DYNAMIC ANALYSIS OF BEAMS;

 BY THE FLEXIBILITY METHODBy BOEN-DAR LIAW
"
Engineering Diploma
Taipei Institute of Technology
Taipei, Taiwan, China
1958

Submitted to the Faculty of the Graduate School
of the Oklahoma State University of
Agriculture and Applied Science
in partial fulfillment of
the requirements for the degree of
MASTER OF SCIENCE May, 1963

DYNAMIC ANALYSIS OF BEAMS

BY THE FLEXIBILITY METHOD

ACKNOWLEDGEMENT

Material presented in this thesis is part of the results of Institutional Research Project No. 222, sponsored by the Office of Engineering Research, College of Engineering, Oklahoma State University,

The writer wishes to express his sincere appreciation to the following individuals:

To Dr. James W. Gillespie, for his guidance and assistance throughout the preparation of this thesis, and also for his encouragement during my graduate work;

To Professor Jan J. Tum and the Faculty of the School of Civil Engineering, for awarding the graduate assistantship and giving valuable instruction;

To his wife, Claudia, for her consistent understanding and encouragement.

In addition, gratitude is due Mrs. Virginia Neff, who typed the manuscript.

April, 1963
Stillwater, Oklahoma

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
1.1 General 1

1. 2 Historical 2
II. DERIVATION OF THE BASIC THEORY 4
2. 1 Statement of the Problem 4
2.2 Moment-displacement Relation 5
2.3 Moment-acceleration Relation 7
2.4 Equation of Motion 10
2.5 Simplification of the Problem 13
III. APPLICATION 16
3.1 Single Span Beams 16
3.2 Continuous Beams. 16
IV. NUMERICAL EXAMPLES 30
3. 1 General 30
4. 2 Example No. 1 30
4.3 Example No. 2 33
5. 4 Example No. 3 37
V. SUMMARY AND CONCLUSIONS 42
5.1 Summary 42
5.2 Conclusions 43
5.3 Extension 44
BIBLIOGRAPHY 45

LIST OF TABLES

Table Page
3. 1 Matrix Equations - Free-free Beam 17
3.2 Matrix Equations - Hinged-hinged Beam 18
3. 3 Matrix Equations - Fixed-fixed Beam 19
3.4 Matrix Equations - Free-hinged Beam 20
3.5 Matrix Equations - Free-fixed Beam 21
3.6 Matrix Equations - Hinged-fixed Beam 22
4.1 Comparison of Results, Example No. 1,..., 33
4.2 Natural Frequencies and Amplitude Ratios of A Simple Beam. 37
4.3 Natural Frequencies and Amplitude Ratios of A Continuous Beam 41

LIST OF FIGURES

Figure Page
2.1 Beam Segment 4
2.2 Segment $\overline{i j k}$ 5
2.3 Free-body Diagram of Mass m_{j} 8
2.4 Vibrating System 14
3.1 Beam-mass System with Some Masses Restrained 23
3.2 Basic Structure of the Continuous Beam Shown in Fig. 3.1 23
3.3 Equilibrium at Mass m_{j} 24
3.4 Three Span Beam-mass System 26
4.1 Fixed-fixed Beam-mass System 31
4. 2 Simple Beam with Variable Section. 33
4. 3 Three Span Continuous Beam-mass System. 38

NOMENCLATURE

a_{j}	Length parameter of Segment $\overline{i j}$
b_{j}	Stiffness Parameter of Segment $\overline{\mathrm{ij}}$
d_{j}	Length of Segment $\overline{i j}$
f_{j}	Natural Frequency of jth Mode
m_{j}	Mass Concentrated at Point j
p_{j}	Natural Circular Frequency of jth Mode
r	Number of Intermediate Supports
S	Number of Extreme End Restraints
t	Time Variable
y_{j}	Displacement of Mass m_{j}
F	Angular Flexibility
G	Carry-over Value
K	Linear Stiffness
L	Span Length
M	Moment
R_{j}	Reaction at Point j
V	Shear
Y	Shape Function
α	Phase Angle
ζ	Angular Flexibility Parameter
ρ	Mass per Unit Length of Beam
θ	Slope
ϕ_{j}	Angle Change at Point j
$\underline{\Psi}$	Linear Flexibility
$\omega_{i j}$	Slope of String Line $\overline{i j}$

CHAPTER I

INTRODUCTION

1.1 General

The vibration of a continuous elastic system may be conveniently analyzed by replacing the given system by a certain number of concentrated masses connected by massless elastic strings, therefore, reducing the number of degrees-of-freedom to a finite value.

Only pure bending is considered in this thesis; the effects of rotatory inertia and shearing deformation are neglected, although, these latter effects may be appreciable in the higher modes of vibration.

In the consideration of the free vibration of a beam in bending, the usual limitations of beam theory are utilized, The representation of the elastic curve of a straight beam as a differential string polygon was introduced by Mohr (1), in connection with his concept of elastic weights and the conjugate beam. Application to static analysis has been developed by Tuma and Oden (2), as the string polygon method.

The free vibration analysis of beams is one of solving a boundary value problem. The differential equations of motion are set up by equating the elastic restoring forces of the beam and the inertia forces of the concentrated masses.

The analysis of the problem falls mainly on the formulation of the matrix equation of motion for the "equivalent" system. Once the
influence coefficient matrix is found, normal iteration techniques are applied to determine the modes and frequencies of the system. Orthogonallity conditions of the modes are employed to find the higher mode characteristics.

Basic theory is derived in the second chapter of this thesis. The general string polygon equation is used to relate the end moments of segments and the displacements of masses at the ends of the segments. Theory for the general case is derived, and is simplified for some special conditions.

The third chapter deals with the application of the general theory to some special end conditions. Tables, indicating the matrix formulation for single span beams of constant section, are presented. The procedure of analysis for both single span and multi-span beams is formulated.

In the fourth chapter, three numerical examples are solved to illustrate the theory presented in this thesis. Results are compared with those by other methods. Summary and conclusions of this study are included in the final chapter. Also, desirable future investigations are indicated.

1.2 Historical

"Exact" solutions for single span beams with constant cross section are easily obtained by solving the differential equations of motion. However, for the non-uniform section beam, no exact solution is available. Approximate solutions for the general case of a vibrating beam were developed by Rayleigh $(3,4)$ in 1877 . In his treatise on the theory of sound, Lord Rayleigh calculated the fundamental natural frequency from an assumed shape for the dynamic deflection curve of the system. In 1921, Holzer (5) presented a method for solving the
torsional vibration problem of a mechanical shaft by first assuming a frequency, and then calculating the deflection curve. In 1924, Stodola (6) extended Rayleigh's principle to the calculation of higher mode frequencies. Holzer's method was extended to the determination of undamped bending vibrations by Myklestad (7) in 1944, and is currently (1963) being applied in vibration analysis. In 1948, Young (8) presented a method to determine the natural frequencies of a composite system, which consisted of a uniform beam with a concentrated mass, spring and dashpot. The vibration of a non-uniform beam was analyzed employing matrix methods by Thomson (9) in 1950. In 1952, Lee and Saibel (10) developed an expression from which the frequency equation for vibration of a constrained beam with any combination of intermediate elastic or rigid supports can be found readily. In 1956, Ellington (11) presented a method of analyzing the free vibration of segmented beams. Vibration of stepped beams were analyzed from the theory of integral equations by Taleb (12) in 1961.

