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CHAPTER I 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

Introduction 

In 1202 Ao D., the mathematician Leonardo of Pisa, who was nick-

named Fibonacci 9 wrote one of the earliest treatments of arithmetic and 

algebra and gave his work the title~ Abacci. Included in the book 

was a problem about the number of offspring of a pair of rabbits. The 

consideration of this problem led to a sequence of integers, 

The mathematician Cantor regarded this as the first example of a re-

curring sequence to appear in a mathematical work. The obvious recur-

rence relation is 

F 2 = F l + F, Fl= 1, F2 = 1. n+ n+ n 

This seemingly innocuous sequence has turned out to have so many re-

markable and fascinating properties, ranging from elementary to sophis-

ticated 9 that it and related recurring sequences have been investigated 

by some of the greatest mathematical minds. 

The richness and the applications of the intriguing Fibonacci se= 

quence have fascinated men through the centuries. It has been said 

that the researc:h generated by it nearly amounts to the number of off-

spring produced by Leonardo's first rabbits. 

Furthermoreg interest has continued to the present with a notable 

1 
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increase in very recent years. So much renewed interest has been shown 

that in 1963 an organization, the Fibonacci Association, was formed and 

is devoted to the study of the special properties of integers. 

Statement of the Problem 

Often in mathematics courses, problem solving is approached in a 

wide range of patterns, from a routine application of miscellaneous 

techniques to artificially involved material, which is sometimes poorly 

motivated from the standpoint of the student. The routine applications 

combine the illustration of techniqu,.e or principle with economy of time, 

while more involved and difficult material may produce more understand-

ing and depth, provided sufficient effort is expended. 

However, at the elementary level, the student's mathematical ma-

turity generally is such that problems need to be challenging and 

worthwhile, yet not require inordinate background knowledge. A great 

many of the properties and problems relating to Fibonacci numbers are 

interesting, yet do not require elaborate previous knowledge, are not 

difficult, yet serve well to illustrate a number of types of proof, and 

are bona fide mathematical topics, yet have a natural fascination for 

the novice. In this regard, it almost seems as if the eminent mathe-

matician and teacher, Polya, of Stanford University has the Fibonacci 

numbers in mind when he wrote: 

The trouble with the usual problem material of the 
high school textbooks is that they contain almost 
exclusively merely routine examples. A routine ex
ample is a short range example; it illustrates, and 
offers practice in the application of, just one iso
lated rule. Such routine examples may be useful and 
even necessary, I do not deny it, but they miss two 
important phases of learning: the exploratory phase 
and the phase of assimilation. • • • In contrast with 
such routine problems, the high school should present 



more challenging problems, at least now and then, 
problems with a rich background that deserves 
further exploration, and problems which Cfn give 
a foretaste of the scientist's work. ~OJ 
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The usefulness of this thesis stems from the fact that it provides 

interesting and challenging seminar, reading course, or enrichment ma-

terial, suitable for undergraduate mathematics students. The mathemat-

ical content involved is most closely associated with algebra, number 

theory, and analysis. It will primarily be through these areas that 

this thesis can best serve with respect to problem solving. The 

Committee on the Undergraduate Program in Mathematics (CUPM) bas recom-

mended that a full course in number theory be in the curriculum for all 

future teachers of secondary mathematics. This thesis would be espe-

cially appropriate as a supplement to several topics in such a course. 

The literature on Fibonacci numbers is usually only touched on in 

standard textbooks and many developments are available only in journals 

or notes. The purposes of this thesis are (1) to organize and bring 

together under one cover a contiguous body of appropriate and cballeng-

ing enrichment material for the modern curriculum, (2) to make supple-

mentary material associated with the Fibonacci sequence available for 

high school and undergraduate students, particularly prospective ma.the-

matics teachers, and (3) to provide an instrument to stimulate and 

encourage interest in mathematics, primarily at the level of the under-

graduate and advanced high school student, directly from first-hand 

contact, and indirectly by broadening and rounding out the backgrounds 

of their teachers. 

1Numbers in brackets refer to references in bibliography. 
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Procedure 

This thesis is intended as a mathematical research of expository 

nature devoted to the Fibonacci numbers and closely related develop

mentso An exhaustive treatment would be beyond the scope of this worko 

Therefore, an extensive review of the literature with a careful analy

sis and selection was required. 

The Mathematical Review, bibliographies of texts and published 

papers, and bibliographies of unpublished theses were used in locating 

material dealing with the Fibonacci sequence. A survey and analysis of 

available material was then made. Several articles were located i.J:1 

publications written in French and German. 

The presentation is expository in nature and is presented in grad

uated levels of difficultyo Chapter II provides, in an informal manner, 

motivation and i.J:lterest i.J:l the subject of the Fibonacci numbers o Most 

of the topics in this chapter reappear later as vehicles to demonstrate 

proof and develop mathematical skills in deductive reasoning. Chapters 

III and V constitute a more formal treatment and are intended to help 

develop the reader's skill and familiarity with certain basic algebraic 

concepts, particularly proof by mathematical induction. This type of 

proof, so widely used in all mathematics, is a very troublesome and 

elusive concept for too many students. One of the richer contributions 

of this thesis ought to be the i.J:istillation in the reader of an aware

ness of the utility and power of mathematical induction as an i.J:istru

ment for mathematical proof. Rei.J:lforcement of this effort is continued 

in the other chapters of the thesis; however, greater variety is intro

duced'l whi.ch'l i.J:l turn'i makes somewhat greater demands on the reader. 

Knowledge of elementary calculus is necessary for some of the develop-
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ment, particularly in Chapters II/ and VI. All the chapters are intend

ed to contribute to the stimulation and motivation of the reader and to 

encourage him to find a measure of pleasantness and satisfaction in a 

mathematical setting, as well as increasing his mathematical maturity. 

Expected Outcomes 

Hopefully, the reading of this thesis will make the reader aware 

of the elegance, beauty, and charm of Fibonacci numbers, and, so, of 

mathematics itself. It is expected that high school teachers will be 

able to use this material to provide enrichment for their students and 

that undergraduates may be able to improve and broaden their knowledge 

of mathematics. Finally, it is worth noting that most secondary mathe

matics courses do not mention a single mathematician in the span be

tween the great mathematicians of antiquity and the 16~ century. All 

the better that one outcome might be to make more widely known this 

remarkable mathematician, Leonardo of Pisa. 



CHAPTER II 

INFORMAL INTRODUCTION 

The Rabbit Problem and the Fibonacci Sequence 

As was pointed out in the opening remarks of Chapter I, the consid

eration by Fibonacci of a certain rabbit problem led to a sequence of 

integers called the Fibonacci sequence. The problem discussed in what 

follows is similar to the one he introduced in his book,~ Abacci. 

The problem is: Given a new pair of rabbits, find how many pairs will 

be on hand in a given number of months if each pair of rabbits gives 

birth to a new pair each month, starting with the second month of its 

life. If one considers this problem, the first month sees a total of 

one pairo In the second month there is still one pair since the origi

nal pair has not produced offspringo In the third month there are the 

original pair and the first pair of offspring, for a total of two pairo 

In the fourth month there is a total of three pair, the original pair 

and the two pair of offspringo But now a change commences, since some 

of the descendants themselves are producing offspring. For the fifth 

month, the original pair and their first descendants have offspring, 

plus those new offspring from the fourth month, also on hand, for a 

grand total of five pair. The sixth month there is a total of eight 

pair 9 the seventh month, nine pair, and so on, although keeping count 

has definitely become tediouso It proves to be helpful and suggestive 

to construct an array in which the number of pairs of rabbits two months 

6 
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or older are kept on one line and new ones on the line below. Assume 

that births occur at midnight on the last day of the month and that the 

census is taken on the first day of the new month. 

TABLE I 

RABBIT PAIR TOTALS FOR FIRST FEW MONTHS 

Month 1 2 3 4 5 6 7 8 9 ••• 

Old 1 1 1 2 3 5 8 13 21 ••• 

New 0 0 1 1 2 3 5 8 13 ••• 

Total 1 1 2 3 5 8 13 21 34 ••• 

The total for then~ month is then~ Fibonacci number, and among the 

patterns noted in the chart, one may observe, omitting the first entry 

in the old line, that the old, new, and total rows each give the 

Fibonacci sequence, in staggered fashion. Indeed, this suggests the 

extremely simple formulation for the total in any month, namely, the 

sum of the totals for the two previous months. Stated more symbolically, 

if F1 = 1, F2 = 1, the totals for the first and second months respec-

tively, then F3 = F1 + F2 = 1 + l = 2, F4 = F2 + F3 = 1 + 2 = 3, 

F5 = 2 + 3 = 5, and so on, and in general, one has the recurrence rule 

of formulation for the Fibonacci numbers, 

F 2 = F + F 1 • n+ n n+ 

Now, this sequence has interest in and of itself that goes far be-

yond the introductory rabbit problem from which it originated. 

In this chapter, several of the interesting and surprising mathe-

matical properties of the Fibonacci sequence are considered intuitively, 

and a brief comment is made on some of the remarkable connections to 
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other areas. 

For initial practice it might be helpful to calculate a few numbers 

in the Fibonacci sequence. Some initial results are shown in Table II, 

which will also be useful for later reference. One immediately appreci-

ates the difficulty in tabulating large Fibonacci numbers, in that all 

the preceding terms must be knowno This suggests that it might be de-

sirable to be able to calculate F for any given n directly, and 
n 

this problem is considered in a later chapter. 

A perusal of Table II reveals several interesting properties. It 

appears by trial that any two consecutive Fibonacci numbers are rela-

tively prime. Also, note, for example, that 4 is divisible by 1, 2, 

and 4, and F4 = 3 is divisible by F1 = 1, F2 = 1, and F4 = 3; 

12 is div.isible by 1, 2, 3, 4, 6, and 12, and F12 = 144 is di-

and in general, it appears that whenever one index is divisible by an-

other, the corresponding Fibonacci numbers possess the same divisibility 

propertieso That this conjecture is true is proved in a.I1other cllaptero 

Another remarkable property that can be verified for some initial 

values using Table II is that the greatest common divisor of any two in-

dexes is the index of the greatest common divisor of the two correspond-

ing Fibonacci numberso For instance, the greatest common divisor of 

F8 = 21 and F12 = 144 is 3. The greatest common divisor of 8 and 

12 is 4, and F4 = 3. This conjecture is also proved in a following 

chapter. There are many other known relationships similar to these, and 

new ones are still being discovered. 
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TABLE II 

PARTIAL LISTING OF FIBONACCI NUMBERS 

n F n F n n 

0 0 24 46368 
1 1 25 75025 
2 1 26 121393 
3 2 27 196418 
4 3 28 317811 

5 5 29 514229 
6 8 30 832040 

7 13 31 1346269 
8 21 32 2178309 

9 34 33 3524578 
10 55 34 5702887 
11 89 35 9227465 
12 144 36 14930352 

13 233 37 21157817 
14 377 38 39088169 

15 610 39 63245986 
16 ··987 40 io2334155, 
17 1:597 50 ·12586269025 
18 2584 60 1548008755920 
19 4181 70 190392490709135 
20 6765 80 23416728348467685 
21 10946 90 · 2880067194370816120 
22 17711 100 354224848179261915075 
23 28657 
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A natural property to investigate ~ight be the initial sums of the 

Fibonacci numbers. In this connection, consider Table III, in which the 

third column contains the sums of the first n Fibonacci numbers. 

TABLE III 

SUMS OF FIBONACCI NUMBERS 

n F n sum of 1st n sum of 1st n squares 

1 l 1 1 

2 l 2 2 

3 2 4 6 
4 3 7 15 
5 5 12 40 
6 8 20 lo4 

? 13 33 273 

8 21 54 714 

Reflectuig on the values in the sum column, one observes that each value 

is one less than a Fibonacci number. In particular, it is one less than 

the second Fibonacci number beyond the last F in the sum. In other 
n 

words 9 the relation 

F1 + F2 + .. ••• + F = F 2 ... l · · · n n+ 

is suggestedo This identity does indeed turn out to be a valid one 9 and 

a proof of this is given in Chapter III. By considering respectively, 

the values of n which are odd, even, multiples of a given number, and 

so on, in Table III, it is possible to suggest other identities concern-

ing sums. 

