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CHAPTER I

INTRODUYCTION

1:1. _ General

The open spandrel arch, whether totally fixed at the springing or
continuous over elastic piers, is externally and internally indeterminate,
For an accurate prediction of stresses in such structures, the inter-
action ’between the deck, the spandrel columns and the arch rib must be
considered, If complete continuity of all elements is considered, the
open spéndrel arch becomes a complex system for which the mathemati-
cal analysis by classical fnethods is so complicat,e'd that it has been |
seldom undertaken. The existence of interaction between the various
parts of the open sp_andrel arc‘h* however, have long been recognized,
and the oamplexity of the gtandard methods of analysis led to the exten-
sive experimental studies of Finlayl, Wilsonz, and NewmarkB,

An experimental analysis carried out by Wilson and Kluge con-
sisted of tests of three span arches on high piers, each span being
compased of a rib with spandre] columns énd a deck. These ex_perviments
were usually limijted to the determinatién of influence lines for the fixed- ‘
end reactions at the gpringings and the moment and th,ruSt a’g the arch
crown. u | h

A theoretical analysis of open spandrel arches using equivalent

elastic systems was developed by Beauf0y4. In his approach, Beaufoy



considered full continuity between“the arch rib, the spandrel columns
and the deck. Comparison with some experirﬁental results of Wilson
and Kluge showed close agreement, and the shear resistance of the
spandrel columns is shown to be ﬂaLn importan’ﬁ item in deck participation.
Beaufoy did not consider multi~span open spandrel arches,

A mathematical solution for the open spandrel arch as a mono-
lithic structure, assuming full continuity, was presented by Diwans.
The solution was based on the principle of balancing the panel moments,
This is done by imposing a special type of panel distortion which px‘bF
duces chord moments of a known pattern only in the deformed panel. It
was then posgible to study, analytically, deck participation. |

The purpose of this thesis }is to show the application of the string'
polygon method to the analysis of open spandrel arches. It is shown
that the methodlprovide,s an efficient means for matrix formulation of
the problem, and is sufficiently brqad in scope to allow open spandrel
arches of more than one span to be analyzed. |

The string polygon method is based on the concept of joint elastic
~weights, Representation of deformations as conjugate forces and mo-
ments was first presented by Mohrs,' and extensions of this cohcept Were
investigated by several authors., The development of joint elastic weights
may be found in the work of Kaufman7. The string polygon method is
based on a generalization of the joint elastic weight expressioﬁ. The
approach was developed by Tuma in his lectures at Oklahoma State .

8

University, and extended by Chu®, Oden®, Boecker!?, and others to the

{
solution of many special problemg. The possibility of the application of

the string polygon method to the analysis of complex frames was recorded

by Tuma and Oden'?,



1-2. Scope of Study

For each closed panel of an open spandrel arch (Fig. 1-1a), either
the end bending moments (Fig, 1-1b), or any three panel redundants

(Fig. 1.1lc) may be selected as unknowns.

Mpp  Mpy %3
M M |
B Af]?\(", e )(“]\B%l)(“*}(l — B

P

2

/C \)%é;ﬁcz/c

D
Mpc
(a) (b) (c)
Closed i’anel of an End Moments Panel Redundants
Open Spandrel Arch as Unknowns as Unknowns
Fig. 1-1

Unknowns'of Typical Arch Panel

The selection of unknowns distinguishes between two ways in
which the string polygon method is used in analysis. The two standard
approaches are:

1. The direct approach in which end moments are selected as

unknowns, and



2. 'The indirect apprqach in which only panel redundants are

selected as unknowns,

In this study, a combination of the two methods is adopted, and
the relationship between the two appr@aches is illustrated by a series of
matrix operations.

Joint elastic weights are computed for each panel in ferms of end
‘moments, Three elasto—stafie equations for each panel are then written
in terms of end moments, The end bending moments, in turn, are ex~
pressed in matrix notation in terms oi" panel redundants. Additional
elasto~gtatic equations are obtained by taking a suitable cdnjugate struc-
ture for each span.

In addition to the usual assumptions of linear structural analysis,
the following asgumptions are made: |

1, The spandre] qqlumns are vertijcal -

2. The bottom member of each panel is stralght

3. Loads are applied nprmally to the:arch deck-v

A brief discussion of the string polygon method is given in Qhapte,r
II, Chapter III deals Wiﬁ'h the matrix formulation of the problem and
in Chapter IV application of the theory is illustrated numerically, The
study is summarized and pertinent conclusions are drawn and listed in

Chapter V.



