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PREFACE

Elastic waves in solids have been of interest for many years mainly
because they are the mechanism by which the energy of an earthquake is
propagated. More recently they have been applied in selsmic testing for
earth formations and deposits. Elastic waves in the ultrasonic frequency
range are now being used for flaw testing in many materials, These waves
have a short wave length and the capability of resolving very small flaws.

The refraction of an elastic wave at a solid-solid interface presents
~the problem of how a wave will hehave in the transitlion between the criti-

cal angle, where the wave propagates along the surface of one of the
solids, ahd an angle which refracts the wave into the second solid.

The purpose of this study is to try to lbcate an elastic wave in

.this transition region between a éurfacé wave and an internal wave and
to study its behavior. The mathematical description of this problem
resolves into a very interesting and challenging set of equations and
boundary conditions.

Appreciation is expressed to Dr, R. L. Lowery, for suggestions and
encouragement during this study; to Frank Kay, Jesse McIlhaney, Paula
Vanhooser and Jerry Whitehouge, for taking datas and preparing drawings;
to Lael Benjamin and George Cooper for the machine work which aided this

investigation; and to Mrs. Bob Schenandepah for typing the manuscript.
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CHAPTER T
INTRODUCTION

This problem of how an elastic wave would behave near a free
boundary originated from a proposed method of measuring surface fatigue
flaw depth by using a phear wave beam aimed near the surface. The
shear wave would be aimed so as to skim very close under the surface of
the material and reflect when it struck a fatigue flaw gs shown in Figure
i, ,

This method would require that & sizeable portion of the energy
gould be concentrated into a narrow, straight beam shear wave. These
fequirements immediately presented the questipn of whether or not a shear
wave Would continue to travel in a straight path when In a region near a
free boundary., A free boundary will not support nqrmal or shearing stress
at the boundary surface.

A shear wave is coﬁ&eniently produced in a steel bar by an incident
lbngitudinal (compressive) wave passing through a plastic material in
contact with the steel. The longitudinal wave is refracted at the inter-
face and a shear wave is produced in the steel, Snell's law of refraction,
as given bymRedwdod (l)l, which related the velocity and angle of the inci—

dent'wave to the .velocity and ahgle of refracted wave, is given in

lNumbers in parentheses refer to sources listed in the Selected
"Bibliography. ' . :

1
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Figure |. Method of Measuring Fiaw Depth

Equation (1-1) below. Refraction of the beam is shown in Figure 2 for

various different incident angles.

i i (1-1)
m " singy

where ¢y = velocity of incident longitudinal wave
z angle of incident wave
oy :
¢y = velocity of refracted shear wave

ot = angle of refracted wave
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Figure 2. Refraction of Elastic Waves at a Solid-Solid Inferface

A variation in the angle of incidence of the incoming longitudinal
vave was easily obtained by mounting a straight beam piezoelectric trans-
éucer‘on avLuciﬁe plastic bldck Wiﬁh avrqtating cylindrioai‘base as shown
in Figure 3. This design was taken‘frcm a similar hélder by Rasmussen (2).

Since the longitudinal wave Veloéiﬁy in Luéite is less than the shear
wave velocity in steel, the shear wave isireffacted further away from the
vnqrmal than the incident longitudinal wave as éhown in Figurele. This
faét makes it pdssible to adjust the incident wave at a critical angle
and prodﬁce a Rayleigh surface wave albng_the interféce be@wéen the Lucite
and steel. The high incidence sheér wave should he produced when the

angle of incidence is slightly smaller than the critical angle.
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Figure 3, vGriavae' Angle Transducer Holder

Ultrasonic elastic waves are interprefed from a signal, which is
~pickéd dp by a receiving transducer, amplified and displayed on g screen.
The electronic network and schematic of the receiving‘instrument is ex~ |
plained by ﬁéhiéi (3).and will not be repeated here.

