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CHAPTER I 

INTRODUCTION 

1. 1 General 

Space trusses may be analyzed by several methods. Some of 

these are: 

1. Method of Joints 

2. Method of Sections 

3, Method of Moments 

4. Henneberg's Method 

5. Tension Coefficients 

6. Method of Plate Analogy 

It is the purpose of this thesis to discuss the application of the 

method of plate analogy to framed structures of the same general shape 

as barrel shells and folded plates. Cases of inter~al and external inde­

terminancy and the effect of instability are also discussed. 

The method of plate analogy reduces the analysis of space trusses 

to a two dimensional problem. As applied to space trusses, this method 

consists of separating the space truss into planar trusses, resolving 

the loads on the structure into loads in the plane of the planar trusses, 

and completing the problem as an analysis of several planar trusses. 

Thus, besides being convenient and practical, the method of plate 

analogy provides a simpler approach to the analysis of complicated 

space structures composed of planar trusses. 

1 
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In addition to the advantages in the method of analysis, it is folt 

that roof structures of this type composed of steel framing have two 

main advantages over roofs formed of concrete. The first and primary 

advantage is cost. A concrete roof poured over complicated formwork 

can seldom be constructed more economically than a framework of 

straight steel members with simple connections. The second advantage 

is simplicity. Provisions for overhangs, concentrated loads, dis-

continuities and skylight openings, which are complicating factors in a 

concrete roof. can be readily handled in the engineering office and at 
(1) ,,, 

the construction site. ,,, 

1. 2 Historical 

According to historical information presented by Kinney(2 ) and 

Gillespie <3>, the Italian architect, Andrea Palladio 0518 - 1580) is 

believed to have first used trusses of any great span, although the Romans 

used trusses in their wooden bridges and roofs. TwQ centuries later 

(1758) a Swiss carpenter, Ulric Grubenmann, built a 170 foot timber 

truss across the Rhine. Other timber bridges were built after this, 

but they combined the truss and the arch in a single structure. Then. 

in 1778, Ulric Gruben:r:nann and his brother, Jean, built a longer timber 

bridge with a span of 390 feet. All these trusses were built by rule of 

thumb rather than by design based on a rational analysis. 

The first all-metal trusses were built in the United States in 

1840. In 1847, Squire Whipple published the first rational approach to 

the theory of structures and the analysis of trusses in the United States. 

----------------
>:~ This and subsequent numerals in parentheses refer to the list 

of references in the Selected Bibliography. 



3 

The general theory of three dimensional systems was first formu­

lated by Mobius (4 ) in 1837, but his work :remained unknown to engineers, 

and the theory of space trusses was developed indepepdently. August 

Foppl's book( 5) considered many important topics concerning space 

trusses for the first time (1892 ), and has been the basis of much of the 

later work in this field. 

The method of plate analogy was first utilized by Schwyzer(B) in 

his dissertation (1920). The work of Schwyzer was extended and pub­

lished by Stuss/7, S, 9 )_ The method of plate analogy was summarized 

and published in the United States by Anderson and Nordby(lO). 

In addition to this historical development, the method of plate 

analogy is briefly described by Niles and Newell ( l l) and Tirnoshenko 

and Young(1 2 ). Also, Gillespie (3) utilizes the method of plate analogy 

in his dissertation. 



CHAPTER II 

GENERAL THEORY 

2. 1 General 

The justification of the method of plate analogy is presented in the 

order in which the analysis would be carried out in a typical problem. 

First, the stability of the structure must be considered. Then the 

structure must be separated into individual coplanar plate elements, 

and the effects on adjacent plate elements determined. After this, the 

loads on the structure must be resolved into loads in the plane of the 

plate elements. Finally, after the analysis of the planar trusses, the 

plate elements must be joined together again and the final axial forces 

in the members determined. At this point, with the unknow:n quantities 

and equations of equilibrium established, the determinancy of the 

method of analysis is discussed. 