An identity concerning the sum of the first n squares of Fibo-

nacci numbers can be motivated by an interesting geometric deviceo 

Place two squares of side 1 next to each othero Construct next, a 
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square of side 2 adjacent to the two unit squares, as. shown in Figure 1 9 

and continue constructing squares having dimens:i,ons equal to consecutive 

Fibonacci numbers. 

8 

3 5 

2 
1 

2 

1 

Figure lo Squares With Dimensions Equal to Consecutive 
Fibonacci Numbers 

Observe that the area of the individual squares is 

5 

for the six squares shown in the figure. But t:i:iis is the same as the 

total area of the rectangle formed, so that this quantity is apparently 

the same as F6 F7 o One then generalizes 
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and this particular identity is proved later. 

Every student of elementary algebra is familiar with the triangular 

array called Pascal's triangle. The use of this array to obtain the co-
n . 

efficients in the expansion of (a+ b) is well-known. Also, if 

TABLE IV 

PASCAL'S TRIANGLE 

1 

1 

1 

6 1 

• 
• 
• 

horizontal rows are totaled, integer powers of two are obtainedo It is 

not so widely known that this array can be used to obtain the Fibonacci 

numberse Instead of running totals horizontally, one may take them 

along a 22.5° angle, following the diagonal lines in Table IV. In this 

manner the successive Fibonacci numbers are obtained .. Making use of the 

notation c: for the binomial coefficients leads to 

n n-1 n-2 
Fn =CO+ Cl + C2 + ••• ' 

with the convention that c: = 0 for n less than ko 

Other properties than those mentioned above are treated in detail 

in later chapters. In the final pages of Chapter III, an important 
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result pertaining to the existence of a Fibonacci number divisible by an 

arbitrary integer m is established. By way of illustration, a study 

of Table II reveals that if m is taken as 7, 9, 13, or 14, then each 

of these respectively divides 18 = 21, F12 = 144, F14 = 377, or 

It appears that not only is the existence of-a Fibonacci 
',, 

-,, 
number divisible by m guaranteed for an arbitrary integer m, but the 

first such, .number will not be extremely large. 

Golden Ratio 

The famous golden section involves the division of a given line 

segment into mean and extreme ratio, in other words, into two parts such 

that the longer is the mean proportional between the whole line and the 

shorter parto Figure 2 shows a line segment in which the two parts are 

' 
a 

Figure 2. Golden Section 

a and bo This condition may be expressed 

a b - = ~-. a less than b. 
b a+b' · 

For a= li this proportion yields the quadratic equation 

2 
b - b - 1 == o. 
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The positive root is frequently denoted by ¢, hence ¢ = (1 + ../5)/2. 

The number ¢ was known to the ancients as the golden ratio. 

It has been indicated by psychologists that a rectangle having 

sides in golden ratio is the rectangle having the most pleasing shape to 

behold. For instance, this is approximately the shape chosen for pie-

ture postcards and this shape is often seexi in architecture. The golden 

section was mysterious and fascinating to the ancients. Indeed, it was 

Feferred to as De Divina Proportione, Even Kepler was awed by it as can 

be seen by this comment: 

Geometry has two great treasures.:, one is the theorem of 
Pythagoras; the other, the division of a line in extreme 
and mean ratio. The first we may·compare to a measure of 
gold; the second we may name a prec;'ious jewel. [?] 

S~pernatural connotations have.often been associated with this 

ratio. Even as rece~tly as 1954, in a painting by Salvadore .Dali; The 

Sacrament ,of the Last Supper, ~ portion o~ a'.regular poly!ledron of, 

twelve faces, a dodecahedron, is shown; The dodecahedron has regular 

pentagons for its faces, and the student of geometry is aware that this 

figure is intimately associated with the golden ratio. 

Now one is never far from the Fibonacci numbers when in the pres-

ence o,f t.he go~den ra;tio. · Consider ~he large rectangle of Figure 3, 

with sides in the Golden Ratio, ¢: 1. Next, remove the large 1 x 1 

square in the right portion of'. Figure 3. The remaining rectangle has 

its sides in the ratio of l : ¢ - 1. But ,J· is defined from the equa

tion ¢2 - ¢ - 1 = O, which may be written 

d. . . 1 
,.,=¢-1 

after_.a._little .manipulation . ._ ___ fb.is. ~di.cates the Upfer.lef:t_re(:t~gl~ _ 

is similar to the original rectangle, ~d so the process may be repeated 
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indefinitely, as is partially illustrated in Figure 3 .. 

i 
¢ - 1 l 

¢ - l 

l 

2¢ - 3 
2 - ¢ 

Figure 3. A Sequence of Golden Rectangles 

At this point, Figures.land 3 should be compared. The two dia-

grams are considerably different in the lower left-hand corners; how-

ever, the larger parts are nearly alike. Furthermore, if both figures 

were increased by adjoining squares, the proportions would become in-

cr~asingly more equal. The ratio of length to width of every rectangle 

of Figure 3 is¢; the proportions of the rectangles of Figure 1 are 

the successive ratios of consecutive Fibonacci numbers, namely', 

!., g,, .2, ~. ~' 
l l 2 3 5 

• • • • 

The further along in this sequence one goes, the more nearly the ratio 
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F 1 : F approximates ¢0 This fact is verified for a few values in 
n+ n 

Table V. A proof of this property, which was first noted by Kepler, is 

presented in Chapter IV. Note that ¢ = 1.61803 •••• 

There are a number of facts regarding the Fibonacci numbers that 

have been discovered using modern computer equipment. F476 is the first 

100 digit Fibonacci numbero For each succeeding 100 digit level, the 

indexes are increased by 478 and 479 alternately, that is, F954 is the 

first Fibonacci number with 200 digits, F1433 has 300, F1911 has 400, 

and so on up to F19137 with 4000 digits. 

TABLE V 

QUOTIENTS OF CONSECUTIVE FIBONACCI NUMBERS 

n F F F /F n n+i n+l n 

1 1 1 1 

2 1 2 2 

3 2 3 1.50 

4 ? 5 J,!667 

5 5 8 10600 

6 8 13 1.625 

7 13 21 1.6154 

8 21 34 1.6190 

9 34 55 1.6176 

10 55 89 1.6182 
~ ? 

0 0 

0 • 
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····-
!rhe last digits of the Fibonacci sequence.repeat in.cycles of 60 .. 

' ' The Fibo:na.cci numbers F11003 and . F11004 have be~m calculated and 

are given by Berg. [4] "Two pages are required for each number! 

Phyllotaxis 

The Fibonacci numbers are not eonfined exclusively to the mathe-

matician's realm. They have a botanical connection in the phenomenon 

called phyllotaxis, meaning leaf arrangement. In some trees, such as 

the elm, the leaves along the twig seem to occur alternately on two op-

posite sides, and one speaks of ~phyllotaxis. In the beech tree, the 

passage from one leaf to the next is given by a rotational displacement 

involving one third of a. turn, that is 1/3-phyllotaxis. In similar 

fashion, the oak and apri~ot exhibit 2/5-phyllotaxis, the. poplar and 

pear, 3/8-phyllotaxis, the wi+low.and almond, 5/13-phyllotaxis, and so 

on .. The Fibonacci numbers are conspicuously present, as these fractions 

are quotients of alternate Fibonacci numbers. Had th~ rotation been 

taken opposite to the above direction, the fractions would have been 

quotients of consecutive Fibonacci numbers. Thus, 8/13 could have re-

placed 5/13, f~r instance .. It happens that if the leaves were arranged 

in precisely the ratio l: {6, instead of approximating this ratio, 

then no two leaves would ever ·be superposed. The biologists are not al-

together decided as to the explanation of th;is and other phenomena re-

lated to the Fib_onacci numbers, ~ut the matter has a .long history of 

study.. Leaf arrangement has been explained as serving to let air pass 

between the leaves, keeping one from overshadowing another, alld letting 

rain fall from one leaf on~o the o:p.e below, and the phyllotaxis ratios -, 
\._ 

represent the effort of the plant to seek~ most beneficial arrangement. 
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Whatever the reason or explanation for these matters, this is a question 

to be answered by the biologist. However, observation demonstrates that 

numerous connections to the Fibonacci numbers cannot be deniedo Kant 

has said that it was Nature herself, not the mathematician, who brings 

mathematics into natural philosophyo 

Other manifestations of phyllotaxis are seen in the arrangement of 

the florets of a sunflower, or the scales of a fir cone, in spiral or 

helical whorls, which are referred to as parastichies. A comment is 

quoted from Thompson to illustrate further some of the relationships to 

Fibonacci numbersQ 

Among other cases in which such spiral series are readily 
visible we have, for instance, the crowded leaves of the 
stone-crops and mesembryanthemums, and the crowded florets 
of the composites. Among these we may find plenty of exam
ples in which the numbers of the serial rows are similar to 
those of the fir-cones; but in some cases, as in the daisy 
and others of the smaller composites, we shall be able to 
trace thirteen rows in one direction and twenty-one in the 
other~ or perhaps twenty-one and thirty-four; while in a 
great big sunflower we may find (in one and the same species) 
thirty-four and fifty-five, fifty-five and eighty-nine, or 
even as many as eighty-nine and one hundred and forty-four. 
On the other hand, in an ordinary "pentamerous" flower, such 
as ranunculus, we may be able to trace, in the arrangement 
of its sepals, petals and stamens, shorter spiral series, 
three in one direction and two in the other; and the scales 
on the little cone of a Cypress show the same numerical 
simplicity. It will be at once observed that these arrange
ments manifest themselves in connection with very different 
things 7 in the orderly interspacing of single leaves and of 
entire florets, and among all kinds of leaf-like structures, 
foliage=leaves 7 bracts~ cone-scales, and the various parts 
or members of the flowerooo the arrangements mentioned be
ing set forth as follows (the fractional number used being 
simply an abbreviated symbol for the number of associated 
helices or parastichies which we can count running in op
posite directions): 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 
34/55, 55/89, 89/1440 [2:JJ 

While there are irregularities in the manner in which some of these 

pp.E!nomena occur, the facts are born out too well to permit them to be 

dismissed as accidentalo For instance 9 out of 505 cones of the Norway 
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spruce 9 the American naturalist Beal found 92% in which the spirals 

were in five and eight rows; 6% were in four and seven, and 4% were in 

four and six rowso The relations involving the Fibonacci numbers are 

simply there, whatever the reasons may be. 

The presence of Fibonacci numbers in phyllotaxis is not the only 

place in which these remarkable numbers seem to occur. Recent investi

gations have revealed their presence in electrical network theory, in 

music 9 and in nuclear physics, to mention a few 9 though nowhere do the 

relations seem so obvious as in phyllotaxiso 

Leonardo of Pisa 

It would not be proper to conclude this chapter without making 

some mention of the originator of the Fibonacci sequence. As was men

tioned earlier 9 Leonardo of Pisa, nicknamed Fibonacci, a contraction of 

Filius Bonacci9 son of Bonacci, created this sequence by considering a 

rabbit problem .in his book, Liber Abacci. This book, written in 1202 

A. D. 9 was not published until 1857 9 near the time when it caught the 

attention of the French mathematician, Edouard Lucas. It was Lucas who 

did so much to revive and stimulate interest in the Fibonacci sequence, 

and who first applied Fibonacci's name to it. 

Leonardo was a learned man, educated in Morocco, where his father 

was a clerk or dragoma.n to Pisan merchants. He travelled about the 

Mediterranean9 met with scholars, and studied the various systems of 

arithmetic then in use .. In so doing, he became convinced that the 

Hindu-Arabic system was superior and he consciously sought to promulgate 

this.system in ~talyo Largely for this reason he wrote Liber Abacci 7 

the first thorough treatment of arithmetic and algebra written by a 
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Christiano While no copies of this book are available, copies of a 

second edition, which he wrote in 1228, exist today. He wrote several 

other works 9 notably~ Quadratorum, which was a brilliant and origi

nal worko Without question, Leonardo was a true scholar, and is recog

nized as the outstanding mathematician between Diophantus and Fermat in 

analysis of certain types of equations of second degreeo 

The works of Leonardo Fibonacci are available in some universities 

in the United States thl'ough two volumes by the Italian historian of 

mathematics, Baldassarre Boncompagni 9 entitled Scritte !! Leonardo 

Pisano 9 which have been published in Romeo The first volume contains 

the Liber Abacci and the second contains Patricia Geometrial, ~ 9 

Epistola ~ Magestrum Theodorum, and Liber Quadratorumo 

With these remarks in tribute to Fibonacci, it is appropriate that 

this introductory chapter be drawn to a closeo Many of the properties 

that were intuitively discussed are seen again in the remaining chap

ters, but are presented in a somewhat more formal settingo It is hoped 

that this formalization will serve to intensify those appealing qual

ities of the Fibonacci numbers that have been somewhat casually pre

sented in the foregoing pageso 



CHAPTER III 

ELEMENTARY PROPERTIES 

Proofs from the Definition 

No doubt the reader is already familiar with many of the mathemat~ 

ical concepts of algebra~ number theory, and analysis that appear in 

thLs thesiso Nevertheless, some of the basic definitions, notations~ 

and operations that are used are included as the need arises. 

