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PREFACE

The study of variable input to a service facility 1is
a common problem to the Industrial Engineer. Such situa-
tions as men servicing machine breakdowns, telephone calls
to a switchboard and others present a challenge to the
industrial researcher, The conventional single channel
model with a single Poisson input to an exponential service
facility has been fully explored, but little work has been
done on the general model of multiple inputs with a general
distribution of service time,

The importance of any analytical development is its
practical use in industrial applications. The problem of
this thesis was first encountered in the study of the
logistics of a maintenance and supply operation of a
commercial airline. The purpose of this study is to pre-
sent the theoretical model and compare with the actual

situation.

1il



TABLE OF CONTENTS

Chapter
I, INTRODUCTION, . . . « «

Conventional Single Channel.
Erlang Service . . . .
Multiple Inputs. . . .

ITI. MULTIPLE INPUT MODEL.

Input Description. . . . .
Operational System .
Notation . . . 5
Steady-State Equations i
Solution for P

Solution for P ‘
Solution for POO
ITI. SYSTEM CHARACTERISTICS.
The Generating Function,
The Expected Number in the Queue
Expected Number in the System.
IV, APPLICATION OF THE MODEL.
Service Facility .
System Parameters.
System Evaluation.
V. SUMMARY OF RESULTS.
BIBLIOGRAPHY .
APPENDIX A .
APPENDIX B .

APPENDIX C

iv



Table

II,
TIT;
IV.

VI,
VII.
VL.
IX.
X.
.
XII.
b, 4 5 7 R

LIST OF TABLES

Page
System Parameters . . . . . . . . « « . .« . . . 25

Chi-Square Test of Arrival Data - Item 1. . . . 26

Chi-Square Test of Arrival Data - Item 2. . . . 27
Chi-Square Test of Arrival Data - Item 3. . . . 28
Erlang FactorB. « « o o o o w % % & @ @ & & @ w &3
Chi-Square Test of Service Data - Item 1, . . . 30

Chi-Square Test of Service Data - Item 2, . . . 31
Chi-Square Test of Service Data - Item 3. . . . 32
Distribution of Number in System. . . . . . . . 34
Number in System. . . . ¢« « ¢ ¢ ¢ o ¢ o« o « « « 34
Frequency of 1th Item in System . . . . . . . . 35
Pormals COMPErISoN, « o s & w @ 5 & & @ 5 ¢ @ w  Hg

Values of System Characteristics. . « . « . . . 37



LIST OF BIGURES

Operation System, . . . .

Density Function -~ Item 1
Density Function - Item 2 .

Density Function - Item 3

Service Distribution Function - Item 1.

Figure
1
2. Arrival
3. Arrival
L, Arrival
5.
6. Service
7. Service
8.

Distribution Function - Item 2.

Distribution Function - Item 3.

Distribution of Number in System.

vi

Page

26
27
28
30
31
32
35



CHAPTER I
INTRODUCTION

A queuing process is composed of a service system

and an input source which combines to establish an output
(1). The study of operational systems with variable de-
mands and service is a problem in congestion. Most of the
previous work in queuing theory de#elops the single channel
model with input from a homogeneoug single Poisson process
with service times of an exponential nature, The develop-
ments of interest are divided into the conventional model,

the Erlang service case and the multiple input case.
Conventional Single Channel

The conventional single channel model designed for a
single Poisson input ()) and with exponential service (p)
1s the most widely acknowledged of the queuing models.

The complete development will not be shown, but its most
interesting facets will be mentioned.

The single channel model is characterized by having a
single facility servicing one kind of unit. The mean rate
of arrival (\) and the mean service time (py) determines the
model. The utilization factor p = ﬁ is used in most cases

to simplify the results. The steady-state equations which
1



describes the model are derived by the transition of units
arriving and serviced through the facility. These tran-
sitions are products of Pn’ the probability of (n) units
in the system.

The pure birth and death process of Feller (2) des-
cribes the basic theory of queues. The system changes
only through transitions from one state to another in
single steps. The transitions are postulates of En e
E or En

n+1 -1
the system. The probability P (t+At) of (n) items in the

— En where En is the state of (n) items in

system at a finite period of time (t+At) is composed of

four probabilities during the interval of time (t, t+At).
1. No change, n ™ n

One change from n-1 —> n

One change from n —> n+1

£ W ™

Two or more transitions which are of

higher order and assumed zero.

The transition into and out of each state is the product

of a rate and a probability describing the state. For the

first case of En T En’ where there is no change in the

interval (t, t+At) the transition is the product of no arri-

vals, no service and the probability of no change in state En.
P (t) = (n) units in the system at time (t)

n
1 - \At

il

zero arrivals in the interval (At)

Il

1 - ubt zero service in the interval (At).

In the limit as At — 0 the transitional probabilities of



state E_ becomes —(k+p)Pn. The same reagsoning is applied

throughout the development of the equations of balance or

steady-state solutions for E ,, —> E and E _, —> E .

The complete transitional probabilities will be described
in Chapter II, This limited discussion of the convention-
al Single Channel Model was intended to formulate the

basic idea of the pure birth and death process.
Erlang Service

The Erlang Service distribution is a general type of
distribution having (k) individual phases or stages linked
together to simulate a continuous service facility of vary-
Iing service time. Queuing models utilizing this distribu-
tion involve the simulation of phase type service. The
earliest work of Erlang (3), further work of Jackson (4),
and extensive display by Morse (5) utilizes the Erlang
distribution to simulate general service times.

The Erlang density function is given by the ex-
pression:

(ku)ktk—le-kut

(k-1)!

s(t;k)

The distribution function S(t) by definition is:

" ; _ n
s(t) = [“s(x)ax = e 7Kt Kpl Gl

..=-‘ '
t n=0 n!

Then the mean rate of completion of service TS is:



Ts = Jo S(t)dat =

o

For (k) phases each of service rate (ku) makes for a

L0k o 4™
total service rate of % k.kp =" o

The importance of the Erlang service function is the
fact that each phase has a service rate of (ku). As was
shown in the Conventional Single Chamnel System, the
transitional probabilities are the product of a rate and a
finite probability describing the postulates of the states.
Therefore the service rate of progression from phase
k —> k-1 or s+l —> B becomes (ku) times the probabil-
ity of the initial state. For example, the transition

probability from state En — En become kuyP

, 8t+1 S n,s+1

where P is a finite number or probability of being

n,s+1

in state En,é+l

in phase (g+1).

for (n) units in the system and a unit

Multiple Inputs

The only work found resembling the model presented
in this thesis was done by Ancker and Gafarian (6) and
comparable to Pollocyek (7). The signification of this
work was to develop the steady-state equations, the ex-
pression for (Pn), probability of (n) units in the queue,
and the expected number of tasks in the queue. It was
shown that the results derived were comparable with

earlier results of Pollocyek.



