MATRIX ANALYSIS OF OPEN SPANDREL ARCHES

BY THE STRING POLYGON METHOD

By

M. NATARAJAN Bachelor of Engineering (Civil)

University of Madras

India

1959

Submitted to the Faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August, 1963

oklahoma State University Library

JAN 8 1964

MATRIX ANALYSIS OF OPEN SPANDREL ARCHES

BY THE STRING POLYGON METHOD

Thesis Approved:

Thesis Adviser 1) p

Dean of the Graduate School

ACKNOWLEDGEMENT

The author wishes to express his indebtedness and gratitude to the following individuals:

To his major adviser, Dr. J. T. Oden, for his sincere guidance in preparation of this thesis and for his assistance and encouragement given to the writer throughout his graduate study;

To Dr. J. W. Gillespie for acting as his second adviser;

To Professor R. L. Flanders for his valuable instruction and guidance in the graduate study;

To Messrs. N. M. Krishnan, M. Ramanathan, R. K. Munshi, B. B. Patel, M. R. Page, P. Nachimuthu, G. Verghese, and T. C. Wei for their helpful interest and encouragement;

To Messrs. L. Eddy and G. Pulley for their co-operation and assistance with the electronic computations;

To his parents and brothers for their sacrificies to provide for his studies;

Finally, to Mrs. Mary Jane Walters for her careful typing of the manuscript.

Stillwater, Oklahoma July, 1963

M. N.

iii

TABLE OF CONTENTS

Chapter		Pag	е
I.	INTR	$CODUCTION \dots \dots \dots \dots \dots \dots \dots \dots 1$	
	1-1. 1-2.	General	
II.	STRI	NG POLYGON METHOD , 5	
	2-1. 2-2.	Classification of Elastic Weights	
III.	MAT	RIX FORMULATION	
	3-1, 3-2. 3-3. 3-4. 3-5.	Selection of Redundants10Static Relationships12Elasto-Static Equations17Flexibility Matrices21Final Matrix23	
IV,	NUM	ERICAL EXAMPLE	
	4-1. 4-2.	Example	
v.	SUM	MARY AND CONCLUSIONS	
	5-1. 5-2.	Summary	•
BIBLIC	OGRA]	РНҮ , , , ,	

LIST OF TABLES

Table		Page
2-1.	Angular Flexibilities and Load Functions	. 8
4-1a.	[F] Matrices \ldots , \ldots , \ldots , \ldots , \ldots , \ldots	. 30
4-1þ.	[F] Matrices	. 31
4-2.	[f] Matrices	, 32
4-3,	Product of [G] and [B] Matrices	. 33
4-4.	Values of Redundants.	. 37

LIST OF FIGURES

Figure									•	E	age
1-1.	Unknowns of Typical Arch Panel	•	•	•	•	۲		•	•	•	3
2-1.	Elastic Weights	• '	•	•	•	. •	٠	•	ŧ	•	6
3-1.	General Continuous Open Spandrel Arc	h		•	•	•	•	•	•	•	10
3-2.	Geometry of Basic Structure	•	•	•.	•	•	•	•	•	ŧ	12
3-3,	Typical Panels i, j, and k	•	•	•	•	•	•	•	•	•	13
3-4,	Bending Moment Diagrams Due to Unit Redundants	•	•	•	•	•	. •	•		•	14
3-5.	Directions of End Moments	•	•	•	•	•	•	•	.•	•	15
3-6.	Conjugate of Panel j	•	•	•	·	•	•	•	•	•	18
37.	Span AB and Its Conjugate Structure	•	•	•	•	•	•	٠	•	•	24
4-1,	Details of Span ,	•	•	t	•	•	٠	•	•	•	27
4-2.	Center Line Dimensions of the Structur with Relative Elastic Areas	re ,	•	•	•	•	•	•	•	•	27
4-3,	Basic Structure and Bending Moments Due to Loads	٦	•	•	•	•		٩	.1	•	29
4-4.	Conjugate Structure	•	•	٢	•	Ŧ	·	,		. •	34

NOMENCLATURE

^d j, ^d k	.Segment Lengths, or Panel Lengths,
$[f_j]_{3\times 3}$	$[G_{j}]_{3 \ge 8} [C_{2}]_{8 \ge 3}$.
h_{j}, h_{j}, \ldots	Height of Spandrel Columns.
i, j, k	, Deck Joints.
i', j', k'	Arch Joints
ℓ_1 . ,	.Span AB.
n , , ,	Number of Closed Arch Panels.
$x_{1j}, x_{2j}, x_{3j} $.jth Panel Redundants.
x,y.,	.Coordinate Axes.
\overline{x}_j , \overline{y}_j , , . ,	Coordinates of Arch Joint of Panel j with Respect to Axes \overline{x} , \overline{y} .
A, B, C, D	Arch Supporting Column Ends.
[B _j],,,	Column Vector of Bending Moments Due to Loads of Panel j.
$\mathrm{BM}_{\mathrm{ij}}, \mathrm{BM}_{\mathrm{ji}}$	Bending Moment of Basic Structure Due to Load.
$\left[\mathbf{C}_{1}\right]_{8\mathbf{x}9}\ldots\ldots\ldots$.Coefficient Matrix of the Vector [X].
$[C_2]_{8x3} \ldots \ldots$. Coefficient Matrix of the Vector $[Y]$.
EI	.Flexural Rigidity.
F_{ji}, F_{jk}, \ldots	Angular Flexibilities.
ΣF_{i} ,	$\mathbf{F}_{i} + \mathbf{F}_{ik}$.

