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INTRODUCTION

The well=known theory of separable extensions of field theory
and its Galois theory gives rise to the question: How much of the
theory mentioned above can be generalized for some class of rings. One
of the best known developments in this area came in 1965 when Chase,
Harrison and Rosenberg [5.] proved a theorem anzlagous to the Galois
theorem for fields. Then in 1966 Janusz L[10.] generalized the concepts
of separable elements and polynomials,

This paper has been in large motivated by the following consid-
eration: In finite fields the resulis on separable extensions are much
sharper than the general theorems. For example any finite extension of
a finite field is separable and its Galois group is cyclic. Hence to
what extent can these sharper results for finite fields be extended to
finite rings.

Chapters I and IV are essentially specializaéions of well=known
results to finite commutative rings., For completeness the proofs of
most of the theorems of Chapter I are given and follow those of the
general theorems. Also in Chapter I the consideration of problems
dealt with in Chapters II and III are reduced to considérations of
finite local rings.

In Chapter II we consider elementary facts concerning the
polynomial ring Rlx], R a finite local ring. We have also characterized
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2
certain classes of polynomials in R[x] which arise naturally in the
investigations of Chapter III. —

In Chapter III we generalize the basic theorems of finite
fields and their extensions. As a corollary to his results on homo-
morphic images of Dedekind domains, G. J. Janusz [10.] has proven
some of these theorems for finjite separable extensioné of the ring
generated by the identity., We have shown that these theorems are true
for finite extensions of any finite local ring.

In Chapter V we touch on the solutions of congruences over

finite local rings which includes the classical case of congruences

over the integers modulo the power of a prime.



CHAPTER I
SURVEY OF FINITE COMMUTATIVE RINGS

The object of this chapter is threefold, First to survey the
decomposition theory of finite commutative rings. Second to introduce
the basic definitions that will be needed later. Third to prove the

primitive element theorem for a given c¢lass of finite rings.

The Decomposition Theory of

Finite Commutative Rings

In this section we specialize more general decomposition theorenms
and sketch their proofs,
Recall the following basic definitions:
Definition l.l. A commutative ring R is a set with two binary
operations, denoted by + and juxtaposition such that:
(1) (R, +) is a commutative group.
(ii) (R, .) is a commutative semigroup.,
(1ii) If a, b and ¢ are elements of R then (a + b)c = ac + bc,
Throughout this section R denotes a finite commutative ring.
Definition 1.2, A proper ideal P of R is a prime ideal if
whenever a and b are elements of R and ab is in P then a is in P or
b is in P,

Definition 1.3, A proper ideal M of R is a maximal ideal if
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whenever M & N & R for an ideal N of R then N = R, -

Since R has only finitely many ideals the existence of maximal
ideals is guaranteed if R ¥ 0, However in general R may ﬁot have any
prime ideals.

Example 1.1. Let R = 22/82 whare Z is the rational integers.
The ideals of R are O, (4) and R, Hence R has the maximal ideal (4)
but has no prime ideals.

Definition 1l.4. The prime radical P(R) of R is the intersection

of all prime ideals in R (If R has no prime ideals then P(R) = R).
Definition 1.5. The nil radical N(R) of R equals

{i in Rt x° = 0 for some natural number ﬁ}. An element of N(R) is

called a nilpotent element.

Pefinition l.6., The Jacobson radical J(R) of R is the intersec=

tion of all the maximal ideals of R.
Example 1.2, Let R = 22/82. Then J(R) & N(R) = P(R).
Theorem l.l., If R is a finite commutative ring then N(R) and
P(R) are equal.

Proof: If P(R) = R then N(R) & P(R)., If P(R) # R then let Pi

i1 =1, ¢ee , n be the prime ideals of R, If x is an element of N(R) then
xm = 0 is in Pi for some positive integer m. Since Pi is prime x is in
P,. Hence N(R) & P(R).

Conversely, suppose x is not in N(R) then T =&, +0. , X", eee}
does not contain O, Hence we can find an ideal P which is maximal with
respect to the exclusion of T, The proof will be complete once we show

P is prime. If a and b are in R and ab is in P and a and b are not in

P then P + aR and P + bR meet T. Hence x" is in (P + aR)(P + bR) < P
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for some positive integer n, But this is a contradiction since
PN T=4d.

It is advantageous to know when a finite commutative ring has
an identity.

Theorem l.2. A finite commutative ring R has an identity if
and only if R contains an idempotent element e which is a non=zero divi-
sor, If e exists then e is an identity.

Proof: Let r be an element of R; then (r = re)e = O, Hence
r = re and e is an identity.

Although the above is trivial it does provide us with insight
.into the next two proofs,.

Theorem 1.3, If R is a finite commutative ring with at least
one non~zero divisor then R has an identity.

Proof: Let a be a non-zero divisor in R. Let a, aa, oo ,an
be the elements of R, Since a is a non=-zero divisor, aa, a3, eee » aQ,
are all distinct, hence are all the elements of R, So there exists a;
in R such that aai = a, Thus aa, = aa 2. So ai is an idempotent,

i i

From a = aa; it is clear that a, is a non=zero divisor. The result now
follows from Theorem 1l.2.

Corollary., If R is a finite integral domain then R is a finite
field.

Theorem l.4. If R is a finite commutative ring and N(R) = O
then R has an identity.

Proof: Let L be a minimal ideal of R and b a non-zero element

of L. Since N(R) = O, b2 £ 0., Hence bL = L, Thus there exists e in L

such that be = b, Let I = {? in L: xb = 65. Clearly, I is an ideal of
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R and is contaired in L., But e is not in I, Hence, by the minimality
of L, I = 0, But e2 « e i8 in I, 80 e i8 a non=zero idempotent, We
mugt find an idempotent which is & non=zero divisor, For each idempo=
tent e in R let M_ = {r in R: re = 0y, Choose e such that M_is minimal
in {M;}. If Me £ O then Me contains a minimal ideal. Hence from the

e Let e. =ze+ e_.

first part Me contains a non-zero idempotent e P 1

1

is an idempotent, One checks that M < M, This
2

Since eel =0, e

2
contradicts the minimality of Me. Hence Me = 0 and e is the desired
element,

In the case R has an identity we can improve Theorem 1,1,

Theorem 1,5, Let R be a finite commutative ring with identity
l, Then P is a prime ideal in R if and only if P is a maximal ideal in R,

Proof: If P is a prime ideal in R then R/P is a finite integral
domain, hence a field., However if R/P is a field then P is a maximal
ideal, The equivalence is completed by noting that in a ring with iden=
tity any maximal ideal is prime,

Corollary., If R is a finite commutative ring with identity then
J(R) = N(R) = P(R).,

Actually, if R does not have an identity then J(R) € N(R) and
any prime ideal is maximal., If P is a prime ideal in R then N(R) & P,
So N(R/P) = 0. Then by Theorem l.4, R/P has an identity and hence is a
finite integral domain, But then R/P is a field. By the correspondence
theorem we conclude that P is maximal,

Since N(R/N(R)) = 0, R/N(R) has an identity. It might be hoped
that if we knew something about rings with identity this would provide

information about R, This is indeed the case,
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Theorem 1.6, If R is a finite commutative ring with N(R) = O
then R is the direct sum of finite fields,

Proof: Let Ml’ vee Mn be the maximal ideals in R, Then R/Mi
is a finite field. Let ni: R —> R/Mi be the natural projection. Then
(nl, cee ﬂh)(r) = (nl(r), eee 9 nn(r)) is an epimorphism of R onto
the direct sum 2, & R/M, with kernel N\ M, = J(R). By Theorem 1,4, R
has an identity. So J(R) = N(R) = 0. Thus R~ 2, 6 R/M,.

Corollary. The ring R/N(R) is isomorphic to the direct sum of
finite fields.

Since R/N(R) has idempotents we would like to pull them back
to idempotents in R,

Lemma, If 2z is in N(R) then there exists z, in N(R) such that
Z, = % = Ze N

Proof: Let z) = % (1/2n = 1) <2nn' 1) (-z)". Since z is nil-
potent this is a finite sum and 2z is in N(R). One checks that z, is
the desired element,

Theorem l.7. Let : R > R/N(R) be the natural projection and
u an idempotent in R/N(R). Then there exists an idempotent e in R such
that 7(e) = u,

Proof: Let x be in R such that T(x) = u. Then x° - x =z is

o
in N(R)., Consider ;élun-l(-z)n. Since z is nilpotent this is a finite
sum and is an element of N(R)., By the lemma there exists z in N(R)

1 1 1l

T(x) = u, It is a routine computation to show e is an idempotent.

2 > nel n
such that 2. = 2, = 24 (=z) ., Let e =%~ 2xz. + 2., Then T(e) =
el

n
Theorem 1.8, 1If {u].  is a finite set of mutually orthogonal

n
idempotents in R/N(R) then there exists a set {ei}, of mutually orthog=

Ve



8

onal idempotents in R such that ﬂ(ei) = ui for i = 1, eee 3 N

Proof: It is true for n = 1 by Theorem l.7. Assume true for
. ma|
m and let {ﬁi}tm be a set of mutually orthogonal idempotents in R/N(R).
Let el, eee em be a set of mutually orthogonal idempotents with

n(ei) = u. Lete= 3 e« By Theorem 1.7 choose an idempotent e' in

vy
R such that m(e!') = u

mtl

« Let e = e' - ge'., Then {éiS is the

mt+l m+l {=

desired set of idempotents of R,

The first of the two decomposition theorems we will prove is:

Theorem 1.9, If R is a finite commutative ring then R is the
direct sum of a nilpotent ring and a ring with identity.

Proof: By the corollary to Theorem 1.6, R/N(R) = Z,® Fi where
F_is a finite field, Let ui be the identity of Fi. Then by Theorem 1.8

i

there exists mutually orthogonal idempotents e, in R such that n(ei) =

i

u Let e = 2, e;o Then m(e) = 1 in R/N(R), If r is in R then r =

5°
er+ r =er. If(L=e)R={r-er:ring}thenR=(1=e)R® eR Let
r be in R then (r =~ er) = T(r) - N(e)n(r) = W(r) - ®w(r) = 0, Hence

(1 = e)R & N(R) and thus is nilpotent., Since the e, are mutually
orthogonal idempotents, e is an idempotent. It is clear that e is the
identity of eR.

The study of finite commutative rings then breaks up into the
study of nilpotent commutative rings and finite commutative rings with
identity. This paper will only be concerned with the latter,

Definition 1.7. A commutative ring R with identity is said to
be loczal if R has a unique maximal ideal.

