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CHAPTER 1

INTRODUCTION

1.1 General

Space trusses may be analyzed by several methods. Some of .
these are:

1. Method of Joints

2. Method of Sections

3, Method of Moments

4. Henneberg's Method

5. Tension Coefficients

6. Method of Plate Analogy

It is the purpose of this thesis to discuss the application of the
method of plate analogy to framed structures of the same general shape
as barrel shells and folded plates. Casges of internal and external inde-
terminancy and the effect of instability are also discussed.

The method of ‘plate analogy reduces the analysis of space trusses
to a.two dimensional problem. As applied tp space trusses, this method
consists of separating the space truss into planar trusses, resolving
the loads on the structure into loads in the plane of the planar trusses,

-and completing the problem as an analysis of several planar trusses.
| Thus, besides being convenient and practical, the method of plate
analogy provides a simpler approach to the analysis of complicated

space structures composed of planar trusses.



In addition to the advantages in the method oannalysis, it is felt
that roof structures of this type composed of steel framing have two
main advantages over roofs formed of concrete. The first and primary
advantage is cost. A concrete roof poured over complicated formwork
can seldom be constructed more economically than a framework of
straight steel members with simple connections. The second advantage
is simplicity. Provisions for overhangs, concentrated loads, dis-
continuities and skylight openings, which are complicating factors in a
concrete roof, can be readily handled in the engineering office and at

(1) *

the construction site.

1.2 Historical

(2)

According to historical information presented by Kinney' ™’ and

(3), the Italian architect, Andrea Palladio (1518 - 1580) is

Gilleépie
believed to have first used trusses of any great span, although the Romans
used trusses in their wooden bridges and roofs. Two centuries later
(1758) a Swiss carpenter, Ulric Grubenmann, built a 170 foot timber
truss across the Rhine. Other timber bridges were built after this,
‘but they combined the truss and the arch in a sivngle structure. Then,
in 1778, Ulric Grubenmann and his brother, Jean, built a longer timber
bridge with a span of 390 feet. All these trusses were built by rule of
thumb rather than by design based on a rational analysis.

The first all-metal trusses were built in the United States in

1840. In 1847, Squire Whipple published the first rational approach to

_ the theory of structures and the analysis of trusses in the United States. |

* This and subsequent numerals in parentheses refer to the list
of references in the Selected Bibliography.



The general theory of three dimensional systems was first formu-
lated by Mobius(4) in 1837, but his work remained unknown to engineers,
and the theory of space {russes was developed independeﬁtly. August
Foppl's book(5) considered many important topics concérning space
trusses for the first time (1892), and has been the basis of much of the

later work in this field.

The method of plate analogy was first utilized by Schwyzer(G) in

his dissertation (1920). The work of Schwyzer was extended and pub-

(7, 8, 9).

lished by Stiissi The method of plate analogy was summarized

and published in the United States by Anderson and Nordby(lo).

In addition to this historical development, the method of plate

(11)

analogy is briefly described by Niles and Newell and Timoshenko

(12) (3)

and Young Also, Gillespie "’ utilizes the method of plate analogy

in his dissertation.



CHAPTER II
GENERAL THEORY

2.1 General

The justification of the method of plate analogy is presented in the
order in which the analysis would be carried out in é typical problem.
First, the stability of the structure must be considered. Then the
structure must be gseparated into individual coplanar plate elements,
and fhe effects on adjacént plate elements determined. After this, the
“loads on the structure must be resolved into loads in the plane of the
plate elements. Finally, after the analysis of the planar trusses, the
plate elements must be joined together again and the final axial forces
in the members determined. At this point, with the unknown quantities
and equations of equilibrium established, the'«determinancy of the
method of analysis is discussed.

The usual assumptions, that the individual members of the struc-
ture transmit only axial forces, that all joints are frictionless spherical
hinges, and that all loads are applvied at the joints, are made in this

investigation.

2.2 Stability Requirements

The first consideration is the stability of the entire structure. A
typical roof composed of plate elements resting on walls, as in Fig. 2.1,

is considered. For a vertical system of loads, the end ties will take



the horizontal thrust of the inclined trusses, and the horizontal reactions
on the walls will be zero, However, under wind loading these reactions

will exist, and the walls must be capable of transmitting the horizontal

forces to the foundation.