vii

$[F_{j}]_{3x9}$	$[G_{j}]_{3\times8}[C_{1}]_{8\times9}$.
G_{ij}, G_{kj}	Angular Carry-Over Values.
$[G_{j}]_{3x8}$	Matrix of Angular Carry-Over Values.
м _{АВ} , м _{ВА}	Panel End Moments.
M _i , M _j , M _k	Moments at i, j, and k.
$[\mathbf{M}_{j}]_{8 \ge 1}$	Moment Matrix of Panel j.
\overline{P}_j ,	Joint Elastic Weights at j.
$\overline{P}_{ji}, \overline{P}_{jk}, \ldots$	Segmental Elastic Weights at j in ijk.
\overline{P}_i^j , \overline{P}_j^j	Joint Elastic Weights for Panel j at i, j.
$[T_{j}]_{3\times 1}$	Column Vector Containing Load Functions, $ au$.
$[X_{ijk}]$	Column Vector of Redundants of Panels i , j, and k.
Y ₁ , Y ₂ , Y ₃	Column Redundants.
$[Y_{1,2,3}]$	Column Vector of Column Redundants.
[f]	All [f] Matrices of the Structure.
[B]	All [B] Matrices of the Structure.
[E],	Additional Equations in Matrix Form to Solve for the Redundants.
[F]	All [F] Matrices of the Structure.
[G]	All [G] Matrices of the Structure.
[Τ]	Column Vector Containing the Load Functions, $ au$, for the Whole Structure.
ν_{j}	$\frac{h_j}{h_i}$.
$^{ au}$ ji, $^{ au}$ jk	Angular Load Functions.
$\Sigma \tau_{j}$	$\tau_{ji} + \tau_{jk}$.

viii

CHAPTER I

INTRODUCTION

1-1. General

The open spandrel arch, whether totally fixed at the springing or continuous over elastic piers, is externally and internally indeterminate. For an accurate prediction of stresses in such structures, the interaction between the deck, the spandrel columns and the arch rib must be considered. If complete continuity of all elements is considered, the open spandrel arch becomes a complex system for which the mathematical analysis by classical methods is so complicated that it has been seldom undertaken. The existence of interaction between the various parts of the open spandrel arch, however, have long been recognized, and the complexity of the standard methods of analysis led to the extensive experimental studies of Finlay¹, Wilson², and Newmark³.

An experimental analysis carried out by Wilson and Kluge consisted of tests of three span arches on high piers, each span being composed of a rib with spandrel columns and a deck. These experiments were usually limited to the determination of influence lines for the fixedend reactions at the springings and the moment and thrust at the arch crown.

A theoretical analysis of open spandrel arches using equivalent elastic systems was developed by Beaufoy⁴. In his approach, Beaufoy

considered full continuity between the arch rib, the spandrel columns and the deck. Comparison with some experimental results of Wilson and Kluge showed close agreement, and the shear resistance of the spandrel columns is shown to be an important item in deck participation. Beaufoy did not consider multi-span open spandrel arches.

A mathematical solution for the open spandrel arch as a monolithic structure, assuming full continuity, was presented by Diwan⁵. The solution was based on the principle of balancing the panel moments. This is done by imposing a special type of panel distortion which produces chord moments of a known pattern only in the deformed panel. It was then possible to study, analytically, deck participation.

The purpose of this thesis is to show the application of the string polygon method to the analysis of open spandrel arches. It is shown that the method provides an efficient means for matrix formulation of the problem, and is sufficiently broad in scope to allow open spandrel arches of more than one span to be analyzed.

The string polygon method is based on the concept of joint elastic weights. Representation of deformations as conjugate forces and moments was first presented by Mohr⁶, and extensions of this concept were investigated by several authors. The development of joint elastic weights may be found in the work of Kaufman⁷. The string polygon method is based on a generalization of the joint elastic weight expression. The approach was developed by Tuma in his lectures at Oklahoma State University, and extended by Chu⁸, Oden⁹, Boecker¹⁰, and others to the solution of many special problems. The possibility of the application of the string polygon method to the analysis of complex frames was recorded by Tuma and Oden¹¹.

1-2. Scope of Study

For each closed panel of an open spandrel arch (Fig. 1-1a), either the end bending moments (Fig. 1-1b), or any three panel redundants (Fig. 1.1c) may be selected as unknowns.

(a)

Closed Panel of an

Open Spandrel Arch

End Moments as Unknowns

(b)

Panel Redundants as Unknowns

(c)

Fig. 1-1

Unknowns of Typical Arch Panel

The selection of unknowns distinguishes between two ways in which the string polygon method is used in analysis. The two standard approaches are:

1. The <u>direct approach</u> in which end moments are selected as unknowns, and

2. The <u>indirect approach</u> in which only panel redundants are selected as unknowns.

In this study, a combination of the two methods is adopted, and the relationship between the two approaches is illustrated by a series of matrix operations.

Joint elastic weights are computed for each panel in terms of end moments. Three elasto-static equations for each panel are then written in terms of end moments. The end bending moments, in turn, are expressed in matrix notation in terms of panel redundants. Additional elasto-static equations are obtained by taking a suitable conjugate structure for each span.

In addition to the usual assumptions of linear structural analysis, the following assumptions are made:

1. The spandrel columns are vertical .

2. The bottom member of each panel is straight.

3. Loads are applied normally to the arch deck.

A brief discussion of the string polygon method is given in Chapter II. Chapter III deals with the matrix formulation of the problem and in Chapter IV application of the theory is illustrated numerically. The study is summarized and pertinent conclusions are drawn and listed in Chapter V.

CHAPTER II

STRING POLYGON METHOD

Basic principles of the string polygon concept are fully discussed elsewhere and are not repeated here. The classification of elastic weights is restated for completeness.

2-1. Classification of Elastic Weights

It was shown by Tuma and Oden that there are three types of elastic weights:

1. Elemental elastic weights.

2. Segmental elastic weights.

3. Joint elastic weights.

The representation of these elastic weights as loads on the conjugate structure is illustrated in Fig. 2-1.

The application of the elemental elastic weights to the analysis of a closed ring is well known under the names of "column analogy" developed by Cross¹² and the "conjugate frame method" discussed by Kinney¹³.

Segmental elastic weights may be interpreted as reactions of each segment of the conjugate structure. The segmental elastic weights (denoted \overline{P}_{ji} , \overline{P}_{jk} , \cdots , etc.) are defined as the changes in the slope of of the elastic curve between the respective ends of each segment.

Joint elastic weights may be defined as the change of the change in slope of the polygonal line, ijk, at j.

