THE LOGICAL DESIGN OF A SIMPLE MAGNETIC

CORE DIGITAL COMPUTER,

By
DAVIDRW%!NE*gﬁﬂﬂIKG
Bachelor of Science

Oklahoma State University
Stillwater, Qklahoma

1958

Submitted to the faculty of the Graduate School of
the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE
May, 1963

THE LOGICAL DESIGN OF A SIMPLE MAGNETIC

CORE DIGITAL COMPUTER

Thesis Approved:

Thesis Adviser

C? 7%ﬁ/aé;ﬁgQAuub/

\
442%47qﬁﬁ@4&/ 2212;414;4%42£94%///’

/ Dean of the Graduate School

541928

11

PREFACE

The general purpose digital computer is a relatively new device,
There has been much work done in the field of designing these computers.
There have been many texts and papers written on the various aspects of
design, Most writings refer to the individual units of a computer, with-
out joining these units into a system, This thesis develops the logical
design of the various units of a computer, and joins them into a workable
unit,

The reader of this thesis should be familiar with Boolean algebra,
simplification techniques, and the several types of logic gates and logic
elements such as the bistable multivibrator,

The methods used in this analysis and design are not new, but the
logical presentation of the problems of design, and the logical list-
ing of the solutions to these problems should be an aid in the design
of any digital device,

The author wishes to express his sincere appreciation to Professor
Paul A. McCollum for his guidance and support given in the preparation
of this thesis, He also wishes to thank Mr, William P, Cannon of the
Federal Aviation Agency for his valuable technical advice, Also, the
author is indebted to Mr, C, W, Mueller, and Mr, John E, Shaw of the
Federal Aviation Agency Academy, Oklahoma City, Oklahoma for allowing
him to use the Academy's Computer Laboratory to test the logic designed
in this thesis. A special note of appreciation goes to my wife, Gwen,
for her perseverence and support while writing this thesis, and for
typing the manuscript.

iii

Chapter

IL,

ITE.

1V,

TABLE OF CONTENTS

INTRODUCTION . . . o . ¢ & s o o o4 o

Dosign Mathods . . . o + o w60
The Simple Computer
BPSCETICRUESINE . s ¢ o« & » 5 & 5 4

MAGNETIC CORE MEMORY+ + .

The Read-Write Cycle
Execution of the Read-Write Cycle.
The Memory Address Register, . .
The Memory Buffer Register . . ,
The Address Decoders
The Control of the Memory Cycle,

« s 9 @

MECHANIZATION OF THE COMPUTER.,

Selected Instructions, ..,
Computer Instructioms. ,
Basic Instruction Cycle,

LOGICAL DESIGN OF THE COMPUTER ., ., . .

The Timing Unit,
The Timing Counter
The Timing Decoder .,
Phase Control, « « &
Jump Control . . s 0 o o &
Variable Operationa. st

Registers and Their Coutrol ’
Input Comtrol., . . . ¢« s « « »
Outgut Comtrel ., .. (il .7 &
Printer and Memory Comtrol . .
Instruction Decoding .,
The Logical Design of the Arithmet
The Binary Subtracter, .
Arithmetic Overflow. ,
Invalid Operations , ,
Shift Contrel.
Multiply Control , ., .
Divide Control ., . . .

.
.
L]
.
.
.

" & 8 = =

.

= & & = &
.
« & = e &

& & e & @
. s e

v

« e & 8 o

.
ic

Ele o » o & & o % =«
=]
- - -) - -

« + & @

nd

.

* & & ® & = 8 = 8 2+ @

& 8 ® & 8 & @ ® & © ¢ B 8 € 8 2 8

* ® 8 @ ® s 2 B ® 2 8

« e« 8 = & =

s & » = @

® & ® 8 ® s 8 8 @ =

. & s @

. - - - - - - - - -

. . - L -

« ® % & = = 8 =

Page

NN

F -3

Chapter _ Page

Arithmetié Unit Control .

3 [} - . L] . '}
Compare Control , 4 ¢« 4o ¢ 4 « o s ¢ ¢ o « » 4 « 86
Store Control , . ., . , e e e e e s 90
Loading . . * e 3 . . » . [. . . . » . . [} . [3 . . . 90

V. SUMMARY mfﬂ@NCWSIONS)
Proposed Sophistications. . . , . . . ,, .. 92
EIBLIOGRAPHYQ o« v e .‘;:.«. o 4 e s e e e m e e e e e e e e e e 93
APPENDIX. . . . o R 1
SYMBOLS USED IN THE iOGICAL DESIGN., . . R .b. .. 9

VITA. © © @ © ©® & & o s s s o e o e o e ¢ e s & o e 3 s s 9 s e o o 97

Table

1T,
ITI.

IV,

VII,
VIII,

IX,

XL,

LIST OF TABLES

Phase 1 Mechanigation . . .
Phase 2 Mechanization , , .,
Phase 3 Mechanigation , , ,
Binary Addition
Binary Addition Truth Table

Binary Subtraction, ., , . .

Addition Overflow
Subtraction Overflow, . .
shift Contrel . .,

Binary Multiplication , , .

vi

.

Binary Subtraction Truth Table,

Page

. 32

. 65

. 71

 Figure

LIST OF FIGURES

~ Block Diagram of a Digital Computer

Typical Hysterisig loop ,
Ferrite Core Windings . . ., . , ., .
Windings of a Single_flane. ce
Multiple Plane Wiring ,
Core Memory Contrel , , . . . « . ,

MA Register , . , . « ¢ ¢« o+ o o s &

MB Register & . * ° . . * . . L L] ’ >-

XDPecoder , ., v o « o o o o & .‘. .

Typical Core Memory Read-Write Cycle,

Memory Control Unit s e s

Computer Word Format. , ,

- Master Timing Control . . , . . , .

Typical 1 Phase Timing Chart, . , .

The Timing Counter,, .

,

The Timing Pecoder. . , . . « . . « .

PhasecontrOI. e s s s 9 e s e e @

Jump Contxel, . . ., . . . + « « + .« .

ARegister, ., 4 ¢« v o + 4 &
B Register., . . ., « ¢« ¢« o s 4 s o @

C Registerp e ¢ 2 & a s e e e e @

il

Page

.11

. 43

Figure
21,
22,
23,
24,
25,
26,
27.
28,
29.
30.
5
32.
33.
34,
3%
36.
37,
38,
39.
40,
41,
42,
43,

B REEILBEOY & o o« v e e
Register Controls,
Core and Printer Controls, .
dperation Decoders . , . . .
Karnaugh Map Simplification,
Karnaugh Map Simplification,
Simplification . . . & & v
Simplification . . 5 » o +
Karnaugh Map Simplification,

Karnaugh Map Simplificationm,

Karnaugh Map Simplificationm,

-

Karnaugh Map Simplification, . .

Serial Binary Adder and Subtracter

Arithmetic Unit Data Control
Arithmetic Overflow.
Operations Control Counter .
Pete Conbxel . &y . s
STt CemETel); . v . Sea
Compare and Controls , . . ,
And/Nand Circuit , , , . , .
Orfor CLrcutt 5.5
Inverter Ciremit . , . . v .

Level and Pulse Indicators ,

viii

Page
52
53
56
59
62
63
63
63
65
66
66
67
68
70
72
74
76
79
89
94
95
95

96

CHAPTER I
INTRODUCTION

The analysis and design of a digital computer presents many
problems to the design engineer, He must consider the puarpose of
the machine, That is, is the computer to be a special purpose or
a general puspose machine? If it is to be a general purpose mach-
ine, how versatile should it be? Or if it is to be a special
purpose machine, have all of the requirements of the machine been
met?

All of these problems indicate that a logical approach to the
design of any digital computer must be made, The object of this
thesis will be to synthesize a simple genmeral purpose digital
computer, The methods used for this synthesis will be appli-
cable to the analysis and design of any logical device, whnth;r it

is a digital computer, or a control device for a radar system,
Design Methods

In many cases, the approach to the design problem may be
intuitive, and in other cases logical methods using boolean
algebra, Karnaugh maps, and logic simplification techniques will
be used. It will be found in this thesis that a combination of
toth methods must be used. However, before any method can be
used, a complete statement of the problem must be made.

1

The Simple Computer

INPUT MEMORY OUTPUT
UNIT » UNIT

f me 1

METIC
UNIT

T

CONTROL
UNIT

Figure 1, Block Diagram of a Digital Computer

The block diagram of a simple general purpose digital computer
is shown in Figure 1, Each of the units must be taken into consideration
in designing and analyzing the digital computer, This thelkis will
consider the logical design of the units shown in the block diagram.
Particular attention will be paid to the logiical design of the memory
unit, the arithmetic unit, and the control unit, The control of the

input and output units will be considered,
Specifications

A word length of 16 bits was selected, This was dictated by the

source of parts and arbitrary design specifications, The computer

was to be a binary machine, and all communications with the machine
was to be in binary or in the octal numbering system, Each computer
word was to be fixed length with a fixed binary or radix point. The
computer will be designed using a coincident current ferrite core
memory as the "brain" of the system,

Obviously, the main factor influencing the design of the computer
will be the type of problems that are expected to be solved by the
computer, This computer will be capable of solving problems involving
addition, subtraction, multiplication, division, and any type of
problem that may be reduced to some numerical form of anhlylia. Since
this computer is a binary machine, its main application will be in the
fields of science, and not so much in the business fields, In order
to design a machine that is more versatile in the fields of business,
a decimal machine should be designed, The methods outlined in this
thesis can be applied to the design of either a binary or a decimal

machine,

CHAPTER II
‘MAGNETIC CORE MEMORY

The theory of storing a bit of informatiom in a single ferrite
core is an important concept in considering the design of a simple
magnetic core computer, The ferrite core material is selected with a
characteristic hysterisis loop that is practically rectangular as

shown in Figure 1,

+ B,
+H,
4P

4D
- B, - Hy

Figuré 1 a, Typical Hysterisis Loop

Any core in memory may be storing either a logical one or a
logical zero, Arbitrarily, let a positiv@ reWidual flux demsity
(+B,) represent a stored one, and a negative residual flux demsity
(-By) represent a stored zero. The individual cores may be switched
from a one to a zero by applying a total magnetpmotive force of -H,
to the X and Y windings of a selected core., This is usually accom-
plished by applying -H./2 to the X winding and -H./2 to the Y winding,
These two values add algebraically to a total of -Ho, Figure 1
illustrates the change in flux demsity when -H. is applied to a core

4

storing a ene, The core may be switched from a zero to a sne by applyiﬁg
+H,/2 to the X winding and +H;/2 to the Y winéins. In this case, the
total magnetomotive force'equals +H. and the core will be switched from
a negative residual to a positive residual,

Each time the core is switched, the change in residual flux will
induce a voltage in a sense winding, This information will be strobed
or written into a buffer register, that serves as a buffer between core
and the computer's control, arithmetic, and input-output logic,

A single core with the X, Y, inhibit, and sense windings is shown
in Figure 2, A complete memory system may be built around this simple

core, if proper care is taken in designing the system,

INHIBIT

y

Figure 2, Ferrite Core Windings

In the specifications for this simple computer, the basic word
length is 15 bits plus a sign bit, which totals 16 bits, 6 bits are
to be used as the operation code, and 9 bits as the address portion
of the computer word, Since there are 9 bits in each address, this
means that there will be a total of 512 words stored in the magnetic
core memory, This memory can be constructed as a 16x16x32 array.
This may be described as 16 planes that are 16 cores by 32 cores,

16x32 = 512 words, One core plane with its 16 X windings and 32 Y

windings and one sense winding is shown in Fiigure 3,

b — — — ———— — — — A !1
L/ U WS

- T ey 15 FanY xz
~ h A") p

x

P S . WY 1 ¥ Fany _ 3
W\ b P

’

/ x4
P O F o8 Va sl
© - —Pp——P O

f — — — — — —

Fa u %

O LY i 1 VY 1.
LNV U N

Vo Y o 0. WY 2 o VT s 1.
o O

Y1 Y2 Y3 Y4 31 732

Figure 3, Windings of a Single Plane

Pigure 4 is an illustration of the wiring techniques used im
threading the cores of the several planes, The X row selector in one
plane is in series with the corresponding X row selector of all planes
of the core. The same is true of the Y column selectors. In each
plane, there is one sense winding threading through all cores of that
plane, There is also one inhibit winding threading through all cores
of a single plame, Therefore, for this memory, there are 16 sense
windings, 16 inhibit wemdings, 16 X windings, and 32 Y windings,

The following read-write cycle is one that is commonly used in
conjunction with a coincident current ferrite core memory, and this

cycle will be used with this couputer.l

ll":‘;hm:les V. L. Smith, Electronic Digital Computers,
New York, 1959, p, 295,

To y, of other planes
d

Plane 15 Sense +—
Amplifier /'7<//’

Plane 15 < Y
Inhibit Driver {jx(ﬁ\
PLANE 2 K f?/ !