Familiarity with the integers is assumed. When referring to the 

natural numbers~ one means the positive integers 1, 2, 3, H• • The 

stage is now set for formal definitions. 

Definition 3.1. A. recurring sequence is a sequence of numbers a1 9 a2 , 

a 3 'i} ooo'» a 'j ooo n 
in which each term is defined as a function of the 

preceding terms. 

Definition 3o2o The Fibonacci sequence is a recurring sequence F1 ~ F2 , 

formula F 2 = F + F 1 • n+ n n+ Where convenient, one writes 

Some simple identities involving Fibonacci numbers will now be 

stated in the following three theorems. These identities are proved 

using only the recurrence formula that defines the Fibonacci sequence. 

Theorem 3.1.. The Fibonacci numbers have the following properties for 
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sums~ 

(1) O O O + F = F 2 - 1, n n+ 

(2) O O O 

(3) ••• + F2n = F2n+l - 1, 

( )n+l n+l (4) F1 - F2 + F3 - F4 + ••• + -1 Fn = (-1) Fn-l + 1. 

Proof: From the recurrence formula, Fn+2 = Fn + Fn+l' 

Fl = F3 - F2, 

F2 = F4 - F3' 

F = F 2 - F o n n+ n+l 

Adding left and right members of these equations yields 

This proves ( l) • 
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For (2), one proceeds in similar fashion, noting that F1 = F2 = lo 

Henc:e 9 

Fl 

F3 

F5 

= F2, 

= F4 - F2, 

= F6 = F4, 

0 

0 

0 
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Again 9 adding left and right members yields (2). 

A different type proof for (3) can be obtained using (1) and (2). 

Replacing n by 2n in (1) yields 

Subtracting corresponding terms of (2) from this yields 

= F2n+l - l, 

In order to prove (4), one multiplies both members of (3) by -l 

and adds termwise to (2). Then 

Fl - F2 + F3 - F4 + ••• + F2n-l - F2n = F2n - F2n+l + l 

= -(F2n+l - F2n) + 1 

= -F2n-1 + lo 

This provides the desired result (4) when the last index is even. To 

treat the case when the last index is odd, one adds F2n+l to both 

members of this expression to obtain 

Hence, combining these last two expressions, 

F1 = F2 + ••• + (-l)n+lF = (-l)n+lF + 1 0 

n n-1 

This completes the proof of the theorem. 

Challenge~ Establish the identity (3) 1 directly, without the use of 

the other identities. 
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In the following theorem, three identities involving the squares of 

Fibonacci numbers are provedo 

Theorem 3.,2., The Fibonacci numbers have the following properties: 

(1) 2 2 2 2 
F1 + F2 + F3 + ooo+Fn = FnFn+l' 

(2) F 2 F 2 FF +F F n+l + 2 = 2 l 3' n+. n n+ n+ n+ 

(3) 2(F 2 F 2) 2 2 
+ 1 = F 1 + F 2 • n n+ n~ n+ 

Proof: For (1) 1 note first that for k greater than l, 

2 
Fi'k+l - Fk-lFk = Fk(Fk+l "' Fk-1) = Fk " 

Hence, 

2 
Fl = FlF2" 

2 
F2 = F2F3 - FlF2, 

2 
F3 = F3F4 ~ F2F3~ 

• 
" • 

Q 

• • 
2 

F = F F l - F F • n n n+ n-1 n 

Adding left and right members yields (1)., 

For (2), write 

FF + F 1F = (F 2 - F 1 )F 2 + F 1 (F l + F 2 ) n n+2 n+ n+3 n+ n+ n+ n+ n+ n+ 

F 2 2 
= n+2 + Fn+l O 

To prove (3)~ write 

F 2 + F 2 = (F = F )2 + (F + F 1 )2 
n=l n+2 n+l n n n+ 

2 + F 2 + F 2 2 = F l = 2F F l + 2F F l + F l n+ n n+ n n n n+ n+ 

2 2 
= 2(F + F l ). n n+ 

A problem sometimes faced by the teacher of elementary mathematics 
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in formulating problems and test questions is the problem of finding 

integer solutions to the Pythagorean equation, x2 + y2 = z2, other 

than the tried and true examples, (3, 41 5), (5, 12, 13), and so 

forth. It is at least surprising that the Fibonacci sequence turns 

such solutions out in abundance, as seen from the next theorem due to 

Lairauto 

Theorem 3.3. If Fn 1 Fn+l' Fn+a' Fn+} are four consecutive Fibonacci 

numbers, then x = FnFn+3' 

isfy the equation x2 + y2 

Y= 2Fn+1Fn+2' 

2 = Z O 

Proof: The proof is immediate since 

2 2 
x + y 

2 2 =(FF 3) + (2F 1F 2) 
n n+ n+ n+ 

= (F 2 + F 2)2 
n+2 n+l 

2 
,: Z O 

and F 2 + F 2 z = n+l n+2 sat-

Corollaryo If F, F 1 , F 2 , F 3 are four consecutive Fibonacci num-n n+ n+ n+ 

bers, then x =FF 39 y = 2F 1F +2, and z =FF 2 + F 1F 3 sat-n n+ n+ n n n+ n+ n+ 

isfy the equation x2 + y2 = z2• 

Proof: Apply identity (2) in Theorem 3.2. to the expression for z, and 

the corollary then follows from Theorem 3.3. 

Using Mathematical Induction 

So fari the results obtained have involved only the recurrence 

formula, F 2 = F + F 1 • As more mathematical tools are used, a n+ n n+ 
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wider selection of results may be obtainedo In the sequel, these tools 

are brought out systematically, and their usefulness is demonstrated by 

proving various results concerning Fibonacci nurnbers. Probably the most 

useful instrument that is available for the type of work at hand is the 

Principle of Finite Mathematical Induction. 

Principle of Finite Mathematical Induction. Let there be associated 

with each positive integer n a proposition P(n) which is either true 

or falseo If, firstly, P(l) is true, and secondly, for all k, P(k) 

implies P(k+l), then P(n) is true for all positive integers ,no 

Proof by induction is based on essentially two facets; namely, the 

existence of a first case (P(l) is true), and the truth of the proposi

tion in the (k+l)~ case, whenever it is true in the k~ case. The 

assumption P(k) is true is often referred to as the induction hypoth

esiso It is unfortunate in a way that the name given to this principle 

uses the word induction, because proof by mathematical induction is in 

reality deduction, which is always the situation in mathematical proof. 

The formula n2 ~ 79n + 1601, n a positive integer, delivers 'Prime 

numbers for all n up through n = 79. The scientist accustomed to 

empirical procedures would probably be content to risk a theory o~ far 

fewer than 79 experimental verifications, but this formula yields a 

composite for n = 80. In mathematics, neither seventy-nine nor a 

·· million and seventy-nine verifications constitute a proof o 

The principle of mathematical induction is illustrated by proving 

a number of identities on Fibonacci numbers. Its nature and importance 

is such, however, that this type of proof appears frequently throughout 

this thesis. The identities stated in Theorem 3.1. and Theorem 3.2. 

could have been proved by induction. 
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As a demonstration, the identity 

of Theorem 3olo will be proved by induction. Observe that P(l) is true 

since 

For confidencei P(2), P(3), and so forth, could be verified, but thui 

is not at all necessary. Instead, one makes the induction hypothesis 

that P(k) is true, namely, 

Now add F2k+2 to both menbers. It follows that 

= F2k+3 - l. 

Regrouping the subscripts in left and right members 

which is precisely P(k+l)o Since P(k) implies P(k+l) for any integer 

k, the proof by induction is completeo 

Theorem 3o4o The Fibonacci numbers have the following properties: 

(1) 

(2) 

(3) 

(4) 

F1 + 2F2 + 3F3 + ooo + nFn = (n+l)Fn+2 - Fn+4 + 2, 

2 
F1F2 + F2F3 : F3F4 + •o• + F2n-lF2n = F2n 9 

F 2 - FF = (-l)n, n+l n n+2 

2 2 2 ( n F 2 - 3F l + F = 2 -1) • n+ n+ n 

Proof: In (1), P(l) is true since 

F1 = 1 = (2)(2) - 5 + 2 = (l+l)F3 - F5 + 2o 

Assume P(k) is true: 



F1 + 2F2 + ooo + kFk = (k+l)Fk+2 - Fk+4 + 2. 

Adding (k+l)Fk+l to both members yields 

Fl+ 2F2 + oo• + kFk + (k+l)Fk+l = (k+l)Fk+2 - Fk+4 + 2 + (k+l)Fk+l 

= (k+l)(Fk+l + Fk+2) - Fk+4 + 2 

= (k+l)Fk+3 - Fk+4 + 2 

= (k+2)Fk+3 - (Fk+3 + Fk+4) + 2 

= (k+2)Fk+3 - Fk+5 + 2 
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= ((k+l) + l)F(k+l)+2 - F(k+l)+4 + 2. 

Hence, P(k) . true implies P(k+l) true, and (l) is proved by induc-

tion. 

For the proof of (2), 

demonstrates that P(l) is true., Assume P(k) is true: 

2 
FlF2 + F2F3 + F3F4 + o .. + F2k-1F2k = F2k • 

Add F2kF2k+l + F2k+lF2k+2 to the left and right members to obtain 

F1F2 + F2F3 + • 00 + F2kF2k+l + F2k+1F2k+2 

2 
= F2k + F2kF2k+l + F2k+1F2k+2 

2 
= (F2k+2 - F2k+l) + F2kF2k+l + F2k+lF2k+2 

2 2 
= F2k+2 = 2F2k+2F2k+l + F2k+l + F2kF2k+l + F2k+lF2k+2 

2 
= F2k+2 + F2k+l(-2F2k+2 + F2k+l + F2k + F2k+2) 

2 
= F2k+2 + F2k+l(-2F2k+2 + F2k+2 + F2k+2) 

2 
= F2k+2 + Oo 

Hence, 



so P(k+l) follows from P(k), and the induction is complete. 

It will be more convenient to prove (3) if it is written 

F 2 =FF + ( l)n n+l n n+2 - 0 

One readily verifies P(l) by writing 

F22 = l = (1)(2) - 1 = F1F3 + (-1)1• 

The induction hypothesis is 

2 k 
Fk+l = FkFk+2 + (-l) o 

Adding Fk+lFk+2 to both members yields 

. 2 k 
Fk+l1k+2 + Fk+l = Fk+1Fk+2 + FkFk+2 + (-l) ' 

which implies 

or 

This is the same as 

Hence, P(k+l) is true. 
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Finally, to prove (4) one readily verifies P(l) is true. Assum

ing the truth of P(k) implies 

2 2 2 k 
Fk+2 - 3Fk+l + Fk = 2(-1) 0 

At this point it is not at all obvious what quantity ought to be added 

to both members of this equation to deduce P(k+l). However, one,can 

resort to mathe~tical craftiness. The propositional statement of 

P(k+l) is 
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2 2 2 k+l 
F(k+l)+2 - 3F(k+l)+l + Fk+l = 2(-l) • 

Adding left and right members of this and the previous equation yields 

2 2 2 2 2 2 k k+l 
Fk+2 - 3Fk+l + Fk + Fk+3 - 3Fk+2 + Fk+l = 2(-1) + 2(-1) = Oo 

Hence, P(k+l) will be true if it can be shown that the left member re-

duces identically to zero. But 

2 2 2 2 2 2 
Fk+2 - 3Fk+l + Fk + Fk+3 - 3Fk+2 + Fk+l 

2 2 2 2 = -2Fk+2 - 2Fk+l + Fk· + Fk+3 

2 2 2 2 = -2Fk+2 + 2Fk+l + (Fk+2 - Fk+l) + (Fk+2 + 1k+l) 

= o. 