CHAPTER II
STRING POLYGON METHOD

Basic principles of the string polygon concept are fully discussed
elsewhere and are not repeated here, The classification of elastic -

weights is restated for completeness,

2-1. _Classifioation of Elastic Weights

If was shown by Tuma and Oden that there are three types of elas-
tic weights: | | |

1, Elemental elastic weights.

2. Segmental elastic weights,

3. Joint elastic weights,

The representation of these elastic weights as loadsvon the conju-
gate structure is illustrated m Fig, 2-1.

The application of the elemental elastic v&;eights to the’ analysis of -
a closed ring is well known under the nathes of "column analogy'' devel-

oped by Cross 12

and the ''conjugate frame method" discussed by Kinney %"

Segmental elastic weights may be interpreted as reaqtioris of each
segment of the conjugate structure. The segmental elastic weights
(denoted Fji , "F‘].k, * + + , etc,) are defined as the changes in the slope of
of the elastic curve between the respective ends of each segment,

Joint elastic weights may be defined as the change of the change in

slope of the polygonal line, ijk, af j ,
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Real Frame with Real Loads Conjugate Frame with Segmental Conjlugate Beams™
Elemental Elastic Weights with Segmental Elastic Weights

4

+x

Conjugate Frame with Segmental Conjugate Frame with Joint
Elastic Weights Elastic Weights

Fig. 2-1  Elastic Weights



2-2. Equations for Elastic Weights

The joint elagtic weight, '"P'j,_ ig related to the segméntal elastic

weights by the general formula,

?j = ‘Fji + ‘?j,k . _ (2-1)

Segmental eléstic weights may be expressed in terms of end moments

as followsy
(2+2)

where

F

i ij # Angular flexibilities;

Gij ) ij = Angular capry-over values;

M, My, M, = Moments at i, jandk; and "

Tj i 'Tjk = Angular load functions,

These quantities are defined in Table 2-1. Therefore, the joint elastic

weight is given by
i5j ”MiGij + szFj + N{kaj h er ) - @2-3)

in which
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TABLE 2-1

: " 1 ‘
I { '
'dj : d,
Angular Flexibilities and
Carry Over Values

ANGULAR FLEXIBILITIES AND LOAD FUNCTIONS

Quantity

1

Angular Load Funetions

Algebraic
Definition

j 2

S‘ X dx
\"'5—
i dj EIX

Physical Interpretation

End slope of j of the simple beam
ij due to a unit moment applied at j.

End slope of j of the simple beam

jk due to a unit moment applied at j.

End slope of the simple beam ij at’

1 due to unit moment applied at j.

End slope of the simple beam jk
at k due to unit moment applied at j.

End slope of the simple beam ij at

j due to loads.

End slope of the simple beam jk at
j due o loads.



These elastic weights may be used for the calculation of bending
moments and disp,laq:.em,ents. of joints of the polygon by oonsider}ing the
equations of "elasto-static" equilibrium of the conjugate structure,
Unknown end moments for any closed panel can be evaluated by solving
"the equationsg of static equilibrium and elasfo-static equilibrium of the

real and conjugate structures,respectively.



CHAPTER III
MATRIX FORMULATION

3-1. Selection of Redundants

A continuous, multispan, open spandrel arch subjected to a general
system of deck loads is congidered (Fig. 3-1). The arch'Spand;rel»eom
_tains 'n' closed panels and the supporting columns may have any dégree
of fixity at ends A, B, C, D, + + * v | |

There are thfree" redundants‘ c‘.:QI*rtespondingvtq each c_logéd ring of
the structure. The 'panel! redundants for the jth pahel avre designatevd‘
as Xij’ ij, and xaj‘ and the 'goluymn' redundanfs deyeloped:.in the ﬁup-‘

porting arch are denoted Y, YZ' Yo vt s

¥

S Fig. 3-1
General Continuous Open Spandrel Arch

10
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The choice of redundants is completely arbitrary in the general
flexibility approach to the analysis of complex structures. There are,
in fact, an infinite number of different choices for just the panel redun-
dants of a single closed ring. With computer facilities available, the
most time consuming part of matrix analysis of complex structures is
the process of obtaining the necessary algebraic relationships between
unknowns, rather than the process of solving the algebraic equations.
Thus, the selection of redundants must be made with this in mind. The
goal of this investigation is to establish a systematic and simple proce-
dure for obtaining a set of simultaneous equations for the redundants,