Fig. 2.1

Typical Roof Composed of Planar Trusses

The main requirement for stability in the vertical direction is that
the center line of joints, or "valley' be restrained from moving. This
may be accomplished by supporting the line of joints by the center posts
as shown (Fig. 2.1). An alternative might be to fix the joints against

rotation by providing ties, as shown by the dotted lines.



The second consideration is the stabilityi of the individual planar
trusses. When a coplanar truss is separated as a basic unit and the
edge forces and loads applied to it, it is subject to the principles of
coplanar truss analysis. If this coplanar truss is unstable in its own
plane, then it is not rigid and its shape will b‘e distorted. A simple
example of this is shown in Fig. 2,2, The interior panel which does

not have a diagonal member will not transmit shear and allows the dis~

tortion.
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(a) (b)
Cantilevered - Simply Supported
Fig. 2.2

Instability of Planar Truss

Regardless of the type of support, under ény loading which causes
a shearing force to exist at a panel which cannot resist shear, the planar
truss will deform in order to resist the load. If the planar truss has tc
deform excessively to resist the load, it is a non-rigid form and is
unstable,

Since the plate elements are planar trusses, they are subject to
the same restrictions. However, in order for one plate element to dis-

tort, the plate elements adjacent to it must also distort in some manner



of compatibility. If two inclined stable trusses are joined together along
a line of joints and both are supported on a rigid foundation, then the
system as a whole cannot distort. Each coplanar truss is assumed to
be flexible perpendicular to its own plane, but is prevented from move-

ment in this direction by the adjacent trusses.

Fig. 2.3

!

Instability with Two Plate Elements

However, as in Fig. 2. 3, if one of the trusses were unstable, it
would not resist any ocut-of-plane movement by the other planar truss;
and the structure, as a whole, would be unstable. In this case the
stable planar truss could move in a direction perpendicular to its own
plane and the unstable truss woeculd not be able to resist this movement.

A roof structure composed of plate elements, one of which con-
tains a section which will not resist shear in its own plane is considered
(Fig. 2.4). The inclined truss 1-1, which is not rigid will allow the two
lines of joints 1 to move in a direction perpendicular to the planes of trus-
seg 1-2. The two plate elements to either side of the unstable inclined

truss would not remain plane. If the displacement :Qf the first lines of



joints, 1, are small, then the second lines of joints, 2, will not move.

Fig. 2.4

Instability with Several Plate Elements

It may be concluded that if one plate element contains a section
that will not transmit shear, it will distort and the two plate elements
adjacent to it will not remain in one plane, but will be subject to out-of-
plane deformations. The condition of deformation being that the line of
joints on either side of the unstable truss must move perpendicular to
the planes of the adjacent stable trusses and the unstable truss detrudes.

If an end plate element were to become unstable,the plate elements |
forming the roof would not offer any resistance to its distortion since

each joint of the end truss corresponds to a line of joints in the roof.



2.3 HEdge Forces

A roof formed of inclined planar trusses is shown in Fig. 2. 1.
In order to utilize the method of plate analogy in the analysis of this
type of structure, the inclined trusses are separated from each other,
or the structure is said to be "exploded', and each planar truss is
treated as a plate element. In order to proceed in this manner, the
forces exerted on one inclined truss by the inclined truss adjacent to it

must be determined.

Fig. 2.5

Axial Forces at a Typical Joint

To illustrate this, any ‘t‘w‘o adjacent inclined trusses ij and jk
are considered. A typical joint along the line of joints j is removed
(Fig. 2.5). The actual members framing into this joint are replaced
by the axial forces they transmit. A coordinate system associated
with the plane of truss ij is shown. The forces lie either in the plane

of truss ij or jk. Forces N1 and N2 are common to both planes.
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The basic requirement for equilibrium at a joint on any truss

structure is:

ZF, =0
BP_ = 0 2.1
- (2. 1)
ZF_ =0
Z

By considering equilibrium in the z-direction, it is evident that the
resultant of all forces lying in the plane of truss jk, excluding N, and
N2 , must act in the x-direction. This resultant force is then an edge
shearing force. Similarly, the influence of truss ij on truss jk is

an edge shearing force and must be equal and opposite to the edge shear

acting on truss ij.

