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CHAPTER I 

INTRODUCTION 

In the last sixty years, the reaction and mechanism of the Michaelis

Arbuzov rearrangement has been well documented for the process with 

acyclic, cyclic, and more recently the bicyclic phosphites. Thus the 

application of the Michaelis-Arbuzov rearrangement to the tervalent 

phosphorus atom in a tricyclic phosphite, such as l-phospha-2,8,9-

trioxaadamantane, seems a logical extension of this useful reaction, 

Also the resulting bicyclic phosphonates are quite interesting in their 

own right, in view of the many possible stereochemical considerations. 

The relationship of bicyc1ic phosphonates to cyclic phosphorylated sugars 

was apparent, It was anticipated that useful correlations of reactivity 

and structural orientation might be obtained from a study of the stereo

chemistry of the ring-opening process in tricyclic phosphites and in 

bicyclic phosphonates. 

1 



CHAPTER II 

HISTORICAL 

The synthesis of phosphites have been reported via a number of 

methods. The most common procedure has involved the reaction of 

phosphorous trihalides with an appropriate alcohol using the high 

dilution technique and an acid acceptor (60,81,98,103). Also phos

phorous trihalides may be reacted with a metallic derivative of the 

alcohol to prepare certain phosphites (60). When trimethylolethane and 

phosphorous trichloride were heated in the absence of solvent, Barnes and 

Hoffman (17) were able to prepare l-methyl-4-phospha~3,5,8-trioxabicyclo

!l.2.2]octane (I). 

The simplicity and ease of preparation and the resulting high yields 

seemingly make the two procedures developed by Wadsworth. and Emmons (104) 

the methods of choice for the preparations of acyclic and cyclic phos

phites. One process consisted of the addition of phosphorous trichloride 

to the alcohol at O@ followed by slow warming of the mixture to 50-60@ 

under a stream of nitrogen which removed the hydrogen chloride formed. 

The second procedure is based on simple transesterification of a trialkyl 

phosphite with an alcohol. The lower-boiling alcohol produced is dis

tilled slowly. The yields of phosphites from both methods are comparable, 

an 80 per cent to nearly quantitative amount being realized. Either 

method furnished the bicyclic phosphite I in 90 per cent of theory (104). 

2 
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Recently, phosphite I was synthesized in 40 percent )field from phos-

phorous· trichloride, trimethylolethane and pyridine under high dilution 

•• 
,,//P--o 

o I 
0 

I II III 

conditions (103). Increased returns (50-55 per cent) were possible when 

phosphorus trichloride and trimethylolethane were heated in the absence of 

a sqlvent (17),. 

We have applied the transesterification method to the formation of 

tricyclic ph~sphites, 01:>'taining an 82 per cent yield of l-phospha-2,8,9-

trioxaadamantane (II), from cis-, l, 3, 5-cyciohexanetriol .and trimethyl 

phosphite" · Stetter and Steinacker (98) prepared the tricyclic phosphite II 

in a 20 per cent yield using high dilution c.onditions and pyridine as an 

acid-binding agent with phosphorous trichloride. 

Structurally, the tricyclic phosphite II is a m~ber of the adaman-

tane family, a group of compounds whose name' i_s derived from the highly 

s~etrical, p.3,rent hydrocarbon, adamantane (III)(71). First isolated 

from crude petroleum by Landa ~nd Machacek (64) in 1?33, adamantane was 

assigned the ~tructure of tricycloG.3.l.1 3 ']decane~ Althougl:i it is an 

aI'-:;iiphatic hydrocarbon containiqg; ~nly ten carbon ato111,s, adamantane melts 

~t '267°. (sealed. tube), while normal decane melts at -;n °. That .the· 

molecule III 1.s quite s:pherical is shown by its ease of sublimation. 
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X-ray (82) and nuclear magnetic resonance (94) studies show the high 

symmetry of III. Like adamantane, the tricyclic phosphite II is high 

melting (208°, sealed tube) and readily sublimes. The adamantane-type 

compounds have been reviewed by Stetter (96), Fredga (37), and most 

recently by Stetter (97)~ 

Discovered by Michaelis and Kahne (77) in 1898, the Michaelis-

Arbuzov reaction is one of the most widely used methods for the prepara-

tion of carbon-phosphorus bonds. The scope of the reaction was rather 

well explored by Arbuzov (5). Basically it involves the condensation 

of trialkyl phosphites and related trivalent phosphqrus esters with 

simple alkyl halides. Subsequent decomposition and rearrangement of the 

quasiphosphonium halide intermediate result in the formation of penta-

valent phosphorus compounds. The formation of a dialkyl alkylphos-

phonate from a trialkyl phosphite and the alkyl halide is the simplest 

form of this rearrangement. 

ffi 8 • ERO)/-Rj X 

IV 

8 (±) 
X , ••• R-0-P- (OR)2 , 

R' 

~ f_ 

• R'P~ + RX 
'-(OR)2 

IV V 

The mechanism (27,39) proposed for the Michaelis-Arbuzov rearrange-

ment is illustrated by the above two equations. The following experi-

mental observations ~re the bas~s for the postulation: 

a. Evidence for the nucleophilic displacement of halogen by 
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phosphorous ~n the primary step of the Michaelis-Arbuzov reaction is 

presented by Myers, Preis, and Jensen (80). In agreement with the low 

reactivity of cyclohexyl halides in SNZ reaction.s is the low reactivity 

found for cyclohexyl tosylate with triethyl phosphite. This data coupled 

with the well known nucleophilicity of phosphites, would support an 

initial s.;: displacement in the Michaelis-Arbuzov react:lon. 

b. The formation of a quasiphosphonium salt IV is supported by 

the isolation of a salt-like intermediate by Michaelis and Kahne (77) 

from triphenyl phosphite and methyl iodidea .SimilarlY, crystalline inter

mediates have recently been isolated by Arbuzov and Sazonova (8) from 

triaryl phosphites and various alkyl iodides. 

c. The nucleophilic attack by halide ion on the alkyl carbon of 

the ester to eliminate alkyl halide and to form the phosphonate V has 

been experimentally substantiated. For example, when the intermediate 

triphenyl phosphite methiodide was treated with optically active 2-octanol, 

inverted, active 2-iodooctane was isolated (65). Gerrard and Jeacocke (42) 

similarly obtained the inverted 2-bromooctane from optically active 

tri-2-octyl phosphite and bromine. 

The overall mechanism of the Michaelis-Arbuzov rearrangement can be 

stated as a nucleophilic displacement of halogen by phosphite to form a 

quasiphosphonium intermediate. When decomposed, the intermediate elimi

nates alkyl halide with the subsequent formation of a phosphonate. 

It should be mentioned that the dia~kyl alkylphosp,honates and phos

phates are not inert to alkylation (48,67,86). Laughlin (67) has shown 

that alkylating agents can react with pentavalent organqp~osphorus esters. 

Mechanistically, this alkyl exchange process can be related to the 
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Michaelis-Arbuzov reaction. The oxygen atom in the pl).osphoryl group or 

the sulfur atom in the thiophosphoryl group represents the nucleophilic 
. . 

center that initiates the rearrangement which ,is reminiscent of an initial' 

SN2 displacement. By this process, an ester alkyl group is exchanged 

with the incoming alkyl group. 

+ RBr + 

(R dodecyl) 

The application of the:Michaelis-Arbuzov rearrangement to cyclic 

(9,11,60,88), and bicyclic (ll,104) phosphite systems has received only 

[
o°'\. ... · 

P-OR 

/ 
0 

VI 

;--0\ .. ·.· vc-oR• 
'vII 

+ 

0 

R'X ,t' R'POCH CH X . 
/' 2 2 

OR . 

RX 
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limited consideration while a survey of the literature revealed no appli-

cations to tricyclic phosphites. Simple cyclic ethylene phosphites (VI, 

R = alkyl or aryl) are decomposed by alkyl halide with rupture of the 

five-membered ring to form the 2-haloethyl ester of the alkyl phosphonate. 

Substitution usually stabilizes the glycol ring toward ring opening, the 

acyclic radical departing as alkyl halide (9,60,88). The 1,3,2-dioxa-

phosphorinane ring-containing phosphites VII undergo reaction with alkyl 

halides with nearly excL1sive ring preservation (11). 

Treatment of 2-ethoxy-1,3,2-benzodioxaphosphole (VIII) with ethyl 

0 . .() "· ' 1Y)/' 1·· .. l .. ~ L 
' / I.. :J '""o •• 

VIII 

· bromide has been reported to yield Q-phenylene ethylphosphonate (IX)(ll). 

The identification of product IX necessitates halide ion attack on the 

alkyl carbon atom rather than attack on the aromatic nucleus which might 

be expected to initiate ring opening. It would be of interest to attempt 

the rearrangement of a similar trivalent phosphorus compound in which 

only aromatic r--a.rbon atoms were available for nuc leophili.c attack by the 
"~-" 

halide ion. 

While a number of l·-alkyl-4-phospha-3,5,8-trioxabicyclo [2.2.2]

octanes (X) have been prepared (50,81,103,104), the only study of the 

Michaelis-Arbuzov rearrangement wi.th this class of bi.cyclic phosphites 

has been done by Wadsworth and Emmons (104). They found the bicyclic 



Rr\ ..... o); 
~01 

X 

0 

t 
~p ...;....--',; I~. 

____ o 

XII 

R 

R 

J 
CH2 Cl 

0 

i 
p 
. \"-.R I 

0 

0 

XI 

phosphites X undergo a stere,ospecific reaction when treated wtth alkyl 

halide to yield the cis~is,omer XII. The inherently, unstable boat 

8 

conformer XI is presumably converted to the thermodynamically more stable 

chair form XII. 

The only cyclic phosphonates produced to date by means of the 

Michaelis-Arbuzov rearrangement have been the 2-alkyl-2-halomethyl-l, 

. 3-propanediol eye lie J?hosphonates, XII. Analogous to the formation of 

phosphi tes, the substituted phosphonyl hq.lides h.ave been used with acid 

accepters, i.e. triethylamine, and various glycols in dilute solutions 

to form cyclic phosphonates (59,75). :Korshak, Gribova, and Andreeva 

(59) reported evidence of initial formation of polymeric esters which 

were converted to cyclic monomers only through destructive distillation. 

When heated extensiveiy, the ~sters polymerized for the most part to 
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very low molecular weight, viscous oils. Moreover, sodium, water, sodium 

hydroxide, hydrochloric acid, and phosphoric acid were found to catalyze 

this polymerization. 

In relation to our own work with bicyclic phosphonates, the similar-

ity with the phosphorylated sugar~ and related products of natural origin 

became apparent. While cyclic phosphate esters are the major constit-

uents i11 these phosphorylated inh.ermediates, the. eye lie phosphonates 

should be similar in their properties and reactions. With the first 

isolation of a sugar phosphate from natural sources, the importance of 

phosphorylated intermediates in biological processes was recognized (57). 

Cyclic phosphate esters and cyclic phosphate intermediates have been 

found to play significant roles not only in sugar chemistry but also in 

the chemistry of lipids (47) and nucleotides (25). 

The phenomenon of phosphate migration, which gives rise to the 

cyclic phosphate intermediates encountered in natural products, was first 

observed by Bailly and Gaume (15). In experiments with .the alkaline 

hydrolysis of alkyl esters of glycerophosphate, they noted that~- gly-

cerophosphate (XIII), was stable to alkaline hydrolysis .while methyl 

~-glycerophosphate (XIV) was altered considerably. Methanol and some 

of the ~-glycerophosphate (XIII) were recovered, as well as some of the 

~-glycerophosphate (XVI) which could only be explained adequately by 

assuming phosphate migration through the cyclic intermediate xv. 