I 71 To xy of
J_ othe% planes

v

Plane 16 Sense
Amplifier Y1 Y,

A
Pldne 16

Inhibit Oz /7(\) PLANE 1

Driver r/ 2

] X1

: i | y |

%8

v
To Xy Decoder To Yy Decoder

L

S

- ———

Figure 4, Multiple Plane Wiring
The Read-Write Cycle

1, Read all cores of a selected word to £¢ro by applying a total
of -H, magnetomotive force to the cores of the selected address.

2, (a.) Write ones into all cores of the selected address by
applying a total of +H, magnetomotive force to the cores of that address,
(b.) Simultaneously with step 2 a,, inhibit the cores of the selected
address that should be written zero.

The units necessary for the execution of this read-write cycle are

16 sl 15 125l 11 9 a8 7 6 5 asl 3
R it 0 4 A S Ml M P S AW
STROBE
START v 16
MEMORY | | sens
FIE
MEMORY X ADDRESS Y ADDRESS
CONTROL $id el 7 1L 88l 51 &1t sal gt e
[= | | L: [| [
16 x 16 x 32
\ INHIBIT CORE
DECODER - MEMORY
INHIBIT ' ?
y X
DECODER DECDDER
[] T K XK)
L@ WRITE .
WRITE | DRIVER
— READ DRIVER
¥ MEMORY COMPLETE
READ
READ Core Memory Control

Figure 5,

shown in Figure 5,
Execution of the Read-Write Cycle

Since the basic word address is made up of 9 bits, a 9 bit memory
address register will be required to address the words stored in core,
The basic computer word is 16 bits, therefore, a 16 bit buffer register
will be needed to store the word read from memory, and to store the word
to be written into memory, The memory address register is a parallel
input, parallel output register consisting of 9 bistable multivibratqra
and is shown in Figure 6, The memory buffer register is parallel input,
parallel output shift register that will be also capable of shifting
right during arithmetic operations, The memoxry buffer register is

shown in Figure 7,
The Memory Address Register

Some basic definitions must be made at this point in the Qeaign of
the computer, Arbitrarily, negative logic has been chosen as the basic
logic level for this design, A logic 0 will be defined as being .equal to
0 volts, and logic 1 is equal to -3 volts, Since the logic 1 is more
negative than the logic 0, this will be defined as negative logic,
Conventional bistable multivibrators or binarys will be used in this
computer, Definitions of the symbols used and the components used in
all drawings are shown in the appendix,

The Memory Address register is shown in Figure 6 as a 9 bit
parallel input register, This register may be cleared by the contrél
logic by pulsing the Clear MA line, The set and reset inputs to these

9 binarys as well as all other binarys in the computer will be standard

10

-2.5 volt, 0.4 usec pulses, The parallel inputs to the Memory Address
register are from the Memory Buffer register, and from the C register.
The information from the memory buffer register is the address portion
of the instruction word that has been read from memory, while the
information from the C register is the address of the next sequential
instruction as will be shown later in this thesis,

This register, as well as all registers in the computer, is
conventional in design, and since innumerable registers of this type
have been designed and are in use, it is felt that it is unnecessary

to go into a sequential analysis of this logic element,
The Memory Buffer Register

The memory buffer register has been described as a parallel input,
parallel output shift register that is also capable of shifting serially
to the right during arithmetic operations, The design of this type of
unit in a computer system is usually of a conventional nature, This unit
may be designed intuitively from the specifications of the register,

Since there are 16 bits in the standard computer word, the memory
buffer register must consist of 16 bistable multivibrators, or bistables,
These bistables are capable of storing the two binary bits, 0 and 1., The
logic that is shown in Figure 7 allows the computer and core control
logic to read in bits of information to a cleared register by means of the
read in pulses furnished by one of the two control units, Reading infor-
mation into thé memory buffer from the accunuiator, is accomplished by
clearing the memory buffer, and then pulsing the Read MB line. This will

pulse the sampled one bits from the Accumulator into the Memory Buffer,

Figure 6.

MA Register

11

Tm T Tls T15 “T'z T ’f‘1 ’f’l
0 1 0 % 0 1 0 1
MB16 MB)5 MB, MB,
R s R s R S R s
b ? 4
AELP*
I— P -
£ 4 o] o
‘ ' STROBE
! Q
MB, = — .
S16 == = 15 '[%—_Ii = 52 3'_4:%] S1
' % MB ﬁ_f ¥E
SR - MB Ef]' I_t:l : 6 '3 " ‘ _ A—pMB
A1e A5 Ay Ay
Figure 7.

MB Register

(4

13

Information is read from core into the Memory Buffer in a similar fashion,
This may be accomplished by first clearing the Memory Buffer, and the
pulsing the Strobe input lime, This is part of the memory cycle, and the
Strobe pulse of the memory cycle will strobe all ones sensed by the sense
amplifiers into the bistables of the memory buffer. The zero outputs of
the Memory Buffer are fed to the inhibit decoder logic of the memory
control unit, This results in inhibiting the writing of ones inﬁo

those cores during the write cycle, This Memory Buffer register is also
capable of shifting the data stored in it to the right serially, This

is accomplished by enabling or inhibiting the inverters connected to the

set and reset inputs of the bistables,
The Address Decoders

The X and Y decoders decode a particular address stored in the
MA register, For example, suppose the address 1338 were stored in
the MA register, In binary this is equal to 001011011, The 4 most
significant bits would be decoded by the X decoder as Xj and the 5 least
significant bits would be decﬁded as Yy;. The X and Y decoders would
direct the read ind write currents of the read-write cycles to:gha Xg
and Yy7 coordinates of the core memory, Figure 8 shows this method of

addressing for the X coordinate,
The Control of the Memory Cycle

It requires approximately 2 micro-seconds (usec) to read a core to
0 or to write in a 1, The core memory read-write cycle outlimed by

Figure 9 allows approximately 2 usec for these operatioms, -

14

All diodes cprnected as Fhown

]

E 9 S R 0 8 R 1 8 R 0 S
MA MA NA7 MA
8 6
0 91 0 1 0 1 0 1
N\
X0
| VoV,
1
L NV,
|
1
|
|
[
|
[

*16

- 6 volts

Read or Write
Current

Figure 8, X Decoder

The start memory pulse must be furnished by the main computer
control logi¢,, If a read cycle is to be initiated, a strobe enable
level must be furnished to the memory control unit so that a strobe
pﬁlse may be gated to strobe information read from core into the

memory buffer., The read time is started at approximately 2 ysec and

15

2 The information read from

will be completed at approximately &4 usec,
core must be strobed during the latter half of the read cycle to reduce
the possibility that the noise induced in the sense windings by the half
select cycles will have died down enough to have no effect upon the
information read into the memory buffer, It has been found that this noise
generated by the half select currents occurs only during the first few
tenths of a usec of the read cycle. Therefore, if the sense amplifiers
are strobed during the latter half of the read cycle, only the desired
information will be read from core into the memory buffer, The effect
of this noise generated by the half select cycles was observed experi-
mentally by varying the strobe delay, and observing the errors occuring
in the information being read from core.

The write cycle is always performed in two steps, First, all
planes that are to be written 0 are inhibited by the information
stored in the mem¢ry buffer through the inhibit decoders, These
inhibit decoders apply -H,/2 to all cores of the word to be writtem 0,
This information is obtained from the memory buffer, All other cores
of the gddressed word will be written 1 through the action of the X,
Y decoders and the write driver., The inhibit current starts at approx-
imately 8.5 usec. This overlaps the write current which starts at
approximately 6 usec and continues until approximately 8 usec, This
overlap is requirﬁﬂ to insure that no cores to be written 0 will

be written 1, The memory control logic will furnish a memory complete

2Charles V. L. Smith, Electronic Digital Computers,
New York, 1959, p. 295.

Time in micro-sec

[————- Start Memory

Y

Strqbe Enable

Read

Inhibit

:

Memory complete

/ L e
T
[

Figure 9. Typical Core Memory Read-Write Cycle

91

17

pulse to the main computer control at 9 usec after the initiation of
the memory cycle,

All of the units that are required fo control the timing of the
read-write cycle are shown in Figure 10, The delay units may be
congtructed from one-shot multivibrators, The logic elements that
produce the read, write, and inhibit control levels may also be const-
ructed from one-shot multivibrators, These control levels are furnished
to the read-write drivers and to the inhibit decoders of the memory
control logic,

This complete systc; will be capable of storing information in
the core memory array, and the information can be written into or
read from the memory buffer depending upon the instructioms from the
main computer control, These instructions will be outlined in the .

following chapters of this thesis,

START
MEMORY

1]

2 4 sec

_/

14 sec

__/

STROBE
ENABLE

o

. 08

S‘.S// sec)/

08

6.04{se

_/

34 sec J\

Figure 10, Memory Control Unit

READ

STROBE

INHIBIT

WRITE

- MEMORY COMPLETE

81

CHAPTER III

MECHANIZATION OF THE COMPUTER

The basic capabilities of this computer were outlined in Chapter I,
Since computer time will not be considered as a prime factor in this
design, a serial binary arithmetic unit will be designed, Laboratory
modules available for testing this design are capable of operating
at a design frequency of 500 kilocycles, Therefore the computer
clock will operate at 500 kilocycles, The standard pulses used with
this design are also dictated by the test modules used, These standard
pulses will be -2.5 volt, 0.4 usec pulses,

The standard computer word has been determined to be 16 bits long,
A diagram of the computer word is shown in Figure 11, The data word
consists of 15 bits plus a sign bit, while the instruction word consists
of a 2 bit modifier, an operations code (OP CODE), and the address of
the information to be operated on, The basic shift instruction word
is essentially the same as any instruction word, except the address

portion does not refer to an address, but to the amount of shift,

19

20

— DATA —————ry
161514 131210 10]9({8{7|6|5/4|3]|2]1] para womrp

[OP CODE- ——— ADDRESS~————

16 [15 |14 13 12 1110 |9{8|7|6|5|4|3|2]|1| INSTRUCTION

m——
J -MODIFIER

l— opP CODE—] I'AMOUNT? \’OF}.SHIFT ‘T‘"T"—"[

16 15 14 13}12 1110 (9|8|7|6|5]4|3|2|1| SHIFT WoRD

a—
J-MODIFIER

Bit 16 = Sign Bit

Figure 11, Computer Word Format

21
Selected Instructions

This computer will be cabablevof performing the following list of
instructions, Tbesé ingtructions are'descfibed fully in the listing,
and no description of them wiil be needed here, The iﬁ;tructions are
coded by the 6 most #ignificant bits of the'instructionjwérd. Bits
15 and 14 list the J-Modifier of each instrﬁction, while biﬁﬁ 13, 12,
11, and 10.de£i§e the particular operatioﬁ in'a code grouping, For
examéle, the subtract instruction bas the OP CODE 21. This may be

vexpresséd}in binary as 010001. The 2 most gignificaht bits 01 fepresent
the J-Modifier i aﬁd the remaining bits represent the Code Oi,' These
will be decoded'by‘the computer logic, and will control the operation

that the computer will perform. In this example, the decoded command

will tell the compufer to subtract.
Computer Insﬁ?uetioﬁs

INSTRUCTION J-MODIFIER CODE EXPLANATION

JAN 00 0 00 Test the sign bit of the accumulator,
: if it is negative, jump to the address
indicated, if it is positive; proceed
to the next sequential instruction,

JOF 20 1 00 Test the overflow indicater, if it is
on, clear the overflow indicator and
jump to the address indicated, if it is
off, proceed sequentially.

JMP 40 2 00 ' Unconditionally jump to the address
: indicated,

HLT 60 3 00 Halt the computer., The MA register
contains the address of the next
instruction,

ADD 0l 0 o1 - Add the contents of the memory address

indicated to the accumulator, The-
algebraic sum will be stored in the
accumulator,

INSTRUCTION J-MODIFIER

SUB

CLA

CLR

INC

DEC

ARS

LRS

ALS

LLS

21

41

61
42

62

03

23

43

63

1

CODE
01

01

01
02

02

03

03.

03

03

22

EXPLANATION

Subtract the contents of the memory
address indicated from the accumulator,
The algebraic difference will be stored
in the accumulator,

Clear the accumulator and add the con-
tents of the address indicated to the
accumulator, The sum will be stored
in the accumulator,

Clear the accumulator to zero,

Add one to the contents of the address
indicated, The sum will be stored in
the accumulator and in the indicated
address,

Subtract one from the contents of the
address indicated, The difference
will be stored in the accumulator and
in the indicated address.

Shift the contents of the accumulator
to the right, The amount of the shift
is indicated by sixteen minus the con-
tents of the address portion of the
instruction, For example: 0,03002
would be interpreted as a shift right
instruction and 16-2 indicates a shift
of 14 bits,

Shift the contents of the accumilator
and B registers to the right, The two
registers act as one 31 bit register.
The amount of shift is indicated by
sixteen minus the contents of the add-
ress portion of the imstructionm,

Shift the contents of the accumulator
to the left, The amount of the shift
is indicated by sixteen minus the
contents of the address portion of the
instruction,

Shift the contents of the accumulator
and B registers to the left, The

two registers act as one 31 bit reg-
ister, The amount of shift is indi-
cated by sixteen minus the contents of
the address portion of the instructionm,

INSTRUCTION J-MODIFIER CODE

MUL

DIV

cpl

CP2

PNT

STO

JHI

04

24

05

25

06

26

0

04

05

05

06

06

23

EXPLANATION

The multiply instruction will
multiply positive magnitude numbers,
The multiplier must first be loaded
into the B register by the programmer,
The multiplicand may be only 14 bits
in length, The product of B times
the contents of the memory address
indicated is formed in the accumulator
and the B register, The most sig-
nificant part of the product will
appear in the accumulator, and the
least significant part will appear in
the B register, The programmer must
handle sign control.

