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PREFACE 

A quantity of computer components donated to the School of Electrical 

Engineering of the Oklahoma State University by the Continental Oil Com-

pany of Ponca City, Oklahoma, aided in the promotion of a project to 

design and construct a small digital computer for demonstration and 

instructional purposes in computer engineering courses. An overall organ-

izational plan has been presented in a previous paper.(l)._ This paper 

will explain the consideration~ and technical details involved in the 

design, construction, and operation of a memory address selection system 

for the parallel readout. magnetic drum memory of the OSTIC computer. 1 

I wish to express my thanks to my adviser, Prof.essor Paul A. 

M.cCollum for his guidance and inspiration. They are sincerely appreciated. 

Gratitude is also expressed to Bob Caswell and Joe Lewis of the Elec-

trical Engineering Department of the Oklahoma State Uni ve·rsi ty for their 

technical 'assistance. 

Lastly, the encouragement and support of my wife, Barbara, is eter-

nally acknowledged. 

1 ... 
OSTIC - Oklahoma State Instructional Computer. This is a straight 

binary computer. 
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CHAPTER I 

INTRODUCTION 

The optimum way in which the operating speed of a digital computer 

can best be utilized is to use the computer as a "stored program" computer. 

That is, a list of instructions, or program, along with initial data is 

stored in the memory of the computer . Control is then turned over to the 

computer which, starting with the first instruction, executes the entire 

program. Since each instruction is already stored internally, very little 

time is wasted by the computer being inoperative between execution of 

instructions, while the next instruction is being obtained. 

In the Oklahoma State Instructional Computer, hereafter spoken of 

as OSTIC, a word is obtained from the memory during an INSTRUCTION CYCLE 

and placed in the INSTRUCTION REGISTER, to be interpreted as an instruc­

tion. During a DATA CYCLE, the word in the INSTRUCTION REGISTER is ana­

lyzed and executed. This may involve obtaining or storing a word (data) 

from or into the memory, depending upon the instruction. These two cycles 

are then repeated for each of the additional instructions in the inter­

nally stored program. 

The purpose of this thesis is to explain the considerations and 

technical details involved in the design, construction, and operation of 

a memory address selection system for the parallel readout magnetic drum 

memory of the OSTIC. 

1 



CHAPI'ER II 

SYSTEMS ASPECT OF MEMORY ADDRESS SELECTION 

In the OSTIC, a rotating magnetic drum is used for the main memory. 

It rotates at a nominal 3450 rpm (17.4 milliseconds per revolution). A 

permanently machined timing track on one end of the drum serves as a 

source of timing pulses (2560 pulses per revolution). It was decided 

that words (either instructions or data) would be stored in parallel (all 

20 bits of each word parallel to the drum axis). (1). 

Figure 1 shows the matrix address structure of the drum memory, the 

word structure, and the timing pulses.(1) • . The two low-order bits are 

used as a sign bit and a parity bit. The remaining 18 bits can be inter-

preted (depending on the program) either as data or as an instruction. 

In the latter case, the six high-order bits specify the operation to be 

executed, the next three bits specify the drum band in which the operand 

is located, and the remaining nine bits specify the peripheral position 

on the drum of the operand . 

9 There are 512 memory locations in each of the bands (2 = 512). 

Corresponding to each of these memory locations is a nine-bit word 

address. A particular memory location is specified by the band number 

(selects a column of the matrix) and the word address (selects a row of 

the matrix). Details of recording the word address bits will be covered 

in CHAPI'ER VII. 

The home pulse on the home pulse track immediately follows memory 

2 
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location 511 and immediately precedes memory location o, as shown in 

Figure! , (1) . 

The address of t he memory locat ion whose contents are needed next 

is contained in the 12-bit INSTRUCTI ON COUNTER during an INSTRUCTION 

CYCLE, or in the ADDRESS REGISTER (12 low-order bits of the INSTRUCTION 

REGISTER) during a DATA CYCLE . Of t hese 12 bits, the nine low-order 

ones will be referred to as the word address bits, and the three high­

order ones will be referred to as the band address bits. 

Figure 2 illustrat es the method of memory address selection. When 

a particular word address s tart s to pass under the word address read 

heads, this particular sequence of bits will be available as outputs 

from the word address READ AMPLIFIERS . This sequence will change each 

word time. 

