A COMPARISON OF TWO METHODS OF TEACHING MULTIPLICATION: REPEATED-ADDITION AND RATIO-TO-0NE

by
NAUNDA TIETZ
Bachelor of Science Wi.sconsin State University Eau Claire, Wisconsin 1952
Master of Art University of Minnesota Minnoapolis, Minnesota 1958

Submitted to the faculty of the Graduate College of the Okiahona State Uriversity
in partial fuifillment of the requirements for the degree of DOCJOR OF EDUCATION

May, 1968

A COMPARISON OF TWO METHODS OF TEACHING MULTIPLICATION: REPEATED-ADDITION

AND RATIO~TO-ONE

Thesis Approved:

Educators must make decisions as to what instructional procodures are most effective for the teaching of multiplication to elenentary school children. Making these decisions would be facilitated by knowledee of instruotional procedures that have been validated by researcho Because of the reoent changes in the arythm metic curriculum of the elementaxy school this knowledge of offective Instruotionel prooedures is Inmited.

Instructionsil procedure was the ablofect of this study. The relationship between selectod approechess and pupil acquisition. retention, and understanding of maltiplication, as measured by mean scores on the postutest", was studied.

I appreciated the encouragement and assistance given by my thesis advisers, Dusp Vornen Troxel and Idella Lomann, and other members of my advisory comittee; Drs. Gerald Gofis, W. Wade Marsden, and Kenneth Sandvold.

Permission to conduct the research in the River Falls Public School and the New Richmond Public School made the study possible. I thank Mr., Iawrence Dawson and Mr. Donald Mayer for this permission.

I thank my sisters, Winifred and Comelia, for assisting with the typing.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
The Froblem 1
Review of the Literature 3
Theoretical Background 11
Delimitations of the Study 17
Definition of Terms 18
Specific Hypotheses 19
II. PROCEDURE 21
Research Design 21
Instructional Material 22
Measuring Instrument 29
Selection of Subjects 30
Treatment of Data 32
III. RESULTS 34
Introduction 34
Test Reliability and Validity 34
Testing the Fypotheses 35
Comparisons Involving Total Group 35
Establishing Levels 38
Comparisons Involving High Levels 40
Comparisons Involving Middle Levels 42
Comparisons Irrolving Low Levels 45
Comparisons Invelving Paxts of the Test 48
Comparisons of Drawings for Item Forty-Three 59
Compewisoas Among Perts of the Test 61
Retention Test Results 66
Surnmary 69
IV. IMPLICATIONS 71
Introduction 71
Conclusions 72
Theoretical Implications 79
Implications for Future Research 81
Chapter Page
A SELECTED BIBLIOGRAPHY 83
APPENDIXES 87
Appendix A 87
Appendix B 90
Appendix C 137
Appendix D. 194

LIST OF TABLES

Table Page
I. Total Group Mean Scores and t-Ratio for all
Items on the Post-Test 36
II. Total Group Mean Scores and t-Ratio for Items
Measuring Mastery of the Multiplication Facts: Items 1-24 37
III. Total Group Mean Scores and t-Ratio for Items
Measuring Understanding of Mathematical Properties: Item 25-47 38
IV. Summary of Data to Determine Achievement Levels 39
V. High Group Mean Scores and t-Ratio for the Total Test 40
VI. High Group Mean Scores and t-Ratio for Mastery
of Multiplication Facts: Items 1-24 41
VII. High Group Mean Scores and t-Ratio for Understanding of Mathematical Properties: Items 25-47 42
VIII. Middle Group Mean Scores and t-Ratio for the Total Test 43
IX. Middle Group Mean Soores and t-Ratio for Mastery of Multiplication Facts: Items 1-24 44
X. Middle Group Mean Scores and t-Ratio for Understanding of Mathematical Properties: Items 25-47 45
XI. Low Group Mean Scores and t-Ratio for the Totel Test 46
XII. Low Group Mean Scores and t-Ratio for Mastery of the Multiplication Facts: Items 1-24 47
XIII. Low Group Mean Scores and t-Ratio for Understanding of Mathematical Properties: Items 25-47 48
XIV. Summary Table for Low Group of Analysis of Variance of Means for Commutative Property Items 49
XV. Summary Table for Middle Group of Analysis of Variance of Means for Commutative Property 50
XVI. Summary Table for High Group of Analysis of Variance of Means for Commutative Property 50
XVII. Summary Table for Low Group of Analysis of Variance of Means for Associative Property 51
XVIII. Summary Table for Middle Group of Analysis of Variance of Means for Associative Property 52
XIX. Summary Table for High Group of Analysis of Variance of Means for Associative Property 53
XX. Summary Table for Low Group of Analysis of Variance of Means for Distributive Property 53
XXI. Summary Table for Middle Group of Analysis of Variance of Means for Distributive Property 54
XXII. Summary Table for High Group of Analysis of Variance of Means for Distributive Property 55
XXIII. Summary Table for Low Group of Analysis of Variance of Means tor Cilosure Property 55
XXIV. Summary Table for Middle Group of Analysis of Variance of Means for Closure Property 56
XXV. Summary Table for High Group of Analysis of Variance of Means for Closure Property 57
XXVI. Summary Table for Low Group of Analysis of Variance of Means for the Multiplicative Identity 58
XXVII. Summary Table for Middle Group of Analysis of Variance of Means for the Multiplicative Identity 58
XXVIII. Summary Table for High Group of Analysis of Variance of Mearis for the MuItiplicative Identity 59
XXIX. Analysis of Drawings for Item 43 of the Post-Test 60
XXX. Proportion of Correct Responses for Mastery of Multiplication Facts: Items 1-18 62
XXXI. Proportion of Correct Responses for Commutative Property Items 63
Table Page
XXXII. Proportion of Correct Responses for the Distributive Property Items 63
XXXIII. Proportion of Correct Responses for the Associative Property Items. 64
XXXIV. Proportion of Correct Responses for the Closure Property Items. 64
XXXV. Proportion of Correct Responses for the Multiplicative Identi.ty Items. 65
XXXVI. Mean Level of Difficulty for the Various Aspects of the Post-Test 65
XXXVII. Mean Level of Difficulty for High and Low Groups for the Various Aspects of the Post-Test 66
XXXVIII. Total Group Mean Scores and t-Ratio for All Items for the Retention Test.......... 68
XXXIX. Total Group Mean Scores and t-Ratio for Items Measuring Mastery of the Multiplication Facts for the Retention Test. 68XL。 Total Group Mean Scores and t-Ratio for ItemsMeasuring Understanding of the MathematicalProperties for the Retention Test69

CHAPTER I

INTRODUCTION

The Froblem

From the time the Comittee of Seven recommended optimum grade placement of mathematical topics until a decade ago the content of the arithmetic curriculum has remained relatively constant even though its purposes and objectives have changed from time to time. However, during the last ten years many aspects of the arithmetic curriculum have been revised.

Recent innovations in the method of teaching basic multiplication facts reflect changes in the arithmetic curriculum. These methods emphasize understanding of multiplication as a concept prior to memorization of the facts and operations. Multiplication has been cefined in the elementary school as a special kind of counting; that Is, counting by equal sized groups. Instructional procedures besed unon this definition of multiplication have been used to develop an urerstanding of mathematical principles and relationships that apply to multiplication.

Mthough any multiplication problem with whole numbers can be solved by either adding or counting multiplying by a proper fraction does not result in a product larger than the multiplicand. Neither doce multiplying by one result in a product larger than the multiplicand. Therefore, placing emphasis upon the rationalization that
multiplication is repeated addition does not develop understanding of all aspects of the multiplication concept. Such an emphasis fails to develop the idea that multiplication is an extension of Cartesian cross-product of sets. The cross-product is thought of as the new set consisting of ordered pairs. The new set being generated by pairing each member of the first set with each member of the second set. Multiplication may also imply a ratio-to-one idea. This second meaning merits attention if understanding of the multiplication concept is to be fully achieved. On page 62 Wren (52) referred to this second meaning in his definition of multiplication, "... is the process of finding a third number relating to one of two given numbers in the same ratio as the second is related to one."

Although this second idea has been neglected during the initial study of multiplication, children have been requested to solve problems that involve this idea. There has been little conclusive evidence as to the means and advisability of using instructional material based upon the ratio-to-one idea.

Thus, this research was designed to compare two introductory approaches to the teaching of multiplication: one based on the repeated addition idea, the other based on the ratio-to-one idea. Two questions were considered in the study. The first, can understanding of basic mathematical concepts such as commutativity, associativity, distributivity, closure, and multiplicative identity be developed; and second, can mastery of the basic facts be achieved equally well by utilizing the ratio-to-one idea as by the more commonly used repeated addition idea?

Review of the Literature

The arithmetic curriculum in the elementary school is vastly different today from what it was even a decade ago. The major change has been in the content of the arithmetic program. More mathematical content has been introduced. Emphasis has been placed on the study of mathematical structure. The change in content has been accompanied by changes in recommended instructional procedures.

Three questions need to be answered before the significance of this study can be seen in its proper setting. First of all, what particular aspects of multiplication are being emphasized in the "new" curriculum? Second, what instructional procedures have been introduced to develop understanding of the multiplication concept? And third, what studies have been conducted to compare instructional procedures used to introduce the multiplication process?

What particular aspects of multiplication are being emphasized? On page 191 Swenson (42) stated that five idea are contained in the concept of multiplication. These concepts are listed as: (1) multiplication is a special form of addition, (2) multiplication is based on a special form of counting, (3) multiplication is a ratio-to-one idea, (4) multiplication is a rectangular-array idea, and (5) a statement of multiplication is a statement of equality. Although five ideas have been given emphasis in the arithmetic curriculum of the elementary school has been placed on developing the first, second, and fourth ideas. Neglect of the ratio-to-one idea and the equality idea has led to confusion on the part of the student when understanding of a problem required the use of these ideas.

Dienes (12) stated on page 183 that pupils were confused as to the basic meaning of multiplication because it was generally ignored in the teaching of the multiplication concept. He continued by stating that this confusion was not apparent until an attempt to teach mathematical properties was made. Dienes defined multiplication in temms of sets.

On page 127 Ward (48) defined multiplication as the operation of finding the product of two numbers. He also defined the product of two numbers in terms of sets.

If A and B are sets and if $n(A)=a$, and $n(B)=b$, then the product of a and b is the number of the Cartesian product of A and B 。

$$
a x b=n(A X B)
$$

According to Ward certain properties of the operation of multiplication follow directly from its definition. These properties are:
(1) the set of numbers is closed under the operation of multiplication, (2) multiplication is an associative operation, (3) multiplication is a commbative operation, (4) multiplication has the cancellation property, and (5) the identity element for multiplication is one Iater, Ward noted that the distributive property of multiplication with respect to addition allows either fector to be renamed as the sum of two numbers, and the other factor distributed over these adends.

From the preceding definition of multiplication, it is apparent that the understanding of the multiplicetion concept would necessitate the study of mathematical properties related to multiplication. The writer s survey of prominent arithmetic series (7,17,47) revealed that mathematics 1 siructure is being included in the newer editions. The survey also revaded that the ratiomtome idea is infrequently
taught.
The second question to be answered was in regard to instructional procedures that have been introduced to develop understanding of the multiplication concept. The Greater Cleveland Mathematics Program (27), often referred to as SRA, defined multiplication as an operation on sets to find a cardinal number of a set formed from a number of equivalent disjoint sets. However, mathematical properties that applied to multiplication were taught by means of an array that emphasized repeated addition. On page 119 a departure was made from the array approach to demonstrate the following problem:

Mrs. Murray bought two books about space travel. Last week both of these books were read by five children, Tom, Dick, Harry, Betty, and Sue. How many times were the books read?

Teachers were requested to draw a given illustration on the board. The writer noted that even SRA did not suggest that teachers iilustrate the idea of a Cartesian cross-product.

Buswell's (7) introductory approach parallelled those previously cited. On page 84 muitiplication was defined as a special case of addition and it was stated that multiplication may be employed instead of addition under special conditions, namely, when the group of numbers to be combined in finding the total are equal in size. However, the following excerpt from page 159 of Buswell's fourth grade text indicated that Buswell did not recommend the exclusive use of the array to illustrate the multiplication concept.

With five Indians in each canoe, find how many Indians Jane will put in five canoes. Hint: Cover all but five canoes. Count by fives as you touch the canoes. Five 5's " \qquad -

From the preceding information and the survey of prominent arith-
metic series, the writer concluded that the authors of arithmetic texts Sor the elementary school have rejected, at least for the present, the introduction of multiplication by means of rate pairs and graphs in the first quadrant of a Cartesian plane.

These statements are not to imply that the use of an array is not a grood instructional procedure. However, the array must bo modified considerably when used in the study of the ratio-to-one idea and the miltiplication of fractions. It appeared that the coordinate system, the whsical referent for the ratio-to-one approach might be applicable to the study of sractions.

Research has been done using either instructional procedures sugfested by authors of arithmetic books for the elementary school or manipulative devices to teach multiplication. Such research related to this study was reviewed.

Lucow (49) examined the diference in achievement of lianitoba children in the third grade. One group used the Cuisenaire rods and the other used the regular Manitoba curriculum during the introductory teaching of multiplication. The Cuisenaire rods were judged to be effective; however, they did not appear to be superior to other techrizque.

Mastian (29) compared the effectiveness in developing mathematical reasoning, computational efficiency, understanding of structure, and attitudes toward mathematics on the part of fourth grade students. The experinental group used the School Mathematics Study Group, of ten referred to as SMSC, text, Nathematics for Elementery School - Crade 4. The control group used a regular text. Mastian found that the experimental group did slightly better on the measurement of mathematical
comprehension and reasoning. There was a significant difference favoring the experimental group in understanding of structure. Mastian concluded that fourth grade pupils of all ability levels can understand principles and properties of mathematics.

Banghart (49) compared achievement of children who used a programmed fourth grade text, including some contemporery content, with pupils who used a conventional text. Banghart concluded that the difference in achievement was significantly in favor of the programed text group for comprehension and total achievement. However, there was no significant difference between the groups for problem-solving.

All of the research in regard to how children acquire mathematical understanding is not in agreement. Suppes (40) stated that his gijn was to contribute to the development of a scientific theory of concept formation. This aim stemmed from two concerms as opposed to perfection of rote learning by the makers of the revised mathematical curriculum. According to Suppes, this distinction is banal because the advocates of the new curriculum do not indicate what is meant by developing understanding, do not identify overt behavior indicating understanding, and do not have measures of that overt behavior.

Suppes (40) concluded from his experiments that: (1) incidental learning does not appear to be effective; (2) the formation of simple mathematical concepts by young children is approximately an all-ornone process; (3) learming is more efficient if the error is corrected in the presence of the stimulus; and (4) contiguity of response, stimulus, and reinforcement enhance learming.

It is apparent from the preceding information that a variety of
instructional procedures have been introduced into the arithmetic curriculum. It is equally as evident that the problem of what instructional procedures are most effective has not been studied to any extent. Consequentily, textbook writers do not agree as to the most effective instructional procedures.

The third question wes in regard to studies that have been conducted to compare instructional procedures used to introduce the multiplication concept. During the past five years two doctoral candidates have directed their studies toward investigating the effectiveness of instructional procedures used to teach introductory multiplication.

Gray (24) did a study to determine how a method of teaching introductory muitiplication that stressed development of an understanding of the distributive property would relate to pupil growth as measured in terms of arithmetic achievement, transfer of knowledge, retention, and progress toward maturity of understanding the multiplication wancept. Gray defined the distributive property as an element of the strocture of mathematics.

Gray conducted his research at the third grade level. Two sets of experimental lessons were devised. The experimental lessons provided for the teaching of introductory multiplication in terms of understanding the distributive property. Only the combinations involving 2, 3, and 4 were used. Data were analyzed for conclusions relative to the merits of teaching for understanding. Although there appeared to be some difference favoring the experimental group in regard to arithmetic achievement. it was not significant. Gray did find a significant differonce favoring the experimental group in the
retention and transfer test. In addition, resuits from the interview test indicated that the experimental group was superior in various aspects. These results were: (1) the experimental group differed significanty from the control group on test itens requiring application of untaught procedures. (2) the experimentel group differed significantly from the control group on the use of the distributive property, and (3) subjects giving distributive property responses were generally superier in intelligence quotient and arithmetic reasoning.

Gray concluded that: (1) a progrom of arithmetic instruction that introduced multiplication by a method stressing understanding of the distributive property produced results superior to the current method: (2) knowledge of the distributive property appeared to enable children to proceed independently in finding products; (3) children appeared not to be able to develop an understanding of the distributive property unless it is specifically taught; and (4) in as far as the distributive property is an element of the structure of mathematics. the findings tond to spport the assumption thet teaching for an whorstanding of sixucture can provide superior results in terms of pupil growth.

Schely (38) was concerned with two aspects of the initial teaching of multiplication of whole mubers to third grade papils. These aspects were: (1) the use of illustretions, particularly arrays, to represent multiplication, and (2) pupil learning of the distributive property of multiplication orer addition.

Schell used two instructional methods. One was referred to as the Variety approach, end the other as the Armay approach. Data were analyzed for conclusions relative to the merits of using arrays
exclusively when illustrating multiplication at the introductory stage. Although Schell found that there was no significant difference between the two groups when all items of the final test were compared, he did fiad that there was a significant difference between the groups in favor of the Array group as to the general understanding of multiplication as measured by specific items on the test.

Two conclusions might be drawn from Schell's study that are pertinent to this study". First, use of an array exclusively to 2Ilmstrate multiplications seemingly has several limitations. One of these limitations was that subjects who had only the array with which to represent multiplication had more difficulty in discriminating correctly botween addition and/or subtraction problems and multiplication problems than did subjects who had been taught to use a variety of diluatretions. Secondly, findings in Schell.'s study seemed to irdingete that puplilis may rotely manipulate illustrations as well as rotely manipulate numbers. There was no assurance that any better merderstanding oecured when an array was used. And finally, there appeared to be two distinct levels of functioning in arithmetic. Schell referced to these levels as the "computational" level and the "understanding" level. Fe did not find that much overlap necessarily existed between the two, Accoring to Schell, a correct illustration might indicate that the child grasped the concept of the computational proeedure but it did not necessarily mean that the child grasped the relationsho between the problem andior written fact and the draving.

Theoretical Background

Considerable interest has been expressed in regard to the advisability, as well as possibility, of including in the arithmetic curriculum for the elementary school abstract mathematical concepts. Davis (10), director of the Madison Froject, explored the possibility of teaching intermediate grade students identities and quadratic equations. Suppes (40) and his associates at Stanford University prepared programs for teaching logic to intermediate grade students and geometry to primary grade pupils. Bruner and Dienes (5) at the Center for Cognitive Studies have been conducting research to determine whether or not children in the elementary school are able to learn mathematical concepts such as the associative, commutative, and distributive properties.

Although many of the studies have reported success, they have not all been uniformly successful. Further research should provide more information in regard to what mathematical concepts young children are able to learn. All of the studies have one characteristic in common. Each study was based on the assumption that abstract mathematical concepts might be introduced earlier in the arithmetic carriculam of the elementary school. If the leamer can understand a basic mathematical principle at an earlier age, he will have at his command a conceptual tool that will help him progress academically faster and more efficiently. The abstract mathematical concepts, therefore, should be acquired by the learner as early in his school experience as possible。

Bruner (4) on page 6 stated "。.. these studies have stimulated a
renewed interest in complex learning ... learning designed to produce general understanding of the structure of a subject." He continued by stating:

Grasping the structure of a subject is understanding it in a way that permits many other things to be related to it meaningfully. To learn structure, in short, is to learn how things are related.

