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CHAPTER I 

INTRODUCTION 

Background Information 

Although the electrical properties of stannic oxide (Sn02) have 

been studied and utilized in thin film and ceramic forms for some time, 

1 2 grown stannic oxide crystals j have been available only recently. 

3-7 Optical and electrical measurements on these samples were in a gen-

eral sense consistent with those previously taken on natural cassiterite 

8 9 sampleso • That is, they exhibited broad-band semiconductor character-

i.stics with larger electron mobilities and smaller effective masses than 

titanium dioxide (Tio2) specimens of the same crystal structure, to-

gether with a larger optical bandgap of ~ 4eV compared to·~ 3eV for 

Ti02 . 

Quantitatively, however, limited correlation exists between the 

results of various groups working on Sno2 since the electrical conduc-

tivity at ordinary temperatures is a defect-controlled process for this 

material.. Thus one expects variations arising from differences in both 

concentration and species of impurity ions introduced during the growth 

process and of other defects (surface or bulk) introduced thereafter. 

In order to design meaniQgful experiments and correlate the re-

sults, one must have considerable knowledge concerning the type of 

defects present, their concentrations, and their interaction with the 

1 
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surrounding crystal. Si.nee electron spin resonance (ESR) can provide 

information about all three of these areas for the paramagnetic system, 

it seems appropriate that a comprehensive study of paramagnetic defects 

be made using this technique. This should contribute not only to knowl·· 

edge of the defects themselves, but also aid in isolating intrinsic 

parameters of the crystal from those due to impurities present, 

Since Sno2 has the same structure as the maser host9 T~o 2 , it seems 

very possible the ESR studies of transition metal and rare earth ions 

could pave the way for its utilization as a maser host. Furthermore, 

because of its larger forbidden gap, Sno 2 unlike T:i..02 , is still rela-

tively transparent in the visible region after doping with transition 

metal impurities, This makes it a potential candidate as a laser host 

as well, 

Scope of the Present Study 

In this study, the four prominent ESR signals observed at room 

temperature in flux-grown Sno2 are identified as arising from the tran-

, , 1 ' J+ "' J+ d C ]+ Ch . . f d sit.ion meta. ions Ni , ce , an r • romium.ions are oun to 

occupy both substitutional and interstitial sites, both giving rise to 

a rather large superhyperfine structure. Only limited discussion of 

these signals is made since they have been considered previously in the 

1 . 10,11 iterature, Fe3+ is found to occupy a substitutional position in 

the lattice and a superhyperfine structure is observed and discussed, 

Again only limited discussion of the spin Hamiltonian is made since it 

too has been reported previously. 12 The trivalent Ni3+ ion is found to 

occupy an interstitial position much like that of Cr3+. Since it has 

not been reported previously, a more extensive analysis is given. 



Changes in the ESR signals with heat treatment have been observed 

and a model is proposed to ex.plain them, Microbalance data which supm 

ports the model is al.so presented, Finally, based on this mode 1, a 

qualitative energy level scheme is proposed for the ground states of 

these ions relative to the conduction band of the host. Sno 2 . 

3 



CHAPTER II 

THEORETICAL BACKGROUND 

General Aspects 

Ma 11 d . . l 3-l7 f h 1 h f ESR . ny exce ent iscussions · o t e genera t eory o exist. 

The basic concept will be only briefly touched upon here while specific 

attention will be given to those details of theory involving group 

theoretical reasoning, which are directly pertinent to the work at hand 

and are not explicitly covered in the work of Pak/3 and Low15 . 

ESR may occur whenever a system of electrons has a net magnetic 

moment, and in general will involve a net contribution from both the 

spins and orbitals of several electrons. The cases investigated in 

3+ 3+ this study are of this nature where. Cr , and Ni each has thtee con-

3+ tributing electrons and Fe has five. For the sake of simplicity, how-

ever, one can first ci.onsider the case of a paramagnetic center formed 

by a single electron as an illustration. 

In the absence of a magnetic field the ground state is doubly de-

generate in spin. This is assured by Kramers Theorem derived from the 

requirement of inv1;3.riance of .the system under time reversal (see page 

10). However, when an external magnetic field H is applied to the 
0 

system, the,interaction µ.•H 0 removes this degeneracy. The term.µ. in 

this expression is the effective magnetic moment of the electron re-

fleeting both its spin and orbital motion. It can be expressed as 

4 
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µ. = ges where g is a constant relating the effective magnetic moment to 

the spin Sin terms of the Bohr magneton ~- The separation of the 

levels is. then given by 

( 1) 

1.f an altexn.at:ing magnetic field is applied perpendicu.lar to Hoa t 

a frequency u such that, 

hu = g~H , 
0 

(2) 

where his Planck's constant~ magnetic dipole transitions will occur 

between the two levels. These transitions, corresponding in a classi-

cal sense to flipping the electron spin, cause an absorption of energy 

from the oscillating field for a transition upward and a loss of the 

same amount of energy to the field for a transition downward. Since 

both transitions have the same~ priori probability, a net absorption 

of energy i.s only realized if the lower state has a larger population. 

This condition is met if the system is in thermal equilibrium, 

since the distribution of spins is given by the Boltzman expression 

N+ 
N-

where N+ and N .. are the numbers of electrons in the upper and lower 

(.3) 

levels, respectively; k is the Boltzman constant and T is the absolute 

temperature of the system. Thus the relaxation time of the electron 

from the higher to the lower level is very important to the observation 

of the electron resonance. For example, if the relaxation time is 

long, the microwave field may induce transitions upward faster than 

the spontaneous emission downward unt~l the populations become almost 

equal at which time very little net energy is absorbed by the system. 

This condi ti.on in ESR is cal led "saturation" • 
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Two major relaxation processes occur in a paramagnetic system. 

The first i.s due to magnetic dipole interaction between the paramagnetic 

centers called spi.n~s:pin relax.ation, which causes thermal equilibrium 

within the spi.n system. The second is due to interaction between the 

pa:r.'atM.gent:1.c cente:r a:nd i.ts diamagnetic neighbors, causing thermal 

e.qui.li.bri.um betwee.n the spi.n and lattice sys~:ems. This second relaxa· 

tion process, called spin~latti.ce :relaxation, is obviously of primary 

interest. here, since it allows the transfer of energy out of the spin 

system resulting in a net absorption of the microwave energy. Al.so, it 

is the process dependent on the crystal field of the host and therefore 

relinquishes information about the crystal field parameters, A strong 

coupling to the lattice results in a short relaxation time while weaker 

couplings give longer relaxation times. The power at which saturation 

occurs is thus an important measured quantity. 

The Spectroscopic Splitting Factor 

For the free ion case the value of gin Equation 1 is the Lande 

g-factor which under of assumption of L-S coupling is given by 

g l + J(J+l) + S(S+l) - L(L+L) 
2J(J+l) 

(4) 

However, by considering a few examples one can see that the experimental 

g=values for the case of an ion in a crystal is not the free ion Lande 

g=factor. The g=value from Equation 1. is then called the spectroscopic 

splitting factor and used as a parameter to describe the experimental 

data. It contains a combination of orbital and spin contributions which 

act together to cause an effective magnetic moment. Since the orbital 

factors are very dependent on the crystal field, this g-val.ue depends 
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on the orientation of the external magnetic field with respect to the 

crystal field. Therefore the spectroscopic splitting factor instead of 

being a scalar quantity is indeed a tensor of second rank and should be 

written in general as the 3X3 matrix 

gxx gxy gx.z 

.& ::: gyx gyy gyz (5) 

gzx gzy gzz 

One can~ however, transform to a principal axis system and diagonalize 

this tensor, allowing it to be written in dyadic notation as 

(6) 

where gx = gxx' gy = gyy and gz = gzz· One should note here that these 

principal axes are "magnetic axes" and do not in general coincide with 

the crystalline axes. · The magnetic field with respect to the axis 

system can then be written 

~ ·-·~ ~ ..... 
H = H i + H j + Hz k 

O X y 
(7) 

One can now write an effective spin Hamiltonian in the form 

-~ ~ 

H SH ·g · S 
' 0 -

(8) 

~ 

In this equation it is seen that the quantity H ·g is a vector which 
0 -

can in general vary in both direction and magnitude from the applied 
A> 

-field H • It can be thought of as an "effective magnetic field" which 
0 

is a combination of the applied magnetic field and that of the electron 

orbitals. Combining Equations 6 and 7 in the conventional dot product 

gives 

-+ 
H ·~ .o 

- -+ =g H i+g H j+g 
x x y y z 

-+ 

H k 
z 

(9) 
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However, using spherical polar coordinates leads to the relations 

H H sin9cos¢ 
x 0 

H = H sin9sin¢ y 0 
(10) 

H = H case z 0 

where e and ¢ a:ce the conventional angles of spherical. polar coordi-
_,, 

nates and H0 = I H0 I . Equation 9 can then be written as 

~ ~ ~ ~ 

H0 • ~ = 1\ (g:x sin 9cos¢ i + gy sin9sin¢ j + gz cos 9 k). (11) 

Taking the axis of quantization as the direction of the ''effective 

magnetic field", one can use the magnitude of the effective field and 

reduce Equation 8 to the scalar equation 

Using this form for the Hamiltonian and the spin eigenvalence + ~' the 

energy separation of the spin states can be written as, 

w = gSH 
0 

where now 

g 
2 . 2 2 2 . 2 . 2 2 2 

g:X Sl.D 9cos (/) + gy Sl.il E)s1n ¢ + gz COS 9. (13) 

Hyperfine Coupling 

A coupling which has not yet been considered is that of the nearby 

nuclei with the qnpai.red electron, i.e., the hyperfine coupling, There 

b . 11 . · · 1 d 13 are asica y two 1.nteract1.~ns 1.nvo ve . The first is an ordinary 

dipole=dipole coupling between the electron and a nuclear magnetic 

moment given by 



(14) 

where gN is the nuclear g value, SN is the nuclear m.agneton, I is the 

spin quantum number of the particular nucleus involved and r is the 

9 

radius vector between the electron and that nucleus. The second is the 

Fermi contact energy which arises when the electron wave functton is 

non-zero at the particular nucleus. It can be written in the form, 

(15) 

where 6(1) is that Dirac delta function making the function zero every-

where except at the nucleus. 