The general equations of balance and the transitional
probabilities are of particular interest. The probability

notation an is defined for (n) units in the queue and the

th) type in service. The initial equations of transi-

(3

tion for zero units in the system:

m
. My iPO(t) 1.1

ct
+
Ml

Equation 2.1 is the sum of the independent probabili-

ties of transition for the state En —_— En from (n=0)

units in the system with no arrivals or service termina-
tions and E ,, —> E for (n=1) units in the system with

(ith

) type in service with one unit of any (ith) type
completing service in (At).
The second equation of balance for one unit in the

queue and type (j) in service:

My 1Py ()

A
= - P‘ : .._.j.
0 (k+uj) i_O(t) 4 xj OP () + Y
1.2
Equation 1.2 is the sum of three independent probabil-

s
ities of transition for the state En —> En’ En—l — En
and. En+1 —_ En with (n=0). The transition En is the

product of no arrivals and no service of any of the (j)

items. The transition En_1 is the product of no service

and one arrival of any (j) type. The transition En+1



is the product of the completion rate of any of (i) items
and the chance the next unit to enter service being the
(jth) type. The final equation of balance is for (n)
units in the system (n>1).

A, i=m

(t) + = . T P_..(t)

0 = -{k+u3)jgﬁ(t)'-+- L x 121 M1 1t ne

J'n-1
1.3

Equation 1.3 is developed in a similar manner as the
other equations of balance with the fact that n=1. The
transition En is for (n) units in the queue with no arrivals
or completions of service. En—l is no service completions
and no arrivals of the (jth) type. E ,, is the product
of the chance the next unit in service is the (jth) type
times the probability of service completion of any (1th)

unit.



CHAPTER TII
MULTIPLE INPUT MODEL

The queuing model is characterized by multiple in-
puts to an operational system of phase type service.
Specilal notation is required to describe the probabilities

of jth arrival with ith

unit in the kth phease.

The development of the analytical solution for the
multiple input queue model is composed of simulating the
transitions by a set of linear equations. The set of

linear equations are solved for the basic probabilities

Pn for n=0,1,2 .., of (n) units in the system,
Input Description

The model to be presented in this thesis is one in
which items arrive in Poisson fashion at a single channel
servicing facility. Each input has an independent service
time density function characterized by the Erlang function
(3). The calling populations are mutually exclusive and
independently distributed multiple Poisson variables. An
unbounded queue is allowed for waiting. Arrivals are
serviced on a first-come first-serviced basis.

The density function for the time between arrivals

?



1s the joint probability function of independently dis-
tributed exponential random variables. This joint proba-
bility function is called a Multiple Poisson Distribution
by Feller (3) who gives the proof as:

s(t) = density function
th

wi = inter~arrival times for the 1 item
S(T) = distribution function
_ ) m
S(T) = 1 - pqw,>T, i1, 2 ...m =1-I p{wi>
=1
m .o m
S(T) = 1- 0 J lie-}‘leT =1- LMl = 1M
i=1"¢t i=1
o th
where A = LT Xi and ki = mean of the 17" arrival
=1
thus s(t) = Q%%El o R AL

Operational System

The single channel facility allows but one input
(customer/item) at a time to enter the service channel,
with all other arrivals required to wait until the pre;
vious customer is discharged. With Erlang Service, the
channel is a sequence of phases, each phase having its
service time distributed as an exponential function.
Figure 1 illustrates the system to be investigated in this

thesis.



7 > QUEUE < ~ OSERVICE

INPUT OUTPUT
: N Ul Jk-1 2| —

OPERATION SYSTEM

FIGURE 1

Each arrival (input) is from a mutually exclusive,
independently distributed Poisson source. With an item
in the kth phase of the service channel, an arrival waits
in the queue, in its order of arrival. The item in service
progresses to the head of the service facility which is
numbered in reverse, by the sequence k, k-1, .,.s+l,
S...2, 1. The service channel has a total of (k) phases,

which must be traversed in turn before a new arrival may

be admitted.
Notation

The following mathematical notation will be used

throughout the analytical development.

ans = Probability of (n) units in the queue
with type (j) in service phase (s)
0P00 = Probability of zero units in the queue

and in service



i .
P = T (P = Probability of (n) units in the
n =1 Jn .
queue and one of any type in
service
k
P = T (P __ = Probability of (n) units in the

J s=1 J ns
queue with type (j) in service

& th
A= B lj = arrival rate of unit
=1
Kipyo kzpz, . kyu; = service rate of 11 phase
k-1 Kk s
0 = ZT} s+n 1) \ L
n _ MK,y
i Qﬂc y JF

Where a, is a constant relating the transitional re-

currence.
Steady-State Equations

The equations of balance are a set of homogeneous
linear difference equations representing the transitions
into and out of the gqueue states. Each equation is a com-
position of the probabilities for (n) units in the respec-
tive phases of k, (k=1, 2, ...8+1, s...). The transitions
describing the probability are each a composition of the
states of (J) unit in service phase k with (n) units in
the queue, There are five independent probabilities that
describe the steady-state equations. These are shown with

the initial and final state probabilities as follows:

10



INITIAL FINAL

STATE STATE PROBABILITY DESCRIPTION
000 000 ‘XkéPeo No Arrival - No Service
m
jo1 000 jzl kjpj jP01 No Arrival - Service Com-

pleted phase 1 by jth

item

jok jOk -(HKJHJ)JPOk No Arrival - No Service from

phase k
000 jok lj OPOO Arrival to phase k
A, m
311 jok —l zk P No Arrival-Service com-

pleted from phase 1 by
(jth)

bility next item is jth

item times proba-

type

jOs jos -(K+kjpj)jPOS No Arrival - No Service

jo,s8+1 jos Service from phase s+1 —>.§

kj“j jPO,S+1

ng ins -(l+kjpj)anS No Arrival - No Service

jyn=1l,8 Jjns X JPn_l s Arrival - No Service

jyn,s+l Jns No Arrival - Service phase

Kybsy 3Pn,s+1
s+1] —> S

jnk jnk -(k+kjuj)ank_ No Arrival - No Service



INITIAL FINAL

STATE STATE  PRBOBABILITY DESCRIPTION
jy,n-1,k jnk Xan-l,k Arrival - No Service
. A oo

Jyn+l,1 jnk X izlkipi iPn+l,l No Arrival - Service

completed from phase 1

The steady equations then become the sum of the in-

dependent probabilities for the transitions described

above.
i N\
_ Py
121k1“i 1Fo1 = * oFoo
M m n=0
- <a<
(x+kjuj)jP0k = xj 6P * % 1Elkipi 1P11 1<s<k 2.2
+ ) L = .
Ll 1Foe = by o, / 23
(bl gug) Pre = MPrg,s Y X5My 3P0 01 for n>1 1<s
-{\_j— m 2‘5
“‘“kj“j-)jpnk = ) an—l,k % o 1§1kiui .an+1,1 Por nSi
2.5

Solution For PO

The characteristics of the system defining all con-
ditions of the queuing model has as its beginning the de-
velopment of PO’ the probability of zero units in the
queue and any of the type (j) units in service. P0 is
likened to the first term of an infinite sequence. The
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sum of sequence is one (unity) in order that the sequence
can be defined as a probability density function,

The first step in developing P, is to find a re-
cursion relation connecting the initial equations. This
recursion follows from the initial equation 2.1, 2.2 and

2.,3. By induction the following is true:

AZ.P = ZK.