Bruner (4) stated that the fundamental structure of mathematies needs to be taught because: (1) an understanding of the fundamental structure makes the subject more comprehensible: (2) research indicates that if details of a subject are not placed in a structural pattern, they are rapidly forgotten: (3) the understanding of fundamental principles and ideas appears to be the primary apparatus of "transfer of training," and (4) by constant re-examination of material taught at all levels for its fundemental character, the gap between "advanced" and "elementary" knowledge of mathematics is narrowed.

The psychological investigation of Piaget, a Swiss psychologist, and his collaborators at the University of Geneva has served as one source, directly or indirectly, from which research activities in rem gard to the intellectual processes of childred stemmed.

Fiaget (36) stated on page 176, "... an operation is thus the essence of knowledge; it is an interiorized action which modifies the object of knowledge:" He maintains that the development of knowledge passes through four main stages whose order is constant, but whose time of appearance may vary with the individual and with the culture. Each stage represents a new coherence and a new structuring of elements which until that time have not been systematically related to each other. The first stage is known as the sensory-motor or pre-
verbal stage which extends from birth to approximately two years of age. The fundarental beginnings of an operation of reversibility and associativity are to be noted in the motor behavior of the child in space。

The period of pre-operational representation-the beginning of language, and therefore of thought, extends from two to seven years of age. The child has not as yet acquired any concept of conservation nor is he able to deal reversible operations. For example, to the child the amount of liquid changes according to the shape of the container. The child's judgment of transitivity is lacking, also. He may recognize that A and B are equal, and B and C are equal, yet he is unable to reach the conclusion that A is equal to C.

According to Piaget, the first operation appears during the third stage. This stage, known as "concrete operation。" extends from seven to eleven years of age. The child is now able to deal with objects in ways that indjcate an understanding of reversjbility. Piaget (35) commented on page 177:
..o children operate on objects, and not yet on verially expressed hypotheses. ... there are the operations of classirication, ordering, the construction of the idea of number, spatial and temporal operations. and all the fundamental operations of elementaxy logio of classes and relations, of elementery mathematios, of elementary geometry, and even of elementary physics.

About this same time systems having multiplicative character begin to develop. The child is able to classify an object according to two properties, eog. size and shape. The child's thoughts are still restricted because the operations are still related to concrete objects. Thus, at this stage the child is unable to do formal logic.

The fourth stage is known as that of fomal or hypothetico
deductive operations. It begins at about age eleven. Not until this stage is the child able to reason on hypothesis and to draw logical conclusions from hypothetical data. Now, the child no longer need rely on concrete objects. Piaget (36) concluded on page 178, ".a. he constmacts new operations, operations of propositional logic, and not simply the operations of classes, relations, and numbers." The child is able to draw implications fron vaxious statements and to synthesize these implications.

Coxford (9) on page 119 quoted Piaget as stating that children by the time they are six to seven and 2 half years of age are able to understand the concept of number. In regard to the concept of multiplication Fiaget's experiments indicate children attain the understanding of one-tomone correspondence by age four and a half to five. Graduel awareness of the multiplication property of one"to-one correspondence is attained by age five or six. Immediate grasp of the multiplication properties of many-to-one and frection-tomone are attained by age six to seven and a half". These levels do not refer to the abstraction associated with symbols but to their concorete comtex parts.

Flaget, then, has detormined age levels for the attainment of the concept of number. His findings heve two amplientions for the teaching of arithmetic: (1) the age of attailment gives some indim cation of when a child may have an understanding of a concept and (2) the analysis of the developmental process indicates that material and procedures might be appropriate in aiding the child in concept for mation.

Another inference made from Piaget's studies is that children
should be taught the underlying principles of a content area, after which they should be able to relate specific learnings to the general structure. The leaming situation should be structured so that the child, by participating actively, is able to develop an understanding of the mathematical concept.

Bruner (4) pointed out on page 82 that it is possible to present fundamental structure in a sequence such that the child is guided to discover structure for himself. Many of the new approaches to the teaching of arithnetic utilize this discovery approach to the teaching of mathematical concepts.

Teaching by a discovery approach is not easy. There are no manuals listing the steps to follow. Children neither learn at the same rate nor in the same way. Therefore, the teacher must provide learning situations that allow for these differences. One approach to the problem of individual differences might be the use of programed material. Programmed material might be effective in helping students achieve specific objectives in the area of mathematics.

No matter what procedure is used, the efforts of the various curriculum study groups have sought to make school mathematics more a science of numbers and less a set of drills. Glemnon (22) stated on page 355 that prior to this century two theories determined the content of the school mathematics programs. The first, the need of society for mathematics training on the part of the citizenry, the sociological approach; the second, the need for the subject to be taught as a system of related ideas, the logical approach. As defined by Morton (32) on page 21, "... the logical approach is concerned with the structure and organization of arithmetic as a science; while, the
social approach is concerned with the usefulness of arithmetic in life's affairs."

However, with the accumulation of knowledge regarding the condition necessary for effective learning, the nature of child growth and development, and the importance of good mental health, educators need to consider a third criterion when determining what ought to be included in the elementary school mathenatics programs. Referring to this criterion on page 22, as the psychological approach Morton (32) defined it by stating, "... in mathematics learning proceeds from an awareness of quantity concept and relationship; to abstraction of symbolic manipulation; and finally, to greater understanding and skill in the application of newly acquired concepts and processes in social situations in life."

Educators are aware of the fact that children can learn more content than can possibly be taught during the time they attend school. The use of Morton's three criteria will enable educators to select from all that can be learned that which is of the greatest importance.

Studies (49) have indicated that there is some agreement on such things as the need to build fundamental understandings, the use of spaced practice to assure mastery, and the establishment of sequential leaming experiences. The search now needs to center on optinum procedures that will enable desired mathematical goals to be reached within the framework of a good teaching-leaming situation.

This study was based on certain postulates presented in the preceding material. First, if children can be taught abstract mathematical ideas at an early age, then all fourth grade pupils should be
of the age to understand the mathematical properties related to multiplication。 Second, if children of the fourth grade level are at a stage of intellectual development necessitating concrete referents, then the search for the most effective physical referment should be continued. Third, if the use of programmed instructional material provides for individual differences, then the use of prograrmed material would provide for the individual needs of fourth grade pupils. And last, if the most encompassing concept should be used to direct instruction on a topic, then the instructional approach utilizing an equivalent ratio idea of multiplication with a graph in the first quadrant will be as effective or more effective in terms of computational proficiency and understanding of mathenatical principles as an approach utilizing an array.

Delimitations of the Study

Does the method of introducing multiplication facts affect the leamer's understanding of the mathematical concepts applicable to multiplication of whole numbers and mastery of multiplication facts?

In an attempt to answer the question, this study wes designed to use two different approaches to introduce the multiplication facts; the Ropeated-Addition approach and the Ratio-tomone approach. Thus. the inclependent variable in the study was the approach used to introduce the multiplication facts.

The dependent veriable was the scores on the post-test. This test was constructed to test mastery and understanding of the mathematical concepts that applied to multiplication of whole numbers.

Motivation and interest are difficult to control. Both of these
could have been intervening variables. However, for this study these variables were considered to have a negligible effect due to the random assignment of each group to one of the two approaches. As programmed material was used for the lessons, the teacher variable was considered to have a negligible effect, also.

The population of this study wes limited to fourth grade pupils in the area served by Wisconsin State University-River Falls. Thus, any inferences drawn from this study may only be done in regard to this population.

The scope of the study was limited to (1) mastery of the basic multiplication facts and (2) understanding of five basic properties of a number system: the commatative property with respect to multiplicetion, the associative property with respect to multiplication, the distributive property with respect to multiplication over addition closure, and the identity element of one in multiplication of whole numbers.

Detinition of Terms

In order to clarify meanings of terms used in the study, the following list of terme and definitions was compiled :

Coordinate system. A method of labeling points in a plane by pairs of numberals denoting distance along two intersecting perpendicular rays called axes. This coordinate system is similar to the cartesian coordinate in a plane except that use is made of only the first quadrant.

Ordered Pair. An ordered pair consists of a pair of numerals written in a prescribed way.

Programmed Material. Learning material organized step by step so that: (1) Irequent response is required, (2) immediate reinforcement is provided. (3) opportunity is furnished for discovery, and (4) aliowence is made for the student to work individually at his own rate.

Ratio-to-One Approzch. The approach that used as a model a coordinate system with ordered pairs to represent the multiplication properties and Racts.

Repeated-Adition. Addition of equal addends.
Repeatoo-Addition Approach. An array, based upon repeated addition was used to represent the multiplication properties and facts.

Specific Hypotheses

While most authors of elementary arithmetic series recommend that multipiication be introduced as a repeated addition idea, others noted that the ratio-to-one idea had been neglected. However, whether the basic mathenatical concepts relating to multiplication could be developed at the fouxth grade level as well by the Ratio-to-One approach. as by the Repeated-Addition approach had not been determined.

This study was designed to determine whether there was a significont difference in student achievement and understanding when different approaches were taken in teaching introductory multiplication.

The null form of the hypotheses tested are given as follows:

1. There is no significant difference between the posttest mean scores of those fourth grade students who had been introduced to multiplication by the Repeated-Addition approach and those who had been introduced to multiplication by the Ratio-to-One approach.
2. There is no significant difference between the understanding of mathematical properties of high-achieving fourth grade students who had been introduced to these properties as related to multiplication by the Repeated-Addition approach and those who had been introduced to these properties by the Ratio-to-One approach.
3. There is no significant difference between the understanding of mathematlical properties of the middle-achieving fourth grade student who had been introduced to these properties by the Repeated-Addition approach and those who had been introduced to these properties by the Ratio-to-One approach.
4. There is no significant difference between the understanding of mathematical properties of the low-achieving fourth grade students who had been introduced to these properties as related to multiplication by the Repeated-Addition approach and those who had been introduced to these properties by the Rationtome approach.

The t-test based on 0,05 level of confidence was used to test the ruil hypotheses that there is no significent difference between the mean scores of the tuo groups on the total post-test as well as the difference between the mean scores for the respective achievement levels.

Analysis of variance was run for each of the mathematical properties according to achievement levels.

And last, item analysis wes done to determine the level of difficulty of each item on the post-test. Comparisons were made between the level of difficulty found for the high and low groups.

PROCEDURE

Research Design

Since 1960 mathematical concepts and terminology have been introduced into the arithmetic curriculum of the elementary school at earlier levels. This has resulted in experimentation to determine how these concepts could best be introduced to children at these levels. One instructional aid, the array, has been used in various experimental studies as a representation of the multiplication process. However, the array has its limitations when applied to multiplication of numbers other then whole numbers. The question arose as to what limitations would exist if another physical referent were used during the teaching of introductory multiplication. Therefore, experimentation was done using another representation, a coordinate system, to provide information relative to the teaching of multiplication.

This study wes designed to determine whether there are significant differences in student mastery of the multiplication facts and understanding of those mathematical principles applicable to the multiplication process when two different approaches were taken in teaching introductory multiplication. Fowr classes in the River Falls School system and four classes in the New Richmond School pystem were randomly assigned to the two approaches. Each approach was used
in four classrooms two in each school system.
One approach, to be known as the Repeated-Addition approach, used the array as the physical referent to emphasize the repeated addition idea in regard to multiplication. The other approach, to be known as the Ratio-to-One approach, used a coordinate system and ordered pairs of numbers as the physical referent to emphasize the ratio idea in regard to multiplication。

Upon completion of fifteen programmed lessons, each group was administered a post-test by the writer. The retention test was a.dministered four weeks later. No multiplication was taught during the time between the administering of the post-test and the retention test. This period of time also included the regular two week Christmas vacation.

This study was begun in October of 1967 and completed in January of 1968. Eech experimental groap used fifteen programed lessons designed specifically for that group. Upon reaching page 46 in Seeing Through Arithmetic, Grade 4, the adopted text, the first programed lesson was introduced. Succeeding lessons coincided with the text's introduction of specific multiplication facts. Immediately upon the completion of the final lesson designed to be used with page 110, the post-test was administered.

Instructional Material

Multiplication may be defined as a special case of addition or in terms of ratio. In the first sense, multiplication may be thought of as repeated addition of a given quantity. Thus, 3×5 may be considered as $5+5+5$, which is to be thought of as joining together
of equivalent groups. A common representation of this meaning is the array, a rectangular arrangement of equivalent groups. In the second sense, multiplication may be considered as the association of a number to a third number in the same ratio as a second number is associated to one. In this sense, 3×5 may be considered as $5 / 1=\square / 3$. In this study the representation used for this second definition was ordered pairs of numbers on a line in a coordinate system. The product of 3×5 was designated by the ordered pairing of numbers distributed along the coordinate axes. The product of 3×5 was that number on the horizontal axis that is associated with three on the vertical axis in the same ratio as five is associated to one as the following example indicates:

Although both definitions of multiplication described above were developed to some degree in the textbooks (7,17, 47) surveyed by the writer, only the repeated addition definition using the array representation, was commonly stressed. However, in no textbook was the coordinate system used in just the way it was described above as a representation of multiplication.

In spite of the representation used, however, if multiplication is to be taught in terms of how the structure of mathematics is related to it, emphasis must be given to the development and understanding of the multiplication process. A number of basic mathematical properties apply to the multiplication of whole numbers. The commutative, associative, and distributive properties are
considered to hold for multiplication of whole numbers. That is, $a \times b=b x a$, and $a x(b \times c)=(a \times b) \times c$, and $a x(b+c)=$ (a $\mathrm{x} b)+(\mathrm{a} x \mathrm{c})$ respectively. The set of whole numbers used in the multiplication operation is closed. That is, any whole number when multiplied by another whole number results in a product that is also a whole number. The set of whole numbers contains an identity element for multiplication. The identity element is that number which when multiplied by a second whole number always results in the second whole number as a product. That is, $1 \times \mathrm{n}=\mathrm{n}$.

However, in order to determine whether there was any difference in achievement and understanding in the specific aspects of multiplication of whole numbers between pupils taught to illustrate multiplication facts by the use of ordered pairs of numbers on a line in a coordinate system and pupils taught to use an array for representation, it was necessary to construct two sets of instructional material. For purposes of identification, one set was referred to as the Repeated-Addition approach and the other set as the Ratio-to-One approach. The same general outline was followed for the sets as a whole and in the format for corresponding lessons in the two sets. Fifteen programmed lessons were constructed for each experimental approach. Copies of these lessons may be found in Appendix B and Appendix. C respectively.

Before final development of the material used in the main part of the study. Lessons 1, 2, 3, 4, 6, 7, and 13 of the Ratio-to-One approach were used in a pilot study with a group of children from the fourth grade of the J. H. Ames Laboratory School. The writer observed the children as they used the programmed material. As a
result of the observation, several changes were made in the lessons. These were made prior to the beginning of the main part of the experiment.

In general, the introduction of the multiplication facts followed the pattern suggested by Hartung, Van Engen, and Knowles in Seeing Through Arithmetic. Grade 4, the textbook used by all of the participating classes. Because the study was not on the developmental approach suggested in the pupils' textbook, liberal changes were made to fit the lessons to the desired emphasis upon the mathematical concepts. The facts used in the lessons were from $1 \times 1=1$ to, and including, $9 \times 9=81$ 。

Since corresponding programmed lessons in each set had almost identical content, one description will suffice for both sets. A brief description of the main emphasis of each lesson is given below:

Lesson 1: Introduction To Multiplication
The meanings of multiplication were investigated. Ways of illustrating multiplication were considered.

Lesson 2: Closure Property
The set of whole numbers was reviewed prior to the introduction of the closure property.

Lesson 3: Specific Representation To Be Used
Emphasis was placed on a specific representation, array or ordered pairs of numbers on a line in a coordinate system. The fact that multiplication of whole numbers is a binary operation was introduced. Terms such as "factor" and "product" were also introduced.

Lesson 4: Commutative Property
This lesson dealt with the introduction to and practice in writing and illustrating "pairs" of multiplication facts.

Lesson 5: Commutative Property Continued Further practice was provided in the use of the commutative property of multiplication.

Lesson 6: Multiplicative Identity
This lesson dealt with the introduction to and practice in illustrating and writing the multiplicative identity.

Lesson 7: Distributive Property
The rationale as well as ways of illustrating the distributive property of multiplication of whole numbers was studied.

Lesson 8: Distributive Property Continued
A variety of examples dealing with the distributive property was introduced.

Lesson 9: Practice
A variety of examples dealing with the various aspects of multiplication studied in preceding lessons was provided.

Lesson 10: Distributive Property Continued
Different ways of expressing the distributive property were examined and practice in using it was given.

Lesson 11: Conmutative Property
A variety of examples dealing with the commutative
property was provided.
Lesson 12: Introduction Of Iwo Difficult Multiplication Fects Emphasis was placed on the learning of two multiplication facts, $7 \times 8=56$ and $6 \times 9=54$.
Lesson 13: Associative Property
The concept of associativity as it relates to multiplication was introduced. Different ways of illustrating and expressing the property were examined. Fractice in using it was given.
Lesson 14: Practice
A variety of examples dealing with all aspects of multiplication studied in previous lessons was provided.
Lesson 15: Revieut
A variety of examples was used to review all aspects of multiplication studied. Chief among these was a property identification exercise.
Both the Repeated-Addition and the Ratio-to-One sets of programmed material were made as alike as possible. The same multiplication facts, the same terminology, the same number of examples, and the same format were used as much as was feasible. The only difference was in the representation used and the wording of the introductory word problems. The Ratio-tomone group made no use of any representation other than ordered pairs of numbers on a line in a coordinate system, the Repeated-Addition group used an array exclusively. The word problems used to introduce each mathomatical concept for the Repeated-Addition group dealt exclusively with objects
that could be arranged in rows and columns. The Ratio-to-One group's word problems dealt exclusively with situations that could be illustrated as a ratio. However, even though the two approaches often dealt with different items in the word problems, the answers to the problems were numerically identical.

Prior to the use of the programmed material, a meeting of the participating teachers, the elementary school principal, and the writer was held in each school. At this time, an explanation of the study wes presented and examples of the programmed material were examined and discussed. Questions were answered and the teachers determined the approach each would use by a flip of a coin.

The writer introduced a coordinate system and ordered pairs of numbers to two classes in each school system before the study began. These ciasses had been designated to use the Rationtomone approach.

Personal contact with the teachers during the study was maintained through three sources: distribution of the material. observation of the lessons, and discussion with the parcicipating teachers. It wan decided to deliver the material to the teachers three lessons at one time. Thus, the writer had an opportunity to come into eloser contact with the paxticipating teachers through five successive deliveries of material. This, also, provided opportunities to observe the ohfluren as they wriked on a lesson, to discuss the material with the teachers, and to record pertinent comments relative to the study。

During the study the writer visited each classroom at least fous times. Additionally, the wxiter administered the post-test to all eight classes"。 Duxing the visits the woiter was able to
note points of difficulty as well as pupil reaction to the material.

Messuring Instrument

A 47 question test, consisting of 61 items, was designed to measure understanding of specific aspects of multiplication presented during the study. Objective-type, generally multiple-choice items. were prepared because of the objectivity of scoring. Fach item was written so that it could be scored and analyzed separately as well as with the other items measuring understanding or mastery of the same aspect of multiplication.