The last decomposition theorem in this section will further

reduce the part with identity. Henceforth R will denote a finite



commutative ring with identity.

Lemma, Let {Ml. oo M;S be the set of maximal ideals in R,
IfI= Ml ces Mn then I is nilpotent.

Proof: Note I & /"\Mi = J(R) = N(R)e So each element of I
is nilpotent, There are only finitely many elements in I so I must be
nilpotent.

Definition 1.8. Proper ideals I and J of R are comaximal if
I+J=R,

Lemma., Let Ml, cees 3 Mﬁ be the maximal ideals in R. Then if
n is a positive integer we have Min and Mjn are comaximal when i £ j.

Proof: If M.~ + Mjn £ R then M." + M j” S M_ for some maximal
ideal M. So M,” S M_and Mjn S M. Hemce M, € M and ¥, S M
So i = k = j since the Mi are maximal,.

Theorem 1,10, Let R be a finite commutative ring with 1. Then
R is the direct sum of finite local rings.

Proof: Let I = Ml coe Mn where the Mi are all the maximal

jdeals in R, Then I is nilpotent. Hence there exists a positive inte-

i}
1

Mim are pairwise comaximal., Hence by the Chinese Remainder Theorem,

ger m such that Im =0, SoM coe Mnm = 0, From the above lemma the

R = R/Mlm ;) R/MZm D oce O R/Mnm. By the correspondence theorem the
ideals of R/Mim are in one to one lattice preserving correspondence with
the ideals of R containing Mim. But there is only one maximal ideal of
R containing Mim, namely Mi. Hence Mi/Mim is the unigque maximal ideal
of R/Mim.

Before leaving this section note that if S = 2.0 Si then (S)n is

the direct sum of (Si)n where (S)n is the ring of n x n matrices over S.
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Also S[x] is the direct sum of Si[xJ where S[x] is the ring of polyno-
mials over S. Further U(S) is the direct sum of the U(Si) where U(S)
is the group of units in S. Hence, in most cases, to study S it suf-

fices to study its local components,

Properties of Finite Local Rings

Unless otherwise stated in this section R denotes a finite local
ring. Before proceeding to properties of R we give two elementary
examples,

Example 1.3, The following are finite local rings:

(1) A finite field (O is the maximal ideal).
(ii) The integers Z modulo a power of a prime p, i.e.
Z/Zpn (Zp/an is the maximal ideal).

These examples provide much of the motivation for the work done
in this paper.

Theorem l.11. (Characterization of finite local rings) If R
is a finite ring with identity then the following are equivalent:

l. R is a local ring.

2. R has O and 1 as its only idempotents,

3, Every subring of R is local,

4. ZEvery element of R is either a unit or a nilpotent element,
5 IfR=10®@Jthen R=1IorR= J.

Proof: (1l.) implies (2.). Suppose e is an idempotent in R.
Then e(l - e) = 0, Let M be the maximal ideal of R then M is prime.

So eis inMor 1 -~ e is in Ms If e is in M then e is nilpotent and
hence e = 0, If 1 - e is in M then 1 = e = 0 since it is also an idem-

potent.
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(2.) implies (l.)s By Theorem 1,10, R = Z.@ Ri where the Ri
are finite local rings, But if this decomposition is none~trivial then
R haé more idempotents than O and 1. So R is local,

(1.) implies (3.)s Since 1 and 2 are equivalent, Jjust note
that any idempotent in a subring of R is an idempotent in R.

(3.) implies (1.). Obvious,

(1.) implies (4.). If M is the maximal ideal of R then M = J(R)
= N(R). Hence any element in M is nilpotent, Since M is the unique
maximal ideal of R any element of R which is not in M is a unit.

(4,) implies (1.). The set of nilpotent elements of R is an
ideal M. Since any element not in M is a unit, it is c¢lear that M is
maximal, If N is a proper ideal of R then N contains no units and hence
N< M, So R is a local ring.

(2.) is equivalent to (5.)., This follows from the relation
between idempotents and direct sum decompositions of R,

Corollary 1. If R is a finite local ring then r is a unit in R
if and only if ;'f 0. (Where ; denotes the image of r under the natural
projection T of R onto R/M.)

Proof: The map T is a ring homomorphism so units are carried
to units,

Conversely, if r is not a unit then r’ = 0 for some n and hence

- n

T 0. Since R/M is a field r = O.

Corollary 2, A finite local ring R is a finite field if and

only if M = O,
One of the interesting properties of a finite field F is that F

has pn elements for some positive integer n and prime p. The same is
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true for finite local rings,

Theorem 1,12, If R is a finite local ring then R has pn ele~
menté for some prime p and positive integer n.

Proof: Suppose false., Then there exist integers m and n such
that R has mn elements and (m, n) = 1. Let I be the ideal generated by
ml and J the ideal generated by nl. There exist integers s and t such
that ms + tn = 1. So sml + tnl =1, Let x be in R then x = xsml +
xtnl, SoI+J=R, If xisin I M J then x = x. ml = x,nl for some

1

% and x5 in R, Rote mnl = 0., Hence 0 = xltnml = xtnl and 0 = xzsnml
= xsml, Thus O = xtnl + xsml = x, Thus R=1 6 J, By Theorem 1,11,
it follows that R is not local,

Let M be the maximal ideal of R, Then R/M is a field and
(R/M)[x] is a unique factorization domain, The following property re=-
lates R[x] and (R/M)[x].

Definition 1,9. Let R be a local ring with maximal ideal M,

For f£(x) in R[x] let'E(x) be the polynomial obtained from f£(x) by

reducing the coefficients modulo M. Hensel's Lemma holds for a monic

polynomial f£(x) in R[x] if whenever T(x) = £(x) h(x) where g(x) and h(x)
are monic polynomials in (R/M)[x] which are relatively prime then there
exist monic representatives g(x) and h(x) in R[x] of E(x) andig(x),

respectively, such that £(x) = g(x) h(x). We call R a Hensel ring if

Henselt!s Lemma holds for every monic polynomial in rRIxJ.

We note that the representatives g(x) and h(x) described above
are relatively prime. For 1 ='E(x) g(x) + g(x) ;(x) for some E(x) and
?(x) in (R/M)[x]. Hence g(x) s(x) + h(x) t(x) + k = 1 where s(x) and

t(x) are representatives of E(x) and ?(x), respectively, and k is a



3
nilpotent element in R[x]. It then follows that g(x) s(x) + h(x) t(x)
is a unit and the result—is proven,

Theorem 1,13, Every finite local ring R is a Hensel ring.

Before beginning the proof of the theorem we need a fact about
polynomials over a field,

Lemma, Suppose f(x) and g(x) are relatively prime monic poly-
nomials in F[x], F a field. If p(x) is in F[x] then there exist a(x)
and b(x) in F[x] with deg a(x) £ deg g(x) and either b(x) = O or
deg b(x) < deg f(x) such that p(x) = a(x) f(x) + b(x) g(x).

Proof: A simple modification of a result in Dean [6., page 157]

provides the result.

Proof of the theorem: Let M be the maximal ideal of R, Sup~

pose f(x) is a monic polynomial in R[x] and deg f(x) = n. Suppose also
that ?kx) = E(x) K(x) where E(x) and g(x) are monic relatively prime
polynomials in (R/M)[x]. We will construct two sequences {ék(x)B and
{hk(x§§ in R[x] such that:

(i) fk(x) has degree r and deg gk(x) £ ne=-nr,

(1) £, (x) = £,(x) mod Mt

k+1

(1i1) (x) = g, (x) mod MEtL

Bkt
(iv) f£(x) = gk(x) hk(x) mod Mk+l.

since Mt = 0 for some t, we note that f(x) = gt(x) ht(X)' Since f(x)

is monic we see that gt(x) has a unit for its lead coefficient., Hence

we can make an adjustment in gt(x) and ht(x) so that they satisfy the

conditions., Namely, if u is the lead coefficient then take u-lgt(x)

and uht(x). Ve will construct the two sequences inductively. Let go(x)

and h_(x) be polynomials in R[x] such that Eo(x) = g(x) and & (x) = h(x).
o
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Hence we have the conditions satisfied for n = 0, Suppose we have
constructed go(x), coe gk(x) and ho(x). ees 3 hk(x) satisfying

4
(1) = (iv). Since Mk 1 is finite, Mk+l = Rwl + oee + RWﬁ vhere the v,

+1
are in Mk o« Let gk+l(x) = gk(x) + 2, wiri(x) and hk+l

Zflwisi(x) where ri(x) is a polynomial in R[x] of degree less than r and

(x) = hk(x) +

si(x) is a polynomial in R[x] of degree less tham or equal ton - r,

Note that go(X), gl(X)’ ese gk+l(X) and ho(X)) hl(x); eoe h (X)

k+1
satisfy (i) = (iii). To complete the proof it suffices to show that
ri(x) and si(x) can be chosen in such a manner so that (iv) holds,

Suppose f(x) = gk+1(x) hk+l(x) mod Mk+2. Then
£(x) = g, (x) b (x) = £(x) = g (x) b (x) =Z w (s, (x) g (x)

+ ri(X) hk(x)) - E% wiwjri(x) sj(x).
By induction f(x) = gk(x) hk(x) = :Z]m&pi(x) vhere pi(x) is a polyno=
mial whose degree is at most n. Hence

£(x) 1(X) = Ziw (p,(x) = 5,(x) g (x) =

= By () By
+
r.(x) h (x)) mod Mk 2.
i k
We would be done if we could find ri(x) and si(x) in R[x] such that
pi(X) = si(x) gk(x) - ri(x) hk(x) mod M,
Since gk(x) = go(x) mod M and hk(x) = ho(x) mod M, then the above
equation reduces to
= + .
pi(x) si(x) so(X) r, (x) ho(x) mod M
Since E;(x) and E;(x) are relatively prime in (R/M)[x], we may apply
the lemma to conclude that there exist polynomials ai(x) and bi(x) in
(R/M)[x] such that

B, (%) = a,(x) B (x) + b, (x) h (%)
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with deg ai(x) < deg ;o(x) and deg bi(x) < deg Eo(x) (or bi(x) = 0).
Let ri(x) and si(x) be chosen in R[x] such that ;;(x) = ai(x) with
deg ri(x) = deg ai(x) and si(x) = bi(X) with deg Si(x) = deg bi(X)'

Then ri(x) and Bi(X) are the desired polynomials.,

Modules Over Finite Local Rings

Unlike a field not every module over a finite local ring R is a
free R=module, In fact this occurs if and only if R is a field
(Wedderburn~Artin Theorem). However we have:

Theorem 1l.14. Let R be a finite local ring with maximal ideal
M and let N be a finitely generated,.projective R-module. Suppose

n, + MN, n + MN is a free basis for N/MN over R/M. Then

1

nl, cee nt is a free Re~basis for N.