(a) (b) /

Joints . Edge

Fig. 26

Edge Shearing Forces

Taking truss ij as a plate element, the forces exerted on it by
the adjacent trusses are as shown in Fig. 2.6(a). Since all these resul-
tant forces have the same line of action, they may be considered as the

edge shearing force acting on the plate element as in Fig. 2.6(b).
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The interior framing in any of the inclined trusses does not affect the
direction of the resultants.

A situation may exist whére two plate elements are coplanar. An
example of this is the end plate elements of the roof structure in Fig, 2. 1.
They have a common joint and a force in their plane may exist. The

joint forces acting on these plate elements are shown in Fig. 2. 7.

Fig. 2.7

Edge Forces on an End Plate Element

In addition to the end plate elements which are adjacent and copla-
nar, an gverhang is another example in which joint forces may exist

(Fig. 2.8).

2.4 l.oads

In the method of plate analogy, the planar trusses are separated
from each other, loads and edge forces applied, and the analysis carried
out as a two dimensional problem. As part of this process, the loads

acting on the structure must be resolved into loads in the plane of the
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plate elements.
A typical joint is chosen from a line of joints j between two
inclined trusses ij and jk. A load inclined at an angle, afj , to the

vertical is applied at this joint (Fig. 2.9).

Fig. 2.9

Load Acting on a Typical Joint

The load Pj is resolved into components in the planes of the two
inclined trusses by using the force polygon shown in Fig. 2.10. The

values of the interior angles shown are:

91 = ¢k + ‘90 - a'j
02 = 'yj
6, = 90 + a, - &
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(a) ‘ (b)

Load Components Force Polygon

Fig. 2.10

Resolution of Loads

Then using the law of sines, the resolved loads are:

b - sin 61 b - cos(¢k—aj) o
ji T osmoe, Ty T T ey j

sin 63 ' cos(g. - «,) (2.2)
Pik T sme, Ty T —t 7, - P

In the special case of a symmetrical roof composed of two inclined

trusses with a vertical load, then;

. = 20.
‘YJ ¢;]
a. = 0

J

Then the loads become,
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cos ¢i P,
Py = Py = Sher P, = somnge 7 (2.3)

A tjrpical plate element with all resultants acting on it is shown in

Fig. 2.11. The superscript denotes the point at which the load acts.

Fig. 2.11

Loads on a Typical Plate Element

2.5 Final Axial Forces

At this step in the process of analysis, the edge forces and loads
acting on the plate elements have been calculated, and the axial forces
in the members must be determined. |

In Section 2. 3, it was shown that an edge shearing force exists at
each joint and,. for purposes of equilibrium, can be considered as a
single edge shear. It is this total edge shearing force that is now known

and it must be applied somehow to the planar truss.
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A force may be considered to act anywhere along its line of action
to determine the conditions of equilibrium for a body, however, the
point of application of the force affects the internal forces and stresses
in the body.

The first consideration is the entire structure as the body and the
edge shears as internal forces. In any body the internal forces act at
a point and are equal and opposite. Therefore, the edge shearing force
between adjacent plate elements must act at the same joint on the plate
elements or the effect would be the same as an external load.

The second consideration is the plate element as a body and the
axial forces of the members as internal forces. In this case, the edge
shear may be applied to any joint along its line of action. The location
of the point of application affects only the force in the members associated
with the edge shear, i.e., the members common to adjacent plate ele-
ments.

This can be seen by taking a section normal to the line of action
of the shearing force. If an end plate element is taken as an example
because of its irregular shape, the edge shears are as shown in Fig.
2.12, If a section normal to the line of action of Q3 is taken, Q3 does
not affect the shear on this section. The points of application of the
other edge shears, except Q5, do not affect the shear on this section.
There will be different values for the shear on this section corresponding
to different points of application of Q5, but these differences will be
balanced by different values for the axial force in the member associated

with QS'
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Fig. 2,12

Edge Shears on a Plate Element

Thus, it éan be concluded that the axial forces in the interior
members are independent of the points of application of thé edge shears.
This is readily apparent in a plate element in which the top and bottom
chords are parallel.