A definitive explanation of the phosphate migration necessitates an 

understanding of phosphate hydrolysis and phosphate ring stability. Sim-

ple tertiary phosphates have been shown to undergo hydroly1>is with Car-

ban-oxygen bond fission in neutral or acidic solutiops by ;Barnard and 
,. 

co-workers (16). Acid catalyzed degradation was not obser~ed. On the 
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alkali ... no change 

XIII 

+ 

XIV 

other hand, they found that basic hydrolysis proceeded with phosphorus-

oxygen bond fission. The isotopic data obtained from the oxygen-18 en-

riched water used in these stuqies indicated that no appreciable isotopic 

exchange at the phosphoryl oxygen atom was associated with .the hydrolytic 

reactions of these phosphates. · The stability of cyclic phosphates 

appears to be a direct function of ring size. In this respect a 

XVII XVIII 

°""'1 
/"°" ----o 

XIX 

xx XXI 
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comparison of the simple five- , six-, and seven-membered ring systems and 

their behavior toward acids and bases was instructive. The cyclic ester 

XVIII composed of a five-membered ring hydrolyzed in a basic medium about 

107 times as fast as dimethyl hydrogen phosphate (XVII)(63). Use of oxy

gen-18 has shown exclusive phosphorus-oxygen bond cleavage in the ethylene 

glycol cyclic phosphate XVIII (46). The cause of rapid hydrolysis of 

five-membered cyclic phosphate esters may well lie with the ring strain 

in the ester itself. The heat of hydrolysis of the methyl derivative of 

XVIII was seven to nine kilocalories per mole greater than 2-hydroxyethyl 

dimethyl phosphate (30). The six-membered cyclic phosphate XIX, being 

much more stable, hydrolyzes only a· ~/:W,-t,ir{1es more rapidly than dimethyl 

hydrogen phosphate (XVII). (58). Cis.::.c:yclohexylidene hydrogen phosphate XXI 

is very stable toward acid or alkali. The bicyclic phosphorus ester XXI 

was unaffected by thirty per cent sodium hydroxide at 100° and only slowly 

hydrolyzed by 3N hydrocholoric acid at 100° with liberation of inorganic 

phosphate (23). The seven-membered ring compound XX is the most stable 

of the cyclic phosphates considered (58). With acidic hydrolysis, these 

cyclic phosphates follow approximately the same order. 

The phosphate migration in naturally occurring substances proceeds 

largely through a five-membered intermediate with very few examples re

ported of an intermediate composed of a six-membered (14,58,101) or 

seven-membered ring. Apparently, due to the rapid cyclication and rate 

of cleavage, five-membered cyclic phosphates predominate in biological 

processes involving cyclic phosphorus esters. This intramolecular 

formation, migration, and cleavage is facilitated by vicinal hydroxyl 

functions as is illustrated by the rate of hydrolysis of cis-and trans-2= 

hydroxycyclohexyl benzyl hydrogen phosphate (23). The cis-isomer XXII, 



with the hydroxyl function in closer proximity to the phosphate group, 

hydrolyzed faster than the trans-isomer XXIII in either an acidic or 

basic medium by a factor of six. 

OH 

XXII 

0 
+ 

0-P-OCH CH 
2 6 5 

XXIII 

Brown and Todd (25) have discussed the nucleic acid structure in 

relationship to the nucleotide sequence and cyclic phosphate inter-

mediates. Nucleotides containing such phosphorus esters have been 

identified as products of incomplete ribonuclease digestion of ribonu-

12 

cleic acids (21,24,73). Certain of these nucleotides with cyclic phos-

phate esters have been synthesized independently (24,36). 

Phospholipids compose another important area of cyclic phosphates 

(47). On occasion they have been noted as phosphoinositides due to the 

lipid constituent myo-inositol (XXIV),. In relation to the phospholipids, 

the hydrolysis of both mono and cyclic phosphate esters of cis-1,2-cy-

clohexanediol(XXV)and its trans-isomer were studied. When the cyclohex-

anediol was mono-esterified with phosphoric acid in the presence of 

glycerol, preferential retention of phosphate group was displayed by the 

cis-isomer while the trans-isomer largely lost the phosphate moiety to 

the acyclic substituent in either acidic or basic hydrolysis (22). A 
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OH 

OH 

HO 
OH 

HO HO 
OH 

XXIV XXV 

0 1H20H 1' e 

CH20H OH 
I 
CH OH 0 

r 
CH~OH + 
I 
CH20H 

I t 
CH-O-P-

2 I 
08 

s 
OH 

OH 

trans-

+ 

0---i>-O 

be 
cis-

1H20H ~ 
CH-O-P-08 
I I 
CH OH oG 

2 
0 

+ t e 
CH-0-P-0 

I 2 6 CH-OH e 
J 
CH20H 

recent review of phospholipids was reported by Hawthorne (49). 

While five-membered cyclic phosphates are the 1)10st .important in 

sugar chemistry (57), it is here we find examples of a six-membered 

bicyclic phosphateo An example is D-glucose-4,6-cyclic phosphate(XXVI), 

whose structure is depicted as shown by virtue of the equatorial con-

formation of the hydroxyl and hydroxymethyl groups at positions 4 and 5 

in the glucopyranoside (14,58). Other six-membered bicyclic phosphates 

in sugars have been produced (101). 

Directly related in biological importance is a large group of syn-

thetic cyclic phosphorus compounds. These compounds derive their im-

portance from their toxic propertieso It is only within the last thirty 



HO HO 

xxvi 

OH 

14 

1 
p~ II -

Cl 0----

XXVII 

years that the poisonous nature of certain organic phosphorus compounds 

(52,83) has been realized although organophosphorus chemistry is over 

one hundred and forty years old (60). Perhaps the patent literature 

best reflects the application of cyclic organophosphorus compounds in 

this area (66). The bicyclic thiophosphorochloriate XXVII and related 

compounds have potent insecticidal properties (66). 

In the light of their proximity to these biologically important 

cyclic phosphates, an extensive hydrolysis study of the bicyclic phos-

phonates XXVIITwould be a very useful extension of our work. In .a 

bicyclic bridged system, of which the bicyclic phosphonates XXVIII are 

members, the stereochemistry of such molecules have often been neglected. 

These phosphonates XXVIII have the bicyclo~.3.£Jnonane ring system of 

which XXIX is the hydrocarbon analog. This ring structure might be 

viewed as two cyclohexane rings with three common atoms as illustrated 

in the scheme. No stereochemical study has been made of this bicyc1ic 

ring system, however, but the stereochemistry of cyclohexane derivatives 

(4,18,34,84) and fused ring systems containing cyclohexane are well known. 

In a stereochemical study, spectrometric methods often prove helpful. 
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0 

t 

X 

XXVIII XXIX 

Bellamy (19) in his comprehensive work, covers the application of in-

frared spectroscopy to organophosphorus compounds and cyclohexane 

derivatives as well as most organic materials. The infrared spectra of 

organophosphorus compounds have lately been reviewed by Popov and 

Kabachnik (87). Some band correlations for the five-membered 1,3,2-

-1 
dioxaphospholane ring XVIII at 924-922 cm. and the six-membered 1,3,2-

-1 
dioxaphosphorinane ring XIX at 936-934 cm. have been advanced (29). 

However, later workers (55) have advised caution in their use since only 

partial correlation for the proposed bands was found with ex.amination 

of a series of cyclic phosphorus compounds. In a study of several five-

and six-membered phosphorus containing rings, Jones and Katritzky (55) 

report seven medium to weak bands characteristic for the 1,3,2-dioxa-

phosphorinane rings XIX. As they show, these bands are likely due to 

the dioxatrimethylene portion of the ring since cyclic trimethylene sul-

fite (72) has six peaks similar to the bands for the phosphorus compound. 

Some hydrogen bonding of phosphorus compounds have been studied by infrared 
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spectroscopy (40,78). Intramolecular as well as intermolecular a~socia

tion of phosphoryl-containing species have been considered (78). Aksnes 

and Gramstad (1,2) have studied intermolecular hydrogen bonding between 

phenol and eighteen organophosphorus compounds. 

While very little proton magnetic resonance work has been recorded 

for cyclic phosphorus compounds, such standard references in the field 

as Jackman (54) have proven beneficial in interpreting their spectra. 

The only protoh magrtetic resonance spectrum noted for these cyclic com

pounds is that of the 1,3,2-dioxaphospholane ring XVIII (46,74,92). 

This spectrum shows the double splitting characteristic of the 

phosphorus-31, hydrogen-1 spin-spin coupling (12,33). The coupling 

constant is 10 cycles per second at 40 megacycles. The.proton magnetic 

resonance spectra of a number of acyclic phosphorus compounds have also 

been recorded (92,93). Beside the hydrogen-1 nuclei, the phosphorus-31 

nuclei may also be studied by m.eans of nuclear magnetic resonance as evi

denced by extensive published work (35,56,100). A small gtoup of five-

and six-membered phosphorus cont~ining rings were examined by phosphorus-31 

nuclear magnetic resonance (56)~ 

Dipole moment measurements (95) have also been used advantageously 

in the study of organophosphorus compounds. Kosolapoff (61,62), as well 

as, Arbuzov and Shavska-Tolkacheva (10), have studied a succession of 

acyclic phosphorus compounds in relation to their dipole moment. An 

indication of the high dipole moment often encountered in phosphorus 

compounds may be seen in values obtained for l-phospha-2·, 8, 9-trioxa

adamantane (II), 4.7 Debye; l-methyl-4-phospha-3,5,8-trioxabicyclo@..2.2]

octane (I), 4.15 Debye; and the l-methyl-4-phospha-3,5,8-trioxabicyclo-

~.2.~octane, 4-oxide (oxide of I), 7.10 Debye (26). 



CHAPTER III 

DISCUSSION OF RESULTS AND CONCLUSIONS 
I 

Most alkyl halides react readily with phosphites by way of the 

Michaelis-Arbuzov rearran&ement to yield the corresponding phosphonates 

(39) .' We have investigated this reaction with the tricyc lie phosphi te II 

as the principal substrate. Of the alkyl halides studied, benzyl 

chloride,- 1-naphthlmethyl chloride,.and benzhydryl chloride converted 

the ester II to the bicyc lie phosphonates XXX, XX.XI, and XXXII, re-

spectively. Benzyl bromide reacted with II to give an intractable oil 

while an unidentified solid was isolated from the highly exothermic con-

densation of trityl chloride with II. All of the phosphonates isolated 

were high-melting, white, crystalline solids. 

0 

t 
Cl 

XXX, R = ~6H5CH2 

XXXI, R = l-C 10H7CH2 

xxxrr,. R = (C6H5 ) 2 CH 

Elementary to the preparation of the picyc lie phosphonates, is the 

initial starting material required for synthesis of the ester II. Con-

version of phloroglucinol (XXXIII() to cis-phloroglucitol (XXXIV) by 

17 
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reduction with hydrogen over Raney nickel resulted in the formation of a 

mixture of isomers. Stetter (98) has reported a 60 per cent yield of the 

cis-isomer XXXJV at atmo~pheric pressure. However, repetition of his 

conditions in several experiments afforded the cis-compound in only 40 

per cent of theory. Several exploratory runs with various concentrations 

of solute and reaction temperatures revealed that both parameters were. 

important.. For example, the maximum yield of desired isomer XXXIV was 

obtained from the reduction performed at 50°. Chief contaminents in the 

mixture were the trans-isomer XXXV and several cleavage products. To be 

sure the synthesis deserves further attention with respect to type and 

quantity of catalyst and well as the nature of the solvent. In addition 

analysis of the products prior to preliminary workup, by means of a suit-

able gas chromatography column would be of significant value in arriving 

at the·optimum conditions needed, 

OH 

OH •, 

OH OH 

HO D 
OH 

OH OH OH 

XXXIII XXXIV XXXV 

Transesterification of the anhydrous cis~phloroglucitol (XX,_XIV) 

with trimethyl phosphite gave l-phospha-2,8,9-trioxaadarnantane in yield 

greater than previously reported (26). It has been shown by x-ray 

analysis that the dihydri(t_e. o.LXXXIV exisl:s with. eat:.l} hyd!'oxil group in{the 

equatorial conformation as illustrated in XXXIVa. Formation of the 
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phosphite II necessitates inversion of XXXIVa to the thermodynamically 

unfavored X.XXIVb where all hydroxyl groups are in the axial conformations. 