The usual assumptions, that the individual members of the struc­

ture transmit only axial forces, that all joints are frictionless spherical 

hinges, and that all loads are applied at the joints, are made in this 

investigation. 

2. 2 Stability Requirements 

The first consideration is the stability of the entire structure. A 

typical roof composed of plate elements resting on walls, as in Fig. 2. 1, 

is considered. For a vertical system of loads., the end ties will take 

4 
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the h9rizontal thrust of the inclined trusses, and th,e horizontal reactions 

on the walls will be zero. However, under wind loading these reactions 

will exist. and the walls must be capable of transmitting the horizontal 

forces to the foundation. 

Fig. 2. 1 

Typical Roof Composed of Planar Trusses 

The main requirement for stability in the vertical direction is that 

the center line of joints, or "valley" be restrained fr~m moving. This 

may be accomplished by supporting the line of joints by the center posts 

as shown (Fig. 2. 1). An alternative might be to fix the joints against 

rotation by providing ties, as shown by the dotted lines. 



The second consideration is the stability of the individual planar 

trusses. When a coplanar truss is separated as a basic unit and the 

edge forces and loads applied to it, it is subject to the principles of 

coplanar truss analysis. If this coplanar truss is unstable in its own 

plane:, then it is not rigid and its shape will be distorted. A simple 

example of this is shown in Fig. 2. 2. The interior panel which does 

not have a diagonal member will not transmit shear and allows the dis-

tortion. 

(a) (b) 

Cantilevered Simply Supported 

Fig. 2. 2 

Instability of Planar Truss 

6 

Regardless of the type of support, under any loading which causes 

a shearing force to exist at a panel w):lich cannot resist shear, the planar 

truss will deform in order to resist the load. If the planar truss has to 

deform excessively to resist the load, it is a non-rigid form and is 

unstable. 

Since the plate elements are planar trusses:, they are subject to 

the same restrictions. However, in order for one plate element to dis-

tort, the plate elements adjacent to it must also distort in some manner 
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of compatibility. If two inclined stable trusses are joined together along 

a line of joints and both are supported on a rigid foundation, then the 

systerr:i as a whole cannot distort. Each coplanar truss is assumed to 

be flexible perpendicular to its own plane, but is prevented from move­

ment in this direction by the adjacent trusses. 

Fig. 2. 3 

Instability with Two Plate Elements 

However, as in Fig. 2. 3, if one of the trusses were unstable, it 

would not resist any out-of .:.plane movement by the other planar truss; 

and the structure, as a whole, would be unstable. In this case the 

stable planar truss could move in a direction perpendicular to its own 

plane and the unstable truss would not be able to resist this movement. 

A roof structure composed of plate elements, one of which con~ 

tains a sec;tion which will not resist shear in its own plane is considered 

(Fig. 2. 4). The inclined truss 1-1, which is not rigid will allow the two 

lines of joints 1 to move in a direction perpendicular to the planes of trus­

ses 1-2. The two plate elements to either side of the unstable inclined 

truss would not remain plane. If the displacement ·of the first lines of 
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joints, 1, are small, then the second lines of joi:pts, 2, will not move. 

1 

Fig. 2.4 

Instability with Several Plate Elements 

It may be concluded that if one plate element contains a section 

that will not transmit shear, it will distort and the two plate elements 

adjacent to it will not remain in one plane, but wfll be subject to out-of­

plane deformations. The condition of deformation being that the line of 

joints on either side of the unstable truss must move perpendicular to 

the planes of the adjacent stable trusses and the unstable truss detrudes. 

If an end plate element were to become unstable, the plate elements 

forming the roof would not off er any re$istance to its distortion since 

each joint of the end truss corresponds to a line of joints in the roof. 



2. 3 Edge Forces 

A roof formed of inclined planar trusses is shown in Fig. 2. 1. 