Redundants of each panel are selected near the top left joint of the
panel (Fig, 3-2), The bending moment due to unit redundants can be
obtained easily in terms of the dimensions of the panel under considera-
tion. The column redundants are selected at the top of each column.so
that the redundants of any column will only influence the panels of a
single span. With this choice of redundants, coefficients in equations
relating end moments and redundants are simply lengths of members
and coordinates of joints.

Releasing the panel and column redundants, the basic structure
for the arch becomes the structure shown in Fig, 3-2, At each support,
in general, three column redundants are considered. Modifications can
be easily made for other support conditions.

The redundants of one panel will influence only the adjacent panels.
In general, Xij.’ ij, and XSj will effect panels i, j, and k. Therefore,
without loss of generality, the panels i, j, and k with the corresponding
three column redundants are considered for the general matrix formula-

tion of the problem,
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mr
D

(a) Basic Structure

b X ‘
1 _I,...__ 1 .
X3,]

h, h.
L J
I//j' -
4 d.
b l
| T

(b) A Typical Panel of Basic Structure
Fig, 3-2

Geometry of Basic Structure

3-2. Static Relationships

Directions of end bending moments of each panel are selected in
such a way that panel deformations are compatible with those of adjacent
panels. For example, if end moments of i and k cause tension on the
outside fibers of those two panels, end moments of panel j must produce

tension inside the panel j,
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Fig. 3-3 shows panel redundants for panels i, j, and k along with
the column redundants, Yl’ Y2’ and Y3 which influence deformations
of these panels,. h End moments of the jth panel are assumed to produce

tension inside the panel. The bending moment diagrams produced by

unit redundants of panels i; j, and k are given in Fig, 3-4.

y

_{.

=

b

M,t

L+__

T,.—-.._—._.—.——.—-—

Fig. 3-3

Typical Panels i, j, and k

Positive end moments of panels i, j, and k causing compatible
deformations of those panels are shown in Fig, 3-5,
Using the equations of statics, end moments for panel j can be

written in terms of the twelve redundants as follows:

Mij 3'X3j + Bl\/Iij



Fig. 3-4.

o LTI

(p) Panel k

Bending Moment Diagrams Due to Unit Redundants

4!
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Panel i ' Panel j Panel k

Fig. 3-5

Directions of End Moments

M.. = d,X,, + X,. + BM,

it 372 33 ji

jjr = YKy T gyt Xa T BMyp

iy 7 By Ryy 4Ky + Xy # Xy Xy BMy,

Mj,i, = hj X\1j + dj X2j + X3j + 3?3. Y, + §j Y, + Y3 + BMj,i,
Mi’j’ = hix1j + X3j + 3_’1Y1 + ’?j Y, + Yo + BMi‘j‘

My = by Xgp + 0 dp X, + Xgy o+ by Xgp + Xgy + BMyy

M., = d X,, + X
1

2i + X3j + BMH, ,

3i

(3-1)
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where BM is the bending moment of the basic structure due to loads.

After some rearranging, Eq's. (3-1) can be written in the matrix

form:
i 00 00 0 100 0f|Xy, o 0 ofly, BM1J
0 0 00 d. 0 0 o|l|x 0 o olly BM.,
1V[;|1 d;] 1 21 2 ji
.. 0 0 100 . 0 0o Oy BM
MJJ, 0 0 dJ 1| Xg; 3 i
0 0 0 d, 1 h.0o 1fiX 0 0 BM
i'i B i i 1j 0 '3
- 000 Tls = 1 + BM
Mj,i, 0 0 0h dJ 1 ij N7 M0
MI,J, 0 0 0Oh. 0 1000 XSJ y; ¥ 1 BMi,j,
M, 14 h, d; 1 pi 0 100 0f|X,, 0 0 0 BM, ;
M, 0 d 10 0 100 0f|Xy, 0 0 (j L_BMii,
X3k
T (3-2)
or