The éignals are interpreted by qonsidefing the”basexline of the signal
as time and the oﬁdinatebas the amplitude as shown in Figure Mﬁ The
output'of the transmitter is shown as the initial pulse on the left side
of the screen representing zero time, and any signal appearing to the
right is from a wave fesulting from this output. The distance between
the initial pulse and any subsequent signal is direetly prOporﬁional to
the time required for the initial pulse to be transmitted and received

again,
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CHAPTER IT
EXPERIMENTAL OBSERVATIONS

The experimental work consisted of two parts. The first was finding
and identifying a signal which was thought to be from a shear wave that
was being influenced by the boundary. The second part was determining
as much as possible about this wave including the manner and degree in

which 1t was being influenced.
Transmitter-Receiver Setup

The most effective method to detect a signal from an elastic wave
is to use a tfansducer for this purpose alone. Anpther transducer is
used to produce the wave allowing it to travel difectly from one %trans-
ducer to the other withqut requiring energy losing reflections, which
is the case when a single transducer 1s used both_to transmit and receive
the wave gignal. The use of two separate transduéers will be called a
transmitter-receiver setup, and this is the arréngement which was used
to produce and deﬁect the elastic waves in this investigatioh,

The transmitter—receiver setup consisted of two straight beam
piezoelectric transducers mounted on Lucite plastié blocks (as in Figure
35 so as to give a variatlon of the angle of incidence for both the trans-

mitter and reciver. The setup is shown in Figure 5.
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Figure 5. /Tronsmiﬂer - Receiver Setup

The freguency of both transducers wés 2,25 MC (megacycles per second)
and the material in which the waves were transmitﬁed wag a h-inqh square

by 18-inch long steel bar.
Dispersion of Beam

The piezoelectric transducers used to produce and receive an ultra-
sonic elastic wave emlt g relativeiy nafrow focused heam; however, it
could not he expected that tné.beaﬁ of waves would travel in a coherent
path and not disperée to a certain extgnt. Since this dispersion‘was
preseﬁt,_a beam of elastic waves producéd by aiming a transducer in-a
certain direction’was found to be a field of waves with a maximum ampli-
tude occuring in the center of the beam, but with g decreasing amplitude
in all directions away from the center. There was never a well defined

boundary of the beam as would be expected if dispersion were not present.
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Rayleigh Surface Wave Signal

The critical angle at which the maximum Rayleigh surface wave is
produced for refraction of a longitudinal wave from Lucite into steel
was Tfound to be approximately 66°. It can be seen from Figure 2 that
the energy transmitted in this surface wave is made up of that energy
which would go into the refracted shear wave if the angle of incidence
were decreased. In the transmitter-receiver setup with both-angles set
at 66°, a large signal wag displayed on the screen of the receiver
corresponding to the first wave front of Rayleigh surface waves to arrive
at the receiver. The surface waw was the first to arrive at the receiver
since there were no‘signals on the screen between the initial pulse and
this sigﬁélﬂ However, to the right of the first signal was a large number
of signals corresponding to trailing surface waves and reflection paths
through the plastic block. These trailing wavés were of no interest
since only the first direct Rayleigh surface wave signal gave any
useful information for this arrangement. Since the transmitter~-receive:r
setup was the optimum arrangement for receiving Rayleigh surface waves and
the dispersion of the beam was present, a large signal remained on the

screen for angles substantially different from €6°.
Identification of Waves

Any wave propagating 1in the steel bar was easily identified as a
surface or internal wave by damping on the surface of the bar. A surface
wave signal can be greatly decreased by damping since 1t is possible for

a large portion of the energy to be absorbed. The damping was easily done



by'the gperator. placingvhis fingers in contact with the surface of the
bar between the transmittér and receiver. An internal wave, such as a
longitudiﬁal wave or shear wave is unaffected by damping on the surface
except at points where the wave reflects from the surface, and damping
at these points absorbs a small amount of energy as compared to a surface

wave:-
The S-wave Signal

Wnen.the angles of incidence were decreased, making a shear wave
more probablé, the surface wave signal was decreased by a large degree,
but the signal stiil remained strong due to the dispersion of the beam
described earlier. When the angles were decreased‘by ahout TO from the
critical éngle of'669, a small slgnal appeared on the screen Jjust to the
left of the quleigh surface wave signal. This .signal reached a maximum
<whehiboth fhe angle of the transmitter and receiver were adjusted to
approximately 579, This small signal was interpreted to be from a curved
shear wave and will be called the S~wave., The reagons for this conclusion
will be given in the remainder ofithis chapter.