Since the member which is common to the adjacent plate elements
is considered as a part of each plate elemen"c, there will be é value of
the axial force in this member for each plate element. The interior
members of the plate element have the same axial forces é.s if they had
been analyzed as ra part of the three-dimension structure without the
use of the plate analogy.

Thus, the only axial force remaining to be determined is the
axial force in the member along which the edge shear acts. To main-
tain equilibrium with the interior bars, the axiai force in this member
must be the aigebraic sum of the axial forces determined when the
member is considered as a part of each plate element.

In this manner, the axial forces in all bars may be found. The

determination of the axial forces in the members in each plate element
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is by any conventional two-dimensional analysis. In this discussion,
it is assumed that the plate elements are internally determinate. If
they are internally indeterminate, the same procedure applies but

further development must be made.

2.6 Determinancy

Once the influence of the plate elements on one another has been
eétablished, the determinancy of the method of analysis may be con-
sidered. The unkndwris are the edge forces acting on the plate elements
and the external reactions. Since the unknowns are taken as the edge
' forces and not the axial forces of the truss members, this discussion
considers only the determinancy of the analysis by the method of plate
analogy.

The first consideration is to establish the number of equations
available. The plate elements are two dimensional trusses, therefore,
there are three equations of sfatics available for each plate element.
Also, there is an equality of the edge forces at a.common edge.

Sinece the entire structure is in three diménsions, there will be
six equations of statics for it. Also there are special conditions avail-
able when the summation of moments about a line of joints or ''valley"
must be equal to zero. However, these relationships are contained
in the equations for the plate elements.

Thus a general expression may be written for the total number of
equations available.

n = 3p + q | (2. 4)

where:

=]
]

total number of equations available
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number of plate elements

o)
1l

number of common forces,

Q
il

The second consideration in this discussion is to establish the
number of unknowns. One group of unknowns is the edge forces. A
second group is the external reactions. In the most general case there
could be three reactions at each point of support. The outline of the
base of a {two span structure is shown in Fig. 2,13, The center posts
are assumed to support a ''valley' or line of joints which require sup-
port for stability. The roof framing may be general and the general
set of reactions is shown in Fig. 2. 13 (a). FEach additional span required
supports at the ''valley', thus introducing six more reactions.

Due to the construction of the supports and the actual assumptions,
the number of external reactions would probably be reduced. The first
assumpti,:qimthat could be inade is that the center posts resist only axial
forces and do not provide horizontal reactions. Another simplification
is that due to construction of the supports, certain horizontal reactions
can be eliminated. The minimum number cof external reactions normally
provided is shown in Fig. 2. 13 (b).

To establish the determinancy of a structure composed of planar
trusses, it is necessary to }sep_arate the plate elements, apply all edge
forces and reactions and determine the total number of unknowns; This

must be equal to the number of equations available.
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(2)

, ' ' TRBZ
RAX/ZAD'R:\RAY

(b)

Minimum Required for Stability

Fig. 2.13

Reactions of a Typical Structure



CHAPTER III

INTERNAL AND EXTERNAL REDUNDANTS

3.1 General

The discussion in Chapter II assumed the structure to be inter-
nally and externally determinate. For a structure which is internally
or externally indeterminate, the same procedure applies, but some

compatibility conditions must be incorporated in the analysis.

3.2 Internal Redundants

Since the edge shears are independent of the arrangement of the
bars in a plate element, the edge shearing forces will have the same
value, under a given loading, regardless of the internal determinancy.
However, if there is a redundant member in a plate element, a condi-
tion of compatibility must be satisfied, This condition is that the dis-
placement of the joints which the redundant member connects, in the
direction of the axis of the redundant member, must equal the axial
deformation of the redundant member.

As an illustration, a structure with a redundant member in one
panel of one inclined truss is considered (Fig. 3.1). The method of
virtual work is used to evaluate the necessary deformations. First, a
basic structure is selected with the redundant member cut and the loads
are applied to it. All axial forces in the members of this basic struc-

ture are determined as described before. It should be noted that the

21
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axial forces are those obtained after the plate elements have been

joined together again.