The components of the test were:
Number of Test Question
1-2/24
$22,24,27,30,40,45,47$
$21,23,31,41,42,45,47$
19. $32.43 .44 .45,47$
25.35 .47
5.8.13. 15. 28. 36. 41. 47

1-47

Aspect Measured

Mastery
Commutative Property
Associative Property
Distributive Property
Closure
Mrultiplicative Identity
Overall knowledge

Preliminary test forms were prepared and used with children in the fifth grade of the Jo H. Ames Laboretory School. Items were deleted or added to the final form of the test upen the evaluation of the test items on the preliminaxy forms.

A copy of the test, titled. "Multiplication," is in Appendix.D".
The test was used for both the post-test and the retention test。 the postotest was administered in December, 1961 and the retention test was administered four weeks later.

A few of the school systems in the Wisconsin State UniversityRiver Falls area have used one or another of the newer mathematics programs for a few years. Some of the programs provided for the introduction of all the multiplication facts prior to the fourth grade as well as stressed mathematical properties that are central to this study. It became evident, then, that children who had this type of experience could not be considered as part of the population for the present study. Therefore, school systems using the newer arithmetic programs were excluded from the study* The population from which the sample was drawn had to be limited further to those schools whose arithmetic curriculum called for the completion of the multiplication facts duxing the fourth grade.

In May of 1967 a form letter was mailed to twenty-nine school systens in the area served by Wisconsin State University-River Falls requesting information in regard to the willingness to participate in the research project, the number of available classes, and the arithmetic text to be used during the 1967-68 school year. A copy of the form letter is in Appendix A. Fourteen of the nineteen schools responding indicated a willingness to participente in the project. From the fourteen paxticipating school systems, two were randomly selected whose fourth grade classes would make up the representative sample. These school systems were New Richmond and River Falls. Both of these conmunities are representative of the socio-economic levels found within a typical ruxal Wisconsin commuity.

The elementary school population in rumal Wisconsin commanities
is relatively stable". As a result few children would have transferred from another district. The randomized selection of the sample; therefore, makes it possible to assume that these children were typical fourth grade pupils in this area of Wisconsin" It seems probable, though, that some children are included in the sample who are transfer pupils. It is further assumed. however. that the effect of the presence of such pupils is randomized throughout both treatment groups and, therefore, does not materially influence the findings of the study.

The fourth grade population for this study consisted of sixtyfour classes in fourteen school systems. A total of two hundred twenty-two children in eight classrooms constituted the sample, one hundred twentymone in River Falls and one hundred one in New Richmond. Ten subjects did not complete all fifteen programed lessons or did not take the post-test because of absence from school during the study. As a result of this factor, complete data was available for a total of two hundred fourteen subjecte fr the oight cilusses.

As all of the childrex in the fourth grades of oach school system took paist in the study. it wes assumed that they constituted a representative sample of the poprlation" Duming the first meeting between the writer and the participating teachers, a coin wes flipped to determine the approsoh to be used by each chass"o Two classes in each school system were thus randomily assigned to the Repeated-Addition approsoh and two classes in ewch sehool system were randomiy assigned to the Ratiomtomone approweho Four olasses used the array programmed matemal and four classes used the ordered paris of numbers on a line in a coordinate system programmed material.

Treatment of Data

The reliability coefficient of the post-test was obtained by the split-half method. To correct the correlation found by this method, the Spearman-Brown formula wes used.

The t-test (0.05) was used to detemine whether there was any significant difference between the mesns of scores on the total test. on items one through twenty-four, and on items twenty-five through forty-seven, respectively of the Repeated-Addition group and the Rationtomone groupo

The subjects in each approach were then divided into three levels on the besis of their post-test scores. These levels were referred to as high, middie, and low. The high level was composed of subjects having post-test scores more than one standard deviation above the mean in their pespective groups. The middle level was composed of those subjects having scores located between one standard deviation below the mean and one standard deviation above the mean of thetr respectite growps. The Duw level wes omposed of subjects having soores more than san standard deviation below the mean of their respective groups. The tutest (0.05) weas used to determine whether the mean scowe of each of these levela ualng the Ropeated-Addition approach differed significantly from its obresponding level using the Rationtoone approach on the various components of the post-test.

Comparisons were made between the corxesponding levels of the two approaches in regard to the number of correct items for each mathematical property introduced duxing the study. An analysis of variance was run for each mathematical property.

An item analysis was done to determine the difficulty level of of the items in the post-test. Comparisons were made between the mean level of difficulty for the high-achieving pupils and that of the low-achieving pupils.

CHAPTER III

RESULTS

Introduction

This study involved the analysis of three separate aspects of the teaching of multiplication of whole numbers to fourth grade pupils: (1) the use of the array versus the use of a coordinate system to illustrate multiplication, (2) pupil learning of mathematical properties related to multiplication of whole numbers, and (3) pupil mastery of the multiplication facts.

Test Reliability and Validity

The reliability of the post-test was determined by using the results from the split-half method, odd and oven numbered items, from the 214 pupil responses for the post-test. The Pearson product-moment coefficient of correlation was computed. The coefficient obtained by the split-half method was $r=0.81$. To estimate the coefficient of reliability of the test if the full-1ength test had been used instead of split-halves, the Spearman-Brown formula was used. The corrected coefficient was $r=0.89$. The reliability appeared to be sufficiently high to justify the use of the items in the post-test for this study.

Two aspects of multiplication were emphasized in the programmed. material for the study, mastery of multiplication facts and understanding of mathematical properties applicable to multiplication.

The post-test contained (1) twenty-four items to measure mastery of the multiplication facts, (2) eight items to measure understanding and use of the commutative property, (3) seven items to measure understanding and use of the associative property, (4) five items to measure understanding and use of the distributive property, (5) three items to measure understanding and use of the closure property, and (6) eight items to measure understanding and use of the multiplicative identity. Thus, on the basis of subjective evaluation, it appeared that the posttest had content validity.

Testing the Hypotheses

The results of comparisons involving groups relating to the independent variables, taken one at a time (page 19), are presented below. Three independent variables were used in making comparisons with the achievement test data for a given hypothesis. Three tables will be related to each hypothesis. All of the tables will report the t-ratio using the total or subtest scores of the post-test for specific approaches.

Comparisons Involving Total Groups

The first hypothesis wes concemed with the mean scores of the total group on (1) the test as a whole, (2) the mastery measuring items, and (3) the items measuring understanding of the mathematical properties applicable to the multiplication of whole numbers. Summaries of the data appear in Tables I, II, and III respectively. The data for applying the t-test to Hypothesis One is found in Table I. The mean of the Repeated-Addition group for the total test
was 36.14 and that of the Ratio-to-One group was 34.80 . The difference between means of $1.26(36.14-34.80)$ was in favor of the RepeatedAddition approach. An F-test applied to the data demonstrated no significant difference in variance. The t-ratio for the difference between means of 1.11 for 212 degrees of freedom was not significant at the 0.05 level. A t-ratio of approximately 1.97 would be necessary for the null hypothesis to be rejected at the 0.05 level, the level arbitrarily selected as the value for accepting or rejecting each hypothesis. As the t-ratio did not approach that magnitude, the null hypothesis of no difference between means was not rejected. Throughout the study this finding should be interpreted as meaning that a difference of this magnitude would occur more than one time in twenty if only chance factors are operating.

TABLE I

TOTAL GROUP MEAN SCORES AND t -RATIO FOR ALL ITEMS OF THE POST-TEST

Approach	N	Mean	SD	df	t-Ratio
Repeated-Addition	111	36.14	8.13	110	
Ratio-tomOne	102	34.80	9.36	102	\ldots
				212	1.11

The data for applying the t-test to the mean scores for mastery of the multiplication facts, as measured by the first twenty-four items of the test, is found in Table II. The mean of the RepeatedAddition group was 17.11 and that of the Rationtome group was 16.39. The difference between means of $0.72(17.11-16.39)$ was in favor of the

Repeated-Addition approach. An F-test applied to the data demonstrated no significant difference in variance". The t-ratio for the difference between means of 1.16 for 212 degrees of freedom was not significant at the 0.05 level. The null hypothesis of no difference between the means was not rejected.

TABLE II
TOTAL GROUP MEAN SCORES AND t-RATIO FOR ITEMS MEȦSURING MASTERY OF THE MULIIPLICATION FACTS: ITEMS 1-24

Approach	N	Mean	SD	df	t-Ratio
Repeated-Addition	111	17.11	3.78	110	
Ratio-to-One	103	16.39	5.18	102	\ldots
				212	1.16

The data for applying the t-test to the mean scores for understanding of mathematical properties applicable to multiplication of whole numbers, as measured by items twenty-five through forty-seven, is found in Table III. The mean of the Repeated-Addition total group was 18.95 and that of the Ratio-to-One group was 18.42. The difference between means of 0.53 (18.95-18.42) wes in favor of the RepeatedAddition approach. An F-test applied to the data demonstrated no significant difference in varianco. The twatio for the difference between means of 0.75 for 212 degrees of freedom was not significant at the 0.05 level. Thus, the noll hypothesis of no difference between the means was not rejected.

These data indicate that neither approach has been demonstrated to be more effective than the other for the mastery of multiplication
facts, understanding of mathematical properties applicable to multiplication of whole numbers; and the total test for the total group of the population

TABIE III
TOTAL GROUP MEAN SCORES AND t-RATIO FOR ITEMS MEASURING UNDERSTANDING OF MATHENATICAL PROPERTIES: ITEMS 25-47

Approach	N	Mean	SD	df	t-Ratio
Repeated-Addition	111	18.95	5.25	110	
Rationtomone	103	18.42	5.00	102	
				212	0.75

Establishing Levels

The mean score and standard deviation of each approach were used as the basis to determine the respective groups by levels. A summary of the data hos been prosented in Table IV.

The Repeated-Addition group consisted of 111 pupils. The mean was 36.14 and the standerd deviation wes 8.13 on a 61 item test. Twenty pupilis scores were located more than one standard deviation above the meanio This group has been designoted as the RepeatedAddition high group. Sixtywseven pupils scores wexe located between one standard deviation below the mean and one standard deviation above the mean. This group has been designated as the Repeated-Addition middle group. Twenty-four pupils? scores were located more than one standard deviation below the mean. This group has been designated as the Repeated-Addition low group.

The Ratio-to-One group consisted of 103 pupils. The mean was 34.80 and the standard deviation was 9.36 on a 61 item test. Fifteen pupils" scores were located more than one standard deviation above the mean. This group has been designated as the Ratio-to-One high group. Seventy-four pupils' scores were located between one standard deviation below the mean and one standard deviation above the mean. This group has been designated as the Rationto-One middle group. Fifteen pupils" scores were located more then one standard deviation below the mean. This group was designated as the Rationto-One low group.

Note that the mean score was greater for the Repeated-Addition group than for the Ratio-to-One group. It may further be noted that the standard deviation for the Ratio-to-One group was slightly greater than that for the Repeated-Addition group.

TABLE IV
SUMMARY OF DATA TO DETERMINE ACHIEVEMENT LEVELS

| | Repeated-Addition | | Rationto-One | | | | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Level | N | Mean | SD | Level | N | Mean | SD |
| High | 20 | 47.75 | 2.68 | High | 15 | 48.00 | 1.26 |
| Middle | 67 | 36.67 | 4.31 | Middle | 74 | 35.19 | 5.50 |
| Low | 24 | 25.00 | 3.30 | Low | 14 | 18.64 | 5.91 |
| Total | 111 | 36.14 | 8.13 | Total | 103 | 34.80 | 9.36 |

Comparisons Involving High Levels

The second hypothesis dealt with comparisons involving high levels. Comparisons were made between the mean scores for (1) the test as a whole, (2) the mastery measuring items, and (3) the items measuring understanding of the mathematical properties applicable to the multiplication of whole numbera. Sumaries of the data appear in Tables V. VI, and VII respectively.

The data for applying the t-test to the mean scores for the total test is found in Table V_{0} The mean of the Repeated-Addition high group was 47.75 and that of the Ratio-to-One group was 48.00. The difference between means of 0.25 (48.00-4 47.75) was in favor of the Ratiomtomone approach. An Fmtest applied to the data demonstrated a significant difference in variance, The obtained ratio was $F_{19,14}=$ 4.49. The t-ratio for the difference between means of 0.32 for 33 degrees of freedom was not significant at the 0.05 level. A t-ratio of approximately 2.03 would be necessary for the null hypothesis to be rejected at the 0.05 level. As the t-xytio did not approach that magnitude, the null hypotheals of no difference between means wes not rejected.

TABLE V
HIGH GROUP MEAN SCORES AND t-RATIO FOR THE TOTAL TEST

Approach	N	Mean	SD	df	t-Ratio
Repeated-Addition	20	47.75	2.68	19	
Ratio-to-One	15	48.00	1.26	14	
				33	0.32

The data for applying the t-test to the mean scores for mastery of the multiplication facts, as measured by items one through twentyfour, is found in Table VI. The mean of the Repeated-Addition high group was 21.70 and that of the Ratio-tom One high group was 22.13. The difference between means of $0.43(22.13-21.70)$ was in favor of the Ratio-to-One approach. An F-test applied to the data demonstrated no significant difference in variance. The t-ratio for the difference between means of 0,82 for 33 degrees of freedom was not significant at the 0.05 level. The null hypothesis of no difference between the means wa.s not rejected.

TABLE VI

HIGF GROUP MEAN SCORES AND t RATIO FOR MASTERY OF MULTIPIICATION FACIS: ITEMS 1-24

Approach	N	Mean	SD	$d f$	tRatio
Repoated-Addition	20	21.70	1.52	19	
Ratio-tomone	15	22.13	2.25	14	
-				33	0.82

The data for appiying the t-test to Hypothesis Two is found in Table VII. The mean of the Repeated-Addition high group in regard to understanding of mathematical properties applicable to multiplication of whole numbers, as measured by items twenty-five through forty-seven, was 25.55 and that of the Ratio-to-One high group was 25.87. The difference between the means of 0.32 ($25.87-25.55$) was in favor of the Ratio-tomone approach. An F-test applied to the data demonstrated a significant difference in variance. The obtained ratio was
$F_{19.14}=9.73$. The t-ratio for the difference between means of 0.32 for 33 degrees of freedom was not significant at the 0.05 level. The null hypothesis of no difference between the means was not rejected. These data indicated that nexther approach has been demonstrated to be more effective than the other for the mastery of multiplication facts, the total test, and the understanding of mathematical properties applicable to multiplication of whole numbers for the high group of the population.

TABLE VII
HIGH GROUP MEAN SCORES AND t-RATIO FOR UNDERSTANDING OF MATHENATICAL PROPERTIES: ITEMS 25-47

Approach	N	Mean	SD	df	t-Ratio
Repeated-Addition	20	25.55	3.58	19	
Ratio-to-One	15	25.87	1.32	14	
				33	0.32

Compaxisons Involving Middle Levels

The third hypothesis dealt with compawisons involving middle levels. Comparisons were made between the mean soores for (1) the test as a whole, (2) the mastery measuring items, and (3) the items measuring understanding of the mathematical properties applicable to the multiplication of whole numbers** Sumaries of the data appear in Tables VIII, IX, and X respectively.

The data for applying the t-test to the mean scores for the total test is found in Table VIII. The mean of the Repeated-Addition middle
group was 36.67 and that of the Ratio-tomone middle group was 35.19. The difference between means of $1.48(36.67-35.19)$ was in favor of the Repeated-Addition approach. An F-test applied to the data demonstrated no significant difference in variance. The t-ratio for the difference between means of 1.76 for 139 degrees of freedom was not significant at the 0.05 level. However, this ratio was imost the magnitude necessary for the rejection of the null hypothesis. 1.98 at the 0.05 level. But. as the t-ratio did not reach this magnitude, the null hypothesis of no difference between means was not rejected.

TABLE VIII
MIDDLE GROUP MEAN SCORES AND t-RATIO FOR THE TOTAL TEST

Approach	N	Mean	SD	df	t-Ratio
Repeated-Addition	67	36.67	4.31	66	
Ratio-tomone	74	35.19	5.50	73	

The data for applying the t-test to the mean scores for mastery of multiplication facts, as measured by items one through twenty-fous. is found in table IX: The mean of the Repeated-Addition middle group was 17.43 and that of the Ratiotomene middle group was 17.08. The difference between means of 0.35 (17.43-17.08) was in favor of the Repeated-Addition approach. An F-test applied to the data demonstrated no significant difference in variance. The twatio for the difference between means of 0.71 for 139 degrees was not significant at the 0.05 level. Thus, the hypothesis of no difference between the means was
not rejected.

TABLE IX

MIDDLE GROUP MEAN SCORES AND t-RATIO FOR MASTERY OF MULTIPLICATION FACTS: ITEMS 1-24

Approach	N	Mean	SD	df	t-Ratio
Repoated-Addition	67	17.43	20.62	66	
Ratiomto-One	74	17.08	3013	73	
				139	0.71

The data for applying the t-test to Hypothesis Three is found in Table X. The mean of the Repeated-Addttion middle group in regard to understanding of mathematical properties applicable to multiplication of whole numbers as measured by items twentymive through fortymseven, wes 19.25 and that of the Ratiomtomone middle group was 18.10. The difference between means of $1.15(19.25-18.10)$ was in favor of the Repeated-Addition approach; An F-test applied to the data demonstrated a significant difference in vaminnce. The obtained ratio was $F_{66,73}=1.49$, slizhtly above the significant level of 1.48 . The tratio for the difference between means of 1.99 for 139 degrees of freedom was significant at the 0.05 level. A t-ratio of 1.98 would be necessary for the null hypothesis to be rejected at the 0.05 level. Thus, the nuil hypothesis of no difference between the means was rejected. The difference wes in faver of the Repeated-Adition approach.

These data indicate that neither approach has been demonstrated to be more effective than the other for the mastery of multiplication
facts for the middle group of the population. However. these data indicate that the Repeated-Addition approach has been demonstrated to be more effective than the Ratio-to-One approach for the understanding of mathematical properties for the middle group of the population.

TABLE X
MIDDLE GROUP MEAN SCORES AND t-RATIO FOR UNDERSTANDING OF MATHENATICAL PROPERTIES: ITENS 25-47

Approach	N	Mean	SD	dP	t-Ratio
Repeated Addition	67	19.25	3.00	66	
Ratio-tomone	74	18.10	3.68	73	
				139	1.99

Comparisons Involving Low Iovels

The fourth hypothesis dealt with comparisons involving low levels. Comparisons were made between the mean scores for (1) the test as a whole, (2) the mastery measuring items, and (3) the items measuring understanding of the mathematical properties applicable to the multiplication of whole numbers. Sumaries of the data appear in Tables $\mathrm{XI}_{0} \mathrm{XII}_{8}$ and XIII respectively.

The data for applying the t-test to the mean scores for the total test is found in Table XI, The mean of the Repeated-Addition low group was 25.00 and that of the Retiontomone 1.0w group was 18.64; The difference between the means of $6.36(25,00-18.64)$ wes in favor of the Repeated-Addition approachio An Fwtest applied to the data demonstrated a significant difference in variance, The obtained ratio was
$F_{13.23}=3.11$. The t-ratio for the difference between means of 4.14 for 36 degrees of freedom was significant at the 0.05 level. A tratio of approximately 2.03 would be necessary for the null hypothesis to be rejected at the 0.05 level. Thus, the null hypothesis of no difference between the means of the low groups was rejected. The difference was in favor of the Repeated-Addition approach.

