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INTRODUCTION

The topic of this thesis is an outgrowth of research currently
being carried out at the School of Civil Engineering, Oklahoma State
University, on liquidborne noise in hydraulic piping systems. One of
the goals of this research project is to be able to determine a frequency
spectrum for the gain in amplitude of small deviations from mean flow
conditions between two points in a complex piping system.

Thus far, most of the work has been restricted to single pipes or
to series of pipes connected end to end. Some work has been done with
parallel piping systems, and the effect of small "stub" lines (small
closed-end pipe segments connected to a series system) has been in-
vestigated.

The purpose of this thesis is to develop a procedure for deter-
mining similar relationships for a closed-loop piping system with many
inlets and outlets. As in the previous cases, an attempt is made to
study such a system for both deterministic and stochastic inputs. An

example problem is presented to illustrate the actual procedure involved.



CHAPTER 1

BACKGROUND

1.1. Literature,

An account of the bulk of the work that has been done at Oklahoma
State University in regard to liquidborne noise may be found in a publi-
cation by Waller and Hove [4]*. This includes a compilation of the
pertinent material of previous publications by Waller [5, 6, 7, 8, 9],
Hove [2], and Childs [1]. Surveys of other literature associated with

the general problem is presented in these works.

1.2. Hydraulic Transients [ 4 ].

The system-describing equations for the wave propagation of
slight variations of pressure and flow rate, p and q, from the mean

pressure and flow rate, p and q, using Fig. 1.1 as a defining sketch,

are:
_ %p 9q - \
2 +LTt + Rq o ,
(1)
)
_ 9q op -
wx Cw "0
J
where
n p,
B f
R = =

* Numbers in brackets refer to listing in the Bibliography.
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= P
L=x
A
C = I—(T
n = an exponent for mean flow
T’f = pressure required to overcome pipe friction
p = density of fluid medium
A = cross-sectional area of pipe
K' = bulk modulus of fluid-elastic pipe system.
% ‘_—' Xiv1 T
O —1 ©
f
Ui %1 *
zi T Livq
Figure 1. 1. Defining sketch for differential equations.

Using Laplace transform methods, the solution of (1) is:



P(x, s) = P(o, s) cosh yx - ZC Q(o, s) sinh yx ,
(2)
Q(x, s) = Q(o, s)cosh yx - -é—P(o, s) sinh vx ,
c
or
P(x,s) = P(r,s)cosh yx + Zc Q(r, s) sinh yx ,

(3)

Q(x,s) = Q(r,s) cosh yx + % P(r, s) sinh yx ,
c

where G(x, s) is the Laplace transform (with respect to time) of g(x, t).

That is,
G(x,s) = Smg(x,t) e Stat, (4)
0
Also,
2 _ .
¥" = {e + jB)” = sC(R + sL) , (5)
2 _ R + sL
Ze T TsC (6)

If only the frequency response is desired, which is indeed the
case here, jw may be substituted for the Laplace variable s(j = N -1)

Considering this,

- %
@ = _°§E(JR2+Q>2L2 . wL):I , )

%
B = %9( R2+m2L2+mL)] , YT

z, = == - j
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It has been shown that for most values of w, the above expressions

are sufficiently approximated by:

_ R
* = 1=

= X
B_a-'
Z = La ,

a = N K'/p = velocity of wave propagation.

Letting the (') indicate the opposite end of the pipe from the
reference, the pressure-flow relationships across the joint of pipe, i,

can be written:

|
Bl = BB ¥ T,Q ,
(8)

Q = B + MP, ,
where

Bi = cosh 5 !i

Ty B 3 Gy minhy.d, + or - depending upon > ©)

1 direction of mean flow.
M. = + 5— sinh vy, £.
i - Zci i71i J

It should be evident that one need only know the transformed pres-
sure and flow at one end of a series of pipes to use the above formulae

to predict the corresponding values at the other end.



CHAPTER II

ANALYSIS OF THE CLOSED-LOOP SYSTEM

2.1. Physical Description.

A schematic sketch of a typical closed-loop piping system with
multiple inlets and outlets is shown below in Fig. 2.1. For ;che purpose
of the discussion presented here, the known conditions of pressure and
flow variation appear at the outlets; i.e., the outlet pressure (or flow
rate) becomes the "input' to the system, with the inlet pressure (or

flow rate) becoming the "output. "

inlet

outlet ‘5

loop )/’

segment

Figure 2.1. Typical closed-loop system.