By modifications developed during the course of this study average yields 

greater than 80 per cent were realized for II. This method may be appli-

cable with related compounds, such as trimethyl borate, in the synthesis 

of tricyclic esters containing other elements, 

Provided the rearrangement of II with the alkyl halides proceeds 

through the known mechanism for the Michaelis-Arbuzov reaction (39), the 

isomer XXX would be predicted, Evidence for the structure of this 

HO 

OH 

XXXIVa 

OH 

XXXIVb XX.Xa 

compound was provided by nuclear magnetic resonance and infrared spectra, 

dipole moment measurements, and molecular weight determinations by the 

Rast method. The experimentally determined molecul,ar weight of 289 (43) 

agreed with the calculated value 'of 286 reasonably well, Infrared 

-1 analysis (Plate VI) of XXX revealed strong absorption at 747 cm. which 

is near the band at 742 cm.-l assigned previously to an equatorial chlorine 

atom in cyciohexane derivatives (19,68). In contrast only very weak 
I 

bands appeafed in the region below 700 cm.-l while a strong band normally 

' -1 
is present near 688 cm. for axial chlorine atoms in cyclohexane compounds. 

-1 
Noteworthy is the similar weak baµds below 700 cm. · in the naphthylmethyl 

'derivative.XXXI and the near absence of bands in the benzhydryl analog, 

XXXII. In all examples peaks assignable to the phosphoryl group, the 

P-0-alkyl linkage, and aromatic hydrogen are available. 
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While it does eliminate a number of the sixteen possible isomers of 

XXX, the dipole moment value of 5.9 Debye as measured in dioxane does not 

allow complete differentiation between a boat-chair or chair-chair arrange

ment in XXX and XXX:a, respectively. Calculations of the dipole moments 

obligates a selection of vector directions for the in.dividual components. 

It was discovered that if the vector for the methylene-phosphorus group 

was directed toward carbon, values of 4.11 Debye and 4.13 Debye were 

found for XXX and XXX:a, respectively. However, if the assumption of 

vector directionwasreversed for this single component, values of 5.6 

Debye and 4.64 Debye were calculable. As yet no definite vector assign-· 

ments have been made with organophosphorus compounds (10,61), but the 

present work suggests the direction of a vector between a carbon atom 

and a phosphoryl group is toward phosphorus. 

Nuclear magnetic resonance studies of XXX were more instructive. It 

is here we find a separation of the hydrogen atoms in the compound accord

ing to their resonance frequencies which are influenced by the molecular 

environment and resolved by an induced magnetic field. The spectra de

termined at 60 Mc. (Plates XV and XVI) show peaks which can be ascribed 

to hydrogens at locations E, £, ~' ~' and h• Assignments for hydrogen 

at-2-,.!=, and fare more difficultd4e to.poorresolution·at :this frequency. 

A good indication of the field position and coupling constant for the E 

hydrogens in XXX can be obtained from the model compound XXXW:• Tertiary 

hydrogens geminal to the oxygen atoms in the phosphate XXXVI (Plate XIV) 

exhibit a doublet centerecl at 4.78 tau units with J = 19-.5 c.p.s •• Hydro

gen ~rising from E in XXX (Plate XVI) display a doublet with a coupling 

constant of 17.5 c.p.s. and a chemical shift of 5"22 tau units. Excellent 

agreement is obtained with respect to~ and h hydrogen atoms ~n XXX 
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Cl 

XXXVI 

t 
CH/p~O--CH3 

2 o-cH3 

e 
d 

f 

XXX 

XXX"VII 

(Plate XV) and the corresponding hydrogens in XXXVII (Plate XII). A 

doublet (J = 22 c.p.S.) for _g hydrogens with a chemical shift of 6.83 

tau units appears while .h (aromatic hydrogen) has a chemical shift of 

2.77 tau units in XXX. Similarly, hydrogen in XXXVII·also display a 

doublet with J = 21.7 c.p.s. and chemical shift of 6.75 tau units for 

the methylene group and a singlet at 2.72 tau units for aromatic hydro-

gen. Hydrogen-1, phosphorus-31 spin-spin coupling produces the splitting 

of the benzyl methylene hydrogens into a doublet (12,33). A complex 

structure is displayed by the i! hydrogen gem to the chlorine atom lo-

cated in the region of 5.3 tau units (44) •. Poor resolution plus overlap 

with the b hydrogens obscures this hydrogen in all but the 1-naphthyl-

methyl phosphonate XXXI spectrum at 60 Mc. (Plate XVII). Here the true 

nature of the spin-spin splitting of the .2 hydrogen is indicated by a 

nine-line spectra, In the isomer, XXX, most favored mechanistically, 

the~ hydrogen is axial and has as four neighbors, two identical axial 

and two identical equatorial hydrogens. In theory one hydrogen adjacent 

to a second hydrogen, A, should be split into nA + 1 peaks where nA is 
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the number of identical A hydrogens. The same hydrogen adjacent to r:wo 

non-identical hydrogens, A and B, should be split into (nA + 1) (nB + 1) 

peaks (53 ,54). The equation as applied to the .~ hydrogen in XXX has 

nA 2 and nB = 2; thus the signal should be split into (2 + 1) (2. + 1) 

or 9 peaks. Relative intensities of these peaks should b~ approximately 

1:2:1:2:4:2:1:2:1 (53,54). This splitting and relative intensity is 

most clearly observable in both the 60 Mc. spectrum of XXXI (Plate XVII) 

and the 100 Mc. spectrum of XXX (P1ate XXI). 

The interaction of the various hydrogens within the molecule XXX 

was clarified further by decoupling the 100 Mc. nuclear magnetic res

onance spectrum of XXX using the double resona:nce technique (91). This 

100 Mc. decoupling facilitated complete assignment of hydrogen locations 

within the molecule XXX. Decoupling involves the determination of the 

nuclear magnetic resonance spectrum of a proton within a molecule while 

subjecting an interacting proton (most often vicinal) to a frequency.equal 

to its resonance frequency. Thus the observed spectrum of the former 

proton is simplified due to the removal of the, second proton's magnetic 

influence. 

Plate XXII illustrates the decoupling of ~ from neighboring hydro

gens. From the 100 Mc. spectra (Plate XXI), the a hydrogen is seen to be 

split into three triplets. Upon observing~ while irradiating£, 205 c.jp.s. 

up field, a collapse of the center triplet of a to a singlet was noted. 

Going from 205 c.p.s. to 209 c.p.s. up field from I! by irradiation pro

duced little change in the observed spectrum. However, irradiation at 

220 c.p.s. up field shows only one triplet being u.neffected. Decoupling 

of.~ from .s!, 306 c.p.s. up field (Plate XXII), resulted in near complete 

disappearance of the two outside triplets of .~ with marked reinforcement 
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of the central triplet. The two spectra shown for the decoupl:(.ng of E.: 

from£ illustrate the effect of varyipg the irradiation" From this it 

can be surmised that :§: is coupled with .£ and i• That .£ and i are in turn 

coupled with I!. can be seen from Plate XXIII, where.£ is decoupled from 

..§!, 221 c.p.s. down field, and£ is decoupled from.~, 325 or 307 c.p.s. 

down field. The conversion of i from a doublet to a singlet was pro-

duced by decoupling it from~' 51 c.p.s. down field (Plate XXIII). The 

interaction of.£ and E. was displayed by the decoupling of the first 

hycl'.rogen from the second hydrogen, 100 c.p.s. up field. Plate XXIII 

also shows the decoupling of~ from£, 325 or 307 c.p.s. down field, as 

a sharpening of the doublet peaks. It will be noted that the observed 

effect.of decoupling varied between different hydrogens~ However, to 

show that two hydrogens are coupled, the decoupling technique can be of 

significant value eve:n in complex systems. 

While the complete ste.reochernistry of' the phosphonate XXX cannot be 

stated due to inadequate knowledge of the position of the phosphoryl 

-

group, much evidence is presented for the isomer XXX. Dipole moments, 
j 

infrared· spectra, and decoupling of nuclear magnettc resonance spectra 

lends support to this postulation. Isomer XX.Xa, the next most likely 

candidate, appears less favorable because of interaction betwee.n the 

phosphoryl group and the -~ hydrogen geminal to the chlorine as indicated 

by Fi.sher-Taylor-Hirschfelder models. Molecular models of XXX isomer do 

indicate interaction between the~ hydrogen to hinder somewhat the free 

rotation of the methylene h hydrogens. Attempted preparation of model 

compounds in which eithe;r the benzyl group wa~ replaced with a phenoxy 

group or the chlorine atom was replaced by a hydroxyl group were un-

successful (See Experimenta:l, page 62 ). It is not possible to determin.e 
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hydrogen bonding in XXX by nuclear resonance without suitable model 

compounds (32,69,91). It might be noted in passing that molecular 

association by hydrogen bond formation often results in a shift of the 

proton line involved toward lower fields (69). The este:r and its analogs 

show a field position near 5o3 tau units. foLcL It has been recorded that 

4-tertiary butyl cyclohexyl chloride exhibits a field position of 6.36 

tau units for the axial hydrogen geminal to chlorine (44)" Although it 

is attractive to postulate that intramolecular hydrogen bonding may 

cause the hydrogen .~ to resonate at low field, subtle long range shielp

ing effects by the large phosphoryl group may be influsntiaL Similar 

to the carbonyl group the phosphoryl function might be expected to de

shield nearby protons (54). The possibility of hydrogen bonding between 

the phosphoryl group and the axial hydrogen .i! in XXX deserves further 

study. Assignment of the absolute configuration of XXX perhaps best 

awaits an x-ray examination which is now in progress (76). 

The 1-naphthylmethyl, XXXI, and benzhydryl, XXXII, analogs appear 

to have the same structural relationship as XXX as evidenced by their 

similar nuclear magnetic resonance and infrared spectra" The lower 

yields of these analogs may be due to steric hindrance although an ex

tensive search for optimum conditions was not performed. 

The product isolated from the trityl chloride reaction is evidently 

not a bicyclic phosphonate since the empirical formula is c42H45P2o9 " 

Ground state steric repulsion between the trityl group and the cyclo

hexane ring may prohibit formation of the bicyclic phosphonate as implied 

by models" Whether the bromine atom presents an additional steric factor 

compared to the chlorine atom awaits a more effective workup of the 

intractable oil produced in the benzyl bromide condensation with II. 
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fi.cid hydrolysis of XXX was somewhat inconclusive since it appeared 

to yiel~·a mixture of chlorinated and unchlorinated mono-substituted 

esters which may be convertable to benzylphosphonic acid by strenu9us 

hydrolysis conditions. Fractional precipitation may offer a means of 

purifying this product since preliminary experiments with liquid chrom-

atography on alumina 'Ii.ere unsatisfactory. Basic hydrolysis may produce a 

polymeric material, although similar bicyclo(!.3~~nonane heterocyclics 

have been found to be relatively inert to a variety of initiators (99). 

An orange-colored material melting above 300° was obtained from an 

attempted basic hydrolysis of XXX with 20 per cent sodium hydroxide. In 

light of the similarity to biologically important substances~ hyd,roly.$is 

·o-f ·-the- -b-ic-yc-lic pho&phonates -de-serves, ,addi ti-@nal study. Perhaps 

vapor phase chromatography would be useful in:following the stepwise 

hydrolysis. 

Attempts to effect an intr~olecular Michaelis-Arbuzov :pearrange-

ment of II with iodine to the tricyclic ph:isphonate XX.XVIII were un-

successful. Likewise efforts to· chlorinate II resulted in the isolation 
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of the phosphate XX.XVI which attests to the increased stability of the 

ring. The phosphate probably forms a chlorine complex (60) with II which 

is in contrast with the data published on bicyclic phosphites (104). 

No attempt was made to isolate an intermediate quasiphosphonium 

salt from the Michaelis-Arbuzov rearrangements investigated. Future 

work along these lines should be profitable. 

