t) is unity. Equation (5.21) shows that the peak over-
shoot (cp-l) is proportional to (l—co). These remarks explain the
nature of the curves shown in Figures 4.6, 4.8, 4.11, 4.13, and 4.15.

Effect of pc. (co = 0, plc, = O where n > 1)

Equations (5.9), (5.12) and (5.16) can be simplified to

T - 2PcE  (pey)? )
o T w2

M= n n (5.22)

1 - g2

1—§2pco { 1-£%
= tan~1 ——— | -tan” 2

P an W ~Epe, an & (5.23)

t. = a7 1 tan™t l—§2pco
TR §,Fpe, (5.24)

Substituting these values and n =1 in Equation (5.17)

2 2 1%
c, =1+ ':- Z:loﬁ + %ﬁl—] e *n’n (5.25)

When pc, is equal to zero, Equation (5.24) gives

t =ty = &7 (5.26)
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Substituting for M, ¢ and t from Equations (5.22), (5.23) and

(5.26) into Equation (5.8), and simplifying

-
1-2pc, £ (pe_)? % 7 -n7E V1-£?
eEpm) [
U.'ln wn . l_gz 1 -
t) = i 7
c(t) = 1 T 2 Sin [Tn +tan 1- NJ;_EQ
" (5.27)
where - il—§2pco
w,-%pe,
On further simplification, Equation (5.27) reduces to
F_,E
- 2
- 1-€
c(t) =1 - (-1)" e (5.28)

But, the left hand side of Equation (5.28) is equal to the

maxima or minima cm when all the initial conditions are zero.
c(t) = ¢, when plcg = 0 (5.29)

Equations (5.24) and (5.29) explain the nature of the curves shown
in Figures 47, 4.9, 4.12, 4.14, and 4.16 which indicate that the time

1 "
to reach maxima or minima is offset by the amount tan'l[ };ji_ffg]

w,-Epcy
and that the effect of pc, is zero at the times when response reaches

its maximum or minimum values if all the initial conditions are zero

Case II. Mp < 1. A study of Equation (5.15) indicates that there

will not be any overshoot irrespective of the value of c,, except for
¢y greater than unity which is not practical. Also the dump [l—c(t)J

is proportional to (1l-c,).
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5.4. Illustrative Example

The illustrative example of Section 4.3.2 is solved here to show
the accuracy of this method and the relative ease with which the problem
can be solved.

The control ratio is given by (4.24) as

c(t) _ 4,25
r(t)  p° + 6p + 5p + 4.25

(5.30)

A polar plot for Equation (5.30) is given in Figure 5.1. From the
polar plot
M, = 1.25
wy = 0.72

Using Equations (5.2), (5.3) and above values

E = 0.45 (5.31)
® = 0.923 (5.32)
0 =,/ 1-8% =0.82 (5.33)

Effect of ¢5. (pc, = pzco = 0)
Substituting for £ and @ in Equations (5.19) and (5.21) and noting

that n is equal to unity for first maxima or peak overshoot.

T
t = = 3.83 5-
p™ = (5.34)

cp=1 +—(1—c0)£3 "8f33?9 (5.35)

Table 5.1 gives values of p and tp for different values of cg.
A comparison of this table with Table 4.1 indicates that the results

obtained by two methods are more or less identical.
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TABIE 5.1

COMPARISON OF TRANSIENT RESPONSE (UNIT STEP INPUT)
WHEN THE c, VARIES (pc, = p?c, = 0)

S. No cy ch ovefshoot tp secs,
1 0 1.204 20.4 3.83
2 +:25 1.153 15.3 3.83
3 +.50 1.102 10.2 3.83
4 -.25 1.255 25.5 3.83
5 -.50 1.306 30.6 3.83

Effect of pc . Substituting for £, w and w in Equations (5.24)

and (5.25) and taking n equal to unity for peak overshoot

-1 0.89 pc
t, = 3.83 - 1. t 0
p = 3.83 - 1.22 tan [0‘923 = L ] (5.36)

c, =1+ Ll— 0.975 pe, + 1.175 (pco)2:| 5 o(-0.416 tp)

P (5.37)

Valuesa of p and tp for different values of pc, are given in Table

5.2. These values show good agreement with those given in Table 4.2.



TABLE 5.2

COMPARISON OF TRANSIENT RESPONSE (UNIT STEP INPUT)

WHEN THE pe_ VARIES (c, = 0,p%c, =0)

. No PCq c % secs,
P overshoot

1 0 1.204 20.4 3.830

2 0.50 1.242 24,2 3.143

3 1.00 1.385 38.5 2.510

4 -0.50 1.222 222 4,280

5 =1.00 1.28 28.2 44530




CHAPTER VI

FROM GRAPHICAL TO MATHEMATICAL REPRESENTATION
(Non-Zero Initial Conditions)

6.1. Introduction

A problem of practical importance with which a control system
designer is often faced with is; given the desired response curve
c(t) and the input r(t), how to determine the equatioﬁ representing
the system. The problem becomes more difficult when the initial
conditions are present so that the conventional methods (13) used
for systems with zero initial conditions cannot be utilized.