TABLE XI
LOW GROUP MEAN SCORES AND t-RATIO FOR THE TOTAL TEST

Approach	N	Mean	SD	df	t-Ratio
Repeated Addition	24	25.00	3.30	23	
Rationtomone	14	18.64	5.91	13	

The data for applying the t-test to the mean scores for mastery of the multiplication facts; as measured by items one through twentyfour is found in table XII. The mean of the Repeated-Addition low group was 12.42 and that of the Ratiomone low group was 6.64. The difference between means of $5.78(12.42-6.64)$ was in favor of the Repeated-Addition approacho An F-test applied to the data demonstrated no significant difference in variance. The t-ratio for the difference between means of 6.21 for 36 degrees of freedom was significant at the 0.05 level." A t-ratio of approximately 2.03 would be necessary for the null hypothesis to be rejected. As the t-ratio we. greater than that magnitude, the null hypothesis of no difference between the means was rejected. The difference was in favor of the

Repeated-Addition approach.

TABLE XII

> LOW GROUP MEAN SCORES AND t-RATIO FOR MASTERI OF THE MULTIPIICATION FACTS: ITEMS $1-24$

Approach	N	Mean	SD	df	t-Ratio
Repeated-Addition	24	12.42	2.29	23	
RatiomtomOne	14	6.64	3.26	13	
				36	6.21

The data for applying the t-tost to Hypothesis Four is found in Table XIII. The mean of the Ropeated-Addition low group in regard to understanding of mathematical proporties applicable to multiplication of whole numbers, as measured by items twontymive through foxtym seven, was 12.58 and that of the Ratiomomone low group was 12.07. The difference between means of $0.51(12.58-12.07)$ wes in favor of the Repeated-Addition approach An Fomtest applied to the data demonstrated no significant difference in variance. The tmatio of 0.4t for 36 degrees of freedom was not slenificent at the 0.05 lovel. The null hypothesis of no difference between the means was not rejected.

This data indicated that the Repeated-Addition approach has been demonstrated to be more effective than the Ratio-tomone approach for the total test and the mastery of multiplication facts for the low group. However, these data did not indicate that either approach was more effective than the other for the developing of understanding of mathematical properties applicable to the multiplication of whole numbers for the low group of the population.

TABLE XIII
LOW GROUP MEAN SCORES AND t-RATIO FOR UNDERSTANDING MATHEMATICAL PROPERTIES: ITENS 25-47

Approach	N	Mean	SD	df	t-Ratio
Repeated-Addition	24	12.58	3.81	23	
Ratio-to-One	14	12.07	3.26	13	
				36	0.41

Comparison Involving Parts of the Test

Five mathematical properties applicable to the multiplication of whole numbers were included in the post-test. These mathematical properties were (1) the commutative property. (2) the associative property, (3) the distributive property, (4) the closure property. and (5) the multiplicative identity The hypothesis that there is no difference between the means will be assumed fow each comparison. Three tables will be releted to each of the properties. The first will report the analysis of wariance nsing the low group for the two approaches and the mean scores for items measuring understanding of the commutative property" The second will report the analysis of variance using the middle group for the two approaches and the mean scores for items measuring understanding of the commatative property* The third will report the analysis of variance for the high group for the two approaches and the mean scores for the items measuring understanding of the commutative property. Then the pattern of tables is repeated for each of the remaining mathenatical properties measured in the post-test.

Wine items dealt with various aspects of the commutative property. Summaries of the data appear in Tables XIV, XV, and XVI respectively.

Summary of the analysis of variance data for the low group is found in Table XIV. The Fwratio for approach of 0.07 for 1 and 36 degrees of freedon was not significant at the 0.05 level. An F-ratio of 4.11 would be necessary for the null hypothesis to be rejected at the 0.05 level. As the ratio did not approach that magnitude, the conclusion gave support to the practical consideration of the limited significance of the difference between the mean scores.

TABLE XIV
SUMMARY TABLE FOR LOW GROUP OF ANALYSIS OF VARIANCE OF MEANS FOR COMMUTATIVE PROPERTY ITEMS

Source of Variance	Sum of Squares	Mean Square	df	F-ratio
Approach	0.28	0.28	1	
Within	137.92	3.83	36	
Total	138.20		37	0.07

$F_{1.36}=0.07$

Summary of the analysis of variance data for the middle group is found in Table XV. The F-ratio for approach of 0.45 for 1 and 139 degrees of freedom was not significant at the 0.05 level. An F-ratio of 3.92 would be necessary for the null hypothesis to be rejected at the 0.05 level. As the ratio did not approach that magnitude, the conclusion gave support to the practical consideration of the limited significance of the difference between the mean scores.
table XV
SUMMARY TABLE FOR MIDDLE GROUP OF ANALISIS OF VARIANCE OF MEANS FOR COMMUTATIVE PROPERTY

Source of Variance	Sum of Squares	Mean Square	df	F-ratio
Approach	1.444	1.44	1	
Within	453.26	3.26	139	
Total	454.70		140	0.45

$F_{1.139}=0.45$
Summary of the analysis of variance data for the high group is found in Table XVI. The F-ratio for approach of 4.11 for 1 and 33 degrees of freedom was not significant at the 0.05 level. An F-ratio of approximately 4.14 would be necessary for the null hypothesis to be rejected at the 0.05 level. Note that the obtained Foratio was approaching that magnitude.

TABLE XVI

SUMMARY TABLE FOR HIGH GROUP OF ANALYSIS OF VARIANCE OF MEANS FOR COMMUTATIVE PROPERTY

Source of Variance	Sum of Squares	Mean Square	df	F-ratio
Approach	11.33	11.33	1	
Within	90.95	2.75	33	
Total	102.28		34	4.11

$F_{1.33}=4.11$

These data indicated that neither approach has been demonstrated to be more effective than the other for the developing of understanding of the commutative property.

Eight items dealt with various aspects of the associative propertyo Summaries of the data appear in Tables XVII, XVIII, and XIX respectively.

Summary of the analysis of variance data for the low group is found in Table XVII. The F-ratio for approach of 0.04 for 1 and 36 degrees of freedom is not significant at the 0.05 level. An F-ratio of 4.11 would be necessary for the null hypothesis to be rejected at the 0.05 level. As the ratio did not approach that magnitude, the conclusion gave support to the practical consideration of the limited significance of the difference between mean scores.

TABLE XVII
SUMMARY TABLE FOR LOW GROUP OF ANALYSIS OF VARIANCE OF MEANS FOR ASSOCIATIVE PROPERTY

Source of Variance	Sum of Squares	Mean Square	df	F-ratio
Approach	0.10	0.10	1	
Within	85.71	2.38	36	
Total	85.81	37	0.04	

$F_{1,36}=0.04$

Summary of the analysis of variance data for the middle group is found in Table XVIII. The F-ratio for approach of 0.05 for 1 and 139 degrees of freedom was not significant at the 0.05 level. An F-ratio of 3.92 would be necessary for the null hypothesis to be rejected at
the 0.05 level. As the ratio did not approach that magnitude, the conclusion gave support to the practical consideration of the limited significance of the difference between the mean scores.

TABLE XVIII
SUMMARY TABLE FOR THE MIDDLE GROUP OF ANALYSIS OF VARIANCE OF MEANS FOR THE ASSOCIATIVE PROPERTY

Source of Variance	Sum of Squares	Mean Square	df	F-ratio
Approach	0.13	0.13	1	
Within	305.61	2.19	139	
Total	305.74		140	0.05

$F_{1,139}=0.05$

Summary of the analysis of variance data for the high group is found in Table XIX. The Fwratio for approach of 0.01 for 1 and 33 degrees of freedom was not significant at the 0.05 level. An F-ratio of approximately 4014 would be necessary for the null hypothesis to be rejected at the 0.05 Ievel.

Five items dealt with various aspects of the distributive property. Summaries of the data appear in Tables XX, XXI, and XXII respectively.

Summary of the analysis of variance data for the low group is found in Table XX. The F-ratio for approach of 0.17 for 1 and 36 degrees of freedom is not significant at the 0.05 level. An F-ratio of 4.11 would be necessery for the noll hypothesis to be rejected at the 0.05 level.

TABLE XIX
SUMMARY TABLE FOR HIGH GROUP OF ANALISIS OF VARIANCE OF MEANS FOR ASSOCIATIVE PROPERTY

Source of Variance	Sum of Squares	Mean Square	df	F-ratio
Approach	0.02	0.02	1	
Within	50.95	1.54	33	
Total	50.97		34	0.01
$F_{1.33}=0.01$				

TABLE XX
SUMMARY TABLE FOR LOW GROUP OF ANALYSTS OF VARIANCE OF MEANS FOR DISTRIBUTIVE PROPERTY

Source of Variance	Sum of Squares	Mean Square	df	F-ratio
Approach	0.38	0.38	1	
Within	80.45	2.23	36	
Total	80.83		37	0.17

$$
F_{1,36}=0.17
$$

Summary of the analysis of variance data for the middle group is found in Table XXI．The F－ratio for approach of 0.72 for 1 and 139 degrees of freedom is not significant at the 0.05 level．An F－ratio of 3.92 would be necessary for the null hypothesis to be rejected at the 0.05 level．

TABLE XXI
SUMMARY TABLE FOR MIDDLE GROUF OF ANALYSIS OF VARIANCE OF MEAMS FOR DISTRIBUTIVE PROPERTY

Source of Variance	Sum of Squares	Mean Square	df	Fmratio
Approach	0.77	0.77	1	
Within	149.36	1.07	139	
Total	150.13		140	0.72

$F_{1.139}=0.72$
Sumary of the analysis of variance data for the high group is found in Table XXII．The Faqatio for approsch of 2.86 for 1 and 33 degrees of freedom is not significant at the 0.05 level．An F－ratio of approximately 4 蕅 14 would be necessary for the null hypothesis to be rejected at the 0.05 level．

These data indicated that neither approach has been demonstrated to be more effective than the other for the developing of understanding of the distributive property．

Three items dealt with various aspects of the closure property． Sumaries of the data appear in Tables XXIIII，XXIV，and XXV respece． tively．

Sumary of the analysis of variance data for the low group is

TABLE XXII

SUMMARY TABLE FOR HIGH GROUP OF ANALYSIS OF VARIANCE OF MEANS FOR DISTRIBUTIVE PROPERTY

Source of Variance	Sum of Squares	Mean Square	df	F-ratio
Approach	3.05	3.05	1	
Within	35.60	1.07	33	
Total	38.65		34	2.86

$F_{1,33}=2.86$
found in Table XXIII. The F-ratio for approach of 0.27 for 1 and 36 degrees of freedom is not significant at the 005 level. An F-ratio of 4.11 would be necessary for the null hypothesis to be rejected at the 0.05 level. As the ratio did not approach that magnitude, the conclusion gave support to the practical consideration of the limited significance of the difference between the mean scores.

TABIE XXIII
SUMMARY TABLE FOR LOW GROUP OF ANALYSIS OF VARIANCE OF MEANS FOR CLOSURE PROPERTY

Source of Variance	Sum of Squares	Mean Square	df	Fwratio
Approach	0.21	0.21	1	
Within	27.26	0.75	36	
Total	27.47		37	0.27

$F_{1,36}=0.27$

Summary of the analysis of variance data for the middle group is found in Table XXIV. The F-ratio for approach of 0.45 for 1 and 139 degrees of freedom was not significant at the 0.05 level.

Summary of the analysis of variance data for the high group is found in Table XXV. The F-ratio for approach of 0.31 for 1 and 33 degrees of freedom is not significant at the 0.05 level. An F-ratio of approximately 4.14 would be necessary for the null hypothesis to be rejected at the 0.05 level.

TABIE XXIV
SUMMARY TABLE FOR MIDDLE GROUP OF ANALISIS OF VARIANCE OF MEANS FOR CLOSURE PROPERTY

Source of Variance	Sum of Squares	Mean Square	df	F-ratio
Approach	0.37	0.37	1	
Within	114.44	0.82	139	
Total	114.81		140	0.45

$F_{1,139}=0.45$
As none of the F -ratios approached the magnitude necessary for rejection of the null hypothesis, the conclusion gave support to the practical consideration of the limited significance of the difference between mean scores. Thus, these data indicated that neither approach has been demonstrated to be more effective than the other for the development of understanding of the closure property.

Four items dealt with various aspects of the multiplicative identity concept. Summary of the data appear in Tables XXVI, XXVII, and XXVIII respectively.

TABLE XXV
SUMMARY TABLE FOR HIGH GROUP OF ANALYSIS OF VARTANCE OF MEANS FOR CLOSURE PROPERTY

Source of Variance	Sum of Squares	Mean Square	df	Foratio
Approach	0.12	0.12	1	
Within	12.28	0.37	33	
Total	12.40		34	0.31

$$
F_{1,33}=0.31
$$

Summary of the analysis of variance data for the low group is found in Table XXVI. The F-ratio for approach of 5.62 for 1 and 36 degrees of freedom was significant at the 0.05 level. An F-ratio of 4.11 would be necessary for the null hypothesis to be rejected at the 0.05 level. As the F-ratio was greater than that magnitude, the conclusion gave support of significant difference between the mean scores. The difference was in favor of the Repeated-Addition approach.

Summary of the analysis of variance data for the middle group is found in Table XXVII. The Fwatio for approach of 304 for 1 and 139 degrees of freedom is not significant at the 0.05 level. An F-ratio of 3.92 would be necessary for the null hypothesis to be rejected at the 0.05 level. Note, however, that the Fwratio wes approaching that magnitude.

Summary of the analysis of variance data for the high group is found in Table XXVIII. The Fwatio for approach of 4.06 for 1 and 33 degrees of freedom is not significant at the 0.05 level. An Fw ratio of approximately 4.14 wowld be necessary for the null hypothesis

TABIE XXVI

SUMMARY TABLE FOR LOW GROUP OF ANALYSIS OF VARTANCE OF NEANS FOR THE MULTIPLICATIVE IDENTITY

Source of Variance	Sum of Squares	Mean Square	df	F-ratio
Approach	5.21	5.21	1	
Within	33.33	0.92	36	
Total	38.54		37	5.62

$F_{1,36}=5.62$

TABLE XXVII

SUMMARY TABLE FOR MIDDIE GROUP OF ANALISIS OF VARTANCE OF NEANS FOR THE MULTIPLICATIVE IDENTITY

Source of Variance	Sum of Squares	Mean Square	df	F-ratio
Approsich	3.16	3.16	1	
Within	144.53	1.03	139	
Total	147.69		140	3.04

$F_{1.139}=3.04$
to be rejected at the 0.05 level.
These data indicated that there was a significant difference in favor of the Repeated-Addition approach for the developing of understanding of the multiplicative identity for the low group. However, the same was not true for the middle and high group.

TABLE XXVIII
SUMMARY TABLE FOR HIGH GROUP OF ANAIYSIS OF VARIANCE OF MEANS FOR THE MULTIPLICATIVE IDENTITY

Source of Variance	Sum of Squares	Mean Square	df	F-ratio
Approach	3.80	3.80	1	
Within	30.93	0.94	33	
Total	34.73		34	4.06

$$
F_{1,33}=4.06
$$

Through an item analysis of the test. much information was gained that was not amenable to statisticel comparisons without stating extreme limitations in regard to significance of results. This inm formation will now be discussed.

Comparisons of Drawings For Item Fortywinree

The results of an analysis of the drawings made by the pupils in each approach to illustrate that multiplication distributes over addition are given in Table XXIX. One of the most enlightening facts revealed in this analysis was the frequency with which the RatioutoOne group used the array, Of the 83 judgeable drawing completed by the Ratio-tomone group, 41 per cent were axrays; of the 28 correct
drawings, 71 per cent were arrays. The Rationto-One group had not been presented with an array to be used as the physical referent in any of the programmed lessons. Of the 103 judgeable drawings done by the RepeatedxAddition group, 81 per cent were arrays; of the 31 correct drawings, 93 per cent were arrays. A second enlightening fact revealed was that no pupil in the Rationtomone group used a coordinate system and ordered pair of numbers. Another informative aspect of the analy sis was that although 75 per cent of the pupils in the Repeated Addition group drew arrays, only 35 per cent of the arrays were corm rect. The fourth informative fact of the analysis was that the Ratiom to-One group used an array correctiy to illustrate the distributive property almost as frequently as the Repeated-Addition group.

TABLE XXIX
AMALYSIS OF DRAWINGS FOR ITEM 43 OF THE POST-TEST

Approach	N	Jucgeable		Array	Correct	
		Total	Coordinate System		Array	Others
Repeated Addition	111	103	0	83	29	2
Ratio-to-One	103	83	0	34	20	8

Two contrasts are noticeable in Table XXIX; One wes that no matter whether the illustration was correct or not, pupils in the Repeated-Addition group tended to use an array to illustrate the probo lem. For example. 54 pupils drew an incorsect array to illustrate the distributive property. Thus, 65 percent of the RepeatedeAddition group's arrays were incorrect. In contrast only 14 pupils, 41 per
cent of the drawings, in the Ratio-tome group committed a similar error.

The other contrasting point is that a relatively large number of the Repeated-Addition group attempted to illustrate the example. A noticeable smaller number of pupils in the Rationto-One group made an unsuccessful attempt to illustrate the example. The pupils in this group were more prone to refrain from trying than to be unsuccessful.

Comparison Among Parts of the Test

A second part of the study was concerned with pupil mastery of multiplication facts and understanding of the mathematical properties applicable to the multiplication of whole numbers. This part of the chapter will discuss (1) the difficulty level of the items and (2) how the high-scoring pupils compared to the lowwscoring pupils in rew gard to the items measuring the various mathematical properties.

The analysis of the data attempted to ascertain whether the pupils seomingly had more difficulty leaving mathematical properties than multiplication facts will bo discussed firsto

To determine this, the proportion of correct responses to items that require knowledge of the multiplication fects and items that require understanding of the mathematical properties applicable to multiplication of whole numbers a, shown in Tables XXX through XXXV respectively. The proportion of corect responses whe found for a.11 pupils irrespective of the approach used. This proportion gave the level of difficulty for each item. When summed for all items and divided by the total number of items in a specifje section the result was the mean level of difficulty for each section.

Summary of the data for the correct responses to items measuring mastery of the multiplication facts is found in Table $X X X$. The item having the greatest proportion of correct responses was item six. The item having the least proportion of correct responses was item eleven. The mean level of difficulty for the mastery section of the final test was 0.73.

TABLE XXX
PROPORTION OF CORRECT RESPONSES FOR MASTERY OF
MULTIPLICATION FACIS: ITEMS $1-18$

Item	Proportion Correct	Item	Proportion Correct	Item	Provortion Correct
1	.91	7	.45	13	.92
2	.74	8	.48	14	.59
3	.54	9	.92	15	.87
4	.51	10	.91	16	.58
5	.97	11	.838	17	.87
6	.85	12	.59	18	.76

Summary of data for the proportion of correct responses to the commutative property items is in Table XXXI. Note. except for item 27. the proportion of correct responses to the commutative items is quite high. Item 27 required the pupils to apply their knowledge of the commutative property to a problem. The mean level of difficulty was 067.

The mean level of difficulty for the distributive property items was .38. Summary of the data for the correct response to these items
is found in Table XXXII. Item 47 appeared to be the least difficult. This item called for recognition of the distributive property.

TABIE XXXI
PROPORTION OF CORRECT RESPONSES FOR THE COMMUTATIVE PROPERTY ITEMS

Item	Proportion Correct	Item	Proportion Correct	Item	Proportion Correct
22	\%98	30	476	45(a)	\%81
24	4.92	40(a)	\%64	47(a)	. 57
27	. 39	40(b)	\%2	47 (d)	0.64

TABLE XXXII

PROPORTION OF CORRECT RESPONSES FOR DISTRIBUTIVE PROPERTY ITEMS

Item	Proportion	Item	Proportion Cownect	Item	Propuration Coxweot
19	030	$4{ }^{4}$		$47(f)$. 71
32	022	45(b)	\%ex		

Sumary of the data for the cormect response to the associative items is found in Table XXXIII Item 42 seemed to be the least difficult. The mean level of difficulty for the associative property

The proportion of correct responses for each item of the closure property was almost equivalent; Sumazy of the data pertaining to this
property is in Table XXXIV. The mean level of difficulty was .65.

