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INTRODUCTION

The well-known theory of separable extensions of field theory 
and its Galois theory gives rise to the question; How much of the 

theory mentioned above can be generalized for some class of rings. One 

of the best known developments in this area came in 1965 when Chase, 

Harrison and Rosenberg [5.] proved a theorem analagous to the Galois 
theorem for fields. Then in I966 Janusz ClO.3 generalized the concepts 
of separable elements and polynomials.

This paper has been in large motivated by the following consid

eration: In finite fields the results on separable extensions are much

sharper than the general theorems. For example any finite extension of 

a finite field is separable and its Galois group is cyclic. Hence to 

what extent can these sharper results for finite fields be extended to 

finite rings.
Chapters I and IV are essentially specializations of well-known 

results to finite commutative rings. For completeness the proofs of 

most of the theorems of Chapter I are given and follow those of the 

general theorems. Also in Chapter I the consideration of problems 

dealt with in Chapters II and III are reduced to considerations of 

finite local rings.
In Chapter II we consider elementary facts concerning the 

polynomial ring R[x ], R a finite local ring, V/e have also characterized
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2

certain classes of polynomials in r [x ] which arise naturally in the 

investigations of Chapter III.
In Chapter III we generalize the basic theorems of finite 

fields and their extensions. As a corollary to his results on homo

morphic images of Dedekind domains, G. J, Janusz [lO.j has proven 

some of these theorems for finite separable extensions of the ring 

generated by the identity. We have shown that these theorems are true

for finite extensions of any finite local ring.

In Chapter V we touch on the solutions of congruences over 

finite local rings which includes the classical case of congruences

over the integers modulo the power of a prime.



CHAPTER I

SURVEY OF FINITE COMMUTATIVE RINGS

The object of this chapter is threefold. First to survey the 

decomposition theory of finite commutative rings. Second to introduce 

the basic definitions that will be needed later. Third to prove the 

primitive element theorem for a given class of finite rings.

The Decomposition Theory of 

Finite Commutative Rings 

In this section we specialize more general decomposition theorems 

and sketch their proofs.

Recall the following basic definitions:

Definition 1,1, A commutative ring R is a set with two binary 

operations, denoted by + and juxtaposition such that:

(i) (R, +) is a commutative group,

(ii) (R, ,) is a commutative semigroup,

(iii) If a, b and c are elements of R then (a + b)c = ac + be. 

Throughout this section R denotes a finite commutative ring.

Definition 1,2, A proper ideal P of R is a prime ideal if 

whenever a and b are elements of R and ab is in P then a is in P or 

b is in P,

Definition 1,3, A proper ideal M of R is a maximal ideal if

3



4
whenever M ^ N G  R for an ideal N of R then N = R.

Since R has only finitely many ideals the existence of maximal 

ideals is guaranteed if R / 0. However in general R may not have any 

prime ideals.

Example 1.1. Let R = 2Z/8Z where Z is the rational integers.

The ideals of R are 0, (4) and R. Hence R has the maximal ideal (4) 

but has no prime ideals.
Definition 1.4. The prime radical P(R) of* R is the intersection 

of all prime ideals in R (If R has no prime ideals then P(R) = R),

Definition 1.5. The nil radical N(R) of R equals 

|x in R: x” = 0 for some natural number n^. An element of N(R) is 
called a nilpotent element.

Definition 1,6. The Jacobson radical J(R) of R is the intersec

tion of all the maximal ideals of R.

Example 1.2. Let R = 2Z/8Z. Then J(R) ^  N(R) = P(R).

Theorem 1.1, If R is a finite commutative ring then N(R) and 

P(R) are equal.

Proof; If P(R) = R then N(R) 5  P(R). If P(R) / R then let P^ 

i = 1, ... , n be the prime ideals of R. If x is an element of N(R) then 

x” = 0 is in P^ for some positive integer m. Since P^ is prime x is in 

P^. Hence N(R) S  P(R).

Conversely, suppose x is not in N(R) then T =(x, ... , x°, 

does not contain 0. Hence we can find an ideal P which is maximal with 
respect to the exclusion of T. The proof will be complete once we show 

P is prime. If a and b are in R and ab is in P and a and b are not in 

P then P + aR and P + bR meet T. Hence x” is in (P + aR)(P + bR) Si P



5
for some positive integer n. But this is a contradiction since 

P n T = 0.
It is advantageous to know when a finite commutative ring has 

an identity.

Theorem 1,2, A finite commutative ring R has an identity if 

and only if R contains an idempotent element e which is a non-zero divi

sor, If e exists then e is an identity.

Proof; Let r he an element of R; then (r - re)e = 0, Hence 

r = re and e is an identity.

Although the above is trivial it does provide us with insight 

.into the next two proofs.

Theorem 1,3, If R is a finite commutative ring vâth at least

one non-zero divisor then R has an identity.
Proof: Let a be a non-zero divisor in R, Let a, a^, .«, ,a

2be the elements of R, Since a is a non-zero divisor, a , aa^, ,,, , aa^

are all distinct, hence are all the elements of R. So there exists a.12in R such that aa^ = a. Thus aa^ = aa^ , So a^ is an idempotent.

From a = aa^ it is clear that a^ is a non-zero divisor. The result now 

follows from Theorem 1.2,

Corollary, If R is a finite integral domain then R is a finite

field.
Theorem l.if. If R is a finite commutative ring and N(R) = 0 

then R has an identity.

Proof: Let L be a minimal ideal of R and b a non-zero element
2of L, Since N(R) = 0, b / 0, Hence bL = L, Thus there exists e in L 

such that be = b. Let I = ^x in L: xb = 0^. Clearly, I is an ideal of



s and 1b contained in L. But e is not in I. Hence, by the minimality
2of L, I = 0. But e - e is in I, so e is a non-zero idempotent. We 

must find an idempotent which is a non-zero divisor. For each idempo

tent e in R let M = fr in R; re = o\. Choose e such that M is minimal e '• •' e
in Tm \, If M ^ 0 then M contains a minimal ideal. Hence from the I ei e e
first part contains a non-zero idempotent e^. Let e^ = e + e^.

Since ee^ = 0, e^ is an idempotent. One checks that ^  M^. This

contradicts the minimality of M . Hence M = 0 and e is the desirede e
element.

In the case R has an identity we cein improve Theorem 1.1,

Theorem 1.5* Let R be a finite commutative ring with identity

1. Then P is a prime ideal in R if and only if P is a maximal ideal in R.

Proof; If P is a prime ideal in R then R/P is a finite integral 

domain, hence a field. However if R/P is a field then P is a maximeil 

ideal. The equivalence is completed by noting that in a ring with iden

tity any maximal ideal is prime.

Corollary. If R is a finite commutative ring with identity then 

J(R) = N(R) = P(R).

Actually, if R does not have an identity then J(R) — N(R) and 

any prime ideal is maximal. If P is a prime ideal in R then N(R) —  P,

So N(R/P) = 0, Then by Theorem l./f, R/P has an identity and hence is a

finite integral domain. But then R/P is a field. By the correspondence 

theorem we conclude that P is maximal.

Since N(R/N(R)) = 0, R/N(R) has an identity. It might be hoped 

that if we knew something about rings with Identity this would provide 

information about R. This is indeed the case.
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Theorem 1,6. If R is a finite commutative ring with N(R) = 0 

then R is the direct sum of finite fields.

Proof: Let M^, ,., , be the maximal ideals in R, Then R/M^

is a finite field. Let 71̂ : R — ^  R/M̂  ̂be the natural projection. Then 

(Tl̂ i ,,, t 7C^)(r) = (Tl^(r), ,., , Tl̂ Cr)) is an epimorphism of R onto 
the direct sum Z] ® R/M^ with kernel H  = J(R), By Theorem 1,4, R 
has an identity. So J(R) = N(R) = 0, Thus R - %  0 R/M^,

Corollary, The ring R/N(R) is isomorphic to the direct sum of 

finite fields.
Since R/N(R) has idempotents we would like to pull them back 

to idempotents in R,

Lemma, If z is in N(R) then there exists z^ in N(R) such that
2

^1 “ ^1 ~

Proof: Let z. = 2j (l/2n - 1) f (-z)^. Since z is nil-  1 >\=) \ n j

potent this is a finite sum and z^ is in N(R), One checks that z^ is

the desired element.
Theorem 1,7* Let 71: R — ^ R/N(R) be the natural projection and 

u an idempotent in R/N(R), Then there exists an idempotent e in R such 

that 71(e) = u,
2Proof: Let x be in R such that 7l(x) = u. Then x - x = z is

in N(R), Consider %  4^"^(-z)", Since z is nilpotent this is a finite

sum and is an element of N(R), By the lemma there exists z in N(R)
Oo

such that Z- - z. = S  4"" (-z)". Let e = x - 2xz + z , Then 71(e) =1 1 -1-
7T(x ) = u. It is a routine computation to show e is an idempotent.

Theorem 1,8, If is a finite set of mutually orthogonal

idempotents in R/N(R) then there exists a set ê̂ .̂ of mutually orthog-
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onal idempotents in R such that TC(ê ) = for i = 1, , n.

Proof; It is true for n = 1 by Theorem 1,7, Assume true for
. m-vi

m f -j
be a set of mutually orthogonal idempotents in R/N(R).

Let e., , e be a set of mutually orthogonal idempotents with1 m
Tt(ê ) = Let e = 2 j e^. By Theorem 1,7 choose an idempotent e' in

r 1R such that ir(e') = u Let e = e' - ee'. Then le. ‘r. is them+1 m+1 1 J I'-i
desired set of idempotents of R,

The first of the two decomposition theorems we will prove is: 

Theorem 1,9, If R is a finite commutative ring then E is the 

direct sum of a nilpotent ring and a ring with identity.

Proof: By the corollary to Theorem 1,6, R/N(R) = Zj© where
is a finite field. Let u^ be the identity of F^, Then by Theorem 1,8

there exists mutually orthogonal idempotents e^ in R such that Tt(ê ) =

u^. Let e = Zj e^. Then TC(e) = 1 in R/N(R). If r is in R then r =

er + r - er. If (1 - e)R = ^r - er; r in E^ then R = (1 - e)R © eR, Let

r be in R then %(r - er) = Tl(r) - n(e)TC(r) = TC(r) - TC(r) = 0, Hence 

(1 - e)R —  H(R) and thus is nilpotent. Since the e^ are mutually 

orthogonal idempotents, e is an idempotent. It is clear that e is the 

identity of eR,

The study of finite commutative rings then breaks up into the 

study of nilpotent commutative rings and finite commutative rings with 

identity. This paper will only be concerned with the latter.