In 1921, Darney (13) found the natural frequencies of continuous beams using determinants. The application of the known natural frequencies and natural modes of ordinary beams to find the natural frequencies and modes of continuous beams was accomplished by Saibel (14) in 1944. In 1950, Ayre and Jacobsen (15) used a simple graphical network to determine the natural frequencies of bending vibration of a continuous beam having any number of spans of uniform length and section. In 1955, a method of calculating the natural frequencies of undamped flexural vibrations of continuous beams on rigid supports was presented by Veletsos and Newmark (16). A method for determining the natural frequencies of continuous beams on flexible supports was also presented by Veletsos and Newmark (17) in 1954.

CHAPTER II

DERIVATION OF THE BASIC THEORY

2.1 Statement of the Problem

A beam segment $A B$ is considered (Fig. 2.1). The distributed mass system is simulated by an "equivalent" lumped mass system consisting of concentrated masses connected by elastic elements: $(1,2),(2,3), \ldots(i, j),(j, k), \ldots(n-1, n)$.

Fig。2.1 Beam Segment

2.2 Moment-displacement Relation

Two adjacent segments jj and $j k$ are considered (Fig. 2.2). Without intermediate loads on the segments if and $j k$, the angle change ϕ_{j} at j can be expressed in the following form (2):

$$
\begin{equation*}
\phi_{j}=G_{j i} M_{i}+\Sigma F_{j} M_{j}+G_{j k} M_{k} \tag{2.1}
\end{equation*}
$$

Fig. 2.2 Segment $\overline{i j k}$

From geometry,

$$
\phi_{\mathrm{j}}=\phi_{\mathrm{ji}}+\phi_{\mathrm{jk}}
$$

also,

$$
\phi_{\mathrm{j}}=\omega_{\mathrm{ji}}+\omega_{\mathrm{jk}}
$$

or, in terms of displacements

$$
\phi_{j}=\frac{y_{j}-y_{i}}{d_{j}}+\frac{y_{j}-y_{k}}{d_{k}}
$$

Let

$$
\begin{aligned}
& d_{o}=\text { length of the reference segment } \\
& a_{j}=\frac{d_{0}}{d_{j}}=\text { segmental ratio }
\end{aligned}
$$

then,

$$
\begin{equation*}
\phi_{j}=\frac{1}{d_{o}}\left[-a_{j} y_{i}+\left(a_{j}+a_{k}\right) y_{j}-a_{k} y_{k}\right] \tag{2.2}
\end{equation*}
$$

thus, the relation between moments and displacements can be stated as follows:

$$
\begin{align*}
& G_{j i} M_{i}+\Sigma F_{j} M_{j}+G_{j k} M_{k} \\
& =\frac{1}{d_{o}}\left[-a_{j} y_{i}+\left(a_{j}+a_{k}\right) y_{j}-a_{k} y_{k}\right] \tag{2,3}
\end{align*}
$$

For a system composed of n concentrated masses, Eq. 2.3 can be written in the following form:

or in the symbolic form

$$
\begin{equation*}
[F][M]=\frac{1}{d_{o}}\left[a_{1}\right][y] \tag{2.4}
\end{equation*}
$$

from which

$$
\begin{equation*}
[M]=\frac{1}{d_{0}}[F]\left[a_{1}\right][y] \tag{2.5}
\end{equation*}
$$

where

$$
\begin{aligned}
{[\mathrm{F}]=} & \text { angular flexibility matrix } \\
{\left[\mathrm{a}_{1}\right]=} & \text { first segmental parametric matrix } \\
\mathrm{F}_{\mathrm{ij}}= & \text { slope at end } i \text { of the simply supported } \\
& \text { segment ij due to a unit moment acting } \\
& \text { at end } i . \\
\mathrm{G}_{\mathrm{ij}}= & \text { slope at end } i \text { of the simply supported } \\
& \text { segment ij due to a unit moment acting } \\
& \text { at end } j .
\end{aligned}
$$

For constant section throughout segments ij, jk,

$$
\begin{aligned}
& \left.F_{i j}=F_{j i}=\frac{d_{j}}{3 E I_{j}} \right\rvert\, F_{j k}=F_{k j}=\frac{d_{k}}{3 E I_{k}} \\
& \left.G_{i j}=G_{j i}=\frac{d_{j}}{6 E I_{j}} \right\rvert\, G_{j k}=G_{k j}=\frac{d_{k}}{6 E I_{k}}
\end{aligned}
$$

2. 3 Moment-acceleration Relation

The dynamic equilibrium of mass m_{j}, which is elastically restrained by strings ij and jk , is considered (Fig. 2.3). For transverse vibration, the mass is idealized to be displacing in the vertical direction only. The forces acting on the mass are the "inertia" force and the end shears, which can be expressed in terms of the moments at the ends of the strings.

Summation of forces in the vertical direction yields

$$
V_{j i}+m_{j} \ddot{y}_{j}+V_{j k}=0
$$

but

$$
V_{j i}=\frac{M_{j}-M_{i}}{d_{j}}, \quad V_{j k}=\frac{M_{j}-M_{k}}{d_{k}}
$$

thus,

$$
m_{j} \ddot{y}_{j}=-\frac{M_{j}-M_{i}}{d_{j}}-\frac{M_{j}-M_{k}}{d_{k}}
$$

or

$$
\begin{equation*}
m_{j} \ddot{y}_{j}=-\frac{1}{d_{o}}\left[-a_{j} M_{i}+\left(a_{j}+a_{k}\right) M_{j}-a_{k} M_{k}\right] \tag{2.6}
\end{equation*}
$$

Fig. 2. 3 Free-body Diagram of Mass m_{j}

For n masses, a set of equations can be written in matrix form;

or

$$
\begin{equation*}
[\mathrm{m}][\ddot{\mathrm{y}}]=-\frac{1}{\mathrm{~d}_{\mathrm{o}}}\left[\mathrm{a}_{2}\right][\mathrm{M}] \tag{2.7}
\end{equation*}
$$

where
$[\mathrm{m}]=$ mass matrix and is a diagonal matrix
$\left[a_{2}\right]=$ second segmental parametric matrix.

The matrix $\left[\mathrm{a}_{2}\right]$ is identical with the matrix $\left[\mathrm{a}_{1}\right]$ in case the boundary conditions for the moments and displacements are similar. However, when moment and displacement boundary conditions are dissimilar, the matrix $\left[a_{1}\right]$ will be modified according to the displacement boundary conditions, while the matrix $\left[\mathrm{a}_{2}\right]$ will be modified according to the moment boundary conditions.