The divide instruction will divide
positive magnitude numbers, The
dividend must first be loaded into
the B register by the programmer. The
divisor is located in the address
indicated by the divide imstruction,
The quotient will be formed in the B
register, and the remainder will ap-
pear in the accumulator. The pro-
grammer must handle sign control, and
division by zero is prohibited,

The ones complement of the accumulator
is formed and sbtoyed in the accumulator,

The twos complement of the accumulator
is formed and stored in the accumu-
lator,

The contents of the memory address
indicated will be printed,

Store the contents of the accumulator
in the address indicated,

Compares the contents of the memory
address indicated with the accumulator,
If A is greater than M, the HI indi-
cator is turned on, If A is equal to
M, the EQ indicator is turmed on,

Test the HI indicator, if it is onm,
jump to the address indicated, If it
is off, proceed sequentially.

24

INSTRUCTION J-MODIFIER CODE EXPLANATION

JLO 46 2 06 Test the LO indicator, if it is on,
jump to the address'indicated, if it is
off, proceed sequentially,

JEQ 66 3 06 Test the EQ indicator, if it is onm,

jump to the address indicated, If it
is off, proceed sequentially,

Basic Instruction Cycle

The basic instruction cycle cam be divided into 3 parts, These
are selection, decoding, and execution of the instruction, A complete
listing of all these functions must be made for each of the instructionmns,
before the logical design of the computer may proceed, Since the addition
or subtraction of 16 bit numbers im a serial arithmetic unit will require
16 timing pulses, the execution cycle for these arithmetic instructions
will require 16 timing pulses, The selection and decoding must occur
before the execution cycle and, it was discovered that these cycles could
both be performed easily for all imstructions in a total of 16 timing
pulses, The arithmetic operations of multiply and divide also require
a control cycle., For purposes of simplicity in design, this third
cycle also consists of 16 timing pulses., Therefore, the complete
instruction cycle will consist of 3 phases of 16 timing or clock pulses
in each phase, A complete analysis of how the steps in each phase were
determined is given in the following paragraphs.

The first part of the imstruction cycle consists: 6f sélectionéf the
instruction, This will be accomplished by -nnuaily setting the MA reg-
ister to the address of the first instructiom of the program, Then as
will be explained later in the sectiom on the comtrol unit, the computer
will be started on its cycle of operatiom, The tables for each phase

and timing pulse will be explained in detail,

25

TABLE I

PHASE 1 MECHANIZATION

TIME OPERATIONS

To 0—>MB, C, D

T, (START MEMORY) (STROBE ENABLE), MA—p C

T, §—>MA, COUNT C

T, M, - 9—;m, nm - nl-s—pn

T, JUMP = 00(JgA,q + J,OF + J, + J,) + 06(J HI + J EQ + J L0),
¢—»OF = 00J,OF

T 0 —» (COUNT) (CARRY) (C0) , §—»HILO = 063

T, 0—» (TIME) (PRASE) (JUMP) = JUMP, 00J, = ORDER, 00J3 = STOP

T, 0—>MB, CO = 03 + 04(J) + J) + 06

Tg (START MEMORY) (STROBE ENABLE) = 01 + 02 + 04 + os.ro + os.ro

A 0—>A = (01 + 02)(J, +J,), A—>MB = ole
COMP A = 04(J, +)

T10 PRINT = 05J,, START MEMORY = 05J , ME—»A = 02

T11 Jm-ou3+w2+os+oo+oﬁo

Tio 0 —>MA = JUMP

T13 C—p» MA = JUMP

: PRESET COUNT = 03, §—P» OF = 01 + 02 + 04 + 06J_., JUMP

T 0 —» (PRASE) = 013, + 043, + 05 + 00 + 0630, 0 —>JUMP = JUMP

At time To in TABLE I, the three registers MB, C, and D are
cleared to 0, This is done in preparation for reading the instruction
word out of memory into the MB register., C is cleared in preparation

for storing the contents of the MA register, D is cleared so that the

26

OP CODE of the imstruction word can be transferred and stored there,

At Ty, the start memory pulse should be furnished to the memory control
unit, At the same time, a strobe enable level should be furnished to the
memory control unit insuring that this will be a read cycle, This will
read the instruction word out of core into the memory buffer, Also at
this time the contents of the MA register will be transferred into the C
register, At T, the MA register is cleared in preparation for the
address portion of the instruction word, The C register is now holding
the address of the instruction being executed, and this register will
now be increased in magnitude by 1 which will be the address of the next
sequential instruction, At T

3
register where it may be decoded and the address portion of thée word

the OP CODE will be transferred to the D

will be transferred to the MA register where it is decoded, This
completes the selection and decoding cycles of all imstructions, and
the remainder of the operations will deal with the execution cycle,
At this time, the D register holds the OP CODE, the MA register holds
the address or quantity that the instruction will work with, and the
C register holds the address of the next instructiom,

At time T, the execution of the Jump instructioms is initiated,
A bistable that is described as the JUMP flip-flop will be set if any
of the jump instructions h;;é been decoded, and if the proper conditions
have been met, For example, the JUMP flip-flop will be set if there
is a JAN instruction and the accumulator is negative, or if there is
a JOF instruction and the overflow indicator is on, or if there is an
unconditional jump (JMP) or a halt (HLT) instruction, or if there is
a compare test instruction such as 06J,HI, 06J210, or OGJSEQ. The

overflow indicator will be cleared if thﬁl is a JOF instruction and

27

the overflow indicator is on, At Ts the Operations Control Counter, the
carry indicator, and CO indicators will be cleared in preparation for
arithmetic operations, The HILO indicator will clear if this is a compare
instruction, These indicators will usually! be bistable multivibrators.

At T, , it is possible that the execution of some of the instructions may

6’
be complete. If the JUMP flip-flop was set at T,, the timing counter,
the phase counter and the Jump flip-flop will be cleared and the
instruction: cycle will be complete, The timing cycle will start over
again at Ty, and the memory address register is holding the address of the
next instruction to be executed, If this instruction were a halt
instruction, the computer will halt and the MA register will be holding
the address of the next instruction if the operator wishes to start the
computer again,

If the computer did not jump out of phase, the execution cycle
will continue for the remainder of the instructions, At T7 the MB
register will be cleared in preparation for data from memory if this
is an arithmetic instruction, or in preparation for data from the A
register if this is a store instruction., Also at this time, the CO or
Shift control flip-flop will be set if this is a shift multiply, divide,
or compare instruction, At Ta, there will be a read cycle if this is
an arithmetic, output, or a compare instruction, This brings the data
to be operated on out of core, At Tg, the A register will be cleared
if this is an increment or decrement memory imnstruction, or a clear or
a clear and add.ins:ruction, The A register is transferred into the MB
register if this is a store instruction. Also, the A register will be

complemented if this is & complement imstruction. At Ti0’ the output

printer will be signaled to print the contents of the memory buffer if

28

this is @ print imstruction, or a write cycle will be initiated if this
is a store imstruction. Also, at Tl@’

into the A register if this is an increment or decrement imstructionm.

the MB register will be transferred

At Tj1, a number of the instructions could be completed, The instruction
has been executed and the JUMP flip-flop should be set if the instruction
were a Jump instruction and the computer did not jump out of phgée
previously, or ifﬁthis'were a CLA instruction, a CPl instruction, a PNT
or & STO instrucfi@n, If thé'computer is to jump out of phase at thi§
time, the address of the next sequentiaivinstructiQn that ia,stéied in
the € fegister must be transfeffed‘to the MA register, At le, the MA

register will be cleared if the JUMP flip-fiop has been set, At T the

13’
contents of the C register will be read into the MA register if the JUMP
flip-flop is set, At T4 the shift control counter will be preset if
this is a shift instructioﬁ,,or the Overflow flip-flop will be cleared

if this is an arithmetic operation, Also at T the JUMP flip-flop

14’
will be set, At Ty5 the phase counter wili be cleared for the conditions
listed and the Jﬂﬂﬁffliﬁ-flopzwill be cleared. At this time, all of the
instructioms‘éther than the arithmetic imgtructions, the SHP instruction
and'@Pﬁ have been com.ple_tecio Thergfore; for these éompieted instructions
the computer wiil jump phase and start at To of the ne#t instruction
indicated by the contents of the MA register. For the uncompleted‘
imsfructi@ms, the compufer will continue its-insfrﬁction cycle on into P,.
Py is‘concerned wiith arithmetic operations-throughgthe computers
arithmetic umit, and wifh shift operations. P2 is also madé up of 16
timebpulges. These are reqﬁired to c@mplete’tSe serial addition or sub--
traction of the 16 bit binmary words, or to shift the 16 bit registers

left or right, The @peratidns in P2 will be analyzed as were those in Py,

29
TABLE II

PHASE 2 MECHANIZATION
TIME OPERATIONS
To M-A—pA = 06CC, MB—PMB,

A+ MB—>A = 017, + 04(Jy + J,) + 06CD

A+ 1—>4 = 02 4 043, BEGIN SHIFT « 03

|
|
v
Ty Shift Stops When Complete

T JUMP

Tys @ —>JUMP wOF = (OVERFLOW) (01 + 02 + 04 4+ 06)

Although the outline of operations that must be performed in P, is
rather simple, there are a number of very important features of the
logical design listed. The Arithmetic Unit must be capable of performing
the various modifications of addition and subtraction listed, Since this

computer will have the capabilities of addition, subtraction, multiplication,

30

and divieion built into it, the logic must take care of these different
possibilities, as well as the features of complementing, comparison,

and incrementing and decrementing memory., All of these features are
simple variations of addition and subtraction, The Shift command will
also be executed in ’2' The steps for the execution of this imstruction
are listed im the P, mechanization chart,

The design of the logic for each of the steps listed will be
discussed in Chapter IV, Therefore, this discussion will be limited
only to what should happen at a particular time but not why,

At time Ty, all of the simple arithmetic operations begin. The
accumulator will be added to the memory buffer register im serial form,
and the sum will be stored in the accumulator. This operation should
occur for the imstructions ADD, CLA, MUL, and in some cases, DIV, or
CMP, For the imstructions SUB, and sometimes DIV and CMP, the contents
of the memory buffer register will be subtracted from the accumulator,
and the difference will be stored in the accumulator, There are cases
during the execution of the CMP imstruction that the accumulator will be
subtracted from the memory buffer register and the difference will be
stored in the accumulator, If the instruction being executed is an
INC or a CP2 imstruction, 1 will be added to the accumulator, and the
sum will be stored im the accumulator for the CP2 instruction, and the
gum will be stored both in the accumulator and memory for the INC
instruction, If the instruction being executed is the DEC imstruction,
1 will be subtracted from the accumulator, and the difference will be
gtored both in the accumulator and in memory, All of the operations
just degcribed regquire 16 clock pulses to complete, and will be completed

at the end of Py. The SHF instruction alsc begins at To of Pz.

31

The count preset in the Operations Control Counter in Py will control
the completion of the shift operation. The design of this feature will
be discussed in Chapter IV, The JUMP flip-flop is always set at T14
regardless of the Phase of operation. This step is necessary in the
control of the timing of tﬁs computer as will be described in Chapter 1V,
The MUL and DIV instructions require the computer to step through Py

16 times, There are 16 bits in the multiplier, and each one must be
tested to form a partial product, This will require 16 partial pro-

ducts to be formed, requiring 16 trips through Pz. The DIV instruction

requires division by 16 bit bimary numbers, Therefore, there will be

16 trial divisions, or 16 trips through P, by the computer logic in

2
order to determine the proper quotient, These trips through Pz will

be accounted for by advancing the count stored in the Operations Control

Counter, This increase in the count occurs at time Tlé in Pz. The

CMP instruction may require as many as three trips through P_, and

2
these trips will be accounted for by the Operations Control Counter,

These trips will be accounted for by increasing the count stored in

the Operations Comtrol Counter at Tl& in ?2. The JUMP flip-flop must

be cleared at T15 of rz. Also at this time, the Overflow control flip-

flop will be set if there is an arithmetic overflow during any of the

arithmetic operations in P This completes the mechanization of all

2.
ingtructions im P2'

During PS' the computer logic must decide whether or not to repeat

P If the executiom of the instruction is not complete, the control

?c

logic will cause & repeat trip through P If the execution of the

z.
instruction is complete, the control logic must set up the address of the

next imstruction amd proceed with the program being executed.

