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CHAPTER I

INTRODUCTION AND STATEMENT OF THE PROBLEM

Introduction

In 1202 A, Do, the mathematician Leonardo of Pisa, who was nick-
named Fibonacci, wrote one of the earliest treatments of arithmetic and

algebra and gave his work the title Liber Abacci. Included in the book

was a problem about the number of offspring of a pair of rabbits. The
consideration of this problem led to a sequence of integers,

1, 1, 25 35 5, 83 13 214 woe o
The mathematician Cantor regarded this as the first example of a re-
curring sequence to appear in a mathematical work. The obvious recur-
rence relation is

En+2 ..“:;Fn+l + an F. =1, F, =1,

This seemingly innocuous sequence has turned out to have so many re-
markable andvféscinating properties, ranging frbm elementary to sophis-
ticated, that it and related recurring sequences have been investigated
by some of the greatest mathematical minds.

The richness and the applications of the intriguing Fibonacci se-=
gquence have fascinated men through the centuries, It has been said
that the research generated by it nearly amounts to the number of off-
spring produced by Leonardo's first rabbits.

Furthermore, interest has continned to the present with a notable

}_E



increase in very recent years. So much renewed interest has been shown
that in 1963 an organization, the Fibonacci Association, was formed and

is devoted to the study of the special properties of integers.

Statement of the Problem

Often in mathematics courses, problem solving is approached in a
wide range of patterns, from a routine application of miscellaneous
techniques to artificially involved material, which is sometimes poorly
motivated from the standpoint of the student. The routine applications
combine the illustration of technique or principle with economy of time,
while more involved and difficult material may produce more understand-
ing and depth, provided sufficient effort is expended.

However, at the elementary level, the student's mathematical ma-
turity generally is such that problems need to be challenging and
worthwhile, yet not require inordinate background knowledge. A great
many of the properties and problems relating to Fibonacci numbers are
interesting, yet do not require elaborate previous knowledge, are not
difficult, yet serve well to illustrate a number of types of proof, and
are bona fide mathematical topics, yet have a natural fascination for
the novice. In this regard, it almost seems as if the eminent mathe-
matician and teacher, Polya, of Stanford University has the Fibonacci
numbers in mind when he wrote:

The trouble with the usual problem material of the
high school textbooks is that they contain almost
exclusively merely routine examples. A routine ex-
ample is a short range example; it illustrates, and
offers practice in the application of, just one iso-
lated rule. Such routine examples may be useful and
even necessary, I do not deny it, but they miss two
important phases of learning: the exploratory phase

and the phase of assimilation. ... In contrast with
such routine problems, the high school should present



more challenging problems, at least now and then,

problems with a rich background that deserves

further exploration, and problems which can give

a foretaste of the scientist's work. [?O

The usefulness of this thesis stems from the fact that it provides
interesting and challenging seminar, reading course, or enrichment ma-
terial, suitable for undergraduate mathematics students. The mathemat-
ical content involved is most closely associated with algebra, number
theory, and analysis. It will primarily be through these areas that
this thesis can best serve with respect to problem solving. The
Committee on the Undergraduate Program in Mathematics (CUPM) has recom-
mended that a full course in number theory be in the curriculum for all
future teachers of secondary mathematics. This thesis would be espe-
cially appropriate as a supplement to several topics in such a course.
The literature on Fibonacci numbers is usually only touched on in

standard textbooks and many developments are available only in journals
or notes. The purposes of this thesis are (1) to organize and bring
together under one cover a contiguous body of appropriate and challeng-
ing enrichment material for the modern curriculum, (2) to make supple-
mentary material associated with the Fibonacci sequence available for
high school and undergraduate students, particularly prospective mathe-
matics teachers, and (3) to provide an instrument to stimulate and
encourage interest in mathematics, primarily at the level of the under-
graduate and advanced high school student, directly from first-hand

contact, and indirectly by broadening and rounding out the backgrounds

of their teachers.

lNumbers in brackets refer to references in bibliography.



Procedure

This thesis is intended as a mathematical research of expository
nature devoted to the Fibonacci numbers and closely related develop-
ments. An exhaustive treatment would be beyond the scope of this work.
Therefore, an extensive review of the literature with a careful analy-
sis and selection was required.

The Mathematical Review, bibliographies of texts and published

papers, and bibliographies of unpublished theses were used in locating
material dealing with the Fibonacci sequence. A survey and analysis of
available material was then made. Several articles were located in
publications written in French and German.

The presentation is expository in nature and is presented in grad-
uated levels of difficulty. Chapter II provides, in an informal manner,
motivation and interest in the subject of the Fibonacci numbers. Most
of the topics in this chapter reappear later as vehicles to demonstrate
proof and develop mathematical skills in deductive reasoning. Chapters
I1T and V constitute a more formal treatment and are intended to help
develop the reader's skill and familiarity with certain basic algebraic
concepts, particularly proof by mathematical induction. This type of
proof, so widely used in all mathematics, is a very troublesome and

insive concept for too many students. One of the richer contributions

of this thesis ought to be the instillation in the reader of an aware-
ness of the utility and power of mathematical induction as an instru-
ment for mathematical proof. Reinforcement of this effort is continued
in the other chapters of the thesis; however, greater variety is intro-
duced, which, in turn, makes somewhat greater demands on the reader.

Knowledge of elementary calculus is necessary for some of the develop-



ment, particularly in Chapters IV and VI, All the chapters are intend-
ed to contribute to the stimulation and motivation of the reader and to
encourage him to find a measure of pleasantness and satisfaction in a

mathematical setting, as well as increasing his mathematical maturity.
Expected Outcomes

Hopefully, the reading of this thesis will make the reader aware
of the elegance, beauty, and charm of Fibonacci numbers, and, so, of
mathematics itself. It is expected that high school teachers will be
able to use this material to provide enrichment for their students and
that undergraduates may be able to improve and broaden their knowledge
of mathematics, Finally, it is worth noting that most secondary mathe-
matics courses do not mention a single mathematician in the span be-
tween the great mathematicians of antiquity and the 16% century., All
the better that one outcome might be éo make more widely known this

remarkable mathematician, Leonardo of Pisa.



CHAPTER II

INFORMAL INTRODUCTION

The Rabbit Problem and the Fibonacci Sequence

As was pointed out in the opening remarks of Chapter I, the consid-
eration by Fibonacci of a certain rabbit problem led to a sequence of
integers called the Fibonacci sequence., The problem discussed in what
follows is similar to the one he introduced in his book, Liber Abacci.
The problem is: Given a new pair of rabbits, find how many pairs will
be on hand in a given number of months if each pair of rakbits gives
birth to a new pair each month, starting with the second month of its
life. If one considers this problem, the first month sees a total of
one pair. In the second month there is still one pair since the origi-
nal pair has not produced offspring. In the third month there are the
original pair and the first pair of offspring, for a total of two pair.
In the fourth month there is a total of three pair, the original pair
and the two pair of offspring. But now a change commences, since some
of the descendants themselves are producing offspring. For the fifth
month, the original pair and their first descendants have offspring,
plus those new offspring from the fourth month, also on hand, for a
grand total of five pair. The sixth month there is a total of eight
pair, the seventh month; nine pair, and so on, although keeping count
has definitely become tedious. It proves to be helpful and suggestive

to construct an array in which the number of pairs of rabbits two months



or older are kept on one line and new ones on the line below. Assume
that births occur at midnight on the last day of the month and that the

census ic taken on the first day of the new month,

TABLE I

RABBIT PAIR TOTALS FOR FIRST FEW MONTHS

Month 1 2 3 L 5 6 7 8 9 ves
0ld 1 1 1 2 3 5 8 13 21 ves
New 0 0 1 1 2 3 5 8 13 ces
Total 1 1 2 3 5 8 13 2 3% ...

The total for the nt month is the nit Fibonacci number, and among the
patterns noted in the chart, one may observe, omitting the first entry
in the old line, that the old, new, and total rows each give the
Fibonacci sequence, in staggered fashion., Indeed, this suggests the
extremely simple formulation for the total in any month, namely, the

sum of the totals for the two previous months. Stated more symbolically,

if Fl =1, F2 = 1, the totals for the first and second months respec-
tively, then F3 = Fl + F2 =1+1=2, F4 = F2 + F3 =1+ 2 =3,
F_ =2+ 3 =5, and so on, and in general, one has the recurrence rule

of formulation for the Fibonacci numbers,

F =F + F
n+2 n n+

l.
Now, this sequence has interest in and of itself that goes far be-
yond the introductory rabbit problem from which it originated.

In this chapter, several of the interesting and surprising mathe-

matical properties of the Fibonacci sequence are considered intuitively,

and a brief comment is made on some of the remarkable connections to



other areas.

For initial practice it might be helpful to calculate a few numbers
in the Fibonacci sequence. Some initial results are shown in Table II,
which will also be useful for later reference. One immediately appreci-
ates the difficulty in tabulating large Fibonacci numbers, in that all
the preceding terms must be known. This suggests that it might be de=-
sirable to be able to calculate Fn for any given n directly, and
this problem is considered in a later chapter.

A perusal of Table II reveals several interesting properties. It
appears by trial that any two consecutive Fibonacci numbers are rela-
tively prime. Also, note, for example, that 4 is divisible by 1, 2,

and 4, and F, =3 is divisible by F1 =1, F2 =1, and F, =3

12 is divisible by 1, 2, 3, 4, 6, and 12, and F, = 144 is di-

visible by Fl =1, F, =1, F, =2, FL+ = 3, F6 = 8, and F12 = 1lhb

and in general, it appears that whenever one index is divisible by an-
other, the corresponding Fibonacci numbers possess the same divisibility
properties. That this conjecture is true is proved in another chapter.

Another remarkable property that can be verified for some initial
values using Table Il is that the greatest common divisor of any two in=-
dexes is the index of the greatest common divisor of the two correspond-
ing Fibonacci numbers. For instance, the greatest common divisor of

F8 =21 and F,., = 144 is 3. The greatest common divisor of 8 and

12

12 is 4, and Fq = 3. This conjecture is also proved in a following

chapter. There are many other known relationships similar to these, and

new ones are still being discovered,
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21
3k
25
89

1hl

233
377
610
987
1597
2584
4181
6765
10946
17711
28657

TABLE II

PARTTAL LISTING OF FIBONACCI NUMBERS

2k
25
26
27
28
29
30
gl
32
33
3L
25
36
37
38
29
Lo
50
60
70
80
90
100

F
n

46368

75025

121393

196418

317811

514229

832040

1346269

2178309

3524578

5702887

9227465

14930352

21157817

39088169

63245986
102334155

- 12586269025
1548008755920

- 1903924907091 35
2341 6728348467685
- 2880067194370816120
354224848179261915075
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A natural property to investigate might be the initial sums of the
Fibonacci numbers. In this connection, consider Table III, in which the

third column contains the sums of the first n Fibonacci numbers.

TABLE III

SUMS OF FIBONACCI NUMBERS

n Fn sum of 1lst n sum of 1lst n squares
1 1 1 1
2 1 2 2
3 2 b 6
4 3 7 15
5 5 12 Lo
6 8 20 104
7 13 33 273
8 21 54 714

Reflecting on the values in the sum column, one observes that each value
is one less than a Fibonacci number. In particular, it is one less than
the second Fibonacci number beyond the last Fn in the sume, In other
words, the relation

2 n+2
is suggested. This identity does indeed turn out to be a valid one, and
a proof of this is given in Chapter III. By comsidering respectively,
the values of n which are odd, even, multiples of a given number, and
so on, in Table III, it is possible to suggest other identities concern-
ing sums.

An identity concerning the sum of the first n squares of Fibo-

nacci numbers can be motivated by an interesting geometric device.