Hence, the induction and the theorem are complete. 

Challenge: Prove the identities of Theorem 3.1. by induction. 

Challenge; Prove by induction; 

(1) nF1 + (n-l)F2 + (n-2)F3 + ••• + 2F l + F = F 4 - (n+3), n- n n+ 

(2) 

(3) 

(4) 

The next theorem is a useful result that opens an avenue for prov-

ing several identities that involve more elaborate indexing than those 

obtained previously. It also brings to a close the section that empha-

sizes the inductive argument. It should not be assumed that no f~ther 

need of finite induction will arise; however, its role will no longer 

be emphasized. 

Theorem 3.5. The Fibonacci numbers have the property 



31 

F =F F +FF m+n m+l n m n-1° 

Proof: The proof is by induction on m. P(l) follows immediately, 

since 

F1 = F + F l = F2F + F1F l +n n n- n n-

for every positive integer n. Assuming P(k) is true means that for 

all positive integers n, 

Fk = Fk lF + FkF 1• +n + n n-

Using this relation for the case when n is replaced by n-l implies 

Fk .. l = Fk lF l + F,.F 2° +n- + n- An-

Adding corresponding members of these two equalities yields 

F( ) = F( ) = F + F k+l +n k+n +l k+n k+n-l 

= Fk lF + FkF + Fk lF l + n n + n-

Hence, P(k) true implies P(k+l) is true, and the proof is complete. 

Corollary. The property F = F 1F 1 - F 1F 1 holds for the m+n m+ n+ m- n-

Fibonacci numbers. 

Proof: From the theorem 

F ::F F +FF m+n m+l n m n-1 

= F 1(F l - F 1) +FF l m+ n+ n- m n-

=F F -F F +FF m+l n+l m+l n-1 m n-1 
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which is the desired relation. 

A.a a consequence of the preceding theorem, settin~ m = n yields 

F2n = F +lF +FF l · n n n n-

= F (F l + F 1). n n+ n-

This indicates that the quotient of F2n divided by Fn is an integer. 

A more general result of this nature is established later. 
2 2 Another identity, F2 1 = F 1 + F , is obtained from Theorem n+ n+ n 

3.5. by setting n = m+l, and then replaci11g the m with n. 

The following challenge illustrates some other identities that stem 

from this theorem. 

Challenge: Establish the identities 

(l) 2 2 
F2n l = F + F l, - n n-

(2) 2 2 
F2n = F l ... F l n+ n-

The proofs by induction in the foregoing illustrate that the 

Fibonacci sequence provides an excellent vehicle to motivate and demon-

strate.~thematical proof. Further examples are yet to appear; how-

ever, more variety may be permitted if some additional definitions are 

introduced. 

Arithmetical Properties of Fibonacci Numbers 

The following definitions and theorems are stated from elementary 

algebra and number theory. For proofs, notation, and so forth, see 

Birkhoff and MacLane. [5] 
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Definition 3o3o An integer d, not zero, is said to divide an integer 

b, if there exists an integer c, such that b = de. In this case d 

is called a divisor, or factor of b, and b is called a multiple of 

do In symbols, one writes d I b, with the contrary expressed d1 b. 

Definition 3.4. For two integers a and b, if d I a and d I b, then 

d is a common divisor of a and b. 

Theorem 3 .. A. Let· a, b, c: be integers, 

<1) b I a and c\b implies c I a, 

<2> c I a and c la+b im~ies c I b, 

c,> c I a and c I b implies c lma+nb, for all integers m and n. 

Definition 3.5. .A positive integer p is prime if p> l and p has 

no positive divisors except l and p. A number greater than l and 

not prime is called composite. 

Definition 3.6. A greatest common divisor of two integers a and b 

is a common divisor g, such that for any common divisor d of a 

and b, d I g. One writes (a,b) = g, for the positive greatest 

common divisor. 

Definition 3.70 The integers a and b are relatively prime if, and 

only if, (a,b) = 1. 

Theorem 3oBo ~ Division Al5orithm. For given integers a and b, 

b:>01 there exist integers q and r such that 

a= bq + r, 0 ;::;r<b. 

It should be observed that the algorithm can be used to obtain the 

greatest common divisor of two integers. Applying the algorithm sue-



cessively, under the hypothesis of Theorem 3.B.: 

a= bq + r 1 , 

• • 
0 

• • • 

o~ r < r l' n n-

By the last line 9 rn j rn-l o Hence 9 the line before the last shows 

r Ir 2 o n n- Continuing back to the first equation, one has rn \ a and 

rn I b, so that is a common divisor. That r n is the greatest 

common divisor follows by noting that for any common divisor d of a 

and b 9 d I r 1 by the first equation; hence 9 d I r 2 by the second, 

and continuing to the last, d I rno 

Theorem 3.c. Let a, b 9 c be integers. Then, 

(1) (a, b) I (a, be), 

(2) 

(3) 

(4) 

(5) 

(6) 

(ac,bc) = (a,b)c, 

b I a if, and only if, (a,b) = b, 

(a,bc) = (a,b), if (a,c) = 1, 

(a 9 b) .= (a,~~), if _a I c, 

ab I c, if (a, b) = l, a ( c, and b l c. 

A number of properties relating to divisibility can now be demon-

strated for the Fibonacci numbers. Many of these properties show :in-

teresting and unusual connections between the Fibonacci numbers and 

their subscripts. 



Theorem 3.6. Any two consecutive Fibonacci numbers are relatively 

prime. In symbols, (F ,F 1 ) = 1. n n+ 

Proof: The proof is by induction. For n = l, 

The induction hypothesis is (Fk,Fk+l) = l. 

The proof will be completed if it can be shown that this implies 

(Fk+l'Fk+2) = 1. But, using part (5) of Theorem 3,C. with a= c = 

lo 

Theorem 3.z. The Fibonacci numbers have the property F I F , 
n rn 

for every positive integer r. 

Proof: The proof is by induction on r. For r = 1, the result is 

trivial. Assume Fn t ·rkn, so that there is an integer h such that 

Fkn = hF. Hence, using Theorem 3.5., n 

Therefore, Fn j F (k+l)n and the proof is complete. 

Lemma.o (Fn,Fkn-1) = 1. 

Proof: By Theorem 3.6., (Fkn,Fkn_1) = l. Suppose (Fn,Fkn_1) = d 
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greater than L, Then, d I Fkn-l and d I Fn. Hence, d I Fkn-l and 

d I Fkn since Fn I Fkn by Theorem 3.7. Hence, d is a divisor of Fkn 

and Fkn-l' therefore, d I 1, contrary to the supposition d greater 

than 1. The contradiction implies (Fn,Fkn~l) = 1. 



Theorem 3080 A Fibonacci number with subscript the greatest common di-

visor of the subscripts tor any two Fibonacci numbers is itself the 

greatest common divisor of the two numbers. In symbols, (F ,F) = n m 

Proof: The proof is trivial when m = n. Suppose for definiteness 

that m is greater than n. Applying the division algorithm to m 

and n, and the successive remainders, 

• • • 
0 

• • 

where rt is the last remainder different from zero. Then rt= (m,n). 

Since m = nq0 + r 1 , it follows from Theorem 3o5o that 

F = F m r 1+nq0 
= F 1F + F F l. 

rl+ nqo rl nqo-

Hence, by Theorem 3oCo, part (5), 

Now, (F ,F 1 ) = l by the lemma. Hence, 
n nq0-

(F 9F) = (F ,F F 1) = (F ,F ) n m n r 1 nq0~ n r 1 

follows by Theorem 3.c., part (4). Proceeding in similar fashion, 



(F ,F ) = n r1 

• • • 
• .. 
• 

(F 9F ) = (F ,F ). 
rt-2 · rt-1 rt-1 rt 

Now, because of Theorem 3.7., rt ( rt-1 implies F rt I F rt-1' Hence, 
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combining the above results yields, with the aid of Theorem 3.c., part 

(3), 

(F ,F) = (F ,F ) = F = F( )• n m rt-l rt . rt n,m 

One interesting consequence of Theorem 3.8. is that no odd 

Fibonacci number is divisible by l?. l'o demonstrate this fact, sup ... 

pose there does exist an odd Fibonacci number, say F, such that 
n 

17 I Fn. Note that Fn odd implies (2,F) = 1 .. Then, with the aid of 
n 

Theorem 3.c .. , part (4), and Theorem 3.8., it follows that 

17 = (F 917) = (F ,34) = (F ,F9) = F( 9). 
~ n n n, 

Since the only possible values of (n,9) are l, 3, and 9, and F1 # 17 9 

F3 # 17, and F9 # 17, the supposition that 17 I Fn leads to a contra-

diction. 

Challenge: Prove that if (m,n) = 1, then F F I F • m n mn (Hint. Use 

Theorem 3.7 .. , Theorem 3.8., and Theorem 3.C.) 

Theorem 3 .. 9. F 1· F if t and only if 9 m I n .. ,~ - - m n 

Proof: If m I n, then there is an integer r such that n = rm, and 

/ 



F IF = F • To prove the converse, if F j F , then by Theorem 3.c., m rm n m n 

part (3) and Theorem 3.8., F = (F ,F) = F( )• Hence, m m n m,n · m = (m,n), 

and so, m In .. 

Challenge; Use Theorem 3.9. to show that a Fibonacci number is divisi

ble by 3 if, and only if, its index is divisible by 4. 

Challenge: Show that a Fibonacci number is divisible by 5 if, and only 

if, its index is divisible by 5. 

The next and final theorem of this chapter deals with the question 

. of whether, for an arbitrarily assigned integer m, there is some 

Fibonacci number that is divisible by m. The theorem shows that the 

first Fibonacci number divisible by m is not especially large. 

Theorem JolO .. For any integer m there is at least one Fibonacci num

ber among the first m2 Fibonacci numbers that is divisible by m. 

Proof: If m = 1, the proof is trivial. Let m l be a positive 

integer. For any positive integer r, the division algorithm implies 

r = mq + r*, 0 ~r*<m. 

Note that the remainder r* must be one of the m numbers o, l, 2, 

oo• , m-l. Now consider the sequence of pairs of such remainders 

(l) 

where for each n, F; is the remainder on division of Fn ~y m .. 

Since there are at most m different remainders possible on division 

by m, there can be at most m2 pairs in the above sequence that have 

different first entries and different second entries .. Therefore, for 

the first m2+l .pairs in the sequence (1), at least two will be equal, 
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in the sense that (a:b) = (c:d) if, and only if, a= c and b = d. 

2 k < h -s; m +l, be the first repeated 

pair in the sequence (l)o Hence, Fk* = Fh* and F* - F* k+l - h+l" 

follows that there exist integers qh-l' qk-l such that 

(2) 

and 

(3) O SFk-l < m. 

Therefore, for suitable integers qh+l' qh' qk+l' qk, 

and 

Now, 

Consider the difference Fh-l - Fk-lo From the immediately preceding 

equations, 

Fh-1 - Fk-1 = mQ + (Fh+l - Fk+l) - (Fh - Fk) = mQ 

where Q is an integer. Hence, m divides 'Fh-l - Fk:_1 f. 
Now, from the inequalities in (2) and (3), 0 S:. lFh-l ,.. Fk-l I < mo 

Because the positive integer m divides a non-negative integer smaller 

than itself~ the integer must be zero, and so Fh-l = Fk-l. This means 

(Fk:Fk+l) was the first pair in the sequence (1) to be repeated. 
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Therefore, the supposition k >l is false. Hence, k = 1 and 

to appear more than once, being repeated in the hY:! position, 

2 
1 < h S:m +l. Now, (Fh:Fh+l) = (1:1) implies Fh = mqh + Fh = ~qh + 1 

and Fh+l = mqh+l + Fh+l = mqh+l + lo Therefore, Fh-l = Fh+l - Fh 

= mqh+l + 1 - (mqh + 1) = m(qh+l - qh) implies m [ Fh-l o In other 

words i the (h-l)Y:! Fibonacci number is divisible by m and 1 S::. (h-1) 

2 ::;;:.m, proving the theorem. 

It should be recognized that as a consequence of this theorem and 

Theorem 3.7., there must be infinitely many Fibonacci numbers divisible 

by a given integer m. Also, Theorem 3.10. indicates that the first 

Fibonacci number divisible by m will not be extremely large, though 

it gives no indication of how the number might be found. 