Definition 1,7, A commutative ring R with identity is ssiid to 

be local if R has a unique maximal ideal.
The last decomposition theorem in this section will further 

reduce the part with identity. Henceforth R will denote a finite
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commutative ring with identity.

Lemma. Let ,,, , be the set of maximal ideals in R,

If I = ... then I is nilpotent.

Proof; Note I ^  = J(R) = N(R). So each element of I

is nilpotent. There are only finitely many elements in I so I must be 

nilpotent.

Definition 1.8. Proper ideals I and J of R are comaximal if 

I + J = R.

Lemma. Let M., ... , M be the maximal ideals in R. Then if" ” ' ' 1 n
n is a positive integer we have and are comaximal when i / j.

Proof: If / R then for some maximal

ideal M^. So ^  and S  M^. Hence ^  and S  M^.

So i = k = j since the IL are maximal.

Theorem 1.10. Let R be a finite commutative ring with 1. Then

R is the direct sum of finite local rings.

Proof: Let I = M, ... M where the M. are all the maximal■ i n  1
ideals in R. Then I is nilpotent. Hence there exists a positive inte

ger m such that 1° = 0. So ... =0. From the above lemma the

are pedrwise comaximal. Hence by the Chinese Remainder Theorem,

R — R/M^® © R/M^™ ® ... © R/M^°. By the correspondence theorem the 

ideals of R/M^° are in one to one lattice preserving correspondence with 

the ideals of R containing But there is only one maximal ideal of

R containing ML™, namely M^. Hence is the unique maximal ideal

of R/M^“.

Before leaving this section note that if S = S.® S^ then (S)^ is 

the direct sum of (S^)^ where (S)^ is the ring of n x n matrices over S.
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Also S[x] is the direct sum of 5^[x] where S[x] is the ring of polyno

mials over S. Further 0(5) is the direct sum of the U(S^) where 0(5) 

is the group of units in 5. Hence, in most cases, to study 5 it suf

fices to study its local components.

Properties of Finite Local Rings 
Onless otherwise stated in this section R denotes a finite local 

ring. Before proceeding to properties of R we give two elementary 

examples.

Example 1.3» The following are finite local rings;

(i) A finite field (0 is the maximal ideal).

(ii) The integers Z modulo a power of a prime p, i.e.

Z/Zp^ (Zp/Zp" is the maximal ideal).

These examples provide much of the motivation for the work done 

in this paper.

Theorem 1.11. (Characterization of finite local rings) If R 

is a finite ring with identity then the following are equivalent:

1. R is a local ring.
2. R has 0 and 1 as its only idempotents.

3. Every subring of R is local.

/f. Every element of R is either a unit or a nilpotent element.

5. I f R = I © J  then R = I o r R = J .
Proof: (1.) implies (2.). 5uppose e is an idempotent in R.

Then e(l - e) = 0. Let M be the maximal ideal of R then M is prime.

5o e is in M or 1 - e is in M. If e is in M then e is nilpotent and

hence e = 0. If 1 - e is in M then 1 - e = 0 since it is also an idem-

potent.
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(2.) implies (1.). By Theorem 1.10, R = R^ where the R^ 

are finite local rings. But if this decomposition is non-trivial then 

R has more idempotents than 0 and 1. So R is local.

(1.) implies (3«)« Since 1 and 2 are equivalent, just note 

that any idempotent in a subring of R is an idempotent in R.

(3«) implies (1.). Obvious.

(1.) implies (if.). If M is the maximal ideal of R then M = J(R)

= N(R), Hence any element in M is nilpotent. Since M is the unique 

maximal ideal of R any element of R which is not in M is a unit.

(if,) implies (1.). The set of nilpotent elements of R is an 

ideal M. Since any element not in M is a unit, it is clear that M is

maximal. If N is a proper ideal of R then N contains no units and hence

N S. M. So R is a local ring,

(2.) is equivalent to (5«)» This follows from the relation 

between idempotents and direct sum decompositions of R.

Corollary 1, If R is a finite local ring then r is a unit in R 

if and only if r / 0, (Where r denotes the image of r under the natural 

projection TC of R onto R/M,)
Proof; The map 71 is a ring homomorphism so units are carried 

to units.
Conversely, if r is not a unit then r” = 0 for some n and hence 

r ” = 0. Since R/M is a field r = 0.

Corollary 2. A finite local ring R is a finite field if and 

only if M = 0.
One of the interesting properties of a finite field F is that F 

has p° elements for some positive integer n and prime p. The same is
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true for finite local rings.

Theorem 1,12. If B is a finite local ring then R has p° ele

ments for some prime p and positive integer n.

ProofI Suppose false. Then there exist integers m and n such 

that R has mn elements and (m, n) = 1. Let I be the ideal generated by 

ml and J the ideal generated by nl. There exist integers s and t such 
that ms + tn = 1. So sml + tnl = 1. Let x be in R then x = xsml + 

xtnl. So I + J = R. If X is in I O  J then x = x^ml = x^nl for some 
x^ and Xg in R. Note mnl = 0. Hence 0 = x^tnml = xtnl and 0 = x^snml 

= xsml. Thus 0 = xtnl + xsml = x. Thus R = I ® J. By Theorem 1.11, 

it follows that R is not local.

Let M be the maximal ideal of R, Then R/M is a field and 

(R/M)[x] is a unique factorization domain. The following property re

lates R[x] and (R/M)[x].

Definition 1.9, Let R be a local ring with maximal ideal M.

For f(x) in R[x ] let f(x) be the polynomial obtained from f(x) by 

reducing the coefficients modulo M, Hensel*s Lemma holds for a monic 

polynomial f(x) in rCx] if whenever f(x) = g(x) h(x) where g(x) and h(x) 

are monic polynomials in (R/M)[x] which are relatively prime then there 

exist monic representatives g(x) and h(x) in R[x ] of g(x) and h(x), 

respectively, such that f(x) = g(x) h(x). We call R a Hensel ring if 

Hensel's Lemma holds for every monic polynomial in rCx].

We note that the representatives g(x) and h(x) described above 

are relatively prime. For 1 = g(x) s(x) + h(x) t(x) for some s(x) and 

t(x) in (R/M)[x], Hence g(x) s(x) + h(x) t(x) + k = 1 where s(x) and 

t(x) are representatives of s(x) and t(x), respectively, and k is a
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nilpotent element in R[x]. It then follows that g(x) s(x) + h(x) t(x)

is a unit and the result is proven.

Theorem 1,13, Every finite local ring R is a Hensel ring.

Before beginning the proof of the theorem we need a fact about 

polynomials over a field.

Lemma, Suppose f(x) and g(x) are relatively prime monic poly

nomials in F[x ], F a field. If p(x) is in f [x ] then there exist a(x) 

and b(x) in f [x ] with deg a(x) ^  deg g(x) and either b(x) = 0 or 

deg b(x) -C deg f(x) such that p(x) = a(x) f(x) + b(x) g(x).

Proof; A simple modification of a result in Dean [6., page 15?] 

provides the result.

Proof of the theorem; Let M be the maximal ideal of R, Sup

pose f(x) is a monic polynomial in R[x ] and deg f(x) = n. Suppose also 

that f(x) = g(x) h(x) where g(x) and h(x) are monic relatively prime 

polynomials in (R/M)[x], We will construct two sequences |^g^(x)^ and

{hĵ (x)̂  in r [x ] such that:

(i) f^(x) has degree r and deg $ n - r,
(ii) mod

(iii) Sjj+2̂ (x) = g^(%) mod
(iv) f(x) = g^(x) hĵ (x) mod

since = 0 for some t, we note that f(x) = g^(x) h^(x). Since f(x) 

is monic we see that g^(x) has a unit for its lead coefficient. Hence 

we can make an adjustment in g^(x) and h^(x) so that they satisfy the 

conditions. Namely, if u is the lead coefficient then take u ^g^(x) 

and uh^(x), V/e will construct the two sequences inductively. Let g^(x) 

and h^(x) be polynomials in R[x ] such that g^(x) = g(x) and ^  (%) = h(x).
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Hence we have the conditions satisfied for n = 0. Suppose we have

constructed g^Cx), ... , g^^x) and h^fx), ..* , h^^x) satisfying

(i) - (iv). Since is finite, = Rw^ + ... + Rw where the w.1 m i
are in Let = ĝ (̂%) + 2, w^r^(x) and hĵ ^̂ (x) = h^(x) +

2 Ü w^s^(x) where r^(x) is a polynomial in r[x] of degree less than r and 

s.(x) is a polynomial in R[x] of degree less than or equal to n - r.jL
Note that g^Cx), g^(x), ... , ĝ ^+i(x) and h^fx), h^(x), ... , 
satisfy (i) - (iii). To complete the proof it suffices to show that 
r^(x) and s^(x) can be chosen in such a manner so that (iv) holds.

Suppose f(x) = gj^^Cx) ̂ ĵ +3̂(3c) mod Then

f(x) - gjj+i(x) \+i(x) = f(x) - gĵ (x) h^Xx) - Z, w\(s^(x) gĵ (x)

+ r (x) In (x)) - Zj w w r (x) s (x).
J- K  U;J X  J X  J

By induction f(x) - g^\x) h^(x) = w^p^(x) where p^(x) is a polyno

mial whose degree is at most n. Hence

f(x) - g^^^(x) 4j^i(x) = Z j w^(p^(x ) - s^(x) g^(x) -

r.(x) h (x)) mod

We would be done if we could find r^(x) and s^(x) in R[x ] such that

p^(x) = Eu(x) gĵ (x) - r^(x) h^^x) mod M.

Since gĵ (x) = g^fx) mod M and h^/x) = h^(x) mod M, then the above

equation reduces to
p^(x) = G\(x) gg(x) + r^(x) hq(x) mod M.

Since g (x) and h (x) are relatively prime in (R/M)[x], we may apply o 0
the lemma to conclude that there exist polynomials a^(x) and b^(x) in 

(R/M)[x] such that

■p^(x) = a^(x) gjjCx) + b^(x) h^(x)
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with deg a^(x) ^ deg h^(x) and deg b^(x) <  deg g^Cx) (or b^(x) = 0), 
Let r^(x) and s^(x) be chosen in R[x ] such that r\(x) = a^(x) with 

deg r^(x) = deg â Ĉx) and s^(x) = b^(x) with deg s^(x) = deg b^(x).