In summary, a new class of bicyclo~,3,9nonane derivatives con-

taining phosphorus has been synthesized. The mechanism and stereochem-

istry of the reaction and the products have been examined. Useful infor-

mation on dipole moments, proton magnetic resonance frequencies, and 

infrared absorption bands have been recorded for all phosphorus compounds 

obtained. 



CHAPTER IV 

EXPERIMENTALl, 2 , 3 , 4 ,S, 6 ,? 

Preparation of cis-Phloroglucitol (XXXIV). A modified form of 

Stetter's (98). procedure was used. Raney nickel W-7 (20) was prepared 

from 66.7 g. of nickel-aluminum alloy and 85.3 g. of sodium hydroxide. 

The sodium hydroxide was dissolved in 333 ml of distilled water con-

tained in a 1-liter Erlynmeyer flask. The alloy was added with stirring 

1All melting points are' corrected; all: boiling points are uncorrected. 

2The infrared spectra were determined on a Beckman IR-5 and IR-7 
with sodium chloride cells. 

3The microanalyses were performed by Mid West Laboratories, 
Indianapolis, Indiana. 

4 
The molecular weights were performed by C. F. Geiger, Ontario, 

California. 

5The 60 Mc. proton magnetic resonance spectra were determined by 
Professor Melbert Peterson, Augustana College, with a Varian Model A-60 
high-resolution spectrometer fitted with a field-sensing stabilizer 
("Super Stabilizer"). The concentration and solvent are indicated on 
the spectra. Tetramethylsilane was used as an internal standard. The 
author is grateful to Dr. John Verkade, Iowa State University for pre
liminary nuclear magnetic studies. 

6The 100 Mc. proton magnetic resonance spectrum and double-resonance 
(decoupling) spectra were determined by Dr. James N. Shoolery, Eugene A. 
Pier, ahd Leroy F. Johnson of Varian Associat~s. 

7Dipole moments measurements were determined by Dr. Max T. Rogers, 
Michigan State University and Dr. John Go Verkade, Iowa State University. 
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to the caustic solution during thirty minutes at such a rate as to main-

. + ta1.n the temperature at 50 - 2° and then cooled to room temperature. 

The Raney nickel W-7 was washed three times with 667 ml portions of 

distilled water and three times with 100 ml portions of 95 per cent 

ethanol. The nickel catalyst (ca. 33 g.) was washed into a 2-liter, 

three-necked, round-bottom flask with a small amount of 95 per cent 

ethanol and covered with one liter of the solvent. The flask was 

equipped with a mechanical stirrer, reflux condenser, and fritted gas 

bubbler. Saturation of the catalyst with hydrogen required two hours 

with rapid stirring (1200 r.p.m.) at room temperature. The flow of 

hydrogen through the mixture and the stirrer was stopped, and the finely 

divided nickel was allowed to settle for forty minutes while nitrogen 

was passed over the mixture. Approximately 500 ml of ethanol was de-

canted from the flask and used to dissolve 100.0 g. (0.617 moles) of 

the dihydrate of phloroglucinol (XXXIII) (Fisher Reagent Grade, m. p. 

217-219°). The phloroglucinol solution was added dropwise during twenty 

minutes to the rapidly-stirred reduction catalyst. Hydrogen was passed 

through the mixture during the addition. When this addition was com

plete, the mixture was heated at 50 ! 2° for forty-eight hours. After 

approximately forty hours, the flow of hydrogen appeared to have a 

cooling effect on the solution since the temperature dropped about 10°. 

After forty-eight hours, the hydrogen flow was stopped, and the solvent: 

was heated to boiling and rapidly filtered by suction from the nickeL 

The solution upon standing in an ice bath for twenty-four hours pre-

cipitated 23.687 g. of the dihydrate of cis-phloroglucitol (XXXIV), 

melting at 184-186° after losing water of hydration at 110-130°. The 

crystals were washed with cold 95 per cent ethanol. The filtrate was 
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concentrated to one-half the original volume on the rotary evaporator 

and then cooled for twenty-four hours in an ice bath. Filtration pro

duced 9.436 g. of the dihydrate of XXXIV of a lower purity. Further 

concentration of the mother liquid to 200 ml furnished 12.402 g of the 

impure dihydrate of XXXIV when cooled for twelve hours at 0°. As the 

clear solution was concentrated it took on a yellowish color. The second 

and third crop of crystals were repeatedly recrystallized from dioxane 

to yield 17.775 g. of material melting at 184-186° after loss of water 

of hydration. The total amount of the dihydrate of XXXIV was 41.463 g. 

(0.247 moles) for a 39.97 per cent yield. Additional recrystallizations 

from dioxane gives material of melting point 186-187°. 

Further concentration of the reaction solution, which was then 

chilled, produced 11.887 g. of the dihydrate of trans-phloroglucitol 

(XXXV) contaminated with starting material and hydrogenation by-products. 

Three recrystallizations from dioxane provided 9.531 g. (0.0567 moles) 

of the trans-isomer (m.p. 144.0-145.5°) for a 9.19 per cent yield. 

Starting material XXXIII could be recovered from the mother liquor by 

removal of the solvent and recrystallization of the yellowish-orange 

residue with distilled water. Two to four filtrations of the hot 

solution from activated charcoal followed by repeated recrystallizations 

from water were necessary to purify the material. 

The method described above provided the highest yield of sis-phloro

glucitol (XXXIV) obtained under various reaction conditions. Runs with 

Raney nickel W-5 (20) were unfruitful due to extensive cleavage and 

the production of intractable yellow oils. A temperature of 40° was 

not as favorable as 50°, while absolute and 98 per cent ethanol were 

inferior to 95 per cent ethanol. Combinations of these factors along 



with the length of the runs were studied but none improved the yield of 

the· cis-isomer. 

Preparation of l-Phospha-2,8,9-trioxaadamantane (II). The pro

cedure was similar· fo that described by Wadsworth and Emmons (104), A 

three-neck, round-bottom, 100-ml flask equipped with an air condenser 
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fitted with a calcium chloride.drying tube, a nitrogen inlet tube, and a 

liquid immersion thermometer, was charged with 2.999 g, (0.023 moles) of 

cis-phloroglucitol (XXXIV) (m.p. 186..,187°) and 15. 78 g. (0.127 moles) 

of trimethyl phosphite (b.p. 109°/ 740 mm.). As the temperature of the 

reactants was raised cautiously, the solid XXXIV slowly dissolved. The 

mixture was heated to reflux for one hour to completely dissolve the 

solid, and the solution was boiled for an additional one-half hour. The 

·-

solution was allowed to cool and the condenser was replaced by a simple 

distillation setup. As throughout the entire reaction period, nitrogen 

was passed through the system during the distillation. The initial vapor 

stayed at 58-63° for a short time while methanol was recovered in approxi-

mately 90 per cent yield. The excess trimethyl phosphite distilled at 

107-109° while the pot temperature rose to 150°. The residue was allowed 

to cool and the nitrogen flow rate was increased over the solid residue 

remaining in the pot to remove trace amounts of trimethyl phosphite and 

to protect the unoxidized phosphorous products •. Skelly Solvent F 

(40-50 ml) was added to the cold reaction flask while a rapid stream of 

nitrogen was passed through the system. The solid residue was then 

washed with the cold petroleum ether and the supernatant liquid was 

quickly decanted into a flask which was flushed with nitrogen and 

stoppered. The initial washing with cold Skelly Solvent F' removes most 
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of the remaining trimethyl phosphite impurity in the residue and conse-

quently is worked up separately. A similar portion (40-50 ml) of Skelly 

Solvent F was added to the reaction flask which was maintained under a 

nitrogen atmosphere. The light petroleum ether was boiled with the white, 

solid, residue for a few minutes by means of a water bath, and the hot 

solvent was decanted into a flask. Crystallization occurred immediately 

in the decanted liquid, and the flask was flushed with nitrogen and 

stoppered. Due to the low solubility of the tricyclic phosphite II in 

petroleum ether, the sequence had to be repeated about fifteen times. A 

large volume of solvent could be avoided by decantation of the liquid 

from the crystalline 9:olid and utilization of this liquid for additional 

recrystallizations from the reaction flask. The two possible solid 

impurities in the product are cis-phloroglucitol (XXXIV) and the oxide 

of the phosphite II, 1-phospha-2,8,9-trioxaadarnantane, 1-oxide (XXXVI). 

The alcohol XXXIV was insoluble in Skelly Solvent F and the tricyclic 

phosphate XXXVI was only very slightly soluble in the hot petroleum 

ether. By this method the ester II was obtained in 82.4 per cent yield, 

(2.993 g.; 0~019 mole), melting point 205.5-207.0". 

The infrared spectrum of the tricyclic phosphite II (Plate IV) shows 

a strong band at 1105 cm~ 1 which could possibly be assigned to the 

P-0-C (alkyl) group (31). Other major peaks are shown at 936, 900, 835, 

-1 and 712 cm. • The infrared spectrum of the oxidation product, XXXVI, is 

shown in Plate V. 

A nuclear magnetic resonance spectrum (Plate XIII) of this com-

pound II shows a single peak at 5.67 tau units assignable to a tertiary 

hydrogen atom attached to the same carbon atom as a oxygen atom 

(three hydrogen). The methylene group displays .two doublets, at 6. 94 
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tau units (total three hydrogen, J = 13.5 c,p.sc; equatorial) and at 

8.10 tau. units (total three hydrogen, J = 13.0 c.p.s.; axial). The 

NMR spectrum of the phosphate XXXVI (Plate XIV)displays three similar 

doublets; 4.;80 tau units (J = 19.5 c.p.s.) assigned to the single hydro-

gens adjacent to the three oxygen atoms; 7.22 tau units (J = 15.5 c.p.s.) 

and 7.91 tau units (J = 15.5 c.p.s.) assigned to the three methylene 

groups. (102). 

Attempted Internal Ring Closure with l-Phospha-2,8,9-trioxaadamantane 

(II). To a 2 .5 cm. by 10 cm. pyrex tube containing a small magnetic 

stirrer and fitted with a reflux condenser, was added 0.988 g. (0.00617 

moles) of the phosphite II. A small crystal of iodine along with 14 ml 

of toluene were added. The hetergeneous mixture was refluxed under a 

nitrogen atmosphere for four hours, A second crystal of iodine was 

added after one hour. A large part of the phosphite II had dissolved in 

the toluene by the end of the heating period. Most of the toluene was 

distilled, and 10 ml of anhydrous methanol was addfd to the reaction tube 

to azeotrope out the remaining toluene. When the methanol was removed, 

two portions of 10 ml each of Skelly Solvent F were added and used to 

azeotrope out any methanol. The methanol and Skelly Solvent F distillates 

had a distinct phosphite odor. Boiling Skelly Solvent F was used to ex-

tract the mixture, the unreacted phosphite II ~eing soluble. The re-

covered phosphite II was identified ~y its melting potnt, 205-207°, and 

mixed melting point with a known sample. Some material remained in the 

tube after the extraction. This material me;ltJd at 176-179° and gave a 

mixed melting point of 178-181° :with cis-phloroglucitol (XXXIV). The 

infrared spectrum also agreed with Cis-phoroglucitol (XXXIV). No evi--,-

dence for internal ring closure initiated by iodine was found. 
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Preparation of 3-Benzyl- 7-chloro-2 ,4-dioxa-3-phospha-bicyclo [i 3. u~ 
nonane, 3-0xide (XXX)o In a LS cm. by 7.5 cm. pyrex tube fitted with 

a 24-40 ground-glass joint, were placed 4.000~. (0.0250 moles) of 

1-phospha-2,8,9-trioxaadamantane (II) (m.p. 205-207°) and 3.957 g. 