32

TABLE III

PHASE 3 MECHANIZATION

TIME OPERATIONS

Ty ¢—>MB = 02, Set B, = ot;JI}I16
Lo -’ToA“os, HI = 'r’zamos

2 LRS = womw s, = wlmw, A—pMB = 02
JMP = 04(J, + Jl)('c_ouﬁls) + 067’0116 + 06'1’1

T, Phase 2 = 04(J + J)) ("'?coﬁ'wr"'ls) + os'rel_'u + 067
¢§—>JUMP = JUMP, ADVANCE COUNT = 04(J + J) + 06

Ty START MEMORY = 02

T4 §—>MA

T, C—pMA

Te

5

Tg

Tq

T10

I

T12

T3

Tis JUMP

§—>» (PHASE) (JUMP)

At time Tb, the word from memory that has been incremented or dec-
remented by 1 will be transferred to the memory buffer register, so that
this new word can be stored back in memory, If this is a DIV instructionm,

the least significant bit of the B register will be set 1 if the divisor

33

"goes" into the dividend, If this is a CMP imstructiom, and the count

in the Operations Control Counter is equal to 0000, and the sign bit of
the accumulator is negative, the LO indicator will be set, If this is a
CMP imstruction and the count in the Operations Control Counter is equal
to 0010, and the sign bit of the accumulator is negative, the HI indicator
will be set, At Ty, the accumulator and B registers will be shifted 1

bit to the right if this is a MUL instruction and 16 partial products have

not been formed, At T_, the accumulator and B registers will be shifted

1!
1 bit to the left if this is a DIV instruction and 16 trial divisions
have not been nnde; The JUMP flip-flop will also bé set if MUL or DIV
is not complete, or if the execution of CMP is mot complete, At Tz, th§

control logic will jump back to P, if the execution of the MUL, DIV, or

2
CMP instructions is not complete, The JUMP flip-flop will be cleared if
it has been set, At T3' the incremented or decremented word will be
written into memory if the instruction being executed is an INC or DEC
ingtruction, At T&, the MA register must be cleared in preparation to
receive the address of the next sequential imstruction that has been
stored in the C register since Pl. At TS, the contents of the C
register will be transferred in parfllel into the MA register, If the
master clock reaches this point in Pa, the execution of the ihstructiqn
is complete, and the comtrol logic will mark time until the end of this
Phase, At Tl&’ the JUMP flip-flop will be set, At TIS' the control
logic will clear the Phase Counter, and ths computer will start out at
PlTb of the next instruction of the program being executed, This
completes the mechanization of all instructions.of this conputef. The
logical design of all the timing, comtrol, and arithmetic operationms

will be discussed in Chapter 1V,

CHAPTER 1V
LOGICAL DESIGN OF THE COMPUTER

The logical design of the remainder of the computer, will be
divided into three major groups. These groups are the Timing Unit,
the Comtrol Unit, and the Arithmetic Unit, The guide in designing
these units will be the mechanizatiom charts of the three phases,
In most cases, the units will be designed intuitively from the
mechanization charts, and in some cases, classical boolean algebra

methods with Karnaugh map simplifications will be used,
The Timing Unit

The logic used in this design will be conventional And/Nand,
and Or/Nor logic, The specific gating structure used will be des-
cribed in the Appendix, The inverter symbols used will also be
described in the Appendix, The bi;tuble multivibrators used require
standard - 2.5 volt, 0.4 usec pulses to set, reset, and to complement
the flip-flops, Each flip-flop also has a negative standard pulse
output if the flip-flop is triggered at the complement input, This
pulse will be capable of driving the base of only one transistor,
The 1 and 0 level outputs of these flip-flops will be capable of
driving 14 base loads, The And/Nand and Or/Nor noduies will be
capable of driving 8 units of base load, TLach inverter module will
be capable of driving 8 units of base load. The master clock, which

34

35

is an astable multivibrator, is capable of driving 8 base loads. These
loading restrictions must be followed,

The master clock will be the source of all pulses used in the logic
of this computer, The control of the master clock is shown in Figure 12,
There are four basic modes of operation for this computer. These modes
are the START, ORDER, CYCLE, and P&LSE modes, The START mode is used to
start the computer on & normal cycle of operation, If this mode is used,
pressing the start switch will cause the computer logic to start on the
instruction cycle of the program to be executed, The computer will cont-
inue on this cycle of operation until a programmed halt, or until an
invalid operation occurs, If the ORDER mode is used, the computer
logic will cause the execution of an instruction one basic phase at a
time, which will be explained later in this chapter, If the CYCLE
mode is used, the same instruction will be repeated until the halt
switch is operated, If the PULSE mode is used, the computer logic
will step through the instruction to be executed one pulse at a time,
Using this imformatiom and the mechanigation charts, the design of
the Master Timing Control, Figure 12, may be explained,

The rectangular blocks in Figure 12 labeled’P/S, 0/S, 87S,.C/C,
Clear; and Clear OF are pulse generators that are operated by mech-
anical switches, These switches will be the operator’s controls
for this computer, A comventional Schmitt circuit provides a standard
- 2,5 volt, 0.4 usec pﬁlne each time the mechanical switch is de-
pressed,

Only one of the four modes of operation will be used at any one
time, The START, ORDER, and CYCLE modes use the master clock as a

source of operating pulses, Therefore, in each of these modes, the

36

START control will be set, The PULSE mode, however, uses a pulse
generator, as a source of operating pulses. Therefofe;~during the

PULSE mode. of operation, the master clock must be‘turned off, During
the mem@ry'cycles listed at times PlTl’ PITS’ PITIO’ and ?3T3 the mastér
clock must be turned off until the completion of the memory cycLe This
explaing the PB level co?trolling the clock pulses, Thia,PB level is
furnished by the memory control logic, and will be exﬁlained'ip the
gsection em Memory Comtrel, TﬁiQ‘éxplains the need for the §ﬁ£§f,

START and*@ﬁ control lévéli iﬁd the P/S input to the clock comtrol
furmishes the single pulses’ for single pulse. operution Theuﬁiuter
clock pulses are labeled cp and .the Timing Counter will be controlled
by delayed clock pulses labeled /\C ., The variable delay AA may be
adjusted so that the proper time rezationship between the clock pulses,
and the timing levels generated by the Timing Counter will be atfainéd.
This relationship 1s shown in Figure 13.

The Master fimihg Controibiqgicimay now be easily explained, All
controls of the'camﬁuter should.be gleated'inimidlly before the start of
the execution of amy instruction, If the Clear pulse generaﬁq? is
energized, a clear pulsé'will be gated to>alljof:fheiébﬁtrols that should
be cl@aréd at this time, In Figure 12, these controls are START, PULSE,
ORDER, and CYCLE, Other cpatrols such as the PB confrda and others will
also be cleared at this time, their logic will be analyzed'ih cbnjﬁnc;ion
with an explanmation of the design of these qoﬁtrols. 1f s/s, c/c, P/s,
or 0/S is emergized, the START.control will be set, Since.PU#SE and PB
were cle@red,'clock pulses and delayed clock pulses will be gené;ated,
This will start the computer on an instru;t;on cycle aﬁd&the in§tructioﬁs

will be executed as outlined in the mechanization charts. rt‘kill be best

CLOCK

P/s

0/s

s/s

Clear
OF

c/c

Clear

START
CONTROL

ORDER

1.
START PULSE ORDER CYCLE

R R §' R S R S

£ T f

:
H\ P/s
B

START

CONTROL P/sS| o/s
0/s INVALID
P8 I/—I" ;
¢/t =
sls_:;K__ P, 003,37,
c/c
Clear __/}u

Figure 12, Master Tini.,'ﬁg Control

c/c

LE

38

at this time to'assﬁme that the computer has been stagted by ;hé s/s
control in the start mode, All other modes‘aré‘variations of the start
‘mode, and will be.explained in the section on Variable Operations, §/S
will ciear the four controis in Figure 12 and after a delay of 6 usec,
the START control will be set allowing clock pulses and delayéd clock
pulse to be generated, An explanation of stopping the computer and an
instruction cycle will be givén after an analysis of the Timing Counter,

Timing Pecoder, apd the JUMP controls have been made,
The TimingICOunter

The Timing'Countér i8 of conventional design, ﬁnd'uses gated flip-
flops réquiring standard positive pulses to set, reset, and to complement
the flip—flops, This counter is driven byAthe delayed clock pulses 8o
that the time relationship shown in Figure 13 may'be3attained. ‘Since
there are 16 clock pulses in each major phase of dperatioﬁ% the Timing
C@mmtervmuét Be capable of'counting 16 clock pulses. Thus four flip-
flops are required, Some'provision must be made to advancélthe phase .
from Pl te P

or frcm'P2 to P, if required, After 16 clock pulses have

2 3
been counted in a particular phase, anvAdvance Phase”pulsefwill.be
generated and fed to the Phase Counter shown inm Figﬁge 16. The pba;e .
will be advanced if another phase of operation-is required, 'This ?iming
C@unter will clear when the Clear pulse generator is gnérgized on an
initial start of thé computer, According to the mechanization chart,
the Tiﬁi@g Counter will be cleared at P1T6 if the JUMP cbn;rol‘has‘been
set, Also, the mechamization chart indicates that the Timing Counter

ghould be cleared if Pbase 2 exists at Parz. The‘Timing‘cdunter

always clears at T
15

A A A A A A A A A A A A A ‘A A A A
CLOCK PULSES o is ¢ 1T 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e JTTTITTITITTITTTTTITTI T ITTITITTITTRT T

TIMING BINARY TD

TIMING BINARY TC | __J——__l

'TIMING BINARY TB 1

TIMING BINARY TA S

6 USEC DELAY BETWEEN PHASES

Figure 13, Typical 1 Phase Timing Chart

6¢

ADVANCE
PHASE

B T ™ TR £ TD
4 ¢ K4
O . e O"
0 1 0 1 D 1
R TB S R TC S
1 3
c iﬁ'
) | PHASE 2 TIC
| PHASE 2 TC
Figure 14, The Timing Counter

oY

The Timing Decoder

The Timing Decoder is of conventional design, using And Gate
gating, A decoding matrix could be used, but since unlimited And
Gate modules were available for test purposes, the design uged in
Figure 15 was satisfactory,' In any phase, the:first clpck pulse will
be Too Since the Timing Counter will start out pleﬁreﬁ,fthefiﬁi 55,
TE, and TD levels will all be logic 1, These levels will be ﬁaed to
gate T . zﬁ;r w111 advance the count in.the Timing Counter to 0001
and TA T8, rc and TB w111 be at a logic 1 level gating T . This

process continues in sequence until all clock pulses of a phnse are

gated, Then the process starts aver again,
Phase Control

Since there are three phases of operation, there-ﬁus: be bome
method for keeping track of the phase, The simplest way to do this
is with a Phase Counter, The three phases dictate that thete must be
two flip-flops in the Ph#se Counter, The mechanization ¢h;rts-out11ne
the control of the Phase Counter, Initially, the Phase Counter will
be cleared by a Clea; pulse from the Clear pulse generator, In P,
the mechanization chart requires that the Phase Counter be reset at
PITG if the JUMP flip-flop has been set, Since the Phasé countéfvis
already reset at this time, no. logic will be requifed to accomplish
this, At F1T15’ the mechaﬁization chart requires that the Phase
Counter not Bé advanced if the instruction being executed is a CLR,

CPl, PNT, STO, JAN, JOF, or a CMP instruction, Therefore, the Phase

Counter is not allowed to advance at P.T , if these conditioms are
_ 15 _ ==

41

A TA TA
— T —:\ T TC— T TC —_\ T12
=& P s = > g = >
Tt c. c T c. Tt
P P P
TA TA TA
—_ B —] T ' . B
p— TC —-—;\ Ts TC \ T§ TC —\ T
» > » 13
— D ——_/ - ‘I‘D—J ™ -—J
°p “p °
TA TA
S— TC —— > T6 TC—) T10 T14
— m—) P) |
TA TA " TA
B — | TB___| TB ,
TC “——\ > 17 ’1‘0——\ » 111 TC —\ y 115

‘'Figure 15.. The Timing Decoder

(4]

‘61 P2
' Py -
| %
I
0 1
9
R C S Py
. : /A::: Pgase I

PHASE 2
- ", - .

1 P3067,&
| “P306TATE
P3067

PHASE 2 TC

Figure 16. Phase Control.