Then r^(x) and s^(x) are the desired polynomials.

Modules Over Finite Local Rings 

Unlike a field not every module over a finite local ring R is a 
free R-module, In fact this occurs if and only if R is a field 

(Wedderburn-Artin Theorem), However we have:

Theorem 1,14, Let R be a finite local ring with maximal ideal 

M and let N be a finitely generated, projective R-module, Suppose 

n^ + MN, n^ + MN, ,,, , n^ + MN is a free basis for N/MN over R/M, Then

 .......   is a free R-basis for N,

Proof; Note that if N is finitely generated it is finite. Let 

^ ; R — ^ N be defined by (a^, ,,, , a^)) = Z  a^n^. Since the 

n^ + MN generate N/MN we have ^  Rn^ + MN = N, Then by Nakayama's lemma 

it follows that the n^ generate N, Let (a^, ,,, , a^) be in ker(^). 

Then Z  a^n^ = 0, hence 2ja^n^ + MN = 0, But the n^ + MN are linearly 

independent, thus the a^ are in M, So ker(^) G  MR^^\ Since N is 

projective, the exact sequence

0 — ^  ker( y  ) — ^  R^^^ — ^ N — 0 
splits. So R^^) = L @ ker(jp) for some submodule L, Now ker(y?) —  

MR^^^n ker(^) = (M ker(^) © ML) H  ker(^) = M ker(^ ), It now 
follows by Nakayama's lemma that ker(^) = 0,

We note that Kaplanslcy [ll,] has proven the above theorem with

out any finiteness conditions. But we ivill not have any use for the 

strengthened result.
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Separability and Ramification 

In this section we will give the definition of a separable ring 
extension as given by Auslander and Buchsbaum [3.3 and prove a primitive 
element theorem.

Definition 1,10. A ring S is an extension of the ring R if R 

is a subring of S.

Definition 1,11, For a commutative R-algebra A with 1 we call 

A a A the enveloping algebra of A and denote it by A®,

Note that A can be considered an A^-module under (a^ Ô a^)a =
G 0^1^2^* Also yM. : A — ^ A given by y<(a 8 b) = ab is an A -epimorphism. 

If J is the kernel of then we have the A® exact sequence

0 — ^ J — ^ A® A — ^ 0,
It is easy to see that J is the ideal of A® generated by

jl B a - a a 1: a is in A^,
Definition 1,12, A commutative R-algebra A with 1 is called 

separable if A is a projective A®-module,

Theorem 1,15, The following conditions for a commutative 

R-algebra A are equivalent:

(1) A is a separable R-algebra.

(2) 0 — ^ J — > A® A — ^ 0 is A® split exact,

(3) There exists e in A® such that yK (e) = 1 and Je = 0,

Proof: (1) and (2) are equivalent from elementary properties

of projective modules.
Suppose the sequence splits. Then there exists in 

Horn ^ (A, A®) such that JiA'jj- 1^, Let e = 'ĵ (1), One checks that e

is the desired element.
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Conversely, if there exists e in A® such that Je = 0 and

^(e) = 1 then define "xjjx A — ^  A^ by "^(a) = (a ft l)e. One checks

that “Ÿ  1® the desired A^-homomorphism,
Let e be an element of A® satisfying (3) above. Then

?^ ( e  - (1 ft 1)) is zero. So e - e = (e - (1 ft l))e is in Je = 0,

Hence e is an idempotent and is called a separability idempotent for A.

We recall the following fact from homological algebra. See, for

example, Ingraham and DeMeyer [8.],
Theorem I,l6, Let A be a commutative E-algebra with identity 1,

Then A is a separable R-algebra if and only if Horn (A, -) is right
A®

exact.

Theorem 1,17, Let A be a separable commutative R-algebra with

identity 1 and I an ideal in A, Then A/I is a separable R-algebra,

Proof; We will show that Horn (A/I, -) is right exact,
(A/D®

Let N be an (A/I)®-module, We can make N into an A®-module under

(a^ ft ag)n = ((a^ + I) ft (a^ + I))n. The proof will be complete if we

show that Horn (A/I, N) — Horn (A, N) as groups. Let f be in
(A/I)® A®

Horn (A, N), Then f(l) is in N. Define Horn  ̂A, N)
A A

Horn
(A/I)e

(A/I, N) by Y'(f)(a + I) = ((a + I) ft (1 + I)) f(l). One

checks that if f is in Horn (A, N) then i^(f) is in Horn (A/I, N),
A® (A/D*

If g is an (A/I)®-homomorphism of (A/I)® into N then define ^(g)(a) = 

g(a +1). It is easy to check that ^(g) is in Horn ^(A, N). Then

y?y-(f) = f and = g. And the result is proven.

Let A be a commutative R-algebra with identity and K an ideal 

in R such that K S  Ann^ A then A is an R/K- algebra. Also note that
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in this case A® is an R/K-module and A A is an A-module. Also we 

see that 8^% A z A — ^  A® is R/K-linear and A x A — ^ A A is

R-linear. From these remarks it follows that A® —  A 8^y^ A and A is 
R-separable if and only df A is R/K-separable. Hence from the above 

and Theorem 1.17 we have;
Theorem 1.18. If S is a finite local separable extension of R 

and M is the maximal ideal of R then S/SM is a separable extension of 

R/M.

Theorem 1.19. Let S be a finite local separable extension of R. 

If N is a S-module which is R-free then N is 5-free.
Proof; Since free and projective are equivalent over finite 

local rings, we suppose K is projective over R and show it is projective 

over S. Let 0 — ^ L —  ̂P N — ^  0 be an exact sequence of 8-modules, 
The sequence then R-splits, Let be in Horn̂  (N, P) such that ^ ^  =

1^. Let e = Zj 8 y^ be a separability idempotent for S, Define 

I N — ^ P by = 21j x^ "^(y^n), for n in N, One checks that lA

is a S-splitting homomorphism for the above sequence.

We are now in a position to show that this definition of sepa

rability is a generalization of that for fields.

Theorem 1,20. If S is a finite local separable extension of a 

finite field R then S is a finite field.
Proof: Let N be an S-module. Note N is also an R-module,

Since R is a field, N is a free R-module. Thus by Theorem 1.19, N is 

S-free, By the Wedderburn-Artin Theorem (see Jans [9,] for statement 
and proof) S is semi-simple with minimum condition. Hence S has zero 

radical. It follows from Corollary 2 to Theorem 1,11 that S is a field.
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Definition 1.13. Let S be a finite local extension of R. We 

say S Is unramlfled over R If whenever M and m are the maximal Ideals 

of S and R respectively then M = mS.
We are now In a position to prove a result due to Auslander and 

Buchsbaum [3.3.
Theorem 1.21. Let S be a finite local separable extension of R 

then S Is unramlfled over R.

Proof: Since S is separable over R, S/mS Is a separable exten

sion of R/m. But R/m Is a field. Hence from Theorem 1.20 S/mS Is a 

field. Thus mS Is a maximal Ideal and hence Is M. Thus S Is unramlfled.

Although we will not need It here Auslander and Buchsbaum [3.3 

have also shown the converse of the above theorem Is true for Noetherlan 

rings.

One of the essential properties of local separable extensions 

Is the following:
Theorem 1,22, (Primitive Element Theorem) Let S and R be finite

local rings. If S Is a separable extension of R then S has a primitive

element.

Proof: Let m and M be the maximal ideals of R and S respec

tively. Then by Theorem 1.21, M = mS. So S/mS Is a finite field.

Hence S/mS has a cyclic group of units. Let u be in S such that u Is 

a generator of the group of units of S/mS. Then S/mS = (R/m)[u3. Hence 

5 = R[u3 + mS. Then by Nakayama’s Lemma S = r [u3. Hence S has a primi

tive element.

Although every finite local separable extension of a finite ring

Is a simple extension, the converse is false.
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Example l.if. Let R = Z/(2) and consider S = r [x ]/(x^). Then

g = ̂ 0| 1; X + 1, xj". We notice that S is not a field and hence can

not be a separable extension of R.

We now turn our attention to the R-automorphisms of S where S 

is an extension of R.

Definition l.lif. Let S be an extension of R and H a group of 

R-ring automorphisms of S then = •̂ x €, S: CT (x) = x for all T €. H^. 

The set is called the fixed ring of H in S.

Definition 1,15. If S is an extension of R and 6 is the group 
of all R-ring automorphisms of S then g is a normal extension of R if 

g® = R.
Definition 1,16. If S is an extension of R then S is said to 

be Galois over R if 5 is a normal separable extension of R, The group 

of R-automorphisms of S is then called the Galois group of S over R and 

denoted by 6(g, R),
To see that the local case provides us with information about

the Galois group of any finite ring consider the following: Let g be

a finite ring with identity then g = 23 © where each is a finite

local ring with identity e^. Then if R^ is a subring of then is

a local extension of the local ring R^, Let R = 23© R^ and a be

the element of S which has a as its i^^ component and zeroes otherwise.

Let CT be an R-isomorphism of S then (T"(a^^^) = CPCe^^^^a^^^), But

e^(^) is in R, hence CT(a^^^) = (T £  S^, Since O' is an
isomorphism 0^(S ) = S., Now let 0 ^ = 7 1 0 ^  where TC. is the i^^ pro- 1 i 1 - 1  i
jection of S onto S^, Clearly Gj is an R^-isomorphism of and (Ĵ  =

( 0~ï » ,,, I 0̂  ) where ( CJj” , ,,, , 0^ )(a. j ,,, * s ) —
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(CTf (a^), ... » O^(a^)). Further S is separable over R if and only if 

is separable over R^, for every i (see Ingraham and DeMeyer [8.]).
A similar remark holds for normality. Hence G(S, R) —  G(S^, R^),



CHAPTER II

THE POLYNOMIAL RING OF A FINITE LOCAL RING .

If F and G are fields and F is a finite extension of G then for 
each a in F there exists a monic polynomial g(x) in g[x] such that 

g(a) = 0. For rings we have:
Definition 2.1, An extension S of R is said to be integral 

over R if whenever a is in S there exists a monic polynomial f(x) in 

p[x] such that f(a) = 0.
Theorem 2,1, Let R and S be finite rings with S an extension of 

R then S is integral over R,

Proof: Let u be in S and consider i 21 p u*̂ : r is in RV = A,— — —  n n J

Since S is finite so is A, For each distinct element in A choose a 

representative with least degree as a polynomial in u. Let B be the 

set of these representatives. Let m be the greatest degree of any poly

nomial in B, Now u°*̂  ̂is in A, Hence u°*̂  ̂= p(u) where p(u) is in B,

So u satisfies the monic polynomial x*^^ - p(x). Hence S is integral 

over R,
However unlike the field case an element may not satisfy any 

monic irreducible polynomial.