$in-1 1My 5P

2.6

nl
For n=1 in equation 2.6

P

APy = ZKypy 4Py

J i
The proof for n=1 follows from summing the j's in
equation 2.2, substituting equation 2.1 and adding the

results to equation 2.3 after summing the j's and s's in

the following manner,

l?jPOk * l?ngOS * A oPoo * ?kjuj Fox = * oFoo * ZeiMy 1Pyy
+ Tk P s
3 3F ok

Next substitute equation 2.6 into equation 2.2, rearrange
and combine. The expression for the initial probability

P is then

0% 00
MK LU
b i o | -
ofoo = X sFox §1P0 2.7

Equation 2.7 contains (m) equations in (m) unknowns

that is solved by repeated substitution to give:
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. Ay . 2.8a
iFok = Ok gu ) (1-ay) oF o0

Substituting 2.8a into equation 2.3 after developing a
recursion relation from equation 2.3 as follows:
k-s k-5

) - :_1“.1> i 000
a4 i ok ~k+kjpj 1+kjuj (1-&1)

<}\+k u

2.8b

By Definition: jP0 = ngOs 3 jPOk

Substituting 2.8a and b in the above definition, changing
the order of summation, and combine terms yields the
equation:

OPOO 2.8¢c

(l-al)

Z 7\+ka ) Ak “j

Then by Definition: PO = ?jPO

Substituting this definition into equation 2.8c yields

the expression for P

k-1
5 =Z M B NSoPoo
0 L Ak, u Atk 1- -0
a
P —— 5 2.8

Solution for Pn

The probabilities defining the balance of the states

of the queuing model for n>1 are derived from the steady
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state equations 2.4 and 2.5. These two equations are the
queue equations that define the transitions for higher
states (n>1).

The recursion equation 2.6 for the initial equatioms
is likewise true for the queue egquations. The proof
follows in a similar manner by summing the s's in equation

2.4, the j's in equation 2.5, and combine.

K
X?an ¥ ?kj“j ifn = k?Jinl F gjsigfjuj 7ms * Pkt aPner

Substitute equation 2.6 for n=1

= >
l§an-1 fki“i iPnl for n>1 2.6
Ql Eq DO
Substituting equation 2.6 into the queue equation 2.5

gives the recursion relation for the probabilities of

n>1, Combining and rearrange develops:

X l+k.u.
. R .21 » >
lijn~1,k Kj ank ?an for n>1 2.9

Equation 2.9 contains (m) equations in (m) unknown that

can be solved by repeated substitution to yield the ex-
k

Since Z,P =Z ¥ P then combining

pression for
ﬂ n 33431w

ank'

the queue equation 2.4 defines an expression in (m)
equations with (m) unknowns for the transitions for all
(k) phases and for n>1.

Solving equation 2.4 by repeated substitution yields
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an expressiou:

- | VI
LR G s e

Solving the (m) equations of equation 2.9b
simultaneously and substitute equation 2.10a, by

induction yields the following:
" nk-1

¥k (7\+1;ju ) ( Z 22(S+r-1x>&+k My / (M]::uiij i"n-r,k

ip=1s=0

+

iul F) A
k+k (A+k “1> i"n-1,k ¥ Jij(l'al)lijn—l,k

0 for i#)

where 6ij =Y for 1=9 2.10b

Substituting equation 2.10b into equation 2.9 yields
an expression for Pn in terms of the probability of being

in the (kth) phase after making the transition from any

other phase (s).

P = 1?; s+r1\( N MY 5
n 1-o, & & r Ak, 1My P l+k.u./ i"n-r,k
1 - 171
i r=1s=0
K.y <8
: : Hg VIR
+ 4 . P 2.10c
ST (M—kipi/ i"n-1,k
The term .P in equation 2.10c then has to be

i"n-r,k



17

solved in terms of the initial condition OPOO‘ The
probabilities Pm that appears describes the (m) transi-
tional probabilities of prior states. Therefore expand-
ing equation 2.9 for n=1,2,3,... and substituting équation

2.8a yields the expression:

n-1 n sn-m
P . i OPO0+Z)L o +1-m P 2.104
i'nk ~ (Mk,u )" 1-q (MK, . T S :
3 d et L

Equation 2.10c is simplified further by expansion; letting
n=1,2,3,... and substituting equation 2.8a and 2.104

respectively to yield:

i P Bl 3Py
P = “ntl 00, ) —Ztlp _ for n>1 2.10
(1-a,) req 1

Solution For OPOO

The solution for OP00 is derived from the defini-
tion of a probability demnsity function which states that

a sum of all the probabilities must equal unity.

[e2]

1 = OPOO 4 PO + nian 2.11a

Rearrange equation 2.11
2 Pn = l-OPOO_PO 2.11b
n=1

Equation 2.8 and 2.10 contains all the probabilities
necessary to evaluate the expression above. Rearranging

equation 2.10 and summing like terms yields the following:
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© o @ 2 ®

P Ao A=

0”00 n - 3
Eipn - (1-q. )2 E:k T 1-0, L Py * 1-a, z:Pn T o
n=1 ] =1 n=1 n=1
= i P & (L PrnmPi}  on

_ 0700 n 070070 n

an T (1-0.)? Z Mopeg ¥ 1-0, z Nongy Redlo
n=1 Gt n=1 n=1

Therefore substituting 2.11b, combining terms and

substituting equation 2.8 for P, gives:
3
e Wi . Y 5
OPDO = 1-a a, 1 E:Hi 2.11
i=1

==} [a2]
— n _ n
where o = E:h an+1 and the term a+al = z:k an+1
n=1 n=0

is evaluated in Appendix C.