+MN, eee 3 I

2 t

Proof: Note that if N is finitely generated it is finite, Let

. oft) e ' _ .
s R —> N be defined by 90((3.1, ces 3 at)) = = a.n,. Since the

ni + MN generate N/MN we have ZZ:Rni + MN = N, Then by Nakayama's lemma

it follows that the n, generate N. Let (a,, ... , &) be in ker(9).

Then Zaini = 0, hence Zaini + MN = O, But the n, + MN are linearly

i

independent, thus the ai are in M. So ker(y?) c MR(t). Since N is

projective, the exact sequence

o—‘;ker(gﬂ)—-?k(t)-—‘;N—-?o

splits, So R(t) Lo ker(§p) for some submodule L. Now ker(?9) =

RV A ker(@) = (M ker(9) @ ML) N ker((p) = M ker($). It now

follows by Nekayama's lemma that ker({) = 0.
We note that Kaplansky (11.] nas proven the above theorem with=-

out any finiteness conditions., But we will not have any use for the

strengthened result,
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Separability and Ramification
In this section we will give the definition of a separable ring
extension as given by Auslander and Buchsbaum [3,] and prove a primitive
element theorem.
Definition 1,10, A ring S is an extension of the ring R if R

is a subring of S.

Definition 1,11, For a commutative Realgebra A with 1 we call

A @ A the enveloping algebra of A and denote it by A%,

Note that A can be considered an A®-module under (al & aa)a =

12
If J is the kernel of /4 then we have the A® exact sequence

a,a.a. Also /4: Ae —> A given by /4(a 8 b) = ab is an Ae-epimorphism.

0—>3—>a°F>a—>o.

It is easy to see that J is the ideal of A® generated by
{} 8 a~-afl aisin A}.

Definition 1l.12. A commutative R=algebra A with 1 is called
separable if A is a projective Ae-module.

Theorem 1l.15. The following conditions for a comuutative
R=algebra A are equivalent:

(1) A is a separable R~algebra.

(2) 0 —>J3—> 2% 4> 4 —>0 is A® split exact.,

(3) There exists e in A% such that /pt(e) = 1 and Je = O,

Proof: (1) and (2) are equivalent from elementary properties
of projective modules,

Suppose the sequence splits. Then there exists bﬂ in

e
HomAe (A, A”) such that /A}b- lA' Let e = yb(lj. One checks that e

is the desired element,



17

Conversely, if there exists e in Ae such that Je = 0 and
/A(e) = 1 then define 3&: A —> ¢ by }é(a)‘: (a @ 1l)e. One checks
that'70 is the desired A°~homomorphism. |

Let e be an element of Ae satisfying (3) above. Then
fA(e - (1 & 1)) is zero. 8o ea -e=(e~ (18 1))e‘is in Je = O,
Hence e is an idempotent and is called a separability idempotent for A,

We recall the following fact from homological algebra. See, for
example, Ingraham and DeMeyer [8.l.

Theorem 1,16, Let A be a commutative R-algebra with identity 1.

Then A is a separable R=algebra if and only if Hom e (A, =) is right
A

exacte.
Theorem 1.17. Let A be a separable commutative R-algebra with
identity 1 and I an ideal in A, Then A/I is a separable R-algebra.

Proof: We will show that Hom o (A/I, =) is right exact.
(4/1)

Let N be an (A/I)®-module. We can make N into an AS=module under

(al f aa)n = ((al + I) @& (a2 + I))n. The proof will be complete if we

show that Hom o (A/I, N) = Hom o (A, N) as groups. ILet f be in
(A/1) A

Hom e (A, N). Then f£(1) is in N, Define q@: Hom
A A

Hom o (A/1, N) by }L(f)(a +I)=((a+1I)@(1+1I)) £(1)., One
(A/I)

checks that if f is in Hom _ (A, N) then '#Kf) is in Hom (A/1, 1.
I\ (a/1)°

If g is an (A/I)e-homomorphism of (A/I)e into N then define ¢(g)(a) =

e At N) —>

gla+ I)., It is easy to check that 9Kg) is in Hom e(A, N). Then
A

}p}ﬁ(f) = £ and 1L§0(g) = g And the result is proven.
Let A be a commutative R~algebra with identity and K an ideal

—

in R such that K & AnnR A then A is an R/K=- algebra., Also note that
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in this case a° is an R/K=module and A QR/K A is an A-module. Also we
see that QR: AxA—>2%is R/K=linear and QR/K: AxA -fé'A QR/K A is
Relinear. From these remarks it follows that A® ~ a QR/K A and A is
R-separable if and only if A is R/K=-separable. Hence from the above
and Theorem 1,17 we have:

Theorem 1,18, If S is a finite local separable extension of R
and M is the maximal ideal of R then S/SM is a separable extension of
R/M.

Theorem l.19., Let S be a finite local separable extension of R.

If N is a S-module which is R=free then N is S~free,

Proofs Since free and projective are equivalent over finite
local rings, we suppose N is projective over R and show it is projective
over S Let O —> L —>P 1%9 N —> 0 be an exact sequence of S-modules,
The sequence then Re=splits, Let Y be in Homy (N, P) such that 7 Y =
lN. et e = 2 xi & yi be a separability idempotent for S. Define
'\}l: N —> P by ﬂl(n) = in ‘l,[z(yin), for n in N. One checks that ’\b/
is a S~splitting homomorphism for the above sequence.

VWe are now in a position to show that this definition of sepa=
rability is a generalization of that for fields,

Theorem 1,20, If S is a finite local separable extension of a
finite field R then S is a finite field.

Proof: Let N be an S-module., Note N-is also an R~module,

Since R is a field, N is a free R-module., Thus by Theorem 1,19, N is
S-free. By the Vedderburn-Artin Theorem (see Jans [9.] for statement
and proof) S is semi=simple with minimum condition., Hence S has zero

radical., It follows from Corollary 2 to Theorem 1,11 that S is a field.
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Definition 1.13, Let S be a finite local extension of R, We
say S is unramified over R 1f whenever M and m are the maximal ideals
of S and R respectively then M = mS,

We are now in.a position to prove a result due to Auslander and
Buchsbaum [3.].

Theorem 1,21, Let S be a finite local separable extension of R
then S is unramified over R.

Proof: Since S is separable over R, S/mS is a separable exten=~
sion of R/m. But R/m is a field. Hence from Theorem 1.20 S/mS is a
field. Thus mS is a maximal ideal and hence is M, Thus S is unramified.

Although we will not need it here Auslander and Buchsbaum [3.]
have also shown the converse of the above theorem is true for Noetherian
rings.

One of the essential properties of local separable extensions
is the following:

Theorem 1.22, (Primitive Element Theorem) Let S and R be finite
local rings. If S is a separable extension of R then S has a primitive
element,

Proof: Let m and M be the maximal ideals of R and S respec=
tively. Then by Theorem 1.21, M = mS., So S/mS is a finife field.

Hence S/mS has a cyclic grouy of units. Let u be in S such that ; is

a generator of the group of units of S/mS. Then S/mS = (R/m)[;]. Hence
S = R[u] + mS. Then by Nakayama's Lemma S = R[u]. Hence S has a primi=-
tive element.

Although every finite lccal separable extension of a finite ring

is a simple extension, the converse is false.
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Example l.4. Let R = 2/(2) and consider S = R[x1/(x%). Then
s={0, 1, T+ 1, xJ. We notice that S is not a field and hence can
not Be a separable extension of R,

We now turn our attention to the R=automorphisms of S where S
is an extension of R.

Definition l.14. Let S be an extension of R and H a group of
R-ring automorphisms of S then SH = (x € S: 0 (x) =x for all ( ¢ H‘ﬁ.
The set SU is called the fixed ring of H in S.

Definition 1,15, If S is an extension of R and G is the group

of all R=ring automorphisms of S then S is a normal extension of R if

Definition 1.16. If S is an extension of R then S is said to
be Galois over R if S is a normal separable extension of R, The group
of R-automorphisms of S is then called the Galois group of S over R and
denoted by G(S, R).

To see that the local case provides us with information about
the Galois group of any finite ring consider the following: Let S be
a fin;i.te ring with identity then S = pay: Si where each Si is a finite

local ring with identity e Then if Ri is a subring of Si then Si is

(1)

i.
a local extension of the local ring Ri' Let R = ZG Ri and a
the element of S which has a as its ith component and zeroes otherwise,

(i)a(i)).

be

Let J” be an Re=isomorphism of S then O‘(a(i)) = ()"(ei But

ei(i) is in R, hence O“(a(i)) = e,

isomorphism O"(Si) = Si. Now let OE: ‘n:io’ where ‘rti is the ith pro=

(1) G (a(i)) [ ;. Since g is an

jection of S onto Si. Clearly CT: is an Ri—isomorphism of Si and 0 =

(0_1-10.. :U:‘_)\Vhere(or, soe ,G:\_)(al, eee ,an)=
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(0, (al), ese 3 Gj‘(an)). Further S is separable over R if and only if
Si is separable over Ri’ for every i (see Ingraham and DeMeyer [8.]).
A similar remark holds for normality. Hence G(S, R) = Ze G(Si, Ri)'



CHAPTER II
THE POLYNOMIAL RING OF A FINITE LOCAL RING

If F and G are fields and F is a finite extension of G then for
each a in F there exists a monic polynomial g(x) in G[x] such that
g(a) = 0, For rings we have:

Definition 2.1, An extension S of R is said to be integral
over R if whenever a is in S there exists a monic polynomial f(x) in
R[x] such that f£(a) = 0.

Theorem 2,1, Let R and S be finite rings with S an extension of
R then S is integral over R,

Proof: Let u be in S and consider {kfirn " r is in ﬁ} = A,
Since S is finite so is A, For each distinct element in A choose a
representative with least degree as a polynomial in u, Let B be the
set of these representatives. Let m be the greatest degree of any poly-
nomial in B, Now um+l is in A, Hence um+l = p(u) where p(u) is in B,
So u-satisfies the monic polynomial xm+l - p(x). Hence S is integral
over R.