Example 2,1, Let R be a field. Consider the ring extension
2 2 R[b] —  R[x ]/(x ), Then b satisfies the monic polynomial x but does

not satisfy any monic irreducible polynomial over R,

22
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Unless otherwise stated R denotes a finite local ring with max

imal ideal M. We first examine the unit, prime and irreducible ele

ments of R[x ],
Theorem 2.2, A polynomial f(x) is a unit in R[x ] if stnd only 

if f(x) is a unit in R/M,

Proof; If f(x) is a unit in r [x ] then f(x) is a unit in 

(R/M)[x], But R/M is a field. Hence f(x) is a unit in R/M,

Conversely, suppose f(x) is a unit in R/M then f(x) = 2L a^x^.

Applying the projection map and equating coefficients we conclude that 

a^ is in M for i / 0 and a^ is a unit. Hence for i / 0, a^ is nil- 

potent, Thus f(x) is a unit.
Definition 2,2, An element b of a ring is prime if the prin

cipal ideal (b) is prime.
Before we can make any statement concerning primes in R[x], we 

need to consider what happens to irreducibles in R[x] under the natural 

map from r [x 3 onto (R/M)[x], We see that the image of a monic irreduc

ible polynomial in r [x ] need not be irreducible in (R/M)[x],

Example 2,2, Let f(x) = x^ + 2x + 2 be in (Z/ifZ)[x], It is

easy to check that f(x) is irreducible in (Z/4Z)[x], However f(x) = x^ 

is not irreducible in (Z/2Z)[x],

We are led to the following set of polynomials in r [x ]. 

Definition 2,3, Let J denote the set of all polynomials f(x) in 

R[x] such that f(x) has distinct roots in the algebraic closure of R/M, 

Lemma, Let f(x) be in J, Then there exists a sequence ^fj(x)^ 

of monic polynomials in J with

deg fj(x) = deg f(x)
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fj(x) = fj+^Cx) mod

and for some gj(x) in m [x ] and unit in R

bjf(x) = fj(x) + gj(x)fj(x) mod
iProof; Let f(x) = S  b.x where b ^ 0 and deg f(x) = t 6 n.

■ I’ej 1 D

—1 iChoose g, (x) = 0 and f_(x) = b. (JEb.x ). By induction assume1 i t I'l 1
i-1 ^Bve been selected to satisfy the lemma. Then tyffx) = 

fj(x) + gj(x)fj(x) + h(x) where h(x) is in M^[x], Since fj(x) is monic 

we may select-q(x) and r(x) in R[x] with h(x) = q(x)f^.(x) + r(x) where 

deg r(x) < deg f .(x) = deg f(x) or r(x) = 0. Set f (x) = f (x) + r(x)

and gj^^(x) = gj(x) + q(x). We claim that gj^^(x) is in M[x ] and r(x)

is in [x], If r(x) = 0 this statement is trivial. Otherwise suppose

f.(x) = a + a_x + ... + a. _x^  ̂+ x^ and q(x) = c + c.x + ... + c x°,J c l  t—1 0 1 m
In the product f^ (x)q(x) the coefficient of x^*^ is c^, of x^*^ ^ is

c a. , + c etc. Since h(x) = 0 mod and deg r(x) deg f.(x) = m t-1 m-1 J
t, it is easy to see that c , then c then c etc, are in andm m-1 m-2
consequently q(x) is in M^[x], Then r(x) = h(x) - q(x)f^(x) is in 

M^Ex], Then

bjf(x) = fj(x) + gj(x)fj(x) + h(x)

= (fj(x) + r(x)) + (gj(x) + q(x))(fj(x) + r(x))

- r(x)gj(x) - r(x)q(x)

= fj+^(x) + gj^^(x)fj^^(x) - r(x)(gj(x) + q(x))

= fj+^(x) + gj^^(x)fj^^(x) mod 

Corollary, Let f be in J, Then there exists a monic polyno

mial f*(x) in J with T(x) = f*(x) and, for an element a in R, f(a) = 0 

if and only if f*(a) = 0,
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Proof; Let t be the degree of nilpotency of R. Then by the

lemma b^f(x) = f^(x) + g^(x)f^(x) = (1 + g^(x))f^(x) where f^(x) is

monic, b^ and 1 + g^(x) (since g^(x) is in m [x ]) are units, and f(x) =

f.(x). Thus let f*(x) = f (x). t t
Theorem 2,3, Let f(x) be a monic polynomial in R[x ],

(a,) If f(x) is irreducible in (R/M)[x] then f(x) is irreducible.

(b,) If f(x) is irreducible then f(x) = (g(x))^ where n is a positive 
integer and g(x) is irreducible in (R/M)[x],

(c,) If f(x) is in J then f(x) is irreducible if and only if f(x) is

irreducible in (R/M)[x],
Proof: To prove (b.) suppose f(x) is not the power of an

irreducible. Then f(x) = g(x) h(x) where g(x) and h(x) sire relatively 

prime. By Hensel's Lemma there exist monic relatively prime polynomials 

g(x) and h(x) in R[x ] such that f(x) = g(x) h(x). Thus f(x) is not 

irreducible.

For (a,) suppose f(x) is irreducible over R/M and f(x) = 

g(x) h(x). Then f(x) = g(x) h(x). But f(x) is irreducible over a

field hence either g(x) or h(x) is a unit in R/M. Suppose h(x) is a

unit. Then by Theorem 2.2, h(x) is a unit in R[x]. So f(x) is irre

ducible. Similarly if g(x) is a unit.
The final statement follows from (a,) and (b,) and the defi

nition of J,

Corollary. There exist monic irreducible polynomials in J 

of degree n for any natural number n. Hence there are infinitely many 

monic irreducible polynomials in R[x 3,

We are now in a position to prove a theorem on primes in R[x ],
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Theorem 2,4. If f(x) is a monic prime polynomial in R[x ] then 

f(x) is irreducible and in J,

Proof; If f(x) is prime then (f(x)) is a prime ideal. So 
R[x]/(f(x)) is a finite integral domain. But finite integral domains 
are fields. Thus (f(x)) is a maximal ideal. Consider the natural map 

of R[x ] onto (R/M)[x], Since this is an epimorphism and (f(x)) is the 
image of (f(x)) under this map, (f(x)) is maximal. So f(x) is irreduc

ible, Hence f(x) is irreducible and in J,

Note that many of the properties of polynomials in P[x], F a 

field fail to carry over to polynomials over finite local rings. For 

example we have the following characterization of maximal ideals in

r Cx],
Theorem 2.5, If M is the maximal ideal of R then an ideal I in

R[x 3 is maximal if and only if I = (M, f(x)) where f(x) is a monic irre

ducible polynomial in J,

Proof; First observe that I n  R is prime, hence maximal.
Since R is local I A  R = M, Further (R/M)[x] —  R[x ]/MR[x ] where

MR[x ] is the smallest extension of M in R[x ], Hence I contains the 

kernel of the natural surjection of R[x ] onto (R/M)[x], Let I’ be the 

homomorphic image of I in (R/M)[x], Then I' is maximal. Since R/M is 

a field, I* = (f(x)) where f(x) is a monic irreducible polynomial in 

(R/M)[x], Let f(x) be a monic preimage of f(x) in R[x ], Then f(x) is 

also in J, By Theorem 2,3, f(x) is irreducible in r[x]. Since I* is 

the homomorphic image of (M, f(x)), we conclude by the Correspondence 

Theorem that (M, f(x)) = I,

Example 2,3« Irreducible polynomials need not be prime even
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if they are in J. If f(x) is irreducible, prime and in J then 

R[x]/(f(x)) is a finite integral domain, hence a field. Thus f(x) gen

erates a maximal ideal. From Theorem 2.5 we see this is not the case if 

R is not a field.

Example 2.4« Irreducible polynomials need not be relatively
2 2prime. Consider the polynomials x + x + 1 and x + 3x + 1 where the 

coefficients are from Z/ifZ, However we do have:

Theorem 2.6. Let f(x) and g(x) be monic irreducible polynomials 

in J. If f(x) / g(x) in (R/M)[x] then f(x) and g(x) are relatively 

prime and conversely.

Proof: By Theorem 2.3 f(x) and g(x) are irreducible in (R/M)[x].

Since R/M is a field and f(x) and g(x) are distinct, they are relatively 

prime in (R/M)[x]. Hence there exist polynomials f^(x) and g^(x) in 

(R/M)[x] such that f^(x) f(x) + g^(x) g(x) = 1. Let f^(x) and g^(x) be 

preimages in r [x ] of the polynomials f^(x) and g^(x), respectively.

Now f^(x) f(x) + g^(x) g(x) is a unit by Theorem 2,2. Hence f(x) and 

g(x) are relatively prime.
Conversely, suppose that f(x) and g(x) are relatively prime.

Then there exist polynomials f^(x) and g^(x) in r [x ] such that

f^(x) f(x) + g^(x) g(x) = 1. Hence f(x) and g(x) are relatively prime.

Thus since f(x) and g(x) are not units, f(x) / g(x).

The following lemma can be found in [4.] and is due to Nakayaraa. 
It will be needed to characterize a certain class of polynomials.

Lemma. Let f(x) be a monic polynomial in R[x]. If R[x]/(f(x))
= I © J where I and J are ideals in R[x]/(f(x)) then there exist rela

tively prime, monic polynomials g(x) and h(x) in R[x ] such that
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g(x) h(x) = f(x) and I = (g(x))/(f(x)) and J = (h(x))/(f(x)).

If F is a field and f(x) is an irreducible polynomial in F[x3 

we obtain a field extension of F by considering F[x]/(f(x)). In 

the case of finite local rings it will be important to find a way of 

generating local extensions of R. Hence we are led to the following: 

Definition 2,4* A monic polynomial f(x) in R[x] is said to be 

local if R[x]/(f(x)) is a local ring.

Theorem 2.7, (Characterization of local polynomials) A monic 

polynomial f(x) in r [x ] is local if and only if f(x) is the power of an 

irreducible polynomial in (R/M)[x],
Proof: If f(x) is not the power of an irreducible polynomial

in (R/M)[x] then f(x) = g(x) h(x) where g(x) and h(x) are monic rela

tively prime polynomials in (R/M)[x]. Then by Hensel's Lemma there 

exist monic relatively prime polynomials g(x) and h(x) in R[x ] such 

that f(x) = g(x) h(x). By the Chinese Remainder Theorem R[x]/(f(x)) ^  

R[x]/(h(x)) <B R[x]/(g(x)), Thus R[x]/(f(x)) is not local. Hence f(x) 

is not a local polynomial.