TABLE XXXIII
PROPORIION OF CORRECT RESPONSES FOR ASSOCIATIVE PROPERTY ITENS

Item	Proportion Correct	Item	Proportion Corsect	Item	Proportion Correct
21	0.56	$41(\mathrm{~b})$.44	$45(\mathrm{c})$.50
23	.53	$42(a)$.89	$47(\mathrm{a})$.48
31	.48	$42(\mathrm{~b})$.77		

TABLE XXXIV
PROPORTION OF CORRECT RESPOISES FOR THE CLOSURE PROPERTY ITEMS

	Proportion Correct	Item	Proportion Correcet	Item	Proportion Correot
25	.68	35	.62	$47(e)$.64

Summery of the data in regard to the correct responses for the multiplicative identity items is in Table XXXV. Item 28 appeared to be the most difficult. The pupils were required to apply their understanding of this property in an example that contained no numera als. The mean level of difficulty was 067%

Summary of the mean level of difficulty for each of the mather matical properties included in the postetest is in Table XXXVI. The
nean level of difficulty for the discributive property items was 0.38 . This seemingly indicated that the pupils found these items more dif. ficult than those for the other mathematical properties.

TABLE XXXV
PROPORTION OF CORRECT RESPONSES FOR THE MULTIPLICATIVE IDENTITY ITEMS

Items	Proportion Correct	Item	Proportion Correct	Item	Proportion Correct
5	0.97	15	48	$41(a)$.47
8	.83	28	$47(c)$.77	
13	.93	36	.47		

TABLE XXXVI
IEAN LEVEL OF DIFFICULTY FOR THE VARIOUS ASPECTS OF THE POST~TEST

| Aspect | Mean Level | Aspect | Mean Level |
| :--- | :---: | :--- | :---: | :---: |
| Mastery | .073 | Cormutative | .67 |
| Associative | .59 | Distributive | .38 |
| Multiplicative Identity | .67 | Closure | .66 |

Summary of the data for the kigh and low groups in regaxd to the level of difficulty for the various parts of the test is in Table XXXVII. Both groups seemingly found the mastexy items the least difficult and the distributive items the most difficult.

TABLE XXXVII
MEAN LEVEL OF DIFFICULTY FOR HIGFi AND LOW GROUPS FOR THE VARIOUS ASPECTS OF THE POST-TEST

Aspect	Mean Level of Difficulty		
	Total Group	High Group	Low Group
Mastery	.73	. 94	. 49
Commutative	${ }_{0} 67$.83	.38
Associative	. 59	.78	.36
Distributive	. 38	. 50	\%23
Closure	\%66	. 82	4.32
Multiplicative Identity	8.67	.67	. 36

These data indicate that the low group consistently found the various aspects of the post-test more dufficult than the high group did.

Retention Test Results

The results of comparisons involving retention test mean scores are presented below. Three tables will be related to the results. All of the tables will report the toratio using the total or subtest scores of the retention test for specific approaches. The comparisons were concerned with the mean scores of the total group on (1) the test as a whole, (2) the items measuring understanding of the mothematical properties applicable to the multiplication of whole numbers, and (3) the mastery measuring items. Sumaries of the data appear in Tables XXXVIII, XXXIX, and XL respectively.

The data for applying the t-test to the total test means for the retention test is in Table XXXVIII. The mean of the Repeated-Addition group for the total test was 35.79 and that of the Ratio-to-One group was 35.12. The difference between means of 0.66 (35.79-35.12) wes in favor of the RepeatedwAddition approach. However, note that the mean of the Ratio-tome group was slightly higher than that obtained on the post-test, 34.80. Additionally, the difference between the means of 0.66 is 0.60 less than it was for the post-test\% The t-ratio for the difference between means of 0.59 for 212 degrees of freedom was not significent at the 0.05 level. The nuil hypothesis of no difference between the retention test mean scores was not rejected."

The data for applying the t-test to the retention test mean scores for the mastery of the multiplication facts is found in Table XXXIX. The mean of the Repeateduadaition group was 18.71 and that of the Ratiouto-One group was 18.26. The difference between means of 0.44 ($18.70-18.26$) was in favor of tho RepeatedmAddtion approach. The twatio for the differwee between means of 0.79 for 212 degrees of freedorn was not significant at the 0.05 level. The nuli hypothes:is of no difference between the retention test means in regard to mastery of the multiplication facts was not rajected.

The data for applying the tomest to the retention test mean scores for understanding of mathematical properties applicable to multiplication of whole numbers is found in Table Xi. The mean of the Repeated-Addition group was 17.01 and that of the Ratio-tome group was 16.84. The difference between means of 0.17 (17.01-16.84) was in favor of the Repeated-Addition approach The twatio for the difference between the retention test means of 0.23 for 212 degrees
of freedom was not significant at the 0,05 level. Thus, the null hypothesis of no difference between the means was not rejected.

TABLE XXXVIII
TOTAL GROUP MEAN SCORES AND t-RATIO FOR ALU ITEMS
FOR THE RETENTION TEST

Approach	N	Mean	SD	df	t-Ratio
Repeated-Addition	111	35.79	7.37	110	
Ratio-tomone	103	35.12	9.03	102	
				212	0.59

TABLE XXXIX
TOTAL GROUP MEAN SCORES AND t-RATIO FOR ITEMS MEASURING MASTERY OF THE MULTIPLICATION FACTS FOR THE RETENTION TEST

Approach	N	Mean	SD	df	t-Ratio
Repeated-Addition	111	18.70	133.79	110	
Rationtomone	103	18.26	19.55	102	
				212	0.79

These data indicated that neither approach has been demonstrated to be more effective than the other for the retention of multiplication facts or understanding of mathematical properties applicable to the multiplication of whole numbers.

TABLE XI

TOTAL GROUP MEAN SCORES AND $\operatorname{t-RATIO~FOR~ITEMS~NEASURING~UNDERSTANDING~}$ OF MATHEMATICAL PROPERTIES FOR THE RETENTION TEST

Approach	N	Mean	SD	df	t-Ratio
Repeated-Addition	111	17.01	4.71	110	
Ratio-to-One	103	16.84	4.98	102	
				212	0.23

Summary

The results of the statistical test of the hypotheses are summarized below. When the mean score for the total Repeated-Addition group was compared to the mean score for the total Ratio-to-One group, no significant difference was found at the 0.05 level.

The second hypothesis dealt with the comparison of the mean scores of the Repeated-Addition high group and the Ratio-to-One high group. Again, there was no significant difference between the mean scores on any of the three aspects measured.

However, the t-ratio obtained when the mean scores for the mathematical properties for the Ratio-to-One middle group and the Repeated-Addition middle group were compared was slightly higher than the ratio needed for the third null hypothesis to be rejected. The difference was in favor of the Repeated-Addition group.

The fourth hypothesis dealt with the comparison of the mean scores for the low groups. The statistical test resulted in a significant difference between the mean scores on the total test in favor of
the Repeated-Addition group. When the two parts of the test, mastery of multiplication facts and mathematical properties, were investigated, it was noted that this significant difference appeared to be located in the mastery of multiplication part of the post-test. No significant difference was found between the mean scores for the two groups for the items measuring understanding of the mathematical properties.

The results of analysis of the drawings made to illustrate that multiplication distributes over addition revealed some enlightening facts. One of these was that the Ratio-to-One group drew almost as many correct arrays for illustration as did the Repeated-Addition group in spite of the fact that the array was not introduced in the Ratio-toOne approach. A second fact noted was that no pupil used a coordinate system to illustrate that multiplication distributes over addition.

When the data were anelyzed to determine whether the pupils seemingly had more difficulty with learning mathematical properties than they did the mastery of multiplication facts, it was found that the mean level of difficulty indicated greater difficulty with the mathematical properties than with the mastery items." Seemingly, the low group had more difficulty with items pretaining to the mathematical properties thar did the high group.

When the data from the rotention test were analyzed, no signif'icant difference was found at the 0.05 level. These data indicated. that neither approach was more effective for the retention of multiplication facts and understanding of mathematical propertios than the other.

CHAPTER IV

IMPLICATIONS

Introduction

The present study dealt with (1) the effectiveness of using two different physical referents to illustrate multiplication and (2) the relation between physical referent and pupil learning of multiplication as measured by mean achievement for the following parts of the posttest:

1. Total test
2. Multiplication facts
3. Mathematical properties
4. Commutative property
5. Associative property
6. Distributive property
7. Closure property
8. Multiplicative identity
9. Illustration of the distributive property
10. Retention test

A random sample of 214 fourth grade pupils in eight classes for the 1967-68 school year in the River Falls Public Schools and the New Richmond Public Schools took part in the study. Each class was randomly assigned to one of two approaches. Two sets of programmed instructional material, fifteen lesson each, were constructed by the
writer. The corresponding lessons in each set were as alike as possible. The only major difference being in the illustrations being used. One group used the array exclusively as the physical referent to illustrate multiplication; the other used a coordinate system exclusively.

The results of the post-test, constructed by the writer, were subjected to statistical analysis.

Conclusions

The study was designed to test four hypotheses: (1) there is no significant difference between the post-test mean scores of those fourth grade pupils who had been introduced to multiplication by the Repeated Addition approach and those who had been introduced to multiplication by the Ratio-to-One approach. (2) there is no significant difference between the mean scores for understanding of mathematical properties of the high level fourth grade pupils who had been introduced to these properties as related to multiplication by the Repeated Addition approach and those who had been introduced to these properties by the Ratio-to-One approach, (3) there is no significant difference between the mean scores for the understanding of mathematical properties of the middle level fourth grade pupils who had been introduced to these properties as related to multiplîcation by the Repeated Addition approach and those who had been introduced to these properties by the Ratio-to One approach, and (4) there is no significant difference between the mean scores for the understanding of mathematical properties as related to multiplication of the low level fourth grade pupils who had been introduced to these properties by the

Repeated-Addition approach and those who had been introduced by the Ratio-to-One approach.

From the available evidence several conclusions seemed warranted. The first set of conclusions pertained to the first hypothesis. It was found that there was no significant difference between the mean scores for the two approaches when all items on the post-test were compared. Neither was there any significant difference between the mean scores for the two approaches for items measuring mastery of the multiplication facts. When the two approaches were compared as to the understanding of mathematical properties, no significant difference was found between the mean scores.

From the above data one interpretation was made. The interpretation was that during the introductory teaching of multiplication to the total group one approach was not demonstrated to be more effective than the other for the population.

The second set of conclusions pertained to the second hypothesis. There was no significant difference between the mean scores for the Repeated-Addition high group and the Ratio-to-One high group for all items on the post-test. There was no significant difference between the mean scores of the two groups for items measuring mastery of the multiplication facts. Neither was there any significant difference between the mean scores for the two groups for items measuring underw standing of mathematical properties.

The third set of conclusions pertained to the third hypothesis. There was no significant difference between the mean scores for the Repeated-Addition middle group and the Ratio-to 0 One middle group for all items on the post-test and for items measuring mastery of the
multiplication facts. Although slight, a significant difference was found in favor of the Repeated-Addition group when the mean scores for the understanding of mathematical properties items were compared. Such a slight difference caused the writer to wonder if the use of a larger number of items might have caused a change in this conclusion。

The fourth set of conclusions pertained to the fourth hypothesis. There was a significant difference between the mean scores of the Repeated-Addition low group and the Ratio-to-One low group, in favor of the Repeated-Addition approach, for the total test. When the two parts of the post-test, mastery of multiplication facts and understanding of mathematical properties were investigated, it was noted that this significant difference appeared to be located in the mastery of multiplication facts part of the post-test. The t-ratio for this part verified that this assumption was true. Although there was a significant difference between the mean scores of the low groups for items measuring mastery of multiplication facts, no significant difference was found between the mean scores for the items measuring understanding of the mathematical properties. From a difference this large, it was assumed that the use of the Repeated-Addition approach might be more effective than the use of the Ratio-to-One approach for the mastery of multiplication facts for the low group of the population.

The data indicate that neither approach appeared to be more effective than the other for the developing of understanding of the (1) commutative property, (2) associative property. (3) distributive property, and (4) closure propexty for any of the achievement levels. However, the data did demonstrate that the Repeated-Addition approach
seemingly was more effective than the Ratio-tomene approach for the developing of understanding and use of the multiplicative identity for the low group of the population.

The illustration most frequently used, both correctly and incorrectly, to illustrate that multiplication distributes over addition, item 43, was the array. The Repeated-Addition group used the array as the physical referent almost exclusively. Similarly, it was used more frequently by the Ratio-to-One group than any other referent, As the array had not been introduced to this group, the frequency of its use seemed unusual. The coordinate system was not used by any pupil to illustrate that multiplication distributes over addition even though it was used exclusively in the programmed material for the Ratio-to-One group. However, only a small proportion of the pupils in both groups illustrated the distributive property correctly. Apparently, either they did not visualize the problem correctly or did not understand what the exercise required. The pupils in the Rationto-One group produced noticeably fewer drawings to illustrate the distributive property than did the Repeated-Addition group.

Overall, those items dealing with the mathematical properties were seemingly more difficult than those items dealing with the mastery of multiplication facts. Data for the mean level of difficulty of the items seemingly indicate that the pupils found the distributive property items the most difficult.

The comparisons made between the mean level of difficulty of items for the high and low groups seemingly indicated that the low group consistently found the items more difficult than did the high group.

Only one of the four hypotheses was rejected. However, when the final test scores were divided into three levels, there were two other statistically significant differences found between groups. All of these were in favor or the Repeated-Addition approach. Although the significant difference found between the middle groups was slight, there was one between the mean scores for the understanding of mathematical properties as measured by items 23 through 47. It seemed plausible to question its importance because of this slight difference. On the other hand, the statistical difference found between the two low groups as to the total score and mastery items scores was great.

One possible interpretation of these findings is that these three signjficant differences are directly attributable to the difference in physical referent used to illustrate multiplication as this was the only manipulated variable in the study. An acceptance of this interpretation would mean that the association between multiplication fact and the array as a referent operated to facilitate the acquisition, retention, and understanding of multiplication facts more than the association between the coordinate system as a referent and the multiplication fact.

However, this interpretation shovid not be accepted without taking into account certain factors. If the association between referent and multiplication fact did facilitate acquisition and learning of the facts for the low achieving group, then it seemed reasonable that it should have facilitated the understanding of mathematical properties applicable to the multiplication of whole numbers for the group. It also seemed probable that if the Repeated-Addition middie group were superior in regard to mean scores for the mathematical
properties items because of the use of the array as a physical referent, then the practice provided for multiplication facts while studying the mathematical properties should have had some bearing on the mean score for the mastery of multiplication facts items. If this were true, it did not provide a significant difference in mean scores between the two middle groups".

However, this was not the case. The use of the array 2.5 a referent was shown to bo superior only for mastery of the multiplication facts for the low group and for understanding of mathematical properties for the middle group.

Next, there appeared a confounding effect. The second element that seemingly did not support the conclusion that the association between physical referent and multiplication fact facilitated learninge retention and understanding of multiplication is that the Ratio-toOne group used arrays to illustrate that multiplication distributes over addition, item 43, although they had not been introduced to it in the programed material. Not single pupil in the Rationtomo group used a coordinate system as the physical referent to illustrate the same item.

The third element that seemingly feils to support the conclusion that assooiation between physical referent and multiplication fact facilitated learning retention, and understanding of multiplication is that the Repeated-Addition group used an array incorrectly approximately twice as frequently as the group used it correctly to illustrate item 43. In fact, few of the incorrect arrays for items 43 even illustrated the basic multiplication fact, $6 \times 4=24$, being used in the exercise.

These inconsistencies suggest that the conclusion that the use of a single physical referent to illustrate multiplication would facilitate acquisition, retention, and understanding of multiplication was not definitely demonstrated by the study.

However, before the conclusion can be definitely accepted or rejected, further research is needed to clarify whatever a relationship may exist between the physical referent used and the multiplication fact or mathematical property being taught.

The findings also showed that pupills were able to use an array to illustrate multiplication even though it was not specifically used during the introductory teaching of multiplication. On the post-test 19 per cent of the pupils in the Ratio-to-One group used the array correctly to illustrate that multiplication distributes over addytion even though they had not had experience with the axray during the study。

The use of any physical referent exclusively for all achievement levels seemingly has limitations. First, there was some evidence that pupils who had been exposed to the array exclusively used it indiscriminately. On the other hand, pupins who had been exposed to the coordinate system exclusively often failed to make any illustrations unless confident of success. The Repeated-Addition group made 84 arrays to illustrate item 43: out of which onily 29 were correct, Secondly, the Repeated-Addition low-achieving group performed significantly better on those items measuring mastery of multiplication facts; yet, the same was not true for those items measuring understanding of mathematical properties. This might suggest that for low-achieving pupils the array is a simple and easily understood
referent of the multiplication facts.
In conclusion, then, the findings seem to indicate three major points. First, the learning of the mathematical properties, especially the distributive property, was more difficult than mastery of the multiplication facts for all levels. Second, the use of different physical referents to teach introductory multiplication might be chosen according to purpose and achievement level. And last, the choice of physical referent might be dependent upon the meaning of multiplication to be emphasized.

Theoretical Implications

One of the postulates stated that pupils who are in fourth grade are of an age to be able to learn mathematical properties applicable to multiplication of whole numbers as well as multiplication facts. The mean level of difficulty found for mastery items and that for mathematical properties items did not unequirocally support the postalate. Instead, the findings seemingly indioated that pupils differed as to ability to learn mathematical properties related to multiplication. The achievement levels diffored, also, as to their ability to learn the mathemtical propertios applicable to multiplication of whole numbers. In addricionp the findings indicated that the total group found the distributive items more difficult than any other mathematical propexty items.

Another postulate stated that pupils at the fourth grade level of attainment were aided in the development of intuitive thinking by the use of physical referents and that some physical referents might be more effective than others. No significant difference was found
between the total group using the Repeated-Addition approach and the total group using the Ratio-to-One approach. Thus, this study produced no evịdence of a significant relationship between physical referent used and the learning of multiplication for the population.

However, when the various achievement levels using the RepeatedAddition approach were compared to their respective levels using the Ratio-to-One approach, a relationship was found for the lowachieving level. The mean score of the Repeated-Addition low group was significantly superior to that of the Ratio-tomone low group". This study provided some evidence of a significant relationship between physical referent and learning of multiplication facts for the low group of the population.

The third postulate stated that programmed instructional material might be effective for all pupils. This study gives little support to this postulate. Low-achieving pupils found items requiring reading of words more difficult than those items requiring reading of numerals; however, the same difference did not apply to the high-achieving pupils. Thus, it might be assumed thet programmed material for the learning of mathematical properties was not equally as effective for all levels of the populations

The above statements that no evidence was found to verify the postulate that all fourth grade pupils are able to learn mathematical properties applicable to multiplication of whole numbers to some degree do not mean that the postulate is not true. Instead, they mean that this study did not produce any evidence that it was true for all fourth grade pupils in the population. However, such statem ments cast doubt on the validity of the postulate for the teaching of
introductory multiplication to all fourth grade pupils.
The results of this study were in line with the results of other studies that young children many times do have difficulty with learnthe mathematical properties applicable to multiplication of whole numbers. And secondly, however, that many fourth grade pupils are able to understand those mathematical properties applicable to multiplication of whole numbers.