The directions and rates of mean flow must be known before the
transient analysis can proceed, as these quantities figure in the noise

propagation properties.

2.2. Analysis of the System.

To begin, in order to establish positive directions so that a set of
equations may be built up systematicall;}, the mean flow is assumed to
be in a clockwise direction throughout the loop, and to be flowing in
from all projecting lines, as indicated in Fig, 2.2. Adjustments must
be made before the solution is completed, as explained later in this
thesis. The pipe sections (between junctions) in the loop will be desig-
nated merely by an Arabic numeral, and the projecting lines by L

(1 =12 3«2, n),

0, ©, ©
T o
|

@ mean flow

—
I L/ _J L

¥
© 31‘1‘“ junction (1)

i

e B

Figure 2.2. System configuration, indicating positive directions.



The quantities Pi and Qi refer to Laplace-transformed (with re-
spect to time) pressure and flow rate variations at the far end of a loop
pipe section (in a clockwise sense), while P{ and Q{ refer to similar
quantities at the opposite end of the same pipe section. Thus, coming
into junction@are Qi-l and QIi , and flowing out is Qi . Evidently,

then, the following equations may be written:

= 1 ot
Pi h Pi+1 - PIi+1 »

and \ (9)

- 1
Q * Qg 7 QY - J
Using equations (7), these become:

P. & PI; = B

.
i 41 i+1 Fie1 7 Tip1 Q41 -

and (i=1, 2, --+,n) »(10)

Q + QL,; 7 By @y Y My Py - J

Consider the partial loop in Fig. 2.3. Knowing nothing about the
system, the P's and Q's are written at their corresponding stations as
"potential'' unknowns. Those quantities located at the near end (in a
clockwise sense) of each loop pipe may be elir;ninated by equations (8};
thus, the (/) mark. Now, the P's and Q's are assumed known at the
outlets; this, along with the first of equations (9), justifies the (\) mark.
If m equals the number of actual inlets, this leaves m unknown P's
and 2m unknown Q's at the inlet junctions, and (n-m) unknown Q's at the

outlet junctions - all told, there are (2m + n) unknowns.



Figure 2.3. Part of a loop system.

Thus far, only 2n equations have been developed, with (n-m) of
these no longer independent due to known conditions at the outlets.
This leaves (n+m) equations.

Some way, then, must be found to write m more independent
equations to completely describe the transformed pressure and flow
variations at the junctions of the system. If the impedances (the ratios
Z = P/Q) are known at the inlets, then the required m relationships
are immediately at hand.

If, however, nothing is known about the inlet impedances, or if
they cannot be obtained by any reasonable calculations, the problem
becomes considerably more complicated. One possible solution is fo
arrive at these values by an iteration process, as set out in Section 2.5

of this thesis.

2. 3. Solution with Known Inlet Impedances.

Tt has been shown that there are (2m + n) unknowns to solve for,
where n = the number of lines projecting from the loop, and m = the
number of these lines which happen to be inlets.

From the equations of flow and pressure continuity (10), 2n ex~

pressions may be written; in matrix form, these are (Eq. 11, Fig. 2.4):



-M

-Mn

- » . -
® “Tivy

o “Ti+a
- 'l - L]
L]

(]

-

-

[ ] - a .
» 1 "Bi+l

. 1 hBi+2
. L ] [ .

Figure 2, 4,

L] - 3 » -
L] Ll - . -
1 -Bn

1 1

Equation (11)

i+2

Qr,

QL
QIi+ 1
QL p

QI
QI

n-1
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or

(H%] {z¢ = {0} (11)
To these must be added m equations of the form:

PI . = P, = ZI (12)

i+1 i i+1 Dip1

where ZI. = impedance at 1n1et® .