[Milgxy = [C1lgxg [Xyjrlons + [Calgxal¥y 2, 3l3x1 + [Bjlgyy
| (3-2a)

where [C ] and [C,] are coefficient matrices of the unknown vectors
[X] and [Y], respectively; [Bj] is a coiumn vector of bending monients
due to loads; and the subscripts indicate the order of the matrices. For
the panel i br k, all corresponding panel redundants and column redun-
dants cause tension outside the panels. Since the moments causing
tension inside are taken as positive, for any outside tension panel j

the end moments can be represented in matrix form
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[M.]

ilex1 ™ [-C1lgxolZyjuloxy ¥ [Cal

+[Bj]

gx3l Y1, 2, 313x1 gx1

(3-3)

3-3. - Elasto Static Equations

For any panel j, elasto-static equations can be written in many
different forms. In this study, three moment equilibrium equations are
~utilized, as this procedure is systematic and renders a set of equations
which are relatively simple in form.
The cbnjugate of panel j loaded by joint elastic weights is shown in
Fig. 3-6. The joint elastic weights for panel j at j, j', i and i' are de-
noted by ?}j , '“P'jj, , 'Fij , and ?ij, , respectively. Since loads are acting
only on the arch deck and are assumed to act foward the deck, 7 values
for all memberé except the deck members are zero, For panels assumed
in tension on the inside, T values are positive, and for those in tension on
the outs;lde T values are negative, Alsqo, since panel members are con-

stant in crogs-section,

7. = 2G..., = 2CG... .
FJJ' i’ 2:1'3

Thus, PJ may be written

=3,

a M..G..+ M..(2G..) + M.. (2G..)+ M.,.G.,. + T.. ,}
1JG13 MJl( Jl') JJ’( JJ') 0 A R F A

or

P) = G (M, +2M, )+ G, (M, +2M )+, . 3-4a)
j i(Mig * 2Myy) + Gypy (Myog o+ 2My50) & 75 ( _
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"P“ji,
-5
- X
Fig., 3-6
Conjugate of Panel j
Siﬁ]ilarly,

5l = a,, _ y
Pj! ® Giljl(Mi!jl +2M Iil) + GJJI(MJJI + ZMj’j) ) (3’4b)
=7 RN | ; -4
P; Grﬁ,(Mi.].L + ‘zMii') + Gij(Mji + 2Mij) + Tije (3-4c)
pl = , ‘ 4d)
P]'.' Gii'(Mii' + 2Mi'i) + Giljl(Mjlil + 2Mi'j') . (3 4d)

Since the conjugate structure must be in elasto-static equilibrium,
the static moments of the elastic weights about ii', ij, and jj' must vanish.

independehtly. Thus,

(@ + Bl -
ii dJ( it J,) = 0 (3-52)

>
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5 51 - )
ij; h, PY, + hj 'P‘j, 0 (3-5b)

Substituting Eq's. (3-4) into Eq's. (3-5) and simplifying, gives
LM+ (G, OM., + (3G,.,)M,., + LM, +
(Giyy + Gy = (3G M50+ (3G My,

+ (ZGli;)MJxll +(Gi'j")Mi'j' o= T_]i s (3-6a)

+..[(2 + v

J
(3-6D)

in which ¥, = h./h,
J J 1

Eq's, (3-6) may be represented in the matrix form:

1Girgu I My + [2Gy5 I Mgy *+ [Gyy 1M, = 0,
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g2 ‘3ij, 3Gy I
0 0 viij,. 2Vjij| (I*ZVj)Gi,j,
2G;; Gy 0 0 Gy
Gty ° o] [y [l
(2 + Vj)Gi'j' 2Gii, Gy Mji = 0
2Giig1 3Gy 3Gy | Myy RS
it !
M,
My
Mg
i1
(3-7)
or
[G;)gxg [Mylgyy = [-Tylgey (3-8)

in which [Gj] is the coefficient matrix of moment vector [Mj] and [—Tj]
is a column vector containing the load functions, T,

Substituting [Mj] from Eq. (3-2a) into Eq. (3-8) yields
'I-_—[Gj]3xs[cl]8x9 [(Xijidox1 * l:[Gj]:axs[Cz]sx;l [¥4,2,30ax1 *

T 16513480 Bylgxy = [Tylsxy (3-9)
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Denoting,
[Gi13¢8[C1lgxg = [Fj13x9
and
[Gjlsxg[cz]gxs = [fj]3x3 ,
Eq. (3-9) becomes
-