Place two squares of side 1 next to each other. Construct next, a
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square of side 2 adjacent to the two unit squares, as shown in Figure 1,

and continue constructing squares having dimensions equal to consecutive

Fibonacci numbers,

 Figure 1. Squares With Dimensions Equal to Consecutive
" Fibonacci Numbers

Observe that the area of the individual squares is

2 N 2
Fl + F2 + F3 + Fh + F5 + Fé ’
for the six squares shown in the figure. But this is the same as the
total area of the rectangle formed, so that this quantity is appafently

the same as F F. One then generalizes

657
.
EFi = Fofpan

i=1
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and this particular identity is proved later,
Bvery student of elementary algebra is familiar with the triangular
array called Pascal's triangle. The use of this array to obtain the co-

efficients in the expansion of (a + b)" is well-known. Also, if

TABLE IV

PASCAL'S TRIANGLE

/5
1 6 15 20 15 6 1

horizontal rows are totaled, integer poweré of two are obtained, It is
not so widely known that this array can be used to obtain the Fibonacci
numbers. Instead of running totals horizontally, one may take them
along a 22.5° angle, following the diagonal lines in Table IV. In this
manner the successive Fibondcci numbers are obtained. Making use of the
notation C. for the binomial coefficients leads to

k

n -1 n-2
Fn = Co + Cl + C2 + seo 4

with the convention that Cﬁ = 0 for n less than k.

Other properties than those mentioned above are treated in detail

in later chapters. In the final pages of Chapter III, an important
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result pertaining to the existence of a Fibonacci number divisible by an
arbitrary integer m is established. By way of illustration, a study
of Table II reveals that if m is taken as 7, 9, 13, or 14, then each

of these respectively divides Fgq =21, F,_ = 14k, F., = 377, or
8 12 14 ’

F24 = 46368, It appears that not only is the existence ofa Fibonacci

number divisible by m guaranteed for an arbitrary integer m, \but the

first such number will not be extremely large.
Golden Ratio

The famous golden section involves the division of a given line
segment into mean and extreme ratio, in other words, into two parts such
that the longer is the mean proportiénal between the whole line and the

shorter part. Figure 2 shows & line segment in which the two parts are

Figure 2. Golden Section

a and b, This condition may be expressed

% = EEB’ a less than b,
For a = 1, this proportion yields the quadratic equation

b2 -b-1=0.
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The positive root is frequently denoted by @, hence £ = (1 ++/5)/2,
The number @ was known to the ancients as the golden ratio.i

It has been indicated by psychologists that a recténgle héving
sides in golden ratio is the rectangle having the most pleasing shape to
behold. For instance, this is approximately the shape chosen for pic-
ture postcards and this shape is often seen in architecture. The golden
section was mysterious and fascinating to the ancients. Indeed, it was
referred fo as De Divina Proportione, Even.Kepler was awed by it as can
be seen by this comment:

Geometry has two great treasures: one is the theorem of

Pythagoras; the other, the division of a line in extreme

and mean ratio. The first we may compare to a measure of

gold; the second we may name a precious jewel. [7]

Supernatural connotations havenoftgn been associated with this
ratio. Even as recently as 1954, in a painting by Salvadore Dali,; The
Sacrament -of the Last Supper, a portion of afregular polyhedron of
twelve faces, a dodecahedron, is shown. The dodecahedron has regular
pentagons for its faces,Aand the student of geometry is aware that this
figure is intimately associated with the golden ratio.

Now one is never far from the Fibonacci numbers when in the pres-
ence of the go;den.ratio. Consider the large rectangle of Figure 3,
with sides in the Golden Ratio, £ : 1. Next, remove the large 1 x 1
square in the right portion of Figure 3. The remaining rectangle has
its sides in the ratio of 1 : # -~ 1. But @ is defined from the equa-
tion ¢2 - @ ~-1=0, which may be written

1
ﬁzﬁ—l

after a_little manipulation... This indicates the upper left rectangle

is similar to the original rectangle, and so the_proqgss»may be repeated
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indefinitely, as is partially illustrated in Figure 3,

2p - 3|

Figure 3., A Sequence of Golden Rectangles

At this point, Figures 1 and 3 should be compared. The two dia-
grams are considerably different in the lower left-hand corners; how-
ever, the larger parts are nearly alike. Furthermore, if both figures
were increased by adjoining squares; the proportions would become in-
creasingly more equal. The ratio of length to width of every rectangle
of Figure 3 is @; the proportions of the rectangles of Figure 1 are

the successive ratios of consecutive Fibonacci numbers, namely,

1y 25 35 59 8y ene o
1 12 35

The further along in this sequence one goes, the more nearly the ratio
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Fn+l H Fn approximates @. This fact is verified for a few values in

Table V. A proof of this property, which was first noted by Kepler, is
presented in Chapter IV, Note that @ = 1.61803... .
There are a number of facts regarding the Fibonacci numbers that

have been discovered using modern computer equipment. F476 is the first

100 digit Fibonacci number. For each succeeding 100 digit level, the

indexes are increased by 478 and 479 alternately, that is, 5l is the

Fg

first Fibonacci number with 200 digits, F has 300, has 400,

1433 F1911

and so on up to F with 4000 digits.

19137

TABLE V

QUOTIENTS OF CONSECUTIVE FIBONACCI NUMBERS

n Fa Foel F 1/
1 1 1 1

2 ' 1 2 2

3 2 3 1.50

b 3 5 1.667

5 5 8 1.600

6 8 13 1.625
7 13 21 1.6154
8 21 34 1.6190
9 3h 55 1.6176

10 55 89 1.6182

o ° ° °
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The last digits of the Fibonacci sequence repeat in.cycles of 60.

The Fibonacci numbers FllOOB and 'Fllooh have been calculated and

are given by Berg. [F]”Two pages are required for each number!
Phyllotaxis

The Fibonacci numbers are not confined exclusively to the mathe-
matician's realm. They havé a botanical connection in the phenomenon
called phyllotaxis, meaning leaf arrangement. In some trees, such as
the elm, the leaves along the twig seem to occur alternately on two op-
posite sides, and one speaks of %uphyllotéxis. In the beech tree, the
passage from one leaf to the next is given by a rotational displacement
involving one third of a turn, that is 1/3-phyllotaxis. In similar
fashion, the oak and apriqot exhibit 2/5-phyllotaxis, the poplar and
pear, 3/8-phyllotaxis, the willow. and almond, 5/13—phyllotaxi$, and so
on. The Fibonacci numbers are conspicuously present, as these fractions
are gquotients of alternate Fibonacci numbers., Had the rotation been
taken opposite to the above direction, the fractions would have been
quotients of comsecutive Fibonacci numbers. Thus, 8/13 could have re-
placed 5/13, for instance. It happens fhat if the leaves were arranged
in precisely the ratio 1 : @, instead of approximating this ratio,
then no two leaves would ever be superposed. The biologists are not al-
together decided as to the explanation of this and other phenomena re-
lated to the Fibonacci numbers, but the matter has a long history of
study. Leaf arrangement has been explained as serving to let air pass
between the leaves, keeping one from overshadowing another, a#d letting
raip fall from one leaf onto the one below, and the phyllotaxis ratios

represent the effort of the'plant to seek a most beneficial arrangement.
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Whatever the reason or explanation for these matters, this is a question
to be answered by the biologist. However, observation demonstrates that
numerous connections to the Fibonacci numbers cannot be denied. Kant
has said that it was Ngture herself, not the mathematician, who brings
mathematics into natural philosophy.

Other hanifestations of phyllotaxis are seen in the arrangement of
the florets of a sunflower, or the scales of a fir cone, in spiral or
helical whorls, which are referred to as parastichies. A comment is
quoted from Thompson to illustrate further some of the relationéhips to
Fibonacci numbers,

Among other cases in which such spiral series are readily
visible we have, for instance, the crowded leaves of the
stone-crops and mesembryanthemums, and the crowded florets
of the composites. Among these we may find plenty of exam-
ples in which the numbers of the serial rows are similar to
those of the fir-coness but in some cases, as in the daisy
and others of the smaller composites; we shall be able to
trace thirteen rows in one direction and twenty-one in the
other, or perhaps twenty-one and thirty-four; while in a
great big sunflower we may find (in one and the same species)
thirty-four and fifty-~five, fifty-five and eighty-nine, or
even as many as eighty-nine and one hundred and forty-four.
On the other hand, in an ordinary “pentamerous" flower, such
as ranunculus, we may be able to trace, in the arrangement
of its sepals, petals and stamens, shorter spiral series,
three in one direction and two in the other; and the scales
on the little cone of a Cypress show the same numerical
simplicity. It will be at once observed that these arrange-
ments manifest themselves in connection with very different
things,; in the orderly interspacing of single leaves and of
entire florets, and among all kinds of leaf-like structures,
foliage~leaves, bracts, cone-scales, and the various parts
or members of the flower... the arrangements mentioned be-
ing set forth as follows (the fractional number used being
simply an abbreviated symbol for the number of associated
helices or parastichies which we ¢an count running in op-
posite directions): 2/3, 3/5, 5/8, 8/13, 13/21, 21/34,
34/55, 55/89, 89/144. [21]

While there are irregularities in the manner in which some of these
phenomena occur, the facts are born out too well to permit them to be

dismissed as accidental. For instance, out of 505 cones of the Norway
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spruce, the American naturalist Beal found 92% in which the spirals
were in five and eight rows; 6% were in four and seven, and E% were in
four and six rows. The relations involving the Fibonacci numbers are
simply there, whatever the reasons may be.

The presence of Fibonacci numbers in phyllotaxié is not the only
place in which these remarkable numbers seem to occur. Recent investi-
gations have revealed their presence in electrical network theory, in
mugic, and in nuclear physics, to mention a few, though nowhere do the

relations seem so obvious as in phyllotaxis.
Leonardo of Pisa

It would not be proper to conclude this chapter without making
some mention of the originator of the Fibonacci sequence. As was men-
tioned earlier, Leonardo of Pisa, nicknamed Fibonacci, a contraction of
Filius Bonaceci, son of Bonacci, created this sequence by considering a

rabbit problem in his book, Liber Abacci. This book, written in 1202

A. D., was not published until 1857, near the time when it caught theA
attention of the French mathematician, Edouward Lucas. It was Lucas who
did so much to revive and stimulate interest in the Fibonacci sequence,
and who first applied Fibonacci's name to it.

Leonardo was a learned man, educated in Morocco, where his father
was a clerk or dragoman to Pisan merchants. He travelled about the
Mediterranean, met with scholars, and studied the various systems of
arithmetic then in use. In so doing, he became convinced that the
Hindu-Arabic system was superior and he consciously sought to promulgate

this system in Italy. Largely for this reason he wrote Liber Abacci,

the first thorough treatment of arithmetic and algebra written by a
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Christian. While no copies of this book are available, copies of a
second edition, which he wrote in 1228, exist today. He wrote several

other works, notably Liber Quadratorum, which was a brilliant and origi=-

nal work., Without question, Leonardo was a true scholar, and is recog-
nized as the outstanding mathematician between Diophantus and Fermat in
analysis of certain types of equations of second degree.

The works of Leonardo Fibonacci are available in some universities
in the United States through two volumes by the Italian historian of

mathematics, Baldassarre Boncompagni, entitled Scritte di Leonardo

Pisano, which have been published in Rome. The first volume contains

the Liber Abacci and the second contains Patricia Geometrial, Flos,

Epistola ad Magestrum Theodorum; and Liber Quadratorum.

With these remarks in tribute to Fibonacci, it is appropriate that
this introductory chapter be drawn to a close. Many of the properties
that were intuitively discussed are seen again in the remaining chap-
ters, but are presented in a somewhat more formal setting. It is hoped
that this formalization will serve to intensify those appealing gual-
ities of the Fibonacci numbers that have been somewhat casually pre-

sented in the foregoing pages.



CHAPTER III
ELEMENTARY PROPERTIES
Proofs from the Definition

No doubt the reader ié already familiar with many of the mathemat-
ical concepts of algebra, number theory, and analysis that appear in
this thesis, Nevertheless, some of the basic definitions, notations,
and operations that are used are included as the need arises.

Familiarity with the integers is assumed. When referring to the
natural numbers,; one means the positive integers 1, 2, 3%, coo. » The

stage is now set for formal definitions.

Definition 3.1l. A recurring sequence is a sequence of numbers 4y 8y

g eoo in which each term is defined as a function of the

a39 0 QO0g an

preceding terms.