However unlike the field case an elemént may not satisfy any
monic irreducible polynomial.

Example 2.1, Let R be a field, Consider the ring extension
rlb] =~ R[x]/(xa). Then b satisfies the monic polynomial x> but does
not satisfy any monic irreducible polynomial over R.

22
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Unless otherwise stated R denotes a finite local ring with max-
imal ideal M, We first examine the unit, prime and irre@ucible ele=
ments of R[x].

Theorem 2.2, A polynomial f(x) is a unit in R[x] if and only
if T(x) is a unit in R/M.

Proof: If f(x) is a unit in R[x] then f(x) is a unit in
(R/M)[x]. But R/M is a field. Hence £(x) is a unit in R/M,

Conversely, suppose f(x) is a unit in R/M then f£(x) = ii.aixi.
Applying the projection map and equating coefficients we conclude that
a, is in M for 1 # 0 and a, is a unit, Hence for i ¥ 0, a; is nil-

potent, Thus f(x) is a unit.

Definition 2.2. An element b of a ring is prime if the prine-

cipal ideal (b) is prime.

Before we can make any statement concerning primes in R[x], we
need to consider what happens to irreducibles in R[x] under the natural
map from R[x] onto (R/M)[x]. We see that the image of a monic irreduc-
ible polynomial in R[x] need not be irreducible in (R/M)[xJ.

Example 2.2, Let f(x) = x>+ 2x + 2 be in (z/42)[x]. Tt is
easy to check that f(x) is irreducible in (2/42)[x]. However ?(x) = x2
is not irreducible in (2/22)[x].

We are led to the following set of polynomials in rRx].

Definition 2.3, Let J denote the set of all polynomials f(x) in

R[x] such that f(x) has distinct roots in the algebraic closure of R/M.
Lemma, Let f(x) be in J. Then there exists a sequence {fj(x)s
of monic polynomials in J with

deg fj(x) = deg ?(x)
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= J
fd(x) = fj+l(x) mod M

and for some gj(x) in M[x] and unit bj in R

bjf(x) = fj(x) + gj(x)fj(x) mod Mj.

Proof: Let £(x) = = bixi where bn # 0 and deg ?(x) =t & n,

=1
-1 i . .
Choose gl(x) = 0 and fl(x) = bt (%g bix )e By induction assume
{fi(x)} g—l have been selected to satisfy the lemma, Then bjf(x) =

fj(x) + gd(x)fj(x) + h(x) where h(x) is in Mj[xj. Since fj(x) is monic

we may select -g(x) and r(x) in R[x] with h(x) = q(x)fj(x) + r(x) where
deg r(x) < deg fj(x) = deg ?(x) or r(x) = 0. Set fj+l(x) = fj(x) + r(x)

- + . . .
and gj+l(x) gj(x) q(x). We claim that gj+1(x) is in M[x]) and r(x)

is in Mj[xJ. If r(x) = O this statement is trivial. Otherwise suppose

t=1 t n
= + + 00 t + = + see .
fj(x) a, + ax a, ¥ x and q(x) ¢, t ;X + e X

+ + e~
In the product f, (x)a(x) the coefficient of x° " is c s oOf gorm=l g

s
. - j £ -
¢ 3, + o1’ etc, Since h(x) = 0 mod MY and deg r(x) deg fj(x) =
cr s . J
t, it is easy to see that cm, then cm-l’ then cm_a, etc, are in M" and
consequently q(x) is in Mjfx]. Then r(x) = h(x) =~ q(x)fj(x) is in
¥I[x]. Then

bjf(x)

]

fj(x) + gj(x)fj(x) + h(x) '

(fj(x) + r(x)) + (gj(x) + q(x))(fj(X) + r(x))

- r(x)gj(x) - r(x)q(x)

f.+1(x) + g

; l(x) - r(x)(gj(X) + q(x))

205,

u

1
fj+l(X) + gj+l(x)fj+l(x) mod MY 7,

Corollary. Let f be in J. Then there exists a monic¢ polyno-

mial £*(x) in J with T(x) = T*(x) and, for an element a in R, f(a) = 0

if and only if f*(a) = O.
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Proof: Let t be the degree of nilpotency of R. Then by the
lemma btf(x) = ft(x) + gt(x)ft(x) = (1 + gt(x))ft(x) whe?e ft(x) is

monic, b, and 1 + gt(x) (since gt(x) is in M[x]) are units, and £(x) =

t
?;(x). Thus let f¥*(x) = ft(x).

Theorem 2.3, Let f(x) be a monic polynomial in R[x].

(a.) If f(x) is irreducible in (R/M)[x] then f(x) is irreducible.
(b.) If £(x) is irreducible then £(x) = (g(x))n where n is a positive
integer and g(x) is irreducible in (R/M)[x].

(ce) If f(x) is in J then f£(x) is irreducible if and only if ?(x) is
irreducible in (R/M)[x].

Proof: To prove (b.) suppose ?(x) is not the power of an
irreducible, Then ?(x) = E(x) E(x) where E(x) and H(x) are relatively
prime., By Hensel's Lemma there exist monic relatively prime polynomials
g(x) and h(x) in R[x] such that f(x) = g(x) h(x). Thus f(x) is not
irreducible,

For (a.) suppose T(x) is irreducible over R/M and f(x) =
g(x) h(x). Then E(x) = E(x) h(x). But ?(x) is irreducible over a
field hence either E(x) or K(x) is a unit in R/M. Suppose E(x) is a
unit. Then by Theorem 2.2, h(x) is a unit in R[xJ. So f(x) is irre~
ducible. Similarly if g(x) is a unit.

The final statement follows from (a.) and (b.,) and the defi-
nition of J.

Corollary. There exist monic irreducible polynomials in J
of degree n for any natural number n, Hence there are infinitely many
monic irreducible polynomials in RlxJ.

We are now in a position to prove a theorem on primes in R[x].



26

Theorem 2.4, If f(x) is a monic prime polynomial in R[x] then
f(x) is irreducible and in J.

Proof: 1If f(x) is prime then (f(x)) is a prime ideal. So
R[x]/(£(x)) is a finite integral domain., But finite integral domains
are fields, Thus (f(x)) is a maximal ideal. Consider the natural map
of R[x] onto (R/M)[x]. Since this is an epimorphism and (?(x)) is the
image of (£(x)) under this map, (?(x)) is maximal, So ?(x) is irreduc-
ible., Hence f(x) is irreducible and in J.

Note that many of the properties of polynomials in F[x], F a
field faill to carry over to polynomials over finite local rings, For
.example we have the following characterization of maximal ideals in
R[x1.

Theorem 2.5, If M is the maximal ideal of R then an ideal I in
R[x] is maximal if and only if I = (M, f(x)) where f(x) is a monic irre-
ducible polynomial in J.

Proof: First observe that I N R is prime, hence maximal.,
Since R is local I N R = M, Further (R/M)[x] ¥ RI[x]/MR[x] where
MR[x] is the smallest extension of M in R[x]. Hence I contains the
kernel of the natural surjection of R[x] onto (R/M)[x]. Let I' be the
homomorphic image of I in (R/M)[x]. Then I' is maximal. Since R/M is
a field, It = (?(x)) where ?(x) is a monic irreducible polynomial in
(R/M)[x]. Let £(x) be a monic preimage of f(x) in R[xJ. Then f£(x) is
also in J. By Theorem 2.3, f(x) is irreducible in R[x]. Since I' is
the homomorphic image of (M, f(x)), we conclude by the Correspondence
Theorem that (M, f(x)) = I,

Example 2.3 Irreducible polynomials need not be prime even
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if they are in J. If f(x) is irreducible, prime and in J then
R[x]/(£(x)) is a finite integral domain, hence a field. Thus f(x) gen-
erafes a maximal ideal. From Theorem 2.5 we see this is not the case if
R is not a field.

Example 2.4. Irreducible polynomials need not be relatively
prime. Consider the polynomials x2 + x+ 1 and x2 + 3x + 1 where the
coefficients are from Z/4Z. However we do have:

Theorem 2.6. Let f(x) and g(x) be monic irreducible polynomials
in J. If £(x) £ g(x) in (R/M)[x] then £(x) and g(x) are relatively
prime and converselye.

Proof: By Theorem 2.3 f(x) and g(x) are irreducible in (R/M)[x].
Since R/M is a field and ?(x) and E(x) are distinct, they are relatively
prime in (R/M)[x]. Hence there exist polynomials ?&(x) and Ei(x) in
(R/M) [x] such that ;i(x) ?(x) + Ei(x) E(x) = 1, Let fl(x) and gl(x) be
preimages in RIx] of the polynomials ?l(x) and El(x), respectively.

Now fl(x) f(x) + gl(x) g(x) is a unit by Theorem 2.2. Hence f(x) and
g(x) are relatively prime.

Conversely, suppose that f(x) and g(x) are relatively prime.
Then there exist polynomials fl(x) and gl(x) in R[x] ‘such that
fl(x) f(x) + gl(x) g(x) = 1. Hence ?(x) and E(x) are relatively prime.
Thus since ?(x) and E(x) are not units, ?(x) # E(x).

The following lemma can be found in [4.] and is due to Nakayama.
It will be needed to characterize a certain class of poiynomials.

Lemma. Let f£(x) be a monic polynomial in R[xJ. If R[x]/(£(x))
=I® J where I and J are ideals in R[xJ/(f(x)) then there exist rela-

tively prime, monic polynomials g(x) and h(x) in R[x] such that
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g(x) h(x) = £f(x) and I = (&(x))/(£(x)) and J = (h(x))/(£(x)).

If F is a field and f(x) is an irreducible polynomial in Flx]
we obtain a field extension of F by considering F[xJ/(f(x)). 1In
the case of finite local rings it will be important to find a way of
generating local extensions of R Hence we are led to the following:

Definition 2.4+ A monic polynomial f£(x) in Rlx] is sald to be
local if R[x]/(£(x)) is a local ring.

Theorem 2.7. (Characterization of local polynomials) A monic
polynomial f(x) in R[x] is local if and only if ?(x) is the power of an
irreducible polynomial in (R/M)[x].