CHAPTER IV 

NON-RECURRENCE EXPRESSIONS FOR F n 

The Binet Formula 

An important problem that needs resolution is the matter of deter-

mining a prescribed Fibonacci number as a function of its subscript, 

thus avoiding the necessity of a tedious calculation of all prior terms 

by the recurrence formula F 2 = F 1 + F o Obtaining such an expres-n+ n+ n 

sion also makes it possible to elicit further information about the 

Fibonacci numberso The formula introduced in this section was actually 

known to Leonard Euler and David Bernoulli; however, it was rediscov-

ered by J.P. M. Binet in 1843. Interestingly enough, the golden ratio 

occupies a prominent position in this formula. 

It is unfortunate, but the proofs available at this stage of the 

exposition are not motivated particularly well. It should not be sup-

posed that the proofs lack rigor. The difficulty lies in the fact that 

the reader may have cause to wonder why a certain approach is used. 

The only good answer, at this point, is that it brings about the de-

sired result, which is not an especially satisfying reply. Because of 

these difficulties, the first .theorem of this chapter is presented with 

two proofs o The first proof is the most elementary, but appears t·o be 

based on a very lucky guess. The second proof is presented at the close 

of this chapter and is based on complex variable theory. In Chapter VI 

41 
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the derivation of the Binet formula is given in a setting which removes 

the objections mentioned above. 

Theorem 4olo The n~ term of the Fibonacci sequence is given by the 

formula 

·l'cc n n) F = 5 r - s , n 

where r = (l + 5~)/2 and s = (l - ;l'c)/2. 

Proof: Assume that the n~ term can be obtained from an expression of 

the form 

(1) n n Fn = er +de. 

The proof is complete if it can be shown that this formula, for suitable 

values of r, s, c, and d, can be made to satisfy the recurrence.for-

mula. 

(2) F = F l + F 2, n n... n-

with n greater than 2, and F1 = F2 = lo 

To determine r and s, substitute the assumed formula into the 

recurrence relation (2)o Then 

n n n-1 n-1 n-2 dsn-2 er + ds = er + ds + er + , 

or, 

n-2( 2 ) n-2( 2 ) r r - r - l c + s s - s - l d = O. 

This equation is satisfied if r and s are roots of the equation 

2 
p - p - l = o, 

and for this choice (2) is satisfied whatever the values of c and do 

Now, choose c and d such that F1 = F2 = l in the formula (l); 

that is, 

1 = or + ds, 



This system will have a solution if r # a. 

2 Let r be one of the roots of p - p - 1 = 0 and s the other, so 

that r # So Then, the system has the solution 

s - 1 d _ 1 - r 
0 = r(s - r)' - s(s - r)• 

For r = (1 + 51/2)/2 and s = (1 - 51/2)/2, a li~tl~ manipulation yields 

Hence, (1) becomes 

l 
c = + 3, 

5 

l 
d = - ~· 

5 

F = ~(rn .. sn), 
n 512 

with r = (l + 51/2)/2 and s = (l - 51/2)/2, and-the proof is complete. 

The observation that r = (1 + 5"'2)/2 = ¢, the golden ratio, and 

s = - 1/¢ suggests the alternate form· 

-- f: - (-gp-n 
F 11.. 

n 5'&. 

for the formula of Theorem 4olo The prominence of the golden ratio in 

this formula is perhaps not too surprising, in light of the discussion 

of Chapter II, but it is interesting, nevertheless. 

The closed form expression for F given in the preceding theorem 
n 

is quite useful in establishing identities for the Fibonacci numberso 

For instance, the identity 

Fn+hFh+k - FnFn+h+k = (-l)°FhFk 

can be obtained by direct substitution from the formula in Theorem 4.1. 

. n n ( )n ( )n and notJ.ng that rs = rs = -1 • Incidentally, this identity is 

rather general and includes a number of others as special cases, some 
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of which were proved in Chapter III. Examples would be the identities 

2 ( )n 2 ( n+l F 1F l - F = -1 , F 2F 2 - F = -l) , and so on. 
~ ~ n ~ M n In theory 

it should be possible to prove any identity for the Fibonacci numbers 

from the formula of Theorem 4.1., but to do so would often be tedious 

and inefficient. 

It is worth noting that the Fibonacci numbers may be used as a tool 

for expanding 

which is laborious by the binomial theorem when n ti; not small. If 

the quadratic equation for which ¢ is a root is written 

¢2 = ¢ + 1, 

and both members multiplied by ¢, then 

¢3=¢2+¢ 

:;: (¢ + 1) + ¢ 

= 2¢ + 1. 

Multiplying first and last members by ¢ again yields 

¢4 = 2¢l + ¢ 

Similarly, 

This pattern suggests 

= 2(¢ + 1) + ¢ 

= 3¢ + 2. 

= 3(¢ + l) + 2¢ 

= 5¢ + 3. 

¢n = F ¢ + F 1 , n = l, 2 1 3, ••• • n: n-

Proving the validity of this formula is accomplished by induction. 



For n = 1, 

and it ha.a already been verified above for n = 2, 3, 4, and 5. For 

n = k, assume 

Then, multiplying through by ¢, 

¢k+l = F~2+ Fk-1¢ 

= Fk(¢ + l) + Fk-1¢ 

= (Fk + Fk~l)¢ + Fk 

The computational advantage of this formula over a binomial expansion 

is striking. 

Return:µig to the equation ¢2 - ¢ - l = o, and arranging it as 

,ei-1 = ,el - 1, 

an efficient formula for calculating ,ei-n, namely, 

-n ( )n+l( ) ¢ = -1 F ¢ - F l 1 n = 1, 21 3, ooo , n: n+ 

may be proved, and is left for the reader. Since, 

((1 - 5"/2)/2)n = (-2/(l + 5"12))n = (-l)n,el-n, 

one then ha.a a method of calculating ((1 - 5"12)/2)n 

which avoids tedious calculation by the binomial theorem. It'might be 

conjectured that other expressions involving radicals could possibly be 

. expanded iiJ.,such a fashion. It is evident that different sequences 

would have to be used, or some more general type of recurring sequence 

in!~roducedo 
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Quotients of Consecutive Fibonacci Numbers 

Having Theorem 4olo available makes it possible to prove the con-

jeoture of Chapter II that ratios of consecutive Fibonacci numbers may 

be taken arbitrarily close to the golden ratio by choosing the terms 

sufficiently far out in the sequence. The following theorem establishes 

this fact. 

Theorem 4.2. The Fibonacci numbers have the property 

F 
lim ~+l = ¢, 

n+co n 

where ¢ = (l + 5~)/2 1 the golden ratio. 

Proof: On application of the Binet formula to both numerator and de-

nominator, it follows that 

since 

= lim 
n-?00 

;: ¢, 

~ ¢ ::;, (1 + 5 )/2 >lo 

Theorem 4o2o was first proved by R. Simson using infinite continued 

fractions. For the purposes of this thesis it is preferable to deal 

with continued fractions very lightly, and only in order to point out 

the natural relationship between the quotients of consecutive Fibonacci 

numbers and the golden ratio ¢0 Dividing through the equation 

x2 - x = 1 = 0 by x and rearranging gives 

x = 1 + 1/x. 



Using the right member as a formula for x and substituting into the 

denominator yields 

l 
x = l + --1-· 

l + -x 

Continuing, one is led to consider the expression 

l 1 + ~~~--~1------
1 + ----1--

1 +---
l + ••• 
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which is an example of an infinite continued fraction. If the process 

is broken off and each fraction evaluated along the way, one obtains 

what are referred to as the convergents of the continued fractiono The 

convergents of this particular continued fraction are the quotients of 

consecutive Fibonacci numbers. Hence, 

F2/Fl = l = 1, 

F3/F2 

F4/F3 

F5/F4 

FflF5 

0 
0 

0 

= 2 = 

- 2 -- 2 -

- 2 -- 3 -

8 =5= 

0 

0 

0 

l 1 
+ l' 

1 + 1 
l' 

1 +-
1 

1 + 

1 + 

1 + 

l + 

0 
0 

0 

1 
l 

l 
l +-
1 

1 
l 

1 + 
1 

1 
1 +-
1 

• 

In the theory of continued fractions, the value of the continued frac-

tion is defined to be the limit of the sequence of convergentso Thus 9 
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¢ = l + ____ 1 ______ 0 

1 + ---~-1 ____ _ 
l 1 +-------1 + ___ 1 __ _ 

1 + ••• 

A general property of convergent fractions may be noted by observing 

that the successive convergents bracket the limiting value of¢. That 

observation is apparent in Table V of Chapter II. 

Another Non-recurrence Expression 

The next theorem illustrates an unusual expression for computing 

Fibonacci numbers directly. In the quadratic equation x2 - x - 1 = o, 
1 2 the substitution y = - yield.a 1 - y - y = o. The latter equation x 

. n1-l nl bas roots ,., and -,-, , whereas the roots of the former have been 

nl 171-l shown to be ,., and -,-, o Obviously, either equation is intimately 

related to the golden ratio and the Fibonacci numbers; however 9 for 

the purpose of obtaining the next result, the expression 1 - y - y2 

is more tractable. 

Theorem 40 3. The (n + l)~ Fibonacci number is related to the binomial 

coefficients by the expressions 

n n-1 n-2 n 
Fn+l = c0 + c1 + c2 + ••o + en, if in is even, 

or 

.....n 0n-l .....n-2 0n+ 1 . f 
Fn+l = G0 + 1 + v2 + oo• + n , i n is odd, 

where 

k k! • 
cj = j!(k - j)! 



Proof: By polynomial division, 

_____ 1 ____ 2 = l + y + 2y2 + 3y3 + • • • + F 1Yn + • • • 
n+. 

1 - y - y 

00 

= L Fn+lyn. 
n=O 

which converges for -¢-1<: y <:¢-l by the ratio testo 

However, 

00 

_1 ___ = __ 1 _= I 
l - y - y2 l - (y + y2) k::O 

2 k 
(y + y) 9 

from the formula for the sum of a geometric serieso Hence, for y 

~-1 n(-1 such that -p < y <;u , 

where 

00 

2 
F yn = ___ 1 ____ _ 

n+l 2 

n=O 

n n-1 
An= CO+ Cl + 

n n-1 
An= co+ cl + 

l - y - y 

00 

=I 2 k 
(y + y ) 

k=O 

00 

=I k k 
y (1 + y) 

k=O 

000 

000 

+ en, if n even, 
n 

cn+l if n odd. + n , 
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Equating coefficients of like powers of y yields F 1 =A, n+ n 

which is the desired result. 

Challenge: Verify through terms of 6th degree that 

k CX) 'c~ k+j = , L Jy L 
j=O n=O 

n A y o 
n 

An Analytic Proof of the Formula for F . n 

50 

As a conclusion to this chapter, another proof of Theorem 4.lo is 

exhibited. Thia proof points out clearly how more sophisticated ma.the-

ma.tical methods can be useful in proving even a simple theoremo By 

adding a touch of elegance it inspires interest. Furthermore, the 

proof, based on complex variable theory, demonstrates again the power 

of analytic techniques in the theory of numbers. For the reader un-

acquainted with complex analysis, the remainder of this chapter may be 

omitted without prejudice to later developments. The following proof 

is due to Hagiao [9] 

As shown in the proof of Theorem 4.3., the generating function of 

the Fibonacci numbers is given by 

Q) 

f(z) = 1/(l - z - z2) = L Fn+l zn. 

n=O 

If one considers z as a complex variable, then f(z), being a ration-

al function, is analytic except at those points where the denominator 

is zero. Hence, f(z) bas two singular points, namely, the simple 

poles r = (-1 + 5~)/2 and s = (-1 - 5~)/2. By Cauchy's integral 

theorem 
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F = /n) (O)/n! _ ...L 1 f(z)dz 
n+l - 2ni n+l 9 

c z 

where the contour c is the circle r z I = J/20 If r is any circle with 

center at the origin and radius greater than Is I = ¢, then by Cauchy's 

residue theorem 

(1) 

where R 
r 

F = .l:_1 f(z)dz - (R + R ) 
n+l 2 . n+l r s 1 

11'1 r z 

and R are the residues of f(z)/zn+l at the poles r 
s 

and s 9 respectivelyo Now 

and 

R = lim (z - r)f(z)/zn+l = 1 
r z+ r 

(s ... r)rn+l' 

lim 
R = s z~ s 

(z - s)f(z)/zn+l = - ----1-
(s - r)sn+l• 

Since rs= =l and r - s = 5% 9 it follows, after simplification, that 

-% ffi + 5%)n+l (l _ 5%)n+l} 
(2) - (Rr + Rs) = 5 ~ 2 - , 2 • 

If f is the circle I z I = k > ¢ > 1, then on f , 

lr(z)I s; 2 1 • 
k - k - 1 

Hence, 

(3) 1
1 r f(z)dz I ::;;;;: 2nk 

2,ri Jr zn+l 21Tkn+l(k2 - k - 1) 