Fig. 3.1

Inte rnally Indeterminate Structure

Next, the basic structure is loaded by the unknown redundant
force equal to unity. The plate elements with the unit redundant load
applied are shown in Fig. 3.2. The unit redundant load will not cause
edge shears and causes only axial forces to exist in the panel in which
it acts. For this reason, only that plate element need be consideréd
_in the calculation of the axial forces due to the unit redundant load.
The virtual work expression for the compatibility c‘ondition is

- given by Eq. 3.1, and the final axial forces by Eq. 3.2.

ZBN_n__ A

X -.-,5_1_9 = - P (3.1)
11 =n 2
m m
N. = BN_ + Xn (3.2)



Fig. 3.2

Basic Structure with Unit Redundant Loads

where
X = i‘edundant axial force
a;g © displacement between sections at the cut in the
redundant member due to loads
a;y = displacement between sections at the cut in the redundant

member due to X = +1

BNm = axial force in member m of the basic structure due
to loads
n. = axial force in member m due to X =+1
Lm : :
lm = W = axial extensibility of member m
N = final axial force in member m .

23
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The basic axial force n_ is zero for all members except those
in the panel of the redundant member., Thus if there are two redundant
members in panels that are not adjacent, two independent equations for
the redundants will result, If the panels are adjacent, the redundants

will influence each other and simultaneous equations will be obtained.

3.3 External Redundants

For a structure which is externally indeterminate, the total num-
ber of edge forces and external reactions is greater than the total num-
ber of equations of statics available. The additional equations must
be obtained from conditions of deformation.

A structure is shown in Fig. 3.3, in which all plate elements are
internally determinate. The redundants in this case are the horizontal
thrusts of the end plate elements. A basic structure is chosen with
one support on rollers, so that there is no horizontal reaction. All
axial forces in the basic structure due to loads are then determined by
the procedure described earlier,

Next the basic structure is loaded by the redundant horizontal
thrust equal to unity and all axial forces determined. The unit redun-
dant thrust causes axial forces only in the end plate element. The
solution for the redundant horizontal thrust can be obtained by Eq. 3.1,
where X is the redundant horizontal thrust. Again, Eq. 3.2 gives
the final axial forces in the structure. |

If the structure is both internally and externally indeterminate,
then the basic structure for co'mputing the external redundants is inter-
nally indeterminate. .If the end plate element is internally indetermi-

nate, then the internal and external redundants influence each other.



Fig. 3.3

Externally Indeterminate Structure

If a redundant panel in a roof plate element is adjacent to a re-
dundant panel in the end plate element, the redundant fo.‘rces influence
each other, Then when the unit redundant thrust is applied to the basic
structure, the me‘mbers in the redundant panel in the roof truss will
have axial forces.

If a roof plate element has redundant members in all panels,
then all paﬁels will be influenced by the redundant horizontal thrust.
However, if there is one panel that is internally determinate, then the

influence will only carry to that point (Fig. 3.4).






CHAPTER IV
APPLICATION

4. 1 General

The two span truss-plate structure shown in Fig. 4.1 is analyzed
fo‘r‘é uniformly distributed load. The overhang, two end plate elements
and redundant member illustrate topics discussed in Chapters II and
III. | |

‘The center supports are assumed to provide vertical reactions
Qrﬂy. The external reactions are shown in the figure.

The ééfining geometry of the structure is as follows:

slope length = 15,81 ft,
sin¢2 = sin ¢4 = ,316
length of diagonals = 21.79 ft.

The structure is assumed to support a uniformly distributed
load of 75 vpsf. The concentrated loads applied at the joints and the

loads applied to the plate elements are listed in Table 4, 1.

TABLE 4.1 LOADS

P | P.. ,
J a
. ey k k
Interior Joint 16.90 , 26,75
Edge Joint 8, 455 13, 38K
. Lk :
Corner Joint 4,23 ' -

27
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Fig. 4.1

Two Span Truss-Plate Structure

4.2 Edge Forces

The plate elements are separated and loads and edge forces applied
in Fig. 4.2. There are nine external reactions. Also, there are sixteen
unknown edge shears and eight unknown joint forces. Thus, the total
number of unknowns is 33. There are eleven plate elements, therefore,
the total number of equations available is:

n= 3 = 33.