Proof: If ?(x) is not the power of an irreducible polynomial
in (R/M)[x] then ?(x) = E(x) E(X) where E(x) and E(x) are monic rela=
tively prime polynomials in (R/M)[x]. Then by Hensel's Lemma there
exist monic relatively prime polynomials g(x) and h(x) in R[x] such
that £(x) = g(x) h(x). By the Chinese Remainder Theorem R[x]/(£(x)) =<
R[x1/(n(x)) 6 R[x1/(g(x)). Thus R{x]/(f(x)) is not local. Hence f(x)
is not a local polynomial,

Conversely, if f(x) is not local then R[xJ/(f(x)) = Il @ I, for

2
some ideals I, and I, of R[x1/(f(x)). But by the above Lenma, I, =
(8(x))/(£(x)) and I, = (h(x))/(£(x)) for some g(x) and h(x) in R[x]
where the g(x) and h(x) are relatively prime and g(x) h(x) = f£(x).
Since g(x) and h(x) are relatively prime, there exist gl(x) and hl(x)
in R[x] such that gl(x) g(x) + hl(x) h(x) = 1. But under the canonical
map we see that this implies that E(x) and z(x) are relatively prime,

Since g(x) and h(x) are monic neither E(x) nor ;(x) are units. Hence

g(x) h(x) = £(x) is not the power of an irreducible in (R/M)[x].
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Corollary, If f(x) is a monic irreducible polynomial in RIx]
then R[x]/(£"(x)) is local for any n.
Proof: Since R is a Hensel ring, T(x) = g"(x) where g(x) is an
irreducible polynomial in (R/M)[x]. Hence f(x) is local by the theorem.,
We conclude this chapter with some remarks about factorization

in R[x].
k k

fl(x) 1., fr(x) T
tl tS
gl(X) ceoe gs(X)

Remark., Let f(x)

where fi(x) and gj(x) are monic irreducible polynomials in J. Then
for every i there exists a j such that deg fi(x) = deg gj(x) and ;;(x)
= Ej(x). A corresponding statement holds with fi(x) and gj(x) inter=
changed.

Proof: Let m: R[x] —> (R/M)[x] be the map which reduces the
coefficients of f(x) in R[x] modulo the maximal ideal M, Since R is a
Hensel ring, T preserves monic irreducible polynomials in J, If E(x)

denotes the image of f(x) under T then
- kl - kr
fl(X) ) fr(X)

t t
- 1 - s
gl(x) e gs(x> .

?(x)

1!

Since (R/M)[x] is a unique factorization domain, ?;(x) = Ej(x) for some
j and the result follows,.

Lemma A. Let R be a finite local ring, f(x) a monic polynomial
in R(xJ. Supposze f(x) = fl(x) coe fr(x) where fi(x) is a monic irre=-
ducible polynomi:l in J. Ifkthe fi(x) are pairwise relatively prime

and f(x) = gl(x) ... gs(x) ® where gi(x) is a monic irreducible poly=-

nomial then ki =1 fori=1, eee 5 8y 8 = I, the gi(x) can be ordered
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so that ;;(x) = E;(x) and gi(x) is in J.
Proof: Recall that R is a Hensel ring and that (R/M)[x] is a
uniéue factorization domain, Since fi(x) is in J, ;;(x) is irreducible.
Hence ?i(x) cos ;;(x) is the unique factorization of f(x) into primes,

Since the fi(x) are pairwise relatively prime, ?;(x) £ T (x) for i £ J.

J
=\ "= .
So f(x) is square=free. Let qi(x) = gi(x) where qi(x) is a monic

] e
coe qs(x) is a

irreducible polynomial in (R/M)[x]. So ?(x) = ql(x)
factorization of ?fx) into primes. Comparing the two factorizations of
?(x), we conclude that ni =1l fori=1, ¢e. 5 s. Hence s = r, qi(x) =
E;(x) and there exists an ordering so that E;(x) = ?;(x). Since qi(x)
= E;(x) is irreducible, we conclude that gi(x) is in J.

Lemma B, Let R be a finite local ring and f(x), fl(x) and
fa(x) be polynomials in R[x] with f£(x) and fl(x) monic irreducible
polynomials in Je. If ?(x) # ?l(x) and f(x) divides fl(x) fa(x) then
f(x) divides fa(x).

Proof: Since T(x) # ?i(x) and f(x) and fl(x) are monic irre-
ducible polynomials in J, f(x) and fl(x) are relatively prime. Hence
there exist g(x) and gl(x) in Rlx] such that £(x) g(x) + fl(x) gl(x) =
1., So f(x) g(x) fz(x) + fl(x) fa(x) gl(x) = fa(x). "Phus f(x) divides
£,(x).

Lemma C, Let R be a finite local ring. If f(x) = fl(x) £,5(x)
where fi(x) is a monic irreducible polynomial in J and ?i(x) £ ?é(x)
then f(x) factors uniquely into monic irreducible polynomials.

Proof: Suppose f(x) = 81(x)kl coe gr(x)kr is a factorization
of f(x) into monic irreducible polynomials., By Lemma A, k, = 1 and

i
r = 2 and gi(x) is in J., Without loss of generality we may suppose
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that ?&(x) = Ei(x) and ?é(x) = Eé(x). Hence fl(x) divides gl(x) ga(x).
But ?i(x) £ Eé(x). Thus by Lemma B, fl(x) divides 81(X)f Since they
are monic irreducible polynomials of the same degree we may conclude
that fl(x) = gl(x). A similar argument shows that fa(x) = ga(x).

Corollary. Let R be a finite local ring. If f(x) =
fl(x) voe fr(x) where the fi(x) are monic irreducible polynomials in J
with ;;(x) £ ¥j(x) for i £ j, then f(x) factors uniquely into monic
irreducible polynomials.

Proof: Similar argument to that of the proof of Lemma C and
induction on r.

In general the above does not characterize all monic polynomials
which factor uniquely into monic irreducible polynomials in J. For
example, if R is a finite field then all monic polynomials factor
uniquely into monic irreducible polynomials in J. However we see below
that in some cases there are only those described above.

Theorem 2.8 Let R be a finite local ring with principal maxi=-
mal ideal M. Let p be a generator for M. Suppose n is the degree of
nilpotency of M. Suppose R is not a field. If fl(x) and fa(x) are
monic irreducible polynomials in J such that ?l(x) = ;é(x) then
fl(x) fa(x) is not uniquely factorable into monic irreducible polynomials
in J if any one of the following holds:

(1) deg fl(x) is greater than 1.

1 and fl(x) - fa(x) £ pn-l.

(ii) deg fl(x)

2o,

(111) deg £(x) = 1, £(x) = £,(x) = p""* and 2p""
Proof: Suppose (i) holds. Note that deg fl(x) = deg fa(x) = B
s-{

Then fl(x) - fa(x) = ;Z;mixl where m, is in M and hence divisible by p.
e
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hal
So fl(x) - fa(x) = pZ:m 'xi for some m,' in R, Consider h(x) = fl(x) +

i
n=] nel
P (p =~ 1) and q(x) = ra(x) + p o Then h(x) and q(x) are monic irre=

ducible polynomials in J since h(x) and a(x) are irreducible poly-
nomials in (R/M)[xJ. But

p=1) £,(0 + £ (x) "

n-l(

h(x) q(x) fl(X) fa(x) +p

n=1 -]l
+p T (p = 1)p"

]

£,(x) £,(x) + "o - 1) £,(x) + pn'l(fa(x)
+ z: mixi) + pZn-Z t
£100) 1,00 + (" (p = 1) + P 1,0

+ 24 pn-lmixl

fl(x) fz(x) + 25 pn-lmixi

n

fl(x) fz(x).

Where t above is some element in R[x]. To ccmplete the proof we need
only show that h(x) #£ fl(x) and h(x) £ fa(x). Suppose h(x) = fl(x).
Then p" Y(p ~ 1) = O. This is impossible. If h(x) = £,(x) then

fl(x) - fa(x) = pn-l. This is possible. If this is the case let

hy(x) = 1,00 + p"7

(p - 1) x. One then checks that hl(x) q(x) gives
another factorization of fl(x) fz(x). We note that the above proof
fails if the degree of fl(x) is one. Suppose (ii) holds. Then the
above proof also suffices. Suppose (iii) holds. Then fl(x) =x+ a

for some a in R and fz(x) =X+ a= pn-l. In this case let h(x) =

x4+ a+ Pn-l and q(x) = x+ a - an-l. Again one checks that h(x) a(x)
equals fl(x) fa(x).

The following example shows that Theorem 2.8 can not be improved.

Example 2.5. Let R be the integers modulo 4. The maximal ideal
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of R generated by 2. Let fl(x) =x + 1 and fa(x) = x+ 3 Theée
polynomials do not satisfy any of the conditions of Theorem 2.8. Note
that (x + 1)(x + 3) = x2+ 3, Ifx+ aand x+ b are in fZ/qz)[x] and
(x + a)(x + b) = x2 + 3 then a+ b =0 and ab = 3. It is impossible
to find a pair other than 1, 3 in 2Z/4Z which satisfles these conditions.
Hence fl(x) fa(x) is uniquely factorable into monic irredgcible poly=-
nomials in R[x].

Earlier we noted that any polynomial in R[x] which is prime is
also irreducible and in J. However we noted that an irreducible poly-
nomial need not be prime. We now show that this property distinguishes
finite fields and finite local rings which are not fields.

Lemma. Let f(x) be a monic irreducible polynomial in J. Then
f(x) is prime if and only if M & (£(x)).

Proof: If f(x) is prime then R[x]/(f(x)) is a finite integral
domain. Hence R[x1/(f(x)) is a field and (f(x)) is maximal. Thus by
Theorem 2.7, M < (f(x)).

Conversely, if M € (f(x)) then (f(x), M) = (f(x)) is a maximal
ideal. Hence f(x) is prime.

Theorem 2.9, (Characterization for finite fields) The follow=
ing are equivalent if R is a finite local ring:

le R is a finite field.

‘2. Every irreducible polynomial in R[x] is prime.

3., There exists at least one monic irreducible polynomial in
R[x] which is prime.

Proof: (1.) implies (2.). If R is a field then R[x] is a unique

factorization domain. Hence irreducible and prime are equivalent.
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(2,) implies (3.). By the Corollary to Theqrem 243 there are
infinitely many monic irreducible polynomials in R{x]. Hence the result
follows.

(3.) implies (l.). If R is not a field then M ¥ 0. We will
show that R[x] has no monic primes. Let f(x) be a monic prime polyno-
mial in R[xJ. By Theorem 2.4, f(x) is irreducible and in J. Hence by
the above lemma, M < (f(x)). Let a be a non=zero element of M. Since
M S (f(x)) there exists a non=zero g(x) in R[x] such that a = g(x) f(x).
But f(x) is monic, so deg g(x) f(x) = deg g(x) + deg f(x) 7 1. But
this is a contradiction since deg a is not grzater than or equal to 1.