[FilaxglXisicloxt * [f515x3lY 1 o, 3l3x1

* [G)3xglBylgxr = [Tjlaxg (3-10)

Similary, for 'outside tension' panels,

[Filaxg Xyl oxy * [Hlausl¥, 5, 515x1 *

F LGl 3xalBylgxr = [Tjlaeg (3-11)

3-4, Flexibility Matrices

Given a loading condition, the .ma'trices'“ [Gj] [Bj] and [Tj]
can be determined for each panel. [Bj] is & column vector and the pro-
duct of [Gj] and [Bj] ‘can be evaluated easily for each panel.once the
loading is specified, |

The final flexibility matrix, considering each panel in turn, can be
easily obtained with the aid of general expressions for the matrices [Fj]
and [fj] . The general formulation of matrices [Fj] and [fj] is presented
in this article, | |

Substituting for [C,] and [GJ.] from Eq's. (3-2a) and(3-8), the
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matrices [Fj] and [fj] for any 'inside tension' panel become

[F,]

i

—
0

2h.G, .,
1 11

3h.G..,
i7ii

3d,Gy;i 3Gy

. +2v, )y, + (2+V,)y.
| [r2v )5, + @405

0 0 3h.G,., +
i

ll' ZhleGJJI +

+ ; + +
Gyuyelhy(1¥2v,)

+ hi(2+Vj)]'+

+ 2h.G. .,
1 11

| + +
6d,G;;y  6Gy;, Gi,j,(hj 2h,)
+
3h,Gy;,
3(G.. + 2G.., + G.,. 3h.G., . 0
( 1] i’ 1'3') i
(V.. A 2h.V.G.., O
! JGJJ' ¥ i3
+ (1+Vj)Gisjt + Gﬂ!]
) + "
3((}}_.Lj + Gi,j, 2G,;,) 0 0
.+ 5 <. +x

(yJ * 2}’1) (XJ + 2X1)

24.(G.. +
J 1

| [(1+2Vj)xj + (2+uj)xi] 3(1+vj)

J

+ 3G,., + Gi’j')

JJ

d;[3v,Gyy0 +

J )

+ (142V)Gy 1]

3%9

(3-12)

3

3X3

(3-13)
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3-5. Final Matrix

Additional equations may be necessary, depending upon the end
conditions of the supporting arch columns. These are obtained by con-
sidering elasto static equilibrium of any other set of closed rings.

For example, considering the first span of the general continuous
arch of Fig., 3-1, the coﬁjugate structure shown in Fig. 3-7b is selected,
P, 'PTO, , FO* e, 'P"B are joint elastic weights acting at A, 0', 0,

*, B, respective'ly, The static moments of these elastic weights.

about A0, 05 and 5B must vanish independently. Thus,

A0 ; 'Pl(dl) + 152(d1 + dz) + P3(d1 + d2 + d3) +
t Pyld; +dy+dy+d,) + Py + P+ PB)Q1 = 0
\g)
, (3-14a)
05 ; Py + Pplhg+v,) + Pgilhg) + Pplhg +vy) = D
' (3- 14b)

i

5B (Py+ Py + "FA)II1 + Py +dg+d, + dg) +

+ 'Pz(d3+d +d,) + P

4 gld, +dg) + P4(d5) = 0 (3-14c)

Similar considerations for other spans give the additional indepen-
dent equations,

For n panels, a total of 3n elasto static equations can be written,
[Fj] matrices for the first and last panel of the system will be of ofi;ier

of 3x6 as there are only six 'panel redundants' in each case, o

In general, the final matrix for the system can be written:
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['F} [F] [Y] = |T ~— B (3-15)
[ e ] | - [l Bl oo

in which
€| represents all [f] matrices of the structure,
F represents all [F] matrices of the structure,
E' represents the additional equations in matrix form required to
— = to solve for the unknown column redundants,
Y| represents the column redundant vector,
_)(— represen’és the panel redundant vector,
el
T_ represents the column vector contalmng the load functions,
7 for the whole structure,
G] [B:l represents the product of [G] and [B] for the complete

structure.
The general férm of these matrices is illustrated by a numerical R
example. |
With computer facilities available, Eq's. (3-15) may be solved for
the panel and column redundants. Once these redundants are computed,

final bending moments at the ends of each member are obfained by direct

substitution into Eq, (3-2a) or Eq. (3-3).