The first observation was that the S-wave signal could not be damped
at any point on the surface between the transmitter and the receiyer
and thus was traveling beneath the surface.

The S-wave signal remained a maximum for the angleé of incidence
adjusted at approximately 57° regr:u_“dless'j of the distance between the
transmitter and the receiver. This eliminated the pessibility that the
wave path length wés a function of the angle at which it entered the

bar.
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The fact that the S-wave signal appeared to the left of the surface
wave signal, indicated that the S-wave had made the trip between the trans-
mitter and receiver in less time than the surface wave. The ratio of
the time required for the S-wave to travel from the transmitter to the
receiver to the time required for the Rayleigh surface wave reméined ap-
proximately constant at 0.92 regardless of the distance between the trans-
miﬁter and receiver. These signals are shown in Figure 6. This constant
ratio indicated that the S-wave and the Rayleigh surface wave were taking
approximately the‘same length path, but the S-wave was traveling at a
slightly greater Yelocity. The paths being of apﬁroximately the same
length ruyles out the possiblity that a high velocity longitudinal wave
was being reflected from the bottom of the bar. It is well known from
Rayleigh (L) and Sokolnikoff (5) that a Rayleigh surface wave in steel
travels with a velocity of slightly over nine tenths of the shear wave
velocity, which is cpnsistént with the ratio of the times required to
fravel_approximafely the same distance.

TThe S-wave was not present on the surface of the bar, but the path it
had taken between the transmitter and recei#er was épproximately the same
as the Rayleigh surface wave path directly along the surface. Therefore,
it was concluded that the wave was traveling very ne;r the surface in a
curved path as shown in Figure 7.

While damping in the regidn between the transmitter and receiver
did not damp the S-wave signal, it did produce very interesting results.
By expanding the range of the receiving inétrpment, the portion of the

signal between the S-wave signal and Rayleigh surface wave signal could
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be displayed across the entire screen. Damping on the surface caused

a new signal to appear on the screen between the S-wave signal and the
Rayleigh surface wave signal which looked similar tc the S-wave signal.
It required a longer time to reach the receiver than the S-wave signal
and a shorter time than the Rayleigh surface wave signél, Further in-
vestigation indicated that the wave causing this new signal traveled to
the point of damping beneath the surface and continued from that point

to the receiver as a Rayleigh surface wave. The paint of damping divided
the distance between the point of entering at the transmitter and the
point of exiting at the receiver into the same ratio as the new signal
divided the distance between the Rayleigh surface wave signal and the
S-wave signal. This is shown in Figure 8. When the damping was applied
very near the receiver, the new signal almost coincided with the S-wave
signal. Similarly, when the damping was applied very near the transmitter,
the new signal almost coincided with the Rayléigh surface wave signal,
The assumed path of the wave causing the new wave 1s also shown in

Figure 8.
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Depth and Shape of S-wave Paths

A true picture of the S-wave paths required knowledge of the depth
of the wave beneath the surface which would lead to a plot of the actual
shape of the paths. A method was needed to measure the depth of the wave
at various points along its path, then the path itself could be plotted.

On preliminary investigation, it was found that a certain thickness
of metal was required to support the S-wave, For instance, a signal for
the S-wave could not be produced in a %»inch plate. There were some
signals present ahead of the Rayleigh wave signal, but the well defined
S-wave signal was not present. The conclusion wag that the wave was either
beiﬁg reflected and scattered by the bottom side of the plate or it was
being affected equally by the bottom side, since it was glso a stress-
free suyrface. A 1%~inch plate would transmit the S-wave signal Just as
well as the l4-inch bar.