CHAPTER III
SYSTEM CHARACTERISTICS

The measure of effectness of the system can be
described by the mean number of tasks in the queue and
the mean number of tasks in the total system, that is, in
the queue plus in service. The Generating Function (3)
is utilized in this chapter to facilitate the operational
method in the development of the expected values of the

system characteristics.
The Generating Function

The operational method utilizing the Generating
Function is defined as F(z) where (z) is an arbitrary
variable of convenience. The Generating Function is by

definition:

Substituting equation 2,10 for the Pi's in the Generating

Function yields:

_ bk N s B
F(z) = oPyg + Py + Cin )2ZOPOO + E
1

19



Expanding F(z) for all i's (i=1,2,3,...) and summing like

probabilities
P ® zP ®
0”00 1 1 ni
F(z) = .P + P. + 2 {(Xxg)~o + Z (Az)
0" 00 0 (1-&1) yisq i+1 1-a1j;1
=2 - (Az)?
i+1 7 1-ap o, 1+1
. e R
Substituting F(z) - jPoo - P, ”1212 By
¥ F(z)=- P =P ®©
0”00 Q°"00 "0 i
F(z) = .P + P+ —— + - Z (Az) o,
0700 0 (1_a1)2 1-a, yost 1+1
3.1c

F(z) = where o =
Z i

il ™8

i
O(xz) & Fal

The Expected Number in the Queue

The mean number of tasks (Lq) in the queue is de-
rived from the definition of the generating function. By
definition the first derivative of the generating function
evaluated at z=1 is the expected value of the distribution
of the number of tasks waiting

d
a iz %z 0fo00
z

F'(z) = &F(z) = 3.2a

g (1-az)2

20
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Since the term (1—az) for z=1 is equivalent to OPOO from

equation c¢.1 of Appendix C, the derivation F (z) reduces

to:
. _d -1
F(z) = 33% oPoo 3.2b
Substituting c.2 from Appendix C
Therefore, i
k.+1. A
i % ( 1 S P
L 2k1/ uz
L, = F (1) = =1 2 3.2
!
LW,
i=1 *

= i‘ Ul s

Expected Number in the System "
The mean number of tasks (L) in the system is de-
rived also from the generating function of the distribu-

tion of the number of tasks in the system. By definition

the generating function of the system:

E(z) = .P +

[=s]
P00 5 i+1
i=

-l ) 3.3a
0 x i

Expanding equation 3.3a for all i's and simplifying

gives:

t=
N
|

= OPOO + zPO + ZF(z) - ZOPOO - zPO

E(z) = (l-z)OPOO + zF(z) 3.3

By definition the first derivative of the generating

function evaluated at z=1 is the expected value. Therefore
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the derivative of equation 3.3 becomes:
E'(z) = %EE(Z) =1~ P __+F'(z) 3.4a

Evaluation E (z) for z=1 and substituting equation

3.2 for F'(1), the mean number in the system:

m
K,+1. A

17N Ay

m o Kz(zki)"f

¢ i i=1 Hy

L=E (1) =) =L+ 1= 3.4

y=g' Ay
” 1_'51__
ul

i

]

1



CHAPTER IV
APPLICATION OF THE MODEL

In order to demonstrate the pradtical as well as the
theorgetical significance of the multiple input queuing
model an actual service facility was observed. The
characteristics of the facility are the same as the
theoretical development given previously as Poisson
arrivals, Erlang service, single channel facility, single
queue with service as first-come first-serve. Each
characteristic will be presented with its respective
distribution function together with the mean and variance.
The observed empirical function will be tested against
the theoretical function assumed in the model to note

significant difference.
Service Facility

The actual situation observed was a repair and
modification facility of a large commercial airline,
Component assemblies removed from operating aircraft, for
reasons of malfunction and inoperative conditions, are re-
paired and tested in order that they may be made service-

able for re~installation.

23
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The required service time to repair a given com-
ponent was observed to compare favorably with the Erlang
distribution function. This is justified in part by the
service procedure which has a sequence of phases described
as disassembly, repair as required, reassembly, test and
final handling.

Because of the many types and varied construction of
aircraft and engine components, each service facility is
primarily a job shop. There is in general a classifica-
tion and grouping of similar items requiring a common
mechanical skill to repair. The work consists of a
single repairman making serviceable a group of components
of similar construction but differing in size and com-
plexity.

The several components, requiring a similar repair
skill, arrived in a random manner distributed as Poisson.
They walt in a single queue and are serviced in the order

of arrival.

System Parameters

The situation observed contained three components
that required repair, each requiring a random amount of
time to complete service. The service time is of the
Erlang type. Table I lists the mean values of arrivals,
service and k factors of the Erlang Service distribution.

The arrivals of tasks to the service facility was



TABLE I
SYSTEM PARAMETERS

A

. th : 2 B 1
i Item kl “i My ki E;
1 1.19 1.77 Fe13 10 67

2 A1 3.39 11.49 L 12

3 A1 2.42 5. 85 Iy 17
TOTAL 2,01 .96

found to be Poisson distributed. The chi-square test was
utilized to determine the confidence of the observed (01)
vs the theoretical (e,) probabilities. The 95% confidence
interval of the chi-square (i?os) with degrees of freedom
(V) shown for each item type. Tables II through IV list
the arriyal data observed. FEach table is displayed |
graphically, with the theoretical density function drawn

and the observed probabilities shown as an &.
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FIGURE 2
ARRIVAL DENSITY FUNCTION - ITEM 1
TABLE II
CHI-SQUARE TEST OF ARRIVAL DATA - ITEM 1
Qty/Day Freq. 0y e, (0, -e,) S S
i

0 23 31% 30,1 7T .81 - .0270

1 30 4o.5 36 .1 19.36 .5363

2 10 13.5 21.7 67.24 3.0986

3 o by 14.9 8.7 38, 44 4.4184

Ly 2 2.7 2.6 .01 .0038

74 8.0841

For V = 4 x° 9.488

.05 ~
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FIGURE 3

ARRIVAL DENSITY FUNCTION - ITEM 2

TABLE IIT.

CHI-SQUARE TEST OF ABHIﬁﬁf*DATA - ITEM 2

' . 2 (01—81)2
Qty/Day Freq. 0, ey f@%rei) z™
1

0 51 65.4%. | 67.0% 2,56 .0382

1 24 30.7 26.8 15.21 .5675

2 2 2.5 - 5.4 8.41 1.5572

0 0 7 w49 .7000

L 1 01 07 .06 .0036

78 2.9143

For v _= 3 X 05 = 7.815
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TABLE IV

CHI-SQUARE TEST OF ARRIVAL DATA - ITEM 3

28

(0,-¢,)%
Qty/Day Freq. 0y e, (Oi~ei) =
i

0 50 64.0%8 | 67.0% 9.0 L1343

1 24 30.7 26.8 152 L5671

2 L 5.1 5.4 .09 0166

3 0 0 R .49 .7000

78 1.418

For v = 3 X?05 = 92,815
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The observed service times for the ith item was

found to be Erlang. Because of the small sample obtained,
it was determined to evaluate the service times as un-
grouped data. Tables V through VII lists the data at the
points uit with the respective chi-square coefficient.

The ungrouped data is plotted as the H%T probability

(7) (8)

interval for Table V and as the median rank for
Table VI and Table VII, The observed values for the
chi-square test was extracted from the "best fit" of the
observed data,

The following table lists the chi-square values for
the service time corfalation with the respective degree's
of freedom (V) at the 95% confidence interval.