Conversely, if f(x) is not local then R[x]/(f(x)) = I^ © I^ for 

some ideals I^ and I^ of R[x]/(f(x)), But by the above Lemma, I^ = 

(g(x))/(f(x)) and I^ = (h(x))/(f(x)) for some g(x) and h(x) in R[x ] 
where the g(x) and h(x) are relatively prime and g(x) h(x) = f(x).

Since g(x) and h(x) are relatively prime, there exist g^(x) and h^(x) 

in R[x] such that g^(x) g(x) + h^(x) h(x) = 1, But under the canonical 

map we see that this implies that g(x) and h(x) are relatively prime. 

Since g(x) and h(x) are monic neither g(x) nor h(x) are units. Hence 

g(x) h(x) = f(x) is not the power of an irreducible in (R/M)[x],
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Corollary. If f(x) is a monic irreducible polynomial in R[x] 

then R[x]/(f^(x)) is local for any n.

Proof; Since R is a Hensel ring, f(x) = g (x) where g(x) is an 
irreducible polynomial in (R/M)[x]. Hence f(x) is local by the theorem. 

We conclude this chapter with some remarks about factorization

in r [x 3.
k, k

Remark, Let f(x) = f^(x) ... f^tx)
^1 t= g,(x) ... six)1 s

where f^(x) and gj(x) are monic irreducible polynomials in J. Then 

for every i there exists a j such that deg f,(x) = deg g .(x) and f.(x)

= gj(x). A corresponding statement holds with f^(x) and gj(x) inter

changed.

Proof; Let 71: R[x] — ^  (R/M) [x] be the map which reduces the 

coefficients of f(x) in r [x ] modulo the maximal ideal M, Since R is a 

Hensel ring, 7l preserves monic irreducible polynomials in J. If f(x)

denotes the image of f(x) under 71 then
_ k _ k

f(x) = f^(x) ... f^(x)

- ^1 - ^s= g^(x) ... gg(x) .

Since (R/M)[x] is a unique factorization domain, f\(x) = g^(x) for some 

j and the result follows.

Lemma A. Let R be a finite local ring, f(x) a monic polynomial 

in R[x 3. Suppose f(x) = f^(x) ... f^(x) where f^(x) is a monic irre

ducible polynomial in J. If the f.(x) are pairwise relatively prime 
k k ^

and f(x) = g^(x) ... g^(x) ® where g^(x) is a monic irreducible poly

nomial then k^ = 1 for i = 1, ... , s, s = r, the g^(x) can be ordered
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so that f^(x) = g^(x) and g^(x) is in J.

Proof; Recall that R is a Hensel ring and that (R/M)[x] is a 

unique factorization donain. Since f^(x) is in J, f\(x) is irreducible. 

Hence f^(x) ... f^/x) is the unique factorization of f(x) into primes.

Since the f.(x) are pairvn.se relatively prime, f.(x) / f.(x) for i / j.
-  "i -So f(x) is square-free. Let q^(x) = g^(x) where q^(x) is a monic

_ n n
irreducible polynomial in (R/M)[x]. So f(x) = q^(x) ... q^fx) ® is a

factorization of f(x) into primes. Comparing the two factorizations of 

f(x), we conclude that n^ = 1 for i = 1, ... , s. Hence s = r, q^(x) = 

g^(x) and there exists an ordering so that g\(x) = f\(x). Since q^(x)

= g^(x) is irreducible, we conclude that g^(x) is in. J.
Lemma B. Let R be a finite local ring and f(x), f^(x) and

fg(x) be polynomials in R[x ] with f(x) and f^(x) monic irreducible 

polynomials in J. If f(x) / f^(x) and f(x) divides f^(x) f^Cx) then 

f(x) divides f^Cx).
Proof: Since f(x) / f^(x) and f(x) and f^(x) are monic irre

ducible polynomials in J, f(x) and f^(x) are relatively prime. Hence 

there exist g(x) and g^(x) in R[x ] such that f(x) g(x) + f^(x) g^(x) =

1. So f(x) g(x) f^Cx) + f^(x) f^Cx) g^(x) = fg/x). Thus f(x) divides

Lemma C. Let R be a finite local ring. If f(x) = f^(x) f^/x) 

where f^(x) is a monic irreducible polynomial in J and f^(x) / f^Cx) 
then f(x) factors uniquely into monic irreducible polynomials.

K  \Proof: Suppose f(x) = g^(x) ... g^(x) is a factorization

of f(x) into monic irreducible polynomials. By Lemma A, = 1 and 

r = 2 and g^(x) is in J. Without loss of generality we may suppose
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that f^(x) = g^(x) and f^(x) = e^{x). Hence f^(x) divides g^(x) g^Cx). 

But f^(x) / gg(x). Thus by Lemma B, f^(x) divides g^(x). Since they 

are monic irreducible polynomials of the same degree we may conclude 

that f^(x) = g^(x). A similar argument shows that fg(x) = gg(x).

Corollary, Let R be a finite local ring. If f(x) = 

f^(x) ... fp(x) where the f\(x) are monic irreducible polynomials in J 

with f\(x) / fj(x) for i / j, then f(x) factors uniquely into monic 

irreducible polynomials.

Proof; Similar argument to that of the proof of Lemma C and 

induction on r.

In general the above does not characterize all monic polynomials 

which factor uniquely into monic irreducible polynomials in J. For 
example, if R is a finite field then all monic polynomials factor 

uniquely into monic irreducible polynomials in J. However we see below 

that in some cases there are only those described above.

Theorem 2.8. Let R be a finite local ring with principal maxi

mal ideal M. Let p be a generator for M. Suppose n is the degree of 

nilpotency of M. Suppose R is not a field. If f^(x) and fg(x) are 

monic irreducible polynomials in J such that f^(x) = f^Cx) then 

f^(x) f^(x) is not uniquely factorable into monic irreducible polynomials 

in J if any one of the following holds:

(i) deg f^(x) is greater than 1.

(ii) deg f^(x) = 1 and f^(x) - f^Cx) i p”"^.

(iii) deg f^(x) = 1, f^(x) - f^tx) = p” ^ and 2p"  ̂/ 0.
Proof: Suppose (i) holds. Note that deg f (x) = deg f„(x) = s.

f  iThen f (x) - f_(x) = m. x where m is in M and hence divisible by p.J. d. i 1
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¥ 1So i\(%) - f_(x) = p o m  'x for some m ' in R, Consider h(x) = f_(x) +X C c* t X X X

p^"^(p - 1) and q(x) = f^Cx) + p” Then h(x) and q(x) are monic irre
ducible polynomials in J since h(x) and q(x) are irreducible poly

nomials in (R/N)[x]. But

h(x) q(x) = f^(x) fgCx) + P°"^(P - 1) fgCx) + f^(x) p^"^

+ P*"^(P - l)p”“^

= f^(x) fgCx) + p^"^(p - 1) fgCx) + p^^^CfgCx) 

+ 2  m^x^) + p^”“^ t 

= f̂ (x) fgCx) + (p*"^(p - 1) + p̂ " )̂ f̂ Cx)

= f^(x) fgtx) + 2) p”"^m^x^

= f^Cx) f^tx).
Where t above is some element in R[x], To complete the proof we need 

only show that h(x) / f^(x) and h(x) / f^Cx). Suppose h(x) = f^(x).
Then p”~^(p - 1) = 0. This is impossible. If h(x) = f^(x) then 

f^(x) - f^(x) = p^ This is possible. If this is the case let 

h^(x) = f^(x) + p””^(p - 1) X. One then checks that h^(x) q(x) gives 

another factorization of f^(x) f^tx). We note that -the above proof 

fails if the degree of f^(x) is one. Suppose (ii) holds. Then the 

above proof also suffices. Suppose (iii) holds. Then f^(x) = x + a 

for some a in R and fg(x) = x + a - p" In this case let h(x) =

X + a + p°”  ̂and q(x) = x + a - 2p” Again one checks that h(x) q(x)

equals f^(x) fg(x).

The following example shows that Theorem 2.8 can not be improved.

Example 2.5. Let R be the integers modulo if. The maximal ideal
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of R generated by 2. Let f^(x) = x + 1 and fgCx) = x + 3» These
polynomials do not satisfy any of the conditions of Theorem 2.8. Note

that (x + l)(x + 3) = x^+ 3» If x + a and x + b are in (Z/42)[x] and
2(x + a)(x + b) = X + 3  then a + b = 0 and ab = 3» It is impossible 

to find a pair other than 1, 3 in 2/4% which satisfies these conditions. 
Hence f^(x) f^Cx) is uniquely factorable into monic irreducible poly

nomials in e [x ].

Earlier we noted that any polynomial in R[x ] which is prime is 

also irreducible and in J. However we noted that an irreducible poly

nomial need not be prime. We now show that this property distinguishes 

finite fields and finite local rings which are not fields.

Lemma. Let f(x) be a monic irreducible polynomial in J. Then 

f(x) is prime if and only if M £  (f(x)).
Proof; If f(x) is prime then R[x]/(f(x)) is a finite integral 

domain. Hence R[x]/(f(x)) is a field and (f(x)) is maximal. Thus by 

Theorem 2.7, M S. (f(x)).
Conversely, if M S  (f(x)) then (f(x), M) = (f(x)) is a maximal 

ideal. Hence f(x) is prime.
Theorem 2.9. (Characterization for finite fields) The follow

ing are equivalent if R is a finite local ring:

1. R is a finite field.

2. Every irreducible polynomial in R.[x] is prime.

3. There exists at least one monic irreducible polynomial in 

R[x ] which is prime.

Proof; (1.) implies (2.). If R is a field then R[x ] is a unique 

factorization domain. Hence irreducible and prime are equivalent.
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(2.) implies (3»)« By the Corollary to Theorem 2,3 there are 

infinitely many monic irreducible polynomials in R[x], Hence the result 

follows.
(3.) implies (1.). If R is not a field then M 0, We will 

show that R[x 3 has no monic primes. Let f(x) be a monic prime polyno

mial in R[x ], By Theorem 2,if, f(x) is irreducible and in J, Hence by 

the above lemma, M — (f(x)). Let a be a non-zero element of M, Since 

M S (f(x)) there exists a non-zero g(x) in R[x] such that a = g(x) f(x). 