In order to utilize the method of plate analogy in the analysis of this 

type of structure, the inclined trusses are separated from each other, 

or the structure is said to be "exploded", and each planar truss is 

treated as a plate element. In order to proceed in this manner, the 

forces exerted on one inclined ~russ by the inclined truss adjacent to it 

must be determined. 

z 

Fig. 2. 5 

Axial Forces at a Typical Joint 

To illustrate this, any two adjacent inclined trusses ij and jk 

ar·e considered. A typical joint along the line of joints j is removed 

(Fig. 2. 5). The actual members framing into this joint are replaced 

by the axial forces they t;t'ansmit. A coordinate system associated 

with the plane of truss ij is shown. The forces lie either in the plane 

of truss ij or jk. Forces N 1 and N2 are common to both planes. 

9 
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The basic requirement for equilibrium at a joint on any truss 

structure is: 

~F = 0 
X 

~F = 0 (2. 1) y 

~F = 0 
z 

By considering equilibrium in the z-direction, it is evident that the 

resultant of all forces lying in the plane of truss jk, excluding N 1 and 

N2 , must act in the x-direct!on. This resultant force is then an edge 

shearing force. Similarly. the influence of truss ij on truss jk is 

an edge shearing force and must be equal and opposite to the edge shear 

acting on truss ij. 

(a) (b) 

Joints Edge 

Fig. 2. 6 

Edge Shearing Forces 

Taking truss ij as a plate element, the forces exerted on it by 

the adjacent trusses are as shown in Fig. 2. 6(a). Since all these resul­

tant forces have the same line of action, they may be considered as the 

edge shearing force acting on the plate element as in Fig. 2. 6(b). 



The interior framing in any of the inclined trusses does not affect the 

direction of the resultants. 

11 

A situation may exist where two plate elements are coplanar. An 

example of this is the end plate elements of the roof structure in Fig. 2. 1. 

They have a common joint and a force in their plane may exist. The 

joint forces acting on these plate elements are shown in Fig. 2. 7. 

Fig. 2 .J7 

Edge Forces on an End Plate Element 

In addition'to the end plate elements which are adjacent and copla~ 

nar, an overhang is another example in which joint forces may exist 

(Fig. 2. 8). 

2. 4 Loads 

In the method of plate analogy, the planar trusses are separated 

from each other, loads and edge forces applied, and the analysis carried 

out as a two dimensional problem. As part of this process, the loads 

acting on the structure must be resolved into loads in the plane of the 
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(a) 

Structure 

(b) 

Plate Elements 

Fig. 2. 8 

Ove"rhang 



plate elements. 

A typical joint is chosen from a line of joints j between two 

inclined trusses ij and jk. A load inclined at an angle, a. , to the 
J 

vertical is applied at this joint (Fig. 2. 9). 

Fig. 2. 9 

Load Acting on a Typical .Joint 

13 

The load P. is resolved into components in the planes of the two 
J 

inclined trusses by using the force polygon shown in Fig. 2. 10. The 

values o{ the interior angles shown are: 

(\ :: ¢k + 90 - a. 
J 

e2 = 'Yj 

83 ,;: 90 + a. - Iii. 
J J 
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P.\ IP .. J ' Jl 

' ® 
pikk--A"" ~ ~. 
J-- I J._, 

© 

(a) (b) 

Load Component$ Force Polygon 

Fig. 2.10 

Resolution of Loads 

Then using the law of sin~s. the resolved loads are: 

si:p el cos(¢ k - a.) 
P .. = sin &2 

P. = J P. 
Jl J sin 'Y· J J 

sin e3 cos(¢. - a.) (2. 2) 

pjk :,; 

sin e2 
P. = J J P. 