(0.0313 moles) benzyl chloride (b.p. 78-80°/ 26 mm.). The reaction tube 

was equipped with a nitrogen inlet tube and a condenser to which a 

calcium chloride drying tube was attached. Upon mixing the two reactants, 

the benzyl chloride dissolved approximately one-half of the solid phos

phite II without a noticeable reaction or temperature change. The re

actants were heated under a nitrogen atmosphere by means of a constant 

temperature bath composed of boiling toluene at 110©. After a short 

time, a clear, colorless solution resulted. Toward the end of the 

twenty-four hour heating period, formation of a white solid was noted 

in the bottom of the reaction tube. Upon cooling, the remaining solution 

solidified to a white, crystalline mass. The material was dissolved 

with a minimum of methylene chloride. To this solution was slowly added 

Skelly Solvent F with intimate mixing until about a twenty-fold excess 

of the added solvent resulted. The clear solution was allowed to stand, 

and plates slowly formed after a few hours. The supernatant liquid was 

decanted, and the Grystals were washed with Skelly Solvent F. Recrys

tallization from this solvent system gave 4.684 g. (0.0163 moles) of 

product corresponding to a 65.40 per cent yield. This material melted 

at 197.5-199.0°. Recrystallization from methanol yielded plates which 

melted at 199.0-200.5° and did not depress the melting point of the 

material recrystallized from methylene chloride-Skelly Solvent F. 
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C, 54.46; H, 5.63; P, 10.80; Cl, 12.37. 

Found: C, 53.68; H, 5.70; P, 10.84; Cl, 12.20. 

C, 53.79; H, 5.57. 

The infrared spectrum of the bicyclic phosphonate XXX (Plate VI) 

exhibits bands characteristic of hydrogen-bonded phosphoryl group 

-1 (1248 and 1228 cm. ) (31,45), equatorial .chlorine on a cyclohexane ring 

1 -1 (747 cm: ) (19,68), mono-substituted benzene (699 cm. ) (89), and the 

-1 P-0-C (alkyl) linkage (1016 cm. ) (31). A number of other well-defined 

-1 
peaks are also present at 1116, 954, 897, 836, and 796 cm. • Both the 

infrared spectrum and the analysis correspond to the expected bicyclic 

phosphonate XXX. 

The nuclear magnetic resonance spectrum of this compound (Plate XV) 

shows absorption at 2.76 tau units for benzene hydrogen, and a doublet 

at 6.72 tau units (J = 22 c.p.s.) for methylene hydrogen attached to a 

benzene ring. The relative area under these curves was 5:1:1, re~ 

spectively. Similarly in the model compound, dimethyl benzylphosphonate 

(XXXVII), absorption occurred at 2.73 tau units and at 6.84 tau units 

(J = 21.7 c.p.s.) for benzene hydrogen and methylene hydrogen, re-

spectively (Plate XII). The spectrum of XXX also shows fine s:tructure 

at 4.96 to 5.55 tau units (three hydrogen) and doublets at 5.50 tau units 

(J = 17 0 5 c.p.s.; two hydrogen), 7.27 tau units (J = 15 c.p.s.; two 

hydrogen), 8.75 tau units (J = 15 c.p.s.; one hydrogen), and 9.29 tau 

units (J = 15 c.p.s.; one hydrogen). A triplet with J = 13 c.p.s. 

appears at 8.32 tau units. 
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Molecular weights of XXX:wer'? determined by the Rast method using 

camphor as a solvent' (43}. The. E!xp,erimenti1r1y.4¢£errt1~neitmolecµ~ar.weigh.ts, 

289.3 and 29L3, agree well'with the thed,r,eti.calmOiJ~uiar ~~ight'bf XXX 

which is 286.7. 

Dipole Moment Calculations for the. Pos~ible Isomers of the Bicyclic 

Benzylphosphonate XXX. Careful consideration.of the st:ri.tcture of the 

bicyclic benzylphosphonate XXX: shows t,hat this CE>Inpound and its analogs 

could possibly exist in the form of one or rnore of. sixteen diffe.r~i1t: 

isomers. These sixteen posstbiJ isomers ;;_rise fro~ the_'f~llowing °Constder.;. 
·, . . . '· ' .': 

ations. In the bicyclo@.3.Dnonane,ring system,there are,two six-
' ' 

membered rings fused at the, 1; 3-positio:~s~ · In .our cel"(l:pound XXX~ these 

two rings are different, one being a cydohexane :ring while the other is 

a ,1,3,2-dioxaphosphorinap.e ring. Each of these six-membered rings qm 

exist in either. a chair or a 1:>6at form ;O:cie~end.ent a:E the other~ Also 

independent of other factors are both the p~sition:of the chlorine atom 

on the cyclohexane ring, either axial or equa't6rial, and the location 

of the benzyl group attached to the phosphorus ato~ .which can be located 
' .i <. ·.. ·:, <.·.i .. · ~ 

above either the cyclohexane ring or the -dioxaphosphorinane ring. The 

possible isomers are ilLustrated on the following page. 

The following assumptions were use.d in caku1~~io:~ of the angles 
' . . . 

and distances within the molecule and the subseqUe!lt'cali:ulation of 

dipole moments. 

Assumed: 

(1) The atoms, see XXX, c7 , ],=', o3 ; H4, c4, H;·; and H1 , c1 , Cl, 

all lie in a conunon plane which is herea:(:ter referred to' as the 

. Major Plane in these calculations •• 
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Cl 

XXXf 



D 
-----.... 1<'--i· .-® 

XXX ® 
(2) The atoms 01, c3, c2' rS' all lie in a common plane. 

(3) The atoms 02, cs, c6, HS, all lie in a common plane. 

(4) All three planes are parallel to each other. 

(5) Angles (38,89):; 

CCC = 109.5° cco 112 .5 ° CP(=O) - 116.5° 

CCR ·-· 109 .5 ° CPO = 10L5° OP(=O) - 116 .5" 

HCH = 109.5° OPO - 10L5° COP = 113° 

(6) Bond lengths (.38,89): 
0 

c-c = 1.54 A c-o ·-· 1.43 A P-0 1.62 A 
0 0 0 

C-H = LlO A C-Cl = L76 A P-0 = L39 A 

0 

C-P -· 1.87 A 

(7' ) Dipoles (91, 92 

C-Cl = 2. 0 2, D (90) P- (::Q) = 3.5 D P-0 -· 1.2 D 

c-o 1.1:2'. :0 P-C -· 0.8 D 

(8) The vectors for individual cornpon~nts are: 

....a~ 
C-0 

/ 

-· =1t., 
P-(::.cO). 

_j. 

P-0 
-A, 
P-C 
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Before the dipole moments can be computed, angles and distances 

within the molecule must be known, These values were determined from 

the known bond distances and angles. The computation is shewn in the 

follewing paragraphs. 

Calculation of 1 to 3 Carbon Distance and the Distance c2 - c1 

Prejected en the Major Plane. 

y 

@ 
I y 
I 
,I 

@· 
c2 - c1 projected. on Majer Plane. 

x2 + (1.257) 2 = (1.54)2 

x = 0.890 A 

c1 - c3 distance. 

A= 109,5" 

1.54 A = 
sin 90@ 

y = 1,54· sin 

y 1.257 
0 

2y = 2,515 A ., 

A 
= 54. 75 ° i 

sin 54,75° 

54. 75° . 

cl - c3 distance. 

Calculatien of o1 - o2 Distance and the. Distance P - o1 (or o2 ) 

Projected op. the Majer Plane. 

101.5 + 2 = 50.75° 

90" - 50,75° = 39.25° 

1.62 
sin 90° 

01 - 02 

k = 1.62 

k m = ~~~--.~ = ~~~~~ 
sin 50.75° sin 39.25° 

distance= 2k 

sin 50.75° 
0 

k = 1.255 A 
0 

2k = 2,510 A 
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Projected P - o1 ~oi-: Bi~ distc:1gt~ 
... '-~· 

m = 1.62 sin 39.25° 
a 

tn = 1.025 A 

Calculation of P - c3 (or c5 ) Distance and the P, - c3 (or c5 ) 

Distance Projected on the Major, Plane. Calculation of the Angle P01 Ci · ... 

Projected on the Major Plane. 

p - c3 (or CS) distance 

2 be cos A p 
2 b2 + C 

2 
a -· 

2 : . . . ·. ·..• . : '; 
(1.4.3) -.2(1.62)(1.43) cos.113° ·• .> · Q2 = (1.62/ + 

;Q2 
0 

= 2.546 A 

Projected P - c3 (or c5 ) clistance. 

02 ~ Q2 - (1.257)2 

. 02 = 6.4796 - 1.5800 = 4.8996 
0 

0 = 2.214 .A 

2 + 2 2 
COS 0( = b .. C ·. c a 

2 be 

cosoe= (1.025) 2 + (1.43)2 - (2.214)2 

2 (1.025) (1.43) 

cos Cl(= 0. 6154 

~= 128° 

1. 62 k I ---- = -------,,- = ----sin 63.5° sin 90° sin 26.5° 



y' 1.62 i:;in 63.5° 
0 

y' = 1.450 A 

1.025 
sin 90° 

sin(3= 

oe= 

x'= 

x'= 

0 

0.723 A x' 
= = -- I 

sin f3 sinOG: 

o. 723 = 0 7052 
1.025 • 

44.85° 

90° - 44.85° = 45.15° 

t.025 sin~' 
Q 

o. 727 A 

k' L 62 sin 26-:.5 ° 
0 

k1 0. 723 A 

To facilitate calculation of the dipole moments for the sixteen 

isomers, the various dipoles within the molecule were resolved into 

two major dipoles. The two major dipoles with the angle between them 

were then used to calculate the dipole moments. 

P-Group 

Cl-Group(A) 

The P-Group dipole with its angle remains constant from isomer to 

isomer, however, the Cl-Group dipole and angle changes w.ith the cyclo-
\~- . 
h~;icane ring shape (chair or boat) and the chlorine posit;i.on (axial or 

,iquatorial). 
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Calculation ~f the P-Group Dipole. The magnitude of the two P-0 

vectors projected on the Major Plane: 

y 

39.25" 

2(1.2) 
sin 90° 

2x = ---C..'--

s in 39.25° 

2x = 2.4 sin 39.25° 

2x = 1.5185 D · 

Resolution of individual dipoles within the P-Group into x and y 

vectors and calculation of the P~Group dipole: 

Resolution of P-C dipole into 

3.50 D 
vectors D' and E: 

D' = 0.8 cos 26.5° 

D' = o. 716 D 

E = 0.8 cos 63.5 ° 

E = 0.357 D 

Resolution of the. projected P-0 vectors intoF and G vectors: 

F = 1.5185 cos 45.15°' G 1.5185 cos 44.S5° 

F = L071 D G 1.077 D 

The x and y vectors of the P-Group dipole: 

x vector is vector G-minus vector D. 

G - D = 1.077 - 0.716 = 0.361 D 

y vector is (P=O) vector minus vectors E and F. 

(P=O) - E - F = 3.5 ~ 1.071 - 0.357 = 2.072 D 
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Magnitude and angle of P-Group dipole~ 

N 

" C, 

N 

vector, opposite the P-C bond.-

dipole~ 2.103 D 

0.361 
tano(.= Z.Ol2 = 0.1742 

o<= 9.9° from the P(=O) 
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Calculation of the Cl-Gro~ (A) Dipole. In the Cl-Group (A) dipole, 

the cyclohexane ring is in a chair form and the chlorine atom is situated 

equatorially on the ring. 

Resolution of the two C-0 dipoles into vectors J and K: 

J - 2.24 sin 67.5° 

J = 2"070 D 

K - 2.24 cos 67.5° 

K = 0.857 D 

The x vector of the Cl-Group (A) dipole: 

(C-Cl) - K • 2.2 - 0.857 = 1.343 D 

They vector of the Cl-Group (A) dipole is merely J which is 2.070 D. 

The Cl-Group (A) dipole and angle: 

i:::i 

0 

" 0 

N D 

(dipole)2 = {2.070)2 + (1.343)2 

dipole= 2,476 D 

tc;tn/3 = 
2.070 
1.343 = 1.577 

(l = 57° from the C-Cl vector, between the phosphorus and chlorine atoms. 
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Calculation of the Cl-Group (B) Dipole.. In the Cl-Group (B) dipole, 

the cyclohexarte ring has the chair form while the chlorine atom is lo-

cated in an axial position. 