But f(x) is monic, so deg g(x) f(x) = deg g(x) + deg f(x) ^  1, But 

this is a contradiction since deg a is not greater than or equal to 1,

Corollary, Let R be a finite local ring which is not a field.

Then
i. No monic polynomial is prime,
ii. No prime ideal is generated by a monic polynomial.



CHAPTER III

GALOIS THEORY OF FINITE LOCAL RINGS

One of the most renowned theorems in mathematics is the Funda

mental Theorem of Galois Theory for fields. The theorem gives a lattice 

inverting correspondence between the separable subfields of a finite 

Galois extension F of a field K and the subgroups of the group of all 

K-automorphisms of F, S. Chase, D. K. Harrison and A. Rosenberg [$.] 

have proven its analog for commutative rings with finitely many idem- 

potents. Theorem 3*1 is the statement of the Chase, Harrison, Rosenberg 
theorem in the context of finite local rings.

In this section R denotes a finite local ring with maximal

ideal m.

Theorem 3»3.. Let S be a finite local Galois extension of R.

Let 6 be the group of all R-automorphisras of S. Then G is finite and 

[G ; l] = Rank (S) and there is a one to one lattice inverting bijec-

tion between the subgroups of G and the subrings of S which contain R

and are separable over R. Normal subgroups correspond to normal exten-
JJ

sions. The correspondence is given by H <:— S and T ^

Î CT'in G: cr(x) = x for all x in T^ where s^ is the subgroup of G whose

elements leave S elementwise fixed.
The following is the ring analog of the theorem in field theory 

which states that any finite extension can be embedded in a finite nor-

35
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mal extension.

Theorem 3*2. Let S be a finite free local separable extension 

of R. Then there exists a finite normal local separable extension N of

R with S an extension of R contained in N,

Proof; See Ingraham and DeMeyer [8.].
Before we proceed we need to make an observation on finite 

Galois extensions.

Lemma. If S is a finite local Galois extension of R then S is 

a free R-module. Further [s : R] = [S/mS : R/m].

Proof; By Theorem 1.15 there exists e in S®, e = Zi s^ Ô t^ 

such that 2Ii s.t = 1  and (1 fi x - x fi l)e = 0. Let f be in Horn (S, R)1 1 J «
be given by f.(x) = ZL 0“(xt.). Then f ̂ , ... , f ; s,, ... , s form aJ o - e G r 3  i n l  n
"dual" basis for S over R. Thus S is projective and hence free over R. 
The last statement is now an immediate consequence of Theorem l.lif.

The following is due to 6. Azumaya [if.]. V/e state it for finite 

local rings.
Theorem 3.3. Let f(x) be a monic polynomial in r[x], R a finite 

local ring. If f(x) has a non-multiple root a in R/m then f(x) has one 

and only one root in R which is a representative of a.

Proof: Suppose a is a non-multiple root of f(x) in R/m then

there exists a monic polynomial f^(x) in (R/m)[x] such that (x - a)f^(x)

= f(x) and f^(a) / 0. Since R is a Hensel ring, there exist monic repre

sentatives f^(x) and X - a in R[x] of f^(x) and x - a respectively such 

that (x - a) f^(x) = f(x). Clearly a is a root of f(x) in R. If a^ is 
a root of f(x) such that a = a^ then f^^a^) / 0. Hence f^^a^) is a unit 

in R/m. Thus f^(a^) is a unit in R. Hence (a^ - a) f^(a^) = f(a^) = 0.
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Thus = a.

Corollary. If f(x) is a monic irreducible polynomial in J

then f(x) has no multiple roots in any local extension of R.

Goro Azumaya [4.] has also shown how to obtain R-automorphisms
of S from R/m-automorphisms of S/mS.

Theorem 3»4» Let S be a finite local separable free extension

of R then for any R/m-isomorphism CT of S/mS there exists one and only
one R-isomorphism CT of S which induces (T',

Proof; Since S/mS is a finite field, S/mS = (R/m)[a]. Let f(x)

be Irr (R/m, a) and suppose [S/mS : R/m] = deg f(x) = n. Let f(x) be a

representative of f(x) in R[x], From Theorem 3*3 there exists one and

only one a in S such that a is a root of f(x) and a representative of a.

Now 1, a, ... , a is a basis of S/mS over R/m. Since S is R-free it

follows that 1, a, ... , a^ ^ is a free R-basis of S. Let a^ = CT(a).

Then a is a root of f(x). Hence there exists one and only one root a o o
of f(x) which is a representative of a^. Define CT'(a) = a^. This

extends to a unique ring homomorphism of 5 which fixes the elements of

R. Since 1, a , ... , a ^ ^ is also a free R-basis of S it follows o o
that O' is injective. Since the set is finite we conclude that CT is an 

isomorphism. Uniqueness follows from the proceeding result.

G. J. Janusz [lO,] has introduced the concept of separable 

element and separable polynomial and investigated some of their proper

ties.

Definition 3*1« A monic polynomial f(x) in R[x ] is said to be 

separable if R[x]/(f(x)) is a separable extension of R.

Definition 3*2. If S is an extension of R then an element s in
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S is separable if s is the root of some separable polynomial in R[x ].

Definition 3*3* Let f(x) be a monic polynomial in R[x] with

deg f(x) = n and 1 + (f(x)), x + (f(x)), ... , x° ^ + (f(x)) be a basis

for R[x]/(f(x)) over R. Let f^ be the natural module projections from 

R[x3/(f(x)) onto R. Define t: R[x](f(x)) — ^  R by

t(s) = S  f (sx + (f(x)). j J J
The map t is called the trace of R[x]/(f(x)) over R.

The following is due to Janusz [lO.].

Theorem 3*5* Let f(x) be a monic polynomial in R[x], then f(x) 

is separable if and only if the following is true;
Let t be the trace map of the free R-module R[x]/(f(x)) and let

y = X + (f(x)). If n = degree of f(x) and if we let [t(y^ y^)3 be the
n X n matrix whose i + 1, j + 1 entry is t(y^ y^) then the determinant 
of [t(y^ y^)3 is a unit in R.

The separablity of the following example is an immediate conse

quence of the above theorem.

Corollary. Let R be a finite local ring. Let R have p^ ele

ments where p is a rational prime. Then for n greater than 1 and a in 

R, the polynomial x^ - a is separable if and only if a is a unit and p 

and n are relatively prime.
Theorem 3*6* A monic polynomial f(x) in r [x 3 is separable if 

and only if f(x) is square-free in (R/M)[x3*
Prooft Let t and t» be the trace maps of P[x3/(f(x)) and

(R/m)[x3/(f(x)) respectively. Then we see that det [t(y^ y^)3 =

det [t'(y'^ y ‘̂ )3 where y = x + (f(x)) and y» = x + (f(x)). Then by

Theorem 3*5» f(x) is separable over R if and only if det [t(y^ y^)3 is
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a unit in R. However det [t(y^ y^)3 is a unit in R if and only if 

det [t'(y^ y^)] / 0 in R/m, The result now follows from the next lemma. 

Lemma, Let f(x) be a monic polynomial in f[x], F a finite 

field. Then f(x) is separable over F if and only if f(x) is square-free. 
Proof; By a proof similar to the proof of Theorem 1,20 it can 

be shown that F[x]/(f(x)) is separable over F if and only if F[x]/(f(x)) 

is the direct sum of separable field extensions of F, If F[x]/(f(x)) is 

separable then it has no nilpotent elements other than zero. Hence f(x) 

must be square-free.

Conversely, if f(x) = p^(x) ,,, p^(x) where the p^(x) are dis

tinct irreducible polynomials in F[x] then R[x]/(f(x)) =

Zi© F[x ]/(p^(x )). But F[x ]/(p^(x )) is a finite field extension of F 

and hence is separable since F is perfect.

The following result gives the connection between separable and 

irreducible polynomials in r [x ].

Theorem 5*7« A monic polynomial f(x) in R[x] is separable and 
local if and only if f(x) is an irreducible polynomial in J,

Proof: Let f(x) be a monic polynomial in r [x ]. Recall f(x) is

local if and only if f(x) is the power of an irreducible polynomial in 

(R/m)[x], But f(x) is separable if and only if f(x) is square-free.

Thus we have f(x) is separable and local if and only if f(x) is irre

ducible, The result follows from Theorem 2,3*
Corollary, Let f(x) be a separable polynomial in R[x] then 

f(x) has distinct roots in any local extension of R,

Proof: Let a and b be roots of f(x) in some local extension of

of R, Then a and b are roots of f(x) in some extension of R/m, But
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f(x) has distinct roots in any extension. Hence a - b is a unit. But 
then a - b is a unit and the result follows.

In the following result we prove the analog of the theorem for 

finite fields which states that if F and K are finite fields and K is 

an extension of F then K is normal over F and the Galois group is cyclic, 

Theorem 3*8, Let S and R be finite local rings. Let S be a 

separable extension of R, Let M and m be the maximal ideals of S and R 

respectively. If S is free over R then S is normal over R and 6(S, R), 
the Galois group of S over R, is isomorphic to G(S/M, R/m). Hence 

G(S, R) is cyclic.
Proof; Let H be the group of R-automcrphisms of S, If cr' is in 

H then (T'Ca) is a unit or a nilpotent depending on whether a is a unit 

or a nilpotent. Hence 0^ induces an R/m-homorphism of S/M. Call it (T, 

We note that it is actually an automorphism. For CT(a) = 0 if and only 

if Cr(a) is in M, But from above we know (T(a) is in M if and only if 

a is. But then a = 0, Since S/M is finite and CT is one to one, it is 

also onto. Let TI be the map from H into G(S/M, R/m) given by HC CT) = CT, 

It is clear that 7l is a group homomorphism. However by an application 

of Theorem 5*4 we conclude that 71 is also a one to one correspondence 

and hence an isomorphism. Since S/M is a finite field we conclude that 

H is cyclic. By Theorem 3*2 we can imbed S in a Galois extension of R 
which is local. From the above argument we know that its Galois group 

is cyclic. By Theorem 3*1 we can conclude that S is normal over R,

From an earlier lemma we see that the condition of being S-free 

is not extra. What we have shown is that to require S to be free and 

separable is equivalent to S being Galois,
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The following result is due to Janusz [lO,] and is extremely

useful in finding Galois extensions.