J sin 'Y· J J 

In the special case of a symmetrical roof coniposed of two inclined 

trusses with a vertical load, then; 

q. = 0 
J 

Then the loads become, 



cos ¢i 
pij = pjk = sin 2¢. 

l 

P. 
P. = J 

J 2 sin ~\ 

15 

(2. 3) 

A typical plate element with all resultants acting on it ts shown in 

Fig. 2. 11. The superscript denotes the point at which the load acts. 

n-2 P .. I Jl 

n P .. 
lJ 

Fig. 2.11 

Loads on a Typical Plate Element 

2. 5 Fin.al Axial Forces 

At this step in the process of analysis, the edge for,ces and loads 

acting on the plate elements have been calculated, and th,e axial forces 

in the members must be determined. 

In Section 2. 3, it was shown that an edge shearing force exists at 

each joint and, for purposes'of equilibrium, can be considered as a 

single edge shear. It is this total edge shearing force that is now known 

and it must be applied somehow to the planar truss. 
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A force may be considered to act anywhere along its line of action 

to determine the conditions of equilibrium for a body, howeve:r, the 

point of application of the force affects the internal forces and stresses 

in the body. 

The first consideration is the entire structure as the body and the 

edge shears as inteTnal forces. In any body the internal forces act at 

a point and are equal and opposite. Therefore, the edge shearing force 

between adjacent plate elements must act at the same joint on the plate 

elements or the effect would be the same as an external load. 

The second consideration is the plate element as a body and the 

axial forces of the members as internal forces. In this case, the edge 

shear may be applied to any joint along its line of acUon. The location 

of the point of application affects only the force in the members associated 

with the edge shear, i.e., the members common to adjacent plate ele­

ments. 

This can be seen by taking a section normal to the line of action 

of the shearing force. If an end plate element is taken as an example 

because of its irregular shape, the edge shears are as shown in Fig. 

2. 12. If a section normal to the line of action of Q 3 is taken, Q 3 does 

not affect the shear on this section. The points of application of the 

other edge shears, e:x;cept Q 5, do not affect the shear on this section. 

There will be different values for the shear on this section corresponding 

to different points of application of Q5, but these differences will be 

balanced by different values for the axial force in the member associated 

with Q5. 
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Fig. 2. 12 

Ec;ige Shears on a Plate Elem~nt 

Thus, it can be concluded that the axial forces in the interior 

members are independent of the points of appli~ation of the edge shears. 

This is readily appat>ent in a plate element in which the top and bottom 

chords are parallel. 

Since the member which is common to the adjacent plate E;)lements 

is considered aE; a part of each plate el(;!:rpent, there will be a value of 

the axial force in this member for each plate element. The interior 

members of the plate element have the S?,me axial forces as if they had 

been analyzed as a part of the thre~-dimension structure without the 

use of the plate analogy. 

Thus, the only axial force remaining to be determined is the 

axial force in the member along which the edge shear acts. To main­

tain equ,ilibrium with the interior bars, the axial force in this member 

must be the algebraic sum of the axial forces determined when the 

member is cons:i.c;iered as a part of each plate element. 

ln this manner, the axial forces in all bars may be found. The 

determination of the axial forces in the members in each plate element 



is by any conventional two-dimensional analysis. In this discuf;lsion, 

it is assumed that the plate elements are internally determinate. If 

they are internally indeterminate, the same procedure applies but 

further development mu.st be made. 

2. 6 Deter:r;ninancy 

18 

Once the influence of the plate elements on one another has been 

established, the determinancy of the method of analysis may be c<;m­

sidered. The unknowns are the edge forces acting on the plate elements 

and the external reactions. Since the unlmowns art;i taken as the edge 

forces and not the axial forces of the truss members, this discussion 

considers only the determinancy of the analysis by the method of plate 

a.nalogy. 

The first consideration is to establish the number of equations 

available. The plate elements are two dimensional trusses, therefore~ 

there are three equations of statics available for each plate element. 

Also, there is an equality o:f:' the edge forces at a common edge. 

Since the entire structure is in three dimensions., there will be 

six equations of statics for it. Also there are ~pecial conditions avail­

able when the summation of moments about a line of joints or "valley" 

must be equal to zero. However, these relationships are contained 

in the equations for the plate elements. 