112.Sd) 
109.5° 

~.· 

i.~ 
N 

M 

Resolution of the two P-0 vectors into vectors Mand N: 

N 2.24 sin 3" M = 2.24 cos 3° 

N=0.117D M = 2.~237 D 

They vector of the Cl-Group (B) 

dipole is N which is 0.117 D. 

The x vector of the Cl-Group (B) dipole: 

(C-Cl) + M = 2.2 + 2.237 + 4.437 D 

The Cl-Group (B) dipole and angle: 

(dipole)2 = (0.117) 2 + (4.437)2 

dipole= 4.439 D 

0.117 

The angle is 1.5° less than that of the C-0 vectors or 111" above the 

plane composed ·of the central four carbon atoms of the cyclohexane ring. 

The CL"'."Group (C) Dipole. 

This group is composed of a cyclo-

hexane ring in a boat form with the 

chlorine atom occupying an equatorial 

position. The direction of an equatorial bond at the position where the 

chlorine atom is· located remains essentially the same in going from a 

chair form to a boat form of the cyclohexane ring. Therefore, the dipole 
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of the Cl-Group (C) would be basicaliy the same as the Cl-Group (A) dipole. 

The Cl-Group {D) Dipole~ 

The Cl-Group (D) dipole contains 

the boat form of the cyclohexane 

ring and the chlorine atom located 

in an axial position on the ring. Due to the great interaction that would 

exist between the chlorine atom and the hydrogen atom opposite it, it is 

highly unlikely that this situation would exist. Thus, any isomers which 

can be vicualized containing this grouping can be disregarded as possible 

isomers of XXX. 

Calculation of the Dipole Moment of Isomer XXX. The isomer XXX is 

composed of a P-Group dipole and a Cl-Group (A) dipole with an angle of 

52.45" between the two. 

Cl 
Q 

R 

Resolution of the P-Group dipole into vectors Q and R: 

The 

The 

The 

y 

X 

Q = 2.103 cos 37.55° 

Q = 1.668 D 

vector of the dipole 

vector of the dipole 

moment is 

moment: 

R + Cl-Group (A) - 1.282 + 2.476 

dipole moment of isomer XXX: 

R - 2.103 sin 37.55Q 

R - 1.282 D 

Q or 1.668 D. 

·-· 3.758 D 

( 
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f = (1~668)2 + (3.758)2 

p :;; 4. 111 D for isomer XXX. 

Assuming the phosphorus-tarbon dipole vector is directed in the 

opposite direction, that is from carbon to phosphorus, calculation of a 

new dipole for the P'-Group gives a value of 3.313 D with an angle of 

32.77° from the phosphoryl group located between the oxygen atomso The 

angle between the new P-Group dipole (P'-Group) and the Cl-Group (A) for 

the isomer XXX gives a value of 29 .58°. 

Resolution of the P'-Group dipole into vectors Q and R: 

Q = 3.313 sin 29.58© 

Q = 1.636 D 

R = 3.313 cos 29~58° 

R 2.881 D 

!'he y vector of the dipole moment is Q or L 636 D. 

The x vector of the dipole moment: 

R + Cl-Group (A) - 2. 881 + 2 .476 

The dipole moment of isomer XXX: 

2 
p 

f 

= (1.636)2 + (5.357) 2 

= 5. 601 D for isomer XXX. 

Calculation of the Dipole Moment of the Isomer XXXa. The isomer 

XXXa is comprised of a P-Group dipole with a Cl-Group (A) dipole at an 

angle of 5L55" from the first dipole. 



R 

Q 

Resolution of the P-Group dipole into vectors Q and R~ 

Q 2.103 sin 51.55° R = 2.103 cos 51.55° 

Q = 1.308 D R = 1.647 D 

The y vector of the di.pole moment is R or 1.647 D 

The x vector of the dipole moment: 

Cl-Group (A)+ Q = 2.476 + 1.308 = 3.784 D 

The dipole moment of isomer XXX:a: 

p..2 = (3.784/ + (1.647)2 

f- = 4.127 D 

Assuming the phosphorus-carbon vector is directed now from carbqn 
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to phosphorus, an angle· of 74.25° is calculated qetween the P'-Group anq 

the Cl-Group (A). 

Resolutien of the P'-G,:-oup dipol~ into vectors Q and R: 

Q = 3.313 sin 74.25° R = 3.313 cos 74.25° 

Q 3.191 D R = 0.890 D 
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They vector of the dipqle moment is Q or 3.:J.91 D, 

The x vector o;f the dipQie moment: 

R + Cl-Group (A) 0.890 + 2,476 = 3,366 D. 

The dipoie moment of iso~e~ XXXa: 

= (3.191)2 + (3.36~)2 2 
f 

? 4~638 D for isomer XXXa. 

Calculation of the.Dipe>le Moment of the·lsomer XXXb. The isomer 

XXXb_ consists of a P-Group di.pole and a Cl-Group (A) dipole separated by 
'\. 

an angle of 58.55° 

R 

Resolution of P-Group dipole into vectors Q and R: 

Q = 2.103 cos 58.55° R = 2.103 sin 58.55° 

Q = 1.097 D R=L794D 

They vector of the dipole momeµt is R or 1.794 D. 

The x vector of the dipole moment: 

Cl-Group (A) + Q = 2 .476 + 1.097 3.573 D 



The dipole momeµt of isomer XXXb: 

2 
)1 

)1 

= (3.573)2 + (1.794)2 

= 3.998 D 

Calculation of the Dipole Moment of the Isomer XXXc. 
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,62.55° 

separates the P-Group dipole and the Cl-Group (A) dipole in the isomer 

XXXc. 

Q 

Resolution of P-Group dipole into vectors Q and R: 

Q = 2.103 cos 17.45° R = 2.103 sin 17.45° 

Q ~ 2.006 D R = 0.631 D 

They vector of the dipole moment is R or 0.631 D. 

The X vector of the dipole moment: 

Cl-Group (A) - Q = 2.476 - 2.006 = 0.470 D 

The dipole moment of isomer XX.Xe: 

2 
)1 

)1 

= (0.470) 2 + (0,631)2 

= 0. 787 D 



Calculation of the Dipole Moment of the.Isomer XXXd. AP-Group 

dipole 105.55° frqm a Cl-Group (B) dipole constitute$ the isomer XXXd. 

74.45° 

Q 

Resolution of P-Group dipole into vectors Q arid R: 

Q = 2.103 cos 74.45° R = 2.103 sin 74.45° 

'·, Q = 0.546 Ji) R = 2.026 D 

They vector of the dipole moment is R or 2.026 D. 

The x vector of the dipole moment: 

Cl-Group (B) - Q = 4.439 - 0.564 = 3.875 D 

The dipole moment of isomer XXX:d: 

2 
J1 

)1 

= (2.026) 2 + (3.875) 2 

= 4.373 D 

R 

Calculation of the Dipole Moment of the Isomer XXXe. The isomer 

XXXe is made up of a P-Group dipole located 1.55° from a Cl-Group (B) 

dipole. 

Resolution of the P-Group dipole into vectors Q and R: 

Q = 2.103 cos 1.55° R = 2103 sin 1.55° 

Q 2 .101 D R = 0.0936 D 

49 
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~~ 1.55° . R 

They vector of the dipole moment is R or 0.0936 D. 

The x vector of f~--9ipole moment.: 

Cl·Group (B) + .q 4'.439 + 2.101 = 6.540 D 

The dipole moment of isomer XXXe: 

2 
)1 = (6.540) 2 + (0.0936) 2 

p 6.540 D 

Q 

Calculation of the Dipole Moment of the Isomer XXX:f. The isomer 

XXXf contains a P-Group dipole located 108.55° from a Cl-Group (B) dipole., 

R 

. /!120 
O~P-0 Cl 

-o 

Q 

Resolution of P-Group dipole into vectors Q and R: 

Q = 2.103 cos 71.45° R = 2.103 sin 71.45° 

Q = 0.669 D R = 1. 994 D 



The y vector of the dipole moment is R or 1. 994 D •..• 

The x vector of the dipole moment: 

Cl-Group (.) - Q = 4.439 - 0.669 

The dipole moment of isomer XX.Xf: 

2 
p 

p 

= (3.770)2 + (1.994)2 

= 4.265 D 

3.770 D 

Calculation of the Dipole Moment .of the Isomer XXXg. AP-Group 
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dipole at an angle of 4.55° to a Cl-Group (B) dipole composes the isomer 

XXXg. 

. 0 

t 

~R 

Q . . . . 

Resolution of the P-Group dipole into v~ctors Q and R: 

Q = 2.103 cos 4.55° R = 2.103 sin 4.55° 

Q = 2.097 D R = 0.167 D 

The y vector of the dipole moment is R or 0.167 D 

The x·vector of the dipole moment: 

Cl-Group (B) + Q = 4.439 + 2.097 = 6.536 D 



52 

The dipole mo.ment of isomer XXXg: 

. . . 

p. 2 = (6.536) 2 + (0.167>2 · 

/' = 6.537 D 

The Dipole Moments for· the Isomers XXXh., XXXi, XXXj, and XXXk~ 

These feur isomers each contain the Cl-Group (C) dipole which is identical 

tethe Cl-Group (A) dipole. Therefore, they will have dipole moments 

of the same magnitude as i~omers XXX, XXXa, XXXb, and XXXc. 

. . 0 . •.•·. ·. . 
. . t . ·.·· .. ··· .. · ..... ·.·· .. 

'~. · .. · ·.·/·.·.·,.·.·.··.·. CH··.···-O.·.·.·· ... ·.· .. O·. · ..... · 
. ·•. o'' > .' 2 .. ' . · .. 
. . 

.c1·.· 
xxxj· 

XXXi Cl 
XXXk 

Due to the fact that isomers XXXm, XIDCn, XXXo, and XXXp each contain a 

Cl:-Gro-µp (D) dipole, no dipole moments were calculated for these isomers. 
I , • , ' . ' . 

The.Experimentally Determined Dipole Moment of the Benzyl Bicyclic 

PhosphonateXXX. The dipole marrient of XXX was determined by Dr,·Max T. 

Rager s, Michigan State University (90.). Using carbon tetrachloride as 

a solvent at 25°, a value of 5.16 Debye was found. for benzyl bicyclic 

phosphonate XXX. Due to the somewhat limited solubility of the phos-

phonate XXX in carbon tetrachloride, an error in the electric moment is 
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probable but surely not more than a few tenths of a Debye at mosto A 

more precise determination was obtained in dioxane giving a value of 5o9 

Debye at 25°. 

Preparation of Dimethyl BenzylP!:!osphonate (XXXVIIj_. To a reaction 

system similar to that described previously were added 4 ml of benzyl 

chloride (4.4 g.; 0.0348 moles), b.p. 78-80" I 26 mm., and 10 ml of 

trimethyl phosphite (10.5 g.; 0.0848 moles), b.p. 109°/ 740 mm. One 

drop of triethylamine was added as a catalyst. The reaction vessel was 

heated twenty-four hours at 110° and was then allowed to cool. Vacuum 

distillation yielded a sample boiling at 100°/ 0.7 mm.; 3,5 g., 50 per 

cent. The infrared spectrum shows bands characteristic of the phosphoryl 

-1 -1 
group (1255 cm. ), the P-0-methyl group (1187 cm. ), the P-0-alkyl 

1 -1 
linkage (1030, 1055 cm~ ) , and mono-substituted benzene (698, 756 cm. ) 

(31,89). Nuclear magnetic resonance analysis of dimethyl benzylphos-

phonate (Plate XII) has absorption at 7.07 and 6.70 tau units correspond-

ing to methylene hydrogen attached to a benzene ring (J = 22 c.p.s.). 

Peaks at 6.47 and 6.30 tau units are due to methyl groups attached to 

oxygen (J = 10 c.p.s.), and a single band at 2.72 tau units is due to 

benzene hydrogen. lhe ratio of areas under these curves was 1:1:3:3:5. 

Elemental analysis was also in agreement with the formula. 

C, 54.00; H, 6.55; P, 15.47. 