4 

An EQUAL COMPARISON PULSE will be obtained when the word address 

bits at the word address READ AMPLIFIERS are the same as those in the 

INSTRUCTION COUNTER during an INSTRUCTION CYCLE, or in the ADDRESS REGIS­

TER during a DATA FIRST CYCLE (portion of a DATA CYCLE). Since the 

memory locations corresponding to a particular word address pass under 

the memory read/write heads at the follqwing T3 time, the EQUAL COMPAR­

ISON PULSE can be used -as a gating signal for this T3 pulse, to produce 

a read/write pulse at t he pr oper time . 

Two comparison circuits are used , instead of one (with the INSTRUC­

TION COUNTER and ADDRESS REGI STER word address bits being switched), since 

fewer components are necessary . 

The proposed method by whi ch read/write operations are to be accom­

pl ished i s shown in Fi gure 3. The band address selects the 20 read/write 

heads (energi zed by cathode followers) in one of the bands. An 
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6 

EQUAL COMPARISON PULSE, a READ signal, and a T3 pulse gate the output of 

each of the 20 read amplifiers to the DATA CHANNEL and to the INSTRUCTION 

REGISTER . An EQUAL COMPARISON PULSE, a WRITE signal, a WRITE ZERO or 

WRITE ONE signal, and a T3 pulse cause the 20 write amplifiers to record 

a particular sequence of 20 bits in the proper memory location . 

A READ signal is present if the computer is in an INSTRUCTION CYCLE, 

or in a DATA CYCLE if the OPERATION DECODER output indicates that a read 

operation is required. A WRI TE signal is present if the computer is in 

a DATA CYCLE and the OPERATION DECODER output indicates that a write 

operation is required . The data being read into the memory will deter­

mine whether a WRITE ZERO or a WRITE ONE signal is present at the input 

gates for each of the write amplifiers . 
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CHAPl'ER III 

FLIP-FLOP/INVERTER MODULES 

Since this is a binary computer , two distinct signal levels are 

needed to represent a logical O and a logical 1. Throughout the computer 

these are 90 and 110 volts, respectively. By using clamping diodes, 

voltages above 110 can be pulled down or clamped to 110, and voltages 

below 90 can be pulled up or clamped to 90. , Thus, the flip-flops and 

inverters can be designed so that their plate voltage swings without 

clamping vary from mu~h less than 90 to much more than 110; and then 

clamping provides the signal levels, with increased speed and reliability. 

Figure 4 illustrates how plate clamping is effected. When a plate 

voltage above 110 is clamped, the current through the 12K plate resistor 

increases above the plate current, the excess current going to the 110 

volt reference. When a plate voltage below 90 is clamped, the current 

through the plate resistor decreases below the plate current, the extra 

current coming from the 90 volt reference. 

For purposes of . analysis, a signal level of 90 volts will be referred 

to as low, conducting, turned on, or logical 0. A signal level of 110 

volts will be referred to as high, nonconducting, turned off, or logical 

1 . This is the positive logic convention. 

8 



90 

I I 0 

90 

//0 

Figure 4 . Plate Clamping 

9 

plate voltage 
clamped to llO 

plate voltage 
clamped to 90 

Arrows indicate direction 
of conventional current. 

The basic inverter module circuit, with various inputs, is shown in 

Figure 5 . Note that there are two independent inverters in each module. 

If any of the input lines in Figure 5 a are high, ei will be high, the 

grid voltage will be clamped to slightly above O because of grid current, 

and the output will be low, The output will be high only if all of the 

input lines are either low or disconnected. In this configuration, the 

inputs perform the OR function , while the inverter along with the inputs 

performs the NOR function . 

If any of the input lines in Figure 5 bare low, e1 will be low, 
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the grid voltage will be -6, and the output will be high. The output 

will be low only if all the inputs are either high or disconnected. In 

this configuration, the inputs perform the AND function, while the inver­

ter along with the inputs performs the NAND function. 

If negative logic is used for purposes of analysis (where 90 volts 

is represented as a logical 1 and 110 volts as a logical 0), in Figure 

5 a the inputs perform the AND function, while the inverter along with 

the inputs performs the NAND function. Ih Figure 5 b the inputs perform 

the OR function, while the inverter along with the inputs performs the 

NOR function. 