Since the knowledge of the true electron wave function is generally 

insufficient to calculate expectation values of these terms, both are 

included in the linear combination of terms involving Sand I: 

s I I 
0/ 0/ 

(16) 

where A I is a component of an unknown second rank tensor. However, 
O{O( 

one can always transform thi.s tensor to a set of principal axes giving 

only the diagonal terms 

A I S + A I S + A I S x x x y y y z z z 
(17) 

or 
-+ ~ 

I • A • S. (18) 

It should be noted here that it is noit necessary for the principal axes 

of this hyperfine tensor and the g-tensor to coincide. If they don't, 

then cross terms must be considered when calculating energy levels. 

Combining Equations 8 and 17, one has a more general Hamiltonian 
-+ -+ 

H=f3H·~·S + I·A·S. (19) 
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The last term to be discus,sed is the so-called "zero-field split-

tint' which arises in a spin system of S > ~- It is an interaction 

between unpaired electrons which may for example break a four-fold spin 

degenerate ground state into two doublets. This term can be written in 

the form -D s (20) 

where Dis a second rank tensor. The splitting caused by this term is 

on the order of Ool -1 cm A completely general Hamiltonian in usable 

form including this term cannot be derived since both the electron 

orbital and the particular crystal symmetry are involvedo However, for 

a rhombic system the form of the effective spin Hamiltonian including 

14 
the discussed terms has been given by Low as 

H h b" :r om 1.c S(gz Hz 8z + gx Hx 8x + gy 

2 l 2 
+ D[S 2 - }(S) (S+l)] + E(S~ 

H S ) 
y y 

- S2) 
y 

+A S I +A S I +A S Io 
z z z x x x y y y 

(21) 

It is seen in this case thac the zero-field splitting can be represented 

by the two constants D and E, 

Observation of ESR and Kramers' Theorem 

Although a net magnetic moment and an appropriately short relax-

ation time are necessary requirements for observation of an ESR absorpM 

tion, they are not sufficiento There is also the requirement that the 

crystal field splittings must not leave the ground state a singlet with 

other spin states separated from it by more' than the microwave photon 

-1 
energy (--O, 3 cm · for X-band spectrometers). For example, a system of 

two electrons with S = 1 might be split in the manner shown in Figure 1: 



S = + 1 
z 

S = 0 
z 

Figure 1. Possible Splitting of 
Two-Electron System 
in a Crystalline 
Environment 

11 

If the crystal field splitting is very large compared to the microwave 

energy (hV'), no transitions from the ground state to higher states will 

take place. Moreover, the transition between the S = + 1 levels is 
z 

forbidden although the crystal field may partially break this forbid-

deness. The population of these latter levels will generally be small, 

particularly for very low temperatures. Observation of a signal for 

this type of system would be unlikely. 

For systems of an odd number of electrons, one is assured that the 

ground state is degenerate by the well-known Kramers theorem. This 

theorem states that for any system composed of an odd number of elec-

trons the ground state is at least two~fold degenerate in the presence 

of 1any crystal field. This condition, shown by Wigner 18 to be due to 
) 

invariance of the system under time reversal, has been discussed quite 

14 
simply by Low. Although a formal discussion is more involved, the 

4 -+ (- ... condition basically evolves from the requirement that L • S = r x p) • 

~ 

S be invariant under time reversal. -+ - • .,.,) When t ~ - t, p ~ - p; since r 
..., __. 

is invariant, one must let S - - S. From this one can show that two 

linearly independent eigenfunctions of the same energy must exist for 

t s. Thus, an example, s 3 for lowest the as = 2 gives even symmetry 

t1 3 + .!. three doubly degenerate levels s +_ and One might notice 2' - 2' - 2· z 

here, however, that the only allowed transition satisfying the 
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requirement t,S = ""!: 1 is the last of the three. This level many times 
z 

forms the ground state of the system and gives rise to the most prom-

inent of the observed signals, although for lower symmetries the other 

two are also partially allowed because of the crystal field perturba-

t:ion. 'Ihe effect of K:t'amers u theorm can be seen in the Table I, since 

no half-integer J results in a degeneracy less than two. 

TABLE I 

DEGENERACIES OF S'rA'l'ES FOR VARIOUS CRYSTALLINE SYMMETRIES 
(After Lowl4) 

Degen= J Degen- 1 3 5 7 9 11 
System eracy 0 1 2 3 4 5 eracy 2 2 2 2 2 2 

Cubic l 1 0 0 1 1 0 2 1 3 1 2 1 2 
(O,Oh 1 Td) :2 0 0 1 0 1 1 4 0 1 1 1 2 2 

3 0 1 1 2 2 3 

Tetragonal 1 l l 3 3 5 5 

(D2h'D4h'D4~D4h) 2 0 l 1 2 2 3 

Hexagonal 1 1 1 1 3 3 3 

(D3h ,D6 ,D6h) 2 0 1 2 2 3 4 
2 I. 2 3 4 5 6 

Trigonal 1 1 1 1 3 3 3 

(C3,1 ,D3d ,D3) 2 0 1 2 2 3 4 

Rhombic 

(C2v'~2:D2h) 
Tr1.clunc 
(<\,C.) 1 1 3 5 7 9 11 
Monoctinic 

(C~,C1:,C2h) 
an a .1 others 

Crystal Field Effects on Transition Metal Ions 

When a transition metal ion occupies some position in a solid, the 

effects of the crystal field on it are profound. Ideally one would like 

to solve the Schrodinger equation for the complete crystal system, or 
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at least for a limited number of atoms in the vicinity of the iono 

Obviously the first approach is a practical impossibility; however, 

the second under certain approximations has been attempted with limited 

19 20 
success o ' 

The most widely used calculations are those based on a so-called 

"crystal field theory". This theory assumes that the effect of the host 

crystal on an ion can be described in terms of the field due to a sym-

metric array of point charges o Although the. approximations of these 

calculations are undoubtedly gross, their value cannot be denied since 

they allow a relatively easy solution of the problem and results can be 

correlated at least qualitatively with experimental data. For a more 

complete exposition of the general theory the reader is referred to 

references 21-25, and the particularly good discussion of this problem 

for the experimentalist give.n by Low, 14 The emphasis present here will 

be place,d only on genera 1 concepts and on. an extension of a simple 

26 
method of :Bethe . 'l'hi.s approach is very valuable when employed in a 

treatment for low symmetry systems which makes use of information al= 

ready known for more symmetrical. systemso 

As mentioned above~ i.n the crystal field approximation of the sur= 

rounding ions are assumed to act as point charges which set up a static 

electric f:ield acting on the ion of interest. Knowing the symmetry of 

the site, the experimentalist can use the effective charge of the ions 

as an adjustable parameter. The Hamiltonian in this approximation can 

be written as 

N 

H =[_ 
K=l 

2 

~m + VF + V LS + V SS + V N + V Q + V C' (22) 



with the following origins for the various terms: 

! 
. K=l 

2 
£_, the kinetic energy of the electron system 
2m 

14 

VF, the coulomb electron-nuclear and electron-electron interaction 

VLSS the spin-orbit coupling 

VSS' the spin-spin coupling 

VNs the hyperfine coupling of the nucleus to the electron system 

v Q' the electrostatic interaction with the quadrupole moment Q of 
the nucleus 

Ve, the potential due to the crystal surroundings. 

In order to be able to use perturbation theory, one must know the 

relative magnitudes of the above terms. These can be estimated for 

first five potential terms from free ion spectroscopic data, e.g., for 

the first transition series (the iron group) 

5 -1 
VF "" 10 cm 

2 Ml 
VLS ...., 10 cm 

V SS ,..,,, 1 cm 
~1 

VN - 10-l cm·l - 10·3 cm-l 

V Q ...... 10=3 ~1 
cm 

In the perturbation treatment of this problem three cases exist 

depending on the value of Ve. The strong field case exists when Ve is 

of the same order of magnitude as VF. This case occurs when a strong 

covalent interaction is present, making results based upon an electro-

static interact.ion approximation (i.e., on "crystal field theory") 

relatively meaningless. The medium field case exists for many of the 

iron group ions in crystals. This arises when Ve is smaller than VF 

but larger than VLS' For this case the perturbation due to Ve can be 
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calculated before VLS is applied. The third case is the weak field 

case when Ve is less than VLS" This is more applicable to the situa-

tion for rare earths in crystals, since VLS is about an order of magni-

tude larger for these ions than for those of the iron group. 

Since a crystal field potential (treated as an electrostatic 

potential)~ obeys Laplace's equation, it may be expressed in terms of 

21 the generalized Legendre polynomials as 

=LL 
n m 

V m 
n 

(23) 

m where. k expresses a summation over the electrons of the system and Y 
n 

( 9k¢k) are the normalized sphe.ri.cal harmonics. This form is particu­

larly inviting since the orbitals to be employed are usually in the 

form of spherical harmonics, which of course form a basis for their-

reducible representations of the comple.te rotation group. A matrix 

e.lement of the form (JM I V'n I J'M;.> thus can be represented in terms of 

h 11 k W. ff'' i 24 , 27 Thi 11 h 1 1 . t .e we .. 00 nown 1.gne,:r: coe ,"lC' e.nts, , : s a ows t e ca cu at1on 

of the relative splitting of several levels in terms of some parameter. 