Then, those equations like

Pi = B Piar * Tj1 Qur -
where j refers to an outlet junction, are deleted. In the other equa-
tions, the multipliers of known quantities (outlet P's and Q's) are trans-
fered to the right side of equations (11). Also, care must be taken to
assign a negative sign to all outlet QI's, and the proper sign to the M's
and T's, according to the actual direction of mean flow in the loop (as
indicated in Section 1.2, the sign is changed if the mean flow is actually
counterclock wise).

After these operations are performed, the right hand vector
(column matrix on right side of equation) contains the outlet P's and Q's
multiplied by certain B's and M's. If both P and Q are known at an out-
let, then Z is easily found. Thus, the right hand vector can then be
written in terms of various B's, M's, and ( -21- )'s multiplied by the out-
let P's. If these P's are separated, the general matrix equation may
be written:

[H] {z} =Z {Rk} P, (13)

k

where k refers to outlet numbers. (It is to be noted that, in the
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i+1 » S° that those k values are one

less than those values of @ at the outlet junctions. See Fig. 2.2.)

symbols employed, Pi = PI

2.4. Digital Computer Application.

The numerical operations involved in the foregoing procedure are
quite extensive. And the whole thing must be gone through for each
value of frequency. However, it would not be difficult, if large enough
computer facilities were available, to set up a program to handle every-
thing with a minimum of input data consisting of two stages: matrix
assembly and matrix inversion.

The first step would be to set up the H* matrix, as in equation
{11), assigning the correct signs to the M's and T's. This would take
up a 2n X 3n space; adding n rows, and expanding for the complex

inversion by the first method in Appendix A, the array would appear

thus:
3n 3n 1
o e / \- .
n_|| A | -a (
ni_ B :_ -b 1 X
o S (14)
L = 1L & ]| ’
— I T ]
nJ| b il | y
= < e YL
where
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The next step might be to place equations (12) into the first m
rows of the [C + jc] spaces. Then, the (n-m) equations describing the
pressure variation at the outlets could be taken out of the [A + ja] spaces,
and the remaining rows '"'squeezed' upward so that there are no gaps.
This would leave a 2(2m+ n) X 6n array. Now those columns associ-
ated with the known (n-m) values of Pi and QIi-t-l could be taken out
and added to the right side of the equation, along with their respective
multipliers, with a change in sign. Then, when the array is "squeezed"
to the left so that there are no gaps, there is a 2(2m + n) X 2(2m + n)
array on the left, and a series of vectors on the right associated with
the various Pi's. This arrangement would represent equation (13).

The foregoing procedure is very straight forward, and could
easily be programmed if a large enough computer is available; this
program would be able to handle any single-loop system, the limit of
projecting lines being set by the computer storage capacity. All that
would be required for read-in data would be enough information to com-
pute the attenuation coefficient and B's, M's, and T's for each line.

All of the preceding discussion applies to one value of frequency.
On a modern~day large, fast computer, for a not-too-large system
(say, a dozen or so inlets and outlets), it would be a matter of seconds,
after the program is read in, to feed in a value of frequency, assemble
the matrix, invert it, and multiply it through the right-hand vector(s).
Even yet, this author envisions hours of computer time to run out a
fairly complete frequency spectrum analysis.

According to the findings of the group here at Oklahoma State
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University working on the liquidborne noise reduction project, the
original equations are, in general, good for frequencies up to 10, 000
cps. It is this writer's estimation that, to make a realistic analysis
over any extended frequency range, it would be necessary to examine
the whole range at increments of 3 to 5 cps, and then to use the spec-
trum plot obtained as a guide for closer examination of significant

frequency bands.

2.5. Solution with Unknown Inlet Impedances.

The situation here is quite unlike that of the previous sections:;
the system itself is now in complete control of the inlet impedances.
But now there are only (m+n) equations to handle (2m+n) unknowns. A
way out of this dilemma, as mentioned earlier, would be to use an
iterative procedure to arrive at these impedances. This should yield
quite good results, the only draw back being the quite extensive amount
of time needed for these calculations, even on the fastest digital com-
puters available at the present time.

In such an analysis, a procedure similar to that outlined in the
previous section must be gone through several times for each value of
frequency. One can see that the time involved would quickly amount to
ridiculous proportions if there were many inlets. The method will be
included here, however, for completeness.