The aforementioned voltages were determined by voltage divider 

relationships, since the inverters do not load the diode logic outputs 

to any extent. These are valid if finite diode back resistance does not 

appreciably reduce the impedance seen by the output of the diode logic, 

and the 20)-'flf capacitor is of the proper value. This capacitor is 

sometimes called a "speed-up capacitor" because it improves the speed 

of response of the circuit. Without this capacitor, the various inter­

electrode and stray capacitances appearing at the grid would have to be 

charged through the resistors in the voltage divider. This capacitor 

can be viewed as being in series with the net capacitive load appearing 

at the grid with the two capacitances acting like a voltage divider. (2). 

If the time constants of each part of this voltage divider are equal, the 

resistive voltage divider analysis is valid for transient conditions 

also. (3). 

The best way to determine the value of this "speed-up capacitor" is 

to select the value for which the inverter output produces the best 

reproduction of a square wave input . 
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If multilevel diode logic precedes the inverter input, finite diode 

back resistance and loading may make it necessary to modify the inputs 

shown in Figure 5. 

Upon examining Figure 5 and Figure 6 , it can be seen that the only 

difference between the inverter module and the flip-flop module is the 

external pin connections . 

The flip-flop, bistable multivibrator, or binary, consists of two 

inverters, connected such that the output of the first is the input to 

the second, and the out put of the second is the input to the first. (3). 

This can be noted by observing the plate-to-grid coupling. The adjective, 

bistable, indicates that there are two stable conditions for this circuit. 

One condition is when one of the outputs is high and the other output is 

low. The other condition is just the reverse of this. 

In addition to providing the output signal levels of 90 and 110 

volts, plate clamping speeds up the transition between states (for the 

proper input signal) since the change in clamped plate voltages is less 

than for the unclamped case. 

There are several different methods described in most texts on 

digital circuitry for triggering a flip-flop. The triggering circuit 

used by this author is shown in Figure 6 a, The input consists of 

pulses which can be obtained from a pulse generating circuit or from the 

output of a logic circuit . The differentiator output consists of a 

series of positive and negative spikes. When the input goes positive, 

the flip-f~op is not affected since both of the steering diodes are 

reverse biased. When the input goes negative, the diode connected to the 

grid of the conducting tube will be forward biased, so this grid voltage 

will be pulled negative, increasing the plate voltage. It should be 
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noted that when this occurs, the differentiator output will be loaded 

considerably, causing the magnitude and decay time of the negative spike 

to be less than those of the positive spike. If the grid voltage is 

pulled far enough negative at a sufficiently rapid rate, the circuit 

regenerative action will occur, with the result that the flip-flop 

changes state. 

If the negative spike outputs of the differentiator are not sharp 

enough, the circuit may be critical as to the magnitude of the negative 

spike that will cause triggering. As the negative spike decays, the 

steering diode connected to the grid being turned on must remain reverse 

biased, or the circuit regenerative action can be slowed down or stopped, 

If positive pulses are on the differentiator input, it may be 

necessary to remove the positive spikes with a diode clipper, If narrow 

negative pulses are on the differentiator input, this will not be neces­

sary since each positive spike will decay by the time the next negative 

spike occurs. 

For resetting (making the oq.tput low} or setting (making the output 

high) the flip-flop, two inputs such as shown in Figure 6 b can be used. 

As long as the inputs are high, each diode will be reverse biased. When 

one of the inputs goes low the negative pulse applied to the cathode of 

that diode will pull the grid voltage negative and turn the tube off. 

·The resetting and setting operation can be accomplished manually, 

if desired, by momentarily grounding the proper grid. 



manual 
reset 

CHAPTER IV 

INSTRUCTION COUNTER 

The INSTRUCTION COUNTER is a 12-bit binary counter, consisting of 

12 flip-flop modules and their associated input logic. A block diagram 

is shown in Figure 7, The trigger, or toggle, input of each stage is 

connected to the output of the previous stage. That is, a stage will be 

triggered when the output of the preceding stage goes negative. There 

is one output pulse for every 2n input pulses where n is the number of 

stages between the input and the output. Switch Sl shown in Figure 7 

is for converting the three low-order stages from an 8:1 binary counter 

to a 5:1 counter, through the use 0f feedback. Applications of the 

INSTRUCTION COUNTER with this feature will be disdussed in CHAPTER VII. 