Theorem 3»9* Let S be a local Galois extension of R and suppose

a is an element of S with R[a] a separable extension of R, Let a = a^,

a_, ... , a be all the distinct images of a under the Galois group of c m
g. If g(x) is any polynomial in r [x ] such that g(a) = 0, then g(x) is

a multiple of f(x) = (x - a.) ... (x - a ) by an element of R[x ].X m
Theorem 3*10. Let S be a local Galois extension of R.

(1.) The Galois group of S over R permutes the roots of a 
separable local polynomial f(x) in R[x] where f(x) is satisfied by some

primitive element of S and deg f(x) = [s ; R].
(2.) If f(x) is a polynomial described above and a is a primi

tive element of S over R satisfying f(x) then S — P[a] — R[x]/(f(x)).

Proof; This is an immediate corollary of Theorem 3*9 and the 

observation that R[x] — ^  R[a] is an R-epimorphism.

We are now in a position to give a characterization of Galois 

extensions of finite local rings.

Theorem 3*11* If R is a finite local ring then S is a local 

Galois extension of R if and only if S is isomorphic to R[x]/(f(x)) 

where f(x) is a monic irreducible polynomial in J.
Proof: Suppose S is a local Galois extension of R then by

Theorem 1.22, S has a primitive element over R —  say a. By Theorem 3*10»

S — R[x]/(f(x)). Hence f(x) is separable and local. But then by 

Theorem 3*7, f(x) is an irreducible polynomial in J.

Conversely, if f(x) is irreducible and in J then f(x) is local 

and separable* It follows from the remark following Theorem 3*8 that
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R[x3/(f(x)) is also normal and hence Galois.

In the case of finite fields the following result follows from

the uniqueness (up to isomorphism) of the splitting field of a poly-
n

nomial of the form - x for some rational prime p and natural number 

n.
Theorem $,12, For any rational prime p sind natural number n 

there exists a unique finite field with p° elements.

Related to the above is the following well-known result,

Theorem $,1$» Let GF(q^) and 6F(q) be the Galois fields of q^ 

and q elements respectively. Let n be the number of primitive elements 

of GF(q^) over GF(q) and t the number of monic irreducible polynomials 

in GF(q)[x]. Then tr = n.

Proof: Recall GF(q^) = GF(q)[a] where a satisfies a monic irre

ducible polynomial of degree r. Conversely a root of a monic irreducible 

polynomial of degree r is a primitive element for GF(q^) over GF(a).

This follows from the uniqueness of Galois fields. Also the irreducible 

polynomials of degree r have r distinct roots. Hence tr = n.
A closer examination of the above proof reveals that the above 

theorem is actually equivalent to the uniqueness theorem for Galois 

fields. Since our characterization of local Galois extensions in the 

commutative ring case is identical to that of the field case, we see that 

the following two theorems are equivalent.

Theorem 3»14* Let S be a local Galois extension of rank r over 

R, R a finite local ring. Let t^ be the number of monic irreducible 

polynomials of degree r in J and n^ the number of primitive elements of 

6 over R then t^r = n^.
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Theorem 3»15» For each natural number r and finite local ring

R there exists exactly one (up to isomorphism) local Galois extension S

such that [S : r 3 = r.
Proof; The existence part of Theorem 3*13 follows from the 

corollary to Theorem 2.3 # Let 5 be a local Galois extension of rank r 
over R, Let M and m be the maximal ideals of S and R respectively.

Then t^ = t|m|^ and n^ = n |m |, where t and n are the corresponding val

ues for S/M. Now tr = n. Hence t^r = n^ if and only if jx| = jm|^.
r-1Now note that if a is a primitive element for 8 then 1, a, ... , a

is a basis for S over R since 1, a, ... a is a basis for S/M over
r—1R/m. If d + d_a + ... + d .a is in M where d. is in R then 0 1 r-1 1

d + d , a + . , . + d  ,a = 0. But 1, a, ... , a ^ is a basis for o 1 r-1
S/M over R/m, Hence d^ = 0. Hence d^ is in R O  M = m.

Conversely, any element of the above form is in M. So |M{ = jm̂

and the theorems above are proven.

We conclude this section with some miscellaneous observations 

and examples.
The following is a special case of a theorem of Janusz [lO.] 

and will be useful in the examples.

Theorem 3,l6, Let S be a local Galois extension of R and a an 

element of S. Then R[a] is a R-separable extension of R if and only if 

a is a separable element over R.
It is then immediate from this result that any primitive element 

of S over R is separable.
Example 3.1, Let R = Z/ZfZ. Then R is a finite local ring with 

maximal ideal 2Z/4Z, Consider f(x) = x^ + x + 1 in R[x ], Since f(x) =
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3? + X + 1 in (Z/2Z)[x] is irreducible, f(x) is irreducible. Hence

S = R[x]/(f(x)) is a local Galois extension of R. The rank of S over R

is 3* Hence by the Fundamental Theorem G(S, R) is a cyclic group of

order 3 and there are no proper R-separable subrings of S other than R,

Example 3*2. Let R = Z/4Z and f(x) = x^ + + x^ + x + 1 be

in R[x ]. Since f(x) is irreducible, S = R[x]/(f(x)) is a local Galois
extension of R. Thus G(S, R) = <CCT̂  is a cyclic group of order if. Thus

we have the following chain of R-separable extensions of R: R S  T S 5

where T —  R[x]/(g(x)) and g(x) = x^ + x + 1. By Theorem 3.4 we can
construct the R-automorphisms of S from those of G(S/M, R/m), One first

checks that if a is a root of f(x) in S then

f(x) = (x - a) (x - a^) (x - a^) (x - (3a^ + 3a^ + 3a + 3)).
2 5Now 1, a, a , a is a basis of S over R, Hence

cr(a) = a^

<r\a) = 3a^ + 3a^ + 3a + 3 
cr*(a) = a^

(r'̂ (a) = a.
3 <4-This suffices to define (T, (T , <T and d = identity. Now g(x) = 

x^ + X + 1 = (x - (a^ + a^ + 2)) (x - (3a^ + 3a^ + 1)), Notice that 

(a^ + a^ + a) = (cr^(a))^ + (Cr\a))^ + 2

= 3a^ + â  + 2a7 + 3â  + 2a^ + 3a^ + 2a^ + â  + 3a + 2
3 2= a + a +2,

So a^ + a^ + 2 is in the fixed ring of CT̂ , Also R[a^ + a^ + 2] is a 

separable R-subring of S by Theorem 3,16, In fact T = R[a^ + a^ + 2], 

Let us recall the following theorem from field theory:

Theorem 3,17. Let K be a field of degree n over GF(q), the
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Galois field with q elements. Then the Galois group of K over GF(q) is 

the cyclic group of order n generated by the automorphism x — ^  x^.
For a proof one can see Albert Cl.].

For the ring case although the Galois group is cyclic the gener

ating map cannot be described as a power map on all the elements.

Examnle Let E be the integers modulo 4 and S = R[a] where
2a satisfies x + x + 1. Then if M and m are the maximal ideals of S

and R respectively then |g (S/M, R/m) j = [s/M ; R/m] = 2. Let ̂ 1, CT^ =

G(S/M, R/m). Note that x^ + x + 1 = (x - a) (x - (3& +3)) in S[x].

The proof of Theorem 3*4 yields that 6(S, R) = 1̂, 0“^ where (T" is

given by (^(a) = 3a + 3» Now no power of 2a is 2a + 2 = CT'(2a). Also

Cr(3a + 1) = 3 (Ma) + 1 = 3(3a + 3) = a + 2, It is easy to check that
2a + 2 is not a power of 3a + 1. However 0^(a) = 3a + 3 = a . Hence

G(S, R) is generated by am automorphism which takes a primitive element

to its square.
Lemma, Let S be a finite local Galois extension of R, m the 

maximal ideal of R and f(x) a monic irreducible polynomial in J. If 

a and b are roots of f(x) in S then there exists a monic irreducible

polynomial g(x) in J such that a^ and b*̂  are roots of g(x) where q =

|R/m|.
Proof; Let f(x) be a monic irreducible polynomial in J with 

a and b roots of f(x). Since f(x) is irreducible in J, f(x) is irre

ducible in (R/m)[x]. So f(x) = Irr (R/m, a). Since R/m is a finite 

field with q elements a ^ is also a root of f(x). So f(a^) = t is in

m. Let g(x) = f(x) - t. Clearly g(x) = f(x). So g(x) is a monic

irreducible polynomial in J, Further g(a^) = f(a^) - t = 0» Consider
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the polynomial h(x) = g(x^) in R[x]. Note that a is a root of h(x).

By Theorem 3.9» h(x) is divisible by f(x). Since b is a root of f(x), 

b must be a root of h(x). Hence b*̂  is a root of g(x).

Theorem 3*18, Let S be a finite local Galois extension of R, M 

and m the maximal ideals of S and R respectively. Let [S : R] = n and 
q = IR/mI, Then there exists a primitive element t with S = R[t] such

that the R-automorphism cr of S given by cT(t) = t^ is a generator of
the Galois group of S over R.

Proof; Let f(x) be a monic irreducible polynomial of degree n

in J and a a root of f(x). Let A = ^g(x) in r Cx ]: f(x) = g(x)^. Let

B = fb in S: b is a root of some polynomial in a"\. Let B^ =
2

{b̂ : b is in Bj and k is a natural number. Now B 2 B^ =2 B^ =2 ,,, .
_ _  __ n—1

Further f(x) = (x - a) (x - a ,,, (x - a ^ ), Hence each element
n-1

of B is a representative of one of the following; a, a , ... , a ,

So each element of B has the form a^ + c where c is in M and k =

1» q> , I q^ Hence there exists an s such that B® = B ^ ^  = ,,,

and such that B^ has only n elements. Raising these to the q^^ power 

only results in a shuffling of their order. By Theorem 3*4 and the

lemma above there exists an R-automorphism cnof S given by (T'(t) = t^

where t is in B®, Consider (T, CT̂ , ,,, , (T , These ere all distinct 

since G(S/M, R/m) is generated by the map x — ^  x^. Hence ff' generates 

G(S, R),
We note that the s in the above proof can easily be bounded.