By convention this quantity is usually called Dq and involves the ef-

fective charge of the transition metal ion, the bond distance from it 

to the surroundi.ng ions, and the effective charge of the surrounding 

22 ions, 

This form of the ma tri:ic element allows one to li.mi t the number of 

potential terms which must be considered. The matrix elements of the 

M m .. M1 • m 
form '±' J' V n '¥ J' are zero if Vn is of order >.2J. This is obvious from 

the requirement that the direct product of the irreducible representa-

M m MJ ... 1 
tions of '¥3 , V0 , and Y. contain the completely symmetric representation 
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D(O). In order for this condition to be met, the direct product of;; 

Mu m 
and 1l.'J must contain the irreducible representation of Vn, which it can-

not if Vm is of greater order than 2J. Thus for D-states the highest 
n 

order which must be considered is n = 4 and for F-states, n = 6. Also 

m M M' 
any odd values of V n are eliminated since the product of 11' J 11' J is 

always invariant under inversion and if Vm is not, the matrix element 
n 

will be zero. 

It should be mentioned here that calculation of matrix elements 

can also be made quite easily by using an alternative operator equiva-

28 . 29 30 
lent method developed by Stevens, Eh.ott and Judd. A good dis-

cussion of this method together with the required tables is given by 

14 
Low. 

Although calculations of the type discussed above are necessary in 

26 
many cases~ a simple qualitative group theoretical method of Bethe 

together with experimental and theoretical data found in the literature 

often suffices for the experimentalist. attempting to interpret initial 

ESR or opti.cal. absorption results. In general, this method utilizes 

the fact that the customary orbital functions are represented by the 

spherical harmonic~ which form a basis for the irreducible representa-

tions of the complete rotation group. Now if a perturbation H1 of 

lower than spherical symmetry is applied to the system, the total Hamil-

tonian H can be written as 

where H is the Hamiltonian of the free ion. The eigenfunctions of 
0 

this Hamiltonian must now form a basis for the irreducible represent.a-

tions of the symmetry group of H1 . In other words, the irreducible 
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representations of the complete rotation group are generally now reduc~ 

ible representations for the subgroup of H1. Thus, the qualitative 

energy level splittings can. be found using the well-known group theoret-' . 

ical expression for the number of times a., an irreducible representa~ 
l. 

tion, appears in a reducible representation given in reference 24, 

(25) 

page 30 ~ where h i.s the order of the group, the summation is over the 

e.lem.e.nts R of the group~ Xi (R.) is the character of the irreducible rep­

resentation i for symmetry element R, and X (R) is the character of the 
r 

reducible representation for symmetry element R, Character tables for 

all of the common point groups have been calculated and are listed by 

several authors. 24 ' 311' 32 

As an example c,f this technique, consider the si.x oxygen ions 

2+ su:i::·rounding a Cu io·n in a substitutional. position of Sno2 , The ions 

in this cue t•educ.e the. symmetry of the total Hamiltonian to D2h which 

has the charactar table g'.t.ven on t.he following page. The characters of 

{2) 
the D • representation of the complete rota ti.on group (the characters 

of the rep:t'esent:ation for which the d~orbitals of Cu2+ are a basis) are 

(21 325-367) found by standa:t·d fo:rmulas ' PP• · or by ca:r.rying out the D2h 

symmetry operations on the d~o:i:·bitals and not.icing how many are left 

invariant. 

Using equation 25 one obtains 

D(Z) = 2 A + B + B + B3g. 
lg · lg · 2g 

(26) 

Thus the five-fold degeneracy of the d-orbitals is broken by the sur= 

rounding crystalline field into five singly degenerate states. To find 
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the representations to which each of the orbitals belong, one simply 

notices how they transform under the operations of the group o2h, which 

gives, 

.3Z2. 2 
- A - r - - lg 

x2 2 
- A - y - - lg 

xy - B . lg 

xz - B 2g 

zy - B 3g 

TABLE II 

CHARACTER TABLE FOR THE POINT GROUP D2h 

E c (z) 
2 

C(y) 
2 

c<x) 
2 I CJ(xy) cr(xz) o(yz) 

Alg 1 1 1 1 1 1 1 1 

Alu 1 1 1 1 -1 -1 -1 -1 

B lg 1 1 -1 -1 1 1 -1 -1 

Blu 1 1 ~l -1 -1 -1 1 1 

B2g 1 -1 1 ~·l 1 -1 1 -1 

B2 1 -1 l -1 -1 1 -1 1 
·.1 u 

B3g 1 =l -1 1 1 -1 -1 1 

B3u 1 -1 -1. ·l -1 1 .. 1 -1 

0(2) 5 1 1 l 5 1 1 1 

where designation of orbitals on the left are the conventional d-

orbitals used extensively in the literature. 
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Although this has gi.ven the final number of energy levels and 

their degeneracies~ it has given no knowledge of the relative separa-

tions of the levels. This information can qualitatively be obtained by 

considering successive perturbations using the same technique as. above. 

For example consider the previous calculations in terms of the series 

of perturbations R3- Oh--+ D4h ~ D2h rather than the single pertur­

bation R3---+D2h. Obviously the largest perturbation is the first one. 

2-This would be the case where all of the O ions were equal distances 

(cubic symmetry) from the cu2+ ion and from each other. Using the D(Z) 

representation which was discussed previously, together with the Oh 

character table, one finds 

D(Z) = E + T • 
g 2g 

(27) 

Thus in first approximation the d-orbitals are split into a doublet and 

a triplet. From what is observed in similar systems this splitting is 

4 -1 expected to be of the order of 10 Cm •. For the next perturbation, use 

the character of Eg and T2g and the character table D4h (tetragonal 

symmetry) which gives 
T2g = B2g + Eg 

Eg. = Blg + Alg 
(28) 

'rhus the second perturbation breaks the system into three singly degen-

erate levels and one doubly degenerate level. This perturbation should 

be about an order of magnitude less than the previous one. Finally, 

using the characters of D4h representations and the D2h character table, 

one obtains the qualitative energy level diagram of Figure 2. 
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In the above one notices that the discussion has avoided the per-

turbation due to spin-orbit coupling which of course must be included 

in the calculation. 2 -1 Since this is on the order of 10 cm for the iron 

group~ it can usually be considered last. However, one must look care-

fully at each specific case to insure that it has truly been included 

at the proper place in the order of the perturbations treated. The 

group theoretical reasoning is still the same except that the represen-

tation of the total wavefunction is the direct product of the irreduc-

ible representations of the spin and orbital parts. It then can be 

broken down into irreducible representations of the total symmetry 

group. 1 3+ f 1. h f b 1 For examp e, V o S = , as a spin eigen unction e onging 

to D(l) of the complete rotation group. The reducible representation 

of the total wavefunction rt is then given by 



n< 1) x r = r 
O t 

(29) 

21 

where r is the irreducible representation of the orbital wavefunction. 
0 

The characters of rt can easily be found from the relation24 

(30) 

where. x1(R) is the character of D(l), X0 (R) is the character of r 0 (R), 

and Xt(R) is the character of rt' all for the symmetry element R. The 

representation rt can then be broken down into irreducible representa-

tions of the total symmetry group by use of equation 25 givd.ng the 

splittings due to spin-orbit coupling. 

Electric Dipole Selection Rules 

The electric dipole selection rules may now be found quite easily 

21 using the same type of arguments. The matrix element Hf. in the 
. l. 

33 golden rule formula is of the form 

Hf. =::.5'f.fA'Y. dT l. -, . l. 
(31) 

where 'Yf and 'Yi are the final and initial states of the system, respec­

tively, and A is the electric dipole operator connecting the two states. 

This matrix element can be shown to be zero unless the direct product 

ff X rA x ri' the representation of the matrix element, contains the 

completely symmetric representation. Here ff' fA' and fi are the rep­

resentations of the final state, the electric dipole operator, and the 

initial state, respectively. Since the electric dipole operator behaves 

as a vector/4 it belongs to the D(l) representation of the complete 

rotation group. The characters for the reducible representation can 

then be found by the relation similar to equation 30, 
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(32) 

where~~ Xf 5 XA and Xi are the characters of the representations of 

the total matrix element, the final state, the electric dipole operator~ 

and the initial state, respectively, Whether the transition is allowed 

or forbidden then is determined by 

(33) 

where A1 is the number of times the completely symmetric representation 

appears in fH and XA is the character of the completely symmetric rep-
1 

resentation (value of 1 for all symmetry elements). If a 1 > 0, the 

transition is allowed if a 1 = 0, the transition is forbidden. 



CHAPTER III 

APPARATUS AND SAMPLES 

Apparatus 

Since the X-band ESR spectrometer employed in this study has been 

. 34 35 
extensively described previously, ' only the special equipment will 

be mentioned here. 

In or~er that the Varian V-4531 ESR cavity with its associated 

variable temperature apparatus could be used to obtain orientation data, 

the orientation mount shown in Figure 32 was constructed. It fits di= 

rectly onto the V-4531 cavity, allowing the sample to be rotated while 

at temperatures ranging from -180°C to approximately +300°C with an 

accuracy of~ 0.1 degree. 

The crystals were oriented by the use of the Laue back-reflection 

technique and transfer apparatus described previously. 35 After mount-

ing, the orientation o:E the samples could be checked to an accuracy of 

t 0,5° by the particular symmetry of the observed ESR signals. The Fe3+ 

ion was particularly helpful in this respect since both the [no] and 

[001} planes can be checked by its use. 

'!'he nuclear magnetic resonance probe used to measure the magnetic 

34 
field was that described by Bell. It was found that the frequency 

could be lowered to allow low magnetic field measurements by simply in-

creasing the length of the coaxial cable connecting the oscillator to 

23 
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the probe by about 8 feet. Di fficul t:y is encountered, however, for 

magnetic fields less than one thousand gauss. This could be possibly 

corrected by building an oscillator with larger power output or a new 

detection circuit. 

Crystals Used 

25 

Crystals used in this study were grown by Kunkle 1 in a Cuo 2 flux. 