The way to proceed is to assume some sort of impedance, based
on an educated guess, for all the inlets but one, then to investigate the
resulting effect on the system, considering the source of the fluid dis-
turbance to be at that one inlet (call it Il)' A ratio of P:Q could then

be found at this point. Next, proceed to another inlet (12) and repeat,
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using the previously determined value of impedance at Il - then on to

13, and so on around the loop, all the while substituting values of im-

pedance "determined" as the procedure continues. This to keep going
until the impedance values converge within preset limits.

One can visualize that, after a few initial values are arrived at
rather blindly and are plotted for the computer operator to observe,
subsequent guesses for starting values could be made fairly close to the
actual value, speeding up the convergence.

It is to be noted that the relative values of the input (outlet) values

figure in the inlet impedance values.

2.6. Stochastic Inputs [2, Appendix B].

Suppose a system with multiple inputs, Xi (i = 1,n), and multiple
outputs, Yk (k = 1, m) , can be described in the frequency domain by the

following relationship:

n
Yoglio) = ) Hy (o) Xp, Go) . (15)
i=1
then,
n
Yo (o) = ) Hy () Xy () (16)
i=1

Multiplying the above two together, dividing by 2T, and taking the en-

semble average,

Py, = ), ) Hi ) Hyy (o) Px, ()
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where @ is the spectral density of a random function.

For this problem, the H terms are the elements of the inverted
square matrix of the left side of equation (13). Obviously, to obtain
H(jw) elements and H(-jw) elements, two inversions are necessary.

Once these terms are found, it is an easy task to compute the output
spectral densities by means of equation (17). The procedure, of course,
is considerably longer than that for deterministic inputs; but this should
be no terrific obstacle for a large, fast modern computer.

This does, however, increase the work involved for the case of

the unknown inlet impedances quite radically.



CHAPTER III

ILLUSTRATIVE EXAMPLE

3.1. The System.

To illustrate the technique involved in the analysis of a loop
system, a system with three inlets and four outlets was chosen, as
depicted in Fig. 3.1. The mean flow pattern indicated was worked out
for water at 60° F. flowing through smooth pipe, considering friction
losses only. The pipe is six inches in diameter throughout, with the

lengths indicated on the sketch.

I, 100 gpm 13 300 gpm
5' 10’ 15' ‘

400 gpm ®/ ©) ® Iy

115 gpm 45 oom 315 gpm 400 gpm
5!

85 gpm I @ I

e
285 gpm 100 gpm

15' 1(7)
185 gpm _ 15 gprf/
®) ()| 20

10!

100 gpm Y I, 200 gpm y I

Figure 3.1. The system,

17
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With the sizes of the lines and the quantities of flow, some attempt
has been made to set up a system which might remotely resemble a
collection system for sea-water for use in heat exchangers aboard a
nuclear submarine of the SS(N) 600 series. (This system is the goal of

the research project mentioned before. )

3.2. System Parameters,

K bulk modulus for water @60° F. = 4,48 X 107 1b/f1:2

E elastic modulus of cooper-nickel = 2 X 109 lb/ft2
b = wall thickness of pipe = .200 in.
D = I. D. of pipe = 6.0 in.

K' = KD£E_EEE = modulus of pipe-water system [5]

1

2.68 X 107 1b/ft>

p = density of water at 60° F. = 1,94 slugsfft3

a = acoustic velocity of water in pipe = 3720 ft/sec
a = attenuation coefficient = nfy [4]
e ‘ 4aDh
where f = Darcy - Weisbach friction factor
v = mean velocity of water in pipe

B = phase constant

_ 27c _  C - ;

= =~ ® sgy . © = frequency in cycles per second.

cosh y£ = cosh (@ + jB)! = cosh af cos BL + j sinh o/ sin B2

sinh y2 = sinh of cos B4 + j cosh af sin B¢
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B = cosh y¢
M = Zc sinh y{ ) Transfer functions
T = 2 sinh v{
7z J
c
- pa T
Zc = %— = system characteristic impedance

36, 600 1b-sec/ft°

[

Values of ¢ -

Pipe no. ax 1079 g1

)

6.41
1. 38
14, 30
5. 09
1,38
i 9. 40
13. 18

-1 O U kW N =

The next step is to set up 2n equations in matrix form, as in
Eq. (11), then to make the necessary corrections, additions, and dele-
tions to achieve the form of Eq. (13).