B2 

\ j j 
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0 1 0 1 0 1 0 1 0 l 

• • • 

R T s R T s R T s R T s R T s 
.. ' \ ~ 

·- ..SJ_ I - -- ~t 9 t' 
' 

Figure 7. Block Diagram of INSTRUCTION COUNTER 
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After an instruction has been obtained from memory, analyzed, and 

executed, the next instruction in the program must be obtained. The 

INSTRUCTION COUNTER must be incremented so that the new address in the 

INSTRUCTION COUNTER is that of the next instruction in the program. 

Normally, the.instructions are stored in sequential peripheral locations 

in the memory of the computer. If this is the case, the INSTRUCTION 

COUNTER should be incremented by one. Suppose, however, that an instruc-

tion has been executed which required 512 word times or less for acquiring 

the operand and executing the instruction. There may be a considerable 

(up to almost one drum revolution)time lapse after one instruction is 

executed until the next one is obtained. Using a variable increment 

feature, this instruction access time can be reduced to as little as 

one word time for sequences of certain instructi9ns (when the time required 

to obtain an operand and complete the instruction is approximately the 

same for each of these instructions). (1). 

To utilize this feature, a SET INCREMENT instruction is included as 

an instruction in the program .•. Refer to Figure 8. The word address 

portion of this instruction contains a 1 in one position and O's in the 

other eight positions. After this instruction is obtained from memory, 

the word address bits are placed in the INCREMENT REGISTER, and at the 

next T4 time of the current INSTRUCTION CYCLE a~ INSTRUCTION COw,ITER 
' 

INCREMENT PULSE is gated by the contents of the INCREMENT REGISTER to 

the trigger input of the appropriate stage of the INSTRUCTION COUNTER. 

Depending on which position of the word address of the SET INCREMENT 

instruction contains the 1, the INSTRUCTION COUNTER will be incremented 

by 2°, 21, 22 , 23, 24 , 25, 26 , 27, or 28 at T4 time during the last 

word time of each succeeding INSTRUCTION CYCLE. The programmer must, of 
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course, know the amount of time required to execute each instruction 

before full advantage can be taken of this feature. 

Assuming that the complement of each position in the INCREMENT REGIS-

TER is available and that the INSTRUCTION COUNTER INCREMENT PULSE is a 

negative pulse, the following logical expression will perform the desired 

function. I denotes the INCREMENT PTJLSE, R denotes one of the bits in 

the INCREMENT REGISTER, i denotes the complement of this bit, and 

ftrigger denotes the desired triggering function. 

I R R ftrigger 

0 0 l 1 

= 
+ii 0 1 0 0 ft rigger = I 

1 0 1 1 = I +R 

1 1 0 ·1 

That is, a particular stage will be triggered on the negative going part 

of the INSTRUCTION COUNTER INCREMENT PllLSE if the complement of the bit 

in the correspond~ng position of the.INCREMENT REGISTER is low. 

·Initially, before the INCREMENT REGIS':l'ER and other circuitry needed 

to implement the variable incrementing feature are available, the I~~UC-

TION COUNTER can be made to have some fixed increment by letting a pulse 

that occurs at the end of each INSTRUCTION CYCLE trigger the -appropriate 

stage of the INSTRUCTION COUNTER. 

In some operations (such as branching), the address of the next 

instruction is to be taken from the data address of the branching instruc-

tion, rather than that generated by incrementing the INSTRUCTION COUNTER. 

(1). On one of these operations, if the branching condition is satisfied, 

this new address must be placed in the I~STRUCTlON COUNTER before the next 
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INSTRUCTION CYCLE begins. Refer to Figure 8. 

The data address is read onto the DATA CHANNEL and then, if the 

branching condition is satisfied, the DATA FIRST CYCLE PULSE and a T3 

pulse will be used in generating a negative pulse which will be gated by 

the contents ·of the DATA CHANNEL to the proper reset and set inputs of 

the INSTRUCTION COUNTER. 