In this procedure two parts Cu2o to one part Sno 2 were placed in a 

platinum crucible and the, mixture heated to temperatures ranging from 

1175°C to 1300°C. Using this growth process Kunkle has grown a large 

number of crystals which are parallelpiped in shape, ranging in size 

from 3 mm x 1 mm x 1 mm to lmm x 0.5 mm x 0.5 mm. The growth axis is 

the c,,axis and thus the end faces of the crystal are [001} planes while 

the other faces are [110} planes. 

Spectrographic analysis (l) gave. an impurity concentration of 

0.002% by weight of CuO and 0.02'7~ srn2 . Since the concentration of 

paramagnetic impurities investigated in this work is much less than 

either of these. (See Table VI)~ it is logical that they did not appear 

in the analysiso 

Furthermore since the silicon impurity would probably be in a +4 

state, it would not appear in the ESR spectra. Copper, however, should 

be in the paramagnetic +2 valence state and should thus give rise to an 

ESR resonance. It is felt at this time that this signal may only be 

observable at liquid heli.um temperatures for low power levels. 

1Analysis by the Bruce Williams Laboratory, Joplin, Missouri. 
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Crystal Structure 

The symme.t:ry of the Sno 2 crystal is equivalent to that of the more 

well known rutile (Ti.0 2). 'The space group is nt: with a. local symmetry 

of n2h at the tin site. The lattice parameters of the unit cell as 

shown in Figure 4 are a = 4.737t c = 3.186R and u = 0.307 with c/a = 

0, 672. 

The substitutional position consists of two magnetically nonequiv-

alent sites which can be transformed into one another by a 90° rotation. 

As a consequence the two sites are magnetically equivalent along the 

[100] and [010] directions. The distances between the surrounding ions 

and the undistorted lattice (after Kikuchi37 ) are given in Figures 5 

and 6. 

Two types of interstitial sites exist in the Sno2 host. The first 

shown in Figure 7 has the larger volume and thus seems to be the more 

likely place for an impurity ion to locate. It is surrounded by a dis-

torted octahedron of oxygens with tetragonal·symmetry with its tetra-

gonal axis lying +13° from the [llO] axis. The total symmetry, however, 

is lowered to c2h by another distorted octahedron of tin atoms of the 

same symmetry but with its tetragonal azis tilted =45° from the 1110] 

axis. F . . ·1 .. f h" " l1 1·1 · our 1.nequ1.va .. ent sites o t 1.s type ex:1st co. apsing to two 

in the [110] and [100] directions. A typical ESR curve for an ion in 

this site will thus have the characteristics of Figure 9. The second 

possible interstitial site is surrounded by a distorted tetrahedron of 

oxygen ions. There are only two nonequivalent sites of this type per 

unit cell and they become magnetically equivalent in the [110] direc-

tion. 
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All of the above sites of each type become magnetically equivalent 

along the [001] direction. 



CHAPTER IV 

RESULTS AND CONCLUSIONS CONCERNING ION STUDIES 

Identification of the Nickel Center 

The identification of the Ni3+ center rests on two diffusion ex-

periments performed on crystals grown by' a vapor transport process at 

'Corning Glass Research. 2 These crystals, which displayed no suspected 

nickel signal before the treatment, gave a very significant resonance 

after treatment, The first diffusion treatment, carried out on sample 

137-K~ consisted of a diffusion of both chromium and nickel into the 

crystaL After pre-diffusion ESR measurements were taken (Figure Sa), 

the sample was placed in a small quartz capsule in the presence of a 

nichrome wire which had been degreased and acid cleaned. The contents 

were then heated in air by the use of a gas-oxygen torch until the 

nichrome partially oxidized to a yellow=green powder. The capsule was 

then placed i.nt.o a quartz and glass system which allowed control of the 

gaseous ambient. Nitrogen was introduced into the system and the con-

. 0 
tents were heated to A:1000 C for a period of one. week. The nitrogen 

ambient was used since it would allow the introduction. of oxygen vacan-

cies into the sample (see Chapter V) and thus increase the mobility of 

the diffusing ions. 

At the conclusion of the heat treatment in nitrogen, oxygen was 

admitted into the system and the sample was again heated for 8 hours 

32 



33 

at ~ooo 0 c for the purpose of oxidizing it back to its original stoi= 

chiometry. Subsequent ESR measurements revealed two distinc,t differ-

ences from the measurements taken before treatment. First, the resist-

ance was much higher as indicated by the observation of the cavity 

resonance during the spectrometer adjustment and operation .. Comparing 

with other samples of similar resistances, it was estimated that the 

resistance increased several orders of magnitude during the treatment. 

S dl h d N.J+ · 1 h . F' 8 ( h' h h db econ y, t e suspecte 1 s1gna s own in 1gure c w 1c .. a een 

seen previously in flux-grown Sno2 crystals) appeared together with an 

increase of the already present Cr3+ signals. 

In preparation for the second diffusion experiment a chip was bro-

ken from sample 137-G and heat-treated in oxygen for two days. Subse-

quent careful ESR measurements showed again an absence of the suspected 

nickel signal. This sample and 137-K were dipped into a methanol-

nickel acetate solution and placed in separate quartz capsules in the 

treatment apparatus. The apparatus was evacuated allowing the methanol 

to evaporate and the contents were heated to decompose the acetate 

36 
leaving a nickel oxide residue on the crystal surface. The previous-

ly described nitrogen treatment was then applied for two weeks followed 

by a two-day similar treatment in oxygen. ESR measurements carried out 

on these samples gave the characteristic results to be expected on the 

basis of the previous experiment on 137-K. The suspected nickel signal 

increased fourfold in 137-K as shown in Figure 8e. The chip from 137-G 

also displayed a very distinct suspected nickel signal together with a 

resistance increase. The resistance increase, however, was not so 

obvious in this case because of the much smaller sample size. 

From these two experiments it was concluded that the ESR signal 
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(o) ( b) 

(c) (d) 

( e) (f) 

:i!"i.gure. 8. Comparison of the Signal due to Ni 3+ ~ (a) Before 
Diffu.:sion, (h) Aft,J.r First Diffusion and {c) 3+ 
After Se.cond. Diffusion, With the Corresponding Fe 
Signals (b), (d) and (e) 
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found in fl,.1x-grown stannic oxide and induced in vapor-grown stannic 

oxide is due to a nickel center. 

Orientation Dependence of the Nickel Spectrum 

The orientation dependence of the observed nickel signal is shown 

in Figure 9. Since the nature of the signal indicates a fourfold sym-

. f h . f" h. " 1 90° " 1 " h metry ex1.sts .. o:r t. e s1.te o t is 1on, on y a 1.nterva is s own 

al.though measurements over a larger angle were taken, As can be seen, 

there are four magnetically inequivalent sites which decrease to two in 

the [110], [lIOJ and [100] directions, From this it can be concluded 

that the nickel probably occupies the distorted octahedral interstitial 

position discussed in the previous chapter. It should be recognized, 

however j that a subsr:..i.tut:ional site distorted in a ve.ry special way 

might also explain the.Se results, The. type of distortion required 

seems highly improbable. 

Using equation 13 for an effective spin S = .k 2. 

W = SH \h2 
O V X 

2 2 2 2 2 2 2 
som ecos ¢ + gy sin 9sin ¢ + gz cos 9 (34) 

the parame.ters g . g·· and g were cal cul.a ted. Since w is known from -x y z 

the microwave frequency~ this was easily done using the values for H 
0 

along the magnetic x, y and z axes shown in Figures 9 and 10. It is 

noted that two of the terms under the square root are zero for each of 

these values al] owing easy solution for the appropriate sepectroscopic 

splitting factor. As one can see from Figures 10 and 11, the orienta-

tion dependence fi.t is extremely good, Thus, the effective spin has 

been taken as S 

g 
:&: 1.96 ' 

~ with the spectroscopic splitting factors given by: 

and g 
z 

6 .84. 
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The valency is easily determined if one considers the data from similar 

systems, The nickel ion which would most plausibly give S =\and such 

38=45 
large g-values is h N.3+ d7 t e i system, The d7 system most widely 

. d . h f C z+. . . 1 investigate is tat o o in various materia s. Here, too, large 

anisotropic g-values are observed, The only other system which might 

give S =\would be the Nil+ d9 system. This system, however, would not 

46 47 
be expected to produce the large anisotropic observed g-values. ' 

Thus it has been chosen to identify the center as a Ni3+ ion in an 

interstitial site. 

From Figure 9 one can see that two of the magnetic axes of the 

Ni 3+ system do not correspond to the [llO J and [110 J axes of the crys,· 

tal, but rather lie t 0,6° from these principal directions, This is 

not surprising since the previously identified Cr 3+ interstitial impur-

ity has been reported to have magnetic axes which point~ 0.5° from the 

[110] and [I.10 J directions . 11 

One can explain this behavior by considering the arrangement of 

nearest neighbor oxygen and tin atoms, The nearest neighbor oxygen 

atoms form a distorted octahedron with the tetragonal axis in the [001} 

plane at an angle of 13° from the [110] axis, On the other side of the 

[llO] axis at an angle of 45° in the same plane lies the tetragonal 

axis of another distorted octahedron formed by the nearest neighbor tin 

ions. The magnetic axis is then expected to lie somewhere between 

h d . . s· h N. 3+ . . . d t ese two 1.rect1.ons. ince t e 1. -oxygen interaction is expecte to 

be the stronger of the two, one expects the magnetic axis to be closer 

to the oxygen tetragonal axis, which is in qualitative agreement with 

the observed results. 

3+ 
In the analogous case of Ni in Ti02 one might expect the magnetic 
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axis to lie even nearer the oxygen tetragonal axis. This is because 

h f . b . 10,37 . d. 1 f super yper ine structure o servations in icate a arger amount o 

covalency in Sno 2 than in Ti02 • Again the expectation is fulfilled 

since the magnetic axis lies at an angle of 5.4° from the [110] direc-

. f h" 38 tion or tis case. 