Let r be the degree of nilpotency of the maximal ideal m of R, Then 

if (a^ + c) is in B where a and c are described in the proof of 

Theorem 3,18 then
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(a^ + c)“'■ = a'"’’" + ( f  )(a'')’“'-l c * ... -f ( f  ) a" c"'-: h-

But recall that q = p° for some prime p and natural number m. Also the 

characteristic of R is a power of the same prime p. Hence q is in the 

maximal ideal of R. Also q^~^ divides j for any i. Thus, the above

r r
equation becomes (a + c)*̂  = â *̂  , k = 1, q, ... , q°**̂ . Thus we

summarize our results on the Galois group;

Theorem 3»19« Let S and R be finite local rings with maximal

ideals M and m respectively. Let r be the degree of nilpotency of the

maximal ideal m and q the number of elements in the residue field R/m.

If S is a Galois extension of degree n over R then the Galois group

G(S, R) of S over R is a cyclic group of order n and is generated by
r rfl

the map cT where (T"(a ) = a^ and a is a root of a monic irreducible
polynomial of degree n in J.

Definition 3»4» If a ring S is a Galois extension of R then we

say S has a normal basis over R if there exists an a in S such that

Î CrCa): (?' in G(S, R)^ is a basis for S over R.

Theorem 3*20. (Normal Basis Theorem) Let S and R be finite 

local rings. If S is a Galois extension of R then S has a normal basis 

over R.

Proof: The result holds for finite fields. V/e can conclude it

holds for any finite local ring by using Theorem 3*4 and Theorem 1,14» 

Theorem 3*21. Let S be a local Galois extension of R. Then 

there exists a lattice preserving bijection between the subfields of 

S/mS containing R/m and the separable subrings of S containing R.
Proof: Let m be the maximal ideal of R. Consider the relation



48
T T/mT from the set of separable subrings of S containing R and the 

set of separable subfields of S/mS containing R/m, We know by the Funda

mental Theorems of Galois theory for both rings and fields that there 

exists a lattice inverting one-to-one correspondence between the separa

ble subrings or subfields and the subgroups of the corresponding Galois 

group. But G(S, R) is isomorphic to G(S/mS, R/m), Composing the iso

morphisms and the correspondences completes the proof.

Corollary 1, Let S, and be finite local Galois extensions 

of R with 5^ and contained in S, If m is the maximal ideal of R and 

• S^/mS^ = S^/mS^ then

Corollary 2, Let S be a finite local Galois extension of R and 
m the maximal ideal of R, If T is a separable extension of R contained 

in S then G(S, T) CT G(S, R)/G(T, R),

Janusz [lO,] has introduced a generalization of the concept of 

a splitting field.

Definition 3»5« A Galois extension 5 of a commutative ring R 

is a splitting ring for a separable polynomial f(x) in R[x ] if f(x) is 

the product of linear factors in S[x] and S is generated over R by the 

roots of f(x).
Recall that if F and G are finite fields with F an extension of

G then F is the splitting field of some monic irreducible polynomial in

G[x], a similar result holds for finite local rings.

Theorem 3*22, If S is a finite local Galois extension of degree
n over R then S is a splitting ring for any monic irreducible polynomial

in J of degree n.

Proof; Let f(x) be a monic irreducible polynomial in J of
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degree n. Now [S/M : R/m] = n. So f(x) splits in S/M. The result

follows immediately from Theorems 3*4 and 3*15*

Let k = R/m then it is well-known, for example see Dickson [?•],

that if v(n, k) denotes the number of monic irreducible polynomials of
®1 ®degree n where n = p^ ,,, p^ ® in k[x] then

_ . "/P-i n/p p
v(n, k) = (l/n)[|k| - Z,|k| ^ + Z})kl ^  ̂- ...

Thus by Theorem 2.3, there exist
n l/Pj __ l/P.P.v(n, R) = (l/n)|R|^[l - ̂ |k| +  ̂- ...

monic irreducible polynomials in J. Hence n v(n, R) primitive ele

ments for a Galois extension S of R with rank S over R equal to n.
We conclude this chapter with one remark concerning elementwise 

separablity. In the field case separablity is defined elementwise. 

However the following is false; S is a separable extension of R if and 
only if each element in S is separable over R.

Example 3*4* Consider (Z/4Z)[a] where a satisfies the polynomial 

x^ + X + 1 in (2/4%)[x]* Let b = 2a. Recall that by Theorem 3*16, b 

is separable if and only if R[b] is a separable extension of R. The 

Galois group of (2/4%)[a] over Z/4Z is the cyclic group of order 2,
Hence by the Fundamental Theorem there do not exist any separable sub

rings of (Z/4Z)[a] strictly between (Z/4Z)[a] and Z/4Z. Thus since b 

is not a primitive element of S it follows that b is not separable.



CHAPTER IV 

A STRUCTURE THEOREM

In this chapter we show that finite local rings are homomorphic 

images of certain polynomial rings.

Let R be a finite local ring with maximal ideal M. Consider 

generating sets of M over R. Since these are finite sets there exist 

minimal sets among them. The following shows that this number is an 

invariant of M,
Theorem 4.1. The elements ........... S. M form a minimal

2generating set for M if and only if modulo M they give rise to an 
2R/M-basis of M/M . The number of elements is thus equal to the dimen- 

2Sion of M/M over R/M.

Recall that the characteristic of R is p for some prime p and

natural number k. Also R/M has characteristic p. Two cases could then

arise. One where the characteristics are equal and one where they are 

not. Following Nagata [l3«] we shall handle both cases simultaneously.

Theorem 4.2. Let R be a finite local ring with characteristic
kp and maximal ideal M such that M has minimal generating set

|u^, ... , u^1. Then there exists a subring T of R such that

(1) T is a separable hence simple extension of Z/Zp .

(2) T/(M T) 2: R/M.

50
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(3) K is the homomorphic image of ... , x^].
Proof; Since R/M is a finite field it has a cyclic group of

units. Let v be a generator of the group of units of R/M. If f(x) is

the minimal polynomial of v in (Z/Zp)[x], let f(x) be a monic preimage

of f(x) in (Z/Zp^)[x]. Since f(x) is irreducible, f(x) is irreducible

in (Z/Zp^)[x3 and is also in J, By Theorem 3»3i R contains an element

V such that f(v) = 0 and v is the image of v under the natural map

Tl: R — ^  R/M. Since f(x) is irreducible and in J it is separable and

hence (Z/Zp^)[x]/(f(x)) is a separable extension of Z/Zp^. Further

since f(v) = 0, (Z/Zp^)[v] is a homomorphic image of (Z/Zp^)[x]/(f(x)).

Hence (Z/Zp^)[v3 is a separable extension of Z/Zp^. Let T = (Z/Zp^)[v].

Also there exists a natural ring injection of T/(M T) into R/M.

Since v generates R/M - ^0^ it is clear that this is a surjection and

hence T/(M /I T) R/M, The proof will be complete if we show that
T[u,, ... , u ] = R. Clearly T[u ., ... , u ] Sz R. Let c be in R. We I n  i n
will construct a sequence [c^^ such that c = c^ mod M®^^ and c^ is in 

T[u ,̂ ... , u^]. Since M is nilpotent this will complete the proof.

From the isomorphism above c = a mod M for some a in T. So let c^ = a. 

Suppose c^ has been constructed. Then c^ = c - q where q is in M , 

Since ĵ û j generate M over R, q = W  where a^ is in R and v^ is a 

power product of the ^u^^ of degree s + 1. Now a^ = b^ mod M for some

b^ in T. So

Let

6*̂ 2c - c = /Cjb.V. mod M . 8 i 1

Clearly c is in T[u., ... , u ]. Also s+1 1 n
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c ., - c = c + Zj b V - c = 0 mod s+1 s i l

Note that the conditions (1) and (2) along with the correspond

ence between the lattices of separable subrings of T and subfields of 

R/M imply that T is unique. The subring T is called the coefficient 

ring of R and is the largest separable extension of Z/Zp contained 

in R,



CHAPTER V

SOLUTIONS OF POLYNOMIALS OVER FINITE LOCAL RINGS

Consider the following problem: If m is a positive integer 

and f(x) is in Z[x] find all x such that f(x) = 0 (mod m). This is, 

of course, a problem in the theory of congruences. It can be stated 

algebraically as follows: Find the roots of f(x) in Z/(m), Recall

that this question is then reduced to finding the roots of f(x) in
k ~T7~ ^iZ/(p ) where m = // p^ , where the p^ are distinct primes. But notice

this is what occurs when a finite commutative ring with identity is

decomposed into finite local rings. Thus the analogous question for

finite commutative rings with identity is reduced to finite local rings.
Let R be a finite local ring with maximal ideal M and residue 

field R/'M = K. Let n be the degree of nilpotency of M. Then there 

exists a natural sequence of surjective horaomorphisms;

R = R/M" R/m"’^ — ^  ... — > R/M^ R/M^“  ̂— ^  .. . — »  R/M = K
where ker = M^""^/M^. Further each M^ ^/M^ is a K-vector space.

Notice the action of K on M^ V m^ is given by km = km where k is a 

preimage of k in R/M^ under the surjection from R/M^ to K. Let 

dim^ (M^“V m^) = ^(R). The approach is then sirailiar to that of 

solving congruences. We illustrate by constructing solutions of f(x) 

in (R/M^)[x ] from the solutions of f(x) in (R/M^ ^)[x]. For convenience

53
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let = t and {v^» ... , be a K-basis for Let
A be a solution of f(x) in R/M^ ^ and A a preinage of A in R/M^. Let 

a = A + m where m is in V m^. Notice (M^ = 0. Thus by

Taylor's Theorem
f(a) = f(A + m)

= f(A) + m f'(A) + Q 

= f(A) + m f'(A)

where f'(x) is the formal derivative and Q is some element in R/M^. If 

f(a) = 0 then
f(A) = - m f»(A) = - f'(A) m (1)

and f(A) is in ^/M^. Since ... , v^ is a basis of V m^ over

K, we have

and
f(A) = 21 t VC=i 1 1

where b^, a^ are in K. Hence (1) becomes

= 21 [b + f'(A) a ] V .L=l 1 1 i
Hence for each i, 0 = b̂  ̂+ a^ f'(A). Three cases arise. 

(I.) f'(A) is a unit.
Then f’(A) is a unit and each a^ is uniquely determined. In 

this case there is only one solution of f(x) for A.
(II.) f'(A) is in M and there exists a b / 0.

In this case there are no solutions of f(x) for A.

(III.) f'(A) is in M and b^ = 0 for all i.
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In this case f(A) = 0 for any preimage of A. Thus there are 

1k [ t = |k 1 s o l u t i o n s  for A,

We conclude that we obtain all solutions of f(x) in R/M^, For 

if a is a solution of f(x) in R/M^ then f(a) = f(a) = 0 and hence a is 

solution of f(x).
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