Definition 3.2. The Fibonacci sequence is a recurring sequence Fl9 F29

F , oo such that Fl =1, F2 = 1, and with the recurrence

formula Fn+2 = Fn + Fn+l° Where convenient, one writes FO = O,

Some simple identities involving Fibonacci numbers will now be
stated in the following three theorems. These identities are proved

using only the recurrence formula that defines the Fibonacci sequence.

Theorem 3.1, The Fibonacci numbers have the following properties for

21



sums:
(1) F1+F2+F3+,,°+Fn=Fn+2-1,
(2) F o+ F3 + F5 *ooeo + Fy oo= F2n’
(3) Fo+Fy +Fe+ eee v+ F, =F, -1,
(B)  F - F, 4+ Fy =B 4w D L R O Dl NN
Proof: From the recurrence formula, Fn+2 = Fn + Fn+l’
Fl = F3 - FE'
F2 = Fq - F3,
F3 = F5 - Fq,
Foe1 = Faa1 = T
, = Fpe2 = n+l°
Adding left and right members of these equations yields
Fl + F2 + F3 + 0o + Fn = Fn+2 - F2 = Fn+2 -1,
This proves (1).
For (2), one proceeds in similar fashion, noting that F1 =F

Hence,

g o0

[t

F2n-=1 =

-0

2

22

1.
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Again, adding left and right members yields (2).
A different type proof for (3) can be obtained using (1) and (2).
Replacing n by 2n in (1) yields

F.o 4+ F_ +F_ 4 o0 + F F. =F

R on-1 ¥ on = Topep - 1o

Subtracting corresponding terms of (2) from this yields

F2+F}++F6+090+F 1-F

2n ~ F2n+2 - 2n

= F 1,

2n+l

since F, 1 =¥y = Fope

In order to prove (4), one multiplies both members of (3) by -1
and adds termwise to (2). Then

F = F - P

F. «aF_  +F_ = Fbr + o0 + FZn-l - ¥y on 2n+1_+

1~ Fat ¥y 1

-(F

"

on+l " Fop) * 1

= “'F lo

on-1 *
This provides the desired result (4) when the last index is even. To

treat the case when the last index is odd, one adds F2n+l to both

members of this expression to obtain

By = Bt By = Byt oo = B * Tonid ® P ~Fona *

Hence, combining these last two expressions,

F. = F. + ... + (=127 = (-1)¥ 7

1 2 n n-1 "t 1.

This completes the proof of the theorem.

Challenge: Establish the identity (3), directly, without the use of

the other identities.
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In the follcwing theorem, three identities involving the squares of

Fibonacci numbers are proved.

Theorem 3.,2. The Fibonacci numbers have the following properties:

(1)
(2)

(3

F.2+F°2+F°+ ...,+Fn2 =FF

1 2 3 n n+l’

n+l + Fn+2 = FnFn+2 + Fn+an+3'

2 2 2 2
n+l ) = Fnel * Fn+2 °

Proof: For (1), note first that for k greater than 1,

, o a2
B ™ Tt = TP = P = 5

Hence,

=z F.F

= F.F. -

oFy = FyF

o
{

29

]
1

5 = B - FFs,

Q

Q
&

2
Fn - FnFn+l - Fn-an"

Adding left and right members yields (1).

For (2), write

(F -F _)F

FnFn+2 + Fn+1Fn+3 = n+2 n+l’ n+2 + Fn+1

(F

n+l Fn+2

)

To prove (3), write

2 2 2 2
Foa +Fpp = (B - F))7+ (F +F )
2 2 2 2
=F ~F it 7 FFot fon
2 2
= Z(Fn + Fn+l ).

A problem sometimes faced by the teacher of elementary mathematics
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in formulating problems and test questions is the problem of finding
integer solutions to the Pythagorean equation, x2 + y2 = zz, other
than the tried and true examples, (3, 4, 5), (5, 12, 13), and so
forth, It is at least surprising that the Fibonacci sequence turns
such solutions out in abundance, as seen from the next theorem due to

Lairaut.

Theorem 3.3. If Fn' Fn+1' Fn+2' Fn+3 are four conzecutive Fibonacci

2 + F 2

numbers, then x = F F F and z=F
n n+l n+2

n+3d V= NPT

isfy the equation x2 + y2 = 220

sate

Proof: The proof is immediate since

2 2 2 2
x +y = (FnFn+3) + (2Fn+1Fn+2)
2 2 2
= (B o = P T + Fg )07+ B F o
2 2.2 2 2
= (Fn+2 - Fn+l o+ 4Fn+l Fn+2
2 2.2
= (Fn+2 * Fn+l )
2
= Z .

Corollary. If F , Fn+l’ Fn+2’ Fn+3 are four consecutive Fibonacci num-

n
bers, then X = FnFn+39 y = 2Fn+an+2’ and z = FnFn+2 + Fn+an+3 sat-
. . 2 2
isfy the equation x +y =2 .

Proof: Apply identity (2) in Theorem 3.2. to the expression for z, and

the corollary»then follows from Theorem 3.3.
Using Mathematical Induction

So far, the results obtained have involved only the recurrence

formula, F = Fn + Fn+ As more mathematical tools are used, a

n+2 1°
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wider selection of results may be obtained. In the sequel, these tools
are brought out systematically, and their usefulness is demonstrated by
pfoving various results concerning Fibonacci numbers, Probably the most
useful instrument that is available for the type of work at hand is the

Principle of Finite Mathematical Induction,

Principle of Finite Mathematical Induction. Let there be associated
with each positive integer n a proposition P(n) which is either true
or false., If, firstly, P(1) is true, and secondly, for all k, P(k)
implies P(k+l), then P(n) is true for all positive integers n.

Proof by induction is based on essentially two facets; mnamely, the
existence of a first case (P(1) is true), and the truth of the Proposi-
tion in the (k+1)% case, whenever it is true in the k% case. The
assumption P(k) is true is often referred to as the induction hypoth-
esis., It is unfortunate in a way that the name given to this principle
uses the word induction, because proof by mathematical induction is in
reality deduction, which is always the situation in mathematical proof.

The formula n2 = 79n + 1601, n a positive integer, delivers prime
numbers for all n up through n = 79, The scientist accustomed to
empirical procedures would probably be content to risk a theory on far
fewer than 79 experimental verifications, but this formula yields a
composite for n = 80. In mathematics, neither seventy-nine nor a

‘million and seventy-nine verifications constitute a proof°

The principle of mathematical induction is illustrated by proving
a number of identities on Fibonacci numbers. Its nature and importance
is such, however, that this type of proof appears frequentlyithroughout
this thesis. The identities stated in Theorem 3.l. and Theorem 3.2.

could have been proved by induction.



As a demonstrationy the identity

F.+F

P(n): 5

of Theorem 3,1, will be proved by induction.

since

p(2), P(3),

For confidence,

is not at all necessary. Instead, one

L + F6 + 600 + F
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-1

2n F2n+1

Observe that P(1) is true

and so forth,; could be verified, but this

makes the induction hypothesis

that P(k) is true, namely,
Fot B+ Pt ooa + Fop =Ty - 1o
Now add F2k+2 to both menbers. It follows that
By Byt Pt oo + o+ P = Foppo ¥ Ty =1
F2k+3 hd l.
Regrouping the subscripts in left and right members
Py By v Fev oo & Fop v Fopiny = Foganyer = 1o

which is precisely P(k+l). Since P(k)

k, the procof by induction is complete.

Theorem 3.k.

implies P(k+l) for any integer

The Fibonacci numbers have the following properties:

(1) F, +2F, + BFB + oo + OF = (n+l)Fn+2 -Fo* 2
(2) F)F, + Fofy + FoFy + eou + By (F, = F, &,
(3) Fn+12 FnFn+2 = (—l)n‘
(%) F0 -3+ F 2= 2(-1)",
Proof: In (1), P{(1l) is true since

Fl = = (2)(2) =5+ 2 = (l+l)F3 - F5 + 2,
Assume P(k) is true:



F. + 2F., + cos + ka =

1 5 (k+1)F

k+2

Adding (k+1)F to both members yields

28

4 + 2.

k+l
Fl + 2F, + cee + ka + (k+1)Fk+l = (k+1)F, , = F, , + 2}+ (k+1)F, o
= (LB g + Fypp) = By + 2
= (k+1)Fk+3 - Fk+4 + 2
= ()P 5= (B g+ Fy) + 2
= (k+2)Fk+3 - Fk+5 + 2
= (Gerl) + VP 1y00 = Frapn)e
Hence, P(k) true implies P(k+l) true, and (1) is proved by induc-
tion.

For the proof of (2),

F.F, = (1)(1)

demonstrates that P(1) is true. Assume P(k)

F.F, + F F_ + F_F

155 of3 3 4 + oee + F

F

Add F, F Foki1Foke2

2K 2k+1 T to the

F F + FP.F_ + 400 + F.. . F

1¥2 * Fof's okioksl T T

2k+lF2k+2

2
sz + F

Fooker + Toke1Tore

(r ) +F_F

2k 2k+1

H

2k+2
2
F2k+2

2
- F2k+2

2
= Fopso

2
F2k+2

2k+1

2

Forvofore1 ¥ okl

(-2F + F

2k+1 2k+2 2k+1

(-2F

Fokt1 " Foke2 ¥ Fopuo

0,

Hence,

+ F

is true:

F

2k~ l 2k

+ F

2k+2

2
2k

2k+lF2k+2

ok okl *

+ F2k + F

)

2k+2)

F2k+1F

left and right members to obtain

2k+2
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' _ 2
FiFo # Folg 4 eee + By a¥oren) ™ Fa(is1) 3

so P(k+l) follows from P(k), and the induction is complete,

It will be more convenient to prove (3) if it is written

2 n
Fn+1 - FnFn+2 + (-7

One readily verifies P(1) by writing

F2=1=(@) -1=F

5 F, + (—l)l.

13

The induction hypothesis is
2
el = Tk ke2

Adding Fk+1Fk+2 to both members yields

F + (-l)k.

> k
Fertfie2 * T © FraaTiee * Bife + (1

which implies

( D+ DE,

Fles1Frrz * Fran? = Fro (P + Py

or

2 . _\k
FiniFies = Fep * (C17
This is the same as

2

k+1
k+2 F(k+1)F(k+2)+1

F + (=1) .

Hence, P(k+l) is true.
Finally, to prove (4) one readily verifies P(1) is true. Assum-
ing the truth of P(k) implies
' 2 2 2

K
ke2 " P *F =201

F
At this point it is not at all obvious what quantity ought to be added
to both members of this equation to deduce P(k+l). However, one}can

resort to mathematical craftiness. The propositional statement of

P(k+1) is
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2 2 2 k+1
Faanez = Flaann * T = 2007

Adding left and right members of this and the previous equation yields

2 2 2 F . 2 _ 2F 2 + F 2 - 2(—l)k + 2(~l)k+1 -

Fer = a1t T+ Tl k2 k1

O.

Hence, P(k+l) will be true if it can be shown that the left member re-

duces identically to zero. But

2 2 2 2 2 2
Frvr = a1 t 0 * P =3 v

2 2 2
2P T - 2F T -

2
k2 i1

it

-2F

1]

=0w

Hence, the induction and the theorem are complete,
Challenge: Prove the identities of Theorem 3.1l. by induction.

Challenge: Prove by induction:

(1)  nF, + (n—l)F2 + (n-Z)F3 *eee + 2F 4F =F , - (n+3),

1l 1 n n
2
(@) FF, + P + FF) 4 eee + Py P = Fopa — 1
n+l
() oy - L 2(-1)"""
(4) F .°-F = (-1,

n+l n+3Fn—1
The next theorem is a useful result that opens an avenue for prov=-
ing several identities that involve more elaborate indexing than those
obtained previously. It also brings to a close the sectidn that empha-
sizes the inductive argument. It should not be assumed that no further
need of finite‘induction will arise; however, its role will mo loﬁger

be emphasized.