2-2. Equations for Elastic Weights

The joint elastic weight, \overline{P}_j , is related to the segmental elastic weights by the general formula,

$$\overline{P}_{j} = \overline{P}_{ji} + \overline{P}_{jk} . \qquad (2-1)$$

Segmental elastic weights may be expressed in terms of end moments as follows:

$$\overline{P}_{ji} = M_{ij} G_{ij} + M_{ji} F_{ji} + \tau_{ji}$$

$$P_{jk} = M_{kj} G_{kj} + M_{jk} F_{jk} + \tau_{jk} ,$$

$$(2-2)$$

where

$$F_{ji}$$
, F_{jk} = Angular flexibilities;
 G_{ij} , G_{kj} = Angular carry-over values;
 M_i , M_j , M_k = Moments at i, j and k; and
 τ_{ji} , τ_{jk} = Angular load functions,

These quantities are defined in Table 2-1. Therefore, the joint elastic weight is given by

$$\overline{P}_{j} = M_{i}G_{ij} + M_{j}\sum F_{j} + M_{k}G_{kj} + \sum \tau_{j}$$
, (2-3)

in which

$$\sum \mathbf{F}_{j} = \mathbf{F}_{ji} + \mathbf{F}_{jk} ,$$
$$\sum \tau_{j} = \tau_{ji} + \tau_{jk} ,$$

Segments ij, jk with Loads

Carry Over Values

Angular Load Functions

-1 ANGULAR FLEXIBILITIES AND LOAD FUNCTIONS Algebraic Physical Inte

 $\mathbf{F}_{jk} \qquad \int_{j}^{k} \frac{\mathbf{x}_{1} \quad \mathbf{dx}_{1}}{\mathbf{d}_{k}^{2} \mathbf{EI}_{x_{1}}}$

G

 $au_{\mathbf{j}\mathbf{i}}$

 τ_{jk}

$$G_{kj} \qquad \int_{j}^{k} \frac{x_{1}x_{1}^{j} dx_{1}}{d_{k}^{2} EI_{x_{1}}}$$

$$\int_{i}^{j} \frac{BM_{x} x dx}{\frac{d_{j}EI_{x}}{d_{j}EI_{x}}}$$

End slope of the simple beam jk at j due to loads.

ω

End slope of the simple beam ij at i due to unit moment applied at j.

Physical Interpretation

End slope of j of the simple beam

ij due to a unit moment applied at j.

End slope of j of the simple beam jk due to a unit moment applied at j.

End slope of the simple beam jk at k due to unit moment applied at j.

End slope of the simple beam ij at j due to loads.

These elastic weights may be used for the calculation of bending moments and displacements of joints of the polygon by considering the equations of "elasto-static" equilibrium of the conjugate structure. Unknown end moments for any closed panel can be evaluated by solving the equations of static equilibrium and elasto-static equilibrium of the real and conjugate structures, respectively.

CHAPTER III

MATRIX FORMULATION

3-1. Selection of Redundants

A continuous, multispan, open spandrel arch subjected to a general system of deck loads is considered (Fig. 3-1). The arch spandrel contains n' closed panels and the supporting columns may have any degree of fixity at ends A, B, C, D, \cdots .

There are three redundants corresponding to each closed ring of the structure. The 'panel' redundants for the jth panel are designated as X_{ij} , X_{2j} , and X_{3j} ; and the 'column' redundants developed in the supporting arch are denoted Y_1 , Y_2 , Y_3 , \cdots .

General Continuous Open Spandrel Arch

The choice of redundants is completely arbitrary in the general flexibility approach to the analysis of complex structures. There are, in fact, an infinite number of different choices for just the panel redundants of a single closed ring. With computer facilities available, the most time consuming part of matrix analysis of complex structures is the process of obtaining the necessary algebraic relationships between unknowns, rather than the process of solving the algebraic equations. Thus, the selection of redundants must be made with this in mind. The goal of this investigation is to establish a systematic and simple procedure for obtaining a set of simultaneous equations for the redundants.

Redundants of each panel are selected near the top left joint of the panel (Fig. 3-2). The bending moment due to unit redundants can be obtained easily in terms of the dimensions of the panel under consideration. The column redundants are selected at the top of each column so that the redundants of any column will only influence the panels of a single span. With this choice of redundants, coefficients in equations relating end moments and redundants are simply lengths of members and coordinates of joints.

Releasing the panel and column redundants, the basic structure for the arch becomes the structure shown in Fig. 3-2. At each support, in general, three column redundants are considered. Modifications can be easily made for other support conditions.

The redundants of one panel will influence only the adjacent panels. In general, X_{ij} , X_{2j} , and X_{3j} will effect panels i, j, and k. Therefore, without loss of generality, the panels i, j, and k with the corresponding three column redundants are considered for the general matrix formulation of the problem.

Fig. 3-2

Geometry of Basic Structure

3-2. Static Relationships

Directions of end bending moments of each panel are selected in such a way that panel deformations are compatible with those of adjacent panels. For example, if end moments of i and k cause tension on the outside fibers of those two panels, end moments of panel j must produce tension inside the panel j. Fig. 3-3 shows panel redundants for panels i, j, and k along with the column redundants, Y_1 , Y_2 , and Y_3 which influence deformations of these panels. End moments of the jth panel are assumed to produce tension inside the panel. The bending moment diagrams produced by unit redundants of panels i, j, and k are given in Fig. 3-4.

Typical Panels i, j, and k

Positive end moments of panels i, j, and k causing compatible deformations of those panels are shown in Fig. 3-5.

Using the equations of statics, end moments for panel j can be written in terms of the twelve redundants as follows:

 $M_{ij} = X_{3j} + BM_{ij}$

Fig. 3-4.

Bending Moment Diagrams Due to Unit Redundants

Fig. 3-5

Directions of End Moments

$$\begin{split} \mathbf{M}_{ji} &= d_{j} X_{2j} + X_{3j} + \mathbf{B} \mathbf{M}_{ji} \\ \mathbf{M}_{jj'} &= d_{j} X_{2j} + X_{3j} + X_{3k} + \mathbf{B} \mathbf{M}_{jj'} \\ \mathbf{M}_{j'j} &= h_{j} X_{1j} + d_{j} X_{2j} + X_{3j} + h_{j} X_{1k} + X_{3k} + \mathbf{B} \mathbf{M}_{j'j} \\ \mathbf{M}_{j'i'} &= h_{j} X_{1j} + d_{j} X_{2j} + X_{3j} + \overline{y}_{j} Y_{1} + \overline{x}_{j} Y_{2} + Y_{3} + \mathbf{B} \mathbf{M}_{j'i'} \\ \mathbf{M}_{i'j'} &= h_{i} X_{1j} + X_{3j} + \overline{y}_{i} Y_{1} + \overline{x}_{j} Y_{2} + Y_{3} + \mathbf{B} \mathbf{M}_{i'j'} \\ \mathbf{M}_{i'j'} &= h_{i} X_{1i} + d_{i} X_{2i} + X_{3i} + h_{i} X_{1j} + X_{3j} + \mathbf{B} \mathbf{M}_{i'i} \\ \mathbf{M}_{ii'} &= d_{i} X_{2i} + X_{3i} + X_{3j} + \mathbf{B} \mathbf{M}_{ii'} , \end{split}$$

(3-1)

where BM is the bending moment of the basic structure due to loads.