CHAPTER IV
NUMERICAL EXAMPLE

4-1. Example

To illustrate the use of the method, a single span, reinforced
' concrete, open spandrel arch is considered. The details of the arch
along with the loading is shown in Fig. 4-1, A considerable amount of

experimental data is available for this particular structure, It was con-

(2) 4nd their staff and later

(5)

and Diwan'~/,

structed and tested by Wilson and Kluge
analyzed theoretically by Beaufoy(4)

The actual structure is idealized by considering the geometry as
being defined by the centerlines of each member. I is also assumed -
that the arch rib between any two spandrel columns is prismatic with a
constant cross section identical with that at the middle of its length,
Centerline dimensions of the model and the relative elastic properties
("the elastic areas"”, %‘T) of all members are shown in Fig. 4-2,

Since there are nine panels and the ends of the arch are fixed, the
structure is statically indeterminate to the thirtieth degree, Twenty-

seven equations are obtained for the nine panels and the additional three

equations are formed by considering the conjugate structure of span AB.

4-2,  Analysis

Steps in the procedure of analysis of this structure are listed as

follows:

26
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1. Bending moments due to loads;
After choosing Yl, -Y24 and YS as three column redundants at A,

bending moments due to the given load are calculated (Fig. 4-3),

2. [F] matrices:
From the relative elagtic areas of the members, angular carry-
over values are calculated and [F] matrices for the nine panels

are obtained from Eq. (3-12) (Tables 4-1a, b).

3. [f] matrices:
[f] matrices for the nine panels are calculated using Eq. (3-13)
(Table 4-2).

4. [G] [B] matrices:
Using Eq. (3-7), the product of the [G] and [B] matrices for
each panel are evaluated and recorded in Table 4-3,

5. Equations for column redundants:
Three additional equations are necessary because of the presence
of column redundants, These equations are obtained by consider-
ing the elasto static equilibrium of the conjugate structure of span
AB (Fig. 4-4). Static moments about 0'0, 9'9, and 09 yield the

following equations:

0'0 :

-0,2652 Y + 0.8750 X3 - 5.6700 X +

2 5

1t 0.3003 Y2 + 1.4583 X

- 3,3600 X6 + 9.4500 X, + 5.8800 X, - 13.2300 Xll - 7.4000 X

8 9 12F

+ 17.0100 Xl4 + 8.8200 X.15 - 20,7900 X17 - 13.440 X18 +

+ 20.5700 X20 + 15.9600 X21 ~ 20,3500 X23 ~ 18.4800 X24 +

+612.9650 X, - + 389.6200 X‘26 + 110. 3650 X27 = - 27,5250

25
(4-1)
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TABLE 4-1a - {F] Matrices

- 17.748000; 15.021000; 6.162600{ 16.9860000. 000000 | 5.700000
';_% 31.940710; 5.281233] 6.234095| 8.033250/0. 000000 7 . 021800 |
A 34.621500f 0.385500{ 8.502600{ 0.000000}0.000000f 0.000000
ol 0.000000f 0.000000} 0.000000{- 8.606030{-11.050000;=4.447500}- 7.640000{0. 000000} 3. 820000
Tq’ -11. 324000}~ 7. 125000}-2. 850000}-15. 844800}- 2.560000|-4.479460- 3.420000|0. 000000}-1. 282500
53 -16.986000}-14.250000}-5. 700000>—‘15. 100000}~ 0.627600{-6.327600; 0, 000000{0. 000000; 0. 000000
m: 0.000000| 0.000000} O. 000000f 4.704000] 9.474999| 3.397500 73. 752000{0. 000000y 2. 680000
] Tg’ 5.093330] 5.730000{ 1.910000{ 8.581667{ 3.527999| 3.353750| 1.750933|0. 'OObﬁOO . 938000
53 7.639990¢ 11. 460000‘ 3.820000{ 8.711000} 0.717499} 4.537500{ 0.000000{0.000000} 0. 000000 |
«| 0.000000] 0.000000f 0.000000- 3.373833|- 8.074999{-2.962500- 2.4187500. OOO'OOO' . 150000
E:" 2.501333]- 4.020000{-1.340000|- 5.591611|- 3.614821|-2.911741}- 1.295759]0. 0000007' . 863839
,'53 3.751999{- 8.040000}-2. 680000 4. 7790417— 0.812500{-3. 492500 0.7000000 0.000000{ 0.000000
w| ©0.000000f 0.000000f 0.000000; 3.532500| 8.280000f 3.065000] 2.41875010.000000{ 2. 150000
g 1.612500| 3.225000| 1.075000| 5.452500| 4.710000] 3.140000| 1.612500]0.000000| 1.075000
- 2.418750{ 6.450000f 2. 150000} 3.532500{ 0.915000{ 3. 065000} 0.000000{0.000000{ 0. 000000