Found: C, 53.70; H, 6.64; P, 14.72. 
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Attempted Hydrolysis of 3-Benzyl-7-chloro-2,4-dioxa-3-phosphabicyclo~ 

U.3.:0nonane, 3-0xide (XXX). To a 50-ml, round-bottom flask fitted with 

a reflux condenser were added 2.000 g. (0.00698 moles) of the benzyl 

bicyclic phosphonate (XXX) and 3.5 ml of concentrated hydrochloric acid. 

The heterogeneous mixture was boiled twelve hours. An additional 3.5 ml 

of concentrated acid was added to the flask and heating was continued 

overnight as some solid with the appearance of starting material was 

still suspended in the yellowish liquid. In an effort to dissolve the 

solid, 10 ml of 95 per cent ethanol and 5 ml of concentrated hydrochloric 

acid were added to the mixture. Since this fi~peared to have little 

effect on the solid, the mixture was held at reflux over the weekend. 

A white solid still remained after this period, however, its shape had 

changed from the flaky white starting material to a crystalline mass 

with a few needles protruding. When cooled, most of the liquid solidified. 

This material was washed into a 150-ml separatory funnel with 10 ml of 

95 per cent ethanol and distilled water. The solution was made basic to 

litmus paper with additions of small portions of sodium bicarbonate. 

The 100-ml water layer was extracted six times with 10 ml portions of 

chloroform. Evaporation of the chloroform produced only about 100 mg. of 

a brownish solid. Attempts to recrystallize it were unsuccessful. The 

water layer was placed in a 250-ml Erlynmeyer flask and acidified with 

3N hydrochloric acid. A white precipitate formed immediately on 

addition of the acid. This was filtered to yield 1.173 g. of dried 

material which had a melting point 146-148°+, with some small particles 

still visible above 160°. Benzylphosphonic acid reportedly melts at 

169-170° (60). A small fraction was dissolved in methylene chloride, 

and a twenty-fold excess of Skelly Solvent F added. Clusters of two and 
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three needles slowly formed, The recrystallized material melted at 147-

148° with residual traces of the high1r melting component still visible, 

The solid is acidic, being able to li.'berate carbon dioxide from sodium 

bicarbonate solution. Use of this fa2t was made in recrystailizing the 

hydrolysis product. An analytical sampp.e- was purified by dissolving it 

in sodium bicarbonate solution and reprecipitating with acid. In addition 

it was dissolved in methylene chloride and precipitated by adding an ex-

cess of Skelly Solvent F, melting point 147.5-148.5°. 

Anal. Found: C, 47.51; H, 5.31; P, 5.03; Cl, 21.90. 

This analysis corresponds to none of the calculated values for expected 

products. The empirical formula is c24H32Po8c14 • A molecular weight 

was determined by adding a known excess of sodium hydroxide to a weighed 

sample of the crude hydrolysis product and back titrating with hydrochloric 

acid. Values of 300.4 and 312.4 were obtained for an average value of 

306.4. 

The infrared spectrum of the hydrolysis product (Plate XI) shows 

-1 
a peak at 699 cm. for mono-substituted benzene (96) as the only identi-

fiable band. There is a broad and shallow area from 2950 to 1700 cm: 1 

which may be due to P-OH. 

In an effort to purify the hydrolysis product, it was chromatographed 

on 200.0 g. of neutral alumia (Merck Reagent). The alumina occupied an 

area 3 cm. by 24.5 cm. with a 3 cm. layer of sand above and below it. 

The sample (1.17 g.) was dissolved in 10 ml of methylene chloride and 

introduced onto the column containing Skelly Solvent F. During elution, 

25 ml cuts were collected at fifteen minute intervals. The chromatograph 

was eluted by 100-ml portions of the following,1~olvent: ir~tio? of Skel'ly 



F to ethyl ether: 100:0, 29:1; 19:1; 9:1; 4:1; 2:1; 1:1; 1:2; 1:3; 

0:100. Evaporation of the collected fractions produced no products. 
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The column was stripped with 100 ml portions of methanol, ethyl acetate, 

methylene chloride, 5 per cent acetic acid in methanol, and methylene 

chloride. No product was isolated upon evaporation of these fractions. 

To be sure additional experiments an~ an NMR study· of the hydrolysis 

product are necessary. 

Basic hydrolysis of 1.000 g. (0.00349 moles) of the benzyl bicyclic 

phosphonate (XXX) with 20 ml of boiling 20 per cent sodium hydroxide 

was attempted over a thirty-six hour period. The solution turned yellow 

in color, and the solid was converted to an orange mass. Extraction 

from a basic, neutral, .and acidic reaction solution with methylene 

chloride and ethyl ether failed to yield a product. The brownish-

orange· solid was filtered from a neutral solution following the attempted 

extraction. The orange solid, contaminated with silica, was insoluble in 

common organic solvents, water, and concentrated hydrochloric acid. The 

solid melted over a range apove 300°, and burned only in a direct 

flame, leaving no residue; Attempts to purify the material were un-

fruitful. Attempted transesterification of the phosphonate XXX by 

solvolysis with methanol yielded only starting materials. 

Attempted Preparation of 3-Benzyl-7-bromo-2,4-dioxa~·3-phosphabicyclo

fJ.J.1]-nonane, 3-0xide. · Using the previously described reaction system, 

1.868 g. (0.0109 moles) of benzyl bromide was added to 1.749 g. (0.01909 

moles) of the phosphite II and heated at a constant temperature of 110° 

for forty-eight hours. The reactants upon mixing formed a clear solution • 

. When cooled, a semi-solid resulted. This was leached by methylene chloride. 
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Attempted recrystallizations from chloroform, methanol, cyclohexane, and 

other organic solvents were unsuccessful, only oils being recovered. 

Trituration of the viscous oil with such solvents as ethyl acetate, 

Skelly Solvent F, or methyl ethyl ketone did not induce crystallization. 

Preparation of 3- (1-Ni!Ehthylmethyl )- 7-chloro-2 7 4-dioxa-3-phospha

bicyclo[3. 3d .] nonane, 3-0xide (XXX:fl. 1-(Chloromethyq nap!ithalene 

25° 
(b.p. 88-92,'10.2 nun.; nD 1.6357) in the amount of 3.101 g. (0.0176 

moles) was added to 2.765 g. (0.0176 moles)of l-phospha-2,8,9-trioxa-

adamantane (:III) in an apparatus similar to that described for the benzyl 

derivative. The solid phosphite III was partially soluble in the 

1-(chloromethyl)naphthalene and completely dissolved when heated about 

two hours. A nitrogen atmosphere was maintained over the solution, as 

the reactants were first heated for sixteen hours by means of a 110° 

constant-temperature bath composed of boiling toluene. The heating 

bath was then changed to xylene, and the solution was heated at 140° for 

an additional twelve hours. Upon cooling, the melt solidified to a 

yellowish mass. Recrystallization of the reaction material was attempted 

without success. although it was soluble in benzene, methanol, chloroform, 

and methylene chloride while being insoluble in ethyl ether, 1;.22.-propyl 

ether, and normal hexane. Various combinations of mixed solvents failed 

to yield the pure phosphonate XX.XI. 

Chromatography on alumina (Merck reagent grade) of a benzene solution 

of the reaction mixture was successful in separating the components. The 

column was eluted with 600 ml. of benzene, 300 ml. of 1:1 benzene: ethyl 

ether, 200 ml. of ethyl ether, 200 ml. of 9:1 ethyl ether: methanol, 

200 ml. of 3:1 ethyl ether: methanol, 200 mL of 1:1 ethyl ether: 

methanol, and finally stripped with 250 ml. of methanol. Cuts were taken 
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every 50 ml. Evaporation of the solvent from the first three fractions 

yielded a small amount of a yellow oil which proved to be 1- (chloromethyl),

naphthalene. The only other residual material found after solvent evap

oration from the remaining fractions was a yellow oil which was eluded 

by the 9:1 ethyl ether: methanol system. This oil slowly solidified 

to an oily, yellow solid. Attempts to recrystallize the solid from 

methanol, chloroform, and methyl ethyl ketone were unsuccessful. 

Similarly trituration of the solid with carbon tetrachloride, Skelly 

Solvent F, and cyclohexane were not fruitful. The solid could be 

purified by dissolving it in methylene chloride, adding a fifteen to 

twenty-fold excess of carbon tetrachloride, and removing the methylene 

chloride from the clear solution by means of a rotary evaporator. A 

white, crystalline ester obtained was filtered from the excess carbon 

tetrachloride. Recrystallization a second time by this method gave 

fine, white needles, 1.181 g. (0.00351 moles) which corresponded to 20.3 

per cent yield of the bicyclic phosphonate XXXI, melting point 179-180°. 

An analytical sanyple-was obtained when the ester was dissolved in a small 

amount of acetone and a twenty-fold excess of cyclohexane was added. 

When allowed to stand four hours, the clear solution yielded fine white 

needles of the 1-naphthylmethyl bicyclic phosphonate XXXI which melted 

at 179.5-180 • .5°. 

C, 60.63; H, 5.40; P, 9.21; Cl, 10.55. 

Found~ C, 60.88; H, 5.54; P, 8.96; Cl, 10.47. 

The infrared spectrum (Plate VII) exhibits an absorption band at 
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-1 -1 
1256 cm. for the phosphoryl group, a band at 1017 cm~ for the P-0-C 

(alkyl) group (31), two bands at 779 and 759 cm: 1 for the naphthene 

. -1 
ring (19), and a band at 742 cm. for equatorial chlorine on a cyclo-

hexane ring (68). Other strong absorption bands show up at ll08, 955 

and 836 cm: 1 with medium bands at 1324, 1222, 1076, 907, and 814 -1 
Cfflo a 

The nuclear magnetic resonance spectrum (Plate XVII) of the 1-

naphthylmethyl phosphonate XXXI in CDC13 shows absorption in the region 

of 1. 92 to 2. 67 tau units for the seven naphthalene hydrogens. The 

single hydrogen g_em to the chlorine atom is split into three triplets, 

centered at 5.33 tau units" The coupling constant is 5.0 c.p.s" within 

each triplet and J = 12 c.p.s. between each triplet. The two hydrogens 

gem to·oxygen·have a tau value of 5.83 and are composed of a doublet 

with J = 16 Copas. 

Preparation of 3-Benzhydryl-7=chloro-2,4-dioxa-3-phosphabicyclo-

[3' 3 .,r ·3 0 . d cx:xx·rr;1_. , . U nona~..i.....:::.:.~;.;;;1. __ e_.._====..:.- l~phospha-2,8,9-trioxaadamantane II in 

the amount of la592 g. (0.00994 moles) was added to a 1.5 cm. by 7.5 

cm. pyrex tube fitted with a 24-40 ground-glass joint, along with 2.025 g, 

(0.00999 moles) of chlorodiphenylmethane (b,p. 104-105°/ 0.5 mm.). A 

nitrogen inlet tube and a co.ndenser equipped with a calcium chloride 

drying tube were attached to the reaction tube. The benzhydryl chloride 

completely dissolved the tricyclic phosphite II when the two reactants 

were mixed. The clear solution was heated at llOe, under a nitrogen 

atmosphere for ferty-eight hours. At the end of this period, a color-

less, clear melt remained. When cooled, the reaction material was 

found to be a hard, transp9-rent solid. Purification by the same 

technique as described for the benzyl phosphonate XXX using a 15:1 ratio 

of Skelly F: methylene chloride 1 gave a gelatinous solid upon standing. 
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Suction fiHration, with removal of solvent by pressing the mqterial on 

the filter paper, produced a chalky, white solido A second purification 

by this method provided 20277 go (0.00628 moles) of the benzhydryl 

bicyclic phosphonate XXXII (m.p, 211-21.3"; yield 63.1 per cent)o In 

preparation of an analytical sample, the phosphon:ate XXXII was found to 

retain some solvent. Recrystallization from iso·propyl alcohol provi,ded 

a material somewhat less gelatinous than from the mixeq solvents. After 

being air dried, the solid XX.XII was placed under a vacuum of 1 mm. in 

the presence of paraffin and phosphorus pentoxide"· The anhydroµs 

material was found to melt only partiaily at 212-214"' and then resolidi

fied to a white solid which melted sharply at 219.5-220.5°. It was found 

that sublimation was required to provide an analytical sample of XXXIL 

The bottom of a 4 cm. by 16 cm. sublimation gun was covered with the 

phosphonate XXXIL The distance from the solid to t:he condenser surface 

was 2.5 cm. Initially, the compound was heated gradually to 1001:) during 

two and a half hours while a vacuum of 0.1 mm. was maintained. The 

temperature was maintained at 100" with ca. 0.3 mm. pressure for three 

hours. This was followed with one and a half hours at 1~5-160° and 

0.1 mm. Only a few milligrq.Ins of material sublimed. The melting point 

of the material in the bottom of the sublimation gun was found to be 

unaffected by this treatment. The analytical sample was taken from this 

material. 