2.4 Equation of Motion

Eliminating the moment matrix from Eq's. 2.5 and 2.7, the differential equations of motion for the concentrated masses will be in the form

$$
\begin{equation*}
[\mathrm{m}][\ddot{\mathrm{y}}]=-\frac{1}{\mathrm{~d}_{\mathrm{o}}{ }^{2}}\left[\mathrm{a}_{2}\right][\mathrm{F}]\left[\mathrm{a}_{1}\right][\mathrm{y}] \tag{2.8}
\end{equation*}
$$

A linear stiffness matrix is defined such that

$$
\begin{equation*}
[K]=\frac{1}{d_{o}^{2}}\left[a_{2}\right][F]^{-1}\left[a_{1}\right] \tag{2.9}
\end{equation*}
$$

which may be expressed as follows;

$$
\begin{equation*}
[K]=\frac{6 \mathrm{EI}_{\mathrm{o}}}{\mathrm{~d}_{\mathrm{o}}^{3}}:\left[\mathrm{a}_{2}\right][\zeta] \quad\left[\mathrm{a}_{1}\right] \tag{2.10}
\end{equation*}
$$

This matrix is always a square matrix; however, the matrices $\left[a_{1}\right]$ and $\left[a_{2}\right]$ may not be square, depending on the displacement and moment boundary conditions. A particular stiffness matrix corresponding to the boundary conditions is obtained for each case.

Since the approach is an approximation of an infinite degree-offreedom system, it is desirable to find the linear flexibility matrix of the system so that the lowest mode frequency can be evaluated first by applying normal iteration techniques. The linear flexibility matrix is the inverse of the linear stiffness matrix;

$$
\begin{equation*}
[\Psi]=\left[\mathrm{K}^{-1}\right] \tag{2.11}
\end{equation*}
$$

For some cases, the matrices $\left[a_{1}\right]$ and $\left[a_{2}\right]$ are square, then the linear stiffness matrix may be defined directly in the following form:

$$
\begin{equation*}
[\Psi]=\frac{\mathrm{d}_{0}^{3}}{6 E I_{o}}\left[\mathrm{a}_{1}\right][\xi]\left[\mathrm{a}_{2}\right]^{-1} \tag{2.12}
\end{equation*}
$$

where the matrix $[\zeta]$ is always square and symmetrical due to the elastic reciprocal principle.

Investigating Eq. 2.9

$$
\begin{equation*}
[\mathrm{K}]=\frac{1}{\mathrm{~d}_{\mathrm{o}}^{2}}\left[\mathrm{a}_{2}\right][\mathrm{F}] \cdot\left[\mathrm{a}_{1}\right] \tag{2.9}
\end{equation*}
$$

the transpose of the matrix $[K]$ is

$$
\begin{equation*}
[\mathrm{K}]^{\mathrm{T}}=\frac{1}{\mathrm{~d}_{0}^{2}}\left[\mathrm{a}_{1}\right]^{\mathrm{T}}\left([\mathrm{~F}]^{-1}\right)^{\mathrm{T}}\left[\mathrm{a}_{2}\right]^{\mathrm{T}} \tag{2.13}
\end{equation*}
$$

For an elastic system, the linear stiffness matrix $[K]$ and the angular flexibility matrix $[F]$ are symmetrical due to the reciprocal theorem, then,

$$
\begin{equation*}
[\mathrm{K}]=[\mathrm{K}]^{\mathrm{T}} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\mathrm{F}^{-1}\right]=\left(\left[\mathrm{F}^{-1}\right]\right)^{\mathrm{T}} \tag{2.15}
\end{equation*}
$$

thus,

$$
\begin{align*}
& {\left[\mathrm{a}_{2}\right]=\left[\mathrm{a}_{1}\right]^{\mathrm{T}}} \\
& {\left[\mathrm{a}_{1}\right]=\left[\mathrm{a}_{2}\right]^{\mathrm{T}}} \tag{2.16}
\end{align*}
$$

The transpose relation between matrices $\left[a_{1}\right]$ and $\left[a_{2}\right]$ also
exists in case the intermediate boundary conditions are involved.
From Eq. 2.8, the equation of motion may be expressed as follows;

$$
\begin{equation*}
[\mathrm{m}][\dot{\mathrm{y}}]=-[\mathrm{K}] \cdot[\mathrm{y}] \tag{2.17}
\end{equation*}
$$

A solution of periodic nature is assumed in the form

$$
\left[y_{i}\right]=\left[Y_{i}\right] \quad \sin \left(p_{i} t+\alpha_{i}\right)
$$

where

$$
\begin{aligned}
{\left[\mathrm{y}_{\mathrm{i}}\right]=} & \text { displacements of all vibrating masses in the ith } \\
& \text { mode. } \\
{\left[\mathrm{Y}_{\mathrm{i}}\right]=} & \text { shape function corresponding to the ith mode. } \\
\mathrm{p}_{\mathrm{i}}= & \text { natural frequency of the ith mode } \\
\alpha_{i}= & \text { phase angle for the ith mode }
\end{aligned}
$$

then, substituting into Eq. 2.11,

$$
\begin{equation*}
[\mathrm{K}]\left[\mathrm{Y}_{\mathrm{i}}\right]=\mathrm{p}_{\mathrm{i}}^{2}[\mathrm{~m}]\left[\mathrm{Y}_{\mathrm{i}}\right] \tag{2.18}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\{[\mathrm{K}]-\mathrm{p}_{\mathrm{i}}^{2}[\mathrm{~m}]\right\}\left[\mathrm{Y}_{\mathrm{i}}\right]=0 \tag{2,19}
\end{equation*}
$$

Thus, the natural frequencies p_{i} of the system can be found by setting the determinant of the coefficient matrix

$$
\left\{[\mathrm{K}]-\mathrm{p}_{\mathrm{i}}^{2}[\mathrm{~m}]\right\}
$$

equal to zero, and expressing as an nth order polynomial of p_{i}^{2}. However, when n is greater than three, the methods for solving this characteristic equation are tedious to apply, and it is therefore desirable to investigate other means of accomplishing that end. A method of successive approximations which has been widely applied in engineering problems
is the method of matrix iteration (4). The application of iterative techniques is shown in Chapter IV.

2. 5 Simplification of the Problem

For constant or stepped section members, no difficulty arises in the selection of concentrated mass locations or the determination of the angular flexibilities. However, when the cross section is continuously varying, some difficulty is encountered. Reasonable assumptions regarding the concentration of mass can usually be made, but since the angular flexibilities for each segment are of an integrable form (2), they are generally not easily calculated. Tables of angular flexibilities for certain types of section variation have been developed (18), and might be used where applicable.

For practical application, the variable section beam is considered to be replaced by a weightless string with elements of different stiffness carrying different size masses at the ends. Some advantage in formulating the problem and solution can be attained by utilizing constant length segments wherever feasible.

Consider the vibrating system $A B$ (Fig. 2.4). Based on equal length segments

$$
d_{i}=d_{o}, \quad i=2,3, \ldots n
$$

thus

$$
a_{i}=\frac{d_{o}}{d_{i}}=1, \quad i=2,3, \ldots n
$$

The following parameters are introduced

$$
b_{i}=\frac{I_{0}}{I_{i}} ; \text { stiffness parameter }
$$

$$
\zeta_{i}=\frac{b_{i}}{a_{i}} \text {, angular flexibility parameter }
$$

Fig. 2. 4 Vibrating System

Thus; the $[a]$ and $[F]$ matrices become

For constant cross section throughout the entire member, the angular flexibility parameter $\zeta_{i}=1 ; i=2,3, \ldots n$; therefore; the angular flexibility matrix becomes

$$
[F]=\frac{d_{0}}{6 E I_{o}}\left[\begin{array}{lllllll}
\cdot & \cdot & & & & & \\
\cdot & \cdot & \cdot & & & & \\
& 1 & 4 & 1 & & & \\
& & 1 & 4 & 1 & & \\
& & & 1 & 4 & & \\
& & & & & & \\
& & & & & \cdots & \cdot \\
& & & & & \cdots & \cdot
\end{array}\right]
$$

CHAPTER III

APPLICATION

3.1 Single Span Beams

The theory derived in Chapter II is applied to analyze several physical problems with different end conditions. The matrices are modified in accordance with the boundary conditions. For simplicity in showing the modification for end conditions, the beams are assumed to be of constant section and equal length segments are considered.