Implication for Future Research

Effort to determine what physical referents are most effective for the teaching of the various mathematical properties applicable to multiplication of whole numbers to the various achievement levels needs to be continued. The results of the present study are not justification for the cessation of effort to determine what physical referents are most effective for learning multiplication by fourth grade pupils.

The portion of the study that revealed a significant relationship between the use of an array and the learning of mathematical properties but not between the use of an axray and the learning of multiplication facts for the middle group was surprising。 It would seem reasonable that the finding should of held true for both aspects. Thus, further research should be done in regard to this portion of the study.

In addition, the portion of the study that revealed a significant relationship between the use of an array and the learning of multiplication facts but not between the use of an array and the learning of mathematical properties for low-achieving pupils was also surprising。 It, also, would seem reasonable that the findings should of held true
for both aspects. Thus, further research should be done in regard to this portion of the study.

Because of the findings cited above, it seems reasonable that further research should be done to determine the effectiveness of varying the physical referent according to the aspect of multiplication being taught.

And finally, further research needs to be conducted to detemine the effectiveness of the use of programed instructional material to teach introductory multiplication to 10 wachieving fourth grade pupils.

A SELECTED EIELIOGRAPHY

(1) Adkins, Dorothy, Construction and Analysis of Achievement Tests. Washington, D. Co: U. So Govermment Printing Office, 1947.
(2) Banks, J. Houston. Learning and Teaching Arithmetic. Boston: Allyn and Bacon, Inc., 1959.
(3) Bloom, Benjamin. Taxonomy of Educational Objectivess The Classification of Educational Goals Hendbook I: Cognitive Domain. New York: David MoKay Company. Inc. 1956.
(4) Bruner, Jerome Erocess of Education. New Yowis Vintage Fress. 1960。
(5) Bruner, Jerome, Rose Olver, and Patricia Greenfield. Studies in Comative Groutho New York: John Wiley and Sons, Inc. 1966.
(6) Burns, Faul. "Arithmetic Research That Fas Made a Difference." Elementary School Journale LV (April, 1963). 386-92.
(7) Buswell, Guy. Teaching Arithmetic We Need. New York: Ginn and Company. 1961.
(8) Cambridge Conference on School Mathematice The Report: Cogly for School Mathernatios. Bowtoris Houghton Miffin Conpary, 1963.
(9) Coxford, Arthux. "piaget: Number and Measurement." Arithmetic Teachers X (November, 1963), 419-27.
(10) Davis, Robert. "The Madison Froject Approach to a Theory of Instruction." Joumal of Research in Science Teaching. (1964). 146-62.
(11) Deans, Edwina. Elementary School Mathematics-Hew Dixectionso Washington, $\mathrm{D}_{\mathrm{o}} \mathrm{C}$ o $\mathrm{U}_{\mathrm{S}} \mathrm{S}$. Government Printing Office, 1963.
(12) Dienes, Zoltan. "Insight Into Axithmetic Process" School Reyiew IXXII (Sumnex, 1964), 183-200.
(13) Duckworth, Eleanor. "Piaget Rediscovered." Newsletter: Science Studye (June, 1964), 2-4.
(14) Dutton, Wilbur. Evaluating Pupils' Inderstanding of Arithmetic. Englewood Cliff:, Prentice-Hall, 1964.
(15) Dutton, Wilbur and L. Adams. Arjthmetic for Teachers. Englewood Cliff: Prentice-Hall, 1963.
(16) Edwards, Allen. Experimental Design in Psychological Research. New York: Holt, Rinehart and Winston, Ine., 1956.
(17) Eicholz, Robert, Phares OPDaffer, Charles Erunfiel, and Merrill Shanks. Elementary School Mathematics. Reading: AddisonWesley Publishing Company, Inc., 1964.
(18) Fehr, Howard" Learning to Use Axithmetic-4. Boston: D.C. Heath. 1962.
(19) Fehr. Howard. "Modern hathematiem and Good Pedagogy." Axithmette Tomehore X (November, 1963). 408.
(20) Fehr, Howard and Jo McKeeby Philithps. Teaching Modern Math ematics in the Etementary Sohoolue Reading: AddisonWesley Publishing Company, 1967。
(21) Gleason, Gerald. "Will Programmed Instruction Serve People"?" Educstiong1 Leadershie, XXIII (Mreh, 1966), 473.
(22) Glemnon Vincent. "Balunced Frogress in School Mathematics." Educational Leaderishiga XTX (March, 1962), 354-58.
(23) Good, Carter. Dictionary of Educatione New York: McGraw-Bill Book Company, 1959.
(24) Gray, Roland. An Expoxinentel Stady of Intwoductory Mutipijca土ione Ann Arbor: University Microfilm. Inc., 1965.
(25) Hartung, Leo, Henry Van Engen, and Lois Knowleso Seaing Through Axithmotics Chicago: Scott, Foresman and Company. 1963.
(26) Helmstader, G.G. Exinciples of Psxchological Measurement. New Yoxk: Appleton-Century-Crofts, Ine. 1964 .
(27) Leiderman, Gloria. Wathenetics and Science Programs for the Elementary School Year." Review of Educational Ressarch. XXXV (Aproil. 1965), 154-64.
(28) Lyman, Howard. Test Scores and What They Meane Englewood Cliff: Prentice-Ha11, 1963.
(29) Mastian, Richard. "A Comparison of the Effect of Two Mathenatics Curricula on the Mathematical Understanding of Fourth Grade Pupils." Dissertation Abstract, XXV (1965), 3439.
(30) McCollough, Celeste. Introduction to Descriptive Statistics and Comelation. New Yorks MeGraw-Hill Book Company, 1965.
(31) Miller, Jack. "An Experimental Comparison of Two Approaches to Teaching Multiplication of Fractions." Journal of Educational Research. IVII (May-june, 1964), 468-71.
(32) Morton, Robert. Teaching Children Arithmetic. New York: Silver Burdett Fublishing Company, 1953.
(33) National Council of Teachers of Mathematics. The Growth of Mathematical Ideas, Grades K-13:. Twenty-fourth Yearbook: Washington, D.Co: The Association, 1959.
(3) National Council of Teachers of Mathematics. The Revolution in School Mathematics: A Challonge to Administrators and Teachers. Washington, D.C.: The Assoctation, 1961.
(35) Overman, James. The Teaching of Axithmetic. Chicago: Lyons and Camahan Publishing Company. 1961.
(36) Piaget, Jean. "Cognitive Development in Children: Development and Learning." Jovmal of Resegroly in Science Teaching, II (1964) , 176-86.
(37) Russell, David Children's Thincing Waltham: Blaisdell Fublishing Company, 1961.
(38) Schell, Leo. Two Aspects of Introductory Multiplications. The Array and the Distwibutive Property. Ann Arbor: University Microfilm, Inc., 1964.
(39) School Mathematies Study Group. Mathenatics for the EIementary School, Grades 4 6. New Haven: Yale Press, 1962.
(40) Suppes, Patrick. Doyeloment of Mathematical Conoepts in Chidren. Stanford: Cooperative Research Project Number 727.1964.
(41) Swain. Robert. Indexgtanding Axithmetic. New York: Hoit, Rinehart and Winston, Inc., 1965.
(42) Swenson. Esther. Teaching Arithnetic to Children. New York: The NacMillan Company, 1964.
(43) Thorburn, Tina (ed.). Greater Cleveland Mathematies Erogram-4. Chicago: Science Research Associates, 1963.
(44) Thorndike, RoL. "How Children Learn the Principles and Techniques of Problem-Solving,i Learning and Instruction: Forty-Ninth Yearbook Part Io (1950), 192-216.
(45) Travers, Robert. An Introduction to Educational Research. New York: The MacMillan Company, 1964.
(46) Upton, Clifford. Building Interest. New York: American Book Company, 1963.
(47) Van Engen, Henry. Eoundation of Elementaxy School Axithrietic. Chicago: Scott, Foresman and Company, 1965.
(48) Ward, Morgano Modern Elementary Mathenatics. Reading: Addison-Wesley Publishing Company. 1964.
(49) Weaver, Jo Fred. Mathematics in the Elementary School." Review of Educational Research, XXXIV (June, 1964), 280
(50) Wert, James, Charles Neidt, and Stanley Ahmann. Statistical Methods in Educational and Psychological Research. New York: Appleton-Century-Crorts, Inc. 1954.
(51) Wirth, Arthur. John Dewey as Educator: His Desien for Woriong Education. New York: John Wiley and Sons. Inc., 1966.
(52) Wren, F" Lynwood. Basic Mathematical Concepts. New York: McGraw-Hill Book Company, 1965。

APPENDIXES

APPENDIX A

May 10, 1967

Dear Sir:
During the fall term of the 1967-68 school year, a study in regard to the teaching of introductory multiplication is to be conducted. Elementary school systems located within a sixty mile radius of Wisconsin State University-River Falls are being contacted to see if they are willing to take part in the study.

The research will be conducted at the fourth grade level. Programmed material that coincides with the subject content of the textbook is to be distributed to the participating classes. Teachers will be requested to use the material whenever a new multiplication fact is introduced.

In order that the research might be done with a random sampling from the area, would you answer the accompanying questionaire and mail it to me. A self-addressed envelope has been included for your convenience.

Thank you.
Sincerely yours,

Mrs. Naunda Tietz
502 West Maple
Stillwater, Oklahoma 74074

RESEARCH QUESTIONNAIRE

School System

Administrator

Would you be willing for your school system to be part of the population from which the sample group is drawn?

$$
\text { Please check } \overline{\text { Yes }} \overline{\text { No }}
$$

If you answer "yes" to the previous question, the following information is requested.

1. How many fourth grade classes are there in your school system from which to select participating classes?
2. What arithmetic text will be used in your school system during the 1967-68 school year?

APFENDIX B

REPEATED ADDITION

Lesson 1:

1. Bill's mother made breakfast for the campers. She needed eggs for five boys. Each boy was to have two eggs. Bill's mother thought, "I need to boil____eggs."

Think of some ways Bill's mother could find out how many eggs she needed to boil. Check to see if any of your answers agree with the ideas suggested below.

One fourth grade class suggested three different ways of finding how many eggs Bill's mother needed. These are given in exercises 2. 3. and 4. Read each exercise, study the drawing, and try to answer the question.
2. Jill said, "Bill's mother could have made a drawing that showed five rows of eggs with two eggs in each row. Then she could have counted.

Bill's mother could get the right answer by c \qquad。
\qquad
3. John said that he thought Bill's mother could have added the number of eggs in each row.

0	0	2
0	0	2
0	0	2
0	0	2
0	0	2

4. Bob said, "Bill's mother could look at the drawing and think to herself. 'Five twos are 10.' she would know right away that she needed to boil ten eggs.

She could look at the array, notice the number of eggs in each row, and notice the number of rows.

Bill ${ }^{1}$ s mother could get the right answer. She thought \qquad $2^{9} 5$ are 10.

five

When you think with numbers such as 5 and 2 and get 10 , you are multiplying。
5. Look at these drawings. What two numbers can you think with to get the total number in the drawing? Write and oircle the numerals. The first one is done for you.

6. A drawing like Jill, John, and Bob made is called an array. Each drawing for exercise \#6 was an array, too. Do you think that you know what an array is?

Draw a line around each drawing below that is an array.

circle a and d
7. Mary looked at this array. She said, "Five and five and five are fifteen。 I can add with the help of an array as well as using it to help me learn to multiply.

$$
\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}
$$

8. Jim looked at the same array. He said, "Three fives are fifiteen." Was Jim adding or multiplying?

He was \qquad -

9o. Mary said, "Jim found the answer faster by multiplying than I did by adding." Maybe \qquad is often faster than adding。
multiplying
Jim could have written three fives are fifteen like this

$$
3 \times 5=15
$$

10. Look at each array. For each one what two numbers do you think with to get the total number in the drawing. Write and circle the numerals. How many things are there in each drawing? The first one isg done for you.

REFEATED ADDITION

Lesson 2:

1. Probably, since you can remember playing games you have been using counting numbers. The set of counting numbers can be written using numerals as $\{1,2,3,4, \ldots$.$\} . The three$ dots,..... mean to continue the numerals on and on. The numeral 5 represents a counting number. The numeral 35 represents a counting n -
number
2. If to the set of counting numbers you add zero (0), you will have the set of whole numbers. To get the set of whole numbers one needs to add ___ to the set of counting numbers.

0

3. The set of numbers written as $\{0,1,2,3,4, .0$. represents a set of \qquad numbers.
4. Using whole numbers we can do certain mathematical operations. An operation is a way of associating with two numbers a third number called the result. The operation called addition was used when JIm associated the numbers two (2) and three (3) and got the result five (5).

When doing the operation addition, Bill associated the numbers two (2) and four (4) and got the resul.t \qquad .
5. Using whole numbers we can also do an operation called multiplication. If Mary used the multiplication operation to associate the numbers two (2) and three (3), she would get the result six (6).
5. continued

Next, Mary associated the numbers two (2) and four (4) and got the result eight (8). Mary was using the \qquad operation.
multiplication
6. The results for associating the same numbers in the operations of multiplication and addition the same. were were not
were not
7. When we associate the number eight (8) with the two numbers two (2) and four (4), we are using the___ called multiplication.
\qquad
operation
8. When we associate the number six (6) with the two numbers two (2) and four (4), we are using the operation called \qquad -
addition
9. Although we used the same two numbers in \#7 and \#8, the results were not the same. We got a unique result for each operation. The mique result means that in a given operation there is only one right number to associate with any two numbers (pair of numbers)

Jane used the operation multiplication. She associated the numbers three (3) and three (3) with the result \qquad -
…… nine
10. Bill used the multiplication operation to associate the numbers three and two. He got the unique number. \qquad -
11. Bill's xnique number six (6) and Janes's unique number (9) are in the set of wholen _-
\qquad
numbers
12. The pairs of numbers used in \#8 and \#9 are numbers.
13. The result from associating the two numbers (pair of numbers) in \#8 and \#9 was a w number.
whole
14. In mathematical operation whenever two whole numbers are associated and the result is a whole number. we say that the closure property is true for that operation.

When we use an operation in which the result is alwavs the same kind of number as the pair of numbers, the \qquad property is true for that operation.
closure
15. Peter said, "The closure property must be true for addition because when I add two whole numbers. I get a whole number."

Peter was right. The closure property is true for addition of W \qquad numbers.
whole
16. Tom said. "The same thing is true for multiplication of whole numbers. When I multiply a whole number by another whole number. I get a whole number for the answer. The property is true for the multiplication of whole numbers."
closure
17. Work this exercise. Is Tom ${ }^{1}$ s statement true every time? Did you get a whole number for the answer when you multiplied a whole number by a whole number?

$$
\text { a. } 2 \times 2=
$$

c. $2 \times 1=$ \qquad
b. $3 \times 3=\square$
d. $4 \times 2=$ \qquad
a. $2 \times 2=4$ bo $3 \times 3=9$ o. $2 \times 1=2$ d. $4 \times 2=8$
18. We didn't work very many examples to check Tomps statement. But, it is true that the closure property holds for the multiplication of whole numbers. Sometimes we say it like this. The multiplication of whole numbers is closed.

REPEATED ADDITION

Iesson 3:

1. Mary and Jane were arranging some stamps to be placed in the stamp book. Mary arranged hers in a row like this Jane arranged here in a column like this
\square
2. If the stamps were arranged so that each stamp was placed next to the one ahead of it, the stamps were arranged in a \qquad \longrightarrow row
3. If the stamps were arranged so that each stamp was placed below or above the stamps already on the table, the stamps were arranged in a \qquad .
column
4. It is important in our work in multiplication today that we write the numeral representing the number of rows first in a multiplication fact and the numeral representing the number of columns second.

In this array there are___rows and 4 columns.

0000
5. Nary looked at the stamps in her stamp book. She said, "The stamps are arranged in 5 rows and 3 columns. This shows that five $3^{\circ} \mathrm{s}$ equals 15.

$$
5 \times 3=15
$$

6. Deseribing these arrays as Mary did. Show that your answer is correct by adding. The first one is done for you.
a. Three_4s equals 12. $4+4+4=12$

c. $\frac{r^{7 i}}{y^{2} \text { equals }} 14$.
d. $\frac{3^{\text {is equals } 150}}{3}+3+3+$ $+\quad=15$

\qquad
\qquad

| bo four | |
| :---: | :---: | :---: |
| 4 | co two |
| 7 | do five |
| 3 | |

7. Jill said, "It is easier to write the addition example, four and four and four equals twelve with numerals like this, $4+4+4=$ 12, than it is to write it with words. I can write the multiplition fact, "three fours equals twelve" with numerals, too. It is written like this using only numerals and signs。

$$
3 \times 4=12
$$

8. When written as in the exercise above, a multiplication fact is read, "three fours equals 12.0

Using numerals as Jill did, describe the following multiplication facts.
a. Three fours equals twelve. \qquad
b. Six two's equals twelve.
$\underline{\square}=$
c. Two seven's equals fourteen. ___ $=$
a. $3 \times 4=12$ bo $6 \times 2=12 \quad$ o. $2 \times 7=14$
9. In the multiplication fact, $2 \times 7=14$, each of the numexels 2 and 7 is called a factor.
9. continued

In the multiplication fact $4 \times 4=16$, each of the $4^{7} s$ is a f \qquad。

> factor
10. In the multiplication fact $6 \times 2=12$, \qquad and \qquad are factors.

11. The answer in the fact $2 \times 7=14$ is called the product.

In the multiplication fact $4 \times 4=16$, the product is \qquad -

12. In the multiplication fact $6 \times 2=12$; \qquad is the product.
\qquad
13. Study the arithmetic facts given below. Decide which ones are multiplication facts. Circle the product of each multiplication fact.
a. $3+3=6$

b. $3 \times 4=12$

c. $2 \times 6=12$

14. Using numerals to write the multiplication facts for the arrays.
a.

b.

x \qquad $=14$
\qquad X \qquad $=$

0 。

$\ldots \quad$ _ \quad _
d.

b. $2 \times 5=10$
c. $4 \times 4=16$
d. $4 \times 3=12$
15. The operation of multiplication can be performed on just a pair (two whole numbers) at one time. An operation that is done on just two numbers is called a binary operation.

Multiplication is a b \qquad operation because I can only multiply two number at one time.

Lesson 4:

1. Tom bought a box of candy. He said, "If I look at the box one way there are three 6° s. If I look at the box another way. there are six 3^{3} s. Eut, there are always 18 pieces of candy. Is Tom right?

2. Three 6's equal \qquad 3's.
3. yes 2. six
4. Nary illustrated that three 6^{7} s equals six 3° s. She drew these arrays. What facts would Mary write under each array?

$$
\mathrm{b}_{0} \times \ldots=18
$$

a. $3 \times 6=18$ b. $6 \times 3=18$
4. Tom and Mary showed that
 multiplication facts might use the same factors.
5. You might have heard these two multiplication facts called pairs of facts. Write two pairs of facts you could use to illustrate a dozen eggs in an egg carton.
2. $3 x=12$
b. $2 x=12$
$4 x$ \qquad $=12$

$$
\ldots 2=12
$$

6. Write the pairs of facts which each array below may be used to illustrate. The first pair is done for you. If you don't know the answer, you may need to count.

b。

d.