Crystal Field Effects on Ni 3+ in Stannic Oxide 

The splitting of the d7 ground State has been considered by several 

authors 14 ' 39 for the case of Co2+. Only the most qualitative calcula-

tions will be made in an effort to point out possible interpretations 

f h b d 1 . h N.3+ d7 o t e o serve g-va ues int e 1 system. 

The ground state of the Ni3+ ion of d7 configuration according to 

Hund's rules is a 312F state. Thus for the free ion case a sevenfold 

orbital degeneracy exists together with a fourfold spin degeneracy. If 

we consider--as described in Chapter II--a series of perturbations 

caused by the Sno2 host, the largest will obviously be the reduction of 

symmetry from spherical to octahedral due to the nearest neighbor oxygen 

atoms. Using equation 25 to break the reducible representation D( 3) by 

use of the characters given in Table III into the irreducible represen-

tations of the full octahedral Oh group, one obtains 

D( 3) = f 

4 
(3.5) 

Thus the sevenfold orbital degeneracy breaks into two orbital triplets 

and an orbital singlet. The separations of these manifolds will be ap-

2+ 
proximately the same as those for Co and for this reason the model 

proposed by Low39 for Co2+ in MgO is given in Figure 12. 

It is rather hard to decide a priori which perturbation should be 



TABLE III 

CHARACTER TABLE FOR Oh SYMMETRY GROUP 

Representation E 8C 3 (8) 3C 2 
4 

6C2 6c4 I 

r+ 
1 1 1 1 1 1 1 

r~ 1 1 1 1 1 =l 

r+ 
2 

1 1 1 =l =l l 

r; 1 1 1 =l =l =l 

r+ .., =l 2 0 0 2 3 
,._ 

r; 2 =l 2 0 0 -2 

r+ 
4 

3 0 =l -1 1 3 

r~ 3 0 -1 =l 1 -3 

r+ 
5 

3 0 =l 1 =l 3 

r; 3 0 =l 1 =l =3 

D(3) 7 1 -1 -1 -1 -7 

ss 6 3ah 

1 1 

=l -1 

1 1 

=l =l 

-1 2 

1 -2 

0 =l 

0 1 

0 -1 

0 1 

=l 1 

6ad 

1 

=l 

=l 

1 

0 

0 

-1 

1 

1 

=l 

1 

6s4 

1 

=l 

<= l 
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0 

1 

-1 

-1 
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carried out next, however. One would expect the spin orbit interaction 

to be a few hundred inverse centimeters; nevertheless, the distortions 

due to both the deviation from octahedral symmetry of the surrounding 

oxygen ions, and interactions with the nearest neighbor tin ions could 

easily be that large. For the sake of simplicity, consider only the 

4 -result of spin orbit interaction in cubic symmetry on the r 4 manifold 

4 - 4 -and ignore. interactions with the r 5 and r 2 manifolds since these would 

give only small contributions to the g-value (approximately O. 16) • 

Since the net spin of the N .3+ . 3 h . i system is 2 , t e spin part of the 

wavefunction will transform as the D( 3 / 2) representation. The product 

4 -of the spin and orbital parts of the r 4 manifold will then transform 

4 (3/2) as the direct product r4 X D . The characters of the total repre-

sentation shown in Table IV can be found by equation 30. The results 

are then given in this same table as r:t. Applying equation 25 one ob-

tains the result 

(36) 

4 -Thus the d,egeneracy of twelve present in the r 4 manifold under spin 

orbit perturbation splits into two doublets and two fourfold degenerate 

levels. 
14 

This splitting, as shown by Low , is given in Figure 12. 

S . h . b . . . f h f . 48 N . 3+ . 2 38 - l ince t e spin-or it interaction or t e ree ion i is - cm , 

the separation between the r~, Kramers doublet and the other levels is 

-1 large with respect to the microwave energy (Z O .3 cm ) •. · Thus the spin, 

resonance may be given14 by the effective spin S' =\,and one might 

expect the Hamiltonian of the form of equation 12 to fit the experi-

mental data.· From the comparisons of the orientation data as calculated 

on this basis and as determined experimentally shown in Figures 10 and 



TAl!LE IV 

CHARACTER TABLE FOR THE GROUP Oh DOUl!LE GROUP 

---
3C2 6C~ 3'i, 6ad 

oh E ii BC2 8C3 3c2 
6C4 6C4 6~1 I i ss.6 886 31\, 684 6§4 

6ad 2 

r+ 
1 

r+ 
2 l l l l l -l -l -l l l l 1 l -l -1 -1 

l 3 2 2 -1 01 2 0 0 0 2 2 -1· -l 2 0 0 0 

r+ 
4 3 3 0 0 -l l . l .-1 3 3 0 0 -1 l l -1 

r+ 
5 3 3 0 0 -l -l -1 l 3 3. 0 0 -1 -1 -1 l 

ri l l l l l l 1 · l -1 -1 -l -1 -1 -1 -1 -1 

r; l l l l l -1 -l -l -l -l -l -1 -1 l 

rj 2 i -l -l 2 0 0 0 -2 -2 l l -2 0 0 0 

r;; 3 3 0 0 -l l l -l -3 -3 0 0 l -1 . -l 

r; 3 3 0 0 -1 -l -1 l -3 -3 0 0 l l i · Cl 

r+ 
6 3 3 0 0 -1 -1 .-1 l -3 -3 0 0 l 1 l ,_1 

l 7 2 -2 l -1 0 - 2 2 0 2 -2 l -l 0 - 2 2 0 

r+ 
8 4 -4 -1 l 0 0 0 0 4 -4 -1 l 0 0 0 0 

r6 2 -2 l -1 0 2 > - 2 0 -2 2 -1 l 0 - 2 2· 0 

r; 2 -2· l -1 0 - 2 2 0 -2 2 -1 l 0 2 - 2 0 

rs A -4 -1 1 0 0 0 0 ~ 4. 1 -1 0 0 0 0 

D~/2 4 -4 -l 1 0 0 0 0 +4 -4 -1 +l 0 0 0 ·o 

r-t 12 -12 0 0 0 0 0 0 -12 +12 0 0 0 0 0 0 
.i::,.. 
w 
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11~ one would conclude that although other perturbations may be compa~. 

rable to the spin orbit interaction, the r~ doublet probably stays re­

moved from the other levels by a large energy with respect to the 

incident microwave energy. 

A theoretical calculation of actual magnitudes for g-values is 

much more difficult than just predicting their orientation dependence 

as was done above. 

No theoretical treatment in the l.iturature to date applies directly 

to the problem of c2h symmetry which is pertinent to the case at hand. 

However, calculations for more symmetrical configurations have been 

made. A simple theoretical perturbation calculation by Low carried out 

f C 2+ · · b" . 1 1 . . or a o ion in cu ic cymmetry, assuming on ye ectrostatic inter-

4 -action, gives a g-value of 4.333 for the ground state of the T4 mani-

fold.14 An extension of this calculation to tetragonal symmetry by 

40 Abragam and Pryce gave a curve relating g11 to gi of the form shown 

in Figure 3, If distortions from this symmetry are small, one could 

for comparison simply draw a vertical line at g11 = 6.85 and then gx 

4 

2 

0 4 6 8 10 
911 

. Figure 13. Splitting Factors--Trigonal Symmetry 
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and~ should lie equal distances from the intersection of this line 

and the Abx:a:gam~·Pryc.e curve. As one can see, this is only approximately 

f h N ,3+ d true or t e 1 ata. 

A further extension by Tinkham41 for the case of rhombic symmetry 

where covalency was incorporated into an orbital reduction factor gave 

the relations 

10 8 
gx = (~ - 3 a)+ K (1-2a) 

= (10 +!a+ ! r) + K (l+a+r) gy 3 3 3 (37) 

10 4. 4 
gz = (':j' + 3 a - 3 r) + K (l+a~r). 

Solving these equations usi.ng Ni'3+ experimental g-values, one gets the 

constants K = 1.3, a= 0.5 and r = 0.36. Although the values of a and 

r are quali.t.a tively logical in view of the values a = 0 .45 and r = 0. 55 

2+ 
found for Co in Ti.0 2 , the calculated value of K is obviously in error 

since K = 1 signifies complete ionic character. 

Superhypedine Structut·e of Ni 3+ 

3+ The characte:t ls tic li.ne shapes of the Ni signals are shown in 

Fig1.n:es 14.g,1'7. F't'om these it i.s evident that a prominent superhyper~ 

fine int.eractfon e:dst.s for all. orientations other than H•. parallel to 
0 

the magnetic x-,axis, Although a detailed study of the anisotropy in 

this structure would :require a crystal. doped with many more Ni3+ 

centers, an approximate value of 6 gauss for the superhyperfine split-

ting ma.y be measured from the displayed data. This is very close to 

the values: reported11 for the Cr3+ interstitial ion, and thus the small 

deviation (0.1°) in the directions of the magnetic x and y axes for 

these two ions is understandable. 
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6 Gauu 

Figure 17. Resonance of Ni.3+ for R0 Parallel to the z-axi.s 



3+ 
ESR of Cr in Flux-Grown Sn02 

El · f C 3+. SO ectron spin resonance measurements o r in vapor-grown n 2 

have been reported at K, ~ 10 , and X-band 11 frequencies. Since the 

rather complete analysis of X-band work appeared during the course of 

51 

this study, only a very limited analysis was made of the data obtained 

on flux-grown specimens. The main emphasis was in the identification 

of the center,·the counting of the nui:nber of centers, and the observa-

tion of heat treatment effects on these centers which will be discussed 

1 ater. 