Tl').us a general expression may be written for the total number of 

equations available. 

n = 3p + q (2. 4) 

w):lere: 

n = total number of equations available 



p :;: number of plate elements 

q = number of common forces. 
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The second consideration in this discussion is to establish the 

number of unknowns. One group of unknowns is the edge forces. A 

seGond group is the external reactions. In the most general case there 

coulc;i be three reactions at each point of support. The outline of the 

base of a two span structure is shown in Fig. 2. 13. The center posts 

are assumed to support a "valley" or line of joints which require sup­

port for stability. The roof framing may be generE1-l and the general 

set of reactions is shown in Fig. 2. 13 (a). Each additional span required 

supports at the "valley", th1,1s introducing six r:nore reactions. 

Due to the construction of the supports and the actual assumptions, 

the number of external re;3.ctions would probably be reduced. The first 

assurrfpti~n,,,that could be made is that the center posts resist only axial 

forces and do not provide horizontal reactions. Another simplification 

is that due to construction of the supports, certain horizontal reactions 

can be eliminated. The minimum number of external reactions normally 

provided is shown in Fig. 2. 13 (b). 

To establish the determinancy of a structure composed of planar 

tr1,1sses, it is necessary to separate the plate elements, apply all edge 

forces and reactions and determin~ the total number of unknowns. This 

must be equal to the number of equations available. 



20 

"Ey 
~y /a 

Cx 

® 
RAx_/" l"' @ R 

R Ay 
Az 

(a) 

General 

(b) 

Minimum Required for Stability 

Fig. 2. 13 

Reactions of a Typical Structure 



CHAPTER ll1 

INTERNAL AND EXTERNAL REDUNDANTS 

3. 1 General 

The discussion in Chapter II assumed the structure to be inter­

nally and externally determinate. For a structure which is internally 

or externally indeterminatt;!, the same procedure applies, but some 

compatibility conditions must be incorporated in the analysis. 

3. 2 Internal Redundants 

Since the edge shears are independent of the arrangement of th~ 

bars in a plate element. the edge shearing forces will have the same 

value, under a given loading, regardless of the internal determinancy. 

However, if there is a redundant member in a plate element, a condi­

tion of compatibility must be satisfied. This condition is that the dis­

placement of the joints which the redundant member connects. in the 

direction of the axis of the redundant member, must equal the axial 

deformation of the redundant member. 

As an illustration, a structure with a redundant member in one 

pane~ of one inclined truss is considered (Fig. 3. 1). The method of 

virtual work is used to evaluate 1he necessary deformations. }1irst, a 

basic structure is selected with the redundant member cut and the loads 

are applied to it. All axial forces in the members of this basic struc­

ture are determined as described before. It should be noted that the 

21 
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axial forc~s are those obtained after the plate elements have been 

joirte d together again. 

Fig. 3. 1 

Internally Indeterminate Structure 

Next, the basic structure is loaded by the unknown redundant 

force equal to unity. The plate elements with the unit redundant load 

applied are shown in Fig. 3. 2. The unit redund~nt load will not cause 

edge shears and causes only axial forces to exist in the panel in which 

it acts. For this reason., only that plate element need be considered 

in the calculation of the axial forces due to the unit redundant load. 

The virtual work expression for the compatibility condition is 

given by Eq. 3. 1, and the final axial forces by Eq. 3. 2. 

kBN n X mm m 

kn 2 X 
m m 

( 3. 1) 

(3. 2) 



where 

-~ 
Fig. 3.2 

Basic Structure with Unit Redundant Loads 

X = redundant axial force 

a 10 = displacement between sections at the cut in the 

redundant member due to loads 

al 1 = displacement between secti6ns a,t the cut in. the l:'.echmdant 

member due to X = +1 

BN = axial force in member m of the basic strl,lcture due 
rn 

to loads 

n axial force in member m due to X = +1 rn 
L 

Arn = A mE' = axial extensibility of member m 
rn 

N = final axial force in member rn . 
m 

23 
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The basic axial force nm is zero (or all members except those 

in the panel of the redundant member. Thus if there are two redundant 

members in panels that are not adjacent, two independent equations for 

the redundants will result. If the panels are a,djacent, the redundants 

will influence each other and simultaneous equations will be obtained. 