TABLE V

ERLANG FACTORS

1] 9 15.0133 16.919
2| 8 3.0971 15.507
317 10.417 14,067
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.80

.20

Time-Hounrs
FIGURE 5’
SERVICE DISTRIBUTION FUNCTION - ITEM 1

TABLE VI
CHI-SQUARE TEST OF SERVICE DATA - ITEM 1

. » (o.l-e'.)2
TIME 0, e, (oi-ei) 9
1.8 4,0 .8 10,2400 12.8000
2.7 9.0 8.4 . 3600 .0428
3.6 24.0 28.34 18.8356 6646
4.0 3540 L1 .26 39.1876 . 9497
4,5 51.0 5,21 10.3041 .1900
5.4 76 .0 75.76 .0576 .0007
6.3 88.0 89,06 1.1236 L1254
7.2 96.0 95.67 .1089 .0011
8.1 97.0 98,46 2.1316 L2164
9.0 98.0 99. 50 2.2500 .0226

30

15.0133
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SERVICE DISTRIBUTION FUNCTION - ITEM 2
TABLE VII
CHI-SQUARE TEST OF SERVICE DATA - ITEM 2
2 (0, -e )2
TIME 0 e, Gol—ei) 3
e
i

47 0 .91 .8281 .9100
9L 11,0 7.88 9.7344 1.2353
1.42 21.0 22.13 1.2769 .0576
1,88 40,0 39.75 .0625 .0015
2.36 55.0 56 .65 2.7225 . 0480
2.83 65.0 70.58 31.1364 LLb11
3.30 76 .0 80.94 24,4036 .3015
3.77 86.0 88.11 4, 4521 .0505
4,25 95.0 92,81 b,7961 . 0516

3.0971
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SERVICE DISTRIBUTION FUNCTION - ITEM 3

TABLE VIII
CHI-SQUARE TESTS OF SERVICE DATA - ITEM 3

32

2
(0,-e.)
2 : SoRDI 1
TIME 0y ey (Oi-ei) o
2.97 28,0 2Q.13 34,457 1:557
3.97 43,0 39.75 10.562 .265
4,96 63.0 56 .65 40,322 L7117
5.95 69.0 70,58 2.496 .0353
6.94 74,0 80.94 48,164 . 5950
7.94 76.0 88.11 146 .652 1.664
8.93 78.0 92,81 219.336 2,363
9.92 80.0 97.76 315.417 3.226
10.417
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System Evaluation

The evaluation of the observed system under review
consisted of comparing the observed number with the ex-
pected number in the queue and in the service facility.
Table VIII displays the distribution of the quantity per
day for each item observed. The mean number (¥) and the
standard deviation (s) of the empirical distribution are

shown for the ith

item. Figure 9 displays the distribu-
tion of the total number of items observed in the system.
Shown below in table form is the theoretical and
observed mean number of all items in the system. Very
favorable results were obtained from:the small sample

observed.

Observed Theoretical¥*
X = 14.615 L = 14,781
8 = 6.951

The observed distribution of the mean number of all items
in the system was found to be Erlang with a factor k=4.

The theoretical distribution is shown in Figure 8.

#*Equation 3.4



TABLE IX

DISTRIBUTION OF NUMBER IN SYSTEM

34

Fregquency
Item Item Item
ty/da 1 2 i .
0 1 0 1
1 2 9 13
2 5 9 9
3 6 13 14
L 13 9 14
5 10 6 0
6 13 2 1
7 11 ' 7
8 9 2 A
9 2 6 5
10 L N L
11 1 3 3
12 0 1 1
TABLE X
NUMBER IN SYSTEM
i 1 2 2
X 5.50 L4.4o 4. 50
3 2,42 Fe 51 17
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|

FIGURE 8
DISTRIBUTION OF NUMBER IN SYSTEM

The selected values from the observed mean number in

the system plotted in Figure 8 are shown below:

TABLE XI
FREQUENCY, OF ith”ITEM IN SYSTEM

Qty/Day 5 10 15 20 25 | 30

Probabiiity (%) 95.0 63.7 35,0 26.3 7.5]1.2




CHAPTER V
SUMMARY OF RESULTS

A review of the available information for evaluation
of a service facility described in this paper illustrates
the variance in results to be obtained. The degree of
error in assumptions such as exponential service and
combined inputs when in reality multiple inputs and
Erlang service is shown for the two previous results.

In order to show the magnitude of the error, comparisons
of the following available models will be made.
A - Ancher and Gafarian (5)
B - Morse's (4) Single Channel exponential
service
*C - Morse's (4) Single Channel Erlang service
with a single combined input
D - Results of this paper
Table XII displays the formulas for evaluations of proba-
bility of zero units (P,), mean number in the system (L)
and the mean number in the queue (Lq) from the models
shown above. Table XIII displays the values for each of
the formulas when the data in Chapter IV was assumed to

be of the desired type.
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TABLE XIT

FORMULA COMPARISON

-
-

37

Model P L L
0 q
A o N .
O [ e ¥ e Sy 1 ) —k
- My My q 2
i i i M4
1 - F,
; 2
B 1-p T-p T-p
. " 2kp-p°(k-1) 2 (k+
2k(1-p) 2k(1-p)
m
k +1 ll g ki+l ki
D 1_2__1___ T"_l i=1 1 =1 17 Wy
Hy L My 2 m
1=1 i=1 Z_i A
u 1- » ==
i=] = Hj_
i=1
TABLE XIII
VALUES OF SYSTEM CHARACTERISTICS
Model Py L Lq
A .04 25.4 24.4
B i21 3.8 3.2
C o5 2.7 2.0
D .0k 14.8 13.8




The results of Table XIII indicate the variance
In the system characteristics by the assumptions of
the model. The value of the results of this study can be
shown in the ratio of the three common system models.
The factor displayed below is the ratio of the common
model (A,B,C) to the value of the model (D) derived in
this study. It is observed that an error of magnitude
.14 —> 1.8 is likely. The meaning is significant in

considering the dollar value of inprocess invéntory.

38

Model PO L | Lq
A 1.0 1.70 1.80
B ' 5+3 29 Wi
C 5.3 - .18 .14

A comparison of an analytical solution with empiri-
cal data requires careful scrutiny by the researcher,
Several common factors influence empirical data. The
number of items in the system caﬁ be composed of a quanti-
ty surplué to an effective operation. It is usually found
that over-provisioning of in-process quantities causes
an inflation of the observed number with little change
in the service and arrival rates. The service rates are
influenced by the performance of the manpower engaged in
the activity; . Where a time-standards program is in effect
the researcher is.abte to adjust the empirical service

times by the performance and utilization factors.
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.Miscellansous.-factors causing interruption 6f the operation.
due to absentees, learning curve, work shifts and others
should be reviewed for their effect on the observed data.
Experience in analysis of empirical data and a review of
the service operation enables the researcher to evaluate
the effect of thé influencing factors.