After some rearranging, Eq's. (3-1) can be written in the matrix form:

$$\begin{bmatrix} M_{ij} \\ M_{ji} \\ M_{ji} \\ M_{ji} \\ M_{jj'} \\ M_{j'j'} \\ M_{j'j'} \\ M_{i'j'} \\ M_{i'j'} \\ M_{i'i} \\ M_{ii'} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & d_{j} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & d_{j} & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & d_{j} & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & h_{i} & d_{j} & 1 & h_{j} & 0 & 1 \\ 0 & 0 & 0 & h_{i} & d_{j} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & h_{i} & d_{j} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & h_{i} & 0 & 1 & 0 & 0 & 0 \\ h_{i} & d_{i} & 1 & h_{i} & 0 & 1 & 0 & 0 & 0 \\ 0 & d_{i} & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & d_{i} & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} X_{1i} \\ X_{2i} \\ X_{3i} \\ X_{2j} \\ X_{3j} \\ X_{1k} \\ X_{2k} \\ X_{3k} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ y_{j} & \overline{x}_{j} & 1 \\ \overline{y}_{i} & \overline{x}_{i} & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} BM_{ij} \\ BM_{j'i} \\ BM_{j'i} \\ BM_{i'i} \\ BM_{i'i} \\ BM_{i'i} \\ BM_{ii'} \end{bmatrix}$$

or

 $[M_{j}]_{8\times 1} = [C_{1}]_{8\times 9} [X_{ijk}]_{9\times 1} + [C_{2}]_{8\times 3} [Y_{1,2,3}]_{3\times 1} + [B_{j}]_{8\times 1}$ (3-2a)

where $[C_1]$ and $[C_2]$ are coefficient matrices of the unknown vectors [X] and [Y], respectively; $[B_j]$ is a column vector of bending moments due to loads; and the subscripts indicate the order of the matrices. For the panel i or k, all corresponding panel redundants and column redundants cause tension outside the panels. Since the moments causing tension inside are taken as positive, for any outside tension panel j the end moments can be represented in matrix form

$$[M_{j}]_{8\times 1} = [-C_{1}]_{8\times 9} [X_{ijk}]_{9\times 1} + [C_{2}]_{8\times 3} [Y_{1,2,3}]_{3\times 1} + [B_{j}]_{8\times 1}$$
(3-3)

3-3. Elasto Static Equations

For any panel j, elasto-static equations can be written in many different forms. In this study, three moment equilibrium equations are utilized, as this procedure is systematic and renders a set of equations which are relatively simple in form.

The conjugate of panel j loaded by joint elastic weights is shown in Fig. 3-6. The joint elastic weights for panel j at j, j', i and i' are denoted by \overline{P}_{j}^{j} , $\overline{P}_{j'}^{j}$, \overline{P}_{i}^{j} , and $\overline{P}_{i'}^{j}$, respectively. Since loads are acting only on the arch deck and are assumed to act toward the deck, τ values for all members except the deck members are zero. For panels assumed in tension on the inside, τ values are positive, and for those in tension on the outside τ values are negative. Also, since panel members are constant in cross-section,

> $F_{ij} = 2G_{ij} = 2G_{ji}$ $F_{jj} = 2G_{jj'} = 2G_{j'j}$.

Thus, \overline{P}_{j}^{j} may be written

 $\overline{P}_{j}^{j} = M_{ij}G_{ij} + M_{ji}(2G_{ji}) + M_{jj}(2G_{jj'}) + M_{j'j}G_{j'j} + \tau_{ji},$

or

$$\overline{P}_{j}^{j} = G_{ij}(M_{ij} + 2M_{ji}) + G_{jj}(M_{j'j} + 2M_{jj'}) + \tau_{ji} . \qquad (3-4a)$$

Conjugate of Panel j

Similarly,

$$\overline{P}_{j'}^{j} = G_{i'j'}(M_{i'j'} + 2M_{j'i'}) + G_{jj'}(M_{jj'} + 2M_{j'j}) , \qquad (3-4b)$$

$$\overline{P}_{i}^{j} = G_{ii}'(M_{i'i} + 2M_{ii'}) + G_{ij}(M_{ji} + 2M_{ij}) + \tau_{ij'}$$
 (3-4c)

$$\overline{P}_{i'}^{j} = G_{ii'}(M_{ii'} + 2M_{i'i}) + G_{i'j'}(M_{j'i'} + 2M_{i'j'}) . \qquad (3-4d)$$

Since the conjugate structure must be in elasto-static equilibrium, the static moments of the elastic weights about ii', ij, and jj' must vanish independently. Thus,

ii';
$$d_j(\overline{P}_j^j + \overline{P}_j^j) = 0$$
 (3-5a)

ij;
$$h_i \overline{P}_{i'}^{j} + h_j \overline{P}_{j'}^{j} = 0$$
 (3-5b)

$$jj'; \quad d_j(\overline{P}_i^j + \overline{P}_i^j) = 0$$
 (3-5c)

Substituting Eq's. (3-4) into Eq's. (3-5) and simplifying, gives

$$(G_{ij})M_{ij} + (2G_{ij})M_{ji} + (3G_{jj'})M_{jj'} + (3G_{jj'})M_{j'j} + (2G_{i'j'})M_{j'i'} + (G_{i'j'})M_{i'j'} = -\tau_{ji}$$
, (3-6a)

$$[\nu_{j}G_{jj'}]M_{jj'} + [2\nu_{j}G_{jj'}]M_{j'j} + [(1 \ 2\nu_{j})G_{i'j'}]M_{j'i'} +$$

$$+ [(2 + \nu_{j})G_{i'j'}]M_{i'j'} + [2G_{ii'}]M_{i'i} + [G_{ii'}]M_{ii'} = 0 ,$$

,

$$(2G_{ij})M_{ij} + (G_{ij})M_{ji} + (G_{i'j'})M_{j'i'} + (2G_{i'j'})M_{i'j'} + (3G_{ii'})M_{i'i} + (3G_{ii'})M_{ii'} = -\tau_{ij} , \qquad (3-6c)$$

in which $\nu_j = h_j/h_i$.