Equations of motion for a single span beam with several types of end supports are formulated and presented in the following tables (Tables 3. 1, 2, 3, 4, 5, 6).

3.2 Continuous Beams

The basic philosophy discussed for the analysis of single span beams may be extended to the analysis of continuous beams by considering that some of the masses are restrained from displacing in the vertical direction by intermediate supports, as shown in Fig. 3.1.

Assuming that the one span beam $\overline{1 n}$ has n masses and that ($s+r$) masses among these n masses are restrained from displacing, the n degree-of-freedom beam-mass system will be reduced to a ($n-s-r$) degree-of-freedom system.

The physical rigid supports provide the restraint conditions, that is, no physical displacements are allowed for these masses.

TABLE 3.1 MATRIX EQUATIONS . FREE-FREE BEAM

TABLE 3.2 MATRIX EQUATIONS HINGED-HINGED BEAM

Hinged-hinged Bearn-mass System

$$
\begin{aligned}
& {[\mathrm{V}]=\frac{6 \mathrm{E} 1_{0}}{d_{o}^{2}}[\zeta]\left[a_{1}^{-1}\right][\mathrm{y}]}
\end{aligned}
$$

$$
\begin{aligned}
& (n-2)(1) \\
& \begin{array}{rrr}
2 & -1 & \\
1 & 2 & -1 \\
& -1 & 2
\end{array} \\
& \begin{array}{lll}
-1 & 2 & -1
\end{array} \\
& \begin{array}{lll}
-1 & 2 & -1
\end{array} \\
& \text {-1 } 2 \\
& \begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array} \\
& \begin{array}{rrr}
-1 & 2 & -1 \\
-1 & 2
\end{array} \\
& \begin{array}{l}
y_{n-3} \\
y_{n-2}
\end{array} \\
& (n-2)(n-2) \quad(n-2)(1)
\end{aligned}
$$

$$
\begin{aligned}
& {[K]=\frac{6 E I_{0}}{d_{0}^{3}}\left[a_{2}\right]\left[\zeta^{-1}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad[m]\left[\begin{array}{l}
\mathrm{m} \\
y
\end{array}\right]=-[K][y]}
\end{aligned}
$$

TABLE 3.4 MATRIX EQUATIONS FREE-HINGED BEAM

$M_{1}=M_{n}=0$
$y_{n}=0$

Free-hinged Beam-mass System

$$
[K]=\frac{6 \mathrm{EI}_{o}}{\mathrm{~d}_{0}^{3}}\left[\mathrm{a}_{2}\right][\zeta]\left[\mathrm{a}_{1}\right] \quad, \quad[\mathrm{m}]\left[\begin{array}{c}
-1 \\
y
\end{array}\right]=-[K][y]
$$

$$
\begin{aligned}
& {[m]\left[\frac{\rho a}{y}\right]=-\frac{1}{d_{0}}\left[a_{2}\right][\mathrm{M}]}
\end{aligned}
$$

$$
\begin{aligned}
& {[M]=\frac{6 E I_{o}}{d_{o}^{2}}[\zeta]\left[{ }^{-1} 1\right][y]}
\end{aligned}
$$

Free-fixed Beam-mass System

$$
[m][\stackrel{\circ}{\mathrm{y}}]=-\frac{1}{d_{o}}\left[\mathrm{a}_{2}\right][\mathrm{M}]
$$

$$
[\mathrm{K}]=\frac{6 \mathrm{E}_{\mathrm{o}}}{\mathrm{~d}_{\mathrm{o}}{ }^{3}}\left[\mathrm{a}_{2}\right][\zeta]\left[\mathrm{a}_{1}\right] \quad[\mathrm{m}][\mathrm{y}]=-[\mathrm{K}][\mathrm{y}]
$$

$$
\begin{aligned}
& {[\mathrm{M}]=\frac{6 \mathrm{EI}{ }_{o}}{\mathrm{~d}_{\mathrm{o}}{ }^{2}}[\zeta]\left[\mathrm{a}_{1} 1\right][\mathrm{y}]}
\end{aligned}
$$

Fig. 3.1 Beam-mass System with Some Masses Restrained

The reaction at each support will be a time-dependent generalized force in the Lagrange's equation corresponding to each coordinate. Without any physical displacement, the shears transferred from adjacent masses will be completely absorbed by the reaction.

Taking away all intermediate supports, the continuous beam $\overline{1 n}$ becomes a typical one span beam, which is taken as the basic structure in this analysis (Fig. 3.2).

Fig, 3.2 Basic Structure of the Continuous Beam Shown in Fig. 3.1

A typical mass m_{j} on support j is considered (Fig. 3,3a). The condition of continuity over the rigid support is that the end slopes at j of two adjacent spans are equal, but in the opposite direction. Thus,

$$
\begin{equation*}
\theta_{\mathrm{ji}}+\theta_{\mathrm{jk}}=0 \tag{3.1}
\end{equation*}
$$

(a) Continuity Over Support j

(b) Free-body Diagram

Fig. 3. 3 Equilibrium at Mass m_{j}

In Fig. 3.3a, the end slopes may be expressed as follows;

$$
\begin{align*}
& \dot{\theta}_{j i}=-\frac{y_{j}-y_{i}}{d_{j}}+\left[F_{j i} M M_{j}+G_{j i} M_{i}\right] \tag{3,2a}\\
& \theta_{j k}=-\frac{y_{j}-y_{k}}{d_{k}}+\left[F_{j k} M_{j}+G_{j k} M_{k}\right] \tag{3.2b}
\end{align*}
$$

It is known that the displacement at. support j is zero at any time for all modes;

$$
\mathrm{y}_{\mathrm{j}} \equiv 0
$$

Thus, from Eq. 3.1, the compatibility of slopes may be written as follows;

$$
\begin{equation*}
-a_{j} y_{i}-a_{k} y_{k}=d_{o}\left[G_{j i} M_{i}+\Sigma F_{j} M_{j}+G_{j k} M_{k}\right] \tag{3.3}
\end{equation*}
$$

This equation may be obtained directly by setting the additional boundary conditions due to intermediate supports into Eq. 2. 3.