Theorem 3.5. The Fibonacci numbers have the property
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F =F F +FF
m n-

m+n m+l n 1°

Proof: The proof is by induction on m. P(l) follows immediately,
since

F =F 4+ F =FF +F
n N~ n

14n 1 =5 1Fn-1

for every positive integer n. Assuming P(k) is true means that for

all positive integers n,

Fren = Tie1fn * Bifnae

Using this relation for the case when n is replaced by ﬁ~l implies

F F_.F FF

k#n-1 = “k+l'n-l T “k'n-2°
Adding corresponding members of these two equalities yields

= F + F

F(k+l)+n = F(k+n)+l k+n k+n-1

= PPy B Feafoa * Bifno

fl

F F +F
n

K+l an_ + Fk(Fn - Fn-l) + F

1 k+an~1

]

F +FF 4+ F
n

Fk+l n k k+an-l

(F

fl

kel + Fk)Fn + Fk+an-l

F

= F(k+l)+an + Fk+l n-1"*

Hence, P(k) true implies P(k+l) is true, and the proof is complete.

Corollary. The property Fm+n = Fm+an+l - Fm—an—l holds for the

Fibonacci numbers,
Proof: From the theorem

F

m+n Fm+an + Fannl

Fm+l(Fn+l -

anl) * Fan--l

Fm+an+l - Fm+an=-l * Fan-l
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= F F F (

m+l n+l ~ T p-l L)

Fo1 ~ T

= Fm+an+1 - Fn--lFm--l'

which is the desired relationm.
As a consequence of the preceding theorem, setting m =n yields

F, =F .F +FF
n n-

2n n+l'n 1

Fn(Fn+l + Fn-l)'

This indicates that the quotient of F2n divided by Fn is an integer.

A more general result of this nature is established later.

. . 2 2
Another identity, F2n+l = Fn+1 * Fn ' ;s obtained from Theorem

3.5, by getting n = m+l, and then replacing the m with n.
The following challenge lllustrates some other identities that stem

from this theorem.

Challenge: Lstablish the identities

2 2
(1) F2n--1 - Fn * Fn-l !

2 2
(2) Fon = Fnax " Tna -

The proofs by induction in the foregoing illustrate that the
Fibonacci sequence provides an excellent vehicle to motivate and demon-
strate mathematical proof. Further examples are yet to appear; how-
ever, more variety may be permitted if some additional definitions are

introduced,
Arithmetical Properties of Fibonacci Numbers

The following definitions and theorems are stated from eiementary
algebra and number theory. For proofs, notation, and so forth, see

Birkhoff and MacLane. [ 5)
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Definition 3.3, An integer d, not zero, is said to divide an integer

b, if there exists an integer ¢, such that b = dc, In this case d

is called a divisor, or factor of b, and b is called a multiple of

d. In symbols, one writes d |b, with the contrary expressed d1,b.

Definition 3.4, For two integers a and b, if d|a and 4 |b, then

d is a common divisor of a and b.

Theorem 3.A. Let a, b, ¢ be integers,

) v la and c\ b implies c\ a,
2) ¢ ‘a and ¢ 'a+b implies ¢ lb,

(3) ¢ ‘a eand ¢ lb implies ¢ lma+nb, for all integers m and n.

Definition 3.5. A positive integer p is prime if p>1 and p has

no positive divisors except 1 and p. A number greater than 1 and

not prime is called gomposite.

Definition 3.6. A greatest common divisor of two integers a and b

is a common divisor g, such that for any common divisor d of a
"and b, d|g. One writes (a,b) =g, for the positive greatest

common divisor,

Definition 3.7. The integers a and b are relatively prime if, and

only if, (a,b) = 1.

Theorem 3.B. The Division Algorithm. For given integers a and b,

b>C, there exist integers gq and r such that

a=bqg + r, O0<r<b.

It should be observed that the algorithm can be used to obtain the

greatest common divisor of two integers. Applying the algorithm suc-
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cessively, under the hypothesis of Theorem 3.B.:

a=bq+r1, : O_<.r1<b,

b = r 4, + rz, o< r2< rl,
ry = rsd, + r39 o< r3<: Tsy
Th-2 = Tp1%1 * o 0= Tn < Tpo1?

Thel © "ne

By the last line, ro|T Hence; the line before the last shows

n-1°

r
n

r

he2® Continuing back to the first equation, one ﬁas r.le and

rnl by so that r is a common divisor. That r, is the greatest
common divisor follows by noting that for any common divisor d of a

and b, dl r by the first equation; hence, d r,

by the second,

and continuing to the last, d I roe

Theorem 3.C. Let a, by, ¢ be integers. Then,

(1) (a,) | (a,b0),

) (ac,be) = (a,b)e,

(3 b Ia if, and omly if, (a,b) = b,

(%) (a,be) = (a,b), if (a,e) = 1,

(5 (a,b) = (a,brc), it a o,

(6) ab|ec, if (a,b) =1, afc, and b lc.

A number of properties relating to divisibility can now be demon-
strated for the Fibonacci numbers. Many of these properties show in-
teresting and unusual connections between the Fibonacci numbers and

their subscripts.
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Theorem 3.6. Any two consecutive Fibonacei numbers are relatively

prime. In symbols, (Fn’Fn+l) =1,

Proof: The proof is by induction. For n = 1,

(Fl’Fz) = (1,1) =

The induction hypothesis is (F ) = 1.

k'Fk+1
The proof will be completed if it can be shown that this implies

(F ) =1, But, using part (5) of Theorem 3,C. with a = ¢ =

k+l‘ k+2

Fiapr e bas (P oy o) = (Fpgofy + Fipp) = (Fpaf) = (Rl =

1.

Theorem 3.7. The Fibonacci numbers have the property Fn Frn'

for every positive integer r,

Proof: The proof is by induction on r. For r =1, the result is

trivial. Assume Fnlkan’ so that there is an integer h such that
Fkn = th. Hence, using Theorem 3.5.,
FlerD)n = Finen = Fiwe1Ta ¥ Fiafo1 = (Flper * WF, e

Therefgre, Fn F(k+l)n and the proof is complete,

Lemma. = le
(%ﬁﬁmd) 1

Proof: By Theorem 3.6., (F ) = 1. Suppose (Fn,F ) =4d

kn'’ kn-l kn-1

greater than 1. Them, d|F,_ . and d|F . Hence, d|F_ . and

d|F,_  since Fn' F,_ Dby Theorem 3.7, Hence, d is a divisor of F

kn kn

and F

kn-1® therefore, dl 1, contrary to the supposition d greater

_1) =1,

than 1. The contradiction implies (Fn n
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Theorem 3.8. A Fibonacci number with subscript the greatest common di-
visor of the subscripts for any two Fibonacci numbers is itself the

greatest common divisor of the two numbers. In symbols, (Fn,Fm) =

F(n,m)o
Proof: The proof is trivial when m = n. Suppose for definiteness
that m is greater than n. Applying the division algorithm to m

and n, and the successive remainders,

m=nqo+rl, Osrl<n,
n=raq + sy 0= r, <:rl,
ry = ryq, T34 0= Ty <T,
. .
Pre2 = Tpailpeq * Ty Osrp<my
Fea1 = Ttlge
where ry is the last remainder different from zero. Then ry = (mgn)

Since m = ng, + r it follows from Theorem 3,5, that

15)
Fn= Fr ngq. Fr +1Fn * Fr F -1 °
m 1790 17+ B 1 ™o

Hence, by Theorem 3.C., part (5),

(Fn°Fm) = (Fn’Frl+anqo+ FranqO-l)
= (Fn’FranqO—l)°
Now, (Fn’ano—l) = 1 by the lemma. Hence,
(Fn’Fm) = (Fn”Franqo-}) = (Fn’Frl)

follows by Theorem 3.C., part (4). Proceeding in similar fashion,
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Py
-
g
-
i
Py
-
g
A

o000
LR ]

Now, because of Theorem 3.7., e | Tyl implies Fr F . Henée,

t! Fgal
combining the above results yields, with the aid of Theorem 3.C., part

(3)s

oF

(F ,F) = (F
n'n t"‘l‘

r ) = T, = F(n,m)'

r t - Tt

One interesting consequence of Theorem 3.8. is that no odd
Fibonacci number is divisible by 17. To demonstrate this fact, sup<

pose there does exist an odd Fibonaceil number; say Fn' such that
17 Fno Note that Fn odd implies (2,Fn) = 1, Then, with the aid of

Theorem 3.C., part (4), and Theorem 3.8., it follows that

17 = (Fn,17) = (F ,34) = (Fn,Fg) = F(nig),
Since the only possible values of (n,9) are 1, 3, and 9, and F1 # 17,
Fy #17, and Fg # 17, the supposition that 17 ]Fn leads to a contra-
diction.
Challenge: Prove that if (m,n) = 1, then F F_ ‘an. (Hint. Use
Theorem 3.7., Theorem 3.8., and Theorem 3,C.)

Theorem 3.9. le'Fn if, and only if, ml Ne

Proof: 1f m |ns then there is an integer r such that n = rm, and
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lF = F . To prove the converse, if F_|F , then by Theorem 3oC°9
n| rm n mjn A

part (3) and Theorem 3.8., F_ = (Fm’Fn) = ys Hence, m= (m,n),

m E(m,n

and so, m 'n.

Challenge: Use Theorem 3.9. to show that a Fibonacci number is divisi-

ble by 3 if, and only if, its index is divisible by 4.

Challenge: Show that a Fibonacci number is divisible by 5 if, and only

if, its index is divisible by 5.

The next and final theorem of this chapter deals with the question
| ~of whether, for an arbitrarily assigned integer m, there is some
Fibonacci number that is divisible by m. The theorem shows that the

first Fibonacci number divisible by m is not especially large.

Theorem 3,10, TFor any integer m there is at least one Fibonacci num-

ber ambng the first m? Fibonacci numbers that is divisible by m..

Proof: If m = 1, the proof is trivial. Let m 1 Dbe a positive

integer, For any positive integer r, the division algorithm implies
r = mqg + r*, O=r*<<m,

- Note that the remainder r* must bé one of the m numbers O, 1, 2,

soo ¢ M=l. Now consider the sequence of pairs of such remainders.

(1) (Fi:FE), (FE:F%), (Fg: 3), ceey (F;:F;+l), vee

where for each n, F; is the remainder on division of Fn by m.
Since there are at most m different remainders possible on division
by m, there can be at most m2 pairs in the above sequence that have

different first entries and different second entries. Therefore, for

the first m2+l pairs in the sequence (l); at least two will be equal,



39

in the sense that (a:b) = (c:d) if, and only if, a=c¢ and b = d.

Let (Fp:Fy ) = (FR:Fp ), k<h gn+l, be the first repeated
« * * * -
pair in the sequence (1), Hence, Fk = Fh and F£+l = Fﬂ+l' Now,
suppose k >1. Since Fh—l = Fh+l - Fh and Fk-l = Fk+1 - Fk’ it
follows that there exist integers Q.10 91 such that
= * *
(2) Fpg=my o +F o, 0 <Fp , <m,
and
- ® *
(3) Fop=my , +F o, 0=SFr . <m.

Therefore, for suitable integers Upe1? o Yoy s Yo

* - - )
Pl = Fpa1 =My = Fppn - Fp - M9y

=may s+ Py -may - Fpo-may o,
and
* - . - - -
Foel = Frol = Mg = Fipg = B = may 5

* - - * -
My * e = My = Yo~ may .

Consider the difference F¥ _ - F* From the immediately preceding

h-1 k-1°
equations,

* - T* =
el " T =R+ F

*  _F* ) - (F* o F*) =
h+1 Fk+l) (Fh Fk) QO

L d

. . - £ _ e
where Q is an integer. Hencg, m divides he1l Fk-l

Now, from the inequalities in (2) and (3), ©O s;lr* < m.

*
h-1 "~ Fk-l

Because the positive integer m divides a non-negative integer smaller

than itself, the integer must be zero, and so TF¥ = F*

hel k=1° Thls means

*  F*) = (F* _«F* - P .
that (FF ;3Fx) = (Fy_;3F}), k-1 <k. This contradicts the fact that

(FE:F;+1) was the first pair in the sequence (1) to be repeated.
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Therefore, the supposition k >1 is false. Hence, k =1 and

*.T* e (T*T*Y o (V*eT1%) o (7 s . e s
(Fk°Fk+l) = (Fl'F2> = (1*:1*) = (1:1) is the first pair in sequence (1)

to appear more than once, being repeated in the ht position,

2 * o % — - 5 a3 -— [
1<h<n“+l. Now, (Fh°Fh+l) = (1:1) implies F,o=mq +F =mq +1

1. Therefore, ¥ =F - F

— * -
and F o o=map .+ Fpg =may, h-1 - “h+l ~ “n

1 - (mqh +1) = m(qh+l - qh) implies m| F In other

= Mpyy * h-1°
words,.the (h-1)tt Fibonacci number is divisible by m and 1 < (h-1)
s;mz, proving the theoren.