Eq's. (3-6) may be represented in the matrix form:

$$\begin{bmatrix} G_{ij} & 2G_{ij} & 3G_{jj}, & 3G_{jj}, & 2G_{i'j'} \\ 0 & 0 & \nu_{j}G_{jj}, & 2\nu_{j}G_{jj}, & (1+2\nu_{j})G_{i'j'} \\ 2G_{ij} & G_{ij} & 0 & 0 & G_{i'j'} \\ & & & & & \\ & & & & \\ & & & \\ &$$

(3-7)

'ii'

 \mathbf{or}

 $[G_{j}]_{3 \times 8} [M_{j}]_{8 \times 1} = [-T_{j}]_{3 \times 1}$, (3-8)

in which $[G_j]$ is the coefficient matrix of moment vector $[M_j]$ and $[-T_j]$ is a column vector containing the load functions, τ .

Substituting
$$[M_j]$$
 from Eq. (3-2a) into Eq. (3-8) yields

$$\begin{bmatrix} [G_j]_{3\times8} [C_1]_{8\times9} \\ + [G_j]_{3\times8} [B_j]_{8\times1} \\ + [G_j]_{3\times8} [B_j]_{8\times1} \\ = [-T_j]_{3\times1}$$
(3-9)

Denoting,

$$[G_{j}]_{3 \times 8} [C_{1}]_{8 \times 9} = [F_{j}]_{3 \times 9}$$

 and

$$[G_{j}]_{3x8}[C_{2}]_{8x3} = [f_{j}]_{3x3}$$

Eq. (3-9) becomes

$$[F_{j}]_{3\times9}[X_{ijk}]_{9\times1} + [f_{j}]_{3\times3}[Y_{1,2,3}]_{3\times1} + [G_{j}]_{3\times8}[B_{j}]_{8\times1} = [-T_{j}]_{3\times1}$$
(3-10)

Similary, for 'outside tension' panels,

$$[-F_{j}]_{3\times9}[X_{ijk}]_{9\times1} + [-f_{j}]_{3\times3}[Y_{1,2,3}]_{3\times1} + [G_{j}]_{3\times8}[B_{j}]_{8\times1} = [T_{j}]_{3\times1} . \quad (3-11)$$

3-4. Flexibility Matrices

Given a loading condition, the matrices $[G_j][B_j]$ and $[T_j]$ can be determined for each panel. $[B_j]$ is a column vector and the product of $[G_j]$ and $[B_j]$ can be evaluated easily for each panel.once the loading is specified.

The final flexibility matrix, considering each panel in turn, can be easily obtained with the aid of general expressions for the matrices $[F_j]$ and $[f_j]$. The general formulation of matrices $[F_j]$ and $[f_j]$ is presented in this article.

Substituting for $[C_1]$ and $[G_i]$ from Eq's. (3-2a) and (3-8), the

$$[f_{j}] = G_{i'j'} \begin{bmatrix} (2\overline{y}_{j} + \overline{y}_{i}) & (2\overline{x}_{j} + \overline{x}_{i}) & 3\\ [(1+2\nu_{j})\overline{y}_{j} + (2+\nu_{j})\overline{y}_{i}] & [(1+2\nu_{j})\overline{x}_{j} + (2+\nu_{j})\overline{x}_{i}] & 3(1+\nu_{j})\\ (\overline{y}_{j} + 2\overline{y}_{i}) & (\overline{x}_{j} + 2\overline{x}_{i}) & 3 \end{bmatrix}_{3\times 3}$$

$$(3-13)$$

$$3(G_{ij} + 2G_{jj'} + G_{i'j'}) \quad 3h_jG_{jj'} \quad 0 \quad 6G_{jj'}$$

$$3[\nu_jG_{jj'} + 2h_j\nu_jG_{jj'} & 0 \quad 3\nu_jG_{jj'} + (1+\nu_j)G_{i'j'} + G_{ii'}]$$

$$3(G_{ij} + G_{i'j'} + 2G_{ii'}) \quad 0 \quad 0 \quad 0$$

$$349$$

$$[F_{j}] = \begin{bmatrix} 0 & 0 & 0 & 3h_{j}G_{jj}! + & 2d_{j}(G_{ij} + & + & G_{i'j'}(2h_{j}+h_{i}) & + & 3G_{jj'} + & G_{i'j'}) \\ 2h_{i}G_{ii'} & 3d_{i}G_{ii'} & 3G_{ii'} & 2h_{i}\nu_{j}G_{jj'} + & d_{j}[3\nu_{j}G_{jj'} + & + & G_{i'j'}[h_{j}(1+2\nu_{j}) + & + & (1+2\nu_{j})G_{i'j'}] \\ & & + & h_{i}(2+\nu_{j})] + & + & (1+2\nu_{j})G_{i'j'}] \\ & & + & h_{i}(2+\nu_{j})] + & + & 2h_{i}G_{ii'} \\ & & & 3h_{i}G_{ii'} & 6d_{i}G_{ii'} & 6G_{ii'} & G_{i'j'}(h_{j}+2h_{i}) + & d_{j}(G_{ij} + G_{i'j'}) \\ & & & + & 3h_{i}G_{ij'} \end{bmatrix}$$

matrices $[F_j]$ and $[f_j]$ for any 'inside tension' panel become

3-5. Final Matrix

Additional equations may be necessary, depending upon the end conditions of the supporting arch columns. These are obtained by considering elasto static equilibrium of any other set of closed rings.