IFurther study of the multiple input model should
develop the distribution of walting time and the variance
assocliated with the mean. Refinement of the technique
described in this study could produce tables or graphs
for ease of determining the theoretical results. Some
consideration could be given to model the Markov process
described in this study within matrix analysis for the

study of the transient conditions.
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APPENDIX A

SOLUTION OF PO

Firgst Step is to Find Set of Linear Equations for Initial

Equations
Sum the j's in Equation 2.2

k?jPOk ?kj“j sFox = *oFoo * fkl“l 1P11 A.la

Sum the j's in Equatlon 2.3. and substitute Equation 2.1

zkj“j Fox = "2 Zs 1 3Fos ij“j iFo1 ~
3

J

|

k-1
f{‘? P
! Lg=1 sFos * M o0 —

J
Add 2.6a and 2.6b

?\EJPOR . xz ZS _1 Pos * * oPoo * ijuj P = b P+
;

Y
ki“i iP11 + ij“j jP0k A.lc
i J
Combine terms
RZJPO = ;ki“i iPll 2ib
J i
Substitute 2.6 in Equation 2.2
L
- i
(l+kjpj)jP0k = lj ofoo * x k? jPO 2.7a
Combine and Rearrange
Ak W m
N |
P = P Eﬁ=1 iPO 2.7

0" 00 xj ok



Next show that equation 2.6 holds for n>1

Sum the s's in equation 2.4

k-1 k-1 K

(k+k H ) ..8=1 JPns - l-:.s:l an-l,S * kj“jés:Z ans

Add equation 2.5 to 2.6a

1 ; Tﬂk“‘l
(kg Sk =1 3Fns ¥ MR P = Moot Fnor,s ?
k %
) A
kjpn—l,k * 315*2 JPns A 7ki“1 iPn+1,1
i

Sum j's and combine

Kk
_ \' S
x P + Skj“a Py = lijpn—l L ts=2kj“j ans +
j J J J
Y‘t
ikiui iPn+1,1
i
Substitute 2.6 for n=1
WP+ kM. Po= kW P 55 wm ms
oLyn o LT3 i n i1'nt 4~ Ls=2"3"] jns
J J | J
N :
L KP4 iPn-l,l
3%
Combine terms
A Po= Tk M P For n>1
Jn g s VO S ot o Y | -
J i
Substitute 2.6 in equation 2.5
(Mk.M.).P = )X .P oo fT P n>1
3737 nk J'n-1,k A cjn U=

J

A.2a

A.2b

A.24

2.6

2.9a

L2
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Combine and rearrange

Atk LM =
A - (——1 3 N >
lijn_l,k - (5 P Py B2 2.9

J
Expand Equation 2.3

Ak .).P = k.M. .P
(M+kyby) jPog = KyMy 3P0,

(k. uj)j 02 = kj“j jP03

.

(A+k. uJ)J By = kjuj JPO’S+1

Repeated substitution

k.M e kM “
P =il p o (i s M
j 01 x+kJu J 02 Ak, u P j 03 \x+kjuj) j ok

Therefore
f{k.LJ.. 8= 1<r<s
sFor = \ N i/ Pos  1<s<x e

Expand Equation 2.7

Ak M =5
p=—2LLp _)p
07 00 A, 10k " £170

1

~ K+k2H2
000 ~ A 2" 0k 0

Ak M :
i o | _
Poo = =%, iPox Z_‘LPO



Solve simultaneously

X+k1HJ . ) k+k2u2 .
ll 1" 0k 12 27 0k
Since
k+k:u3 . l+k2p2 7. = A+k1u1 5
A 3" 0k T A, 270k A 17 0k
3 2 1
Therefore
X+k

M AL
( X . I) <A+k;pj>1P0k

Let j=m and n=1

A+k
m (A+k ) - ”“n>n Ok
M

Substitute A.3a into A, 3c

Atk
<A+K oo ) (k+k Mo ) “n

Expand 27
AK LW
ofoo = Y ;P ok "[1P01 * 1Po2 T 1F03

0k

2Pot * 2P0z * 1F03

A.3b

A.,3c

L
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Substitute A.3 into Expanded 2.7

For j=3. B
- Ak k k-1 A k k-2
Poo = ™x =X N0 (11; Cer Ry - J
0" 00 3 3" 0k \ 1M1~ K My koM
A ‘
MKy o/
ouiohs Kt ry L oMy EEBAG o Mm
k+k2u2, k+k2u2, al+k2u2/ -k+k2p2, X+k2g2-
K k-1 \ . % k-2 \ A
.Y - A+ . s LRt + 'r
3H37 3H3 3H37 3H3 3H3
l+kmpm. X+kmpm/ l+kmpm,
Rearrange ‘
. MK s ofy A Kby .k-=1+ Equy .k—i_")
0" 00 Ny 30k MKWy | AR e
\ . " \ ’
.- ( Ly 1+{k2“2 K-z )
n+k,u, l+k2u2/ 1+k2p2/
Therefore

m k
. ~ Ak M " - v T rli N ,kiui k-r
e 'L (%
i=1 =

= = ‘ )

0700 3 37 0k = . l+kiui/ +kiui,
m k

Let a = T T ! )Ll klul ) k-’r‘



Then

A
iFox = (l+kjuj)(1—a) oF00 3.8a



APPENDIX B
SOLUTION OF Pn

A k.4,
Expand Equation 2.4 P =3=5— B = + "{"]
yms MRy Jn-1,s x+kjuijn,s+1

1<s<k n>1

K.u
For: =1 8=1,2,34... Let: a“k+; m b'klki
;g% Sl
P.. _ k-1 k-1 5 =
JA1 = ajP01 + bjP12 = ab jPOk + Uab POk + b ig =
k-1 5
5ab POk + b 16
17 = _ k-2 k L
jEIZ = ajPOZ + bjP13 = ab jPOk + 3ab POk + b jP16 =
k-2 4
Lab JPOK + b jP16
_ _ k-3 K~3 3 -
jP13 = ajPOB + bjPlu = ab jPOK + 2ab jP0k + b jP16 =
3 3
3ab jPOk + b jP16
_ B k-4 k-4 2 _
jqu = ajPou + bjP15 = ab jPOK + ab jPOk + b jP16 =
k-4
2ab jP0k + b~ .P 6
P _=aP.. +bpP,, =abi 2P, +b.P
§15 705 746 i~ 0k j 16

Note: Use Equation A.3a to substitute 3 (A+k “ .