Assuming that this negative pulse is available at the appropriate 

time, the following logical expressions will perform the desired furic-
,. 

tions. P denotes the negative pulse,.. D denotes one of the bits on the 

DATA CHANNEL, f t denotes the desired reset function for the corres-rese . 

ponding stage, and fset denotes the desired set function for the corres-

ponding stage. 

p D 

0 0 0 1 

0 1 1 0 

1 0 1 1 

1 1 1 1 

= ·== 
freset = P + D = P + D 

fset = P + D = P + D 

That is, each stage of the INSTRUCTION COUNTER will be reset (if a O is 

to be entered into that position) or set (if a 1 is to be entered into 

that position) on the negative going part of this negative pulse. 

Since resetting a stage whose output is high will try to trigger the 

succeeding stage, this negative pulse must be from a low impedance source 

and of sufficient width .to keep any stage.from being.triggered during this 

operation. 
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It may be desired to manually enter some new address into the 

INSTRUCTION COUNTER. This can be done by resetting the entire INSTRUCTION 

COUNTER and then setting particular stages. This can be implemented with 

pushbutton switches on the computer console. 

~ logic diagram for a single stage of the INSTRUCTION COUNT~ is 

shown in Figure 9. 

The circuit diagram for a single stage of the INSTRUCTION COUNTER is 

shown in Figure 10. The parts of the circuit shown in dashed lines 

(manual reset and set switches, and the reset and set inputs from the 

DATA CHANNEL) were not constructed, so ideas pertaining to these are 

merely suggested possibilities for realizing the full capabilities of 

the INSTRUCTION COUNTER. 

Due to loading problems encountered when attempting to drive diode 

logic directly from the INSTRUCTION COUNTER outputs, a set of inverters 

(first level of diode logic consists of AND gates) was included to iso-

late the INSTRUCTION COUNTER outputs. Since no logic is associated with 
. ' 

these inverter inputs, each inverter output produces the complement of 

its input. 

The modular arrangement of the INSTRUCTION COUNTER is shown in 

Figure 11. 
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CHAPTER V 

WORD ADDRESS COMPARISON 

Several factors are involved in determining what circuitry to use in 

implementing the word address comparison logic. If more than two levels 

of diode logic are used in succession, the output signal may, have to be 

reshaped before being suitabl~ for other use. Two loading conditions 

that may cause unreliable flip-flop operation are shown in Figure 12. 

It can be seen that for a conducting tube whose output is an input 

to an AND gate, if more current is supplied through the input diode than 

is required from the 90 volt reference, the plate current will increase. 

This will decrease the plate voltage and may increase the size of the 

negative spike needed for triggering, or increase the time required to 

change the state. 

The plate voltage of a nonconduc~ing tube whose output is an input 

to an OR gate may decrease to a point below the clamping voltage if loaded 

too excessively. 

If the impedance seen by an OR gate (fed by an AND gate) is shunted 

to any degree, possibly by finite diode back resistance, the output may 

be pulled low enough to reverse bias a normally conducting diode at one 

of the AND gate inputs. 

The word address at the word address READ AMPLIFIERS, available for 

comparison at Tl time, will agree with that in the INSTRUCTION COUNTER 

(or ADDRESS REGISTER) when the following express~on is equal to logical 1. 

24 
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Di denotes the bit in the ith position at the word address READ AMPLilIERS, 

and Bi denotes the bit in the ith position of the word address in the 
\ 

INSTRUCTION COUNTER (or the ADDRESS REGISTER). 

9 
f = 7T(BiDi + BiDi) 

i=l 

Taking the complement of both sides produces 

9 
f = .E[<ii + Di)(Bi + D1)] 

i=l 

9 
= Z<BiDi + BiDi) 

i=l 

Since X + Y + Z = X Y Z, the preceding expression can be rearranged 

as follows. 

f = [CB1n1 + B1D1 +B2D2 +B2D2 + B3D3 +B3D3) 

(B4D4 + B4D4 + B5D5 + B5D5 + B5D5 + B5D5) 

(B7D7 + B7D7 + BsDs +:BsDs + BgDg + B9D9)] 

Two circuits, each performing this logical function as shown in Figures 

2 and 13 will, when their outputs'are gated by the proper control sig~ _ 

nals, produce an EQUAL COMPARISON PULSE. 