Fig. 4.2

Two Span Truss-Plate Structure

62
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The equality of forces at a common edge was incorporated in the nota-
tion of the sketch. Thus the structure is externally determinate. How-
ever, the X-bracing in one plate element makes the structure internally
indeterminate,

The unknown reactions and edge forces were found by applying the

equations of statics to the plate elements starting with elements 1 and 10,

The results are listed in Table 4, 2.

TABLE 4.2 EDGE FORCES AND REACTIONS

Q, 13.4 | Q,, 6 fas 70.5 | Qg 3.2
Q, -13.4 | RY o |RrZ 16.9 | Qg -89.0
Q, 26.8 | Q¢ | 40.1 |F, - 25.4 | F,+Qy | 25.4
F -25.45 | Q5 |-40.1 Rg’z 48.0 | Fy 22.6
F,-Qg | 25.4%| Qg o & 16.9 | Ry, 14, 1
Q -26.8 | Q, | 66.9 |, |-s8.0fF, 45, 1
F, -25.4 | @, |[-66.97]Q; 115.9 | Y 36. 6
F4Q, | 25.44| Fy [-25.45)|F,-Qp | 25.4

4,3 Axial Forces

In order to solve for the final axial forces, the redundant member

must be cut and the axial forces in the basic structure determined. The

axial forces of the basic structure under loads are shown in Fig. 4. 3(a).

The axial forces in the redundant panel due to a unit redundant load are

shown in Fig. 4. 3(b).



(b)

Due to Unit Redundant

Fig. 4.3

Axial Forces in Basic Structure

31
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Assuming the members which are stressed by the unit redundant
load have the same cross-sectional area and modulus of elasticity, the

recindant is found using Eq. 3.1. The calculations are tabulated in

Table 4. 3.
TABLE 4.3 CALCULATION OF REDUNDANT
2
m Lm B BNm BNmnmLm umLm
L_ _#
1 15.81 - .726 26,7 -307 8.35
2 15,81 - .726 26. 7 307 8. 35
3. 15. 00 - .689 -76.2 786 7.13
4 15. 00 - .689 84.7 ~874 7.18
5 21,79 1. 000 0 0 ' 21.79
6 21.79 1. 000 0 0 21.79
—_
= || - 88 37.27
Then
X = - gty = 2.36

Using Eq. 3.2, the final axial forces are shown in Fig. 4.4.



Fig. 4.4

Final Axial Forces

33




CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 ‘Sﬁmmarj

The method of plate analogy in the analysis of roof structures
compoéed of planar truss elements was presented in this thesis, By
considering the equilibrium of a typical joint, the influence of adjacent
inclined trusses on each other was established., Also, the pfoportion
of the load at a common joint which is resisted by each planar truss was |
determined. Then it was shown that the plate elements may be separated,
loads and edge forces applied, and the planar trusses analyzed as a two
dimensional problem. The manner in which the known edge shears
must be applied to the plate elements to determine the axial member
forces was shown. The condition for statical determinancy was dis-
cussed, and a procedure for the evaluation of internal and external

redundants was outlined.

5.2 Conclusions

The method of plate analogy reduces the analysis of three dimen-
sional structures composed of planar trusses to a two dimensional prob-
lem. Because the equations used in solving for the edge forces are
equations of statics, the concept involved in this method is elementary.
Since many of the plate elements in a structure are of the same or
similar shape, the process of solving the equations of equilibrium be-
comes systematic.
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In cases where joint forces exist, an unknown joint force may be
combined with an edge shear if theyvare colinear. Then when the axial
forces in the members are determined, the edge shear is applied ét the
joint acted upon by the joint force.

With a clear system of notation, the method of plate analogy pro-
vides a simplified method of analysis of three dimensional structures

composed of planar trusses,

5.3 Extension

The material presented in this theses can be directly extended to
more complex and involved forms of truss structures. The analysis of
truss domes could be investigated. The method of plate analogy might
be extended to include a more general and complete study of internally

and externally redundant structures.
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