Summation of forces in y_{j}-direction (Fig. 3. 3b) yields

$$
\begin{aligned}
R_{j}+m_{j} \ddot{y}_{j} & =-V_{j i}-V_{j k} \\
& =-\frac{M_{j}-M_{i}}{d_{j}}-\frac{M_{j}-M_{k}}{d_{k}}
\end{aligned}
$$

or

$$
\begin{equation*}
R_{j}+m_{j} \ddot{y}_{j}=-\frac{1}{d_{o}}\left[-a_{j} M_{i}+\left(a_{j}+a_{k}\right) M_{j}-a_{k} M_{k}\right] \tag{3.4}
\end{equation*}
$$

Since m_{j} is fixed on the rigid support, the displacement y_{j} and acceleration \ddot{y}_{j} are zero for all time. The reaction R_{j} is a function depending upon mode and time, and may be expressed as

$$
\begin{equation*}
R_{j}=R_{j}\left(t, p_{n}\right) \tag{3.5}
\end{equation*}
$$

A fictitious displacement function for mass m_{j} is defined in the way such that

$$
\begin{equation*}
y_{j}^{*}=Y_{j}^{*} \sin \left(p_{n} t+\alpha_{n}\right) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{j}=m_{j} \ddot{y}_{j}^{*}=-m_{j} p_{n}^{2} Y_{j}^{*} \sin \left(p_{n}^{t}+\alpha_{j}\right) \tag{3.7}
\end{equation*}
$$

Thus, Eq. 3. 4 becomes

$$
\begin{equation*}
m_{j} \stackrel{\text { ® }}{j}_{*}^{*}=-\frac{1}{d_{o}}\left[-a_{j} M_{i}+\left(a_{j}+a_{k}\right) M_{j}-a_{k} M_{k}\right] \tag{3,8}
\end{equation*}
$$

This expression will be used whenever the intermediate reaction R_{j} is required.

A general type of continuous beam is considered (Fig. 3.4). The basic structure is the one span beam with s restraints at two extreme ends.

Fig. 3.4 Three Span Beam-mass System

In addition to the end conditions of the basic structure of the single span beam, r more restraints on masses m_{r} make the deflectons at points r zero. Thus,

$$
y_{j}=0
$$

where j indicates the point of intermediate support.
By Eq's. 2.5 and 3.3, the moments and displacements of the whole system can be related in the following form;

$$
[M]=\frac{1}{d_{o}}\left[F ^ { - 1 } \left[\left[a_{1}\right][y]\right.\right.
$$

where

This will be reduced into the form shown in Art. 2.5 when the beam is constant cross section throughout.

$$
\begin{aligned}
& (n-s)(n-s-r)
\end{aligned}
$$

From Eq. 2. 7 and Eq. 3. 8, the relation between moment and acceleration is stated in the matrix form;

$$
[m][\ddot{y}]=-\frac{1}{d_{o}}\left[\mathrm{a}_{2}\right][\mathrm{M}]
$$

where

and

Then, the linear stiffness matrix is defined by Eq. 2.9, such that

$$
[K]_{(n-s-r)(n-s-r)}=\frac{1}{d_{0}^{2}}\left[a_{2}\right]_{(n-s-r)(n-s)}^{[F]_{(n-s)(n-s)}^{-1}}\left[a_{1}\right]_{(n-s)(n-s-r}
$$

The linear flexibility matrix is the inverse of the linear stiffness matrix

$$
[\Psi]=\left[\mathrm{K}^{-1}\right]^{-1}
$$

Both are ($n-s-r$) square matrices.

CHAPTER IV

NUMERICAL EXAMPLES

4. 1 General

Three numerical examples with various end conditions are solved in this chapter to illustrate the numerical procedures of the method studied in this thesis.

The first example is solved with a table calculator, while the last two are solved by the IBM 650 Electronic Computer. Results of each example have been compared with other available information.

4.2 Example No. 1

A fixed-fixed beam, as shown in Fig. 4. 1, is analyzed. The section is constant throughout the entire beam, and the distributed mass is assumed to be lumped into five concentrated masses.

$$
\begin{aligned}
m_{1} & =m_{5}=\frac{\rho L}{8}, m_{2}=m_{3}=m_{4}=\frac{\rho L}{4} \\
d_{0} & =\frac{L}{4} \\
\rho & =\text { mass per unit length }
\end{aligned}
$$

The moment and displacement matrices are shown as follows:

$$
[\mathrm{M}]=\left[\begin{array}{c}
\mathrm{M}_{1} \\
\mathrm{M}_{2} \\
\mathrm{M}_{3} \\
\mathrm{M}_{4} \\
\mathrm{M}_{5}
\end{array}\right] \quad[\mathrm{y}]=\left[\begin{array}{l}
\mathrm{y}_{2} \\
\mathrm{y}_{3} \\
\mathrm{y}_{4}
\end{array}\right]
$$

Fig. 4. 1 Fixed-fixed Beam-mass System

Also,

$$
\begin{aligned}
& {[\zeta]=\left[\begin{array}{lllll}
2 & 1 & 0 & 0 & 0 \\
1 & 4 & 1 & 0 & 0 \\
0 & 1 & 4 & 1 & 0 \\
0 & 0 & 1 & 4 & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right],} \\
& {[\zeta]=\frac{1}{168}\left[\begin{array}{rrrrr}
97 & -26 & 7 & -2 & 1 \\
-26 & 52 & -14 & 4 & -2 \\
7 & -14 & 49 & -14 & 7 \\
-2 & 4 & -14 & 52 & -26 \\
1 & -2 & 7 & -26 & 97
\end{array}\right]} \\
& {\left[a_{2}\right]=\left[\begin{array}{rrrr}
-1 & 2 & -1 & \\
& -1 & 2 & -1 \\
\left.\mathrm{a}_{1}\right]
\end{array}\right]=\left[\begin{array}{rrrr}
-1 & \\
2 & -1 & \\
2 & 2 & -1 \\
-1 & -1 & 2 \\
& -1
\end{array}\right]}
\end{aligned}
$$

The linear stiffness matrix, as defined by Eq. 2.9, becomes

$$
[\mathrm{K}]=\frac{6 \mathrm{EI}_{\mathrm{o}}}{\mathrm{~d}_{\mathrm{o}}^{3}}\left[\mathrm{a}_{2}\right][\zeta]^{-1}\left[\mathrm{a}_{1}\right]
$$

thus,

$$
[\mathrm{K}]=\frac{6 \mathrm{EI}_{\mathrm{O}}}{\mathrm{do}^{3}}\left[\begin{array}{rrr}
3.143 & -2.000 & 0.857 \\
-2.000 & 2.500 & -2.000 \\
0.857 & -2.000 & 3.143
\end{array}\right]
$$

The mass matrix is a 3×3 diagonal matrix

$$
[\mathrm{m}]=\left[\begin{array}{lll}
\rho \mathrm{d}_{\mathrm{o}} & & \\
& \rho \mathrm{~d}_{\mathrm{o}} & \\
& & \rho \mathrm{~d}_{\mathrm{o}}
\end{array}\right]=\rho \mathrm{d}_{\mathrm{o}}[\mathrm{I}]_{3}
$$

Using Eq. 2.13, the frequency equation becomes

$$
[\mathrm{K}]-\mathrm{p}_{\mathrm{n}}^{2}[\mathrm{~m}] \mid=0
$$

which can be obtained in the following form by substituting all values in terms of $\mathrm{EI}_{\mathrm{o}} / \rho \mathrm{L}^{4}$.