Y4

44

met,. The mechanization chart also requires that the phase always be
advancgdvat the end of ng The phase will never be advachd‘if,the
JUMP comtrol is set earlier than T14' o

The mechanizatidnvchafﬁ requires that the phase be switched to
P2 if at P3T2 MU;, DIV, or CMP have not éomPleted“their execution
cycles, The Timing Counter, as explained earlier, must clear ;6 zero
at thig time if fhe execution of these instructions is nof complete,
The logic for determining the incompletenesds of these expcution cycles

will be explained in the sections on multiply, divide, and compare,

The Phase Counter will always clear to zero at Paris,

Jump Control

The JUMP contrqlvis uséd to control the shitching from one phase
‘te another, and’ié also used to tell the various control units of the
computer if the execution of an instruction is compietg, The mech-
anization chart may be used to design the differgnticontroli for the

JUMP control, The JUMP contrcl must be set at P. T if the inafruction

L4

being executed is a JMP, HLT, JAN and the accumulator is negative, JOF
and thé overflow indicator is on, JHI and thé:HI indicator is on, JLO
and the LG indicator is on; JEQ and the EQ indicator is,qﬁ. It will
also.be set at P3T1 if the execution of the MUL, DIV, or CMP iqsﬁructions
is not complete, The JUMF'Qontrol is always seﬁ gt 114, rggﬁraleps of.
the phase, The JUMP control must be sst at Pirli if thg‘instrﬁctiqn
being executed is JAN, STO, JOF, PNT, CLR, or CPl, The JUMP comntrol
clears initially if the Clear pulse generator is energized. If the
JUMP control iS set, it will always reset%gf TZ’ Ts,lor Iis,.éné a
Start Control pulse will be generatedgané;fed back to the Master Timing

Control Unit, If a Start ééﬁér&l pulse is generated, the START control

e

J;EQ_j/g ’_\
0

JoMP .nfm
1
JUMP
R S
A

.
N

€ PHASE 1

D>

Figure 17 Jump -

P START -CONTROL

Control

sy

46

will reset and remain reset for 6 usec, Iﬁsn the START control will

set and the clock will start running again, This provides a delay

between all phase changes that will allow all operations that should be
completed in a phase complete their execution, As soon as all the controls

settle down, the computer will start up again at the proper time and phase.
Variable Operations

There are several variations of the normal start cycle, These are
the ORDER, CYCLE, and PULSE modes, If a Clear pulse is generated, fol-
lowed by an 0/S pulse, the START and ORDER controls will be set, The
computer will start on an instruction cycle similar to the one using the
START mode, The one basic difference is that at the end of an execution
phase, the Start Control pulse will reset the START control and 6 usec
later the START control will not set, Therefore, the computer will halt
after this execution phase, If 0/S is generated again, the computer will
go through the next execution phase, This mode may be used to step the
computer through an instruction one phase at a time, This is a great
aid in trouble shooting the logic of the computer, If the clear pulse is
followed by a C/C pulse, the START and CYCLE controls will set, The
only difference between this mode and the Start mode is that the computer
will repeat the same instruction over and over again instead of going
to the next sequential imstruction in a program, This action is com-
trolled by the CYCLE level as shown in Figure 22, This mode is also
ugeful in trouble shooting since it allows viewing repetitive waveforms
of an instruction cycle. If the clear pulse is followed by a P/S
pulse, the START and PULSE controls will be set, The PULSE level will

be at a logic 0O turning off the clock, and all control pulses will

47

come from P/S allowing the coﬁputer to bevoperatéd one pulse at a time,
‘The overflow coﬁtrol shouldvalways be éielréd with a 61§a§ OF pﬁlﬂé be-
fore starting thevcompu;g: on a prdgram cycie.

The éomputef noy has a timigg and phase control ghit, Tﬁe désign of

the logic and control of the remainder of the unitsg of the‘coméuter.

are depeﬁ&ent~npoh;these units,
R;gistera’and'Their;Cantrol

The memory buffer and memory address registers'havefbeeﬁ"discuSsed.
in Chapter II, There are several register§ necgusqry.fbr é&ﬁgentigl
operation, decoding of instructions, and}arithmegic operations, These
registers are the A,B,C, and D registers, The A and B'regigtg:a are
arithmetic regiscérs; while the D registér«will.aét‘ga‘aﬁcoﬁbgnd-holﬂer,
and theAc register storqj the addrega.of the next seqhéﬁtial instruction,

The A register,or accumulator is a 16 bic-reglater.thgt car be
shifted‘githef to the right or to the left, It serves as a storage
fegister for the result of arighmetic operations, . Data may dlso be
read into it in parallel froé ﬁhe'meh§fy register, This register is
a typical shift register, amd the controlling pulse and data'inpnta
are shown inm Figure 18,

Thé_myregister is a 15 bit register that is capable gf'shifting
to the right or the lgft, It also serves as a stbragg register for
arithmetic operations., The controlling pulse and data inpuga"arg
shown in Figure 193 |

The C register is a 9 bit regisger that st&rea.thg qédréb!”of the .
nexﬁ sequenitial instruction, This is accoﬁplished ia putiinéd by the

mechamization chart by transferring the contents of the memory address

SL-A

SL-A
'DATA

MB—PA

SR-A DATA

SR-A

Figure 18. A Register

8%

Ol

1 By Bie 777771 By
I 1 7 N Y 7 Y— ;
i ' ~ e
| L A N '
A Bys| Bys By By
! . . ‘SET 31'
” I
! i

- , £
B3 B3 B, =

' Figure 19, B Register

6%

Q pgT T o psT T o p; T o plT
’ % T G ¢y
$§ R S g 2 s &
2 y S 3 T —a o
N " —»c
Eﬁ?ﬂi A g—
_—ps) A "- P7 - f ___pl - A]‘_ Count g
@ 1 =
o | Lo le—m—sc
’HA 4“@2. MAI

Figure 20. C Register {ounter

0s

51

register into the C register and then incremantiqg'the C register by
one, In order to accomplish.this, the C fegistervmust also nét'as'a
binafy counter, This counter is identical in its operntipn to ﬁil
counters used in this coﬁputer. The pulse and data inputs are‘shown.
in Pigure 20, | o
o Since the OP CODE is 6 bits lomg, the residcer déaignéd;to store
this code‘mﬁst‘be a 6 bit regisferr This 6 bit register, the D register,
1s shown with its pulse and data controls in Figure 21,

Thesé'variqus registers are controiied as outlined in the méph-
anization chart, The logic for these regigfer controls is shown in

Figure 22, At P T the MB, C, and D registers will be cleared to zero

10

in preparation for the selection and decoding of the instruction word

.indicated by ﬁhe contents of the MA register, At‘hlrl, the conﬁents

T , th

172’ ¢

of the MA register will be tranéferred ta the C register, At P
MA register will be cleared to zero in preparation for receiving the

address portion of the imstruction word, A}so th;-éount in the C reg-
ister will be advanced by 1. At P1T3, the 9hiegut signifiaaﬁt bits of
the MB register will be transférred into the MA register, and the p?
C@bE portion 6f the iasﬁrﬁction word will be transferred into the D
register, At this pbint the instructi§n~w9fd will ﬁave bgeh"sélééted
and decoded, This information will remain*iﬁ the MA qﬁd D Eegist;rs
until the instiuction has been executed, At P1?7 the memori buffer
register will be cleﬁred. This is in prepnrati;n for thg.daia word

to be read from membry if this is_an'arithmétic,or,outpdt instruction,
At P T, the A register will be cleared if this is a CLA, CLR, INC, or
DEC imstruction., The A register will be transferred into the MB

register in preparation for stotrage if this is a store inmstruction.

'Figure 21, . D .Register

49

014G2—
P 1'1';____

a___

T2

04J z-i-q 33—
?1T§___.

O u g/ AN,

)

» G—»C,D
» ¢—>MB
» O—»A
» CoMP A
g—>MA
COUNT C
» MA—PC

_/

(START MEMORY)(STROBE‘ENABLE)

Figure 22.

__\\
|/
) .
T10 ————;///
Pl,ﬂ—_-—~\\ X
S —
we N1 |
T12-_ff.;_//
T) .
?13 ____;_/,/
e
1’_3:'__'1 ’
|

Ts.

Register'COntrols .

MyaMic—pD-
Hiﬂ M;S MA

PT
A—pMB

g—>MA

C—pMA

O—>MA

C—pMA

£S

54

At Plflo,_the MB register will be transferred intd»the,A_regisﬁer.if
‘ this is an INC or DEC ins truction, At Plle, clear the MA register

if the»JUMP flip-flop has been set, At 21T13,-transfer the contents of

the C register, the address of the nmext instruction, into the MA register
if the JUEP_control has been.set.

During ?2, the serial-arithmetic.Operations_will_be perforhed. After
the completion of the execution pf the arithme:ic'instfucciqﬁs, the control
registe:s must §e‘setvup-for the neit instruction, At P3T45 the MA reg-
ister will be cleared in preparation forvthe'addréaa:of the.hgxtvinatruc-

tion, At P.T , the contents of thé c‘registér, the aédresb‘of the next

35
instruction, will be tranafarred'into the MA register, This concludes

the design of the register controls,
Input Comntrol

The input to a computer may take on several forms, V;riouévinput
devices in common use are: fhe typewriter, teletype,'punohea cards,
punched tape, megnetic tape, and the Flexowriter. All of these devices
require input contr013‘ana bufféring betwéen them and core memory,
Since nome. of thése devices were available for test purposes, none of
them were used,

There were registers avail&ble for test purposes in the laboratory
facilities of the Federal Aviation Agency Academy, in Oklahoma City,
These registers were set and reset by push button control, The registers
that were available with this feature, were the manafy buffer, memory
address, accumulator, and B registers. Information such as programs
and data was written into memory, by inserting the address of thé word

into the memory address'register,'and ingerting the,instruction of data.

55

word into the memory buffer register, Once information was loaded into
memory, the logic of the computer was tested, The festing of the logic

will be discussed in Chapter V,
Output Control

A digital printer was also available for test purﬁoses in the
Federél Aviation Agency Acadeﬁy Computer Laboratory, This printer was
connected to sample the contents of the memory address and memory
buffer registers upom signal frdﬁ the computer's memory and pfinter
control legic, Any address and instructipn or.datq word or the entire

contents of memory can be printed upom signal,
Printer and Memory Control

The desién of thé Printer #nd Memory Control must take into
consideration the read-write cycle delay timg, anﬂ the printer
delay time, _Thé'mechanization'charts outline the design of this
unit, The memdry céﬁtrol unit has been';isgusseﬁ in chaptér II,
and the availablevpfintef has its own control unit;n That iég‘the
printer wiil print the contents of the MA and MB registers upoﬁ‘ |

signal, and it will signal the printer control umit when théfprint
éycle is complete,

The legic for Core and Printer Control is shown in Figufé‘ZB.
The main fea;urésvof these controls are initiating thq ﬁemorywhnd
print cycles. A primt cycle consists of startiﬁg fhevptinfer at ‘a-
predetermined time im the memory cycle. bAt.this time the contents
-of the MA register will be known, and the contents of memory are
determi;ed by what ig printed, Since there is about a 200 mill{-

gecond mechanical delay wheh'printing, the master clock of the computer

STROBE _

65 —
JO —

W

P1T0—

‘Clear

Figure 23, Core and Printer Control

STROBE ENABLE"

4 FAN
) _N.= R
i START
— —DI{E MEMORY
o MEMORY
PB COMPLETE
0cs 1
or
—~ RPB §
i
— .
=
4 /\ E
= START PRINT
¢ PRINT
A.

. COMPLETE

9¢

57

must be turned off during the print cycle, This may be easily accomp-
lished by setting the PB or printer busy flip-flop each'time a pfiﬁt
cycle is initiated The Strobe and PB controls will be reset initielly
by the operator initiating a Clear pulse to these flip-flopq. According
to the mechanization chart a print cycle. should be initiated at P TIO‘
if PNT has been decoded. When the print cycle is initiated, the.PB»
conttol is set furnishing a PB level to‘the Master Timing cantroliunit
turning off the cloek The printer will priﬁt the;contents of the MA
and MB registers, and then it will initiate a print complete pulse.
(After a 2@0 milli-aecond delay) This print complete pulse will reset
the PB control. This will remove the control level controlling the
clock allowing it to start aguin at P1T11.

The memory cycle is a‘little more complicated to control, since
the logical design must take into congideration the type of memory
cycle being executed, The Core control must determiﬁe if the cycle
should be a read or a write cycle, This is determined by the STROBE
control, If the cycle is a read cycle, the STROBE contrbl will be set,
and a STROBE ENABLE level'wiil be fed to the memory contrel logic telif
ing the memory comtrol umit that this is a read cycle, The Memory
Control umit wasvdiscussed in Chapter II, If the cycle is a write N
cycle, the STROBE control will not be set., This signals thelmemory'
Control unit that this is & write cycle. Since there ie a 10 usec
"delay in the read-write cycle, the CB control will be'eet any time
a memory cycle is initiated, This furnishes'a'fﬁ level to the Master
Timing Control turnimg the clock off until the memerf-cycle,is'c0mp1ete.
The memory cycle is eomplete_when the Memory Control unit initiates a

memory complete pulse to reset the CB and STROBE centrols. The clock will

38

start running again at the timing pulse following the start of the memory

cycle. The mechanizéfion charts outline the féllowing memory cycles, The
first memory cycle is the selection cycle common to all insﬁructions, This
T., and the logic gate genératiﬁg this pulse is shown in

171
Figure 22. This memory cycle is a read cycle sinde it is required to set

cycle occurs at P

the STROBE control., There should be another memory cycle at P1T8. This

is also a read cycle, and the information read from memory is used in

the arithmetic operations ADD, SUB, CLA, INC, DEC, MUL, DIV, a'na CMP.