Corollary., Let R be a finite local ring which is not a field.
Then

i. No monic polynomial is prime.

iji., No prime ideal is generated by a monic polynomial.



CHAPTER III
GALOIS THEORY OF FINITE LOCAL RINGS

One of the most renowned theorems in mathematics is the Funda-
mental Theorem of Galois Theory for fields. The theorem'gives a lattice
inverting correspondence between the separable subfields of a finite
Galois extension F of a field K and the subgroups of the group of all
K=automorphisms of F. S. Chase, D. K. Harrison and A, Rosenberg [5.]
have proven its analog for commutative rings with finitely many idem-
potents. Theorem 3,1 is the statement of the Chase, Harrison, Rosenberg
theorem in the context of finite local rings.

In this section R denotes a finite local ring with maximal
ideal m.

Theorem 3.). Let S be a finite local Galois extension of R.

Let G be the group of all R-automorphisms of S. Then G is finite and
[6:1] = Rank, (S) and there is a one to one lattice inverting bijec-
tion between the subgroups of G and the subrings of S which contain R
and are separable over R. Normal subgroups correspond to normal exten=
sions, The correspondence is given by H<r—a-sH and T ¢«

{0“ in G: 0°(x) = x for all x in T} where sH is the subgroup of G whose
elements leave S elementwise fixed.

The following is the ring analog of the theorem in field theory

which states that any finite extension can be embedded in a finite nor=

35
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mal extension.

Theorem 3.2, Let S be a finite free local separable extension
of Re Then there exists a finite normal local separable extension N of
R with S an extension of R contained in N,

Proof: See Ingraham and DeMeyer [8.].

Before we proceed we need to make an observation on finite
Galois extensions.

Lemma. If S is a finite local Galols extension of R then § is
a free R~module. Further [S : R] = [S/mS : R/m].

Proof: By Theorem 1.15 there exists e in §°, e = 2 s 8t

such that 2. sit =land (1  x=~-~x& 1l)e = 0, Let £, be in HomR(S, R)

J

g%ap“(xtj). Then ., eee s £ 5 815 ses 5 5 forma

"dual' basis for S over Re Thus S is projective and hence free over R.

i
be given by fj(x)

The last statement is now an immediate consequence of Theorem 1l.lk.

The following is due to G. Azumaya (4.]. We state it for finite
local ringse

Theorem 3.3. Let f(x) be a monic polynomial in R[x], R a finite
local ring. If ?(x) has a non-multiple root a in R/m then f(x) has one
and only one root in R which is a representative of ;.

Proof: Suppose 2 is a non-multiple root of ?(x) in R/m then
there exists a monic polynomial ?i(x) in (R/m)[x] such that (x -';)?i(x)
= ?(x) and'?l(;) £ 0. Since R is a Hensel ring, there exist monic repre-
sentatives fl(x) and x - a in R[x] of ?l(x) and x - a respectively such
that (x - a) fl(x) = f(x)e Clearly a is a root of f(x) in R. 1If a; is
a root of f(x) such that a = ;i then Ei(;l) # 0. Hence ?l(;i) is a unit

in R/m. Thus fl(al) is a unit in R. Hence (al - a) fl(al) = f(al) = 0.
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Thus a, = a.

Corollary. If f(x) is a monic irreducible polynomial in J
then f(x) has no multiple roots in any local extension of.R.

Goro Azumaya [4.] has also shown how to obtain R-automorphisms
of S from R/m~automorphisms of S/mS.

Theorem 3.4. Let S be a finite local separable free extension
of R then for any R/m-isomorphism O of S/mS there exists éne and only
one R-isomorphism ¢~ of S which induces 0.

Proof: Since S/mS is a finite field, S/mS = (R/m)[al. Let T(x)
be Irr (R/m, a) and suppose [S/mS : R/m] = deg £(x) = n. Let £(x) be a
representative of f(x) in R[x]. From Theorem 3,3 there exists one and
only one a in S such that a is a root of f(x) and a representative of ;.

Now 1, Z, cos a n=1 is a basis of S/mS over R/m. Since S is R-free it

follows that 1, a, ... , & © is a free R-basis of S. Let a =G (a).
Then ;; is a root of ¥(x). Hence there exists one and only one root a,
of f(x) which is a representative of ;;. Define G (a) = a e This
extends to a unigue ring homomorphism of S which fixes the elements of
R, Since 1, Ays ees s aon-'l is also a free R=basis of S it follows
that O is injective. Since the set is finite we conclude that (¢~ is an
isomorphism., Uniqueness follows from the preceeding result,

G. J. Janusz [10.] has introduced the concept of separable
element and separable polynomial and investigated some of their proper~
ties,

Definition 3.1 A monic polynomial f(x) in R[x] is said to be

separable if R[x]/(f(x)) is a separable extension of R.

Definition 3.2, If S is an extension of R then an element s in
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S is separable if s is the root of some separable polynomial in R[x].

Definition 3.3, Let f(x) be a monic polynomial in R{x] with

nel

deg £f(x) = nand 1 + (£f(x)), x+ (£(x))) eee » X + (£f(x)) be a basis

for R[x]/(£(x)) over R, Let fi be the natural module projections from
R[x]/(£(x)) onto R. Define t: R[x]J(£(x)) >R by
t(s) = =i £ (sx, + (£(x)).
y 3
The map t is called the trace of R[x]/(£(x)) over R.

The following is due to Janusz [10.].

Theorem 3.5. Let f(x) be a monic polynomial in R[x], then f(x)
is separable if and only ifythe following is true:

Let t be the trace map of the free R-module R[x]/(f(x)) and let
¥y =x+ (f(x)). If n = degree of f(x) and if we let [t(yi yj)] be the
n x n matrix whose i + 1, j + 1 entry is t(yi yj) then the determinant
of [t(y* yj)] is a unit in R,

The separablity of the following example is an immediate conse=
quence of the above theorem,

Corollary. Let R be a finite local ring. Let R have pn cle=
ments where p is a rational prime. Then for n greater than 1 and a in
R, the polynomial xn = a is separable if and only if a is a unit and p
and n are relatively prime.

Theorem 3.6, A monic polynomial f£(x) in R[x] is separable if
and only if f(x) is square-free in (R/M)[x].

Proof: Let t and t! be the trace maps of R[x]/(f(x)) and

(R/m)[x1/(t(x)) respectively. Then we see that det [t(yi yj)] =
det [t'(y'i y'j)] where y = x + (f(x)) and y' = x + (f(x)). Then by

Theorem 3.5, f(x) is separable over R if and only if det [t(yi yj)] is
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a unit in R. However det [t(yi yj)] is a unit in R if and only if
det [t'(yi yj)] # 0 in R/m., The result now follows from the next lemma.

Lemma. Let f(x) be a monic polynomial in F[x], F a finite
field. Then f(x) is separable over F if and only if f(x) is square-=free.

Proof: By a proof similar to the proof of Theorem 1.20 it can
be shown that F[x]/(£f(x)) is separable over F if and only if Flx]/(£(x))
is the direct sum of separable field extensions of F. If F[x]/(f(x)) is
separable then it has no nilpotent elements other than zero. Hence f(x)
must be square-free,

Conversely, if f(x) = pl(x) coe pn(x) where the pi(x) are dis=-
tinct irreducible polynomials in F[x] then R[x1/(f(x)) =
) F[x]/(pi(x)). But F[x]/(pi(x)) is a finite field extension of F
and hence is separable since F is perfect,

The following result gives the connection between separable and
irreducible polynomials in R[x].

Theorem 3.7. A monic polynomial f(x) in R[x] is separable and
local if and only if f(x) is an irreducible polynomial in J.

Proof: Let f(x) be a monic polynomial in R[x]. Recall f(x) is
local if and only if ?(x) is the power of an irreducible polynomial in
(R/m)[x]. But £(x) is separable if and only if ?(x) is square=free.
Thus we have f(x) is separable and local if and only if ?(x) is irre-
ducible, The result follows from Theorem 2.3,

Corollary. Let f(x) be a separable polynomial in R[x] then
f(x) has distinct roots in any local extension of R.

Proof: Let a and b be roots of f(x) in some local extension of

of Re Then 2 and b are roots of ?(x) in some extension of R/m. But
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;(x) has distinct roots in any extension., Hence a - b is a unit. But

then a - b is a unit and the result follows.

In the following result we prove the analog of thé theorem for
finite fields which states that if F and K are finite fields and K is_
an extension of F then K is normal over F and the Galois group is cyclic,

Theorem 3.8, Let S and R be finite local rings., Let S be a
separable extension of R, Let M and m be the maximal ideals of S and R
respectively. If S is free over R then S is normal over R and G(S, R),
the Galois group of S over R, is isomorphic to G(S/M, R/m). Hence
G(S, R) is cyclic.,

Proof: Let H be the group of R-automcrphisms of S. If 07 is in
H then (0(a) is a unit or a nilpotent depending on whether a is a unit
or a nilpotent. Hence 07 induces an R/m-~homorphism of S/M. Call it 0.
We note that it is actuvally an automorphism. For EF(Z) = 0 if and only
if ¢°(a) is in M. But from above we know ((a) is in M if and“only if
a is. But then a = O. Since S/M is finite and O is one to one, it is
also onto. Let T be the map from H into G(S/M, R/m) given by T(J") = T.
It is clear that T is a group homomorphism. However by an application
of Theorem 3.4 we conclude that T is also a one to one correspondence
and hence an isomorphism. Since S/M is a finite field we conclude that
H is cyclic. By Theorem 3.2 we can imbed S in a Galois extension of R
which is local. From the above argument we know that its Galois group
is cyclic, By Theorem 3.1 we can conclude that S is normal over R.

From an earlier lemma we see that the condition of being S-free

is not extra. What we have shown is that to require S to be free and

separable is equivalent to S being Galois.



41

The following result is due to Janusz [10.] and is extremely
useful in finding Galols extensions.

Theorem 3.9. Let S be a local Galois extension éf R and suppose
a is an element of S with R[a] a separable extension of R, Let a = a),
aa, see 3 ael.m be all the distinct images of a under the Galois group of
S. If g(x) is any polynomial in R[x] such that g(a) = 0, then g(x) is
a multiple of f(x) = (x - al) eee (x = a ) by an element of R(x].