All the impedances, for both inlets and outlets, are assumed to
be the same, due to a discharge into (or flow from) a semi-infinite body
of water. The expression for these impedances is assumed to be the
same as for a rigid piston radiating into a semi-infinite medium, as
set forth in Kinsler and Frey [3]. Contained in this book are expres-

sions for Z = R + jX as infinite series of the form:
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2 4 6
R(x) = paA {2{4 X _ 3 X . } W
2:4™ 6 247678
) (18)
4 [x x3 x5 .
X(x)=paA?{-g—§Z—g+m- } ) )
where a = acoustic velocity of semi-infinite medium
= 4800 for water @ 60 F.,
A = cross-sectional area of pipe
X = %—-—Q , w = frequency in cps,
D = diameter of pipe
a = acoustic velocity of water

in semi-infinite medium.

For convenience, the two foregoing expressions have been

expressed as shorter polynomials, with a fair degree of accuracy [4]:

I \

R(x) = paA {0. 121324 x% - 5.051x 1073 x

+ 9,618% 1072 %% - g9.199% 107" x®

+ 3.621x 10'9x10} ,

» (19)
X(x) = paA {0.4220302 x2 - 2.73694x 1072 x5
+ 7.08794x 1074 %% - 8.4511x 1078 7
+ 3.9175x 107859 | J

For x between 0 and 8.0, the parts of R(x) and X(x) in the

braces lies between 0 and 2. 0 - thus it might be convenient to define

P
Z:{ﬂ = nt, E
o
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where
Z* = Z/[paA ,

so that the matrix will be better suited for inversion. Here,

paA = 49,870 lb-sec/ft°.

3.3. Matrix Assembly.

Due to the rather limited computer facilities available (IBM 1620
with 20K storage capacity) this problem was broken down into two parts
for solution: a matrix assembly phase and a matrix inversion phase.
Furthermore, a little preliminary work had to be done on the matrix
assembly before putting it on the computer, as follows.

Taking Equations (11) for this particular example, the results
are Equations (20), Fig. 3.2,

Since P

PS’ P_, and P6 are known, the first, third, fifth, and

I® S
sixth equations may be thrown out. Then what remains of the first,
third, fifth, and sixth columns may be shifted over to the right hand
side of the equations, along with their multipliers; the corresponding
QI columns (2, 4, 6, and 7) are shifted also, and divided by the impe-
dance so that only P's appear on the right hand side. Next, the three
inlet impedance equations are added. Finally, the signs are changed
for M and T of lines 4, 6, and 7, whose mean flow is counterclockwise.
The results are shown in Equations (21), Fig. 3. 3.

The absolute value of P at the outlets is .generally specified, so
that is the input used in this example. The problem immediately arises
as to what to use for the phase angle of the outlet P's, since this trans-

formed quantity is surely complex. For the purposes of this problem



Figure 3.2, Equation (20)

éc
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Figure 3. 3.

Equation (21)
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it is assumed that the flow variation is largely resistive (making Q
largely real), so that P would very nearly take on the phase angle of
the impedance - here it is given the same value.

Letting ¢ equal the value of this phase angle for any given fre-

quency, the right side of Equations (21) becomes:

( 0 \
0

(Bl cos ¢ - BJl sin ¢) + j(B1 sin ¢ +B.I1 cos @)

—1/\/32 + x2

0

0

{ |P
; (71

0

, etec.

0
(M1 cos ¢ - MJl sin ¢) + j(Ml sin @ +MJ1 cos @)
0

0
\ 0 ]

where

M, = (M, +jMJT,)

N
I

(R + jX) ,

tan”! (X/R)

i=S
i

3
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The solutions appear in the form:

Pyl =) Gy [Py (22)
k

where Pi refers to an inlet pressure, and Pk refers to an outlet pres-

sure,

3.4, Results.