Figure 14 shows a portion of the circuit· diagram for the preceding 

logical function. 
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Figure 13. WORD ADDRESS COMPARISON Logic 
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CHAPTER VI 

TESTING 

Initial testing of the WORD ADDRESS COMPARISON CIRCUIT was made in 

the following manner, one half being tested at a time, as indicated in 

Figure 15. The word address READ AMPLIFIERS were simulated by t.ne 

INSTRUCTION COUNTER, since the outputs of the INST~UCTION COUNTER when .,. 

driven by a pulse generator at the proper pulse 'repetition rate are iden-

tical to those of the word address READ AMPLIFIERS (except for delay in 

the counter and when the word address is changing). Nine double pole~ 

double throw switches, simulating 90 or 110 volts for each bit and its 

complement, replaced the INSTRUCTION COUNTER when testing the INSTRUCTION 

CYCLE part of the WORD ADDRESS COMPARISON CIRCUIT, or the ADDRESS REGISTER 

when testing the DATA CYCLE part of the WORD ADDRESS COMPARISON CIRCUIT. 

Alternatively, the switches can simulate the word address READ AMPLIFIERS, 

with the INSTRUCTION COUNTER being used as the other set of inputs for 

either part of the WORD ADDRESS COMPARISON CIRCUIT. The control signal 

inputs shown in Figure 13 were left open. 

Waveforms similar to those expected in actual operation were observed. 

An EQUAL COMPARISON PULSE was obtained every 512 word times. The duration 

was one word time. 

Some output waveforms can occur using this testing method that will 

not occur in normal operation of the WORD ADDRESS COMPARISON CIRCUIT. 

Suppose, for examp,¥e, that the. second and third position bits agree, the 
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low order bit in the INSTRUCTION COUNTER is high, and the low order bit 

in the switches is low. There is only one AND gate whose output is high, 

for these three low order stages. Refer to Figure 13. The next trig-

gering pulse will c~use the bit in the low order position of the INSTRUC-

TION COUNTER to change. While it is changing, and be'fore the second 

stage of the INSTRUCTION COUNTER is triggered by this change, the output 

of this AND gate Will be going low. It will be pulled back up when the 

second stage is triJgered, bowever. Due to delay in the INSTRUCTION 

COUNTER and particular switch.settings then, pulses of approximately one 

microsecond width can appear as outputs from the WORD ADDRESS COMPARISON 

CIRCUIT. 

If wide positive pulses clamped to a 90 volt level are applied 

through an OR gate, whose other input is the EQUAL COMPARISON PULSE, to 

the trigger input of the INS'mUCTION COUlllTER low-order stage, the INSTRUC-

TION COUNTER will be triggered until coincidence occurs, the gate being 
-~ 

closed by the EQWAL COMPARISON PULSE going high. At this point the neon 

indicators on the INSTRUCTION COUNTER chassis and the switches should 

indicate the same word addresses. They may not agree because of delay in 

the INSTRUCTION COUNTER and particular switch settings, as mentioned in 

the preceding paragraph. 

The preceding method of testing can also be used to determine the 

maximum delay in the INSTRUCTION COUNTER. and the WORD ADDRESS COMPARISON 
. . 

CIRCUIT, which occurs when the word address in the INSTRUCTION COUNTER 

is changing from l•••l to O•••O. The word address in the switches can be 

set to l•••l and the pulse repetition rate of the triggering signal 

varied until it .is slow enough for this "turn-off" action to occur. For 

these switch s~ttings, the··~itra pulses are not obtained from the WORD 

ADDRESS COMPARISON CIRCUIT butput. 
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It is most essential that some relatively si~ple methods be available 

for testing the operation of the INSTltUCTI?N COUNT~ a~d the WORµ ADDRESS 

COMPARISON CIRCUIT when the OSTIC is operational. 

When it is turned off, the method just described for initial testing 

can be applied. If the computer is turned on, but has not started execut-

ing the stored program, this same method can be used, without simulation. 

If the EQUAL COMPARISON PULSE is disconnect.ed from the read ampli-

fier input gates, so as not to change the contents of the manually set 

ADDRESS REGISTER, and the control signal inputs in Figure 13 are left 

open, the outputs of each part of the WORD ADDRESS COMPARISON CIRCUIT 

will coincide, if the word addresses in the INSTRUCTION COUNTER and 

ADDRESS REGISTER are the same. 

A simple method that can be used to determine the' unit reliability 

of the INSTRUCTION COUNTER as a binary counter along with either part of 

the WORD ADDRESS COMPARISON CIRCUIT, is as follows. TheEQUAL COMPARISON 
.. 