3. 3 External Redundants 

For a structure which is externally inc;leterminate, the total num­

.ber of edge forces and external reactions is greater than the total num­

ber of equations of statics available. The additional equations must 

be obtained from conditions of deformation. 

A i;tructure is shown in Fig. 3. 3, in which all plate elements are 

internally determinate. The redundants in this case are the horizontal 

thrusts of the end plate elements. A basic structure is chosen with 

one support on rollers, so that there is no horizontal reaction. All 

· axial forces in the basic structure due to loads are then determined by 

the procedure described earlier. 

Next the basic structure is loaded by the redundant horizontal 

thrust equal to unity and all axial forces determined. The unit redun­

dant thrust caµses axial forces only in the end plate element. The 

solution for the redundant horizontal thrust can be obtained by Eq. 3. 1, 

where X is the redundant horizontal thrust. Again, Eq. 3. 2 gives 

the final axial forces in the structure. 

If the structure is both internally and externally indeterminate, 

then the basic st;ructure for computing the external redundants is inter­

nally indeterminate. . If the end plate element is internally indetermi­

nate, then the internal and external redundants influence each other. 
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t 

Fig. 3. 3 

Externally Indeterminate Structure 

If a redundant panel in a roof plate element is adjacent to a re-

dundant panel in the end plate element, the redundant forces influence 

each other. Then when the unit redundant thrust is applied to the basic 

structure, the members in the redundant panel in the roof truss will 

have a~ial forces. 

If a roof plate element has redundant members in all panels, 

then all panels will be influenced by the redundant horizontal thrust. 

However, if there is one panel that is internally determinate, then the 

influence will only carry to that point (Fig. 3. 4). 
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Fig. 3·~ 4 

Influence of Internal Redundants. 



CHAPTER IV 

APP LI CATION 

4. 1 General 

The two span truss-plate structure shown in Fig. 4. 1 is analyzed 

for a uniformly distributed load. The overhang, two end plate elements 

and redu11da:pt member illustrate topics discussed in Chapters II and 

III. 

'J'he center supports are assumed to provide vertical reactions 

only. The external reactions are shown in the figure. 

Th.e denning geometry of the structure is as follows: 

slope length = 15. 81 ft. 

sin¢ 2 = sin¢ 4 = .316 

le:r;igth of diagonals = 21. 79 ft. 

The structure is assumed to support a uniformly distributed 

load of 75 psf. The concentrated loads applied at the joints and the 

loads applied to the plate elements are listed in Table 4. 1. 

TABLE 4. 1 LOADS 

P. P .. 
J Jl 

Interior Joint 16.90k 26.75k 

Edge Joint 8.45k 13. 38k 

Corner Joint 4.23k -

27 
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® 

® 

Fig. 4. 1 

Two Span Truss-Plate Structur,e 

4. 2 Edge Forces 

The plate elements are separated and loads and edge forces applied 

in Fig. 4. 2. There are nine external reactions. Also. there are sixteen 

unknown edge shears and eight unknown joint forces. Thus. the total 

number of unknowns is 33. There are eleven plate elements. therefore~ 

the total number of equations available is: 

n = 3p = 33. 
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Fig. 4. 2 

Two Span Truss-Plate Structure 
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The e quality of forces at a common edge was incorporated in the nota­

tion of the sketch. Thus the structure is externally determinate. How­

ever~ the X-bracing in one plate element makes the structure internally 

indeterminate. 

The unknown reactions and edge forces were found by applying the 

equations of statics to the plate elements starting with elements 1 and 10. 

The results are listed in Table 4. 2. 