0¢



TABLE 4. 1b

{F] Matrices

o| 0.000000f 0.000000] 0.000000}- 4.779041}- 9.665000}-3,492500{- 3.752000{0. 000000{-2. 680000
g 1.612500{- 3.225000]-1.075000{- 6.958449|- 6., 372055]-3.623499]- 3.112770{0. 000000|-1. 667554
- 2.418750|- 6.450000(-2.150000{- 3.373833{- 0.812500{-2.962500{ 0.000000]0. 000000{ 0.000000
~| ©0.000000| 0.000000{ 0.000000| 8.711000] 12.895000| 4.532500{ 7.640000/0. 000000| 3. 820000
g 2.501333| 4.020000§ 1. 340000 12,.259524) 9.313928] 4.778928] 7.276190}0.000000| 2.728571 7
. 3.751999| 8.040000} 2.680000| 4.704000{ 0.712500{ 3.392500{ 0.000000{0.000000| 0.000000
ol 0. 00000=0 0.000000} 0. 000000-18.087330{-18. 355000{-6, 327500{- 16. 986000{0. 000000|-5. 700000
g’- 5.093333)- 5.730000}-1.910000-24.564104|-13.565350(-6.673175|-16.872760{0. 000000|-4. 246500 |
al 7.640000|-11.460000{-3. 8’20000 - 8.605566- O, 627'500.—4. 447500} 0.000000{0. 000000| 0, 000000
o 0.000000| 0.000000| 0.000000| 34.62 1500} 20. 870833 8.502500

_g 11.324000| 8.550000{ 2.850000 45.017242| 14.522950{ 8.786829

u{ﬂs 16.986000 17.100000| 5.700000 17.748000{ 0.385500] 6.162500

1€



TABLE 4.2

[f] MATRICES

| 0.250360 0.243750 | 0.112500 © || -2.505458 | - 6.672498 | -0.392499
% 0. 336705 0.322916 | 0.192307 % [ 5.695073 | -14.583550 | -0.860944
f 1 0. 159000 0.131250 | 0.112500 ~ I -2 577416 | - 6.279998 | -0.392499
~ | -0.901934 1.037500 | -0.207500 - 1. 606500 5.950002 | 0.198333
g’ -1.371835 1.526474 | -0.346795 % 4.020501 | 14.152504 | 0.722500
B | -0.766367 0.830000 | -0.207500 a 1. 725500 5.652502 | 0.198333
| 1725501 2.180000 | 0.297500 || -0.766367 | - 4.772502 | -0.207500
g 2.814351 3.895000 | 0.505750 '% -2.050737 | -11.676031 | -0.516675
Fol o 1.606500 2.330250 | 0.297500 M| -0.901934 | - 4.565002 | -0.207500
- | -2.511999 4.317499 | -0.392499 o 0.159000 |  2.925000 | 0. 112500
% -4.576595 7.394417 | -0.707901 % 0.512094 7.234508 | 0.271057
Pl -2.505458 3.924999 | -0.392499 a 0. 250360 2.812500 | 0.112500
o Il 3.341250 6.930000 | 0.495000
g 6. 682500 13.365000 | 0.990000
Mol 3341250 6.435000 | 0.495000

(A4S



TABLE 4.3 PRODUCT OF [G] AND [B] 'MATRICES

. - ‘ ‘
~ | o0.000000 & | -205.999999 ~ | 426.000000
g 0, 000000 ?‘g; -344, 250000 ?;(::; 974. 850000
“ 1 0. 000000 Mol -183. 850000 Mol 396. 499999
~ | 0.000000 | & | 392.600000 w | -341.000000
?‘% 0. 000000 % 736. 500000 g ~825. 000000
M1 0. 000000 Pl 341.700000 & | -314. 749999
o | 39.749980 || & | -380,259999 o | 205.875000
:% 80, 225000 g _817. 794200 :% 533. 865000
M1 49500000 || ™| -345.750000 M1 215.250000