After several matrices were assembled for different frequencies,
solutions were obtained on the computer by the inversion process listed
in Section A. 3. of the Appendix, which utilizes an ordinary real inver-
sion procedure, modified with complex number operations. Values of
frequency examined were 5000, 5005, 5010, 5015, 5020, 5025 cps. It
took over one hour to perform these calculations on the 1620 computer;
thus, for a complete analysis over a frequency range of several thou-
sand cycles per second, the time would have run up into days. Since
the calculation of the gains at the frequencies chosen accomplish the
purpose of the example problem (namely, to illustrate the method)
those few points were deemed satisfactory.

The results are presented in Table 3, 1. Also, these values are
plotted in Figure 3. 4.

One hesitates to draw too many conclusions about the behavior of
the system from so liftle data, but there seems to be no relation between
the proximity of an outlet to an inlet and the effect of outlet pressure on
inlet pressure. As indicated previously, one would generally need to

find the response at considerably more values of frequency.



TABLE 3. 1.

GAIN vs, FREQUENCY

(C;S Gg1 Gas | Ga5 | G | Gu1 | Ga3 | CG4s5 | G4 | Gma Gz | Ggs | Gue
5000 | .278 | .144 | .332 | .234 || .332 | .561 | .305 | .280 | .207 | .712 |.a72 | .334
5005 || .274 |..310 | .485 | .219 [ .326 | .543 | .490 | .261 | .294 | .s08 |.635 | .288
5010 | .234 | .526 | .620 | .183 | .287 | .470 | .691 | .218 | .420 | .915 |.752 | .223
5015 || .153 | .750 | .715 | .111 | .201 | .315 | .882 | .143 | .555 | 1.002 |.801 | .124
5020 || .039 | .955 | .722 | .026 | .054 | .070 | .996 | .036 | .676 | 1.020 |.740 | .o027
5025 || .084 |1.060 | .610 | .052 | .129 | .171 | .943 | .o081 | .725 | .912 |.573 | .o049

9¢



5000 5010 5020

f(cps)

5000 5010 5020
f(cps)

1.0~

Tk
0.5

0 1

5000 5010 5020
f(cps)

Figure 3.4. Gain vs. Frequency.

(k refers to an outlet pressure)



CHAPTER IV

SUMMARY AND CONCLUSION

In this thesis an attempt has been made to present a workable
method for the prediction, at a discrete frequency, of the amplitude of
small pressure variations at the inlet lines of a loop piping system,
given an allowable or known noise (pressure) level at the outlets. As
outlined in Chapter II, a quite systematic procedure was developed for
doing just that, provided the inlet impedances are known.

Based on theory developed at Oklahoma State University regard-
ing the relationships between Laplace-transformed fluid pressure and
flow fluctuations at opposite ends of an elastic cylinder, a set of equa-
tions (13) was drawn up, the solution of which, via matrix operation,
presents no prcblem. Due to the nature of those equations, it was
found to be impractical to write algebraic transfer functions relating
to inlet and outlet pressures (that is, to solve the system of equations
algebraically in erder fo obtain direct relationships in terms of system
parameters and the transform frequency variable. Rather, numbers
must be introduced, and the problem must be solved on a digital com-
puter. The calculations involved are quite extensive, as a matrix
(containing complex coefficients) inversion must be performed for each
value of frequency. Also, for a complete analysis, a large number of
frequencies would generally need to be examined. However, this should

prove no great hurdle for a large, fast modern-day computer.

28
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For cases where the inlet impedances cannot be determined from
external conditions (i.e., when the system itself has complete control
over these values), the problem is complicated (rather, compounded)
considerably. An iterative procedure for determining these impedances
was presented. It was shown, though, that the amount of computation
required mounts rapidly in this instance.

The theory involved for the handling of non-deterministic inputs
was discussed. The only contribution of these inputs was to increase
the length of calculation, especially so in the case of unknown inlet
impedances. The sheer weight of the number of operations which must
be carried out might even thwart the mightiest computers at hand today
as the system increases in size and complexity, particularly in the
number of inlets.

In conclusion, it is the author's contention that the method pre-
sented is quite practical and practicable, and may be used with good
results, the available computational capacity being the only factor which

might discourage a comprehensive analysis of the system.
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APPENDIX A

INVERSION OF A COMPLEX MATRIX

A.1, MethodI [3].

Suppose n linear simultaneous equations in n unknowns have

been written, containing complex terms. In matrix form:
Cz = ¢ , (A-1)

where C is the coefficient matrix, z and c¢ are vectors, 2z contain-
ing the unknown quantities.