TABLE 4. 2 EDGE FORCES AND REACTIONS 

Q l 13.4 Q l4 0 a2 
3z 70.5 QlO 31. 2 

Q2 .-13. 4 R5 
5y 0 a2 

5z 16.9 ~ -89.0 

Q4 26.8 Q 16 40. 1 F6 - 25. 4 F 2+Qg 25.4 

Fl - 25. 4·~: Ql3 -40. 1 R5 
~z 

48.p Fa 22.6 

F 2-Q3 25. 4.if Q8 0 R5 16.~ R 5 14. 1 5z ! lz 

Q5 -26.8 Q12 66. 9 ·. Qll - 58. 0 F7 45. 1 

I 

R ~ F . -25.4 Q l5 -66.9 :J Q7 115. 9 36.6 4 lz 

F3+Q3 25. 4 i F5 -25 . 4;;,, F3-Q9 25. 4 ... 

4. 3 Axial Forces 

In order to solve for the final axial forces, the redundant member 

mus t be cut and the axial forces in the basic structure determined. The 

axial forces of the basic structure under loads are shown in Fig. 4. 3(a). 

The axial forces in the redundant panel due to a unit redundant load are 

shown in Fig. 4. 3(b). 
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Axial Forces in Basic Structure 
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Assuming the members which are stressed by the unit redundant 

load have the same cross-sectional area and modulus of elasticity1 the 

nnndant: is found using Eq. 3. 1. The calculations are tabulated in 

Table 4. 3. 

TABLE 4. 3 CALCULATION OF REDUNDANT 

m Lm nm BNm BN mnmLm 
2L 

nm m 

1 15.81 - • 726 26. 7 · -307 8.35 

2 15.81 - .726 26.7 307 8.35 

3 I ' 15. 00 - • 689 -76.2 786 7. 13 

4 15. 00 - • 689 84.7 i- 874 7. 13 

5 21. 79 1. 000 0 0 21. 79 

6 21. 79 1. 000 0 0 21. 79 

k - 88 37.27 
' 

Then 

X = - - 55 = 2. 36 37.27 

Using Eq. 3. 21 the final axial forces are shown in Fig. 4. '1. 
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Fig. 4. 4 

Final Axial F . ore es 



5. 1 Summary 

CHA:f>TER V 

SUMMARY AND CONCLUSIONS 

The method of plate analogy in the analysis of roof structures 

composed of planar truss elements was presented in this thesis. By 

consideriµg the equilibrium of a typical joint# the influence of adjacent 

inclined trusses on each other was established. Also# the proportion 

of the load at a common joint which is resisted by each planar truss was 

determined. Then it was shown that the plate elements may be separated, 

loads and edge forces applied, and the plana!t' trusses analyzed as a two 

dimensional problem. The manner in which the k:nown edge shears 

must be a:pplied to the plate elements to determine the axial member 

forces was shown. The condition for statical determinancy was dis­

cussed# and a procedure for the evaluation of internal and external 

redundant~ was outlined. 

5. 2 Conclusions 

The method of plate analogy reduces the analysis of three dimen­

sional structures composed of planar trusses to a two dimensional prob­

lem. Because the equations used in solving for the edge forces are 

equations of statics, the concept involved in this method is elementary. 

Since many of the plate elements in a structure are of the same or 

similar shape# the process of solving the equations of equilibrium be­

comes systematic. 

34 
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In cases where joint forces exist, an unknown joint force may be 

combined with an edge shear if they are colinear. Then when the axial 

forces in the members are determined, the edge shear is applied at the 

joint acted upon by the joint force. 

With a clear system of notation, the method of plate a,nalogy pro­

vides a simplified method of analysis of three dimensional structures 

composed of planar trusses. 

5. 3 Extension 

The material presented in this theses can be directly extended to 

more complex and involved forms of truss structures. The analysis of 

t:rµss domes could be investigated. The method of plate analogy might 

be extended to include a more general and complete study of internally 

and extern.ally redundant structures. 
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