The method used to measure the depth of the S-wave paths consisted
of placing an obstruction in the path of the S-wave, thus determining
how near the surface of the metal the obstruction could be before the
8-wave struck 1t. The obstruction was a narrow saw cut made from the
bottom side of the 1f-inch steel plate. The cut was made with a band saw
across the center of the 10 x 16-inch plate and it was made on a taper
so that only l/32—inch of metal was left above the cut on one side and
25/32-inch of metal was left above the cut on the other side as shown
in Figure 9. This gave a variable depth of metal without impesing
another stress-free boundary near the wave as would be done with Jjust a
tapered plate. The top of the plate was ground very smooth to avoid

inconsistencies in the readings because of roughness of the surface.
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Figure 9. Plate With Tapering Saw Cut

The transmitter and receiver were placed on the tap surface so that

a line connecting the twg and presumably thé S-wave path would be perpen-
dicular to the saw cut as shown in Figgre 10, By moving the transmitter
and receiver laterally across the plate parallel to the saw cuf, when
the metal above the cut became thinner than the depth of the S-wave path,
the signal on the gcreen would begin to decrease and then disappear com-
pletely when it blocked all of the path of the wave (see Figure 10).

A set disﬁance between the transmitter and receiver fixed one S-wave
path, where one pafh means the path taken by that portion,éf the wave

which is received by the receiver trgnsducer,
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Figure 10. Curved Wave Hitting Saw Cut

A spacer was placed between the transmitter and receiver thus fixing
the distance between the point of entering and exiting the metal. For
each spacing, readings were taken for various points along the path. The
readings were taken by picking a point on the path where the depth was to
be determined and moving the transducers laterally so that this point
always remained over the saw cut. The amplitude of the signal corre-
sponding to a certain point on the path was recorded for points laterally
across the plate. Since the tapered cut was made linear, the lateral
distance corresponded directly with a depth of metal above the cut. The
amplitude of the received signal was plotted versus the metal depth as
in Figure 11, These piots indicated that in the region of the plate
where the metal was very thin, no signal was able to get past the cut and

as the setup was moved in a direction to increase the depth, some portion
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of the signal began to pass over the cut. Through this transition
region, the amplitude increased approximately linearly with the increasing
metal depth until at a certain depth, all of the wave passed over the cut

and no matter how much deeper the metal got, the signal would not .increase.

-l Reglon 3

Region | ~ Metal thinner
than path depth.
Region 2 - Transition
Region 3 - Metal thicker
than poath depth

Amplitude

Metal Depth (in)
Figure 11. Typical Plot of Amplitude vs. Metal Depth
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Fach plot of the type shown in Figure 1l represents the amplitude of
the signal versus metal depth for just one point along the path and it
gives information about the depth of the path at that point, The data
was normalized so that the maximum signal had an amplitude of ten corre-
sponding to no obstruction in the path of the S-wave. Since there was
some question about the exact location of the top and bottom of the
path, it was decided to call the depth of the location of the path a
single point correspending to an amplitude of five. This point gave the
approximate depth of the center of that portion of the wave which reached
the receiver. A family of amplitude versus metal depth plots is shown
in Figures 16, 17, 18 and 19 in the Appendix for just one path length.

A smqoth line drawn through each depth point and connecting with
zero depth points at each end whefe the wave entered and exited gave a
plot of the wave path for a given distance between the transmitter and
receiver (see Figure 12).

Similay curves were drawn for each of five different path lengths
(see Figures 20, 21, 22, 23 and 24 in the Appendix). Superimposing
fhe path plots onto one plot produced a family of paths which represents
the direction of travel of the entire beam (see Figure 13).

Rather than thinking of each line in Figure 13 as a distinct path,
the entire plot should be thought of as a field of a shear wave beam
with the lineg indicating the direction of travel of each portion of

the beam.
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Discussion

All of the experimental observations can be explained by the beam
shown in Figure 13. The angle of entering and df»exiting for the wave
can be measured from tangents to the curves at each end, The curves are
symmetrical about the centers of the paths so that the angles at each
end are the same, as was observed. The data wag difficult to take near
the ends of the paths because the transmitter and receiver were sitting
almost directiy over the éaw cut and this caused additional signals
which interfered with the S~wave signal. There was not enough data
available near each end of the path to give a very accurate value for
the angles, so the curves were drawn tangent on an angle which was
calculated from Snell's law, Equation (1-1) and the known angle of
incidence of the longitudinal wave in the Lucite block,

At the critical angle

o)
o = €6
o)
f.’.V_t :90
Giving
Ct _sina{ sin 900
. — = : = 1.095
¢y siney sin 660

At maximum S-wave signal

ﬂl = 57

Giving

= 1,095 sin 57° - 0,91k

sinwt - EEsinm
Cl l

Q*t - 660
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It can be seen from the paths that they did not have to be distorted
to cause them to come in on a tangent to 66° from the vertical normal. All
of the lines for each path are seen to enter and exit the surface at the
same angle regardless of the path length.