$$
\left|\begin{array}{|c|c|c|c|}
4828 & \frac{\mathrm{EI}_{\mathrm{o}}}{\rho \mathrm{~L}^{4}}-\mathrm{p}_{\mathrm{n}}^{2} & -3072 & \frac{\mathrm{EI}_{\mathrm{o}}}{\rho \mathrm{~L}^{4}} \\
-3072 & \frac{\mathrm{EI}_{\mathrm{o}}}{\rho \mathrm{~L}^{4}} & 1316 \frac{\mathrm{EI}_{\mathrm{o}}}{\rho \mathrm{~L}^{4}} \\
1316 & \frac{\mathrm{EI}_{\mathrm{o}}}{\rho \mathrm{~L}^{4}} & 3840 \frac{\mathrm{EI}_{\mathrm{o}}}{\rho \mathrm{~L}^{4}}-\mathrm{p}_{\mathrm{n}}^{2} & -3072 \frac{\mathrm{EI}}{\rho \mathrm{~L}^{4}} \\
\hdashline & -3072 \frac{\mathrm{EI}_{\mathrm{o}}}{\rho \mathrm{~L}^{4}} & 4828 \frac{\mathrm{EI}_{\mathrm{o}}}{\rho \mathrm{~L}^{4}}-\mathrm{p}_{\mathrm{n}}^{2}
\end{array}\right|=0
$$

Solving for $\mathrm{p}_{\mathrm{n}}{ }^{2}$, the following values are obtained,

$$
\begin{aligned}
& p_{1}=3.5032(2 \pi) \sqrt{\frac{\mathrm{EI}}{\mathrm{o}}} \frac{\rho \mathrm{~L}^{4}}{} \\
& \mathrm{p}_{2}=9.4500(2 \pi) \sqrt{\frac{\mathrm{EI}_{\mathrm{O}}}{\rho \mathrm{~L}^{4}}} \\
& \mathrm{p}_{3}=15.5400(2 \pi) \sqrt{\frac{\mathrm{EI}}{\mathrm{o}}} \mathrm{\rho L}^{4}
\end{aligned}
$$

These results are compared with those of the "exact" solution (19) in Table 4. 1.

TABLE 4.1 COMPARISON OF RESULTS

C_{n}	1st Mode	2nd Mode	3rd Mode
Author's Results	3.5032	9.4500	15.5400
Exact Solution (19)	3.56	9.82	19.20
Error	1.6%	3.8%	19.0%

$$
\mathrm{f}_{\mathrm{n}}=\mathrm{C}_{\mathrm{n}} \sqrt{\frac{E I_{o}}{\rho L^{4}}} \quad \frac{\text { cycles }}{\sec }
$$

For engineering practice, the errors of first and second mode may be acceptable. However, if higher mode frequencies are required, the beam should be lumped into more masses.

4.3 Example No. 2

A simply supported reinforced concrete beam with a two-degree parabolic haunch is shown (Fig. 4.2). The beam is of constant width ($\mathrm{b}=1.5^{\prime}$) and is supporting a uniformly distributed slab load ($\mathrm{w}=.50 \frac{\mathrm{k}}{\mathrm{ft}}$). Considering ten equal length segments, the five lowest natural frequencies and corresponding mode shapes are computed.

(a) Actual Beam

(b) Simplified Beam-mass System

Fig. 4.2 Simple Beam with Variable Section

Data

$$
\begin{aligned}
& \mathrm{E}=3 \times 10^{3} \mathrm{ksi} \\
& \mathrm{~b}=1.5 \mathrm{ft} ., \mathrm{d}_{\mathrm{o}}=4 \mathrm{ft} . \\
& \mathrm{w}_{\mathrm{c}}=0.150 \frac{\mathrm{k}}{\mathrm{ft}^{3}} \\
& \mathrm{EI}_{\mathrm{o}}=\left(3 \times 10^{3}\right)\left(\frac{1.5 \times 2^{3}}{12}\right)(144)=432 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2} \\
& \rho_{\mathrm{o}}=[(0.150)(2 \times 1.5)+0.50] \frac{1}{32.2}=0.0295 \frac{\mathrm{k}-\mathrm{sec}^{2}}{\mathrm{ft}^{2}}
\end{aligned}
$$

Parameters

$$
\begin{aligned}
& a_{i}=\frac{d_{o}}{d_{i}}=1 \\
& b_{i}=\frac{I_{0}}{I_{i}}=\left(\frac{h_{0}}{h_{i}}\right)^{3}=\left(\frac{2}{h_{i}}\right)^{3} \\
& \zeta_{i}=\frac{b_{i}}{a_{i}}=\left(\frac{2}{h_{i}}\right)^{3} \\
& \rho_{i}=\rho_{o}\left[1+0.237\left(h_{i}-h_{o}\right)\right], \\
& m_{o}=\rho_{o} d_{o}
\end{aligned}
$$

Boundary Conditions

$$
\begin{aligned}
& \mathrm{y}_{1}=\mathrm{y}_{11}=0 \\
& \mathrm{M}_{1}=\mathrm{M}_{11}=0
\end{aligned}
$$

Then,

This is the mass diagonal matrix. The elements on the main diagonal are the ratios of masses $\left(m_{2}\right.$ to $\left.m_{10}\right)$ to the m_{o} value.

$$
[\zeta]=\left[\begin{array}{lllllllll}
4.00 & 1.00 & & & & & & & \\
1.00 & 4.00 & 1.00 & & & & & & \\
& 1.00 & 4.00 & 1.00 & & & & & \\
& & 1.00 & 4.00 & 1.00 & & & & \\
& & & 1.00 & 3.76 & 0.88 & & & \\
& & & & 0.88 & 3.04 & 0.64 & & \\
& & & & & 0.64 & 2.08 & 0.40 & \\
& & & & & & 0.40 & 1.26 & 0.23 \\
& & & & & & & 0.23 & 0.72
\end{array}\right]
$$

For the simply supported beam, the first parametric matrix and the second parametric matrix are identical.

$$
\left[a_{1}\right]=\left[a_{2}\right]=\left[\begin{array}{rrrrrrrrr}
2 & -1 & & & & & & & \\
-1 & 2 & -1 & & & & & & \\
& -1 & 2 & -1 & & & & & \\
& & -1 & 2 & -1 & & & & \\
& & & -1 & 2 & -1 & & & \\
& & & & & -1 & 2 & -1 & \\
& & & & & -1 & 2 & -1 & \\
& & & & & & -1 & 2 & -1 \\
& & & & & & -1 & 2
\end{array}\right]
$$

The linear stiffness matrix is defined by Eq. 2.9 such as;

$$
[\mathrm{K}]=\frac{6 \mathrm{EI}}{\mathrm{a}_{\mathrm{o}}^{3}}\left[\mathrm{a}_{2}\right][\zeta]\left[\mathrm{a}_{1}\right]
$$

For simple beam, the parametric matrices are square and non-singular; the linear flexibility matrix has been defined as

$$
\begin{equation*}
[\Psi]=\left[\mathrm{K}^{-1}\right]^{\frac{\mathrm{d}_{\mathrm{o}}^{3}}{3}} \frac{\mathrm{EI}}{\mathrm{o}}^{-1}\left[\mathrm{a}_{1}\right][\zeta]\left[\mathrm{a}_{2}\right] \tag{2.12}
\end{equation*}
$$

which has been calculated by the electronic computer.
The equation of motion can be obtained in the following form by
premultiplying Eq. 2.17 by the linear flexibility matrix.

$$
\begin{equation*}
[\Psi][\mathrm{m}][\mathrm{Y}]=\frac{1}{\mathrm{p}_{\mathrm{n}}^{2}}[\mathrm{Y}] \tag{4.2}
\end{equation*}
$$

This is the form for evaluating the lowest frequency of the system first. By using the method of matrix iteration, the highest eigenvalue will be corresponding to the lowest natural frequency.