Dencting:

CcC = A+ jB ,

z = x +Jy ,

¢ = a + jb 3

[A + jB] {x +jy) = fa+ jo} ,

Ax - By = a
and (A-2)

Bx + Ay = b

Let
Z = (Xl’ Xz, min iy xn, yl_‘ yz, LS T yn) 2
¢ = (al, B9, ** 0, B, bl’ by, +--, bn) 5

31
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A -
C =
B A
Then equations (A-2) can be rewritten:
Cz =¢ . (A-3)

Obviously, then

z=0C "¢ , (A-4)

A.2. Method II [3],

Premultiplying the first of equations (A-2) by Al

Alax - aly = a”la |

or

1 1

x = A "By + A" a . (A-5)

Then, from the second ¢f equations (A-2),

B(A™!By + Ala) + Ay = b ,

or
BA'B + A)y = b - BA™la . (A-6)
Let
A, = (o + BA!B)!

Then

y = Ab - ABA'a . (A-T)
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Letting:
-1 . =
& = A+ jB ;

(x + jy) = (A + jB)(a + jb) ,

or
x = Aa - Bb ,
_ B (A-8)
y = Ab + Ba
From equation (A-T7),
T = & B - -A, BA™L
1 1
Denote
-1
Then
¢t = A, - 3B
1 - P
or
X = Ala - Blb ,
(A-9)
y = Alb - Bla 5
where
A = (A + Ba lm)"! |
B, = A BA™!
1 1
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10

80
11

IBM FORTRAN Program Used to Invert Complex
Matrix of Equation 571) "

DIMENSION D(14,14),E(14,14),G6(13),H(13),X(13),Y(13)

READ 101,N,NZ
DO 5 I=1,N
DO 5 J=1, N
D(!, J)SO 0
E(1, J)=O 0

DO 4 Ke1,NZ
READ 101.1,J,D0(1,J),E(1,J)
DET=1.0
DETJ=0,0

E‘ﬂ oN+1)=1,0

1,N+1)=0.0

DO 7 l=1,N

D(I+1, N+1)=0,0

ECI+1, N+ﬂ)=0 0

DO 10 K=1,N

DETEDET*D(ﬂ 1)=DETJ*E(1,1)

DETJEDET*t(ﬂ HD+DETJ*D(1 1)

Q=D(1, ﬂD**2+E(ﬂ 1)%%2

PRINT HOZ DET, DETJ ,Q

DO 8 J=1,

D(N+1, J)ﬁ(D(ﬁ JeE1)*D(1,1)+E(1,Jd+1)*E(1,1))/Q
E(N+1T, J) (D(1,1)*E(1, J+ﬂ) D(1,J+1)*E(1,1))/Q
DO 9 Ha& N

DO 9 J=1,N
D(1=1,d)=0(1,J+1)=D(1,1)*D(N+1,J)+E(I,
EQ1=1,d)=E(E,Je1)=D(1,1)*E(N+1,J)=E(1,
DO 10 J=1,N

D(N, §=D(N+ﬂ ,d)

E(N,J)=E(N<+1,J)

IF (SENSE SWITCH 1) 85,80
DO 11 l=1,N

DO 11 J=i1,N

PUNCH 101,1,J,D(1,J),E(1,J)

IF (SENSE SWITCH 2) 85,6

Y*E(N+1,J)
)*D(N+1,J)

-



85

86

87

88
89

101
102
103

READ 101,NZ,L
DO 86 IHI N
El)-ﬂ .0
H(1)=0,0

DO 87 K=1,NZ
READ 103, i ,G(1),H(1)

DO 89 I=1,N

X(1)=0.0

Y(!)=0.,0

DO 88 K1

X(I)-X(I)+D(l K)*G(K)=E(I,K *HEK)
Y(1)=Y(1)+D(!,K)*H K;+E 1 'K)*G(K)
PUNCH 103,L x(l) Y

IF (SENSE SWITCH 2) 85,6

FORMAT (14,14,E15.8,E15,8)
FORMAT (E9,3,E10.3,E10,3
FORMAT (1%,E15.8,E15.8)

END
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