For example, considering the first span of the general continuous arch of Fig. 3-1, the conjugate structure shown in Fig. 3-7b is selected, \overline{P}_A , $\overline{P}_{0'}$, \overline{P}_0 , \cdots , \overline{P}_B are joint elastic weights acting at A, 0', 0, \cdots , B, respectively. The static moments of these elastic weights about A0, 05 and 5B must vanish independently. Thus,

A0 ;
$$\overline{P}_{1}(d_{1}) + \overline{P}_{2}(d_{1} + d_{2}) + \overline{P}_{3}(d_{1} + d_{2} + d_{3}) +$$

+ $\overline{P}_{4}(d_{1} + d_{2} + d_{3} + d_{4}) + (\overline{P}_{5} + \overline{P}_{5}, + P_{B})Q_{1} = 0$
(3-14a)
05 ; $\overline{P}_{0'}(h_{0}) + \overline{P}_{A}(h_{0} + v_{A}) + \overline{P}_{5'}(h_{5}) + \overline{P}_{B}(h_{5} + v_{B}) = D$
(3-14b)

5B ;
$$(\overline{P}_0 + \overline{P}_0, + \overline{P}_A) \mathbf{l}_1 + \overline{P}_1 (d_2 + d_3 + d_4 + d_5) + \overline{P}_2 (d_3 + d_4 + d_4) + \overline{P}_3 (d_4 + d_5) + \overline{P}_4 (d_5) = 0$$
 (3-14c)

Similar considerations for other spans give the additional independent equations.

For n panels, a total of 3n elasto static equations can be written. $[F_j]$ matrices for the first and last panel of the system will be of order of 3×6 as there are only six 'panel redundants' in each case.

In general, the final matrix for the system can be written:

(a)

(b)

Fig. 3-7 Span AB and Its Conjugate Structure

 $\mathbf{24}$

 $= [\mathbf{T}] - [\mathbf{G}] [\mathbf{B}]$ (3 - 15)

in which

E

G

represents all [f] matrices of the structure,

represents all [F] matrices of the structure,

represents the additional equations in matrix form required to to solve for the unknown column redundants, represents the column redundant vector,

represents the panel redundant vector,

represents the column vector containing the load functions, τ for the whole structure,

B represents the product of [G] and [B] for the complete structure.

The general form of these matrices is illustrated by a numerical example.

With computer facilities available, Eq's. (3-15) may be solved for the panel and column redundants. Once these redundants are computed, final bending moments at the ends of each member are obtained by direct substitution into Eq. (3-2a) or Eq. (3-3).

CHAPTER IV

NUMERICAL EXAMPLE

4-1. Example

To illustrate the use of the method, a single span, reinforced concrete, open spandrel arch is considered. The details of the arch along with the loading is shown in Fig. 4-1. A considerable amount of experimental data is available for this particular structure. It was constructed and tested by Wilson and Kluge⁽²⁾ and their staff and later analyzed theoretically by Beaufoy⁽⁴⁾ and Diwan⁽⁵⁾.

The actual structure is idealized by considering the geometry as being defined by the centerlines of each member. It is also assumed that the arch rib between any two spandrel columns is prismatic with a constant cross section identical with that at the middle of its length. Centerline dimensions of the model and the relative elastic properties ("the elastic areas", $\frac{L}{EI}$) of all members are shown in Fig. 4-2,

Since there are nine panels and the ends of the arch are fixed, the structure is statically indeterminate to the thirtieth degree. Twentyseven equations are obtained for the nine panels and the additional three equations are formed by considering the conjugate structure of span AB.

4-2. Analysis

Steps in the procedure of analysis of this structure are listed as follows:

 $\mathbf{26}$

Fig. 4.2 Centerline Dimensions of the Structure with Relative Elastic Areas

27

1. Bending moments due to loads:

After choosing Y_1 , Y_2 , and Y_3 as three column redundants at A, bending moments due to the given load are calculated (Fig. 4-3).

2. [F] matrices:

From the relative elastic areas of the members, angular carryover values are calculated and [F] matrices for the nine panels are obtained from Eq. (3-12) (Tables 4-1a, b).

3. [f] matrices:

[f] matrices for the nine panels are calculated using Eq. (3-13) (Table 4-2).

4. [G] [B] matrices:

Using Eq. (3-7), the product of the [G] and [B] matrices for each panel are evaluated and recorded in Table 4-3.

5. Equations for column redundants:

Three additional equations are necessary because of the presence of column redundants. These equations are obtained by considering the elasto static equilibrium of the conjugate structure of span AB (Fig. 4-4). Static moments about 0'0, 9'9, and 09 yield the following equations:

0'0 :

$$\begin{array}{rl} -0.\ 2652\ \mathrm{Y_{1}}+0.\ 3003\ \mathrm{Y_{2}}+1.\ 4583\ \mathrm{X_{2}}+0.\ 8750\ \mathrm{X_{3}}-5.\ 6700\ \mathrm{X_{5}}+\\ -3.\ 3600\ \mathrm{X_{6}}+9.\ 4500\ \mathrm{X_{8}}+5.\ 8800\ \mathrm{X_{9}}-13.\ 2300\ \mathrm{X_{11}}-7.\ 4000\ \mathrm{X_{12}}+\\ +17.\ 0100\ \mathrm{X_{14}}+8.\ 8200\ \mathrm{X_{15}}-20.\ 7900\ \mathrm{X_{17}}-13.\ 440\ \mathrm{X_{18}}+\\ +20.\ 5700\ \mathrm{X_{20}}+15.\ 9600\ \mathrm{X_{21}}-20.\ 3500\ \mathrm{X_{23}}-18.\ 4800\ \mathrm{X_{24}}+\\ +\ 612.\ 9650\ \mathrm{X_{25}}+389.\ 6200\ \mathrm{X_{26}}+110.\ 3650\ \mathrm{X_{27}}=-27.\ 5250 \end{array}$$

28

(4-1)