< 1 
- kn(k2 - k - 1) 0 

Since k may be taken arbitrarily large, it follows from (1), (2), and 

(3), that 



CHAPTER V 

SOME GENERAL IDENTITIES 

A General Summation Identity 

In Chapter IIIi a few results concerning sums of Fibonacci numbers 

were obtained by induction in Theorem 3oL The process of intuitive 

trials and proof by induction can be continued indefinitely in the at-

tempt to obtain similar sum identities; however, more general results 

can sometimes be obtained through a broader attack .. In particular, the 

following theorem includes all linear sums of Fibonacci numbers having 

subscripts in arithmetic progressiono 

Theorem 5ol .. Let a, b, denote positive integers, bless than ao 

Then~ 

n 

L 
k=l 

(-l)aF b - F ( 1) b + (-l)a-bFb + F b 
an- an+ - a-

F = ~----------------------------------------
a k - b (-l)a + 1 - (F 1 + F 1) 

a+ a-

Proof: From Theorem 4.,1"' 

F -~( ak-b ak-b) =5 r ~ -s .. ak-b 

Hence, 

n n 
~ ~ -~( ak-b ak-b) 
~ Fak-b = L 5 r - s 

k=l k=l 

52 



n n 
= 5-J\a-b ~ ra(k-1) -}2 a-b ~ 

-5 s £,,, 
k=l 

ra-\1 - ran) 

= 5}2(1 - ra) 

sa-b(l ~ san) 

5}2(1 - sa) 

k=l 

where the formula for the sum of a geometric series is used to obtain 

the last stepo Simplifying, combining fractions, and grouping terms 

yielde, 
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n 
( )a( an-b an-b) ( an+a-b an+a-b) ( )a-b( b b) ( a-b a-b) F =rs r -s -r -s +rs r-s +r -a • 

k=l ak-b 5*(1 -(ra + sa) + (rs)a) 

Using Theorem 4.1. and the relation rs= - 1, the right ·member may 

be further simplified to give 

~F = (-l)~an-b - Fa(n+l)-b + (-l)a-~b + Fa-b 

~ ak-b 1 - (F + F ) + (-l)a , 
k=l a+l a-1 

and the proof is complete. 

. Challenge: Use Theorem 4 .. 1. to show that 

a a 
r + s = F l + F 1 • a+ a-

Challenge: Obtain the sum formula of Theorem3.l. part (3) as a ape-

cial case of Theorem 5.1 .. 

Challenge: With the aid of Table II of Chapter II, show that 

5 

~ F'lk-3 :;: 2256010. 
k=l 

A Matrix Approach 

A J].umber of Fibonacci identities can be obtained through·matrix 
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algebra and a certain 2 x 2 matrixo The necessary definitions and 

properties from matrix theory are reviewed as a preliminary develop-

mento 

The 2 x 2 matrix A is an array of four numbers a, b, c, d, 

such that 

The zero matrix Z is obtained when a= b = c = d = o. The identity 

matrix is 

The determinant of matrix A is 

D(A) = (: ~) = ad - be. 

The multiplication of A by a number q is defined by 

For any two matrices A, B with entries a, b, c, d and e, f, g, h 

respectively, the sum A+ B is defined by 

A+ B = (~ !) + (: !) = 

and the product AB by 

/a+e b+f) 
\c+g d+h 1 

AB = (a b)(e f) = /ae+bg af+bh) • 
c d g h \ce+dg cf+dh · 

Also, A= B if, and only if, a= e, b = f, c = g, and d = h. It 

is a simple exercise in algebra to prove that D(AB) = D(A)D(B). 

It is now possible to develop an effective instrument for proving 

a number of Fibonacci identities. This is accomplished through the 

next definition. 

Definition 5olo Let Q = Q1 be the matrix 



0 Let Q = Io Then l O O Q = Q = Q Q:: QQ. In general, 

defines exponentiation inductively. Note that D(Q) = - 1. Also, 

Q3 = (·2 1)(11)::: (3 2) =.(F4 F3) 
. l l l O 2 l F3 F2 

0 
0 

. 
• 

• • . 
• • • 

0 
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These statements include the essential ateps for an inductive proof of 

the next important theorem. 

Theorem 5 .. 2. 

0 

Another inductive argument can be used to prove the next theorem, which 

is left to the reader. 

Theorem 5o3o 

The setting is now complete and several identities can be conveniently 

proved. Some of these identities \iere proved in Chapter III. 

Theorem· 5.4. The following identities hold for.Fibonacci numbers: 



(1) 

(2) 

(3} 

(4) 

(5) 

F F - F 2 = (-l)n, n+l n-1 n 

2 2 
F2 1 = F 1 + F ' n+ n+ n 

F :FF +F F 
2n+l n n+2 n-1 n+l' 

F2n = F (F l + F 1). ·n n+ n-

Proof: From the definition of determinant of a matrix, 

D(Qn) = 'Fn+l Fn I = F F - F 2. 
F F 1 n+l n-1 n n n-

But, D(Qn) = (-l)n by Theorem 5o3o, hence (1) is provedo ·Identities 

(2), (3), (4), and (5) are all proved at onceo Since 

(
F F +FF _ n+l n+2 n n+l 

-FF +F F 
n n+2 n-1 n+l 

F 2+ F 2 ) n+l n 
FF 1+F 1F O 

n n+ n- n 

Equating corresponding elements in accordance with the definition of 

equality for matrices yields the remaining identities of the theoremo 

Challenge: 2 Verify that Q - Q - I= z. 

Challenge: Prove the identity F · = F F +FF using the m+n m+l n m n-1 

matrix Q. 

Another General Identity 

In the previous sections, indication was given that a more general 
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approach in developing and proving identities could prove fruitfulo 

This section is devoted to the development of one very general identity 

that includes dozens of others as special cases, including many of 

those discussed thus far in this thesis. It is well-known that mathe-

maticians are marked by their desire to generalize. With regard to the 

reader for whom this work is intended, few more suitable examples could 

be given to demonstrate the importance of that characteristic. 

The following theorem and definition are important preliminaries. 

Theorem 5o5o The Binet formula of Theorem 4.1., 

-~( n n) F = 5 r - s , n r = ¢, s = - ¢, 

is unique for the Fibonacci sequence. 

Proof: The Fibonacci sequence is defined by 

F ·2 = F l + F, F0 = 09 F1 = l. n+ n+ n 

Suppose a sequence {F;} were to satisfy this definition. Then, the 

sequence {fn} such that fn = Fn - F~ has the property that r0 = f1 = o, 

and f 2 = f l + f. Hence, it follows that f = o, for every n 9 n+ n+ n n 

and therefore, F = F*, n n for every no 

It proves convenient in what follows to define Fibonacci numbers 

with negative subscripts. The definition is prompted by considering 

the Binet formula for negative values of n. With this definition, the 

Fibonacci numbers are defined for any integer subscript. 

Definition 5.2. For any integer n, F = (,-l)n+1r • 
-n n 

Consider the function of n, 

(l) 

It is immediate from the recurrence formula F 2 = F 1+ F that n+ n+ n 



s0(n) = O for all n. Next coneider the function of m and n, 

(2) s1(m,n) =FF + F 1F l - F 1 • m n m+ n+ m+n+ 

Again, after appropriate use of the recu,rrence formula, it follows that, 

for any m and n 9 

(3) s1 (m+l,n) = s1(m,n) + s1 (m-l,n). 

Furthermore, 

Hence, for any integer n, the relations (3) and (4) infer by upward 

and downward induction on m that s1 (m,n) = 0 for all m. There

fore, s1 (m,n) = 0 for all m and n. 

Next 9 consider 

(5) t s2(t,m,n) =FF - (-1) (F tF t - FF ) m n m+ n+ t m+n+t • 

On making the substitutions Fn = Fn+2 - Fn+l9 Fm+t+l = Fm+t + Fm+t-l' 

and Ft+l =Ft+ Ft-l' manipulating, and taking a judicious arrange-

ment of subscripts, one has 

(6) 

Since F0 = o, F1 = 1, it follows from (5) and (2) that 

(7) 

Again, using induction on t in (6), it follows that for all integers 

t, m, · and n, S/t,m,n) = o. Hence, this e1;1tablishes the general 

identity 

(8) 

This identity includes several of those proved previouslyo For iri.-

stance, when t = 1, (8) becomes the identity of Corollary 3o5o How-

ever, (8) is not the general identity promised. A relation even more 



general than (8) may yet be obtained. 

For integers k and t such that k > O, t f- o, consider the 

function 

( 9) 

The recurrence relation s3(k+l,t,m,n) = Fms3(k,t,m,n) can be devel-

oped from (8), as follows: 

(10) s3(k+l,t,m,n) = 
k+l 

F k+lF _ (-l) (k+l)t ~ 0k+l(-l)by ~ k+l-~ 
m n ~ h t m+t n+(k+l)t+hmQ 

h=O 

Consider the second term of the right member. 

k+l 
C-l) (k+l)t ~ ck+l(-l)~ °F k+l-~ 

~ h t m+t n+(k+l)t+hm 
h=O 

(-l)kt(-l)t {f Ck(-l)~ ~ k+l-~ · . , 
= ~ h t m+t n+kt+hm+t 

.h=O . 

k+l } 
+ Ck -l hF ~ k+l-hp, L h-1 ( ) t m+t n+kt+hm+t 

h=l 

(-l)kt(-l) t{~ Ck(-l)~ ~ k+l-~ . = .,(.,, h t m+t n+kt+hm+t 
h=O . 

k } + Ck -l h+lF h+~ k-~. . L h ( ) t m+t n+kt+hm+m+t 
h=O 

k 

= (-l)kt Lc~(-l)hp,t~m+tk-h ~-l)t(Fm+tF(n+kt+hm)+t 
h=O 

59 



where use has been made of properties of the binomial coefficient, an 

adjustment of the dummy index h, and (8). 

the right side of (10), 

(11) 

Also, from (9), s3(o,t,m,n) = F - F = o, n n 

Hence, by induction on k, 

Hence, factoring F 
m 

from 

one has, for all integers 
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t f. 0 9 m, n, and all integers k c::.O, s3(k,t,m,nL= o. The foregoing 

proves the following theorem. 

Theorem 5.6. For all integers t f. O, m, n, and all integers k >O, 

k 

Fm ~n = (-l)kt I C~(-l)~ t ~m+t k-~n+kt+hrn° 
b.=0 

With the occasional aid of definition 5.2. and various choices of 

k, t, m, n 9 it is possible to obtain dozens of identities as special 

cases of Theorem 5.6. Note that for k = l, and any t, m, n, the 

identity (8) is obtained. Therefore, Theorem 5.6. gives all the iden

tities that could be obtained as special cases of ident'ity (8). Also, 

using the four-tuple (k, t ,m,n) to ident;i.fy the assigne_d values of k, 

t, m, and n, 

(12) (l,t,a,a-t): t 
FtF2 = Ft F - (-1) FF t' a +a a a a-

· and 

(13) (1,1,a,a-l). F2 = F (F l + F 1 ). a a a+ a-

Substituting from (13) into (12) j dividing out Fa, and using 
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definition 5.20, 

(F 1 + F l)Ft = Ft - (-l)tF t = Ft + (-1)8Tt • .a+ a- +a. a- +a · · -a 

Subtracting Ft+ (-1)8Tt from both sides, this becomes 

(F l + F l - 1 - (-l)a)Ft = (Ft. - Ft) + (-l)a(Ft - Ft), a+ a... +a -a 

Set t = ah-p, and sum from h = 1 to h = n. The right member tele

scopes to !Yield 
n 

(F +F -1-(-l)a) ~ F = F ( l) b-F b+(-l)a(F b-F b). a+l a-1 · ~ ah-b a n+ - a- - an-
h=l 

a ( )a( )b+l ( )a( )-b a-b Since (=1) F=b = -1 -1 Fb = - -1 -l Fb = -(-1) F_b in the 

third term of the right member, division by the coefficient of the 

n 

sum L F ah-b yields 
h=l 

(14) In ( ... l)aF b - F ( 1) b + ( .... l)a-bFb + F b an- an+ ~ a-, Fah~b = ~-----=-..;;._--,_;..::.;;;...,;;;.:;.. ___ . ________ ...;;.. __ ...;;...;;. 

l + (-l)a - (F l + F 1 ) h=l a+ a-

which is the identity of Theorem 5.1. Hence, all the special iden-

tities from Theorem 5.1~ can be included under Theorem 506. 