Jt should be recognized that as a consequence of this theorem and
Theorem 3.7., there must be infinitelj many Fibonacci numbers divisible
by a given integer m. Also, Theorem 3.10, indicates that the first

Fibonacci number divisible by m will not be extremely large, though

it gives no indication of how the number might be found.



CHAPTER IV
NON-RECURRENCE EXPRESSIONS FOCR Fn
The Binet Formula

An important problem that needs resolution is the matter of deter-
mining a prescribed Fibonacci number as a function of its subscript,
thus avoiding the necessity of a tedious calculation of all prior terms

by the recurrence formula Fn+2 = Fn+l + an Obtaining such an expres-

sion also makes it possible to elicit further information about the
Fibonacci numbers. The formula introduced in this section was actually
known to Leonard Euler and David Bernouwlli; however, it was rediscov-
vered by J. P. M. Binet in 1843. Interestingly enough, the golden ratio
occupies a prominent position in this formula.

It is unfortunate, but the proofs available at this stage of the
exposition are not motivated particularly well. It should not be sup-
posed that the proofs lack rigor. The difficulty lies in the fact that
the reader may have cause to wonder why a certain aﬁproach is useag
The only good answer, at this point, is that it brings about the de-
sired result, which is not an especially satisfying reply. Because of
these difficulties, the first theorem of this chapter is presented with
two proofs. The first proof is thé most elementary, but appears tb be
based on a very lucky guess. The second proof is presented at the close

of this chapter and is based on complex variable theory. In Chapter VI

el
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the derivation of the Binet formula is given in a setting which removes

the objections mentioned above,

Theorem 4.,1. The n# term of the Fibonacci sequence is given by the
formula

F, = 50 s,

where r = (1 + 5%)/2 and s = (1 = 5%)/20
Proof: Assume that the n# term can be obtained from an expression of
the form

(1) Fn = er® + dsT.

The proof is complete if it can be shown that this formula, for suitable
valves of r, s, ¢, and d; can be made to satisfy the recurrence for-
mula

(2) F =F . +F

n n-l n-2?

with n greater than 2, and Fl = F2 =1,

To determine r and s, substitute the assumed formula into the
recurrence relation (2). Then
ne=1 n-1 n=2 ne2

128 n
cr + ds = ¢r + ds + cr + ds s

ory

-r-1)c+s s2 -5 -1)d = O.
This equation is satisfied if r and s are roots of the equation
F-p-1=0,
and for this choice (2) is satisfied whatever the values of ¢ and d.
Now, choose ¢ and d such that F; =F, =1 in the formula (1);
that is,

1l =cr + ds,
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1l = cr2 + dsa.

This system will have a solution if r # s.
Let r be one of the roots of p2 -p=~1=0 and s the other, so
that r # s. Then, the system has the solution

5 =1 l -1

C=IGc -1 475k < r)*

For r = (1 + 5%)/2 and s = (1 - 5%)/2, a little manipulation yields

1 1
c =+ [ d = e e
5 5%
Hence, (1) becomes
Fn = 5%(rn - Sn)’

1 1
with r = (1 + 54)/2 and s = (1 - 5/2)/2s and -the proof is complete.
The observation that r = (1 + 5%)/2 = @, the golden ratio, and

s = - 1/8 suggests the alternate form’

n - Y2
5
for the formula of Theorem 4,1, The prominence of the golden ratio in
this formula is perhaps not too surprising, in light of the discussion

of Chapter II, but it is interesting, nevertheless.

The closed form expression for Fn given in the preceding theorem

is quite useful in establishing identities for the Fibonacci numbers.
For instance, the identity

F FF = (=1)thFk

n+h btk ~ Tnin+hik -

can be obtained by direct substitution from the formula in Theorem 4,1,

and noting that r's” = (rs)® = (~1)%. Incidentally, this identity is

rather general and includes a number of others as special cases, some
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of which were proved in Chapter III., Examples would be the identities

2 n 2 n+l
Foafpa -~ Tn = (-1)", FooFe ~F) = (<1)""", and so on. In theory

it should be possible to prove any identity for the Fibonacci numbers
from the formula of Theorem 4.1., but to do so would often be tedious
and inefficient,

It is worth noting that the Fibonacei numbers may be used as a tool

for expanding

=

which is laborious by the binomial theorem'when n' is not small, If
the quadratic equation for which @ is a root is written

g+ 1,

g =
and both members multiplied by @, then
B =5 8
=(f+1)+ 9
=20 + 1.

Multiplying first and last members by £ again yields
g =28+ p

2B +1) + g

30 + 2,

]

0

Similarly,

=
U1
|

= 38° + 28
3(F+1) + 28
58 + 3.

"

This pattern suggests

)
g = Fnﬁ + anl’ n =1y 25 35 ece o

Prdving the validity of this formula is accomplished by induction.
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For n =1,
Fl¢ +F, = 1(g) + 0 = @,
and it has already been verified above for n =2, 3, 4, and 5. For
n =k, assume
g = FO+F, .

Then, multiplying through by @,
k+l
4

i

Fk¢2+ P, @

FB+1)+F .8

i}

it

(Fk + Fk_l)ﬁ + Fy

=Feaf e Flke1)-1°
The computational advantage of this formula over a binomial expansion
is striking.
Returning to the equation ﬂa -% ~-1=0, and arranging it as
Qj-l:/@"‘ls
an efficient formula for calculating g™, namely,

] 1 .
ﬁ “ = (*"l)n+ (Fn¢ - F )| n = l, 23 3, oo g

n+l
may be proved, and is left for the reader. Since,

(@ - sh/a® = 2/ + $)® = (",
one then has a method of calculating ((1 - 5%)/2)n
thch avoids tedious calculation by the binomial theorem. It might be
conjectured that other expressions involving radicals could possibly be
~expanded in‘ such a fashion, " It is evident that different sequences
would have to be used, or some more general type of recurring‘sequencé_

introduced.
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Quotients of Consecutive Fibonacci Numbers

Having Theorem 4.1. available makes it possible to prove the con=-
jecture of Chapter II that ratios of consecutive Fibonacci numbers may
be taken arbitrarily close to the golden ratio by choosing the terms
sufficiently far out in the sequence. The following theorem establishes

this fact.

Theorem 4.,2. The Fibonacci numbers have the property

7
i+l
=¢1

lim
n<»w n

1
where £ = (1 + SAD/Z, the golden ratio.
Proof: On application of the Binet formula to both numerator and de-

nominator, it follows that

F ;% n+l “ne=1
lim -2 . 1ip 2 (5 =) )
n=00 'n ndoo 57N - (=)™

i

1
- (_l)n+l¢2n+l

i

lim T
N=$»00 1l - ———————
(ml)nﬁzn

= Dy
since @ = (1 + 5%)/2 >1,

Theorem 4.2, was first proved by R. Simson using infinite continued
fractions. For the purposes of this thesis it is preferable to deal
with continued fractions very lightly, and only in order to point out
the natural relationship between the quotients of consecutive Fibonacci
numbers and the golden ratio @. Dividing tﬁrough the equation
x2 -%x =1=0 by =x and rearranging gives

x =1+ 1/x.
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Using the right member as a formula for x and substituting into the

denominator yields

1+ 4o
which is an example of an infinite continued frection. If the process
ie broken off and each fraction evaluated along the way, one obtains
what are referred to as the convergents of the continued fraction. The
convergents of this particular continued fraction are the quotients of

consecutive Fibonacci numbers. Hence,

Fa/Flmlzl,
1
FE/FE =2=1+7,
3 _ 1
F,+/F3 =5=1+ T
l+=
1
5 1
* 1
1+I
8 1
F6/F5 =3 = 1+ N T ’
+
1
1+ T
1+-i-

® 0
oo
L

In the theory of continued fractions, the value of the continued frac-

tion is defined to be the limit of the sequence of convergents. Thus,
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1 + @90
A general property of convergent fractions may be noted by observing
that the successive convergents bracket the limiting value of @. That

is, F2/Fl =1<g, 'F3/F2 =2 >, Fq/Fs = 1.5<@, and so on. This

observation is apparent in Table V. of Chapter II.
Another Non-recurrence Expression

The next theorem illustrates an unusual expression for computing
Fibonacei numbers directly. In the quadratic equation xa -x =1=0

the substitution y = % yields 1 -y = ya = 0, The latter equation

has rooté ﬂ-l and =@, whereas the roots of the former have been
shown to be @ and =¢=lo Obviously, either equation is intimately
related to the golden ratio and the Fibonacci numbers; however, for
the purpose of obtaining the next result, the expression 1 -y = y2

is more tractable.

Theorem 4.3, The (n + 1)t Fibonacci number is related to the binomial

coefficients by the expressions

F= Cg + Cgml + Cg-z + ooe + CE, if 'n is even,
or
F . =Co+ A cf:l, if n is odd,
where
k k! .

C;j =31k = 3¢
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Proof: By polynomial division,

1 _ 2 3 n
5 = 1+y3+27 + 35 + soe + Fn+ly + ooo
l-y-v
0
n
"ZFn+ly°
=0

which converges for ﬁ¢'1<: y <:¢'l by the ratio test.

However,

1 1 2\k
5 = 2=Z(y+y)s
1-y-y 1-G+y) 3

y+ y2!<l,

from the formula for the sum of a geometric series. Hence, for y

such that ==;z§ml <y <¢,19

& n 1
2 Fn+ly - 2
l-y-=7

n=0
w
k=0
o)
= Z 7L+ )k
=0
e ¢ k
paary
- Z Ckyk+‘]
J
k=0 j=0
o n
3
n= ‘
where
he) n-1 n .
An-CO+C:L + s00 +Cn” if n even,
n n-1 n+l .
An-CO+C1 +°oo+Cn,1fnodd,
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Equating coefficients of like powers of y yields Fn+1 = An,

which is the desired result.

Challenge: Verify through terms of 6th degree that

o0 k o) N
k_k+j EZ n
C . = °
Z Z ’ Jy Any
k=0 j=0 n=0

An Analytic Proof of the Formula for Fn

As a conclusion to this chapter, another proof of Theorem k.1, is
exhibited. This proof points out clearly how more sophisticated mathe=-
matical methods can be useful in proving even a simple theorem. By
adding a touch of elegance it inspires interest. Furthermore, the
proof, based on complex variable theory, demonstrates again the power
of analytic techniques in the theory of numbers, For the reader un-
acquainted with complex analysis, the remainder of this chapter may be
omitted without prejudice to later developments. The following proof
isvdue to Hagis., [9]

As shown in the proof of Theorem 4.3., the generating function of
the Fibonacci numbers is given by

(0 0]

£(z) = 1/(1 - 2z - 2°) = E F_o2m

. nt
n=0

If one considers z as a complex variable, then f(zj, being a ration-
al function,; is analytic except at those points where the denqminator

is zero. Hence, f(z) has two singular points, namely, the simple
poles r = (-1 + 5°)/2 and s = (-1 = 5ﬁ)/2° By Cauchy's integral

theorem
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(n) 1 £(z)dz
Fn+l = f (O)/n! = 2711-[ Zn+1 9
: C

where the contour C is the circle Iz| = %o If ["is any circle with
center at the origin and radius greater than ’sl = @, then by Cauchy's

residue theorem

1 f(z)dz
L) Fn+1 = f n+dl 7 (Rr * Rs)‘
r 2

2ni

where R and R are the residues of f(z)/zn+l at the poles r

and s, respectively. Now

R =130 (5o p)e(z)/2" =

r z r - 1n+l’
(s = r)r
and
lim n+l 1
Ro=, o (z - 8)f(2)/z = - o r)sn+1.
Since rs = «1 and r -8 = 5%9 it follows, after simplification, that
Azn+1 %\n+1
1 -
(2) . —(R +R)~5k(——2——'—) (1—2-5—) .
If ["is the circle |z |= k >@ >1, then on [,
|f(z)| 1 .
-k-l
Hence,
(3) £(z)dz 2k
2ﬂ1 n+1 n+1(k -k -1)
1

TG -k -1)
Since k may be taken arbitrarily large, it follows from (1), (2), and

(%), that

. ) 5‘___1/2 ((l + 5}’2)n+1 ) (1 _ E?é)nﬂ.) )
n+l 2 2



CHAPTER V
SOME GENERAL IDENTITIES
A General Summation Identity

In Chapter III, a few results concerning sums of Fibonacci numbers
were obtained by induction in Theorem 3.1. The process of intuitive
trials and proof by induction can be continued indefinitely in the at~
tempt to obtain similar sum identities; however, more genera1 results
can sometimes be obtained through a broader attack. In particulaf, the
following theorem inciﬁdes all linear sums of Fibonacci numbers having

subscripts in arithmetic progression.