L7

jPOS
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For: n=2
P = g,P + b.P =5 2 k-1 5 2. k-1
21 J 11 22 ab jP0k + ab jplk + 10a™Dp jP0k
5 ) - 2, k-1 5 5
+ Lab jplk + b jP26 = 15a"Db jP0k + 5ab jP1k + b jP26
B .2 k=2 L 2. k=2
jP22 = ajP12 + bJP23 = 4a"p jPOk + ab jP1k + 6a”b jP0k
L L _ 2. k-2 L L
+ 3ab jplk + b jP26 = 108°Db jPOk + lab jP1k + Db 3P26
For: n=3
o i le=1, : 2.5 5 5
ijl — 35a b jPOK + 152D jPlk + 5ab jP26 + b jP36
i 3. K~2 + 2. 4 " L L.
jP32 20a”b jPOk 10a”b jPlk Lab jP2k +'b_j?36
Therefore:
% m+r-1. A \rfk1“1 m
ans - L,(m-l o UMK LM LS \AHK LML an—r,s+m 15m=k-s
Bl
Expand Equation 2.9
MK M
. S L —_ _1_15 o
For: j=1 X 1Pn—1,k =~ 1Pnk Ean
1 1 J
AR M
. A or2
= P i e 3 - TP
J=2 A2 n-1,k X, 2nk ~ jIn
A+K M

yoody A _
=3 XBBPn—l,k s R ?jpn
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Solve simultaneously

MK M A+k

2 ZP _ ___l.u._l_ P = .2\__ P - L P

lz 2-nk Xl 1" nk X22 n-1,k Kll n-1,k
l_‘Hi‘}i’i P - H_kgﬁ P = da o e P

13 3" nk lz 2 ' nk 133 n-1,k k22 n-1,k

Therefore:

A MKy A A
P = . P + =.P - =P B.2
J nk h+kjpj 3 1" nk ij n-1,k Xll n-1,k

1

Substitute Equation B.2 into the term r=0 in Equation B.1

For example:
'

the r=0 term is: (Kfﬁiﬁ_D ank 1<m<k-s
il
then
B Jn X rl+klp1 A

(l+k g 3 Pax = (A+k e ) s L_ X, 1nk " AJ iFn-1,x%

LA v
- X 1Pn-~ %] '

~ k u1 Rl

= (x+kjuj/ Kx+k M /'j n-1,k
; ( 1u1 \m(k N MKWy 5 RN ]
K u 5, x+kjp ) A, 1'nk T A1 n—l,k;J

B.3

Expand Equation 2.9 for values of n=1,2,3...

2 T, s )\.'l"k “.
-1 a=d A o ik, -
For n=1 j=1 RllPOk = hl 1P1k f[ P + P12+1P13+ ;

+1Plk]



Substitute Equation B.1

b R
A 1 Ok X, 1 11
T |(k-1){ )H_; , I:ilti k\j}kwl-POk * ( };itl .'k_l
1 Vpriy g™ "oty s 2 ATy My
+(k‘2){x+§ 3 (tiii Ik_ziPOk % (ii;i >k~2
et i 1M1 1My
+(e-3) T \fi;i knBiPOK i ;%;L**-kjg
<Aty Wi hat] TRy My~
\ 1My KiHy

( P 4 (=X
k+kiui/ &l+kiui,1 Ok \k+kiui/iP1k

50



Substitute Equation B.3 into B.4a

A 5 _ l+k1u1 5
1Pk = X, 1fik
, k.M., k-1
¢ lic] —2 . P

-3 x+kiui. \x+kiui i~ 0k

1 A
# - P - —.P
k+kiui, xk+kiui/ ll 1" 1k kll Ok
k.4, k-
# (k'l)‘x+ﬁ \xiil .’ 2'P0k
e Sl T A
. N kR, k-2‘X+k1u1 o Ao
MK ML MK M Coh 11k A1 ok./
PR W 7.
MK Py MR H 10K
e TN T W p _Aop
+ l+kiui, k+kipi xl 171k kll Ok.
- S i | SOV T
MK M, 1 0K K, W A, 1 1k ~ X 170k.
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Rearrange and combine terms

MK W M My o KL X, m
11 p _ ZJ vk
kl 171k kl 1 1k L k+k i- 3X+kiuiz
i m=0
k-1
o fm+1 ; . k.M m
v N 1 ;r A ){ i™i P + L P
N / \1+kiui -k+kiu1f i” 0k 111
i m=0
-E?l K. u .m
- &3 7 lsmt T e H,/ 170k
1 1 m=0
/m+1‘.
where k.l 3 is Binomial Coefficient
Therefore i k 1
mtn-1_ " i“’l
Let. &, = Z 7k n-1 ) MK M - Kk+kiur
=1-m=0
m+n-1.
where o is Binomial Coefficient
k-1
A 1" 1k el : l+kiui, KWy
i
¥ (1'“1)x11P0k
k-1 B
3 Ay Sl A KiMy
1 (k+k1u1)(1 al)l m;o 1 MKipg o Mk, p

In a similar manner Equation B.2 For n=2 j=1

A Atk W ol
le 1K X, 12k "o o1t21 7 1722 7 1723
i

B.4e

0k -~



Substitute B.3 and B.4a

Atk W
Pl =_.._.__j.'_..lP

A
A1 1K u, 12K

Cg k-1 a2 KMy kL
i 2! k+kiuiz - Ak i" 0k

et
+k x+; ) 'ii;i hk-liplk
at! 1My~
k-1
ey Bl e Lo P O )
MR W, MK A 12k T M 171k
L Q1) (e2) _h FKH KR
2! l+kiui k+kiui/ i7" 0k
K. M. K-2
A B Eigga
+ (k-1). P
k+kiui, -k+kiui) i1k
b Kapy k=2 Ml o kg
SR U - }fkiuif T_}l'.“% 2k }1;.?k'
TN ? ki?i Lp KMy P
CAER L ARG e 1T 0K ARG g - MR - 1K
: X.l k.lp,.l k+k1piP _LP
MK M- AR N, 12k A 171k
+ ol P * )\i \)ﬁklul P —-LP
Mgtk T Mkguy N A 1T 2kTh 1 1k
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Then
A - k-1 m+1 y KMy om
tfox = Tk gV (1-0,) - 2 |\ 1 . “¥k, W, (o L 1P1k
171 i
i m=0
(f+I  ( 2{1{.1}.1i m .
B o k+k g4 \h+kiuif 17 0k
+(1-a )K 1 1k B.5
In a similar manner
for n=3 j=1
- ll (é+2> 3 K. 1My m o
1" 3k (Mk, M, )(1-a k+k M "KL ML 10Kk
17 1 i- 1.7 1,
m+1. h 2.kiui .m

W5 ) G Ry KK Ho iP1k

m+1 k.u. m
+{ (= — v
<1 Mk H o Rk ML/ 12k
+ (1-0 )2 P B.6
1 Kll 2k s
Therefore by induction
r k-1
P . = _il__ AN RN :m+r—1,|, A r(% 1M4 p
i nk (x+k.u.)(1—a1)L L LN v oAk, My MK (M- 1Tn-ryk
JJ i|lr=1m=0
i ok BeMy @ 3
Mk My MR 1Tn-1,k
A
+ (1-a, )=—.P
" 0 for 1#} lJ 1 kJJ n-1,k
where 6, = ) rop 1=j 3.104
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Rearrange Equation 2.9

JL-'r-k_. bz A
P =3Y.P = —x—i—l.P - 2= P
n i1'n A i nk A, n-1,k

Since EiPn = P

n

and substitute Equation 3.10b

n. k-1
o 1 T, Y, y. {m+r-1 . A ‘r{kiui \F 5
n 1—a1l ~ L % r ¥4 \k+kiui,'\l+kiui/ i"n-r,k
' i r=1m=0
TN gy
* (A*ki”if Kk+kiui) iPn—l,k Be?

Expand Equation 2.9 for n=1,2,3,.