C, 62.90; H, 5.56; P, 8,54; Cl, 9.77. 

Found" C, 62,60: H, 5.77; P, 8.68; Cl, 9.42. 
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The infrared spectrum of the benzhydryl bicyclic phosphonate XXXII 

-1 
(Plate VIII) displays adsorption bands at 703 cm. for mono-substituted 

-1 -1 
benzene (89), at 1257 cm. for the phosphoryl group, at 1014 cm. for 

-1 
P-0-C linkage (31) ., and at 734 cm. for equatorial chlorine on a cyclo-

hexane ring (68). -1 
Other strong bands are at 1107 and 960 cm. while 

-1 
medium bands are at 1078 and 902 cm .• 

The nuclear magnetic resonance spectrum (Plate XIX) of this phos-

phonate XXXII in deuterated chloroform shows the ten aromatic hydrogens 

in the area of 2.48 to 2.90 tau units. The single hydrogen gem to the 

chlorine appears in the area of 4.90 to 5.46 tau units, The two hydro-

gens gem to the oxygen atoms display a doublet at 5.50 tau units with 

J = 17 c.p.s. Apparently, phosphorus-31 coupling (J = 25.5 c.p.s.) 

causes the single metijne hydrogen to be split into a doublet at 5.45 

tau units. The two equatorial hydrogens next to the chlorine atom 

provide a doublet at 7.26 tau units and have J = 15 c.p.s. A triplet 

(J = 13 c.p.s.) is exhibited by the two axial hydrogen adjacent to the 

chlorine atom at 8.32 tau units. The equatorial component of the 

methylene group between the two single oxygen atoms displays a doublet 

at 8.78 tau units while the axial hydrogen appears as a doublet at 

9.00 tau units (J = 15 c.p.s.). 

Attempt.§.Q_Pre2.,gration of 3-Trityl-7-chloro-2,4-dioxa-3-12hosphabicyclo

[3:3.iJnonane, 3-0xide. To insure complet~ mixing, 2.000 g. (0.0125 

moles) of the phosphite II and 3.475 g. (0.0125 moles) of trityl chloride 

(m.p. 112.0-112.5°) were mixed and grounded in a mortar and pestle under 

a nitrogen atmosphere, The mixture was he~ted in the system previously 

described by means of xylene at 140°. Preliminary softening of the mix-

ture occurred after forty-five minutes and a partial, pale yellow color 
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developed which intensified during the three and one-half hour heating 

period at 140°. When the heating bath temperature was raised .to 163" b.y 

addition of 2.-dichlorobenzene to the xylene, the mixture again did not 

melt. Elevating.the temperature to 194" by use of a ethylene glycol 

bath produced a rubbery mass. Bubbles formed at the base of this viscous 

fluid and a slow effervesence was observed throughout the twelve-hour 

reaction period. Upon cooling, the solid was removed as a suspensioD; in 

methylene chloride. Crystallization from methanol gave 20278 g. of 

fine, white needles which melted at 279-282" (sintering at 276°). A 

second recrystallization gave a value of 281-282@, and was used for the 

analysis. Trityl phosphonic acid melts at 283° by one source (60). 

Anal. Found: C, 66.03; H, 6027; P, 8.15" 

This analysis doe$ not correspond to any expected product. If 

chlorine is assumed to be absent (no conclusive test was obtained for 

it), the analysis provides an empirical formula of·c42H45P269 • Plate 

X shows this product's infrared spectrum. In a second experiment the 

reaction became violently e~othermic, decomposition being evident from 

the darkened reaction mixture. 

Attempted Preparation of 3-Phenoxy-7-chloro-2,4-dioxa-3-fhospha

bicyclo G.3.l]nonane, 3-0xide. Chlorine gas was bubbled for fifteen 

minutes through a solution of 0.400 g. (0.00250 moles) of the phosphite II 

dissolved in 25 ml of methylene chloride at 0° (104). The resulting 

yellow solution was boiled until colorless and then evaporated to dry-

ness. Phenol, 0.235 g. (0.00250 moles), dissolved in 10.5 ml of 0.476 N 

sodium hydroxide, was ~dded to the residual solid. Solution occurred 

slowly and upon standing a new precipitate formed. The color of the 
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mixture changed from yellow to brown. The solid was brought into solution 

by warming the mixture on a water bath. When cooled, the solution was 

extracted twice.(40 and 25 ml) with methylene chloride to yield 0.518 g. 

of crude material. Acidification of the reaction mixture with dilute 

hydrochloric acid and extraction of the solution yielded only 92 mgQ of 

a brown oil from the concentrated· extracts. Recrystalliza:tion of the 

solid from methanol and from iso-pro,pyl alcohol provided material of 

melting point 249-250.5°. Nuclear magnetic resonance studies revealed 

this product to be the impure tricyclic phosphate, X:XXVIo 

Attempted Preparation of 3-Benzyl-7-hydroxy-2,4-dioxa-3-phosphabicyclo

G.3.iJnonane, 3-0xide. To 1.000 g. (0.00757 moles) of trans-phloro

glucitol (XXXV), m.p. 144.0-144.5°, was added 1.516 g. (0.00757 moles) 

of dimethyl benzylphosphonate (XXXVII), b.p. 100°/ 0.7 mm., in a simple 

distillation apparatus. The receiver was immersed in an ice bath. After 

being heated two hours at 65-70° and one hour at 140-145°, the mixture 

released no major distillate, but only traces of the phosphonate, XXXVIL 

Removal of XXXVII from the reaction f1ask produced a residue melting at 

140-142.5°, which when admixed with starting material, XXXV, showed 

no depression of melting point. 

A second attempt to prepare the compound by an alternate route 

was undertaken. To 1.000 g. (0.00757 moles) of XXXVII was added 1.113 g. 

(0.00897 moles) of trimethyl phosphite in a similar reaction apparatus, 

the receiver of which was i1I1¥1ersed in a dry ice·-acetone bath. Nitrogen 

was passed over the mixture as it was heated for two and a half hours at 

80-90~, two hours at 100-118°, and two hours at 140-145~. The crude 

intermediate methyl crans-5-hydroxy-1, 3-cyclohexylid.e:ri..e pl:iospbite was , 

obtained in an apparently high yield (1.451 g.; 99 per cent). Some liquid 
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was found in the dry ice-acetone trap. No further characterization except 

28 5 ° 28 5 ° 
its refractive index, nD • 1.3367 (methanol, ca. nD O 1.326), was 

recorded for this substance. The crude bicyclic phosphite was heated 

with 0.932 g. (0.00736 moles) of benzyl chloride for twenty-four hours 

at 110° (104). The resulting semi-solid was dissolved in methylene 

chloride1, but attempts at recrystallization from various organic solvents 

produced only an intractable oil. 

-, 
) 
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Plate II 

cis-Phloroglucitol (XXXIV), 1 mg. in 502.4 mg. KBr. 
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Plate IV 

l-Phospha-2,8,9-trioxaadamantane (II), l mg" in 302 • .5 mg" KBro 
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Plate-V 

l-Phospha-2,8,9-trioxaadamantaµe, 1-0xide (XXXVI), 1 mg. in 300 mg. KBr. 
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Plate VI 

3-Benzyl-7-chloro-2,4-dioxa-3-phosphabicyclo 
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Plate VII 

3- (1-Naphthylmethyl)- 7-chloro-2 ,4-dioxa-3-phosphabicyclo U· 3, 1 j nonane, 3;:oxfde OCXX!), 
1.3 ~g. in 302.2 mg. KBr, 
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:Plate VIII 

3-Benzhydryl- 7-chloro-2, 4-dioxa-3-phosphabicyc lo@. 3. :ij nonane, :3.i::O:xia::e . .(XX]{:),, 
· 1 mg. ·in 299.5 rrig. KBr. 

WAveNUM_BER CM·' 

5000 . ...tOOO _3000 _ ._2500 2000 1500 1.tOO 1300 1100 900 800 700 

-,--+----=i~~-.:.;_:_,. 

':-. -~ !"i,- ~~~~-=:t:_1~::t.:---! = 

_ __, - . 

:i·t-: ± 
;:::I._ =-t=--~ 

50 ~ 

30 

= 
20 

:J-:..._I 

.10 

2· 10 11 12 13 

WAVELENGTH ·IN MICRON~· 

100 
c:,=1= -

_-::t.;: I=~+ 
= ;,q 

80 

= :=t C '± .. 1· 70 

~ 
c- FB'=f_J, 

60 -=t~ ·::r:. 

;..... ± 
5& 

r:- -i=i=.t:±:E 30 
~.::I: 

10_ ·-· 

16 



Plate IX 

Dimethyl Benzylphosphonate (XX$:VII)J~EiiJ:rn on-'NaCl-cells. 
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Plate X 

Trityl Chloride Reaction Product, 1.5 mg. in 302 mg. KBr. 
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Plate XI 

Acidic Hydrolysis Product, 1 mg. in 298.3 mg. KBr, 
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Plate XII 

Dimethyl Benzylphosphonate (XXXVII). 
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Plate XIII 

l-Phospha-2,8,9-trioxaadamantane (II). 
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Plate XIV 

l-Phospha-2,8,9-trioxaadamantane, 1-0xide (XXXVI). 
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Plate XV 

3-Benzyl-7-chloro-2,4-dioxa-3-phosphabicyclo (3.3.1] nonane, 3-0xide (XXX). 
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Plate XVI 

3-Benzyl-7-chloro-2,4-dioxa-3-phosphabicyclo [3.3.1] nonane, 
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Plate XVII 

3-(l-Naphthylmethyl)-7-chloro-2,4-dioxa-3-phosphabicyclo (3.3.1] 
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Plate XVIII 

3-( 1-Naph thylrnetyl)-7-chloro-2,4-dioxa..:3-phosphabicyclo [ 3. 3. 1] nonane, 
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Plate XIX 

3-Benzhydryl-7-chloro-2,4-dioxa-3-phosphabicyclo [3.3. l] nonane, 3-0xide (XXXII). 
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Plate XX 

J-Benzhydryl-7-chloro~2,4-dioxa-3-phosphabicyclo [3.3.1] nonane, J-Oxide (XXXII). 

h=lOH 

7.0 

400 

SoJver..1---5% w/w UCOOH 
F .B.---------0.4 cps 
lt.F. Field---0.14 mG 
S. T .---------500 sec 

s.11.---500 cps 
s.o. ---000 cps 
S.A.----32 
I.A.---o:f:f 

Integration: I. A.---5; S. T .--... 250 sec 

1.0 6.0 

5.0 4.0 

300 

J=17;b=2H 

5.0 4.0 

3.0 2.0 1.0 

200 IQO 

J=l5;e-lH 

J=l3;d=2H. 
J=l5 ;c=2H 

J=l5;f~lH 

3.0 2.0 1.0 

i"PPM (o) 

0 PPM (o) 



Plate XXI. 

Nuclear Magnetic Resonance of XXX at 100 Mc~ 
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Plate XXII 

Decoupling Spectra of XXX at 100 Mc. 

DECOUPLING a. FROM C.. 
220 CPS UP FIELD 



DECOUPLING C. FROM a. 
221 CPS DOWN FIELD 

Plate XXIII 

Decoupling Spectra of XXX at 100 Mc. 
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