For a= 2, b = 1, and n = t, in (14), 

t 

~F2h-l = - F2t-l + F2t+l = F2t 0 

h=l 

For k = 1, t = -1, and n = m, in Theorem 5.6., 

Combining these two identities, 

t 

F2t = LF2m-l 
m=l 



Hence, using (13) 9 

t 

2LFm2 = F2t + Ft2 = Ft(Ft+l + Ft-1) + Ft2 

m=l 

Cancelling the 2 yields the identity for the sum of the first t 

squares of Theorem 3.2. 

As a final illustration of the generality of Theorem 5.60 1 con-

sider (14) for a= 1 9 b = -s, and n = t. Hence, 

t 

LFh+s = 
h=l 

F - F o t+s+2 s+2 

Sum both members of this equation, with t = w-s, from s = 0 to 

s = w-1. Thus, with u replacing h+s 1 

- F ) • s+2 

Since changing the order of summation yields the same result 1 

wF 2 w+ 

w-1 

= I (Fw+2 
S=O 

w-1 

-'F L s+2 
s=O 

= wF 2 - F + 2 w+ w+3 

- F ) • s+2 

= (w+l)F 2 - F 4 + 2. w+ w+ 
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This is the identity of Theorem 3.4., part (1). 

Obviously, the identity of Theorem 5.6. is very general indeed, 

and includes a large body of identities as special cases. Identities 

may, of course, be obtained directly from Theorem 5.6. as well as 
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through procedures similar to those used above. For an extended list-

ing of identities which arise directly from Theorem 5.6., consult 

Haltono [10] A brief listing follows: 

F = F 1F +FF l' m+n m+ n m n-

F2m = F 2 - F 2 , 
m+l m-1 

F 2 ( )m-1 - F 1F l = -1 , m m+ m-

k 

(k,1 11 1 -nk): Fnk =~Ci!'(n-l)k-h' 
h=O 

k 

(k1 t,m,O): ~C~(-l)~th:Ft+mk-~kt+hm = O. 

h=O 

Identities by a Finite Difference Technique 

The final section of this chapter is devoted to a specialized 

method of obtaining id~ntities iµvolving suIIIS of Fibonacci numbers, and 

is based on the calculus of finite differences. In order to facilitate 

the prec;~ntation~. a.brief review. of some pElrtingnt fa9ts t:rom fin:i..te 

differences is given. The reader who is interested in a more complete 

treatment of finite differences may refer to any standard textbook on 

finite differencesi such as Miller. [17] 

The ordinary derivative of elementary calculus is, for a function 
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f, defined on an interval a,b, is 

Df(x) = f'(x) = ~ f(x+h)h- f(x) 

The symbol D is sometimes referred to as the differentiation operatoro 

In the calculus of finite differences, the difference q~otient 

(f(x+h) - f(x))/h is considered as in ord±nary calculus; however, h 

is held fixed and limits are not taken. It is custonary, in fact, to 

let h=l, and use the difference operator 6. to indicate ·the finite 

difference 

~f(x) = f(x+l) - f(x)o 

The parallel between 6. and D is strikingo For instance, the differ

ence formulas (c = constant) 

6.c = o, 

6.cf(x) = c6.f(x), 

6.( f(x) + g(x)) = 6.f(x) + b,.g(x), 

6.(f(x)g(x)) = g(x)6.f(x) + f(x+l)b,.g(x), 

~f(x) _ g(x)6.f(x) - f(x)6.g(x) g(x)g(x+l) I= o, 
g(x) - g(x)g(x+l) ' 

all have their ·obvious counterpart in differential calculus. The third 

of these formulas may also be written 

(1) 6.(f(x)g(x)) = f(x)6.g(x) + g(x+1)6.f(x). 

The second difference is 6.2f(x) = 6.( 6.f(:x;)) = 6.( f(x+l) - f(x)) = 

f(x+2) ~ f(x+l) - (f(x+l) - f(x)) = f(x+2) - 2f(x+l) + f(x); and re

cursively, one bas 6.nf(x) = 6.( 6n-lf(x)). 

Just as one may consider the anti-derivative 
-1 ; 

D in calculus, so 

A-1 also the anti-difference ~ has an analogous_ interpretation in fi-

nite differenceso That is, given a function F defined for all x, 

the difference 6F(x) = f(x) invites consideration of _the converse; 



namely, given f, can F be found such that .6F(x) = f(x)? If so, one 

writes F(x) = .6""1f(x), or F~x) = 2,f(x), where the sigma sign 

stands for indefinite summat;ton, analogous to the indefinite integral. 

Hence, ..6 and ·2. are inverse difference operators, just as D and 

f are inverse operators in ordinary calculus. 

If there exist two functions F and G · such that F(x) = 2_f(x) 

and G(x) = 2_f(x), then 

,6(F(x) - G(x)) = ..6.F(x) - ..6.G(x) = f(x) - f(x) = o. 

Let F(x) - G(x) = P(x). Hence, ..6,P(x) = 0 implies P(x+l) = P(x). A 

function enjoying this property is called a periodic constant and plays 

the same role in the theory of summation as the constant of integration 

plays in the theory of integrationo General formulas analogous to those 

of integral calculus occur: 

2_cf(x) = c 2_f(x), 

2_( f(x) + g(x)) = 2_f(x) + 2. g(x), 

2.f(x)..6.g(x) = f(x)g(x) - Lg(x+l) ..6.f(x). 

This last formula is referred to as summation by parts and is derived 

from difference formula (1) for products. Summation by parts is useful 

in proving certain Fibonacci sum identities, however, it is first nee-

essary to discuss definite summation. 

The fundamental theorem of integral calculus states that if f is 

continuous on (a, b] , :f;hen 

where F' (x) 

a+n 

= f(x). For the parallel formula for the sum, Lf(x), 
x::;:a 

let F(x) = 2.f(x). Then· f(x) = ..6.F(x) = F(x+l) - F(x), and hence, 
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F(a+l) - F(a) = f(a) ,. 

F(a+2) - F(a+l) = f(a+l), 

.. • 
.0 • • • 

F(a+n) - F(a+n-1) = f(a+n-1), 

F(a+n+l) - F(a+n) = f(a+n). 

Adding left and right members in these equations yields 

a+n a+n+l a+n+l 

L f(x) = F(a+n+l) - F(a) = 2,f(x) = 6-1f(x) 

x=a a a. 

Periodic constants may be ignored here in the same manner as constants 

of integration with respect to definite integration. 

With these tools at hand, it is possible to prove additional 

Fibonacci identities. ·The x's above are replaced by k's to emphasize 

that the domain of the functions considered is the set of positive in-

tegers .. The key formula for this effort is the summation by parts ex-

pression for definite sums 

(2) 

a+n 

. I f(k)~g(k) = f(k)g(k) 

k=a 

a+n+l a+n 

-2 g(k+l)~f(k) 0 

a k=a · 

Success in using swnmation by parts is contingent on a judicious choice 

for f(k) and &(k), just as is the case in integration by parts. For 

proving Fibonacci identities this means having at hand some already 

established identities. A few examples are given ~s theorems for 

illustration .. 

Theorem 5.,7. 

n 

IkFk = (n+l)F 2 - F 4 + 2. 
n+ n+ 

k=O 



Proof: · In formula (2) let a=O, f(k) . = k, and D,g(k) = Fk. · 

Then, D.f(k) = (k+l) .. k = l, and 

"k-1 

g(k) = ~Fj = Fk+l - l, 
j=O 

by Theorem 3olo, part (1). Therefore, 

2 kFk = k(Fk+l - l)· - 2 (1) (Fk+2 - 1) 
n · (+l n 

k=O O k=O 

n 

= (n+l)F(n+l)+l - (n+l) - ~Fk+2 +. (n+l) 
k=O 

n 

= (n+l)Fn+2 - (Fl+ ~Fk+2) + Fl 
k=O 

= (n+l)F 2 - (F 4 - l) + F1 · n+ n+ 

= (n+l)F 2 - ~ 4 + 2, · n+ · n+ 

where Theorem 3.1 .. , part (1), has been used again. 

Theorem ,2.8 .. 

n 

Lk.F2k = (n+l)F~+l - F2n+2· 
k=O 

Proof: In formula (2), let a= O, f(k) = k, 6g(k) = F2k. 

Then, M(k) = l, and 

k-1 

g(k) = ~F2j = F2k-l - l, 
j=O 

by Theorem 3ol., part (3)~ Hence, 

67 



n n+l n 

~kF2k = k(F2k-l - l) 
k=O 

- ~(F2(k+l)-l - l) 
O k=O 

n 

= (n+l)(F2n+l - 1) .. 2F2k+l + (n+l) 

k=O 

= (n+l)F2n+l - F2n+2' 

using Theorem 3.10, part (2). 

Theorem 5o9o 

n 

~k2rk = (n2+2)F . 2 - (2n-3)F 3 - 80 £. n+ · n+ 
k=O 

Proof: In formula (2), let a= o, f(k) = k2 , ~g(k) = Fk. 

Then, ~(k) = (k+l)2 - k2 = 2k+l and 

k-1 

g(k) = 2Fj = Fk+l - 1, 

j=O 

by Theorem 3olo, part (1). Discarding the -1 1 

n n+l 

I k2rk = k2rk+l 
k=Q O 

n 

... L (2k+l)Fk+2· 
k=O 

n 

= (n+l)2Fn+2 - ~ (2k+l)Fk+2• 
k=O 

Summation by parts is required again on the last term. Let f(k) = 

2k+l, ~g(k) = Fk+2• Then, ~(k) = 2 and 

k-1 

g(k) = LFj+2 = Fk+3 ... 2o 

j=O 

Ignoring the constant -2, 
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2 (n+l) F 2 -n+ 

r "n+l 

i(2k+l)Fk+3 
l O 

n 

-L (2)Fk+4 
k=O 

= (n+l) 2Fn+2 - (2n+3)Fn+4 + F3 + 2Fn+G - 2(l+F1+F2+F3) 

= (n2+2)Fn+2 - (2n-3)Fn+3 - 8. 

Theorem 2010. 

n k 

L L Fi = F n+4 - ( n+ 3) • 

k=O i=O 

Proof: In formula (2), let 

k 

f(k) = LF i = Fk+2 - 1 and ,6.g(k) = 1. 

i=O 

Then, 6.f(k) = Fk+3 - Fk+2 = Fk+l and g(k) = k. Hence, 

n k n+l n 

L LFi = k(Fk+2 - 1) 

k=O i=O 

-2 (k+l)Fk+l 
O k=O 

n 

= (n+l)(Fn+3 - l) - ~(k+l)Fk+lo 

k=O 

Now apply summation by parts to the last term, letting f(k) = k+l, 

and L:i,g(k) = Fk+l' Then, 6.f(k) = 1 and 

k-1 

g(k) = ~Fj+l = Fk+2 - lo 
j=O 

Therefore, ignoring the constant -1, 

(n+l)(F 3 - 1) -n+ . 

f, n+l 

tk+l)Fk+2 0 

= (n+l)(F 3 - 1) - (n+2)F 3 + F2 + F 5 - 3 n+ n+ n+ 
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= F 4 - (n+3). n+ . 