(b) Bending Moments Due to Load

Fig. 4-3 Basic Structure and Bending Moments Due to Load

 $\mathbf{29}$

	TABLE 4-1a - [F] Matrices												
1				17.748000	15.021000	6.162600	16.986000	0.000000	5.700000				
anel	······································			31.940710	5.281233	6.234095	8.033250	0.000000	2.021800				
Р				34.621500	0.385500	8.502600	0.000000	0.000000	0.00000				
2	0.00000	0.000000	0.000000	- 8.606030	-11.050000	-4.447500	- 7.640000	0.000000	-3.820000				
anel	-11.324000	- 7.125000	-2.850000	-15.844800	- 2.560000	-4.479460	- 3,420000	0.000000	-1.282500				
Ъ,	-16,986000	-14.250000	-5.700000	-15.100000	- 0.627600	-6.327600	0,000000	0.000000	0.00000				
ŝ	0.000000	0.000000	0.000000	4.704000	9.474999	3.397500	3.752000	0.00000	2.680000				
anel	5,093330	5.730000	1.910000	8.581667	3.527999	3,353750	1.750933	0.000000	0.938000				
Γ, Γ	7.639990	11.460000	3.820000	8.711000	0.717499	4.537500	0.000000	0.000000	0.000000				
4	0.000000	0.000000	0.000000	- 3.373833	- 8.074999	-2.962500	- 2.418750	0.00000	-2.150000				
anel	- 2.501333	- 4.020000	-1.340000	- 5.591611	- 3.614821	-2.911741	- 1.295759	0.000000	-0.863839				
ц,	- 3.751999	- 8.040000	-2.680000	- 4.779041	- 0.812500	-3.492500	0.000000	0.000000	0.00000				
പ	0.000000	0.000000	0.000000	3.532500	8.280000	3.065000	2.418750	0.000000	2.150000				
anel	1,612500	3.225000	1.075000	5.452500	4.710000	3.140000	1.612500	0.00000	1.075000				
Σ,	2.418750	6,450000	2.150000	3.532500	0.915000	3.065000	0.00000	0.00000	0.000000				

30

. •

	TABLE 4. 1b [F] Matrices													
6	0.000000	0.000000	0.000000	- 4.779041	- 9.665000	-3.492500	- 3.752000	0. 000000	-2.680000					
anel	- 1.612500	- 3.225000	-1.075000	- 6.958449	- 6.372055	-3,623499	- 3.112770	0.000000	-1.667554					
Ч	- 2.418750	- 6.450000	-2.150000	- 3.373833	- 0.812500	-2.962500	0.000000	0.00000	0.000000					
2	0.000000	0.000000	0.00000	8.711000	12.895000	4.532500	7.640000	0.00000	3.820000					
anel	2.501333	4.020000	1.340000	12.259524	9.313928	4.778928	7.276190	0.000000	2.728571					
Ч	3.751999	8.040000	2.680000	4.704000	0.712500	3.392500	0.000000	0.000000	0.000000					
ω	0.000000	0.000000	0.000000	-18.087330	-18.355000	-6.327500	-16.986000	0.000000	-5.700000					
anel	- 5,093333	- 5.730000	-1.910000	-24.564104	-13.565350	-6.673175	-16.872760	0.000000	-4.246500					
Ч	- 7.640000	-11.460000	-3.820000	- 8.605566	- 0.627500	-4.447500	0.000000	0. 000000	0.000000					
6	0.000000	0.000000	0.000000	34.621500	20.870833	8.502500	· - · · · · · · · · · · · · · · · · · ·							
anel	11.324000	8.550000	2.850000	45.017242	14.522950	8.786829								
Р	16.986000	17.100000	5.700000	17.748000	0.385500	6.162500								

 ω_{μ}

1			ومراعات والمتحد والمتحد والمتحد فالتكفي والم							
TABLE 4.2 [f] MATRICES										
1	0.250360	0.243750	0.112500	9	-2.505458	- 6.672498	-0.392499			
ànel	0.336705	0.322916	0.192307	anel	-5.695173	-14.583550	-0.880944			
Ŀ,	0.159000	0.131250	0.112500	- <u></u>	-2.577416	- 6.279998	-0.392499			
2	-0.901934	- 1.037500	-0.207500	-1	1.606500	5.950002	0.198333			
anel	-1.371835	- 1.526474	-0.346795	anel	4.020501	14.152504	0.722500			
ĿP.	-0.766367	- 0.830000	-0.207500	ЪГ	1,725500	5.652502	0.198333			
n	1.725501	2.180000	0.297500	8	-0.766367	- 4.772502	-0.207500			
unel	2.814351	3.895000	0.505750	anel	-2.050737	-11.676031	-0.516675			
$\rm P_2$	1.606500	2,330250	0.297500	P	-0.901934	- 4.565002	-0.207500			
4	-2,511999	- 4.317499	-0.392499	9	0.159000	2,925000	0.112500			
unel	-4.576595	- 7.394417	-0.707901	anel	0.512094	7.234508	0.271057			
$\mathbf{P}_{\mathbf{a}}$	-2.505458	- 3.924999	-0.392499	Ρ	0,250360	2.812500	0.112500			
5	3.341250	6.930000	0.495000							
anel	6.682500	13.365000	0.990000							
Ŀ	3.341250	6.435000	0.495000							

,	TABLE 4.3 P	RODI	JCT OF [G] AND	[B] M	ATRICES
1	0.000000	4	-205.999999	7	426.000000
anel	0,000000	anel	-344.250000	anel	974.850000
Р	0.000000	Ъ	-183.850000	L LL	396.499999
2	0.000000	5	392.600000	8	-341.000000
anel	0.000000	anel	736.500000	anel	-825.000000
P	0.000000	P.	341.700000	P	-314.749999
3	39.749980	9	-380,259999	<u>6</u>	205.875000
anel	80,225000	anel	-817.794200	anel	533.865000
P;	49.500000	P. J.	-345.750000	OF [G] AND [B] MA1 205.9999999 344.250000 183.850000 392.600000 392.600000 392.600000 380.259999 817.794200 345.750000	215.250000

Fig. 4-4

9'9:

 $-0.2652 Y_{1} - 0.3003 Y_{2} + 827.9680 X_{1} + 22.8033 X_{2} + 226.3650 X_{3} + 27.0900 X_{5} - 18.4800 X_{6} + 23.3100 X_{8} + 13.9600 X_{9} - 19.5300 X_{11} + 11.4400 X_{12} + 15.7500 X_{14} + 10.9200 X_{15} - 11.9700 X_{17} + 8.4000 X_{18} + 8.1900 X_{20} + 7.8800 X_{21} - 4.4100 X_{23} - 3.3600 X_{24} + 0.7292 X_{26} + 0.8750 X_{27} = -47.6500$ (4-2)

09 :
- 0.1754
$$Y_1$$
 + 0.5118 Y_2 + 169, 1008 X_1 + 33.7680 X_3 +
+ 139.1008 X_{25} + 64.4200 X_{26} + 23.7680 X_{27} = 20.2200 . (4-3)

In matrix form;

6. Final Matrix:

The final 30x30 matrix needed to solve for the redundants is of the form:

(4-5)

7. Solution for the redundants:

The final set of 30 equations is solved for the unknowns. The values of the redundants are recorded in Table 4-4.