Identification of these ions was easily made after the study by 

11 
Hou; et. al. Assuming a linear frequency conversion, their data taken 

at 9.5 KMc could be directly compared with those of this study which 

were taken at 9.13 KMc. Figures 18-21 show the orientation data which 

were taken in this study and used in the comparison. One can also use 

the line shapes shown in. Figures 22 and 23 to help substantiate the 

identity. 

Additional support for attributing the signals to Cr 3+ came also 

with the first doping of 137-K described previously. In this process, 

when 137-K was qeated in the presence of both chromium and nickel r 

· d ) · · h C 3+ ' 1 b d oxi es , an increase int e r signa s was o serve • 

3+ Detailed study of the Cr ions in flux-grown specimens was hamp-

ered by the small number of chromium centers present in the crystals 

(see Table VI). This prohibited investigation of the superhyperfine 

structure at small modulation fields, and leads one to expect that ob-

served line shapes are slightly distorted. Also, with one exception 

Figure 19, only the t\ allowed transition was observed. Further doping 
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to increase the number of centers by at least an order of magnitude 

seems called for if more work of this type is to be done on this ion. 

On the other hand, particularly sensitive heat treatment depend-

ence studies were made possible because of the small number of ions. 

· These studies showed a very wide range of variation in signal amplitude 

and included the observations of Hou11 as a small ··.portion of the total 

treatment dependence. Further discussion of heat treatment effects 

will be deferred until the next chapter. 

ESR of Fe3+ in Sno2 

Although substitutional Fe3+ in vapor-grown Sn02.has been reported 

· 1 12 d ff d . fl 1 previous y, two unreporte e ects were note in ux-grown materia . 

These consist of a heat treatment effect and the presence of a super-

hyperfine structure. 

The ion identification, as in the case of Ni 3+, was facilitated 

through the use of crystals 137-K and 137-G supplied by Corning Glass. 

Crystals of this type were reported to contain 10-20 ppm iron impurity2 

which compares favorably with the determination of a number of spins 

corresponding to 10 ppm for the suspected Fe3+ impurity center (see 

Table VI). 
11 

A signal observed by Hou in vapor-g~own crystals and 

b d h + 3 · · f F 3+ . - . h . h attri ute tote_ I transition o . e agrees in lines ape wit 

that of the corresponding signal observed in this work, Also, as ob-

12 served by Nakada et al., an orientation dependence of the suspected 

Fe3+ signal which is given in Figures 24 and 25 is very similar to that 

reported for substitutional Fe3+ in Ti02 . 49 

A distinct superhyperfine structure was observed for both the al­

lowed-:!:'~ and the forbidden::~ transitions for certain orientations. 



-en 
en 
:::, 
0 
Ol 
0 

~ -

59 

3 

30 
(degrees) 

45 

Figure 24. Orientation Dependence of Fe3f. ESR Signal in the 
(001} Plane 



en 
en 
:::s 
0 
CJl 
0 

.:s:. 

I 

60 

30 
(/) 

60 
( degrees) 

90 

Figure 25. Orie~tation Dependence of Fe3+ ESR Signal in the 
[llO} Plane 



61 

In the case of the t\ transition, the superhyperfine structure collapsed 

when Ho was in the x-y plane (Figure 26), and became distinct when Ho 

was rotated out of this plane (Figure 27). However, for the ti transi­

tion the structure collapsed when H. was parallel to the z axis (Figure 
0 

29) and emerged again when the magnetic field was rotated away from 

this direction. 

The""!::~ superhyperfine structure shown in Figure 27 is character-

istic of that arising from the presence of two sets of inequivalent 

tins. 

gauss. 

The corresponding hyperfine constants are 5.1 gauss and 6.6 

+ 3 On the other hand, the_ 2 structure shown in Figure 28 is 

characteristic of the presence of one set of equivalent tin ions and 

gives a hyperfine constant of 6,1 gauss. 

An estimate of the number of tin ions in each set can be found by 

considering the percentage of tin nuclei having spin~- On this basis 

11 a theoretical intensity ratio shown in Table V has been given by Hou. 

TABLE V 

THEORETICAL INTENSITY RATIOS 

n/DnI 0 
1 

1 
2 

2 1 0,192 0.0094 

4 1 0.3606 0.0517 

6 1 0.488 0 .113 

8 1 0.599 0.186 

10 1 0.674 0.256 

3 
2 

0.00335 

0.033 

2 

0.00008 

0.0041 

For the:\ transition the number of tin ions in each set are thus prob-

ably 6 and 2 since the ratios of the relative amplitudes are measured 
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Figure 27. 
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Figure 28. ESR Signal of the'"!:~ Transition of Fe3+ for H0 Parallel to the [110] Axis 
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15 Gauss 

Figure 29. ESR Signal of the. "±: i Transition of Fe 3+ for H Parallel 
to the [001] Axis O 
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to be about 0.52 and 0.174 respectively, These eight atoms become more 

equivalent for H parallel to they axis since the intensity ratio is 
0 

0 .58 for the ± ~ signal shown in Figure 28. 

A heat treatment dependence was also observed for this ion and 

will be discussed later. 

ESR of an Unknown Interstitial Ion 

A signal which appeared very weak for flux-grown Sno2 and which 

was rather large in Sno2 crystals grown by Corning Glass had an orien-

tation dependence shown in Figure 30. From this preliminary data one 

can see that it probably comes from an interstitial ion in the distort-

ed octahedral site. One infers this from the four inequivalent sites 

which collapse to two for H parallel to the EllO] and [100] axes. 
0 

As can be seen from Figure 30, the magnetic axis of the center is 

aligned R:I~ 5.5 degrees from the [110] direction. This is considerably 

larger deviation than observed for the Cr 3+ and Ni3+ interstitial ions. 

The most l!ogical explanation of the signal is that it arises from a 

center which interacts much less strongly with the surrounding tin ions. 

This would allow the magnetic axis to take. a direction more nearly 

coincident to the axis of the surrounding oxygen octahedron which is 

t 13° from the [110] direction. Consistent also is the fact that no 

superhyperfine structure was observed as shown in Figure .31. 

No identification of the ion can be made at this time. From the 

large orientation dependence of the resonances, however, one can con-

elude that it is a transition metal ion. One possibly is an inter-

' ' 1 F .3+ ' st1t1a. e ion. This possibility is suggested from the fact that the 

ratio of Fe.3+ substitutional signal in the Corning crystals to that in 
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Figure 31. ESR Signal Due to Unknown Ion for H Parallel 
to the [110] Axis O 
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flux-grown crystals is about the same as the corresponding ratio of the 

unknown signals. One might also expect a Fe3+ interstitial ion to 

exist in analogy with interstitial Cr3+ for charge compensation reasons. 

A possible way to check this hypothesis would be to diffuse iron into a 

flux~grown crystal in the same manner as was used in the present study 

3+ · 3+ 
of Cf and Ni , 

Numbers of Observed Centers 

The approximate number of each of the previously described para-

magnetic centers present in a selected flux-grown sample (6-3) has been 

calculated and listed in Table VI. The assumption was made in these 

calculations that the number of centers is proportional to the area 

unde:r. the microwave absorption curve, Furthermore, the area under the 

absorption curves was taken to be proportional to the amplitude h 0 and 

the square of the halfwidth of the derivative curve, i.e., 

No 
2 

Co h 0 x0 

where No is the number of centers and Co is a constant assumed to be 

the same for all ESR resonance lines observed in the study, Justifi-

cation for this assumption lies in considering the integration of curves 

having Lorentz and Gaussian shapes as shown in Appendix:,::. It will be 

noted that areas under both of these curves--which are the most common 

shapes observed for ESR signals--follow the functional dependence of 

the above equation with the proportionality constants for the two cases 

differing by less than a factor of about five. 

To allow the use of a larger calibrated sample, the further assump-

tion was made that the signal amplitude is proportional to the amplitude 
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of the modulating field and to the gain settings. This should intro-

duce only minor error in the range used. 

TABLE VI 

SPIN CONCENTRATION IN TWO SELECTED SAMPLES 

Total Spins Spin Density 

Sample Ion (X 10 14) (X 10 16 / cm3) 

G-3 Ni3+ L6 2.9 

G-3 Cr3+ (int.) 0.5 0.9 

G-3 
3+ 

Cr (sub.) 0.2 0.4 

G-3 Fe3+ 0.3 0.55 

A-137-K Fe3+ 67 72 

A-137-K Unknown 8,2 8.8 

A=l37-K Ni'3+ 10 10. 7 

The previous equation then can be rewritten as 

l 
No = Co 

h0 x~ 
MG 

Calculated 
(PPM) Ion 

Concentration 

0.4 

0, 11 

0.05 

0,07 

10 

1.4 

where Mis the amplitude of the modulation field and G is the gain of 

the·amplification circuit of the field modulation unit. 

Using the above equation and a calibrated sample of dpph, a value 

is obtained for the system constant Cb. The values shown in Table VI 

were calculated using this constant. 

Numbers of individual centers as calculated in the above manner 

may be cor:rect to no better than a factor of two or three, but this 

degree of uncertainty is not large when variations between individual 

crystals are considered. 



CHAPTER V 

RESULTS AND CONCLUSIONS CONCERNING HEAT TREATMENT EFFECTS 

Preliminary Remarks 

It has been noted previously that flux-grown Sno2 varies in color 

3 
depending on its previous hisotry of heat treatment. Associated with 

50 
the coloration, Eagleton has found an optical absorption at 510 mµ 

for El c-axis. If a paramagnetic impurity were associated with this 

absorption center, one might expect a change in the ESR spectra to 

accompany the color change. With this in mind, a study was initiated 

to determine the nature of heat treatment effects on the ESR spectra. 