The S-wave signal could not be damped on the surface between the
transmitter and receiver simply because it was not present on the surface.
In order to explain the new signals which were produced when damping was
applied, it is necessary to say that the portion of the wave which strikes
the surface between the transmitter and receiver is reflected and scattered
so that practically none of it reaches the receiver, When démping is
applied, some of this energy which strikes the boundary is converted into
a Rayleigh surface wave and continues to the receiver in that form and
produces a signal. It was found that when an ordinary straight shear
wave 1s reflected from a boundary, some of the energy can be c¢onverted
into a Rayleigh surface wave by applying damping at the point of reflection.

The»constant ratio of the time required for the Rayleigh wave to the
time required for-the S-wave 1s explained by the fact that all of the path
lines in Figure 13 have approximately the same shape. Also, the length
of the ﬁaths are almost the same as the distance in a‘straight line
between the two points. The lérge plots in Figures 20, 21, 22, 23,
and 24 in the Appendix are plotted with the depth scale expanded ten
times the disfance séale, but the actual path shapeé are plotted below
each figure; These path are seen to be almost the same length as a line
along the surface.

The resulting path plots are actually the only logical way to account

for all of the experimental observations on the S-wave signal.



CHAPTER III
THEORETICAL CONSIDERATIOQNS

The mathematicai formulation of this problem can be described
without loss of generaliﬁy as a pure shear wave entering an elastic
half-space at some known angle. It is wished to impose these conditions
plus the fact that the free surface of the half-space is unable to
support any stress except tangentially to the surface., A solution to
this problem should determine whether or not the shear wave can be
made to curve for certain angles of entering due to the stress-free
boundary conditions alone,- The problem will be set up in this chapter,

but no attempt will be made to solve the equations,
Approximations

Several well Jjustified approximations can be made on this problem
without losing a mathematical description of the actual physical problem.
The approximations will be listed below.

1. The material through which the waves are propagated is

perfectly homogeneous, isotropic and elastic.

2. The region of interest is a half-space with the exterior

region a complete vacuum.
3. The only forces that are present are elastic and inertia

forces.

23
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4, The wave motion is two dimensional with no variation in
the third space dimension.
5. There is no attenuation of energy in the elastiec material,

6. The wave motion is purely sinusoidal with respect to time.

The first three approximations result from the use of a steel bar
which was considerably thicker than the depth of the wave paths. The
region adjacent to the bar was occupied by air at room conditions which
affects tﬁe surface of steel almost exactly the same as a vacuum with
respect to elastic waves. In steel, the elastic and inertis forces com-
pletély overwhelm any other forces which might be present, such as
gravitational forces.

The experimental setup was such that only the distance between the
transmitter and receiver and the metal depth were important space di-
mensions, leading to a two dimensional wave. Certainly some variation
would be present in the lateral diryection, but it is assumed that thi§
variation did not affect the behavior of the waves which was of interest
in this problem,

The last two assumptions are more difficult to justify, but by
making thém the problem is greatly reduced in complexity. Attenuation
of energy is always present in any elastic wave propagation, but it
is felt‘ﬁhat the affects which might be caused by including this effect
are not of interest in this problem. Conventionally, elastic waves are
produced as pulses, but due to the simplification resulting from assumed
sinusoidal.motion, the first solution can be attempted with this assumption

and hopefully meaningful results will be obtained.
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Eqﬁations Describing Wave Motion

The équation of moticn of an elemental volume in a solid is obtained
by simply making a force balance between the elastic restoring forces and
the inertia force. The elastic restoring forces are in terms of stresses.
which are related to the strains by Hooke's law. This results In the
following equation which is ocalled Navier's equation for a homogeneous

igotropic elastic solid and is taken from Sokolnikoff (5).