REPEATED ADDITION

Lesson 5:

1. If two multiplication facts have the same factors, their products are
```
        equal not equal
```

equal
Jane did not want to draw a new array each time she found the product of two factors. She used an array like the one shown in this exercise to find the product of the pair of multiplication facts in which 4 and 5 are factors. She drew the line to help her.. Then she counted the number of dots inside the lines. Finally she wrote this pair of facts:

$$
4 \times 5=20 \quad 5 \times 4=20
$$

1	2	3	4	5	6	7	8	9	
1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0

2. Write the pairs of facts Jane discovered using the factors given below (If you use a different colored crayon for each pair of facts, you can use one chart).
a. for 3 and 7 b. for 3 and $\left.8 \begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
3. continued

$$
\begin{aligned}
\text { c. for } 4 \text { and } 6 & \text { d. for } 5 \text { and } 1 \\
\times & = \\
\times \quad \times \quad & =
\end{aligned}
$$

3. In all of the exercises that Jane did, the number of dots for each pair of facts (ioe. $4 \times 5=20$ and $5 \times 4=20$). This shows that multiplication of whole numbers is commutative. An operation is commatative if the order of the factors may be changed without changing the result.

Jane could change the order of the factors in the multiplication fact $3 \times 8=24$ to $8 \times 3=24$. The result was not changed. Multiplication of whole numbers is c _.
4. Do the following facts show that multiplication of whole numbers is commutative?
a. $3 \times 7 \stackrel{?}{=} 7 \times 3$

b. $3 \times 8 \stackrel{?}{=} 8 \times 3$
yes no
c. 4×6 ? 4×6
$\overline{\text { yes no }}$
d. 5×1 ? 1×5
yes no
a. yes bo yes co no do yes
5. Multiplication of whole numbers is c \qquad because the order of the factors may be changed without changing the result.

REPEATED ADDITION

Lesson 6:

1. John said, "I think that the product in a multiplication example is always larger than either of the factors." He drew these arrays and wrote the multiplication fact for each array.

C。 * * * * * * *

* * * * * * *
* * * * * * *

a. \qquad x \qquad
\qquad b. x \qquad $=$ \qquad X \qquad $=$ \qquad
d.

\qquad $=$
f. \qquad x
\qquad $=$
a. $4 \times 5=20$ b. $4 \times 6=24$ c. $3 \times 7=21$ d. $1 \times 5=5$
e. $6 \times 1=6$ f. $1 \times 4=4$

John was

2. The product for a multiplication example \square
larger than either of the factors.
3. When John multiplied 5×1, he got the product \qquad。
4. The answer for 5×1 was 5. This is one of the factors, too. So when John multiplied 5×1, the answer was the same as the factor \qquad -
\qquad
5. When John multiplied 1×6, the answer was \qquad - Six was one of the factors. The other factor was 1.
\qquad
6. If John had multiplied 9×1, he would have got the answer of . Nine is one of the factors. The other factor is
\qquad
7. Everytime John multiplied when one of the factors was 1 . the product was the same as the other f
factor
8. Work these examples. Check to see if what factor you have written in \#7 is true.

9. Both John and you have discovered the multiplicative identity. One is the multiplicative identity. In other words when a number is multiplied by one, the answer is always the same as the other number. (i*e. $5 \times 1=5$)

The numeral \qquad represents the multiplicative identity.

REPEATED ADDITION

Lesson 7:

1. Ben was not sure that his answer to this multiplication
fact was correct.
$4 \times 8=32$

He drew these arrays to check his answer.

$16+16=32$
Each of the arrays shows that $\quad x \ldots=16$.

2. Ben added the product from the first array to the product from the second array.
$16+$ \qquad $=32$ 。
\qquad
3. Alice said, "I know that $4 \times 3=12$ and $4 \times 5=20$. If I add 12 and 20 , I get 32. So I have shown that $4 \times 8=32$. I will draw the arrays to illustrate my work. I renamed the factor 8."

12
$4 \begin{array}{llllll} & & & & 5 \\ X & X & X & X & \\ X & X & & \\ X & X & X & X & \\ X & X & X & X & X \\ X & X & X & X & X\end{array}$ 20
4. Both Ben and Alice renamed the factor 8. Ben renamed the factor 8 to (4 and \qquad
5. Alice renamed the factor 8 to $(3+\ldots)$.
6. Imagine that each of the numerals below represents the second factor in a multiplication fact. Can you rename each of the factors? The first one is done for you.

b. either of these
c. any of these
$1+2$
$1+8$
$8+1$
$2+1$
$2+7$
$7+2$
$3+6$
$6+3$
7. Terry said, "I didn't rename 8 like either Ben or Alice. I renamed 8 as $(2+6)$. Ben's example will now look like this."
$4 \times 8=$
$4 \times(2+6)=$
"I used the parenthesis () so that I knew what numerals were used in the renaming of
8. Peggy didn ${ }^{\text {t }}$ believe that Terry could get the right answer so Terry drew these arrays to show her.

		2		6					
	0				0	0	0	0	
	0				0	0	0	0	0
	0			0	0	0	0	0	0
4	10	0	4	0	0	0	0	0	

$$
4 \times 2=8 \quad 4 \times 6=24 \quad 8+24=32
$$

9. Peggy said, "Yes, Terry can get the right answer by renaming 8 as $(2+6){ }^{\prime \prime}$
\qquad
10. John said, "Let's try another example and see how we can rename the second factor. Let's use 4×7. I will draw the array that shows 4×7. John drew this array.

$$
4 \times 7=
$$

4

$$
\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right.
$$

$$
28
$$

11. Andy said. "I ${ }^{3} \mathrm{~m}$ going to rename 7 as $(4+3)$. Now the array will look like this."

Show with numerals how Andy renamed 7 . b. 4×7

$$
4 \times(4+\square)
$$

12. Andy continued by saying, "First I multiplied 4×4 and then 4×3. Then I added the two products ${ }^{\text {" }}$
13. continued

Can you complete the following exercise to show Andy's work?
a. $4 \times 7=4 \times(4+\ldots)$
b. $\quad=(4 \times 4)+(4 \times \longrightarrow)$
c. $=\ldots+12$
d. $=28$
a. 3 b. 3 co 16
13. Jerry looked at Andy's work and said, "You renamed 7 as $(4+3)$. I am going to rename 7 as $(5+2)$. My work will look like this."

14. John laughed. "Both Jerry and Andy are right. But I see another way the factor 7 can be renamed. We can rename 7 like this."
a. $4 \times 7=4 \times(1+6)$
b. $\quad=(4 \times 1)+(4 \times-\quad)$

Co $=4+\square$
d. $=28$

The children had discovered something new about multiplication of whole numbers. By the time you have the next lesson will you have discovered what it is?

Lesson 8:

1. Did you discover what the new property of multiplication of whole numbers is? If not let's see if Alice's work will help you.
2. Alice illustrated the multiplication fact 3×9 by this array first. Later she renamed the factor 9 and drew different arrays.

$$
3 \begin{array}{ccccccccc}
\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
$$

3. This is the second illustration that Alice made.

a. Alice said, "I renamed the factor 9 as (5 + \qquad).
b. I multiplied $3 \times 5=$ \qquad .
c. I multiplied $3 \times 4=$ \qquad。
d. I added 15 and 12 and got the sum of _._.
a. 4 b\% 15 e. 12 d. 27
4. Allee got the same result in \#2 and \#3. In \#2 she showed that $3 \times 9=$ \qquad
In \#3 she renamed the factor 9 to $(5+4)$. She then said that $3 \times(5+4)=27$.

Alice worked the example like this
4. eentinued

$$
\begin{aligned}
3 \times(5+4) & =(3 \times 5)+(3 \times 4) \\
& =15+ \\
& =27
\end{aligned}
$$

27
5. Alice get the same result when she added first $(5+4)$ to get the factor 9 and then multiplied as she did when she multiplied 3×5 and 3×4 first and then added the products.
6. Alsee had discorvered the important property. It is known as the distributive lawto We say that multiplication distributes orer addition when it doesn't make any difference whether you gdd te get the factor first or you multiply each part first and then add.
7. Nary used the distributive yaw to show that her answers wore carpect.
a. $5 \times 5=$ \qquad
$5 \times(3+2)=(5 \times 3)+(5 \times \ldots)$
$=$ \qquad $+10$
$=$ \qquad
251512
b. $5 x 6=$ \qquad

$$
5 x(4+2)=(5 \times \square)+(5 \times 2)
$$

$$
=20+\square
$$

$$
=\quad 30
$$

30 40 10
8. Peui used the distributive law to do this exercise.

$$
\begin{aligned}
7 \times 4 & =(\times 1)+(7 \times 3) \\
& =7+ \\
& =28
\end{aligned}
$$

9. Mary said, "If I can say 8×4 can be renamed $8 \times(2+2)$, then I can say that $8 \times(2+2)$ can be renamed as $8 \times 4{ }^{\circ}{ }^{\circ}$

Was Mary right?

```
yes no
```

$10_{0}^{\prime \prime}$ Can you fill in the answers to this exeroise?
2. $9 \times 3=$
b. $(9 \times 1)+(9 \times 2)=9 \div$ \qquad $=27$
c. $(8 \times(2+2)=(8 x \ldots)+(8 \times 2)=16+16=32$
d. $8 x 4=$ \qquad
2. 27 b. 18 c. 2 d. 32
11. The distributive property holds for the multiplication of whole n

Lesson 9:

1. Jane said, "Now that we have learned about the distributive property for whole numbers, we won't have any trouble finding out how much four 9^{1} s will be. We know that we can rename the factor 9. I am going to rename 9 as $(5+4)$. I know that $4 \times 5=20$. I also know that $4 \times 4=16$. Then if I add 20 and 16, I get 36." The answer is
right wrong
right
Check the work with these arrays.

$\longrightarrow \quad+\quad 16$
2. When Jane added 20 and 16 , she got 36. Her answer was
3. Mary said. "If $4 \times 9=36$, then \qquad $\times 4=36$ because multipiication of whole numbers is commutative。"

If Jane had used the multiplication fact 9×4, she could have renamed the factor 4 as $(1+3)$ or $(2+$ \qquad).
4. Peter asked, "Who can look at these arrays and tell me the multiplication fact?"

$5\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & & & 0\end{array}\right.$

5

$$
+
$$

$$
=35
$$

5. "That's easier. All of us can do it," remarked Gary.
a. $(5 \times 1)+(5 \times 6)=+\quad+$
b. $(5 \times 1)+(5 \times 6)=5 \times(1+\square)$.

$$
5 \times(1+6)=5 \times 7
$$

a. 5:30
6. "Gary, did you notice that we used the maltiplicative identity?" asked Peter.
"Yesp" answered Gary. "The multiplicative identity was one in the multiplication fact $5 \times 1=$ \qquad
\qquad
7. Mary reminded the class that multiplication of whole numbers was c \qquad because 5×7 equals 7×5 。

conmutative

"Today we have one more new multiplication fact to learng" commented Miss Brown. "The multiplication factors are 6 w 6. Does anyone think he know the answero?
8. Fenry said, "I think that $6 \times 6=36$. We have learned that $6 \times 2=12$. We have learned that $6 \times 4=24$. So if I $\frac{}{\text { add multiply }} 12$ and 24. I get 360°
9. Helen said, " I can prove Henry is right by renaming the factor 6 as $(1+5)$. I know that $6 \times 1=$. I know that $6 \times 5=30$ 。 When I add 6 and 30 , I get the same answer as Henry. The answer is 36.1
10. Can you complete this exercise?
a. $6 \times 6=$ \qquad
b. 5 x \qquad $=35$

$$
\text { c. } \quad \times 9=36
$$

REPEATED ADDITION

Lesson 10:

1. Henry said, "I have learned to check the product to a multiplication fact by renaming the fact, I will do it like this."
a. Multiplication fact$4 \times 9=$
\qquad
b. Rename one factor
$4 \times \quad(4 \div$ \qquad
c. Multiply each numeral of the factor by the other factor.

$$
(4 \times 4) \text { and }(4 \times 5)
$$

d. Add the two products
$16+20=$ \qquad
e. This way of working the example could be called "multiplying twice and adding."
a. 36 b. 5 d. 36
2. Henry has learned that multiplication distributes over a \qquad -
3. Henry \qquad check the product of a multiplication fact can can not by making use of his knowledge about the distributive property.

Miss Brown said. "We have some new multiplication facts to learn today. Let's use Henry's method to check our answers."

4．Peggy drew a new array on the board．
She said．＂I have shown that five

are 40. | 0 | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | | | | | | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

$8^{{ }^{2}}$

5．Paul checked Peggy＇s work by drawing lines to separate Peggy＇s array like this

Peggy＂s answer lis right。

6．If 5 x $8=40$ ，then $8 \times 5=40$ because maltiplication of whele nurnbers is c

7．Some of the children were not sure that Peter had written the answer on the board for this multiplication fact $6 \times 7=42$ ． They decided to draw an arysy and check using Henry＂s method．

8．Karen looked at this array and said．I am going to rename the factor 7 as $(2+5) 0^{\prime \prime}$ Draw lines to show what Karen did．

0000000
Karen thought。
0000000
0000000
a． $6 \times 7=(6 \times 2)+(6 \times 5)$
0000000
0000000
0000000
b。
©．$=42$
8. Continued

				5					
0	0	0	0	0	0	0			
0	0	0	0	0	0	0			
0	0	0	0	0	0	0			
0	0	0	0	0	0	0			
0	0	0	0	0	0	0			
7	0	0	0	0	0	0			

9. Write the answers to this exercise.
a. $6 \times 7=$ \qquad
b. $7 \times 6=$ \qquad
c. $5 \times 8=$ \qquad
c. $8 \times 5=$ \qquad
a. 42 b. 42 c. 40 d. 40

REPEATED ADDITION

Lesson 11:

1. We know that an array can be used to illustrate more than one multiplication fact. This array could be used to illustrate two multiplication facts. If I look at it one way, it illustrates that
2. $5 \times 9=$ \qquad
If I look at it another way it illustrates that

$$
\left.\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

b. $9 \times 5=$ \qquad
a. 45 b. 45
2. Sometimes the array has the same number of \qquad as it has columns. In that case there is only one multiplication fact to learm.
rows
3. This array shows that there are ____ rows and \qquad columns.

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

7 rows 7 columns
4. The array in \#3 illustrated that $7 \times 7=$
5. Jim was absent from school nine weeks. The children wanted to know how many days Jim was absent. Bob knew that there were five school days each week. So they decided to draw this array.
a. Jim was absent \qquad days.
b. $9 x$ \qquad $=45$.

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right.
$$

a. 45 b. 5
6. In order to play a card game, each player needed eight (8) cards. Tom said, "We need to have \qquad cards if six (6) of us are going to play."

Tom knew that five 8's was equal to 40. He said, "I will add one more set of 8 . That will make the result 48 .

$$
\begin{aligned}
& \text { 7. a. } 6 \times 8=\square \\
& \text { b. } 8 \times-=48 \\
& \text { a. } 48
\end{aligned}
$$

REPEATED ADDITION

Lesson 12:

1. Mary said, "We have 9 girls in each Girl Scout troup. There are six troups in this school. I wonder how many girls are Girl Scouts. If I draw an array with 9 girls in each row, I will need to draw ___ rows." Mary's array looked like this
$6 \times 9=$

$$
\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right.
$$

2. Jane said, "If we had 6 girls in each Girl Scout troup and had 9 troups, we would have had \qquad Girl Scouts, also.
3. Mise Brown said, "The other day we learned that six 8^{8} s was equal to __. Today we want to find out how much seven 8 's would be. Does anyone know how we can find the answer?"
4. Tom said, "All. we need to do is add one more set of 8's to the answer for six $8^{\circ} \mathrm{s}$. We know that six 8° s was equal to 48 . If we add 48 and 8 , we get 56. Seven 8^{\prime} 's must be equal to $56 . "$
a. $6 \times 8=$ \qquad
b. $7 \times 8=$ \qquad
a. 48 b。 56
5. What multiplication fact does each of the arrays illustrate?

a. | 00000000 |
| :--- |
| 00000000 |
| 00000000 |
| 00000000 |
| 00000000 |
| 00000000 |
| 00000000 |

b. | 0000000 |
| :---: |
| 0000000 |
| 0000000 |
| 0000000 |
| 0000000 |
| 0000000 |
| 0000000 |
| 0000000 |

$\ldots=56$

$$
\text { x } x=56
$$

6. Complete this exercise.

$$
\text { a. } 6 \times 8=
$$

\qquad

$$
\text { b. } \quad \text { x } 6=48
$$

$$
\text { co } \times 7=56
$$

d. $7 \times 8=$ \qquad
a. 48 b. 8 0. 8 d. 56

REPEATED ADDITION

Lesson 13:

1. Miss Brown began the arithmetinclass by saying, "There is one more property of multiplication of whole numbers that we can discover with our multiplication facts. Do you remember that we do the operation within the parenthesis first? i.e., $4 \times(2+5)=4 \times 7$. The symbol of + within the parenthesis () indicated that we add before we multiply by $4 .{ }^{\circ}$

In the example $4+(2 \times 3)$, the symbol within the parenthesis tells us to

multiply
2. Before we try to discover the new multiplication of whole numbers ${ }^{1}$ property, we had better check to see if we can get the correct answers for this exeroise.

$$
\begin{array}{ll}
\text { a. } 12+(3+4)=12+ & =19 \\
\text { bo } 6+(2+5)=6+7 & =9 \\
\text { e. } 3 \times(1+2)=3 \times & =18 \\
\text { de } 3 \times(3 \times 2)=3 \times & =32 \\
\text { e. } 4 \times(4+4)=4 \times+6 & =12
\end{array}
$$

a. 7 b. 13 c. 3 d. 6 e. 8 f. 6

The children played a game at Nary's birthday party. For one game Mary put 4 plates with 2 cups on each plate on the table. In each cup she put 3 peanuts. How many peanuts did she need for the game?
3. John said, "We need to easiest way." \qquad to find the answer the
add multiply
4. "How can we multiply three numbers?" asked John. We learned that multiplication was a binary operation so we can only multiply \qquad factors at one time."
5. John said, "Watch me. That is what I will do. I will multiply just two factors at one time.". I will use the factors 4,2, and 3. First, I will multiply $4 \times 2=8$. Then I will use 8 as a factor. I will multiply $8 \times 32=24$. I just multiplied 3 two factors at one time.

Mary needs \qquad peanuts.

6. Here is how we can write John's example so that we know which two factors to multiply.
$(4 \times 2) \times 3=$
\qquad x $3=24$
7. "I think that we should have found the number of peanuts in the two cups on each plate first. After we find the number of peanuts on each plate, we can find how many are needed for the 4 plates:" commented Peggy.
"I would just need to put the parenthesis () around the 2 and 3 like this."
$4 \times(2 \times 3)=$
$4 x=24$
Did you notlee thet although John and Peggy s groups were different they got the same result?
8. Do you think that this always happens when we multiply whole numbers?

Miss Brown asked the children to work the following exercise to see if they could discover the new property.

$$
\text { a. } \begin{aligned}
3 \times(2 \times 4) & =3 \times(\square) \\
(3 \times 2) \times 4 & =24 \\
& =24
\end{aligned}
$$

$$
\text { b. }(5 \times 1) \times 2=-2=10
$$

$$
5 \times(1 \times 2)=5 \times=10
$$

$$
\text { co } 3 \times(3 \times 2)=3 \times=18
$$

$$
(3 \times 3) \times 2=-\times 2=18
$$

$$
\text { d. } 4 \times(2 \times 3)=4 \times=24
$$

$$
(4 \times 2) \times 3=-\times 3=24
$$

9. Bill said. "I know what the new property is. The factors were kept in the same order. The parenthesis was around two of the f \qquad - One time it was around the first two factors. The next time it was around the last two factors. We multiplied the numerals within the parenthesis first. Then we multiplied the product by the other factor. The order of the factors $\frac{\text { did did not }}{}$ change".