Theorem5oll. 

n-1 

n 

~Fk2 = FnFn+1• 
k=O 

Proof: Consider ~Fk2• In formula (2), let f(k) = Fk and 

k=O 

k-1 

,6.g(k) = Fko Then, .6.f(k) = Fk+l - Fk and g(k) = ~Fj = Fk+l - l. 

j=O 

Then, 

n-1 (n-l)+l n-1 

L Fk2 = FkFk+l -L (Fk+l - Fk)(Fk+2) 
k=O k=O O 

n-1 

=FF n n+l 

=FF l n n+ 

n-1 

- ~(Fk+l - Fk)(Fk+l + Fk) 
k=O 

n-1 n-1 
... 'F .. 2 + ~ F 2. L k+l L k 

k=O k=O 

Cancelling ~Fk2 from both members yields, 

k=O 

n-1 n 

FnFn+l::: LFk+l2 = LFk2. 
k=O k=O 

'10 

Any number of identities may be derived by following and extending the 

methods used above. A few additional ones are listed in the challenges 

below. 
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Challenge~ With the help of Theorem 3olo, parts (2) and (3), show that 

n 

LkF2k+l = (n+l)F2n+2 - F2n+3 + 1, 

k=O 

using summation by parts o 

Challenge: Use summation by parts to show: 

(l) 

(2) 

2 
(n +2)F2n+l - (2n+l)F2n - 2, 

= F F 1F /20 
n n+ n+2' 



CHAPTER VI 

A GENERALIZED FIBONACCI SEQUENCE 

The recurrence formula for the Fibonacci sequence, 

F 2 - F l - F = O, n+ n+ n 

is an example of a linear difference equation of order two. Indeed, 

the natural setting for recurring sequences in general, of which the 

Fibonacci sequence is one special case, is within the framework of fi-

nite difference equations. Difference equations are analogous in many 

respects to differential equations, continuing many of the parallels 

observed in the last section of Chapter V. The study of recurring se-

quences is, in reality, included within the subject of difference equa-

tions. In order to discuss generalizations of the Fibonacci sequence, 

it would seem, therefore, that a general study of difference equations 

should be made. However, such a completely general approach is beyond 

the scope of this thesis, and, therefore, the generalizations dealt 

with here are restricted .. Attention is focused on homogeneous linear 

difference E::quations, primarily those of order two. Tlle necessary def-

initions and theorems pertinent to this discourse are stated without 

proof, though many times the proofs are simpler than the analogous re-

sult for ordinary differential equations. To find proofs or further 

details, the reader may consult Miller. [17] 

Definition 6olo Let p0(x), p1 (x), .... , pn(x), and r(x) be defined 
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for all x in J* 
' 

the set of non-negative integers, with the proper-

ty that p0(x)• pn(x) # o, for all x in J*. Then 

(1) p0(x)y(x+n) + p1(x)y(x+n-l) + oo• + pn(x)y(x) = r(x) 

is a linear difference equation of order n, A function g not iden-

tically zero that satisfies (1) over J* is said to be a solution of (1). 

The existence and uniqueness of solutions are assumed without fur-

ther discussion. Equation (1) is called homogeneous if r(x) is iden

tically zeroo It is clear that if g1 (x) and g2(x) are solutions of 

(1), then P1 (x)g1 (x) + P2 (x)g2 (x) is also a solution, where P1 (x) 

and· P2 (x) are periodic constantso For the purpose at hand, the peri

odic constants will be treated simply as ordinary constants. Within 

this context, the concept of linear independence of a set of functions 

is now definedo 

fined on the set J* of non-negative integers. Then g1 (x), g2 (x), 000 9 

g (x) 
n 

are linearly independent if, for constants c 9 n 

for all x in J*, implies = o. In the contrary 

case, the functions are said to be linearly dependent. 

Theorem 6oAo Consider the homogeneous linear difference equation 

(2) p0(x)y(x+n) + p1 (x)y(x+n-l) + ••• + p (x)y(x) = o, 
n 

where the coefficients p0(x), p1 (x), ••• , pn(x) are defined on J*, 

and p0(x) 0 pn(x) # O, for all x in J*. Then there exist n linearly 
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independent solutions of (2). · Furthermore, any n solutions, g1 (x), 

g2(x), oo•, ~(x), of (2) are linearly independent if, and only if, 

gl(x) g2(x) 000 g (x) 
n 

g1(x+l) g/x+l) .... g (x+l) 
n 

0 . • • /; o, 
0 0 • .. .. • 

for all values of x. 

The determinant in the preceding theorem is called the Casorati of 

then solutions g1 (x), g2(x), ••• , gn(x). It plays a role in differ

ence equations similar to the Wronskian of differential equations. 

Theorem 6.B. Let g1 (x), g2(x), ••• , gn(x) be a linearly independent 

set of solutions of (2). Let G(x) be a solution of (2). Then there 

exist constants c1 , c2 , •oo, en such that 

This theorem states that a linearly independent set of n solu-

tiona of an n~ order homogeneous linear difference equation provides 

the most general solution to that difference equation in the sense that 

any solution may be obtained as a linear combination of the n solu-

tions. 

It is n~~ desirable to return to the generalization of the 

Fibonacci sequence. There are a number of ways in which this may be 

done. Consider the recurrence formula 

where p0 , p1 , p2 , o ... , pn are constants, PoPn /; O, and x~l in J* .. 



Converting to function notation, (3) becomes 

( 4) + ••• + p y(x) = O. n 

Clearly, (4) is an n~ order homogeneous linear difference equation 
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with constant coefficients. Then in accordance with Theorem 6.B., any 

solution of (4) can be expressed, for suitable constants c1 , c2 , ••• , 

c, as n 

(5) .... + c g (x), 
n n 

solutions of (4) .. To determine a particular solution would require a 

choice of n initial or boundary conditions, just as in the case for 

ordinary differential equations. Stated in terms of recurring se-

quences and following the notation in (3), this means the first n 

initial values would need to be prescribed, and then a particular re-

curring sequence would be obtained from (3). Imposing these initial 

conditions on (5) would produce a generalized Binet formula, a general-

ization of Theorem 4 .. 1. for the Fibonacci sequence. It should be noted 

that additional generality could be obtained if (4) were not homogene-

ous. However, it is not the intention to give a full discussion of re-

curring sequences here. In fact, (4) will be restricted to the case 

n = 2 in what follows .. 

Suppose (3) is considered subject to the restriction n = 2. 

Hence, (3) becomes 

(6) 

which leads to the difference equation 

(7) 
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In order to find the general solution of this equation it is necessary 

to find two linearly independent solutions. By analogy to the situation 

for ordinary differential equations, one is led to assume a solution of 

the form g(x) = mx. Then, (7) becomes 

x+2 x+l x 
p0m + p1m + p2m = o, 

or 

If g(x) = mx is to be a solution of (7), then m must be a root of 

the algebraic equation = o .. This leads to three 

possibilities, namely, real and distinct roots, imaginary roots, and 

real and equal roots. All three cases may be handled in a manner simi-

lar ·to the situation in ordinary differential equations. For this oc-

casion, it is preferable to restrict attention to the case where 

Po = 1, Pi = - l, p2 = - L Then, the recurrence relation (6) is 

(8) 

and the difference equation (7) is 

(9) y(x+2) - y(x+l) - y(x) = o. 

The roots of m2 - m - 1 = 0 are ~ = (1+5~)/2 = r and ~ = 
(1-5Y2)/2 = s 1 which are real and distinct. Then, g1 (x) = rx and 

g2(x) = sx are solutions of the difference equation (9). Since the 

Casorati of rx x and s , 

x 
r 
x+l 

r 

is not zero, that is 

::+ii = (rs)x(s-r) ~ O, 

it follows that g1(x) = rx and g2(x) = sx are two linearly independent 

solutions of 19). Hence, the general solution of (9) is y(x) = 
c1rx + c2sx .. In terms of the recurring sequence (8) 1 one has 
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(10) 

In order to obtain a specific sequence, it is now necessary to impose 

initial or boundary conditions. It is customary, in dealing with 

recurring sequences, to specify the first terms of the sequence. For 

Y1 = l and Y2 = l in (10), the system of equations 

1 = 

imply that In this case (10) is simply the Binet 

formula of Theorem 4.1., and the sequence obtained in this case is the 

Fibonacci sequence itself. Other sequences may be obtained, of course, 

by varying the initial terms. The corresponding Binet formula is then 

determined from (10). For instance, if Y1 = 1 and Y2 = 3, solving 

the system of equations obtained from (10) gives c1 = c2 = 1, and for 

this case, (10) becomes 

Lucas 

y 
x 

x x = r + s • This yields the sequence of 

1, 3, 4, 7, 11, 18, 000 ' 

which possesses a number of remarkable properties similar to many of 

those pertaining to the Fibonacci sequence • 

. Rather than applying various conditions to (10) and investigating 

the corresponding sequence in an isolated fashion, why not hold back 

the explicit values of the initial terms and study the sequence in 

general? Suppose, therefore, that (8) and (10) are retained and the 

conditions imposed are Y1 = p and Y2 = p+q, where p and q are. 

arbitrary integers. The sequence so obtained is 

P, p+q, 2p+q, 3p+2q, 5p+3q, 8p+5q, 

and it may be observed that 



(11) y 2 = pF + (p+q)F l' x+ x x+ 

where F, F are the x~ and (x+l)~ Fibonacci numbers. 
x x+l 

It follows from (10) that 

Solving this system and substituting into (10) yields 

Y = 5-J1?((p-sq)rx + (rq-p)sx). 
x 

It is clear from either (11) or (12) that p = 1 1 q = 0 is that 

specialization which yields the Fibonacci sequence. It may be noted 
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that any choice in which p and q are consecutive Fibonacci numbers, 

say F and F 1 , produces the Fibonacci sequence with the first 
x x-

x - l terms missingo But a question should be raised. What properties 

of the Fibonacci sequence are carried over to the generalized sequence? 

Answering this question involves an investigation of considerable mag-

nitude., A number of such results may be found in Horadam. [13 J For 

Y 1/Y approaches the golden ratio ¢, just as was the 
x+ x 

case for the Fibonacci numbers. The identities 

have their respective counterparts in the Fibonacci identities 

F lF 1 - F 2 = (-l)x, 
x- x+ x 

2 2 
F l + F = F2x 1 • x+ x + 

There is also a useful expression for Pythagorean triples similar to 

that developed in Chapter III for Fibonacci numbers, namely, 
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f2y ly 2]2 + ly y 3)2 = '2Y ly 2 + y 2]2. L x+ x+ Cx x+ L x+ x+ x 

The work of this chapter indicates some of the d~rections in which 

generalizations of the Fibonacci sequence may be taken. Certainly, the 

variety of ways for so doing are extensive and the reader is invited to 

investigate and explore the possibilities on his own. The· opportunities 

may be nearly as abundant as the offspring of Fibonacci's mythical pair 

of rabbits! 



CHAPTER VII 

SUMMARY AND EDUCATIONAL IMPLICATIONS 

The presentation in this thesis makes material concerning the 

Fibonacci sequence readily available to the undergraduate mathematics 

student. It illustrates how a variety of techniques and mathematical 

tools, drawn from several areas of mathematics; can be used to prove 

theorems about the Fibonacci numbers. 

Summary 

In Chapter I the statement of the problem, scope of the thesis, 

methods and procedures, and expected outcomes are given. Chapter II 

provides an informal discussion of some properties of the Fibonacci 

numbers .. Chapter III includes a formal definition of the Fibonacci se

quence and several theorems illustrating proof from the definition. 

Additional.theorems illustrating mathematical induction also appear, 

and some arithmetical properties of the Fibonacci numbers are proved. 

Chapter IV is a continuation of Chapter III but requires that the reader 

possess a knowledge of limits. The important Theorem 4.1. provides a 

formula for the direct calculation of a given Fibonacci number as a 

function of its subscript. Chapter V deals with recent research in 

obtaining generalized identities. The identity of Theorem 5.6. is 

the most striking result of this chapter. The connection between the 

Fibonacci sequence.and the calculus of finite differences is initially 
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established and is further broadened in Chapter VI, where the Fibonacci 

sequence is viewed in its ·natural setting as a homogeneoue linear finite 

difference equation. 

Educational Implications 

Much of the material included concerning the Fibonacci numbers 

can be readily understood by secondary school students, particularly in 

the initial chapters, and is designed to supplement the undergraduate 

curriculum at both the upper and lower division. This thesis serves to 

consolidate research and present well motivated problem material, 

fashioned around a topic interesting to a number of studentso 

As a result of reading this thesis, the student should gain an 

awareness of several facets of mathematics, including an acquaintance 

with current and past research that has been done in connection with the 

Fibonacci ·numbers. It is also of significance that the reader who is a 

potential teacher at either the public school or college level may find 

motivational material for his pupils and will perhaps enlarge on some of 

the ideas presented. 

Without question, the most significant outcome of this thesis lies 

in the experience that the investigator gained in its preparation. 
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