There is also a read cycle at this time to determine what should be printed
during the execution of fhe PNT instruction.. There is a write cycle at
1 10 if a STO instruction is being executed~ At PSTB’ a wrlte cycle

should be initiated to complete the execution of the INC or DEC instruc-

tions.
InsffuctiOn'Deching

Ihe'desigqlfor parf of!the instruction cycle, the selection cycie,
hag been c@ﬁplefed, Part two of the instruction cycle is the decoding
of the imstruction, According to the,mechqni:@tipn chﬁrt;‘the selected
instruetion word shoulg be stored in the D and MA regi#ters at fITB,
This information will remain in these registers until the completion qf
the executioﬁ of the instruction. The D register could be labeled the
"Pecoding Register", The design of the command decoders is very simple,
and is shownlin Figure 24, Both the J-modifier and the OP CODE are de-
coded, Certain combinations of the‘J—modifiér and thg OP CODE tﬁat‘are
used frequently are also decoded in figure 24, The contents of the MA

register are decoded by the X and Y decoders in the memory contrel unit,

and By the data controls of the arithmetic units,

PYTYYTY

00

01

62

03

04

05

01402

" 04
01:+02+04+06

Iy

PORYYYT

Figure 24. -Operation Degoders

eLs
oL

02J

04

1 I

3
OF

05

J
1
3 A

0“3
JioF

O&JIAIG

Py+P
04
Ty +d 3)

06

OGJO

6S

60
The Logical Design of the Arithmetic Unit

The computer should no§ be capgble of selecting an inmstruction,
decoding an instruction, and in a few cases even executing a. few stiple
instructions. The main purpose of;a”general purﬁose diﬁi;al computer
is to proceés data. In order to do this, anlarifhmetic'unit will be
required that is capable of éddition, subtraétion, mulﬁiplication,
division, and even some variations of these instructions, The basic
design of thi§~computer qonsiéts of a serial binary full addéf and sub-
tracter, The other listed opérations will Se simple vgriatiqns of
add;tioﬁ and suhgraction.

The design problem for a serial binary adder may be stated as
bfollaws, Design an arithmétic unit that is capgble of determining
‘the sum of two 16 bit binary numbers, These numbers will,bé”stSréd
in the A and MB registgrs,df the computer, The sixteenth bit will
represent the sign bit, A0 représents positive numbers, wﬁile 1
‘represents»negative nu@bers° All negatiﬁe'numbera will be storéd in
the computers core membryiin their two's_complement fqrm. The carry
resulting from the addition of two binary l's will be'storéd.iﬁ;;
flip-flop, The A register will store the Augend and the Sum result-
img from the addition° 'The MB register will st?re the Addend. As

f

outlined in the mechanization chart, addition will start at P T , and
20

will be completerat P2T . Binary addition is summarized in Table IV,
15 '

The Augend = X and the %ddgnd =Y,

61

TABLE IV

BINARY ADDITION

X 4 Y = Sum Carry
0 + 0 = 0 4]
0 + 1 = 1 0
1 + 0 = 1 0
1 + 1 = 0 1

Since the two registers will be added in.binafy form, and a carry
of either 0 or 1 must be considered, there will be three variables to
consider in this design problem, These thfee Qariables may e;cﬁ be .
either 0 or 1, There are 8 possible combinations of these three var-
iables, and these 8 combinations represent all of.thg possible additiqn»
problems that this computer will have to solve, These 8 combiﬁttions

with the resulting sum and carry are shown in Table V,

TABLE V
BINARY ADDITION TRUTH TABLE

Minterm X Y c Sum Carry

m,] 0 0 0 0
m, 0 0 1 1 0
1 0 1 0
m, 0 _ .
o 0 1 1 0 1
3
m, 1 o] 1 0
m, 1 () 1 o0 1
m, 1 1 o0 0 1

62

The equation for sum is equal to:

Sum = m1 + m2 + ma + m7

If thig function were mapped on a Karmaugh map, no simplification would
result gince there are no adjacencies on the map,

The equation for carry is equal to:

CARRY = m

+m 4+ m 4+ m

3 5 6 7
This function may be simplified in Figure 25 as follows,

Y90 0 1.1
X\Yﬂ_o 1 1 0

o |o|of1fo

1 0

Figure 25. Karnaugh Map Simplification

CARRY = XY + XC + YC
Since the carry bit will be stored in & CARRY flip-flop, and the input
to this éircuit will come from the CARRY flip-flop, this circuit may be

considered a sequential circuit, Simce C is stored in the CARRY flip-

" flop, if C is already set, as it is for minterms 3, 5, and 7, then these

minterms may be considered don't care minterms, Then Figure 235 may be

redrawn as shown in Figure 26,

2Watts S. Humphrey Jr., Switching Circuits with
Computer Applipations,‘@eW»York, 1958, p. 91.

63

Y 0 01 1
X c.0- 11 0
0 00X |0
1 ol xlx]1

Figure 26, Karnaugh Map Simplification

CARRY may then be simplified to:

CARRY = XY

Any time the bits coming frem both the A pﬁd MB registers ave both 1,
the CARRY flip-flop must be set, Thé.logic,ﬁoi detérhining when the

CARRY flip-flop should be reset is shown in Figures 27 and 28,

S\t 0 0 11 YO 0 11
X C f04 1 10 X co 1 1 0
0 offfo] 1o 0 x lol 1%
1 0 1| 1|1 1 X111 11
Figure 27, "Siﬁbfiffﬁatfsn”“??:1iigd§é”f§f$‘Stngllfication‘

The CARRY flip-flop should be reset as follows:
CARRY = XY+ X C+ Y C
1f this is considered as a sequehtial circuit, when C 18,41ready re-

3
set, then it does not need to be reset, Figure 27 may be redrawn as

shown in Figure 28,

3Wétts S. Humphrey Jr., Switching Circuits ﬁith ngyutgr Applicatiqns,

New York, 1958, p. 236

64

CARRY may then be simplified to:
CARRY = X Y
The design equations for the arithmetic unit adder may be supmarized

v

CARRY = X Y

CARRY = X Y
The Binary Subtracter

The binary subtracter must meet the same specifications as the
binary adder. 'The only diffgrence is that the difference hetween the
two registers A and MB must be found and stored in the‘A‘register
instead of storing the sum, The minuend (X) is stored imn the A register,
and the subtrahend (Y)’is stored in the HB registé;; Binary subtraction

ig summarized in TABLE VI.

TABLE VI

BINARY SUBTRACTION

X - Y = Difference Borrow
0-0= 0 0
0-1= 1 1
1-0= 1 0
1-1= 0 0

Again there are three variables, X, Y, and B, The Borrow will be
stored in the BORROW flip-flop. The 8 possible combinatidns of these

three variables and_the diff&rence and borrow are shown in TABLE VII.

65

TABLE VII
BINARY SUBTRACTION TRUTH TABLE

Minterm X Y B Difference Borrow

By 0o 0 O 0 0
m, 0o 0 1 1 1
m, o 1 o 1 1
m, 0 1 1 0 1
m, 1 0 O 1 0
m, 1 0 1 0 0
me 1 1 0 0 0
my 1 1 1 1 1

The equation for difference is equal to:

Difference =m_ +m + m + m
1 2 4 7 o

This equation is the same as that for the sum and is not reducible,
The equation for setting the BORROW flip-flop is equal to:
BORROW = m_ +m +m <+ m

1 2 3 7
This function may be simplified in Figure 29 as follows,

Y 0o 0 11
X B O 1 10
0 0 1 14 1
1 0| 0| 10O

Figure 29, Karnaugh Map Simplification

BORROW = X B+ X Y + Y B
Since the borrow bit is stored in the BORROW flip-flop, and the input

to this circuit will come from the BORROW flip-flop, this circuit may

66

also be considered a sequential circuit.. Since B is sboréd in the
BORROW flip-flop, and if B is already set, as it is for minterms 1,

3, and 7, then these mintefmé may be considered don't care minterms,
Figure 29 may be redrawn as shown in Figure 30,

Yy o o 11
X B O 1 10

1 0 |60/ X|0

Figure 300- Karnaugh Map Simplification

BORROW may now be simplified to:

BORROW = X Y

The'equéﬁibnmfor resetting the BORROW flip-flop is equal to{
BORROW = m0 + m4 + m5 + m6

This equation may be simplified as shown in Figure 31,

Y 00 1 1

X B 01 1 0
0 of{1| 1|01
1 ofiloll11o0

Figure 31. Karnaugh Map Simplification

BORROW = Y B+ XY+ X B
Any time the BORROW flip-flop is already reset, the minterm input can
be called a don't care minterm, minterms 0, 4, and 6 are don't care

minterms, Figure 31 may be redrawn as shown in Figure 32,

67

Y 0 01 1
X B O 11 o
0 X{1]1 (1
1 X|ofl [X

Figure 32, Karnaugh Map Simplification

ﬁﬁﬁﬁaﬁvmay now be simplified to:

BORROW = X Y

The equations for. the deéign of the adder and suhtgqctqr arithmetic

unit may be summarized aé follows.

Sm=XTYC+XYC+XTC+XYC

Difference » X Y B+ XYB+XYB+XYB

CARRY = X Y

BORROW = X ¥

AR - X ¥

BORROW = X Y

Since the sum and difference equations are made up of the pame minterms,

the saﬁe logic gah be used for sum and difference as shown in Figure 33,
If the,equafions for CARRY and BORROW are éxgmined, i:~w111 be not-

iced that they differ only in the variable X, The same may be noticed

for the equations for CARRY and BORROW. .One flip-fIOp can be used for
both carry and borrow if:the controls shoﬁn'in Figure 33 are ugsed, If
the logic diagrams are éxamined closelé, it may be'séen,thqc they satisfy
the simplified derived functions, The ADDvgnd SUB control levels orig-

inate in Figure 34, The Arithmetic Unit should act as a subtracter if

SUB

>

X |

S 1Tl e CB Y_| ‘

e 1)

C,B _

o X ,

R 0| o CB Y |
= —
T —
x e
Z—}l—‘u
 —]
x_ g
Y_ |
c.—-

Figure 33. Serial Binary Adder and Subtracter

StM

89

‘the instruction decoded is a SUB, DEC, DIV, or a CMP instruction, The
Arithmetic Unit will act as an adder during the execgtibn of any other
ingtruction, The Arithmetic Unitiwill act as an adder‘dﬁring certain
conditions of execution of the DIV and cMp instructiéns, Theﬁe cond-
itiogslwill be exﬁlainéd in the Seétionsvon comparison and divigién.‘
This arithmetic unit CARRY conﬁrol will clear initialiy with the
initiation of .the Clear pulse. Accordihgito the mechgnizgtign chart,
the! CARRY contrel should also clear at PITS. The logic for this is:
shown in Figure 33. This arithmetic unit willveither:ndd or subtract

in=P2 if the computer logic reaches th%; phase,
Arithmetic Overflow

An arithmetic o%erflow indication may be-sﬁoréd in an Overflow
flip-flop as shown in Figure 35. This control may bé’teset initially
by using the Clear OF control in the Haiter Timing concﬁdl unit, The
mechanization chart odtlinés thg degign for seﬁting‘iud‘rqégtting the
Overflow fiip-flop OF, If a JOF instruction has been decoded, OF

éhould be reset at P1T4° Thé.OF control should also be reset at Pl
' 14

69

if any arithmetic bperation is to be perforﬁéd-in Pz. The mechanization

chart also requires that OF be set at PZTiS if an afithmetic overflow
has beeh detected., The conditien for_ovérflow is detected at the time
in P2 that the sign bits of the,two‘worés,are added together with the
carry from the most significant bit, Siﬁce.there are three variables,
there are 8 possible combinations of these three variablesﬁ The com-

binations and the resulting overflow condition are listed in TABLE VIII

for the ADD cycle.

06CC ——
06 — | M — ™ %
o6cC ‘
¢C — — —_ ——
é gecc M =
066 —
0, — |
B ‘ 81y — |
g! —MB, s on; SUB
| M #16” - ADD
02 |
066C —
047, |
_ v
X
h :
o6cC |

Figure 34, Arithmetic.Unit’'Data Control

0L

TABLE VITI
ADDITION OVERFLOW

Minterm Sx) C OVERFLOW
M

Y
m 0 0 0 0
0
m, 0 0 1 1
0 1 0
m2‘ 0
0 1 1
m3 0
1 0 0
m4 0
m 1 0 1 0
5
1 1 0 1
"6
m7 1 1 1 0

If the arithmetic unit is adding, the overflow equation equals:
Overflow =XYC+XYC
ADD
The logic for this is shown in Figure 35,
The 8 possible combinations of the sign bits and the carry are listed

" in TABLE IX for the SUB cycle.