The study was essentially divided into four parts. The first was 

merely an extension of the visual observations by Kunkle to determine 

which type of treatments might give the most significant re.sults. The 

second consisted of observing the effect of these heat treatments on 

the various ESR spectra. The third was finding a model to explain the 

observed effect, and the fourth was making microbalance measurements to 

give support to the model, 

Visual Observations 

Observations were made of the color of the crystals after various 

heat treatments. The parameters varied were temperature of treatment, 

time of treatment, ambient gas, and rate of cooling. The general 

71 
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results are as given below: 

(1) 
. 0 

Treatments in air at a temperature range of 400-600C always 

ltd · · k t 1 The same treat.ment at 900°c resu e in a pin crys a . 

followed by a rapid quench to room temperature resulted in a 

clear crystal. This same crystal when treated at 900°C and 

cooled slowly (z 2 hours), again was pink. 

(2) In a nitrogen atmosphere the crystals always cleared after 

treatment at temperatures greater than 400°C. The necessary 

treatment time, however, varied from a few minutes at 900°C 

to a few weeks at lower temperatures near 400°C. 

(3) Reproducibility was very hard to achieve in vacuum heat treat-

ments. Generally, the crystals cleared up at temperatures of 

;::;;:. S00°C, and became pink at temperatures of ::::::: 900°C for a 

pressure in the range of 10-2 - 10-3 torr. A treatment made 

by G. Baum at a pressure less than 10-4 torr at a temperature 

of :::=l000°C resulted in a pink crystal. Quenching rates 

appeared unimportant. 

(4) Oxygen treatment always caused the crystals to become pink 

0 
for temperatures greater than 400 C. The necessary treatment 

times were dependent on temperature in much the same fashion 

as the nitrogen treatments. 

(5) Helium treatments generally left the crystals unchanged at 

0 
temperatures around 500 C and cleared them up at temperatures 

of about 900°C. Some doubt is involved in interpreting these 

results since impurities in the helium could easily be the 

dominant factor in the process. 
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(6) Only one treatment, at 350°C, was carried out in hydrogen. 

The previously pink crystal became clear and a grayish film 

appeared on the surface of the crystal after eighteen hours. 

It was suspected that this might contain excess tin. 

Several qualitative conclusions were drawn from this study. Treat-

ments in oxygen and nitrogen at different temperatures and times seemed 

to offer the greatest promise for a systematic study because of the re-

producibility and the wide range of coloration observed. One might 

infer that results should be standardized by rapidly quenching the 

crystals to room temperature after each treatment. This is suggested 

by the treatments in air where the crystal, if cooled slowly, seemed to 

have the color characteristic of treatments at lower temperatures. 

The above results indicate that the pinking process is not depend-

en t only on the temperature or quenching rate.. The nature of the 

ambient gas is of prime importance. In fact, one might hypothesize 

that the pink color is either directly or indirectly related to surface 

adsorption or bulk absorption of oxygen. 

He.at Treatment Dependence of the ESR Spectra 

A large heat treatment dependence of the ESR spectra has been 

noted for flux-grown Sno2 crystals. This heat treatment dependence in-

1 d ha d b H 11. 11 f h 1 . . cu est t note y ou as a sma range o t e tota variations 

I 

noted in the present study. Quantitative values, however, have not 

been obtained for this aspect of the work and only a qualitative de-

scription of the variations will be given. 

The data upon which this description is based consist of the ESR 

spectra of flux=grown crystals in the highly reduced, highly oxidized, 
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and as-grown conditions. The oxidized condition was obtained by heat 

0 
treating in an oxygen atmosphere at 900 C for twenty hours and then 

quenching to room temperature. The reduced condition was obtained with 

the same treatment using nitrogen instead of oxygen. It should be noted 

that the latter treatment resulted in such a low resistance that the 

spectrometer bridge could not be balanced. Thus the crystal was slight-

ly reoxidized to a point where balance could be regained. Several 

spectra were also run for crystal conditions between these extremes 

and have the disadvantage that the treatment times were probably not 

long enough to insure a uniform oxidation condition throughout the 

crystal. This was suggested by subsequent weight loss measurements as 

shown in Figure 32 which indicated a time of about eighteen hours was 

needed to reach equilibrium at 900°c. Times for the intermediate con-

dition treatments were usually a few minutes to a few hours. 

The qualitative heat treatment dependence of the four identified 

signals is as given below: 

1 1) ""h C 3+ · . . 1 . . 1 h . 1 . d f , J1 e .r interstit1.a 1.on signa as a maximum amp itu e or 

the reduced condition, becomes quite small in the as-grown condition, 

and finally disappears in the oxidized condition. 

(2) 
3+ 

The Cr substitutional ion signal is zero in the reduced 

concHtion, reaches a maximum when reduced slightly from the as-grown 

condition, and decreases to approximately three-fourths its maximum 

value for the oxidized condition. 

(3) 3+ The Fe ion gives rise to a signal of maximum amplitude when 

the crystal is in the oxidized state. This signal then becomes very 

small for the as-grown crystal and goes to zero for the reduced state. 

(4) ~h ESR . 1 f N. 3+ . f h d d JL e signa o i remains constant except or t ere uce 
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state where it is at about one-half amplitude. Some doubt exists as to 

whether this treatment effect is real since other losses associated 

with the low resistance tend to reduce the signal amplitude. However, 

it is felt at this time that the effect is real since such a large dif-

ference is hard to account for in the above manner. 

3+ It is noted here that the dependence of the Cr signals reported 

b H S · d T k ll . . . h h d d . y, au, ummitt an uc er is consistent wit t e epen ence seen in 

this study. The two points which they observed would correspond to a 

state slightly oxidized from the as-grown condition and reduced some-

what from the as-grown condition. The reason for the smaller range of 

signal change can be explained by the larger amounts of chromium and 

iron present in the crystals they investigated. 

Proposed Model 

The model previously proposed in the literature 1 to explain the 

h d d f C 3+ · · 1 · f d b . d eat treatment epen ence o r ion signa sis oun to e ina equate 

to explain the data of this study. Proposing that chromium substitu-

tional ions jump to an interstitial positioo. in the presence of a hydro-

gen ion cannot explain the changes observed for heat treatment in nitro-

gen. Furthermore no other signals are noted which could arise from 

iron and nickel ions changing site in the crystal. 

A mechanism which will qualitatively explain both previously re-

ported data and those of this study can be based upon the assumption 

that oxygen migrates in and out of the crystal during the treatment 

process causing an actual change in its stoichiometry. More specifi-

cally, oxygen leaves the crystal during the treatment in nitrogen or 

any other reducing atmosphere, releasing two electrons for each atom 
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involved, This raises the Fermi level and causes a change in the va= 

lence state of any impurity -which has a ground state energy lying 

in this region o For example, if the Fermi level lies substantially 

below the Cr 3+ interstitial ground state most of the interstitial chrom-

· · 11 'b C 4+ S" C 4+ " d2' . . b :tum w1. . . e r o 1.nce r 1.s a system conta1.n1.ng an even num er 

of electrons~ one does not. expect to observe a large ESR signal accord­

ing to Krame.rs I theorm. However, as the Fermi level rises, more Cr 3+ 

ions are present in the interstitial position and a signal is seen. 

To help substantiate the proposed model a series of weight measure-

men ts were made in an effort to detect the loss of energy by the assoc-

iated loss of weight:, In these measurements a Mettler MS microbalance 

with a sensitivity of+ 2 micrograms was used. The absolute accuracy 

is much less than this, however, since the samples were transferred in 

air from the treatment chamber to the balance pan, all.owing the possi-

bility that dust. particles in the air might settle on the sample. The 

reliability of the. data was thus inferred from the reproducibility of 

the data rather than from an .a E_Ei~~!}. calculationo 

The samples used in this experiment consisted of 1., 2 grams of 

crystals whose. indi:vi.dual si.ze was on the order of lmm x lmm x lmmo 

These crystals were contai.ned in a small quartz capsule and weighings 

were made of bot:h the capsule and the crystals. 'The t.re.atments were 

made in a Vycor tu.be connected to a small chamber allowing e·vacuation 

and the replacement of air with cncyge.n and nitrogen. 

The quartrt capsule was first weighed by it.self after treatments in 

oxygen and ni.trogen at 7 so 0 c for several hours. This resulted in no 

significant weight loss, A series of similar measurements with the 

samples i.n the capsule at this same temperature resulted in a reversible 
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weight change 9 with the weight gain in oxygen varying with the time of 

treatment. The maximum weight loss noted in a 750°C treatment was -70 

micrograms. 

A subsequent series of weight gains at 900°c in an oxygen atmos-

phere is shown in Figure 32 as a function of treatment time. The weight 

loss in nitrogen at this same temperature is shown in Figure 33. From 

this, one can see that reversible weight changes of about 74 micrograms 

take place. which could correspond to losses and gains of oxygen. 

The somewhat linear dependence of the weight loss v.s. logarithm of 

time shown in the above figures is not what one would expect if the 

oxygen migration follows ordinary diffusion kinetics. To explore the 

possibility that rate limitation from this process is dependent on sur-

face area, a series of si.mi.lar we.ight. measurements were made using 

51 
sintered Sno2 samples • 'rhese measurements gave inconclusive results. 

One of the problems involved here i.s that the effect of the much larger 

area and. smaller c.r:ystalites of the sintered specimens may be to reduce 

the equilibrium ti.mes for treatment to something comparable with the 

quenching times. 

On the basis of the proposed model and the heat treatment depend-

ence of the ESR spectra a schemati.c diagram is given below for ordering 

the ion ground state ene:i:-gies in relation to the conduction band. 

Although no actual vah.:tes can be assigned to these levels from this 

study alone, one can guess at: some tentati.ve values using other data. 