It has been already shown that a higher order system can be
represented by an equivalent second-order system. Thus a method may be

developed by which a second-order equation of the form

c(t) Ayp® +Ap +1
r(t) ~ Byp® + Bip + B, (6.1)

can be determined to represent the given response curve c(t) and the

excitation curve r(t).
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6.2. Formulation
Integrating the Equation (6.1) for the interval t, to t,:
2
B,p [c(tz) - olty) |+ By [c(tz) - c(tl)] 5 Bo'Lﬁ‘c(t)dt -

£
A,p [r(tz) _ r(tl)] + A [r(tz) ’ r(tl)] + Jti r(t)dt (6.2)

Integrating the Equation (6.1) for the interval t to o

Byp ety ) - e(8)] +B [e(ty) - c(t)]| + 5, j:z c(t)dt =

aop [x(t)) - w(8) | + 4y [x(t,) - x(¥) ] +.[:2 r(t)at (6.3)

Integrating the Equation (6.3) for the range t; to tj:

b
B, [pc(tz)(tz—tl) - c(ty) + c(tl)] + By [c(tz)(tz-tl)— It c(t)dt]
i

t t
2 2
+ Bo J ( C(t)dtz -
8 Ot

Ay [P r(b2) (botn)-r(t)tr(ty) | + &) [2(8)(bgt)) - [ r(t)at]
%
t t
2 r'2
#1717 r(e)at? (6.4)
'tl 't
Similarly, triple integrating the Equation (6.1), first for the

interval t to t,, then again for the interval t to t, and the finally

for the interval t; to 1,



57

2 tg
B, [pc(tz) Ef%%fll_ - e(t,) (by-ty) + i c(t)dt ]
1
(41> b b2 5 Itz Jtzjtz ;
+ B, [c(tz) __EET_*' - ll i c(t)dt ] + B, L1 c(t)at® =
2

o t2 )
EEE_EEZ - (t,) (tp-t) + I r(t)at| +

t1

Ay [Pr(tz)

(t.~t, )2 ty t2 rtz ftz [tz 3
+ 4 [r(tz) 22 LA { { r(t)dt2] Fdodd r(t)dt
2 (6.5)

Similarly a series of equations may be written by integrating the
Equation (6.1) once more each time for the range t to t,, the last
integration in each case being from tl to tz.

Equations (6.2), (6.4), (6.5), ... may be solved simultaneously
to find the coefficients B,, B,, BO, A, and Al. To determine these
five coefficients five equations will be necessary. The problem will
be further simplified if input r(t) is of the form such that both A
and Az are zero in which case only three equations will be required
to determine B,, B;, and BO. Also, since the coefficient B0 is
associated with the steady state value of response c(t), it may be
determined from other considerations. Now the problem consists only
of solving two simultaneous linear differential Equations (6.2) and
(6.4) to find B, and B.

The time instants t; and t, are so selected that pc(t,), pe(t,),
pr(tz) and pr(ty) can be accurately determined from the curves.
Usually, the starting point and a point of maxima or minima will be

the best choice.



6.3. Illustrative Example

Consider a control system, the response c(t) for which is given
by the curve (III) of Figure 4.9, the excitation r(t) being a unit
step input. It is given that the steady state value of response c(t)
is unity.

The second-order equation approximating the system will be of

the form

o(t) _ 1 (6.6)
r(t)  B,p* +Byp +1

the B, being unity as it is known that the steady state value of

response c(t) is unity. As only two unknowns B, and B, are to be

determined, only two Equations, (6.2) and (6.4), need to be solved.
A study of the response curve c(t) indicates that the values of

pc(t) can be easily determined at the starting point and at the point

where c(t) is maximum. Hence the points tl and t2 are chosen as

t; = 0 secs. (6.7)
ty = 2.4 secs. (6.8)
From the curve
C(tl) = 0, pC(tl) =1 P I‘(tl) =0
C(tz) = 1-38, pC(tz) =0 P I‘(tz) =0 (6.9)
t t t
R0, 26 R
The J r(t)dt and J J r(t)dt2 of Equations (6.2) and (6.4)
tl t’l t

can be evaluated analytically.
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J 2r(t)dt - J at = 2.4 (6.10)

t, b 2.4
f : f 2r(t)dt2 = f (2.4 - t)dt = 2.88 (6.11)

t2 t2 (b2 5
The I c(t)dt and F j c(t)dt® can be evaluated by using
1 "t

trapezoidal rule (4), as shown in Table 6.1.