PULSE is applied to the trigger input of the low-order stage of the 

INSTRUCTION COUNTER. After the initial coincidence occurs, the negative 

going slope of the EQUAL COMPARISON PULSE will trigger the INSTRUCTION 

COUNTER. After a short delay, depending on how many stages are caused to 

trigger, the INSTRUCTION COUNTER will have been incremented by one. The 

word address at the word address READ AMPLIFIERS will also, .in effect, 

have been incremented by one, so another coincidence occurs, .and the 

foregoing action is repeated. .The EQUAL COMPARISON PulsE output will be 

at 110 volts, except when the INSTRUCTION COUNTER is changing states, or 

the word address at the word address READ AMPLIFIERS is changing. 

One method for testing the INSTRUCTION COUNTER makes use of the .5:1 

modificationteature sin~e, if the three low-order stages function as a 
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5:1 counter, and the nine high-order ones as a binary counter, the entire 

counter will start over once every drum revolution. The logical diagram 

of Figure 15 b applies if negative timing pulse~ and a negative home 

pulse occuring simultaneously with the T3 pulse of word time 511, are avail­

able. The entire INSTRUCTION COUNTER as well as the CONTROL BINARY are 

reset manually. Since the outputs of the INSTRUCTION COUNTER are not 

high, the next home pulse will set the CONTROL BINARY. After some delay 

(the T3 pulse will already have gone negative and will not have triggered 

the I.NSTRUCTION COUNTER), the output of the CONTROL BINARY will go high, 

gating succeeding timing pulses to the trigger input of the INSTRUCTION 

COUNTER low-order stage. The next home pulse (or the simultaneous T3 

pulse) will be the last pulse to trigger the INSTRUCTION COUNTER. The 

neon indicator lights on the INSTRUCTION COUNTER chassis will now all be 

lighted, unless the INSTRUCTION COUNTER did not function properly. It 

may be noted that the CONTROL BINARY is not reset by the initial home 

pulse, after manual resetting, but is reset by the succeeding home pulse, 

after.the simultaneous timing pulse has been gated to trigger the INSTRUC­

TION COUNTER. 

Initially, the INSTRUCTION COUNTER was tested by using a pulse gen­

erator to trigger the input stage. For testing the reset inputs and the 

set inputs, some means of applying one negative pulse at a time is needed. 

This can be accomplished by momentarily touching the input to the output 

of a pulse generator whose period is slow enough to make this a valid 

test procedure. 

To test the overall memory address selection system, probably the 

simplest and most obvious way is to store a word in some location and 

then retrieve it. This might be done by stepping through a program one 
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cycle at a time and observing neon indicator lights on the computer 

console. Alternatively, the operator might use part of the program to 

compare the stored word and the retrieved word. This would, however, 

involve use of the ACCUMULATOR and the circuits used in testing whether 

the various branching conditions have been satisfied. 

The memory address comparison circuits are tested to an extent in 

another way; since, unless an EQUAL COMPARISON PULSE is obtained, the 

next instruction or the operand will not be obtained. 



CHAPTER VII 

RECORDING WORD ADDRESS PULSES ON THE DRUM 

Figure 16 indicates how the modified INSTRUCTION COUNTER affects 

the counting operation. Each time the complement of the third stage 

output goes negative, the two low-order stages are set, the effect 

being the same as if three additional input pulses were applied. The 

entire counter is thus made to start over every 2560 input pulses. 

Tl T2 T3 T4 TO 

u ,-,o ,o u.....-------.u- u LJ 
-~____.JI --~ I ~. I 

/lo 

~ I Bz 

1101 I . 

9J 

Figure. 16. 5:1 Counter Timing Diagram 
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It was mentioned in CHAPTER V that the bits at the word address 

READ AMPLIFIERS will be available for comparison at Tl time and in 

CHAPTER II that memory read/write operations will occur at T3 time. 

For this to be so, the word address pulses must be recorded with respect 

to the timing pulses, starting prior to each Tl pulse and ending after 

the following T3 pulse. Figure 17 shows one method of accomplishing this. 

Initially the entire INSTRUCTION COUNTER is manually reset. The timing 

pulses from the drum are then used to trigger the low-order stage of the 

INSTRUCTION COUNTER. The output of the third stage of the INSTRUCTION 

COUNTER goes negative on every fifth input pulse from the drum and trig-

gers the fourth stage as well as the pulse generator, whose delay and 

pulse width can be adjusted to provide a positive output pulse suitable 

for use as a recording pulse. 