TABLE IX

SUBTRACTION OVERFLOW

Minterm S S Cc OVERFLOW
X Y M |
m0 0 -0 0 0
m, 0 0 1 0
' 1
m2 0 1 0
m (4] 1 1 0
3
m, 1 0 (5] 0
mg 1 0 1 1
m6 1 1 0 0
m 1 1 1 0

D,
D,
' INVALID
T,
P;) P.T, g% .
| 215 50
T, — Ir
AB _ 4 A
X — Clear OF /\./
Y = __ 06401402+04
_ c —] :) —
Palys. T1s
¢ —
P — :
T Jo—
3)
Y.
B
P,T.
2035
X
4
B
PaTss

" Figure 35, Arithmetic Overflow

cL

73

If the arithmetic unit is subtracting, the Overflow equation equals:
£ =XYC+XYC
Over lowsUB XYC+X¥YC

The logic for this is shown in Figure 35,
Invalid Operations

The invalid operations decoder is also shown in Figure 35. Any
time an invalid operation is decéded during the decoding cycle, the
Master Timing Control unit is signaled to reset the START comtrol
and the computer will stop. In order to restart, the operator must
reset 511 coﬁtrols. Thé logic for this may be designed by considering
all of the invalid codes. OP CODES 07 through 17 are not used, there-

D D3,can”never :

12

fore, b& can never ye a logic 1 and the ¢ombination D

ocecur.
Shift Contrel

The shift instruction is used to shift the contents of the A and
B registers to the right or left by a predétermined amount, Shifting
#_register is a fair}y simple operation t6 contrel, but the amount of
shift is a little ﬁore’difficult to control, A shift register may be
. éhiftgd by pulsing the shift inputs the required‘nﬁmbez of times,
This can be contrqlled by pre-setting a counter to tell the control
unit the amount of the shift. Since the ;egisters are 16 bits long,
‘the counter should be a scale of 16 counter, . A‘conventional up
counter is shown in Figurg 36, and is called the-Gperations Control
Counter, This counter is referred to in the meéhaniz&tion éharts as
COUNT. This counter is used to control the ARS, ALS, LRS, LLS, MUIL,

DIV, and the CMP instructions, The counter along with the control

f—>co

cB cB ce cc @ o
¢ o ¢ ¢
O] "33
P Tg 0 1 0 1 0 1
1 cB cc cp
[] R C S R C S R C S.
A ¥ 7
A e . Py
co co ' [?J‘ co
! R N
CB cc
1 .
co , :
R s
A 4 7 EN
EN MA, T14 EN MA3 Ti4
@,__’C , 04
TR PET, 7 P, 03 CO '
_;P1T7

A ?igure 36, Operations Control Counter

V74

75

flip-flop CO is always cleared at PITS, as indicated in the mechanization
chart. The mechanization chart requires that CO be get at P1T7 if the
instruction being executed is an ARS, ALS, LRS, LLS, MUL, DIV, or a CMP
instruction., CO is used as a control level. The counter should bé f;e-
seﬁ at P1T14 to the}coun; pre-determined by the count stored in ;he addf
ress portion of the instruction word stored in the MA register, if
the instruction being executed ié a shift instruction, This logic is
shown as controlling the set inputs to the counter in Figure 36.
The clock pulses in P2 are gated into the count input if the instruct-
ion is an ARS, ALS, LRS, or LLS instruction. The CO cqntrol will
reset when the counter résets to 0000, This removes the pulse input
to‘£he counter and shifting will stop. The other controls in this
figure control MUL, DIV, and CMP, and they will be discussed in
those sections, The coﬁtrol of the register shifting is shown in
Figuré 37. |

The mechanization chart réquires thﬁt-the MB register circulate

its information in a loop in P,. This is accomplighed as the SR-MB

9*
pulse.generated.in giguge'37. In Pz, if a shift instruction is being
executed, C0 is set allowing a-predeternipe¢ number of pulses to
be directed as shift left fulses to A (LA), ahifﬁ,lefﬁ”puises to B
(LB), shift right pulses to A (RA), or shift right pulses to B'(RB).
The J-modifier gates the shift pulse to the proper register as out-
lined in TABLE X. |

The A register must also shift right 16 bits thpo#gh the arith-
metic unit if the instruction being ‘executed is any»arithhetic

instruction, The Data to the A register will come from the arithmetic

unit (SUM); if the instruction being exec#ted is any arithmetic

J 45] 06+01+02+04

sgﬁ]

23 14
co] 3, —
03 L 1B
4 SR-MB |- ' RB
c_ |
P

06401402404

ol —

L
DA

C.
P

—
) 04p4103P,

Figure 37.

J+J _—
071
: 04P3+03P

16

03J3: —_

043, |

Datg;Control)

A 2

SR-A DATA

SL-A DATA

9L

instruction, This logic is also shown in Figure 37 as SR-A DATA.

TABLE X

SHIFT CONTROL

J-modifier A'Register B Register
0 Shift right No shift
1 Shift right Shift right
2 Shift left No shift
3 shift left Shift left

Multiply Control

Multiplication as it is performed using pencil'and paper and
binary numbers is nothing more than a combination of forming a .
partial product and shifting and adding, The multipiication table

for binary numbers. is very‘simple, as ghown in tABLE XI.

TABLE XI
BINARY MULTIPLICATION
X x Y = Product

0 x 0 = 0

Binary multiplication might be summarized by stating that 1 times
anything in binary is equal to anything, An_gxfnple problem will

illustrate this,

77

78

Binary , Decimal
1101 Multiplicand 13
x 101 Multiplier x5

1101 Partial Product 65
0000: Partial Product
110171 Partial Product

1000003 = (65) , Product

Each time the multiplier is equal to 1, the mﬁltip}icand isvsimply
coﬁied down, The next partial prbdqct is shifted to'ﬁhe left and copied
down, In this exaﬁple,-the partial product is 0000 and actually‘did
not need to be copied down. The third partial product ig the multi-
plicand shifted to the ieft one bit and copied down, If the computer
can be made to simulate these steps, it will be able to multiply,

The multiplier should first be loaded into the B iegister usiﬁg
the CLA and the LRS commands, The least bit of the multiplier then
must be tested fo see 1f it is equal to 1, and then add the multip-
licand to the A register, Once this is accompliahed the logic of the
computer should shift the A and B registers to ﬁhe right 1 bit,

(The least significant bit 6f the multiﬁlier is no_ionger needed).

This shifts the least bit of the product into the most aignificqﬁt bit
position of the B register. Then the mext bit of the multiplier is
sampled and a partial product formed by adding eithe: 0 or the multi-
plicand to the A register and then shifting right. This continues until
all 16 bits of the multiplier have been sampled. The product will be
stored in the B register after fhe execution of the’iqstructibn.

The mechanization charts outline the operations just described,

.
(7]

> A—bMB

>

o

e
)
T‘l
W,

1 | !

SL-B

p SL-A~

LS

» SR-B

LRS

|
sNeBulw;

Figure 38, Shift Control

6L

80

and they will be used to design the logic required, The CO control is
set at PIT , and the>mu1tip11cand will be read from memory at PlTs,

7 :
and the OF contrel will clear at P T . The design for these operations

114

has been discussed in,earliér sections of this chapter, Durins Pz,

the logic will direct the arithmetic unit to act as an adder and the
multiplicand will be added to the A registef if the aécoded command
is MUL. The computer must step througth2 16 times to execute the MUL
command, If an overflow is detected at PZTIS’ the OF control will be
set, P3 is used to control the logic for the MUL command, and also
tc decide if the command has been executed, At P3T1, the A and B
regi&ters will shift right.l bit if this is a MUL cémmand and the
contents of the COUNT register are not equal to 1111, The logic for
this is shown as LRS1 ih Figure 38, As has been explained in the
seétioﬁ op.cdntrol 6f fhé JUMP flip-fiop, the JUMP contr§1 will bé
set at P3T1 if the COUNT is not equal to 1111 and this is a MUL
command, This logic is shown in Figure 17. Each time the computer
logic steps through P2 in the execution of the MUch;mmand, an
indication ié stored as an advance in.COUNT at P3Tz. If the commgnd
has not been exegufed, the control logic will jump phase and repeat
Py, The Phase Counter, and the.Timing'Counter rust be rgset at this

time to go back to P The logic for this is shown in Figures 14

2T0°

and 16, The computer will continue repeating P, until the count

2
stored in COUNT is equal to 1111, The last time through the cycle,
the JUMP control will not set, and the control will not jump phése
at P T2° Instead, the cycle will continue through P3_and finish the

execution of the instruction as explained in earlier sections of this

chapter, The only difference between MUL, and ADD is the modification

81

of control that causes the computer logic to add and then shift until
the command is executed instead of adding only. The data control logic

is shown in Figure 37, and is labeled SR-A DATA,
Divide Control

The divide instruction is usually the most difficult and time
consuming instruction any general purpose digital computer will have
to execute, However, if the non-restoring division technique is used,
the operation is no more time consuming than the multiply iustruﬁtion.
If the proces; of division is examined, on pencil and paper, a method
for machine division can be developed. For example, the quotient that

results from dividing 110 into 1100 may be determined as follows,

11 10
110 / 1100 110 /1100
110 110

0000 0000

110 000

- 110 + 000

The quotient should be 10. This is determined on pencil and paper

by a process of inspection, and guessing., In the first part of the
example, the second trial division did not "go" as indicated by the
negative difference between the divisor and the dividend, This tells
the mathematician that the divisor will "go" some amount less than
the guessed amount. In this case, the divisor will go 0 times as
indicated in the second part of the example problem, Binary division

may be summarized by recording a 1 in the quotient each time the divisor

&Thomas C. Bartee, Digital Computer Fundamentals,
New York, 1960, p. 203.

82

“"goes" into the dividend, and by recording a 0 each time the divisor does
not "go",

Division in this computer will be accomplished'by first_placing the
dividend into the B register by using a CLA and a LRS instruction. This
will 1ea§e the A register cleared, and the dividend in the B register,
During the execution of the DIV instruction, the divisor>is read out of
memory in Pl and will be atqred in the MB register for the remainder of
the instruction, Therefofe, three registers will be used in the divide

’.instr‘uction° . They are the A, B, and MB registers. The basic steps
required in the execution of the DIV instruction may be summarized as
follows,

1. For the first step, the divi#or will be subtracted from the

A register,

a, Since the reault for this first step will always be a
negative'difference, the A and B registers will be shifted
to the left 1 bit,

b. For the next step, the divisor will be added to the A
register, E

c. If the result is positive, the divisor "went" into the
dividend, and the least bit of the B register will be set
to 1, and both registers will be shifted to the left 1 bic;
d, 1f the result is hegative, the divisor did not "go",
and the registers_wiil:simply be shifted to the left 1 bit,

Aftér each trial, the computer control logic will examine the sign

~of the A register,. If the sign is negative the cycle will revert to
step b, If the sign is positive, the cycle will revert to subtracting

the multiplicand from the A register, and then to steps c, or d. The

83

computer control will repeat these trials 16 times for the 16 bits in
the worde. At the completion of the execution_cyclé, the quotient will
be stored in the B register, and the remaindef will be stored in the A
register., The stépsbfar the design of the computer logig-to execute

thg DIV instruction are listed in the ﬁech;nizatibn charts. The se-
lection and decoding cycles are the same for all instructions. At

P1T7, the CO control will be set, as shown in Figure 36. At PlTa, the
divisor is read from memory and placed in the MB register as shoﬁn in
Figure 23. The control logic will then go into sz At P2165 the con-
trol logic will start subtracting the divisor in MB from the dividend

in A; The logic that conﬁrols this is shovn in Figure 34, The

computer control will prdduce a SUB level since this is an 0431 com-
mmnd and the s;gn bit AIG is 0 or positive, Therefore, the arithmetic
unit will solve the problem X - Y and stpre the difference in the A
register. Since the A register was cle#red at thig time, the sign
bit of the A register will bevl. The computer control will go into PB’
énd the following operations will occur., Since the count in COUNT

is mot 1111, the A and B registers will shift left 1 bit at P.T..

31

3T0’ since the sign bit was negative, The JUMP

control will be set at P3T1, since the count is not 1111 in the

Nothing happened at P

COUNT register, At P3T2, the count in COUNT wiil be advanced by 1,
and the computer comtrol will jump back to P2 as described in the
section om MWETIPLY CONTROL, The next time through Pz, the computer
control in Figure 34 will tell the arithmetic umit to ADD X + Y,
simce the sign bit is negative. Thpn the'computer control will ad-
vamce to P,, snd either set or not set the least significant bit of

the B register to 1 at P_T , depending upon the sign/bit in the A

30

84

register, At Png the A and B registers will shift left 1 bit, and at
P3T2 the computer control will jump to Pz as explained above., The com-
puter control will make 16 trips through P, before the count stored in

2
COUNT becomes equal to 11ll, The subtract or add cycles will be con-
trolled by the ﬂogip in Figure 34, and the quotieat will be developed
~in the B register., After the COUNT reaches 1111, the control legic

will advance past‘P3T2 and complete the execution cycle as described

in the section on MULTIPLY CONTROL.
Arithmetic Unit Control.