Theorem 5.1l. Let a, b, denote positive integers, b less than a.

Then,

n a a-b
(1) Fan--b B Fa.(n+l)-b + (-1) Fb * Fa--b
F = o
- ak-b

a
) (-1 +1 - (Fa+l + Fa—l)

Proof: From Theorem 4.1.,

5—%(ragfb _ Sak—b)

<

Fak==b

Hence,

n
X _h,_ak-b _ak-b
z Fort = Z 5 (r -5 )

k=1 k=1

52
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n n
- 5-V2ra-b z ra(k—l) - 5-Vasa-b z sa(k-l)
k=1 k=1

2P . 2 2701 . sy

1 - 5E1 - )

]

where the formula for the sum of a geometric series is used to obtain .

the last step. Simplifying, combining fractions, and grouping terms

yields,
n

ZF =(rs )a(ran-b“san-b)_(ran+a-b_san+a-b)+(rs )a'b(rb—esb)+(ra°b»sa'b)’
= ak-b 5%(1 (% + %) + (rs)®)

Using Theorem 4.l. and the relation rs = = 1, the right member may

be further simplified to give

n a ’ a-b

Z D Faueayap P DT R A F
ak-b ~ a

k=1 1- (Fa+l + Fa-»l) + (-1)

and the proof is complete.

Challenge: Use Theorem 4.1, to show that

ra + 5 =F + F

Challenge: Obtain the sum formula of Theorem 3.l. part (3) as a spe=
cial case of Theorem 5.l.
Challenge: With the aid of Table II of Chapter II, show that

5
Z F7k__3 = 2256010,
k=1

A Matrix Approach

A number of Fibonacci identities can be obtained through matrix
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algebra and a certain 2 x 2 matrix. The necessary definitions and
properties from matrix theory are reviewed as a preliminary develop-
ment.

The 2 x 2 matrix A is an array of four numbers a, b, ¢, d,

such that

A = (a b) .

1
o’
i}
O
"
jo N
"
o
°

The zero matrix 2 1is obtained when a The identity

matrix is

The determinant of matrix A is

D(A) = (2 g) = ad - be.

The multiplication of A by a number q is defined by

_ f(a by _ [ga qb
@ = q(c d) B (qc qd) )

For any two matrices A, B with entries a; b, ¢, d and e, f, g, h

respectively, the sum A + B 1is defined by

A+ B = (a b) e f\ _ fate b+f)
T \cd (g h/ ~ (c+g d+h | ?
and the product AB by
AR = (a b (e f) _ [aetbg af+bh)
" 7 \c d/\g h] T \ce+dg ecf+dh

Also, A =B if, and only if, a=e, b=f, c =g, and d=h. It
is a simple exercise in algebra to prove that D(AB) = D(A)D(B).

It is now possible to develop an effective instrument for proving
a number of Fibonacci identities. This is accomplished through the

- next definition.

Definition 5.1. Let Q = Ql be the matrix
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1
Let ¥ = 1. Then Q=q  =Q% = aQ°. In general, Q1 = it
defines exponentiation inductively. Note that D(Q) = ~ 1. Also,

Q1~(1 1) =(EF‘2F1 9
10 F

1

R FROREE
EEIG
R RSN

Qn - (Fn Fn~1 (l l) - (Fn+Fn_l Fn - (Fn+l Fn ) .
F F 10 F + F F F F
n n=2 nel

~1 "n-2 n-l n n-1
These statements include the essential steps for an inductive proof of

the next important theorem.

Theorem 5.2.
F. F
Qn _{ ntl "n
= F .

Fn n-1
Another inductive argument can be used to prove the next theorem, which

is left to the reader,

Theorem 5.3. D(Q™) = (BN? = (=17,
The setting is now complete and several identities can be conveniently

proved. Some of these identities were proved in Chapter III.

Theorem 5.4. The following identities hold for Fibonacci numbers:



2 n
Fonafaa - %y = (D7,

(1)

(2)

Fonvz = FneToee * Fufpaao

2 2

(3) F2n+1 = Fn+l * Fn !
() Fontl = Fofneo ¥ FpoaFrens
(5) | Fo =F (F . +F ).

Proof: From the definition of determinant of a matrix,

F 2°

F F
n+l "n F
n+l n-l n

D(Q™) =

n n-1

56

But, D(Q") = (-1)" by Theorem 5.3., hence (1) is proved. Identities

(2), (3), (4), and (5) are all proved at once. Since

(F2n+2 FZDAJ) _ Q2n+l n_n+l

= Q€
F2n+1 F2n
_(Fn+l Fn ) (§n+2 Fn+ﬁ
Fn Fn-l n+l Fn
. > >
~<Fn+an+2+ FnFn+l Fn+1 * Fn )
FnFn+2+ Fn—an+l FnFn+l+Fn-—1Fn

Equating corresponding elements in accordance with the definition of

equality for matrices yields the remaining identities of the theorem.
Challenge: Verify that Q2 -Q =1=2,

Challenge: Prove the identity Fm+n = Fm+an + Fan-l using the

matrix Q.

Another General Identity

In the previous sections, indication was given that a more general
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approach in developing and proving identities could prove fruitful.
This section is devoted to the development of one very general identity
that includes dozens of others as special cases, including many of
those discussed thus far in this thesis., It is well-known that mathe-
maticians are marked by their desire to generalize. With regard to the
reader for whom this work ié intended, few more suitable examples could
be given'to demonstrate the importance of that characteristic.

The following theorem and definition are important preliminaries.

Theorem 5.5. The Binet formula of Theorem 4.l.,
i/
Fn =5 k(rn - sn)9 r=#, s=-40,

is unique for the Fibonacci sequence.
Proof: The Fibonacci sequence is defined by

Fn+2 = Fn+1 + Fn, FO =0y F, =1,

Suppose a sequence {Fz} were to satisfy this definition. Then, the
= - * = =
sequence {fn} such that fn = Fn Fn #as the property that fo fl 0,
and fn+2 = fn+1 + fn° Hence, it follows‘that fn = 0, for every n,
and therefore, Fn = Fzg for every n.
It proves convenient in what follows to define Fibonacci numbers
with negative subscripts. The definition is prompted by considering

the Binet formula for negative values of n. With this definition, the

Fibonacci numbers are defined for any integer subscript.

Definition 5.2. For any integer n, F_ = (_1)n+an,

Ceonsider the function of n,

(1) SO(n) = Fn * Fn+l - Fn+2°

It is immediate from the recurrence formula F =F _+ F that
n+2 n+l n
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So(n) = 0 for all n. Next consider the function of m and n,

(2) 7 Sl(m,n) = oo * Foafnel ~ Foenel

Again, after appropriate use of the recurrenceiformula, it follows that,

for any m and n,

(3) Sl(m+1,n) = Sl(m,n) + Sl(mml,n).
Furthermore,
(&) Sl(O,n) = Fn+1 - Fn+1 =0 and Sl(l,n) = SO(n) = 0,

Hence, for any integer n, the relations (3) and (4) infer by upward
and downward induction on m that Sl(m,n) = 0 for all wm. There-~

fore, Sl(mgn) =0 forall m and n.

Next, consider

t ‘
(5) Sz(t,m,n) = FFn - (-1) (Fm+tFn+t = P Fmnst

)o

Cn making the substitutions Fn = Fn+2 - Fn+1" Fm+t+l = Fm+t + Fm+t-=1“

and Ft+1 = Ft + Ftal’

manipulating, and taking a judicious arrange-
ment of subscripts, one has

(6) 82(t+lwm,n) = Sz(t—l,m§n+2) - Sz(t,,m,n+l)°

Since F, =0, F =1, it follows from (5) and (2) that
(7 Sa(O,m,n) = 0 and Sa(l,m,n) = Sl(m,n) = 0.

Again, using induction on t in (6), it follows that for all integers
t, m, and n, Sz(t,m,n) = O, Hence, this establishes the general
identity

t ,
(8) PF o= (-DYE T ).

n+t ~ FtFmenst
This identity includes several of those proved previously. For in-
stance, when t = 1, (8) becomes the identity of Corollary 3.5. How-

, . . . .
ever, (8) is not the general identity promised. A relation even more



general than (8) may yet be obtained.
For integers k and t such that k >0, t # 0, consider the
function

(9 Sy timn) = FJE, - (DX Zch(‘l)hF P
h=0

n+kt+hm®

The recurrence relation SB(k+l,t,m,n) = FmSB(k,t,m,n) can be devel-

oped from (8), as follows:

(lo) SB(k"'lgt’m,n) =
k+1

F Ky () ()t Z ekl )by hF k+l-hp,
m n

t “m+t n+(k+1)t+hm°
h=0

Consider the second term of the right member.

k+l

(-1 e+ DE z R OL T s

n+(k+1)t+hm
h=0

k

= (1)Kt ZCE('l)thth ktl-hp

n+kt+hm+t
h=0

k+1 . '
k b ktl=
+ ZC («1) Ftth+t by

h=1 n+kt+hm+t
h=1

k

Kt, -\t K H] -
= (-1)¥%(-1) Zch(-l?thth hp

n+kt+hm+t
h=0

k

ZC (_,l)h+l b+l k-hF'

t m+t n+kt+hm+m+t
h=0

K
= (-1)%t Zc (-l)hF hF k“’h[ (-1)¥(F

h=0

m+tF(n+kt+hm)+t

F Fm,+(n+kt+hm)+t)}

59
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k

= (-1)¥* ZC (-1)PF br F

t m+t n+kt+hm m?
h=0

where use has been made of properties of the binomial coefficient, an
adjustment of the dummy index h, and (8). Hence, factoring F_ from
the right side of (10),

(11) SB(k+l,t,m,n) = FmSB(k,t,m,n)e

Also, from (9), SB(O,t,m,n) = Fn - Fn = 0, and SB(l,t,m,n) =
Sa(t,mﬁn) = 0, Hence, by induction on k, one has, for all integérs

t £ 0, my n, and all integers k =20, SB(k,t,m,n)ﬁz O. The foregoing

proves the following theorem.

Theorem 5.6. For all integers t # O, m, n, and all integers k =0,
k

e N P Zc (-1)bp by Kby

t “m+t n+kt+hm*
h=0

With the occasional aid of definition 5.2. and various choices of
k, t; my n, it is possible to obtain dozens of identities as special
cases of Theorem 5f6. Note that for k =1, and any t, m, ﬁ, the
identity (8) is obtained. Therefore, Theorém 5.6. gives all the iden-
tities that could be obtained as special cases of idengity (8). Also,
using the four-tuple (k,t,m,n) to identify the assigned values of k,

t, my and n,

: t
(12) (1,t,a,a~t)s FFo, =Fy o Fa - (-1) FF i
~and
(13) (1,1,a,a=1); F, =F (F +F ).