Si.nc.e the Cr.,.3+ substitutietnal signal vanishes only for the very highly 

2+ 
reduced state, the C:r s·ubsti.tu.t.ional ground state must be very close 

to the cond-1.1.cti.on band. F:r:om the large amounts of iron in the vapor-

grown crystals one might. suspect it to be the dominant factor in the 
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conductivity of the Corning Glass specimens, If this is the case, 

2+ the Fe gound state may be tentatively assigned an act:ti.vation energy 

7 of 0,18 eV. 'rh· C 3+ . . . I d b 1 d h .. e r 1nte:rst1t1a. groun state can e pace near t e 

Fe2+ ground state. because of the inve1-:·se behavior of Cr3+ and Fe3+ 

signals in the same treatment :range. Since Ni 3+ and subs ti tutiona:1 

Cr 3+ signals decrease only for the very highly oxidized condition, 

their ground states have been placed lower in the forbidden gap, prob-

ably 1 eV or more below the conduction band. It should be emphasized 

again that the above. diagram is presented to order the impurity ion 

states nit.her than to indicate possible activation energy values. Its 

value will lie in aiding future interpretation of experimental data ob= 

tained. from electrical conductivity and photoelectronic analysis meas~ 

urements. 



CHAPTER VI 

SUMMARY 

In the course of this study the four most prominent ESR signals 

present in flu:&:~grown Sno2 single crystals have been tentatively identi­

fied and the appra:g;imate number of centers counted. The analysis has 

been carried to the followi.ng extent for each of these: 

(1) Orientation data has been taken for Ni 3+, previously un-

reported in Sno2 , and has been. interpreted on tpe basis of 

S = k g = 1.96, g = 5.10, and g = 6.84. A superhyperfine 
2, ·x y z 

structure of appt·oximately 6 gauss has also been. observed al-

though detailed study awaits more heavily doped samples. A 

limited theoretical discussion of the g-values in terms of a 

distorted octahedral environment has also been made. 

(2) Preliminary data has been taken for both the allowed -.!:: ~ and 

3+ forbidden "t 3/2 Fe transitions. Since spin Hamiltonian 

parameters have been published previously, 12 no detailed 

study was made of these values. A superhyperfine structure, 

unreported in the above publication, was observed and re-

ceived limited analysis. More detailed analysis of this 

signal is continuing. 

(3) 
3+ The orientation dependence of Cr interstitial and substitu-

tional ions has been investigated. Since these resonances 

have been analyzed more extensively in the literature, the 
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main emphasis was identification of the ions and comparison 

with published results. 
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A heat treatment dependence. was noted for all four resonances and 

studied. A model has been proposed to explain this dependence as well 

as the more limited dependence. described previously for the two Cr 3+ 

ions. 11 Further support for this model has been obtained through 

weight measurements. On the basis of this model a qualitative energy 

level scheme has been proposed for ordering the ground state energies 

in relation to the conduction band. 



CHAPTER VII 

SUGGESTIONS FOR FURTHER STUDY 

It is suggested that th~re be an extension of the study of the 

Nl..3+ . 1.on. This would include three measurements. First, measurements 

should be made at liquid helium temperature, since there is a good 

chance the gdvalues measured in the present study contain contributions 

from the lower excited states . A crystal could be doped with nickel 

. h d . h . N· 61 enr1.c e 1.n t e isotope 1. . This would allow a measurement of the 

hyperfine structure for this isotope. If a crystal could be doped with 

about an order of magnitude more nickel than the crystals used in the 

present study, a more detailed investigation of the observed superhyper-

fine structure would also be possible. 

In view of the very limited discussion of Fe 3+ published to date, 

it would seem that a more complete analysis would be in order. This 

would include a compiiter analysis of the appropriate S = 5/2 spin 

Hamiltonian to determine the parameters to a greater precision th.an 

that already published. An experimental and theoretical analysis cef 

the superhyperfine structure would then be in order, in view of the 

rather strange behavior noted in the discussion (Chapter V). It should 

be mentioned here that orientation data--particularly at low fields--

should be retaken in future study since the nuclear magnetic resonance 

probe operated unsatis:Eactorily at the low frequencies required. 

A quantitative study of the heat treatment effects seems inviting 
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at this time, Since systematic data for establishing a model has been 

taken at only one temperature, it would seem that a series of micro­

balance measurements at different temperatures would now be in order. 

Furthermore, similar measurements at different ratios of nitrogen to 

oxygen should be compared with measurements in vacuum to explain why 

heating in nitrogen seems to be more effective in reducing the samples 

than heating in vacuum. The linear relationship of weight change to 

logarithm of time also bears closer theoretical and experimental inves­

tigation to provide further insight into the specific mechanisms in= 

valved in the heat treatment process. 

The. model proposed in this work suggests an interesting new way of 

using ESR techniques in evaluating impurity ground state energies with 

respect to the Sno2 conduction band. This would be accomplished utiliz­

ing closely knit ESR and electrical conductivity measurements. 

The procedure would be as follows: The crystal will be subjected 

to a series of heat treatments and an amplitude analysis will be made 

of an identified ESR signal to indicate the condition under which the 

Fermi level is lying at the ion ground state energy. Conductivity data 

as a function of temperature at room temperature and below will then be 

obtained to determine an activation energy equal to the energy differ­

ence between the ion ground state and the bottom of the conduction band. 

In this manner it seems at this time theoretically possible to determine 

activation energies for all of the heat treatment dependent signals 

present in the flux-grown crystals, together with any other ions with 

which Sno2 crystals could be doped to give heat treatment dependent 

signalso 

In connection with the Ni:3+ signal, it might also be informative 
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1 h f C 2+ "f · · . h SO h to ana yze t e spectra o o i it can exist int e n 2 ost. Since 

it has the same electronic configuration as Ni3+ the same form of spin 

Hamiltonian. will be imrolved with the main difference arising from the 

charge. However, it probably would not be observed except at liquid 

helium temperatures. One would expect the Co2+ species to be found in 

a reduced state of the crystal, if it exists at all. 

The ion which one would really expect to be present in the flux-

1 . h C 2+ . grown crysta sis t e u ion. Because of this it was originally felt 

that it was a likely origin of at least one of the observed signals. 

However, after reflection upon resonances of this ion in other: mater= 

ials, it now seems apparent that this was highly unlikely considering 

the conditions under which the experimental data were obtained. The 

Cu2+ ion is usually observed only at liquid helium temperatures, and 

even then only at low microwave powers because of its characteristic 

long relaxation time. If a resonance due to this ion could be found, 

however, it would offer an extremely good opportunity for both experi-

mental and theoretical investigation because of its simple electronic 

d9 configuration. 

A long range project which should be very worthwhile is a syste~ 

ma tic study of rare earth ions in Sno2 • In ad_dition to the basic 

knowledge to be gained from such an investigation, the possibility of 

a laser or maser application seems quite good. The maser application, 

however, might be prohibited by the large superhyperfine structure to 

be expected. 
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APPENDIX 

Integration of the Gaussian Curve 

Consider a Gaussian curve of the form shown at the right and of 

ana lyti ca 1 form, 

f ( x) 
2 2 

( =a2x ) , H exp (38) ~~~ 
~ i"-i 

Figure 35. Gaussian Curve 

Taking the derivative with respect to x gives an analytical e:x:pressionj 

2 2 
2... '~) -a xH:exp \ 2 (39) 

Figure 36. Derivative Curve 

and a graphical form shown at the right.. The distance 2x is now the 
0 

half width of the line. 

Now taking the secm;id derivative with respect to x one obtains 

2 
cl f 
-2 
ax 

2 2 .. 2 2 
2 ( =a x ) 4 2 ( =a x ) -a U exp 2 + a x H exp 2 (40) 
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Setting~= 0 one has 

C)'.&'. 

2 2 2 2 
2. ( -a x. ) 4 2 ( ~a x ) -a H e:&:p 2 +ax H exp 2 = 0 

which reduces to 

2 
x 

1 
=2 

a 

90 

(41) 

2£ 
Since :i\, shown in Fi.gure 36 is the point where O 2 = 0, one now 

oX 
has x in terms of a, or 

0 

Substituting equation 42 into equation 39 one obtains 

(*)_ 
:ir.-x 

0 

= ~ 1 
x 

0 

H exp (-\). 

(42) 

(43) 

However· ( ~;) = ··h , which after solving for H in equation 43 gives, 
0 

x=x 
0 

H = h x exp(~). 
0 0 

Substituting equations 44 and 42 into equation 38 yields 

2 
f(x) = + h x exp (\:) exp 

0 0 

-x <2) . 
2.x 

0 

Integrating this we then have the area under Figure 35. 

co co 2 
A = J f(x) dx:o:-hx exp (\) s exp ex) 

0 0 
2x2 -oo -oo 

0 

A 
e.xp(\) TT 

h 
2 

x 
V2 0 0 

(44). 

(45) 

(46) 
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Equation 46 thus gives the area under the Gaussian in terms of param-

eters measu:red from its derivative. 

Integration of the Lorentzian Curve 

Consider a curve of Lorentzian form given' by 

A 
f(x) = -2--2 

x + a 

Differentiating with respect to x, one obtains 

(47) 

(48) 

Again taking the derivative of equation 48 with respect to x and set-

ting the result equal to zero gives, 

2f 0 . 
2 ax 

~ 0 (:i+a2) 2 2A + (2Ax) 2(2x) (x2+a2) = O 

ci + a 2) 4 

or since the value of x when equation 48 is maximum value., h is (-x ), 
0 0 

2 
:&: 

0 

2 
a 
x 

0 

Substitution of equation 49 into equation48 then gives, 

or 

of 
ax 

x=x 
0 

= h 
0 

3 
A = 8x h 

0 0 

2Ax A 
3 
8x 

0 

(49) 

(50) 

Substitution equation 49 and 50 into equation 47 and integrating to 

find the total area under the curve, 

r dx --2 2 
-oo x + 3x 

0 

Area (51) 
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'Ihus the are.a of a Lorentzian curve in terms of parameters of the 

deriva t:1:ve cm:ve is given by, 

Ar:ea 
2 = Cx h 
0 0 

(52) 
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