Theorem 3,10, Let S be a local Galois extension of R,

(1.) The Galois group of S over R permutes the roots of a
separable local polynomial f£(x) in R[x] where f(x) is satisfied by some
primitive element of S and deg f£(x) = [S : RJ.

(2.) If f(x) is a polynomial described above and a is a primi=-
tive element of S over R satisfying f£(x) then S = Rlal = RIx1/(£(x)).

Proof: This is an immediate corollary of Theorem 3.9 and the
observation that R[x] =——> R[a] is an R=epimorphism.

We are now in a position to give a characterization of Galols
extensions of finite local ringse.

Theorem 3,11, If R is a finite local ring then S is a local
Galois extension of R if and only if S is isomorphic to R[xJ/(£(x))
where f(x) is a monic irreducible polynomial in J.

Proof: Suppose S is a local Galois extension of R then by
Theorem 1.22, S has a primitive element over R == say a. By Theorem 3,10,
s 2 R[x]/(£(x)). Hence f(x) is separable and local. But then by
Theorem 3.7, f£(x) is an irreducible polynomial in J.

Conversely, if f(x) is irreducible and in J then f£(x) is local

and separable., It follows from the remark following Theorem 3.8 that
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R[x1/(£(x)) is also normal and hence Galois.

In the case of finite fields the following result follows from
the uniqueness (up to isomorphism) of the gplitting fielé of a poly-~
nomial of the form xPn - X for some rational prime p and natural number
n.

Theorem 3,12, For any rational prime p and natural number n

there exists a unique finite field with pn elements,

Related to the above is the following well=known result,

Theorem 3.13. Let GF(q") and GF(q) be the Galois fields of q-
and q elements respectively. Let n be the number of primitive elements
of GF(qr) over GF(gq) and t the number of monic irreducible polynomials
in GF(q)[x]. Then tr = n.

Proof: Recall GF(q') = GF(q)[a] where a satisfies a monic irre-
ducible polynomial of degree r, Conversely a root of a monic irreducible
polynomial of degree r is a primitive element for GF(qr) over GF(a).

This follows from the uniqueness of Galois fields. Also the irreducible
polynomizls of degree r have r distinct roots. Hence tr = n.

A closer examination of the above proof reveals that the above
theorenm is actually equivalent to the uniqueness theorem for Galois
fields. Since our characterization of local Galois extensions in the
commutative ring case is identical to that of the field case, we sece that
the following two theorems are equivalent,

Theorem 3.14. Let S be a local Galois extension of rank r over
R, R a finite local ring. Let t. be the number of monic irreducibdble

1

polynomials of degree r in J and n., the number of primitive elements of

1

S over R then tlr = nl.
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Theorem 3,15, For each natural number r and finite local ring
R there exists exactly one (up to isomorphism) local Galois extension S
such that [S 1 R] = r, |
Proof: The existence part of Theorem 3.15 follows from the
corollary to Theorem 2.5, Let S be a local Galois extension of rank r

over R, Let M and m be the maximal ideals of S and R respectively.

Then tl = tlm\r and nl = n\M\, where t and n are the corresponding val=
ues for S/M. Now tr = n, Hence t.r = n, if and only if )Ml = ]m T,
Now note that if a is a primitive element for S then 1, 2, s.. , &' +
is a basis for S over R since 1, ;, ry Z r=1 is a basis for S/M over
R/m. Ifd + diat ...+ d_,a" " is in M where 4, is in R then

G, +dat ... rd _a ™l _ 0. But 1, a ... , a " is a basis for

S/M over R/m. Hence E; = 0, Hence d. is in R N M =nm,

Conversely, any element of the above form is in M, So ]M[ = ‘mlr
and the theorems above are proven,

We conclude this section with some miscellaneous observations
and examples,

The following is a special case of a theorem of Janusz [10.]
and will be useful in the examples.

Theorem 3,16, Let S be a local Galois extension of R and a an
element of S. Then R[a] is a R-separable extension of R if and only if
a is a separable element over R,

It is then immediate from this result that any primitive element
of S over R is separable,

Example 3.1, Let R = 2/4%Z., Then R is a finite local ring with

maximal ideal 2Z/42. Consider f(x) = x3 + x + 1 in R[x]. Since £(x) =
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X + x + 1 in (2/22)[x] is irreducible, £(x) is irreducible. Hence

S = R[x]/(f(x)) is a local Galois extension of R, The rank of S over R

is 3; Hence by the Fundamental Theorem G(S, R) is a cyclic group of

order 3 and there are no proper R-separable subrings of S other than R.
Example 3.2. Let R = Z/4Z and f(x) = xl* + x3 + xa + x+ 1 be

in R[x]. Since f(x) is irreducible, S = R[x]/(£(x)) is a local Galcis

extension of R, Thus G(S, R) = <0 is a cyclic group of order 4. Thus

we have the following chain of Reseparable extensions of Rt RS T £ S

where T & R[x]/(g(x)) and g(x) = xa + x 4+ 1, By Theorem 3,4 we can
construct the Re~automorphisms of S from those of G(S/M, R/m). One first

checks that if a is a root of f£(x) in S then

3

f(x) =(x=a2a) (x - aa) (x - a3) (x = (327 + 3a2+ 3a + 3)).

Now 1, a, az, e'.3 is a basis of S over R. Hence

2

6-(a) = a

0Xa) = 320 + 3a° + Za+ 3
3

c*(a) = a

o*(a)

1

.

This suffices to define 07, G'l, C!'3 and 0’4= identity. Now g(x) =

x> 4 x+ 1= (x=(a>+a"+2) (x=(3a2+ 32"+ 1)). Notice that

(2@ + a2+ a) = (@(a))” + (Ca))® + 2

=3a9+a8+2a7+3a6+2a5+3a4+2a3+a2+3a+2
= a.3 + ea.‘2 + 2,

So a + a° + 2 is in the fixed ring of 07 Also R[a® + a° + 2] is a

separable R=-subring of S by Theorem 3,16, In fact T = R[a3 + a2 + 2],

Let us recall the following theorem from field theory:

Theorem 3,17. Let K be a field of degree n over GF(q), the
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Galois field with q elements. Then the Galois group of X over GF(q) is
the cyclic group of order n generated by the automorphism x "3>xq.
| For a proof one can see Albert [1.].

For the ring case although the Galois group is cyclic the gener-
ating map cannot be described as a power map on all the elements,

Example 3.3, Let R be the integers modulo 4 and S = R[a] where
a satisfieg x2 + x+ 1, Then if M and m are the maximal ideals of S
and R respectively then |G(S/M, R/m)| = [S/M : R/n] = 2. Let {i}ﬁsﬁ =
G(S/M, R/m). Note that x2 +x+1=(x=a) (x=(3a+ 3)) in 8[xJ.
The proof of Theorem 3.4 yields that G(S, R) = %1,0‘} where ( is
given by 0 (a) = 3a + 3, Now no power of 2a is 2a + 2 = g (2a). Also
0°(3a + 1) = 3¢6(a) + 1 = 3(3a+ 3) = a+ 2, It is easy to check that
a + 2 is not a power of 3a + 1. However U(a) = 3a + 3 = az. Hence
G(S, R) is generated by an automorphism which takes a primitive element
to its square.

Lemma., Let S be a finite local Galois extension of R, m the
maximal ideal of R and f(x) a monic irreducible polynomial in Je. If
a and b are roots of f(x) in S then there exists a monic irreducible

q

polynomial g(x) in J such that a® and % are roots of g(x) where q =

lR/ml.

Proof: Let f(x) be a monic irreducible polynomial in J with
a and b roots of f(x). Since £(x) is irreducible in J, f(x) is irre-
ducible in (R/m)[x]. So f(x) = Irr (R/m, a). Since R/m is a finite

e is also a root of ?(x). So r(aq) =t is in

field with g elements a
me Let g(x) = f(x) - t. Clearly E(x) = ?(x). So g(x) is a monic

irreducible polynomial in J. Further g(aq) = f(aq) - t = 0., Consider
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the polynomial h(x) = g(x%) in R[x]. Note that a is a root of h(x).

By Theorem 3.9, h{x) is divisible by f(x). Since b is a root of f(x),

P must be a root of h(x). Hence p? is a root of g(x).

Theorem 3,18, Let S be a finite local Galois extension of R, M

and m the maximal ideals of S and R respectively. Let [S : R] = n and

q = lR/m!. Then there exists a primitive element t with S = R[t] such

that the R-automorphism G~ of S given by o°(t) = tq is a generator of

the Galois group of S over R.

Proof: Let f(x) be a monic irreducible polynomial of degree n

in J and a a root of f(x). Let A = {g(x) in R[x]: ?(x) ='E(x5§. Let

B = {b in S: b is a root of some polynomial in K}. Let Bk =

2

{t": b 15 in B} and k is a natural number. NowB 2 B? 2 8%

nel
q Ye

Further T(x) = (x = ;) (x -a q) eee (X = 2 Hence each

of B is a representative of one of the following: 2, Z q, soe
So each element of B has the form ak + ¢ where ¢ is in M and k

1, 4y eee qn-l. Hence there exists an s such that Bs = BS+1

2

L

element

R
2 4

t
and such that Bs has only n elements. Raising these to the g h power

only results in a shuffling of their order. By Theorem 3.4 and the

lemma above there exists an R-automorphism o~ of S given by (¢(t) = t

— -2 —

where t is in B°. Consider 0, 0% eee 3 0 o These are all distinct

-1

q

since G(S/M, R/m) is generated by the map x —2 x%. Hence 0 generates

G(S, R).

We note that the s in the above proof can easily be bounded.

Let r be the degree of nilpotency of the maximal ideal m of R.

if (ak + ¢) is in B where a and ¢ are described in the proof of

Theorem 3,18 then

Then
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r r r r r r r
(ak +e)? = a4 (g )(a.k)q i PP (g ) af 21, 1 .
But recall that q = pm for some prime p and natural number m. Also the

characteristic of R is a power of the same prime p. Hence q is in the

q

T
i ) for any i. Thus, the above

maximal ideal of R. Also qr-l divides (

r r
equation beconmes (ak + c)q = akq y k=1, 0y eee qn-l. Thus we

summarize our results on the Galois group:

Theorem 3.19, Let S and R be finite local rings with maximal
ideals M and m respectively. Let r be the degree of nilpotency of the
maximal ideai m and q the number of elements in the residue field R/m.
If S is a Galois extension of degree n over R then the Galois group
G(S, R) of S over R is a cyclic group of order n and is generated by
the map ¢ where O’(aqr) = aqr+l and a is a root of a monic irreducible
polynomial of degree n in J.