2a a a+l awlv

Substituting from (13) into (12), dividing out F_ , and using
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definition 5.2.,

t _ a
(Fa+l * Fa-l)Ft = Fiva - (-1 Fa—t‘— Fiva * (-1) tha'

Subtracting F, + (wl)aFt from both sides, this becomes
- Ft) + (=1) (Ft-a - Ft)'

_ o |
(Fa+1-+ Fa__l -1« (=1) )Et = (Ft+a

Set t = ah-b, and sum from h

H

1l to h =n., The right member tele-

scopes to yield

a a
(Fa+l+Fa__l=-1~(-1) ) ZFah—b = Fa(n+l) _b-Fa_b+(-l) (F_b—Fan_b)o

b+l

since (-1)F_, = (-D)*(-1) o = ~(-DHDF = (2127 in the

-b

third term of the right member, division by the coefficient of the

n
sum ZFah-b yields
h=1

1n

(-1)%F + (-1)%°F_+ F
(14) EFahb _ an Fa(nsl)<b b a=b,

h=1 1+ l) (Fa+l + Fa-l)

which is the identity of Theorem 5.1. Hence, all the special iden-
tities from Theorem 5.1, can be included under Theorem 5.6.
For a=2, b=1, and n =1t, in (14),

t

EF211-1 == Fopg ¥ Fop = Fope
hol

For k=1, t=«1, and n = m, in Theorem 5.6.,

2 2
F2m-l - Fm * Fm-l °

Combining these two identities,

t t-l

t
2 2
ZFZm—l EFm *sz

m=1 m=1 - m=l
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Hence, using (13),

t
2 2 2
2ZFm =F, +F = Ft(Ft+l + Ft—l) + Fy
m=1
= Ft(Ft+l + Ftwl + Ft)
= ZFtFt+l°

Cancelling the 2 yields the identity for the sum of the first ¢
squares of Theorem 3.2.

As a final illustration of the generality of Theorem 5.6., con-
sider (14) for a =1, b= -s, and n = t. Hence,

t

:i:Fh+s = Ft+s+2 - Foioe
h=1

Sum both members of this equation, with t = w-s, from s =0 to

g = w-1l, Thus, with u replacing hts,

w
E ZF = (Fer2 - FS+2).

Since changing the order of summation yields the same result,

w o u=l W wel
z ZFu = zu'Fu = (Fw+2 - Far2)
u=1 s=0 u=1 5=0

Hence, using Theorem 3.l., part (1),

W W=l
ZUFu =W 2 T EFS+2
=1 s=0

= WFw+2 - Fw+3 ta

I

(w+l)Fw+ - Fw+4 + 2.

2
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This is the identity of Theorem 3.4., part (1).

Obviously, the identity of Theorem 5.6. is very general indeed,
and includes a large body of identities as special cases. Identities
may, of course, be 6btained directly from Theorem 5.6. as well as‘
through procedures similar to those used above, For an extended list-
ing of identities which arise directly from Theorem 5.6., consult

Halton. [10] A brief listing follows:

(1,1ym,n-1): Foon = Fpgfo * FF 19
(1,2ym=1ym-1): F__ 2 2
em = Fovn ~ Fpa o
. 2V _ m-1
(1,1,m,-m): Fo-F Foq° (<),
k
(ky1,1,-nk): F o =Zch (n-1)keh’
h=0

k
Zc:‘ﬁ( -1y by k-hy

t t+m kt+hm = O°
h=0

(k,t,ym,0):

Identities by a Finite Difference Technique

The final section of this chapter is devoted to a specialized
method of obtaining identities involving sums of Fibonacci numberé, and
is based on the calculus of finite differences. In order to facilitate
the presentation, a brief review of some pertinent facts from finite
differences is given. The reader who is interested in a more complete
treatment of finite differences may refer to any standard textbook on
finite differences, such as Miller. [17]

The ordinary derivative of elementary calculus is, for a function
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f, defined on an interval a,b , is

DE(x) = £'(x) = iig f(x+h)$— £(x)

The symbol D is sometimes referred to as the differentiation operator.
In the calculus of finite differences, the difference quotient
(f(x+h) - f(x))/h is considered as in ordinary calculus; however, h
is held fixed and limits are not taken. It is custonary, in fact, teo
let h=l, and use the difference operator A to indicate the finite
difference
Af(x) = £(x+1) - £(x).

The parallel between /\ and D is striking. For instance, the differ-
ence formulas (c = constant)

e = 0,

Decf(x) = cAf(x),

NE(x) + glx)) = Af(x) + Aeglx),

NE(x)g(x)) = glx) Af(x) + £(x+1) Aglx),

ALx) _ glx) Af(x) - £(x) Aglx)
glx) ~ g(x)g(x+1) ?

g(x)g(x+1) # 0,

all have their obvious counterpart in differential calculus. The third
of these formulas may also be written
(1) AN £(x)glx)) = £(x) Nglx) + glx+1) Af(x).
The second difference is /A°f(x) = ANAf(x)) = Alf(x+1) - £(x)) =
£G4 - £(x+1) = (£(x+1) - £(x)) = £(x+2) = 2f(x+1) + £(x); and re-
cursively, one has A'f(x) = ACAM L 2(x)).

Just as one may consider the anti-derivative D"1 in calculu%, S0
also the anti-difference Zﬁﬁl has an analogous interpretatién in fi-
nite differences., That is, given a function F defined for all x,

the difference AF(x) = f(x) invites consideration of the converse;
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namely, given f, can F be found such that AF(x) = £f(x)? If so, one
writes F(x) = A-lf(x), or F(x) = >f(x), where the sigme sign
stands for indefinite summation, analogous to the indefinite integral.
Hence, /A and 'S are inverse difference operators, just as D and
Jr are inverse operators in ordinary calculus.
If there exist two functions F and G such that F(x) = St(x)
and G(x) = Sf(x), then |
AF(x) - G(x)) = AF(x) - AG(x) = £f(x) - £(x) = 0,

Let F(x) - G(x) = P(x). Hence, AP(x) = O implies P(x+l) = P(x). A
function enjoying this property is called a periodic constant and plays
the same role in the theory of summation as the constant of integration
plays in the theory of integration. General formulas analogous to those
of integral calculus occur:

2of(x) = ¢ Sf(x),

S(E(x) + g(x)) = Sfx) + Salx),

SH(x)Aglx) = £(x)g(x) - S glx+l) Af(x).
This last formula is referred to as summation by parts and is derived
from difference formula (1) for products., Summation by parts is useful
in proving certain Fibonacci sum identities, however, it is first nec-
essary to discuss definite summation.

The fundamental theorem of integral calculus states that if £ is

continuous on [a,b], then

.I.f(x)dx =Fx)| = Dglf(x) .
a .

a 2 a+n
where F?'(x) = f(x). For the parallel formula for the sum, Zf(x),
xX=a

let F(x) = Sf(x). Then f£(x) = AF(x) = F(x+l) - F(x), and hence,
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F(a+l) - F(a) = f(a),
F(a+2) - F(a+l) = f(a+l),
F(a+n) - F(a+n-1) = f(a+n-1),

F(a+n+l) - F(a+n) = f(a+n).

Adding left and right members in these equations yields

atn ‘ ’ ' a+n+l a+n+l
Zf(x) - Flatn+l) - Fa) = S| = Ale(x) :

X=a “ a a
Periodic constants may be ignbred here in the same manner as constants
6f integration with respect to definite integration.

With these tools at hand, it is possible to prove additionéI
Fibonacci identities. The x's above are replaced by k's to emphasize
- that the domain of the functions considered is the set of positive in-
tegers. The key formula for this effort is the summation by parts ex-.

pression for definite sums

at+n - [a+tn+l  a+n
@) zf(k)Ag(k) - e | - Zg(k+1)Af(k>,
k=a a k=a '

Success in using summation bj parts is contingent on a judicious choice
for f(k) and Asg(k), just as is the case in integration by parts. For
proving Fibonacci identities this means having at hand.some already
established identities. A few examples are given as theorems for

illustration.

Theorem 5,7o

n
Zka = (n+l)Fn+2 L Fn+4 + 2,
k=0
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Proof: ' In formula (2) let a=0, f(k) = k, and Ag(k) = Fk.'
Then, Af(k) =(k+1)~k =1, and

“k-1

glk) = ZF;} = Fe — b
J=0

by Theorem 3.l., part (1). Therefore,

n " |n+l n
S =k V| - D WE,, - D)
k=0 0 k=0
n N
= @TF( ) - @) =D E - ()
k=0
n
= (n+1)Fn+2 - (Fl + ZFk+2) +F
k=0
= (@ )F o = Py -1 + 1y

{1}

(nfl)Fn+2 = Fpep t 2

where Theorem 3.l., part (1), has been used again.

Theorem 5,8.

n
ZkFak = @0 = Fonsae
k=0

Proof: In formula (2), let a =0, f(k) = k, Ag(k) = L

Then, Af(k) =1, and

k-1
g(k) = Zsz =F, 1 -1
J=0

by Theorem 3.l., part (3). Hence,



n n+l n
EkFZk = k(Fyy - 1) - z(FZ(k+l)-1 -1
k=0 0 k=0

n
= (n+l)(F2n+l -1) —ZF2k+l + (n+1)

k=0
= (0el)Fy 0 = Fopiae
using Theorem 3.l., part (2).
Theorem 5.9.
n
szF = (@%42)F .. - (2n-3)F _ - 8
k n+2 - n+3 °
k=0 )

Proof: In formula (2), let a = o; £(k) = kZ, Neglk) = F .

Then, Nf(k) = (k+1)‘2 - k° = 2k+1 and

k-1

glk) = ZFJ. =F ., -1
J=0

‘ by Theorem 3.1., part (1), Discarding the -1,

n n+l n
K°F = K°F - Y (2k+1)F
k ~ k+1 k+2°
k=0 : 0 =0
n
2 ,
= §n+1) Fn+2 - 2(2k+l)Fk+2.
=0

Summation by parts is required again on the last term. Let f(k) =

2k+1, Aglk) = F Then, Af(k) = 2 and

k+2°
k-1

g(k) = ZFj+2 = Fk+3 - 2,
Jj=0

Ignoring the constant -2,

68
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n in+l n
% 2
Zksz = (D), - {(ammm - Z(z)Fk#+
k=0 L 0 k=0
5 .
= (n+l) Fn+2 - (2n+3)Fn+L+ + F3 + 2Fn+6 - 2(l+Fl+F2+F3)

2
(n +2)Fn+2 - (2n-3)Fn+3 - 8,

Theorem 5.10.

i ZFi =F_, - (w3),

k=0 i=0
Proof: In formula (2), let

k
f(k) = ZFi =F ., -1 and Nelk) = 1.

i=

Then, Af(k) = Fk+3 -F,,=F,, and g(k) = k. Hence,
n k n+l n
z EFi -k, -D| - Z(k+1)Fk+l
k=0 i=0 0 k=0

i

n
(D) (E, 5 = 1) = Y (DR ).
: k=0

Now apply summation by parts to the last term, letting f(k) = k+1,
and Aglk) = F. .+ Then, Af(k) =1 and

k-1

g(k) = EFJH =F > -1
j=0

Therefore, ignoring the constant -1,

n k n+l n ‘
' ZZFl = (n+l)(Fn+3 -1) - (k+l)I-‘k_,_.2 - ZFk+3
k=0 i=0 o) k=0
= (n+1)(Fn+3 -1) -~ (n+2)Fn+3 + F2 + Fn+5 -3
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Fn+)+ - (n+3)o

Theorem15°ll.

n
sz - FnFn+l'
k=0

n-1
Proof: Consider sza' In formula (2), let f(k) = F, and
k=0
k-1

Ng(k) = F . Then, Af(k) =F, . -F  and glk) = ZF:] =Fq -1
=0

Then,
n-1 (n~1)+1 n-1
2
sz = Ffen - Z(Fk+l AT
k=0 0 k=0
n-l
= Ffnel - z(Fk+_1 - F (g + T
k=0
n-1 n-1
2 2
= Ffne - ZFk'+l * sz °
k=0 k=0
n-1
Cancelling -Zsz from both members yields,
k=0
n-l n
2 2
Fafnel = sz+l - sz '
k=0 k=0

Any number of identities may be derived by following and extending the
methods used above, A few additional ones are listed in the challenges

below,.



Challenge: With the help of Theorem 3.1., parts

szZkﬂ = (l)Fy o - Fp s
k=0

using summation by parts.