2.4 s o
o
I c(t)dt = At [75 t § ¢y + J (6.12)
0 n=1
t2
At is choosen as 0.2 secs. I c(t)dt suggests that the integration
t

should be started backward. Making use of Equation (6.12).
2.4

10 Jz 2c(t)dt 1.38 # 1.37 = 2.75

2.4
10 [ c(t)dt = 1.38 + 1.37 + 1.37 + 1.36 = 5.48
2.0
2.4
10 r c(t)dt = 23.80 + 0.38 + 0.0 =24.18 (6.13)
"0
2.4 .4 2.4 2.4 2.4
100 f [ c(t)dt = 10}_T c(t)dt + 2 r e(t)at +[ c(t)dt{ +
0 . "2.2 "2.0 1.8
2.4
r c(t)dt
"0
2.4 2.4
100 f f c(t)dt = 351.77 (6.14)

0 't
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TABLE 6.1
A gBib R0
CALCULATIONS OF Io c(t) at AND"IE ft o(t)at?
rz.a 2.4 %, -

5. o % ey (t) 10 [, elt)at 100 Io ftnc(t)dt

0 0 0.0 24,18 351.77

1 0.2 0.38 23.80

2 0.4 0.56 22.86

3 0.6 0.76 21.54

L 0.8 0.89 19.89

5 1.0 1.03 17.97

6 1.2 il 15.77

7 1.4 1,24 13.36

8 1.6 1.30 10.82

9 1.8 1.34 8.18

10 2.0 1.36 5.48

11 2.2 1.37 2.75

12 2.4 1.38

Substituting the values of the coefficients of B,, B, and B  and noting

2T 51
that B is equal to unity and A2 and A, are each equal to zero, the
Equations (6.2) and (6.4) may be simplified as

-B, + 1.38 B, = -.018 (6.15)

-1.38 B, + .89 By = -.64 (6.16)
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Solving Equations (6.15) and (6.16) simultaneously, B) and B, can
be obtained as

B2 = 0.853
By =0.605

Substituting for B, and B, in Equation (6.6) and simplifying

e(t) _ 1.16 (6.17)
r(t) p°+ .72 p+ 1.16

The Equation (6.17) approximates the system under consideration.
The values of the damping ratio £ and natural frequency w, may be noted
as 0.34 and 1.07 respectively. A second-order approximation for the
same system was obtained in Section 5.4 and the values of € and w,
were obtained as 0.45 and 0.923 respectively. It may be noted that
more accuracy could have been obtained by evaluating the integrals more

accurately.



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1. Conclusions

The purpose of this study was (1) to show how the inital conditions
affect the performance of linear feedback control systems with constant
coefficients and (2) to develop analytical, graphical and numerical
methods by which these effects can be easily taken into account while
designing such control systems.

The writer's conclusions are summarized in the following list:

1. The effects of initial conditions are governed
by the relative values of poles and zeros of the
open-loop transfer function G(p)H(p).

2. Increasing the static loop sensitivity K
reduces the effects of initial conditions.

3. The effects of initial condition pncD where n =
0,1,2,... decrease as n increases. Mostly the
effects of c, and pc, are more pronounced.

The effects of cy and pcy, which are more pronounced and are of
more practical importance, are as follows:

The Effects of c,.

1. A positive value of c, "smoothens out" the

response while a negative value causes the
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response to be "rougher". As the value of
¢, decreases, the response becomes more and
more "rough."

The presence of c, does not affect the time

at which the response attains its maximum or

o(t)

r(t)
contains any zeros, the criteria may not

minimum values. If the control ratio

be absolutely true, but for all practical
purposes the deviations will be negligible.
The peak overshoot (cp-l) is approximately
proportional to (1l-c,) if all other conditions
remain unchanged.

The effects of c, vanish at times when c(t)

is unity.

The Effects of pc, .

l'

The presence of pc, causes an increase in over-
shoot, whether it be positive or negative.

As the value of pc, increases, the response
becomes faster and the values of tp, tg, tps

tg, and N progressively decrease. Thus a
positive value of pc, causes the response to

be faster while a negative value of pc, slows
down the response.

The effects of pcy vanish at times when response
c(t) would reach its maximum or minimum values if

all the initial conditions are zero.
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The writer is of the opinion that the methods using digital or
analog computers as described in Section 4.32.2  particularly the
latter one, are the most complete and handy methods by which the
effects of initial conditions can be taken into account while design-
ing a control system. But, failing to have such costly equipment, the
combined graphical and analytical method developed in Chapter V and
the purely graphical method developed in Section 4.3.2 are more
useful and accurate for all practical purposes. Even if the computers
are available it is necessary to understand these methods because at
the present state of the art, it is not possible to obtain a complete
design from the computer without interpretation at various steps by
the design engineer. Also, when an analog computer facility is avail-
able, these techniques will be required for prelinimary, order-of-

magnitude estimates and for verifying computer solutions.
7.2. Recommendations for Future Study

1. As the initial conditions affect the transient performance,
they also affect the criteria for optimization of feedback control
systems. A study of these effects may be of considerable practical
importance.

2. As discussed before, the initial conditions may be considered
identical to impulse disturbances introduced at appropriate points in
the control loop. Hence, a further invegtigation may be made by

applying the theory of multivariable inpuf signals.



3. The effects of initial conditions on linear systems with time
varying coefficients and also on non-linear systems should be studied

in detail as they represent the more practical systems.
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