Definition 3.4 If a ring S is a Galols extension of R then we
say S has a normal basis over R if there exists an a in S such that
{C‘(a): ¢ in G(S, Rf} is a basis for S over R.

Theorem 3.20. (Normal Basis Theorem) Let S and R be finite
local ringse. If S is a Galois extension of R then S has a normal basis
over R,

Proof: The result holds for finite fields. We can conclude it
holds for any finite local ring by using Theorem 3.4 and Theorem 1l.14.

Theorem 3,21, Let S be a local Galois extension of R. Then
there exists a lattice preserving bijection between the subfields of
S/mS containing R/m and the separable subrings of S containing R.

Proof: Let m be the maximal ideal of R. Consider the relation
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T €= T/mT from the set of separable subrings of S containing R and the
set of separable subfields of S/mS containing R/m. We know by the Funda=-
mental Theorems of Galois theory for both rings and fields that there
exists a lattice inverting one-to-one correspondence between the separa=
ble subrings or subfields and the subgroups of the corresponding Galois
group. But G(S, R) is isomorphic to G(S/mS, R/m). Composing the iso=
morphisms and the correspondences completes the proof.

Corollary l. Let S, Sl and 52 be finite local Galois extensions
of R witﬁ sl and S2 contained in S. If m is the maximal ideal of R and

. Sl/mS1 = Sa/ms2 then S 5

1= "2

Corollary 2. Let S be a finite local Galois extension of R and
m the maximal ideal of R If T is a separable extension of R contained
in S then G(S, T) = G(S, R)/G(T, R).

Janusz [10.] has introduced a generalization of the concept of
a splitting field.

Definition 3.5 A Galois extension S of a commutative ring R
is a splitting ring for a separable polynomial f£(x) in R[x] if f(x) is
the product of linear factors in s{x] and S is generated over R by the
roots of f(x).

Recall that if F and G are finite fields with F an extension of
G then F is the splitting field of some monic irreducible polynomial in
G[x]. A similar result holds for finite local rings.

Theorem 3.22., If S is a finite local Galois extension of degree
n over R then S is a splitting ring for any monic irreducible polynomial
in J of degree n.

Proof: Let f(x) be a monic irreducible polynomial in J of
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degree n. Now L[S/M : R/m] = n. So f(x) splits in S/M. The result
follows immediately from Theorems 3.4 and 3,15.
Let k = R/m then it is well-known, for example sée Dickson [7.],

that if v(n, k) denotes the number of monic irreducible polynomials of
e
degree n where n = p, 1... P % in x[x] then

n/p, n/p.p.
v(n, k) = (/n)[lk|™ = ZJk] 1+ Z x| Tl
L L¥y

n/p P, eee P
1

+ (=1)5)x| 2 1.

Thus by Theorem 2.3, there exist

/P 1/p.p,

+ Z\k\ +d ~ eee

‘43

l/plp2 ess P

i

1
v(n, R) = (1/n)|R|™[1 = 2K

+ (=1)%]x| 1.
monic irreducible polynomials in J. Hence n v(n, R) primitive ele-
ments for a Galois extension S of R with rank S over R equal to n.

We conclude this chapter with one remark concerning elementwise
separablity. In the field case separablity is defined elementwise.
However the following is false: S is a separable extension of R if and
only if each element in S is separable over R.

Example 3.4. Consider (2/42)[a] where a satisfies the polynomial
xX2+ x+1in (2/42)[x]. Let b = 2a. Recall that by Theorem 3.16, b
is separable if and only if R[b] is a separable extension of R. The
Galois group of (2/42Z)[al over 2/42 is the cyclic group of order 2.
Hence by the Fundamental Theorem there do not exist any separable sub-
rings of (2/4Z)[a] strictly between (2/42)[a] and 2/42. Thus since b

is not a primitive element of S it follows that b is not separable.



CHAPTER 1V
A STRUCTURE THEOREM

In this chapter we show that finite local rings are homomorphic
images of certain polynomial rings.

Let R be a finite local ring with maximal ideal M., Consider
generating sets of M over R, Since these are finite sets there exist
minimal sets among them, The following shows that this number is an
invariant of M, '

Theorem 4.1, The elements {ul, eoe un} €S M form a minimal
generating set for M if and only if modulo M2 they give rise to an
R/M-basis of M/MZ. The number of elements is thus equal to the dimen=-
sion of M/MZ over R/M.

Recall that the characteristic of R is pk for some prime p and
natural number k. Also R/M has characteristic p. Two cases could then
arise. One where the characteristics are equal and one where they are
not. Following Nagata [13.] we shall handle both cases simultaneously.

Theorem 4.2, Let R be a finite local ring with characteristic
pk and maximal ideal M such that M has minimal generating set
{hl’ ese un}. Then there exists a subring T of R such that

(1) T is a separable hence simple extension of Z/Zpk.

(2) /(M N T) X R/M.

50
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(3) R is the homomorphic image of T[xl, cee 3 xn].

Proof: Since R/M is a finite field it has a cyclic group of

units, Let ; be a generator of the group of units of R/M, If ?(x) is
the minimal polynomial of Y in (2/2p)[x], 1et £(x) be a monic preimage
of £(x) in (Z/Zpk)[xJ. Since f£(x) is irreducible, f(x) is irreducible
in (Z/Zpk)[x] and is also in J. By Theorem 3.3, R contains an element
v such that f(v) = O and v is the image of v under the natural map

T: R —> R/M. Since f(x) is irreducible and in J it is separable and
hence (Z/Zpk)ij/(f(x)) is a separable extension of Z/Zpk. Further
since f(v) = 0, (Z/Zpk)[v] is a homomorphic image of (Z/Zpk)fx]/(f(x)).
Hence (Z/Zpk)[v] is a separable extension of Z/Zpk. Let T = (Z/Zpk)[v].
Also there exists a natural ring injection of T/(M M\ T) into R/M.
Since ; generates R/M =~ {0} it is clear that this is a surjection and
hence T/(M N T) &~ R/M. The proof will be complete if we show that
T[ul, coe s unJ = R. Clearly T[ul, cee un] < R, Let ¢ be in R. We

e
¢ _ mod Ms 1 and ¢ is in
s s

1l

will construct a sequence {csg such that ¢
T[ul, cee s un]. Since M is nilpotent this will complete the proof,

From the isomorphism above ¢ = a moed M for some a in T, So let co = &a.

4
Suppose cs has been constructed, Then cB = ¢ = q where q is in MS 1.

Since {ui} generate M over R, q = Z, aivi where ai is in R and vi is a

power product of the {uig of degree s + 1, Now a; = bi mod M for some

bi in T So
cC=¢ = 25b v. mod MS+2.
8 ii
Let

c =c¢c_ + b, v,
s+l s Z ii’

is in Tlu., eee » u J. Also
1 n

Clearly cs+l
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- 8+2
Cyp —C = Ot 2 bv, = c T 0mod M .
Note that the conditions (1) and (2) along with the correspond=-

ence between the lattices of separable subrings of T and subfields of

The subring T is called the coefficient

R/M imply that T is unique.

ring of R and is the largest separable extension of Z/Zpk contained

in R.



CHAPTER V
SOLUTIONS OF POLYNOMIALS OVER FINITE LOCAL RINGS

Consider the following problem: If m is a positive integer
and f(x) is in 2[x] find all x such that f(x) = O (mod m)., This is,
of course, a problem in the theory of congruences, It can be stated
algebraically as follows: Find the roots of f(x) in Z/(m). Recall
that this question is then reduced to finding the roots of f(x) in
k Ky
Z/(p) where m = 77-pi , Where the p; are distinct primes., But notice
this is what occurs when a finite commutative ring with identity is
decomposed into finite local rings., Thus the analogous question for
finite ecommutative rings with identity is reduced to finite local rings,
Let R be a finite local‘ring with maximal ideal M and residue
field R/M = ¥, Let n be the degree of nilpotency of M. Then there

exists a natural sequence of surjective homomorphisms:

O - a7 i -
R=rM —Sr™t— .., —>rH S rM— ... —>RM =K
where ker 0'; = Ml-l/Ml. Further each Ml-l/Mi is a K-vector space.
. Mi-l Mi . -

Notice the action of K on / is given by km = km where k is a
preimage of k in R/M:L under the surjection from R/Mi to K. Let

Mi-l 11 .
dimK ( /M) = i(R). The approach is then similiar to that of
solving congruences. We illustrate by constructing solutions of f(x)
in (R/M')[x] from the solutions of T(x) in (R/Ml-l)[x]. For convenience

53
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let dimK(Mi-l/Mi) = t and {%l’ cee 3 v?ﬁ be a K-basis for Minl/Mi. Let
A be a solution of ?(x) in R/Mi"'l and A a preimage of A in R/Mi. Let
a = A+ m where m is in Mi-l/Mi. Notice (Mi-l/Mi)2 = 0. Thus by
Taylor's Theorem

f(a) f(A + m)

£(A) + m £1(A) + m° @

f(A) + m £'(A)

where ff'(x) is the formal derivative and Q is some element in R/Mi. If
£f(a) = O then
f(A) = =m £'(A) = = f'(A) m (1)
. Mi-l Mi . . Mi-l Mi
and £(A) is in /M., Since {%l’ cee vé& is a basis of /M over
K, we have
G
f(A) = ?—; bi Vi

and

where bi' ai are in K. Hence (1) becomes

0

£ ot
P bi v, o+ £1(A) (%E a, vi)

s

+

1

;?;:. [bi + £1(4) aij v,

Hence for each i, O = bi + ai f'(A). Three cases arise.
(I.) £'(A) is a unit.,

Then f'(A) is a unit and each a, is uniquely determined, In

i

this case there is only one solution of f(x) for I.
(II.) f£'(A) is in M and there exists a b # O.
i
In this case there are no solutions of f(x) for A,

(I1X,) f£'(A) is in M and bi = 0 for all i.
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In this case f(A) = O for any preimage of 2. Thus there are
| k| t = |x| P, (R) solutions for A,

We conclude that we obtain all solutions of f(x) in R/Mi. For

if a is a solution of f(x) in R/M:L then ?(Z) = £(a) = 0 and hence a is

solution of ?(x) .
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