8. End moments:

Each panel end moments can be obtained on substitution of these values in Eq's. (3-2) or 3-3,

A comparison of the panel end moments recorded in Table 4-4 with those presented by Beaufoy and Diwan reveals that the results are in close agreement with experimental data with the exception of Y_3 . This value is slightly over ten percent in error and considerably influences some of the arch joint moments.

	TABLE 4-4 VALUES OF REDUNDANTS													
Y ₁	Y ₂	¥ ₃	x ₁	x ₂	\mathbf{x}_3	x ₄	x ₅	x ₆	x ₇	x ₈	x ₉	x ₁₀	x ₁₁	x ₁₂
46.89	-83.29	98.42	1.11	-1.20	-5,36	- 6.85	-25.78	25.47	17.56	-7.17	31.45	-6.74	13.28	-24.07
x ₁₃	x ₁₄	x ₁₅	x ₁₆	× X ₁₇	х ₁₈	x ₁₉	x ₂₀	x ₂₁	x ₂₂	x ₂₃	x ₂₄	x ₂₅	x ₂₆	x ₂₇
-11.15	- 5.43	5.11	15.39	2.67	4.99	-10.83	5.73	-21.17	21.34	-8,53	19.62	0.04	1.33	1.18

۲.

CHAPTER V

SUMMARY AND CONCLUSIONS

5-1. Summary

The analysis of a general, continuous, open spandrel arch subjected to a general system of deck loading is presented in this study. The panel and column redundants are selected in such a way that a simple and systematic procedure is established for obtaining a set of simultaneous equations for the redundants.

Panel redundants are selected near the top-left joint of each panel. The column redundants are chosen at the top of each column so that the redundants of any column will influence the panels of a single span. Thus, coefficients in equations relating end moments and redundants are simply lengths of the members and coordinates of joints.

A combination of the direct and indirect approach of the string polygon method is adopted in this study to obtain the final equations. The relationship between the two approaches is illustrated by a series of matrix operations.

5-2. Conclusions

General expressions for matrices $[F_j]$ and $[f_j]$ are derived in this work. With the aid of these expressions, three equations can be obtained easily for each panel. If support conditions are such that additional equations are necessary, they may be obtained by considering elastostatic equilibrium of any other set of closed rings. In the analysis of

multi-span arches the formulation of these additional equations is complex and time consuming. In addition, the resulting matrix is poorly conditioned for inversion. For the analysis of Vierendeel trusses this approach has proved to be easy and accurate.

It is shown that the method provides an efficient means for matrix formulation of the problem, and is sufficiently broad in scope to allow open spandrel arches of more than one span to be analyzed.

BIBLIOGRAPHY

- 1. Finlay, J., "Deck Participation in Concrete Arch Bridges," <u>Civil</u> Engineering (N.Y.), Vol. 2, No. 11, 1932.
- Wilson, W. M., and Kluge, R. W., "Laboratory Tests of Three Span R. C. Arch Bridges with Decks on Slender Piers," <u>Engineering Experiment Station</u> <u>Bulletin</u>, University of <u>Illinois</u>, Urbana, No. 270, 1934.
- 3. Newmark, N. M., "Interaction between Rib and Superstructure in Concrete Arch Bridges," Transactions, ASCE, 1938.
- 4. Beaufoy, L. A., "Open Spandrel Arch Analysis Assuming Continuity of Structure," <u>Internatl. Assn. for Bridge and Struc-</u> tural Engin. - Publications, Vol. 13, 1953, pp. 17-52.
- 5. Diwan, A. F., "Analysis of Open Spandrel Arches," Proceedings, ASCE, Structural Div., Vol. 84, 1958.
- 6. Mohr, O., "Behandlung der Elastischen Linie Als Seillinie," Zeitschr D. Architekt. u. Ing., Hannover, 1868.
- 7. Kaufman, W., <u>Statik Der Tragwerke</u>, Fourth Ed., Berlin, 1957, pp. 144-153.
- Chu, Shih L., "Beam Constants by the String Polygon Method," <u>M. S.</u> <u>Thesis</u>, Oklahoma State University, Stillwater, Okla, <u>1959.</u>
- Oden, John T., "The Analysis of Fixed-End Frames with Bent Members by the String Polygon Method," <u>M. S. Thesis</u>, Oklahoma State University, Stillwater, Okla., 1960.
- Boecker, Henry C., "Analysis of Pinned-End Frames by the String Polygon Method," <u>M. S. Thesis</u>, Oklahoma State University, Stillwater, Okla., 1960.
- 11. Tuma, Jan J., and Oden, John T., "String Polygon Analysis of Frames with Straight Members," <u>Proceedings</u>, ASCE, Structural Div., Vol. 87, 1961.

- 12. Cross, Hardy, "The Column Analogy," <u>Engineering Experiment</u> <u>Station Bulletin</u>, No. 215, University of Illinois, Urbana, <u>Illinois</u>, 1930.
- 13. Kinney, J. S., "Analysis of Multi-Span-Frames," <u>Steel Rigid</u> <u>Frames</u>, Korn and Edward, Inc., Ann Arbor, Mich., <u>1953</u>, p. 50.

VITA

M. Natarajan

Candidate for the Degree of

Master of Science

Thesis: MATRIX ANALYSIS OF OPEN SPANDREL ARCHES BY THE STRING POLYGON METHOD

Major Field: Civil Engineering

Biographical:

- Personal Data: Born in Coimbatore, Madras State, India, son of Meenakshi and Murugesam Pillai.
- Education: Graduated from R. S. Puram High School, Coimbatore, India in April, 1953; received the degree of Bachelor of Engineering in Civil Engineering from the University of Madras, India in 1959; completed the requirements for the Master of Science Degree at Oklahoma State University in August, 1963.
- Professional Experience: Junior Engineer, Kundah Hydro-Electric Scheme, Madras, 1959, summer; Instructor in the School of Civil Engineering, P.S.G. College of Technology, Coimbatore, India, July, 1959 - July, 1962, engaged in undergraduate instruction in Structural Analysis and Sanitary Engineering. Worked as co-investigator in addition to teaching with Dr. V. Ramakrishnan, Professor in School of Civil Engineering, P.S.G. College of Technology, for six months under C.S.I.R. (India) Scheme, "R. C. Beams Subjected to Combined Bending and Torsions."