Challenge: Use summation by parts to show:

-~ (2n+1)F

n
2 2
(1) Zk Fak = (n +2)F2n+1
=0

(2) Z k k+1 nFn+1Fn+2/ 2o

71

(2) and (3), show that

2n_2’



CHAPTER VI
A GENERALIZED FIBONACCI SEQUENCE

The recurrence formula for the Fibonacci sequence,

Fn+2 - Fn+l - Fn = 0,

is an example of a linear difference equation of order two. Indeed,
the natural setting for recurring sequences in general, 6f which the
Fibonacci sequence is one special case, is within the framework of fi-
nite difference equations. Difference equations are analogous in many
respects to differential equations, continuing many of the parallels
observed in the last section of Chapter V. The study of recurring se-
quences is, in reality, included within the subject of difference equa-
tions. In order to discuss generalizations of the Fibonacci sequence,
it would seem, therefore, that a general study of difference equations
should be made. However, such a completely general approach is beyond
the scope of this thesis, and, therefore, the generalizations dealt
with here are restricted. Attention is focused on homogeneous linear
difference ¢quations, primarily those of order two. The neceésary def~
initions and theorems pertinent to this discourse are stated without
proof, though many times the proofs are simpler than the analogoué re-
sult for ordinary differential equations. To find proofs or furtﬁer

details, the reader may consult Miller. [17]

Definition 6,1. Let po(x), pl(x), eoos pn(x), and r(x) be defined

72
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for all x in J*, the set of non-negative integers, with the proper-

ty that py(x)* p (x) #0, for all x in J*. Then
(1) po(x)y(x+n) + pl(x)y(x+n-l) + soe + pn(x)y(x) = r(x)

is a linear difference equation of order n. A function g not iden-
tically zero that satisfies (1) over J* is said to be a solution of (1).
The existence and uniqueness of solutions are assumed without fur-
ther discussion. Equation (1) is called homogeneous if r(x) is iden-
tically zero. It is clear that if gl(x) and gz(x) are solutions of

(1), then Pl(x)gl(x) + Pz(x)gz(x) is also a solution, where Pl(x)

and - P2(x) are periodic constants. For the purpose at hand, the peri-
oaic constants will be treated simply as ordinary constants. Within
this context, the concept of linear independence of a set of functions

is now defined.

Definition 6.2. Let gl(x), gz(x), coey gn(x) be n functions de-

fined on the set J* of non-negative integers. Then gl(x), gz(x), sovy

gn(x) are linearly independent if, for constants €1 Cos ecsy C o

n

gl(x) +c gz(x) + oaee + cngn(x) =0

¢ 2

for all x in J*, dimplies C; = €5 = eee =C = 0. In the contrary

case, the functions are said to be linearly dependent.

Theorem 6.A. Consider the homogeneous linear difference equation
(2) po(x)y(x+n) + pl(x)y(x+n-l) + eoo + pn(x)y(x) = 0,

where the coefficients po(x), pl(x), eooy pn(x) are defined on J*,

and po(x)vpn(x) £ 0, for all x in J*. Then there exist n linearly
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independent solutions of (2). ' Furthermore, any n solutions, gl(x),
gz(x), cooy gn(x), of (2) are linearly independent if, and only if,
gl(x) gz(x)‘ 0o gn(x)
gl(x+1) gz(x+l) coo gn(x+1)

° ° ° ] fé O,

° ° ° ©
© o ° e

gl(x+n—l) gz(x+n—l) aeo gn(x+n—l)

for all values of x.
The determinant in the preceding theorem is called the Casorati of
the n solutions gl(x), gz(x), coeg gn(x)° It plays a role in differ-

ence equations similar to the Wronskian of differential equations,

Theorem 6.,B. Let g,(x), g.(x), sesy g (Xx) be a linearly independent
e e 1 2 n

set of solutions of (2), ILet G(x) be a solution of (2). Then there

exist constants Cls Coy coey Cp such that
G(x) = clgl(x) + 02g2(x) + eoo + cngn(x).

This theorem states that a linearly independent set of n solu-
tions of an ni order homogeneous linear difference equation provides
the most general solution to that difference equation in the sense that
any solution may be obtained as a linear combination of the n solu=-
tions.

It is now desirable to return to the generalization of the
Fibonacci sequence. There are a number of ways in which this may be

done, Consider the recurrence formula

(3) Po¥ysn = “ple+n-1 - P2Yx+n--2 Toeee T Pan’

where Pgs Pys Pos eeey P, are constants, PPy # 0, and =x =21 in J*,
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Converting to function notation, (3) becomes

(%) poy(x+n) + ply(x+n-l) + oee pny(x) = 0.

Clearly, (4) is an n% order homogeneous linear difference equation
with constant coefficients. Then in accordance with Theorem 6.B., any

solution of (4) can be expressed, for suitable constants €11 Co1 ooy

c_, as
n

(5) y(x) = clgl(x) + caga(x) + s + cngn(x),
where gl(x)9 gz(x), cooy gn(x) is a set of n linearly independent

solutions of (&), To detefmine a particular solution would require a
choice of nb initial or boundary conditions, just as in the case for
ordinary differential equations. Stated in terms of recurring se-
quences and following the notation in (3), this means the first n
initial values Qould need to be prescribed, and then a particular re-
curring sequence would be obtained from (3). Imposing these initial
conditions on (5) would produce a generalized Binet formula, a general-
ization of Theorem 4.1. for the Fibonacci sequence, It should be noted
that additional generality could be obtained if (4) were not homogene-
ous. However, it is not the intention to give a full discussion of re-
curring sequences here. In fact, (4) will be restricted to the case
n = 2 in what follows,.

Suppose (3) is considered subject to the restriction n = 2.

Hence, (3) becomes

(6) V pOYx+2 == ple+1 - PZYx’

which leads to the difference equation

(7) poy(x+2) + PlY(X+l) + pzy(x) = 0.
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In order to find the general solution of this equation it is necessary
to find two linearly independent solutions. By analogy to the situation
for ordinary differential equations, one is led to assume a solution of

the form g(x) = m*. Then, (7) becomes

or

X 2
m (pom + pym + p2) = Q.

If g(x) = m* is to be a solution of (7), then m must be a root of

the algebraic equation pom2 + pym + P, "= 0. This leads to three

possibilities, namely, real and distinct roots, imaginary roots, and
real and equal roots. All three cases may be handled in a manner simi-
lar to the situwation in ordinary differential equations. For this oc-
casion, it is preferable to restrict attention to the case where

Po =1y Py = =1, p, = - 1. Then, the recurrence relation (6) is

(8) Yx+2 = Yx+l * Yx’

and the difference equation (7) is
(9) y(x+2) = y(x+l) - y(x) = 0.

The roots of m° =m -1 = O are m = (l+5%)/2 =r and m, =

i/
(1~5A)/2 = s, which are real and distinct. Then, gl(x) =r° and

ga(x) = 5° are solutions of the difference equation (9), Since the

. X X . .

Casorati of r~ and s”, is not zero, that is
X X

r s

X
x+1 x+1| (rs)™(s-r) £ O,
r s

it follows that gl(x) = r" and ga(x) = s~ are two linearly independent
solutions of (9). Hence, the general solution of (9) is y(x) =

clrx + casxo In terms of the recurring sequence (8), one has
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X X
(10) Yx = C)T" + C,8 .

In order to obtain a specific sequence, it is now necessary to impose
initial or boundary‘conditions. It is custoﬁary, in dealing with
recurring sequences, to specify the first terms of the sequence. For
Yl =1 and Y2 =1 in (10), the system of équations

l=cr+c.s

1 2
' 2 2
1= clr + c,8
. 1 12 . s .
imply that ¢, = 5°, ¢, = =5°. In this case (10) is simply the Binet

1 2
formula of Theorem 4,l., and the sequence obtained in this case is the
Fibonacci sequence itself. Other sequences may be obtained, of course,

by varying the initial terms. The corresponding Binet formula is then

determined from (10). For instance, if Yl =1 and Y2 = 3, solving

the system of equations obtained from (10) gives ¢, = C5 = 1, and for

this case, (10) becomes Yx = r* + s°. This yields the sequence of

Lucas
1‘3 39 49 79 119 181 covo g

which possesses a number of remarkable properties similar to many of
those pertaining to the Fibonacci sequence.

,Rather than applying various conditions to (10) and investigating
the corresponding sequence in an isolated fashion, why not hold back
the explicit values of the initial terms and study the sequence in
general? Suppose, therefore, that (8) and (10) are retained and the
conditions imposed are Yl = p and Y2 = p+q, where p and q are
arbitréry integers. The sequence so obtained is

Ps PtQy 2p+qs 3P+2q, 5p+3q, Op+5d, eeey

and it may be observed that
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(11) | Y o,o=DBF + (p+q)Fx+l,

where Fx’ F are the xt and (x+1)% Fibonacci numbers.

X+l

It follows from (10) that

[}

P =¢r + 8

i

+ c r2 + c 52
p q l 2 4
Solving this system and substituting into (10) yields

T = 5‘%((p=8q)rx + (rg-p)s™).

It is clear from either (11) or (12) that p =1, q = O is that
specialization which yields the Fibonacci sequence. It may be noted
that any choice in which p and gq are consecutive Fibonacci numbers,

say F. and F produces the Fibonacci sequence with the first
X X~

19
x =1 terms missing., DBut a question should be raised. What properties
of the Fibonacci sequence are carried over to the generalized sequence?
Answering this question involves an investigation of considerable mag-
nitude. A number of such results may be found in Horadam. [13] for
instance, Yx+1/yx approaches the golden ratio @, just as was the

case for the Fibonacci numbers. The identities

2 _ (.2 2 X
Yeafen - % = (F - pa - o)D),

2 2 2.2
Ty +(p -pa-a)F " =

PYoge1
have their respective counterparts in the Fibonacci identities

2 X
Fx-lFx+l -F = (=17,

There is also a useful expression for Pythagorean triples similar to

that developed in Chapter III for Fibonacci numbers, namely,
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[2Yx+le+2]2 * E[xYx+3]2 = [2Yx+le+2 * sz]z"

The work of this chapter indicates some of the directions in which
generalizations of the Fibonacci sequence may be taken. Certainly, the
variety of ways for so doing are extensive and the reader is invited to
investigate and explore the possibilities on his own. The opportunities
may be nearly as abundant as the offspring of Fibonacci's mythical pair

of rabbits!



CHAPTER VII
SUMMARY AND EDUCATICNAL IMPLICATIONS

The presentation in this thesis makes material concerning the
Fibonacci sequence readily available to the undergraduate mathematics
student. It illustrates how a variety of techniques and mathematical
tools, drawn from several areas of mathematics, can be used to prove

theorems about the Fibonacci numbers,
Summary

In Chapter I the statement of the problem, scope of the thesis,
methods and procedures, and expected outcomes are given., Chapter II
provides an informal discussion of some properties of the Fibonacei
numbers. Chapter III includes a formal definition of the Fibonacci se=
qﬁence and several theorems illustrating proof from the definition.
Additional theorems illustrating mathematical induction also appear,
and some arithmetical properties of the Fibonacci numbers are proved.
Chapter IV is a continuation of Chapter III but requires that the reader
possess a knowledge of limits. The important Theorem 4.1. provides a
formula for the direct calculation of é given Fibonacci number as a
function of its subscript. Chapter V deals with recent research in
obtaining generalized identities, The identity of Theorem 5.6. is
the most étriking result of this chapter. The connection between the

Fibonacci sequence and the calculus of finite differences is initially
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established and is further broadened in Chapter VI, where the Fibonacci
sequence is viewed in its natural setting as a homogeneous linear finite

difference equation,
Educational Implications

Much of the material included concerning the Fibonacci numbers
can be readily understood by secondary school students, particularly in
the initial chapters, and is designed to supplement the undergraduate
curriculum at both the upper and lower division. This thesis serves to
consolidate research and present well motivated problem material,
fashioned around a topic interesting to a number of students.

As a result of reading this thesis, the student should gain an
awareness of several facets of mathematics, including an acquaintance
with current and past research that has been done in connection with the
Fibonacci numbers. It is also of significance that the reader who is a
potential teacher at either the public school or college level may find
motivational material for his pupils and will perhaps enlarge on some of
the ideas presented.

Without questiong; the most significant outcome of this thesis lies

in the experience that the investigator gained in its preparation.
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