The lowest five frequencies have been calculated, by the IBM 650 Electronic Computer, as follows:

$$
\begin{aligned}
& \mathrm{f}_{1}=4.3446 \text { cycles per sec. } \\
& \mathrm{f}_{2}=19.4874 \\
& \mathrm{f}_{3}=43.3362 \\
& \mathrm{f}_{4}=78.8585 \\
& \mathrm{f}_{5}=117.9504
\end{aligned}
$$

These results and their corresponding eigenvectors are tabulated in Table 4.2.

TABLE 4, 2 NATURAL FREQUENCIES AND AMPLITUDE RATIOS

No. of Mode		1	2	3	4	5
Frequency	$\frac{\text { cycles }}{\text { sec. }}$	4.3446	19.4874	43.3362	78.8585	117.9504
	m_{1}	0	0	0	0	0
	m_{2}	0.3482	0.6582	-0.9485	1.0000	-0.8834
	m_{3}	0.6545	1. 0000	-0.9131	0.2545	0.3531
	m_{4}	0.8815	0.8678	0.7339	-0.9386	0.7396
	m_{5}	1.0000	0.3454	1.0000	-0.5096	-0.6635
	m_{6}	0.9922	-0.2732	0.9380	0.7436	-0.5589
	m	0.8774	-0.7153	0. 3018	0.8445	1. 0000
	m_{8}	0.6958	-0.8246	-0.6989	-0.1872	0.3189
	m_{9}	0.4755	-0.6532	-0.7963	-0.7334	-0.6692
	m_{10}	0.2381	-0.3303	-0.4112	-0.3936	-0.3784
	m_{11}	0	0	0	0	0

By Stodola's method, the first mode natural frequency has been calculated as

$$
f_{1}=4.3148
$$

with a 0.685 per cent difference.

4. 4 Example No. 3

A three span continuous beam is analyzed to illustrate the numerical application of the method. The cross section is constant throughout the entire beam, and the mass is uniformly distributed. The structure is considered as a beam-mass system with fourteen lumped masses
loaded over three spans (Fig. 4.3).

$$
\begin{aligned}
& \mathrm{EI}=\mathrm{EI}_{\mathrm{o}}=\text { constant } \\
& \mathrm{m}=\mathrm{m}_{\mathrm{o}}=\rho \mathrm{d}_{\mathrm{o}}=\text { constant } \\
& \rho=\text { mass per unit length }
\end{aligned}
$$

Fig. 4. 3 Three-Span Continuous Beam-mass System

The mass matrix is

$$
[\mathrm{m}]=\rho \mathrm{d}_{\mathrm{o}}[\mathrm{I}]_{10}
$$

and the angular flexibility parametric matrix is

$$
\begin{aligned}
& {[\zeta]=\left[\begin{array}{lll}
4 & 1 & \\
1 & 4 & 1
\end{array}\right.} \\
& 1 \quad 4 \quad 1 \\
& 1 \quad 4 \quad 1 \\
& 1 \quad 4 \quad 1 \\
& \begin{array}{lll}
1 & 4 & 1
\end{array} \\
& 1 \begin{array}{lll}
1 & 4 & 1
\end{array} \\
& 1 \quad 4 \quad 1 \\
& 141 \\
& 141 \\
& 141 \\
& 14
\end{aligned}
$$

The first segmental parametric matrix is
and the second segmental parametric matrix is

Then, the linear stiffness matrix is

$$
[\mathrm{K}]=\frac{6 \mathrm{EI}_{\mathrm{o}}}{\mathrm{~d}_{\mathrm{o}}^{3}} \quad\left[\mathrm{a}_{2}\right][\zeta]\left[\mathrm{a}_{1}\right]
$$

which has the dimension (10×10). The linear flexibility matrix is obtained by inverting the K-matrix, as shown on the following page.

	-									
	+1.6461709	-1.5846837	+0.6925.639	+0.0497239	-0.0133235	+0. 0035700	-0.0009566	-0.0000687	+0.0000183	-0.0000046
	$-1.5846 .837$	+2.3387350	-1.7702556	-0.1988954	$+0.0532939$	-0.0142800	$+0.0038263$	+0.0002746	-0.0000732	$+0.0000183$
	+0.6925639	-1.7702556	+2.3884588	+0.7458578	-0.1998520	+0.0535502	-0.0143487	-0.0010298	+0.0002746	-0.0000687
	+0.0497239	-0.1988954	+0.7458578	+2.3922850	-1.7846044	+0.7461324	-0.1999252	-0.0143487	+0.0038263	-0.0009566
$[K]=\underline{\square}$	-0.013.3235	+0.0532939	-0. 1998520	-1.7846044	+2.3923033	-1.7846090	+0.7461324	+0. 0535502	-0.01.42800	+0.0035700
	+0.0035700	-0.0142800	+0.0535502	+0.7461324	-1.7846.090	+2.3923033	-1.7846044	-0.1998520	+0.0532939	-0.0133235
	-0.0009566	+0.0038263	-0.0143487	-0.1999252	+0.7461324	-1.7846044	+2.3922850	+0.7458578	-0.1988954	+0.0497239
	-0.0000687	+0.0002746	-0.0010298	-0.0143487	$+0.0535502$	-0.1998520	+0.7458578	+2.3884588	-1.7702556	+0.6925639
	+0.0000183	-0.0000732	+0.0002746	+0.0038263	-0.0142800	+0.0532939	-0.1988954	-1.7702556	+2.3387350	-1.5846837
	-0.0000046	+0.0000183	-0.0000687	-0.0009566	$+0.0035700$	-0.0133235	+0.0497239	+0.6925639	-1.5846837	+1.6461709

The problem becomes that of finding the eigenvalues and eigenvectors of the matrix equation.

$$
[\Psi][\mathrm{m}][\mathrm{y}]=\frac{1}{\mathrm{p}^{2}}[\mathrm{y}]
$$

The results are tabulated as follows (Table 4.3).

TABLE 4. 3 NATURAL FREQUENCIES AND AMPLITUDE RATIOS

No. of		1	2	3
Freque	$\frac{\text { cycles }}{\text { sec. }}$	$1.9875 \sqrt{\frac{\mathrm{EI}}{\rho \mathrm{L}^{4}}}$	$3.0321 \sqrt{\frac{\mathrm{EI}}{\rho \mathrm{L}^{4}}}$	$3.7308 \sqrt{\frac{\mathrm{EI}}{\rho \mathrm{L}^{4}}}$
	m_{1}	0	0	0
	m_{2}	-0.3894	-0.7547	+0.8322
	m_{3}	-0.5746	-1.0000	+1.0000
	m_{4}	-0.4399	-0.6153	+0.4735
	m_{5}	0	0	0
	m_{6}	+0.5892	+0.2599	+0.3603
	m_{7}	+1.0000	+0.1364	+0.8946
	m_{8}	+1. 0000	-0.1364	+0.8946
	m_{9}	+0.5892	-0.2599	+0.3603
	m_{10}	0	0	0
	m_{11}	-0.4399	+0.6153	+0.4735
	m_{12}	-0.5746	+1.0000	+1.0000
	m_{13}	-0.3894	+0.7547	+0.8322
	m_{14}	0	0	0

Checking by the three-moment equation and Table A-1 of Ref. 19, the errors of the first and second mode are within 1%, while the third mode difference is 17%.

CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 Summary

The dynamic analysis of beams is presented in this thesis. The actual distributed mass system is replaced by an "equivalent" lumped mass system; thus, reducing it from an infinite degree-of-freedom problem to one having a finite number of degrees-of-freedom.

The general theory is developed in matrix form utilizing the general string polygon equation for an elastic system. From the angular flexibility matrix, a linear stiffness matrix is derived. Elastic restoring forces for each segment are represented in terms of static angular functions and related to the "inertia" forces of the concentrated masses at the ends. Since the lower modes and corresponding natural frequencies are generally more important, a linear flexibility matrix is shown, for direct application to matrix iteration techniques for determining the eigenvalues and eigenvectors. These iteration methods rely on the orthogonality relations for evaluating higher mode characterictics.

Tables of matrix equations for single span beams having different boundary conditions are presented. These tables are for constant section members, and equal length segments are considered.

The general theory and results for single span beams are extended to continuous beams. The additional constraint conditions due
to intermediate supports modify the general matrix equations presented for single span beams.

Illustrative examples are worked to show the application of the developed method.

5.2 Conclusions

Comparison of the results in Chapter IV with available information reveals that the procedure of analysis by the method presented is good for engineering practice. Obviously, the accuracy of the results obtained depend upon the number of mass concentrations. It appears that at least twice as many concentrated masses should be taken in a span as the number of natural frequencies desired.

The theory presented in this thesis has no restriction on the span length, suppart conditions, cross section and segmental length. However, there are some advantages in taking equal length segments.

It is necessary that one mass concentration be considered at each support so that the support boundary condition can be formulated into the matrix equation. In direct application to the analysis of multistory frames, mass should be concentrated at the floor levels and the deformation considered similar to that of the cantilever bar.

In the analysis of a variable section beam subjected to any kind of disturbance, some difficulties may arise in formulating an analytic solution. However, using the eigenvalues and eigenvectors obtained, the problem may be uncoupled by diagonalizing the linear stiffness matrix so that the system is transformed into a new space of normal coordinates; thus, each coordinate can be analyzed independently.
5.3 Extension

The method developed in this thesis may be extended directly to the dynamic analysis of continuous beams on elastic supports by taking into account the effect of the support elasticity. Further extension may be able to handle a general type of frame by considering the joint rotation and girder flexibility.

A SELECTED BIBLIOGRAPHY

1. Mohr, O., "Behandlung der Elastischen Als Seillinie," Zeitschr D. Architekt, u. Ing. Vereins Zu, Hannover, 1868.
2. Tuma, Jan J, and Oden, John T. , "Analysis of Rigid Frames with Straight Members by String Polygon Method," Proceedings, ASCE, Vol. 87, No. ST7, October, 1961.
3. Temple, G。 and Bickley, R. P., Rayleigh's Principle, Dover, New York, 1956.
4. Scanlan, R. H. and Rosenbaum, R., Introduction to the Study of Aircraft Vibration and Flutter, The Macmillan Company, New York, 1951.
5. Holzer, H., Die Berechnung der Drehschwingungen, SpringerVerlag OHG, Berlin, 1921. Republished by J. W. Edwards, Publisher, Inc., Ann Arbor, 1948.
6. Stodola, A., Steam and Gas Turbines, translated by L. C. Loewenstein, Vols. 1 and 2, McGraw-Hill Book Company, Inc., New York.
7. Myklestad, N。O., "A New Method of Calculating Natural Modes of Uncoupled Bending Vibration of Airplane Wings and Other Types of Beams," J. of Aeronautical Sciences, Vol. II, 1944.
8. Young, D., "Vibration of a Beam with Concentrated Mass, Spring and Dashpot," J. of Applied Mech., Trans., ASME, Vol. 70, March, 1948, pp.65-72.
9. Thomson, W. T., "Matrix Solution for the Vibration of Non-Uniform Beams, " Jo of Applied Mech., Trans., ASME, Vol. 72, September, 1950, pp. 337-339.
10. Lee, W. F. A. and Saibel, E., "Free Vibrations of Constrained Beams," J. of Applied Mech., Vol. 19, ${ }^{\text {D December, 1952, pp.471- }}$ 477.
11. Ellington, J. P., "Vibration of Segmented Beams, " Brit. J. Applied Physics, Vol. 7, No. 8, August, 1956, pp. $\overline{299-303 .}$
12. Taleb, N. J., and Suppiger, E. W., "Vibration of Stepped Beams," J. of Aerospace Sciences, Vol. 28, No. 4, April, 1961, pp. 295-2 $\overline{98}$.
13. Darney, E. R., "The Transverse Vibrations of Beams and the Wirling of Shafts Supported at Intermediate Points, " Philosophical Magazine, Vol. 41, 1921, pp. 81-96.
14. Saibel, E., "Vibration Frequencies of Continuous Beams," J. of Aeronautical Sciences, Vol. 11, 1944, pp. 88-90.
15. Ayre, R. S. and Jacobsen, L. S., "Natural Frequencies of Continuous Beams of Uniform Span Length," J. of Applied Mech. , Trans., Vol. 72, December, 1950, pp. 391-395.
16. Veletsos, A. S. and Newmark, N. M., "Natural Frequencies of Continuous Flexural Members," Proceedings, ASCE," Vol. 81, No.PT4, Paper No. 735, July, 1955.
17. Veletsos, A.S. and Newmark, N. M., "Determination of the Natural Frequencies of Continuous Beams on Flexible Supports," Proceedings, Second U. S. National Congress of Applied Mechanics, University of Michigan, Ann Arbor, June 14-18, 1954.
18. Oden, J. T., "The Analysis of Fixed-End Frames with Bent Members by the String Polygon Method, "M. S. Thesis, Oklahoma State University, Stillwater, 1960.
19. Rogers, G. L. . An Introduction to the Dynamics of Framed Structures, John Wiley and Sons, Inc., New York, 1959, pp. 176 and pp. 244-251.

VITA

Boen-Dar Liaw
 Candidate for the Degree of
 Master of Science

Thesis: DYNAMICS ANALYSIS OF BEAMS BY THE FLEXIBILITY METHOD

Major Field: Civil Engineering

Biographical:
Personal Data: Born October 19, 1937, in Hsiro, Taiwan, China, the son of H.S. and Y.C. Liaw.

Education: Graduated from Chien-Kou Middle School, Taipei, Taiwan, in June, 1953, Taipei Institute of Technology, Taipei, Taiwan, in June, 1958. One year undergraduate study in Civil Engineering at Oklahoma State University, January, 1961 to January, 1962. Complete the requirements for the Master of Science degree in May, 1963.

Professional Experience: Engineering Officer in Chinese Air Force, 1958-60. Junior Civil Engineer at Taiwan Power Company, 1960. Graduate Assistant at Oklahoma State University, 1962-63.