For the recording arrangement shown in Figure 17, this recording 

pulse should end before the next triggering pulse from the 5:1 counter 

occurs. The output of each of the nine high-order stages of the INSTRUCTION 

COUNTER can be considered as a WRITE ONE signal and the complement of each 
} 

of these outputs as a WRITE ZERO signal. Nine write amplifiers are con-

nected as shown, with the T3"pulse inputs replaced by the recording pulse, 

the WRITE signal input.s disconnected, and the EQtTAL COMPARISON PULSE 

inputs disconnected. The bi ts i.n the INSTRUCTION COUNTER thus determine 

whether each recording pulse causes a O or a 1 to be recorded in the 

corresponding bit positions for each word address. 

After the word address pulses have been recorded there m~st be a 

timing reference to insure that the timing pulses and the word address 

pulses maintain their specified time relationship. This dan be done with 

a home pulse which, when the computer is started each time will set 
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this time relationship. That is, the home pulse can be recorded so as to 

occur simultaneously with one of the five timing pulses immediately pre­

ceding memory location O. When the computer is turned on each time, the 

first timing pulse {the one occurring simultaneously with the home pulse) 

will first be available when the initial home pulse occurs. 

For recording the home pulse so that it and the T3 pulse immediately 

preceding memory location O occur simultaneously, the arrangement shown 

in Figure 17 can be used. Note that the timing pulse applied to the 

home pulse write amplifier input gate must be a positive pulse. The 

other two inputs to this gate are left open. 



SUMMARY 

The systems aspect of memory address selection, as it pertains to 

the parallel readout.magnetic drum for a straight binary computer, the 

OSTIC, was investigated. It was decided that a versatile INSTRUCTION 

CO~ER would be needed, in addition to an ADDRESS REGISTER and·a WORI) 

ADDRESS COMPARISON CIRCUIT, which compares the word address bits from 

the currently available drum memory location with those in the INSTRUC-

TION COUNTER or the ADDRESS REGISTER. 

The variable incrementing feature of the INSTRUCTION COUNTER will 

enable the programmer to minimize the instruction access time for 

sequences of certain instructions. A new instruction address may be 

entered into the INSTRUCTION COUNTER from the DATA CHANNEL, for use in 

branching instructions. The INSTRUCTION COUNTER can also be manually 

addressed from the computer console. 

Suggestions were made pertaining to the signals and logical cir-

cuitry needed to make these features operational, with respect to the 

entire computer system. 

The WORD ADDRESS CO~ARISON CIRCUIT will produce an EQUAL COMPARI-

SON PULSE whenever the word address of the memory location being sought 

and that of the drum memory location currently available for read/write 

operations are the same. This pulse can be used as a gating signal for 

the following T3 timing pulse to control read/write operations. 

The memory address selection system was tested, with satisfactory 
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results. Additional tests for maintenance and .trouble. ,shooting of this 

system were suggested. 

A method was also proposed for initially recording the word address 

pulses and the home pulse on the drum, using the drum timing pulses and 

the modified INSTRUCTION COUNTER. 
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APPENDIX A 

GRAPHICAL SYMBOLS 

Listed below are the graphical symbols used in the logical diagrams 

accompanying this paper. 

AND gate AB ..A.B . 

0 0 0 

A 
/ 

0 1 0 
:-AB 

B 1 0 0 

1 1 1 

If the positive logic convention is used, the AND gate output will 

be high only if all of the inputs are high. If A is high, and Bis 

alternately high and low, these pulses will be gated through by A. 

OR gate 

A 

B 

AB A+B 

0 0 0 

0 1 

1 0 

1 

1 

1 1 1 

If the positive logic convention is used, the OR gate output will 

be low only if all of the inputs are low. If A is low, and Bis alter­

nately high and low, these pulses will be gated through by A. 

INVERTER A X 

·I I A I > A 0 1 

1 0 

The complement of the input is produced by the inverter. 
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Flip-Flop 

0 1 

R T s 

The Oline is the output and the 1 line is the output. R, T, and 

S denote the reset, trigger,' and set input lines, respectively, 

Parallel transmission of data is represented as follows. 
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