7RG + (A+)7(7eR) + pp®l = O _ (3-1)
Where
a a ) ‘ 14 "t
7= (gg; 3 the vector operator "del
72 = - 52 + aa

x and y are the space coordinates

i(x,y)e 1Pt is the displacement vector (see
Figure 1k4)

u and v are the components of the displacement
vectér

p is the density of the solid

p is the éngular frequency

u and ) are Lame' constants

Lame! constants are related to Young's modulus "E" and Poisson's

ratio "o" by,
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(Vacuum)

TR T T X
' (Elastic Half Space)

~Equilibrium Position (x,y)

U= {u,v) Displacement Vector

Ioisplaced Position (x+u,y+v)

Figure 14. Half-Space and Displacement Vector

Expanding Equation (3-1) into two equations by taking the partial

derivatives.
d%u 3 '.u vy, o :
3, A =)+ ppPu = 0 (3-2)
“(axa Byg + ( m ( ay) PP ‘
¥v ¥y W2 (A% )y oy - 0 (3-3)
u(§§g + 355) + (A4 )ay (ax 5y PRV

Rearranging the terms in Equations (3-2) and (3-3).

d ,3du _3_2 S (YL By aen L0 (3-%)
A2p) 0 (S 4 AVy4,S  (OY _ au)+ ep®v = 0 (3-5)
(A au)ay (ax ay)+uax (ax =
Defining the dilatation "A" and rotation Q" as,
du |, A . 1% _ 3u 3-6)
b5 Ty @e a5y | | (
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Giving,
3, K
(2u)22 - 22+ ppPu = (3-7)
(A2u)2L + 203 + ppv = 0 (3-8)

Ay X
Differentiating Equation (3-T) with respect to "x" and Equation (3-8)

"t

with respect to "y and adding the resulting equations,
(x+2u)(afw + @ig)A +pp? (8% + 2Y) =0
ox” ay CORX Y

Substituting from Equation (3-6),

(A+2u)7%A + pp%A = O (3-9)

Differentiating Equation (3-8) with respect to "x" and Equation (3-7)

with respect to "y" and subtracting the resulting equations,

- —a—g—- aa 2 av - éll- -
*?-U'-(axg + W)Q + op (HX ay) 0

Substituting from Equation (3-6),
wPQ + pp*Q = 0 | - (3-10)

The dilatation is assoclated with a longitudinal wave and the rotation
with a shear wave. If A = O then the wave is a sﬁear wave. The wave of
interest in this problem is initially a shear wave, but this is no in-
surance that the wave will remain purely shear when it is very near the
surface. For this reason, solutions need to be obtained for both the
dilatation and rotation.

Defining,

1
cy = A%EE)Z’ longitudinal wave velocity
1
¢y = (4/g)2, shear wave velocity
k1 = p/oyr Kp o= P/ (3-11)
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Substituting the quantities from Equation (3-11) into Equation (3-9)
and (3-10),
(V*3)A = 0 (3-12)
(FHE)Q = 0 (3-13)
Equations (3-12) and (3-13) are called Helmholtz equations for two
dimensions. Solutions for these equations would be substituted into
Y " u

Equations (3-7) and (3-8) to give solution for "u" and "v", the com-

ponents of the displacement vector.
Boundary Conditions

A very important part of this problem is imposing the correct
boundary conditions on the solution. The boundary conditions will be
listed here and explained.

The conditions, that the wave be pure shear and traveling a certain
direction when it enters the material, imposes two requirements on the
wave at the point of entering. They are that A = 0 at (x, y) = (0, 0),
the condition for pure shear, and that v/u =-tand  at (x, v) = (0, 0),
the direction condition. It should be noted that the shear wave particle
motion is transverse to the direction of wave propagation.