The execution of the arithmetic instructions such‘ai ADD, ClA,
SUB, INC, and DEC ig ‘only a siqple variation of the same control 1Qgic.
Since this is true, the desigp of.all of these instructions will be
explained im this ome section, The CPl inmstruction must be explained
before explaining the CP2 instruction, bThérefore, the Cgl instruction
will be explained here. Since the CLR imstruction is very simple, the
design of CLR will also be shown ﬁere. All inétructions have the same
selection aﬁd decoding cycles as expla%nedvpreviously. Pl isvthgn
same for all arithmetic instructions that do not use the opératiéns"
control counter, and none of the insttﬁbtiOﬁs'in this sectiéniféquife
the use of this counter,

At PlTs’ a mem@ry cycle is 1n1tiated for all of these arithmetic
instructions, and the logic for this is shown in Figure 23, At Pl 9
the A register must clear if the xnstruction is CLA, CLR, INC, or DEC.
This completes the execution of the CLR instruction, since the A rég—
ister has been cleared;‘ The A register is cleared in preparation for

adding if tﬁis is a @iA instruction, It is also clgared for INC and

85

BEC in preparation for incrementing or decrementing the contents of

a particular memory address., Also at P1T9; the A register will be
complemented if this is a CPl or a CP2 instruction, The logic for clear-
ing A and complementing A is shown in Figure 22, fhe execution of the
CPl imstruction is also complete at this time, At PlTlo, the contents
of MB are transferred into the A register in parallel if this is an

INC or a DEC imstruction, The logic for this is shown in Figure 22,

The control legic will advance the computer to P2° In P2, the com-
puter control will decide if the arithmetic unit will act as an adder

or subtracter, and it will also decide what data will be uSed in the
arithmetic unit, The logic for these controls is shown in Figure 34,
The SUB level will be a 1ogic 1 if the command decoded is SUB or DEC.
Otherwise, ADD will be a logic 1, The data as shown in Figure 34 is
determined by the particular instruction decoded, X will come from

the A register for all of the instructions decoded in thi§ gection,
gince none of them wili decode as 06CC. Y is variable, since it

depends upon the particular instruction decoded in this section.. M

in Figure 34 is equal to the contents of the MB regisﬁer if the instruc-
tion decoded is not MUL or not DEC or not INC or mot CP2, In other
words, the data will come from MB for the CLA, ADD, and SUB instructions,
The data for the INC, DEC, and the CP2 instructions is equal to 1,
Therefore, in Pz, MB will be added to A for the ADD or CLA instructions
and MB will be subtracted from A for the SUB instruction, Also in Pz,

1 will be added to the A register if the instruction is CP2 or INC, .
and 1 will be subtracted from A if the instruction is DEC. The exe-

cution of all of these instructions is complete in P, except for INC

2

end DEC. The computer control logic will advance the computer‘to P3,

86

The P3 mechanization chart outlines the logical design-for: -

the completion of these instructions, At P3To, the MB register must be
cleared. At P3T1, A will be transferred into the MB register in pre-
paration for storing the incremented or decremented word if INC or DEC
had been decoded. The logic for this is shown in Figures 22 and 38,

At P3T3, a write cycle is initiated to store the incremented or incre-
mented word into core storage, The logic for this is shown in Figure

23, At PST&’ MA is cleared, and at P3T5, C is transferred into MA in
parallel, The logic for this is shown in Figure 22, This is the address
of the next sequential instruction, At the end of P3' the computer

control will jump phase back to Pl and the next instruction cycle will

start at P1T° of the instruction whose address is in MA,

Compare Control

The compare instruction is very useful to the user of the digital
computer, It will be particularly useful in this computer since sign
control must be determined by the programmer, The compare instruction
(CMP) will turn om the HI indicator if the A register is greater than
the contents of memory, the IO indicator if the A register is less than
the contents of memory, or the EQ indicator if the A register is equal
to the contents of memory, This instruction has been mechanized using
the Operations Control Counter, and the add and subtract logic,

The selection and decoding cycles are the same as all other ins-
tructions, At PITS’ the HILO control will clear if the instruction
decoded is & CMP instruction, The logic is shown in Figure 39, The

Operations Control Counter, the CARRY flip-flop, and the CO control

must also clear at this time, At P1T , the MB register clears in
7

87

preparation for the data to be compared, CO will be set at this time
as shown in Figure 36, At PITS, a memory cycle is initiated to bring
the data out of memory, This logic is shown in Figure 23, Since this
is an arithmetic instruction, OF will clear as shown in Figure 35.
The computer control logic will then advance the computer into Pz as
explained in previous sections,
There are a number of possible methods that could be used to compare
2 binary numbers, The method selected for this computer is outlined be-

low,5

1. Subtract MB from A. If the result is negative, MB is greater
than A, and the L0 indicator should be set, If the result is pos-
itive, another trial must be made. Zero in this computer is posi-
tive,
2, If the result of 1 was positive, A is either greater than or
equal to MB, MB must be added to A to restore the original value
in A,
3. Subtract A from MB, and if the result is negative, A is greater
than MB, If the result is posit;ve, A is equa1 to MB,
The first time through Pz uling the 'CMP command, MB will be sub-
tracted from A. Since the 06CC level will be 0, MB will bé’
subtracted from A, The logic for th;ae controls is shown in Figure 34.

The difference will be stored in the A register, The COUNT stored in

the Operations Control Counter at this time is equal to 0000, At

SFundamentals of Computers, Section 1, Symbolic Legic,
Federal Aviation Agency, Oklahoma City, Oklahoma, 1962, p. 7-33.

88

PBTQ’ the LO ingicator will set if the sign bit in the A register is neg-
ative, This lo;ic is shown in Figure 39. If the difference were pos-
itive, the JUMP comtrol w&uld set at P3T1; This logic is shown in Figures
16 and 17,. At PSTQ' the co&puter contfol will jump dback to P2 if thé
result of the first subtraction was positive, In this case, the A reg-
igter must be restored to its original value. Also at this time, the
JUMP control will clearAif it has been set, and the COUNT will advancg

to 0001 in the Operations Control Counter, The logic for these operations
is shown in Figures 14, 16, 17, and 36, The control logic in Figure 34
will cguse the arithmetic unit to add A + MB since 06CD is equal to 0,
Then the computer control will cause the computer to @dvance into P3.
Since this cycle was a restore cycle, the computer control will simply
cause the computer to jump back to P2 by setting the JUMP control at
?3T1, and by jumping back to P2 at P3T2. The JUMP indicator will be
cleared, and the COUNT will be advanced to 0010 in the Operations

Control Counter, The logic for these ope:#tions is shown in Figures

39, 14, 16, and 17, The A register has been restored‘to its original
value, Since the first trial resulted in a positive difference, the

next trial will require subtracting A from MB, The 06CC level is equal
to a logic 1, and the control logic in Figure 34 will cause the arith-
meticaumit to subtract A from MB, The difference will be stored in the
A register., The computer control logic will then. cause the computer

to advance to P3, At_PgTQ’ the HI indicator will be set if the sign

bit of A is negative, as shown by the control logic in Figure 39. At
this time, all possibilities have beeh considered, and the computer

control will exit from P_ into Pl and start the instruction cycle of

3
the next imstruction &s indicated by the contents of the MA register,

- J,HI

. HL
J
Ll 3)—‘ IR
7] '

HI

1 o 1
10
S R S
A 4
o6 1,70 “16 % P30, O
o o %16
P37,

“#gure 39, Compare. -and Controls

68

90

The contents of the HILO indicators show whether A is greater than,
less than, or equal to MB. These indicators may be tested by the JHI,
J10, and JEQ instructions to'determipe the result of the compare. The
‘mefhod for testing these indicators was discussed in the section on

JUMP CONTROL.
Store Control

The design of the store control legic is very simple, At P1T9, the

contents of A must be transferred into MB, and at PITIO’ a ﬁRITE memory
cycle is initiated to store the contents of MB into core memory, The
JUMP control will be set at P1T11, as gxplained in the section.on

JUMP CONTROL and the computer control will jump phase and start on the

next instruction cycle at P.T ,
115

Loading

This concludes the logical design of the computer, The loading
of the various pulses and levels must now be considered. If not, the
computer may not operate properly or may become marginal at the upper
frequency limits of operation, The 1l and 0 levels of each flip-flop
can drive 14 base loads. The And/Nand and Or/Nor modules are capable
of driving 8 base loads, The master clock is capable of driving 8
base loads, and each pulse generator can drive 8 base loads, The
loading of each module in the computer will have to be determined by
simply counting the loads on each module, This is not quite as time
consuming as it may seem since most modules are 1ogded‘by only one
or two base loads maximum, As the computer is assembled, careful
check must be kept'&f the loading, and as the load limit is exceeded

in each case, a pulse or level amplifier must be inserted into the logic,

CHAPTER v
STMMARY AND CONCLASISNS

The methods used for the design of this computer may be summarized
as a proceduré for putting logical thought into action, These logical
thoughts were obtained using several procedures, Tﬁese procedures are
listed as foliaws.

i. Intuitive Methods

2, Booiean Algebra

hgx.Kaghﬁﬂgthapping
b. Sequentiél circuit Analysis

The mech;nigation chﬁrts ﬁere‘found to be a very useful tool for
ligting the ideas, intuiﬁive reasoﬁing, and the resuits of ‘Algebraic
gimplification, They‘ﬁere a definite guide in organizing the msny.
pages of logic that must be designed for even a very siﬁplevdigital
computer, | |

Commercially available modules were used to test the logical
design of the variogs units of the computer, ' The reéults of these
tests were very gratifying, It was found that this computer design
was very useable wp to master clock:frequencies of 500 kilocycles per
second, The designed logié starts bécoming marginal at_frequenﬁies
higher than this, This should have been expected since éhe modules

used were 500 kilocycle modules,

91

92

The methods outlined in this thesis can be used to design vitying
types of digital devices, These methods can be used to design comtrol
devices for many manufacturing processes, such ag the processes used in

the building of aircraft, migssiles, amd the processing of such products

as gasoline.
Proposed Sophistications

There are many changes and additions that might be made to the
logical design of this computer, After each examination of the logic,
a new or better way_of doing one or more of the operations‘can usualiy
be found, 0f course, in the design of any device aApoint'is reached |
where the changes in design must stop_#nd a particular design must be
chosen, There are a number of instructions that can easily be added
to this design, stg of these are logiéal add, logical sgbtract,
logical multiply, Qnd‘indexing of instructions. The problems assoc-
iated with input. and output equiﬁment were not'conaidered‘in any
great detail. The problems with these &Qvices can be as difflcult
or even more- difficult than‘thé problem of designing Ehe arithmetic
unit and its control, | |

Applications could be fouhd for this computer iﬁ the field of
education, The units are easily constructed from ;ommercialiy
available m@duleso This computer can be easily programmed and could
be used to teach programming, logical design, and the analysis éf

digital machines,

A SELECTED BIBLIOGRAPHY

Bartee, Thomas C, Digital Computer Fundamentals., New York: McGraw-
Hill Book Company, Inc., 1960, '

Burroughs Corporation. Qigital Computet Principles New York: McGraw--
~ Hill Book Company, Inc., 1962,

Hﬁmphrey, Watts S.,, Jr, Switching Circuits with Computer égplications.
New York: McGraw-Hill Book Company, Inc,, 1958, A '

Smith, Charles V. L. Electronic Digital Computers, New York: McGraw-
Hill Bock Company, Inc., 1959,

93

APPENDIX
SYMBOLS USED IN THE LOGICAL DESIGN

~ The following AND/NAND and OR/NOR symbols were used in the logical
deﬁﬁgn of the computer, They represent types of hybrid gates.6 The

AND/NAND gate is shown in Figure 40, and the OR/NOR is shown in
Figure &1,

P*’/él____ NAND

Figure 40, AND/NAND bircuit

Burroughs Corporation, Qggitql Computer Principles,
New York, 1962, p. 158. - . e

9%

95

=0 v

Figure 41, OR/NOR Circuit

The symbol shown in Figure 42 was used as an inverter, snd vas
also used to gate pulses and levels into the set, reset and complement

inputs of the bistable multivibrators.

-15V -3V

COLLECTOR
L

BASE o | BASE
VAN
5

EMLTTER

> COLLECTOR

Figure 42, 1Inverter Circuit

96

The following symbols in Figure 43 are used as pulse and level

indicators,

@ O to - 3 Volt Level

< 0 to + 3 Volt Level

» Standard - 2.5 Volt
0.4 micro-second Pulse

Figure 43, Level and Pulse Indicators

97

VITA

”

David Wayne Fleming
Candidate for the Degfee of

Master of Science

Thesis: THE LOGICAL DESIGN OF A SIMPLE HAGNETIC CORE BIGITAL G@HPUTER
Major Fie1d° Electrical Engineering
Biographical: |

Personal Data: Born at Harrah, Oklahoma, July 14, 1931, the son
‘of D. A, and Beulah Mae Fleming.

Education: Attended grade school and high school in Ponca City,
Oklahoma, Graduated from Ponca City High School in 1949,
Received the Bachelor of Science degree from the Oklahoma
State University, with a major in Electrical Engineering,
in May 1958; completed;reqﬂlremen:s ‘for:thelMasteradf
Science degree in May, 1963.

Professional experience: Entered the United States Navy, in
1951, and was an Electronic Technician until discharged -
in 1955. Was employed as a Graduate Assistant in the
Electrical Engineering Department, Oklahoma State Univer-
sity in 1958, Was an Instructor in the Electrical Engin-
eering Department of Oklahoma State University, from
January 1959 to May 1960, Is presently employed by the
Federal Aviation Agency, Oklahoma City, Oklahoma, as the
Technical Assistant to the Branch Chief of the Communi-
cations Equipment Btanch, During this period from May 1960
to the May 1963, was™“responsible for the analysis and design

- of a training digital computer, Was an instructémin the
Department of Engineering Extension, Oklahoma State Univ-
ersity, from September 1961 to May 1963.