33
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Fig. 4-4

Conjugate Structure

0.2652 Yl - 0. 3003 Y2 + 827.9680 X1 +22,.8033 X, + 226.3650 XB +
27,0900 X5 ~ 18.4800 XG + 23.3100 X8 + 13.9600 Xg - 19, 5300 Xll +
11,4400 X12 + 15,7300 X14 + 10,9200 X15 - 11,9700 X.17 +

8.4000 X18 + 8.1900 XZO + 7.8800 X21 - 4,4100 X23’- 3 3600 X,24 +
0.7292 X26 + 0,8750 X27 = - 47,6500 (4~2)
0.1754 Yl + 0.5118 Yz + 169, 1008 ’Xl + 33.7680 X3 +

139. 1008 X25 + 64.4200 XZG + 23.7680 X27 = 20.2200 . (4-3)
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In matrix form;

-27.5250
-47. 6500
20.2200

il

3x1

(4-4)

6. Final Matrix:

The final 30x30 matrix needed to solve for the redundants ig of

the form:
0 E axso] [ Y1)
Falaxs [yl | 2
[f9lsxs  [Falgyo ¥
EEIERE [F 3] 300 X
[£4] 343 [F 4l 340 Xq
5] 343 [F5]3x0 =—H?ﬂh31]
[fg3x3 [16] 340
[£7]) 353 [Fo)ax9
R IES P [Fgl3xg
gl ax3 (Bl _Xzi

(4-5)
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7. Solution for the redundants:
The final set of 30 equatijons is salved for the unknowns, The
values of the redundants are recorded in Table 4-4.

8. End moments:
Each panel end moments can be obtained on substitution of these

values in Eq's. (3-2) or 3-3),

A comparison of the panel end moments recorded in Table 4-4
with those presented by Beaufoy and Diwan reveals that the resulis are
in close agreement with experimental data with the exception of Y3,
This value is slightly over ten percent in error and considerably influences

some of the arch joint moments.



TABLE 4-4 VALUES OF REDUNDANTS

1 ] Xe | X3 | Xy X5 Xg | X7 | X3 | X 10

46.89 |-83.29(98.42| 1.11|-1.20|-5,36|- 6.85 -25.78 | 25.47117.56 {-7.1731.45 {-6.74 |13,28 |-24, 07

X

13 14 15 16 17 18 19 20 21 22 23 24 | 7725 26

-11,15 |- 5.43} 5.11}15. 39| 2..67\ 4,99(-10.83 5.731-21.17121,34{-8.53 1,9.6-27 0.04} 1.33 1. 18?1

LE



CHAPTER V
SUMMARY AND CONCLUSIONS

5-1, Summary

The analysis of a general, continucus, open spandrel arch subjected
to a general system of deck loading is presented in this study. The panel
and column redundants are selected in such a way that a simple and
systematic precedure is established for obtaining a set of simultaneous
equations for the redundants.

Panel redundants are selected near the top-left joint of each panel,
The column redundants are chosen at the top of each column so that the
redundants of any column will influence the panels of a single span, Thus,
coefficients in equations relating end moments and redundants are simply
lengths of the members and coordinates of joints.

A combination of the direct and indirect approach of the string
polygon method is adopted in this study to obtain the final equations. The
relationship between the two approaches is illustrated by a series of

matrix operations,

5-2. Conclusions

General expressions for matrices [Fj] and [fj] are derived in this
work. With the aid of these expressions, three equations can be obtained
easily for each panel. If support conditions are such that additiongl
equations are necessary, they may be obtained by considering elasto-

static equilibrium of any other set of closed rings. In the analysis of

38
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multi-span arches the formulation of these additional equations is com-
plex and time consuming. In addition, the resulting matrix is poorly
conditioned for inversion, For the analysis of Vierendeel trusses this
approach has proved to be easy and accurate.

It is shown that the method provides an efficient means for matrix
formulation of the problem, and is sufficiently broad in scope to allow

open spandrel arches of more than one span to be analyzed.
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