X
o -1 5 A
For n=1 jP1k = X+kjuj*1 2 l+kjuijOk

Substitute Equation 2.8a

J 1k A+kgu Tl fk+kjuj)2 b
?\_.I A
For n=2 jP2k = Ak K. 2 + Ak LM jplk
T3 JJ
2
A A ki
_ M - ’_}j » Y . oFoo
x+kjgj 2 (X+Kjuj)2 1 (i#kjuj)B s

’



For n=3 :Pi; = S FE o S—
J 3k k+kjuj 3 (X+kj“_)2 2
2 2
A A
+ ——Ei——-—~P + li 0?00
(k+kju )31 (l+kju yd L0
Therefore
n-1 n n-m
b N s T N
J nk Mk n 1-0Ll ‘ Ak n+l-m m
(it gy meg (MY
Expand Equation 2.10b for n=1,2,3,...
k My m
For n=1 Py = . . W, Akp; 100k

/A : [kiui p
MK uy- AFKGH, 10K

+

Substitute Equation 2.104

1 2 -1 . AMk.u. \A+k.u.. 0700
(1-a _ p s | iki
i m=
For n=2
k-1
2 1—a1 l h:O 1"\A+k1“i' l+kipi/ it 1k

L A Kiy o m 5
k+kipi/ Mkiu;, 171k

L \ 2 ki?i " }
2 Wrkgm, WKy 10k

2.10d4
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Substitute 2,104

k=1
_— Z‘ - m+1 X z ki“i m
2 = 1-ay L 1/ SR, Mkgpg o Tl
i m=0
m] A 2 KMy MoPog
1 k+kiul k+kiui 1—a1
mrl 3 ii“i moP o0
2 X+kipi kil 1—&1
) -1 per ,  2kp, m
Po =1 1 Atk TR, Py
-a M i
1 i me0 i~y 1 i |
e A 2 KMy PoPoo
2 k+kiui l+kiui 1-a4
A hza
= —&-p P
2~ 1-a,71 "(1-a,)2 0700
For n=3
k=1
. | o A Kiby m -
3 1-a 1 K. M. MK, M, 1”2k
1 i #=0 K £
m+1 A 2 ki“i
to2 K MR, . iT1k
1My ik
. m+2 A 3 1M m
.3 MK ug o MK g, 100K
A Kyby B
R ey Tk, pL 0 1°2k
1M1 1M1



i . 2 K.y, m
P = 1 A iy P
3 1-0, = 1 MK U, Ak, W, 2
1 f m=0 i1 : Fas &
W i A 3 Kyky g
1 ./ k+kipi. k+kiui- 1
R B ;W o
1. \l+kiui ‘l+k1“i' 1-a4
+£m+1) PR 3ikipi mP
N B \A+kipi, \l+kiui/ 1
+Irn+1 X L 5191 mQPOO
2 . Mk k+kiui. 1-0,
+kfn+2 ) L Koy mePog
3 s ‘X+kiui. K+kiui: 1—a1
. K= ey y  2ku, m
Py =134, ¢ RPN vu Tt s, T
1 1 m=0 5 K e
e g ey
o 2 A )4 Kiby  MoPog
- 3. l+kiui k+kiui/ 1-&1
2 5 33
A
o o SR, | Nl ¥ stee
3 1-04 1-ay (1-a1)2
Ar P el o0 P
Therefore P_ = Tnt1 000 , rtl n-r
n 2 (1-a,)
(l-al) i 1
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APPENDIX C
Solution of o,

Equation 2.11c contains the infinite series

lnan+1‘ In order to evaluate this infinite series
n=0

it 1s necessary to expand the expression for

on(n=0,1,2,...) and sum.

A | _ 2
Since A Qg = % + kaz + A a3 F e C.1la
1=
k-1
and o, = n xii \x+§ 3 Ké;nll. =ii;i /S G:lb
4 1My ] o i 1.
Expanding lnan+1 for all values of (n)
. : k, -1
. - g li - ki“i N ;kiui 5ol N . k%ipi i
S ARy Mkibg - Mk MK Wy -
- K. M. 2
_ N : s e ( ;
My = x+k ) Lk+k My .1+2l+kiui i3 3\l+k (i
i
k. =1
k . ,’kiui i
\k=-1. * A+k.
) 2a e ll [ A e e 3k1u1 KiMg 2+
3 R T TR YT l+k \ Mk, iMy
1
k, -1

and etec.



n(in+t1).2 . n(n+)(n+2) 3
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Since (1-x)™" = 4nx + Fp=ix + T x” + ...
Summing like terms yields
lnCI.n = -\_ _.}.1-..._..._. 1 ...._L..__._. —1_;,_kiu_i (1__ .K_ —'2_‘_
~ +1. | - l+kipi X+kiui. }\+k.lui k+kiui/
n=0 i
+ k—iui -ki-l 1~ A . C.1lc
-x+kiui; X+kiui”
K.M.
A uiiEie i
Since 1 - T =
x+kipi k+kiui
K, M. s-1 -s MK, M.
s e r A ™3
and o—— 1= = = === for s=2,3,4...
k+kiui/ , x+kiui, kiui

Substituting the expression above and simplifying

(o]
- A, AtK, .

A 2 —_ —_T 1
L an'l'l — '>\+k‘, “‘. o ki ki“i C ». ld‘
n=0 i Lk
Therefore

® )\
_ \y an = a3

a = Zlk Bl = G €.1

Solution of a,

Equation 3.1 contains the infinite series

'8

(kz)la The solution of this series is acéomplished

1=0

i+1.
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in the same manner as 0, - Expand (lz)la for all values

a5 2l
of (i), change the order of summation and simplify. Since
this series is not utilized in the solution of the system
characteristic, it will not be derived. The derivative of

this series 1s important for its use in equation 3.2 and

3.3.

The first derivative %Eaz becomes:

d _ Y% = i-1 1 T, i

%, = A/ 1(hz) Gipq = 3 i(\z) a1 C.2a
1=0 i=0

Expanding for 1=0,1,2...as in equation C.1la

Ka x‘ / )\.j. If)\ A- : _1;14_21%.]-'3.:".’__.‘_ BKXK:LH_]' 2+ e s
2 : l+ki“i“ . +kiui, +kiui +kiu..
o % M 1gghS 7 £ o L 1
= , i N ' b
3 i k+kiui_ l+kiui, k+kipi l+kipi,
and etc.

Evaluate at z=1 and change the order of summation yields:

a, T M N P .
dz "z : -k+kipi/ -1+kiuif k+kiui_
+2 k—iui 1= . — 5
_ K+kiuix : l+kiul
+.I-+ )

kapy ksl S k-2

K, \ = el
i }.+kiui, \@ "?H-kiui'



Simplifying
A
a  _ " M Mgy 2(k+1)k,
dz% ; h+kipi/ \k+kipi. L 2
N '7'-ki+1 li
d—za = A —_ For z=1

z i 2k, . 2
R Y
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