The other conditions to which the wave must conform at the boundary
are the stress conditions. Since the elastic half-space is boundéd only
by a vacuum, it is unable to support normal stress and shearing stress

at the boupdary., This can be stated in. the equations

T (%, 0)

vy = Q, Tyy(x, 0) = 0 (3-1k)
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From Sokolnikoff (5), the stress tensor is given by Hooke's law,

‘au vV .
Tog = Mag(SF + &) ¥ 2uesp(esd = 1,2) (3-15)
Where
T11 = Txx Ti2 = Txy To2 = Tyy
lifo=1R
Spm =
B 70 if o 4B
_av 1,0u |, ov
‘22 * =3, e12 = 355 * 5p)

This gives

3
i

+op)SY 4 A28 i,
Ly = (e dE a2 (3-16)

_ . (Qu, OV _
Ty ST R (3-17)

Substituting Equations (3-16) and (3-17) into Equation (3-14)

gives,
(A+2u) @Véi’o) + Aauéifg) = 0 (3-18)
du(x,0)  dv(x,0
ulno) | el L (3-19)

These boundary conditions are illustrated in Figure 15.

Summarizing the boundary conditions:

du(0,0) . 2v(0,0)
1 a(0,0) - 2200) , 2v(0,0) g
2. v(0,0) + u(0,0)tang, = O
3. (k+2u)av(x;0) + hau(X’O) .0

dy fop's

L. au(x,0) + aV(X;O)

3y 3% =0
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In order to get a description for the shear wave path, any solution

"n.o.n

for the compoments "u" and "v" of the displacement vector must satisfy

the four conditions listed.

.TYV' T;Y'.' 0

77 //////////‘/f/?“x

ure Shear Wave

_e:

Y
Y

Figure 15. Boundory.v Conditions



CHAPTER IV
CONCLUSIONS AND RECOMMENDATIONS
Cenclusions

The experimental results'presented in Chapter II show that this
wave is beiné’affected by the free houndary by being curved back into
the surface. Referring to fhe actualvpath shapes in Figures 20, 21,
22, 23 and 24 in the Appendix, it is seen that the curvature of the
path is almost entirely at each end with the center portion of the
path being almost parallel to thé surface.

This wave 1s seen td be present only for one angle of refraction
of ﬁhe shear wave which was approximately 57°, When this angle was
increased, most of the energy went into a Rayleigh surface wave, and
when the angle was decreased, most of the energy went into a regular
straight shear wave.

This wave is called a shear wave simply because it enters the
material as a shear wave. One possibility is that the wave travels
the entire path as a shear wave and the other possiblility is that a
component of dilatation becomes present in the wave, It is possible

that the fact that it does not remain as a shear wave is the reason that

it does curve.

31
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The main conclusions from this study is that the mathematical
equations need to be solved in order to provide furthér evidence to
support the experimental findings given here. A good mathematical
solution would probably give much more insight into the exact behavior

of this wave and the reasons for its behavior.
Recommendations

The most obviqus recommendation is that the problem as presented
in Chapter TII be solved. Several methods of splution were attempted
without success by this author. Although a solution was not obtained,
some recommendations will be made about an a?proach to a solution, The
half-space region immediately suggests a transform type solution or an
integral solution. Several transforms were attempted with both reé;
tangular and cylindrical coordinates and the first difficulty was
matching the boundary conditions and the second difficulty was, of
course, obtaining the inverse transform.

The method of Green's Functions appeared to be ideal for solving
the system of Helmholtz eguations given in Eguatiens (3-12) and (3-13).
This method led to a set of integral equations which presented the
same problem as inverting the transforms.

Tt is felt that a transform solution could be made to meet the
boundary conditions, and if these boundary conditions are responsible
for the curvature of the wave path, the solution would supply the

needed‘information.



The importance of a mathematical solution cannot be over stressed
and the experimental conclusions for the problem would be greatly

strengthened by mathematical agreement.
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APPENDIX

Several plots will he given in the following figures in order to
illustrate how Figure 13 was obtained. Figures lé, 17, 18 and 19 give
the Amplitude versus Metal Thickness plots for several positions along
the nine inch path. Figures 20, 21, 22, 23 and 24 give the wave path
shapes for each path length on which data was taken, In each of these
figuresa small plot of the actual path shape is given at the bottom
of the page. On these plots, both the ordipate and abscissa are on the
same gscgle, enabling the actual shape of the wave travel to be visualized.

Two quantifies will be defined which are used in the plots,

D = distance from point of entering to peoint
of exiting
x = distance from point of entering to some

point along the path
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