The groups did change," said Maryo
factors did not

$$
\begin{aligned}
& (4 \times 2) \times 3=\ldots \times 3=24 \\
& 4 \times(2 \times 3)=4 \times=24
\end{aligned}
$$

10. Bill had discovered the associative property for multiplication of whole numbers.

If one has three factors, the associative property for the multiplication of whole numbers means that the order of the factors will remain the same but the groups will change. The result is the \qquad when the associative property holds. same different
11. When using only the associative property, I change the order of the factors. do not
12. When using only the associative property. I $\frac{}{\text { do do not }}$ the grouping.
do

REPEATED ADDITION

Lesson 14:

1. Chuck bought seven (7) arrows at nine cents (9ф) an arrow. How much did he have to pay for the arrows?

Chuck knew that 6 arrows would cost \qquad cents.
$6 \times 9=546$

546

2. Dick said, "Just add another 9ϕ on the 54ϕ and you will have how much the arrows cost."

He used this array to show Chuck how much the arrows cost.

Now, add one more row
a. $7 \times 9=$

$$
\text { b. } 9 \times 7=
$$

a. 63
3. Because the commatative property is true for multiplication of whole numbers, if $7 \times 9=63$, then the class knew that 9 x \qquad $=63$.
4. "Now that we know that $7 \times 9=63$, how can we find out how much 8×9 would be?" asked Peggy.

Jane said, "Dick just added one more row of 9's to the six 9 's to get seven 9's. Why can't we add one more row of 9's to the seven 9^{9} s to get $8 \times 9{ }^{\prime \prime}$)

It is like this

a. $8 \times 9=$ \qquad

$$
\text { b. If } 8 \times 9=72 \text {, then } 9 \times \ldots=72
$$

a. 72 b. 8
5. In lessons 7. 8, and 9 we learned that the distributive property was very useful. This property was true for the multiplication of whole numbers. This means that if I don't know a multiplication fact such as 6×9. I could rename one of the factors. multiply each paint of the renamed factor, and then add the two products together.

Suppose that you did not know that $6 \times 9=54$. Would you get the same answer if you renamed the factor 6 as $(4+2)$? Check to see.
a. $(4+2) \times 9=$ \qquad
b. $(4 \times 9)+(2 x$ \qquad $)=$ \qquad
c. $+18=54$
a. 54 b. 9. 54 c. 36
6. We didn ${ }^{2}$ t need to rename the factor 6 as $(4+2)$. We could have renamed it as $(3+3) \%$ Then:
a. $(3+3) \times 9=$ \qquad
6. continued
b. $(3 \times 9)+($ x9) $=$ \qquad
c. $\quad+27=54$

It didn"t make any difference what we renamed ths six. We just had to be sure that the two parts could be added together to be six.
b. 3 e. 27
7. Today we also learned that 8 x $9=72 . R^{\circ}$ Rename one of the factors to see if the distwibutive property works for this multiplication fact" Eint: You might decide to rename 82 s $(7+1),(6+2) \%(5+3) \%$ or $(4+4)$. Let's use one of the suggestions.
a* $(5+\ldots) \times 9=$
3. $(\quad \times 9)+(3 \times 9)=$
c. $\quad+\quad+27=72$

Did our choice work?
yes no
a. 3 bo 5 as 45 do yos
8. Of course, you could have decided to rename the factor 9
inatead of the factor 8 . You might have renamed 9 as $(8+1)$. $(7+2),(6+3)$, or $(5+4)$. Wcold you heve found the same product of 72 t Let's txy one of the choices"。
3. $8 \times(8+1)=$
b. $(8 \times \ldots)+(8 \times 1)=$
c. $+8=72$
b. 8 0. 64
9. In Zessens 4 and 5 , we leexned about tine cmmutative property. The commutative property says that the order of the factors in a multiplicetion fat will not chage the product.
a. If $6 \times 9 \&=54 \notin$, then $9 \& \times 6=$ \qquad
b. If $8 \times 9=72$, then $9 x$ \qquad $=72$
10. When we learned about the associative property, we learned that the order of the factors remained the same but the groups changed. This means that if I have three factors, $3 \times 2 \times 4$, I can say:
a. $(3 \times 2) \times 4=$
b. $\times 4=24$
or I can say:
c. $3 \times(2 \times 4)=$
d. $3 x=24$
b. 6 d. 8

The product was the same for both ways of grouping the factors.
11. Does the associative property work for these factors? $2 \times 3 \times 3=$
a. I can group like this: $(2 \times 3) \times 3=$

$$
\text { or } \quad \times 3=18
$$

b. I can group like this: $2 \times(3 \times 3)=$

$$
2 x=18
$$

12. Do you remember about the closure property? If both factors are whole numbers, the product must be a whole number in order that the closure property is true for multiplication of whole numbers.

Both of the factors in the maltiplication fact $8 \times 9=72$ are whole numbers. The product is 72 . We know that 72 is a whole number. The closure property is true for the multiplication of whole numbers.
2. $6 \times 9=$ \qquad
b. Six (6) is a whole number.
c. Nine (9) is a w numbex.
d. The product seventy two (72) is a w number.
12. continued
e. Therefore, the cl_ property is true for the multiplication of whole numbers.

REPEATED ADDITION

Lesson 15:

1. "There are just two mulitiplication facts left to learn:" said Miss Brown. Look at the two arrays and see if you can write the fact for each array.

d \qquad $x=$ \qquad
a. 8 b. 8 co $64 \quad$ d. $8 \times 8=64$
b. This multiplisetion fact is just as masy as $8 \times 8=64$ 。 It is like thำ:

$$
9 \mathrm{X}=\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right.
$$

2. The following exercise contains some of the more difficult facts. Check to see if you know of these facts.
3. $7 \times 6=$ \qquad
b. $7 \times 9=$
c. $8 \times 7=$ \qquad
d. $8 \times 8=$ \qquad
4. $8 \times 7=$ \qquad
f. $6 \times 8=$ \qquad
a. 42 b. 63 c. 56 d. 64 e. 56 f. 48

During the lessons we have learned that certain things are true about the multiplication of whole numbers. As this is the last lesson, see if you can choose the word that names the property I an illustrating.
3. One of the multiplication facts in today's lesson was $8 \times 8=$ 64. All of the numbers used in this multiplication fact were whole numbers. The example $8 \times 8=64$ shows the \qquad property for the multiplication of whole numbers. closure associative
closure
4. The fact that $6 \times 9=54$ makes us sure that $9 \times 6=54$, also. This is an example to show the
associative conmutative for the multipilication of whole numbers.
commutative
5. Do you remember something about the number one (1)? It acts very odd in a multiplication fact. Whenever one is a factor in a multiplication fact, the product is the same as the other factor. For example, $6 \times 1=6$. In this case the number one is called the
closure multiplicative identity multiplicative identity
6. Sometimes when we don't know the product for a combination, we use one of the properties we have studied. If I don't know that $9 \times 9=81$, I could use this property. I would rename one of the factors, multiply each part, and add the products.

Example:

$$
\begin{aligned}
& 9 \times(5+4)= \\
& (9 \times 5)+(9 \times 4)= \\
& 45+36=81
\end{aligned}
$$

In this example the

$$
\overline{\text { associative distributive }} \text { property was }
$$

illustrated.
distributive
7. We studied just one more property. We had to be careful to keep the factors in the same order when we used this property. We changed the group though.

$$
\text { Example: } \begin{array}{rll}
4 \times 2 \times 3 & = & \text { OR }
\end{array} \begin{array}{ll}
4 \times(2 \times 3)= \\
(4 \times 2) \times 3 & = \\
8 \times 3 & =24
\end{array}
$$

This example illustrates the \qquad property.

How did you do in naming the properties? Just think -mo- even if you had only one right, that was one more than you knew when you started the lessons.

APP MDIX C

Iessen 1:

1. Biy"'s mother made breakfast for the campers. She needed eggs for five boys. Each boy was to have two eggs. Bill's mother thought. "I need to boil \qquad eggsi"

Think of some weys Bill's mother could find out how many eggs she needed to boil. Check to see if any of your answers agree with the ideas suggested below.

One fowmeth grade class suggested three different ways of fiaxing how many eggs Billis mother needed. These are given

2. Jill said. "Binlis mother could have made a drawing that shewed five boys with two egge for each boy. Then she could heve ocmated":

The drawing would look like this

3o John said that he thought Bill:s mother could have added the number of eggs sach boy would have.

Bin 1 's mother could get the right gaswer by a the number

4. Bob said, "Bill's mother could have looked at the drawing and said to herself that two for one boy means that. I need ten for five boys.

Bill's mother could get the right answer. She thought two eggs for one boy means ten eggs for \qquad boys.

She could have written the example like this

$$
\begin{aligned}
& \frac{2}{1}=\frac{10}{5} \\
& 5 \times 2=10
\end{aligned}
$$

When you think with numbers such as five and two and get ten, you are multiplying.
5. Look at these drawings. Did you see how to get the total number in the drawing? The first one is done for you.

$$
\frac{4}{1}=\frac{12}{3}
$$

$$
\frac{3}{1}=\frac{\square}{3}
$$

c. (X)

$$
\frac{1}{1}=\frac{\square}{2}
$$

6. Instead of using all the different drewings to show how many we need, we could use two number lines like this

-12
7. $\frac{3}{1}=\frac{9}{3}$

a. 12
b. 9

Did you notice that the numeral 0 was the beginning place for each of the number lines?
8. Mary looked at drawing and said, "The origin of both lines is 0 because the numeral is the beginning numeral for each line. The line that goes up and down on the page is a vertical line. The line that goes across the page is a horizontal line".

a. horizontal
b. vertical

Co vertical
9. Paul said. "I can draw a line that is not either homizontal or vertical.

Paul's line
was was not either homizontal or vertical
9. continued

The line that Paul drew was a diagonal line。

Multiplication can be written like this
$3 \times 5=15$
10. Jim said, "I see how we use the number lines to find the answer to the multiplication fact $9 \times 3=150^{\circ}$ It is like this

First, I find the 3 on the horizontal line. I know that I am multiplying by 3 because when I compare 3 to 1. I got 3.

Next, I found 5 on
 the vertical line. I followed a line drawn across the page
to the right of 5 until
it met the diagonal line.
Then I just drew a Iine
dow to the numerel.
The numeral was 15.
That wes the answer.
$5 \times 3=$ \qquad
because $\frac{3}{1}=$

15

15

11. Alice said. "In this drawing the numeral 4 is compared to 1 .

The diagram shows
that $4 \times 4=$ \qquad

12. Can you write the multiplication facts that these diagrams show?

b._ $\mathrm{X}_{\ldots}=$

a. $3 \times 5=15$
b. $4 \times 2=8$
$\frac{5}{1}=\frac{15}{3}$
$\frac{2}{1}=\frac{8}{4}$

RATIO TO ONE

Lesson 2:

1. Probably, since you can remember playing games, you have been using counting numbers. The set of counting numbers can be written using numerals as $\{1,2,3$, oodo The three dots 0.0 mean to continue the numerals on and on. The numeral 5 represents a counting number. The numeral 35 represents a counting \qquad -
number
2. If to the set of counting numbers you add zero (0). you will have the set of whole numbers. To get the set of whole numbers one needs to add_____ to the set of counting numbers.
\qquad
3. The set of numbers written as $\{0,1,2,3,4, \ldots 0\}$ represents a set of w -numbers.

whole

4. Using whole numbers we can do certain mathematioul operations. An operation is a way of associating with two numberos third number celled the result. The operation enlled addition wes used when Jim assochated the numbers two (2) and three (3) and got the rosult five (5).

When doing the operation addition, Bill associated the numbers two (2) and four (4) and got the result \qquad -

```
sin(6)
```

5. When using whole numbers, we can also do an operation called multiplication. If Mary used the multiplicetion operation to associate the numbers two (2) and three (3), she would get the result six (6)。
6. continued

Mary associated the numbers two (2) and four (4) and got the result eight (8). Mary was using the m operation.
multiplication
6. The results for associating the same numbers in the operations of multiplication and addition
were were not the same.的
7. When we associate the number eight (8) with the numbers two (2) and four (4), we are using the operation called \qquad multiplication
multiplication
8. When we associate the number six (6) with the two numbers two (2) and four (4), we are using the 0 called addition.
operation
Although we used the seme two numbers in \#7 and \#8, the results were not the same. We got a unique result for each operation. The unique result means that in a given operation there is only one right number to associate with any two numbers (pair of numbers).
9. Jane used the operation multiplication. She associated the numbers three (3) and three (3) with the result \qquad .
10. Bill's unique number six (6) and Jane's unique number nine (9) are in the set of whole n \qquad .
numbers
11. The pairs of numbers used in \#9 and \#10are w \qquad numbers.
12. The result from associating the two numbers (pair of numbers in \#8 and \#9 was a w_n_number.

13. In mathematical operations whenever two whole numbers are associated and the result is whole number, we say that the closure property is true for a certain operation.

When we use an operation in which the result is always the seme kind of number as the pair of numbers, the ol property is true.。
o. osure

Peter said, "The closure property must be true for addition because when I add two whole numbers. I get a whole number:"
14. Tom said, "I think that the closure property is true for multiplication of whole numbers. When I multiply a whole number by a whole number, I get a whole number for the answer. The ol property is true for the multiplication of whole numbers""
closure
15. Work this exeroise. Is Tom ${ }^{\text {ses }}$ statement true everytime? Did a whole number result when you multiplied one whole number by another whole number?
a. $2 \times 2=$

$$
\frac{2}{1}=\frac{4}{2}
$$

$$
\text { c. } 3 \times 3=
$$

\qquad

$$
\frac{3}{1}=\frac{9}{3}
$$

$$
\frac{4}{1}=\frac{8}{2}
$$

a. 4 b。 2 co 9 do 8
16. The closure property seems to be for the multiplication of whole numbers. As we continue to work with the combinations, we will check to see if it holds everytime. We will try to find out if the multiplication of whole numbers is closed.

Lesson 3:

1. Mary and Jane were arranging their stamp to be placed in the stamp book. Nary arranged hers like this.

She had four for one row.
She could write it as 4 for 1 or as $\frac{4}{1}$.
2. Jane looked at the arrangement of stamps in the book. She said, "There are only 3 stamps in each row. But I can see five rows. This shows that 3 is to 1 as ___ is to $50^{\prime \prime}$ It could be represented like this.
$\frac{3}{1}=\frac{15}{5}$
$5 \times 3=15$

3. It is important in our wrok thet we look for the second numerwi of the multiplication fact on the horizontal line and for the fiser numel of the multuplication fact on the vertical line. This diagram shows that one looks for the answer on the Line.
horizontal or vextican

$$
\begin{aligned}
& \frac{2}{2}=\frac{6}{3} \\
& 3 \times 2=6
\end{aligned}
$$

4\% Look at these diagrams. Can you fill in the missing numerals?

b. $4 x=16$

c. 5

d. $\begin{aligned} & \frac{2}{1}=\frac{\square}{7} \\ & \square \frac{2}{2}=14\end{aligned}$

5. Jill said. "It is easier to write the multiplication fact, 'three is to one as twelve is to four ${ }^{8}$ with numerals. ${ }^{\text {s }}$ It means that $\frac{3}{1}=\frac{12}{4}$

One can say it with numerals like this

$$
4 \times 3=12
$$

6. Using numerals as Jill did, describe the following multiplication facts. The first one is done for you.
a. Three is to one as twelve is to four. $4 \times 3=12$
b. Two is to one as twelve is to six.
c. Seven is to one as fourteen is to two.
b. $6 \times 2=12 \quad$ o. $2 \times 7=14$
7. In the multiplication faot $2 \times 7 \times 14$ each of the mumerals 2 and 7 is called factox.
8. In the multip"lication act $44 x 4=16^{\circ}$ each of the 40 s is a f \qquad
factor
9. In the multiplication fact $86 \times 2=12^{\circ}$ the factors are and \qquad .。

6 2
10. The answer to the multiplication exampe $2 \mathrm{x} 7=14^{\circ}$ is called the product.
11. In the multiplication fact $04 \times 4=16^{\circ}$ the product is. \qquad .
12. In the multiplication fact ${ }^{\circ} 6 \times 2=12^{\prime}$ \qquad is the product.
13. Study the arithmetic facts given below. Decide which ones are multiplication facts.
a. $3+3=6$ \qquad
b. $3 \times 4=12$ \qquad
c. $2 \times 6=12$ yes no
a. no bo yes co yes
14. Use numerals to write the multiplication facts for these diagrams. When you use diagrams as appear below, you are finding your answer in a coordinate system. The first one is done for you.

The diagram shows that

$$
\frac{2}{1}=\frac{14}{7}
$$

The mutripicquion fee is $7 x 2=14$
b. The following diagram show the

$$
\frac{2}{1}=\frac{10}{5}
$$

The multiplication fact is \qquad

co The following diagram shows that

$$
\frac{4}{1}=\frac{16}{4}
$$

The multiplication fact is $\quad x=16$

o. $5 \times 2=10$ e. $4 \times 4=16$

15. The operation of multiplication can be performed on just a pair (two numbers) of whole numbers at one time. An operation that is done on just two numbers at one time is called a binary operation.
16. Multiplication of whole numbers is ap_operation because one multiplied only two rumbers at one time.

RATIO TO ONE

Lesson 4:

1. Tom and Jim both bought some candy in packages. Tom said. "I got 3 pieces in each sack. My package contained six sacks. I got 18 pieces of candy." Is Tom right? Yes no

2. Jim said. "I got 18 pieces, too. My package contained only 3 sacks. But each sack had 6 pieces of candy in it." Is Jim right? $\overline{\text { yes no }}$
$\frac{6}{1}=\frac{18}{3}$
 yes
3. Mary said, "Both Jim and Tom used the same factors. They changed the order of the factors." Was Mary right?
yes no
4. Tom's multiplication fact looked like this

$$
6 \times 3=
$$

5. Jim's multiplication fact looked like this

$$
3 \times 6=
$$

6. Mary had seen that \qquad multiplication facts might use one two the same factors but in different order.
7. You might have heard these two multiplication facts called pairs of facts. Write two pairs of facts you could use to illustrate a dozen eggs.
a. $3 x$ \qquad $=12$
b. $2 x$
$=12$
$4 x$ \qquad $=12$ \qquad $x 2=12$

8. Look at the following sets of coordinate systems. Write the multiplication fact which each coordinate system of the pair shows. The first pair is done for you.

9. a.

\qquad
10. continued

a. $2 \times 8=16$ b. $8 \times 2=16$
11. In \#9 the two multiplication facts were

$$
\begin{aligned}
& 2 \times 8= \\
& 8 \times 2=
\end{aligned}
$$

11. Can you complete the following exercise so that you have pairs of facts?

$$
\text { a. } 2 \times 9=
$$

\qquad

$$
9 \times=18
$$

\qquad
c. $3 \times 5=$

$$
\times 3=15
$$

18	b. 18
2	

RATIO TO ONE

Lesson 5:

1. If two multiplicetion facts have the same factore, their products are
equal not equel

equa

2. Jane did not want to draw a new coordinate system each tine she found the product of two factors. She used the same coordinate system but changed the shape of the line for each fact. In this exerrise Jane wanted to find the product of the pair or multiplicetion facts in which 4 and 5 are factors.

The two maltiplication facts for the factors (4, 5) me
$4 \times 5=20$

$$
5 \times 4=20
$$

Lok at the corrdinete system bellu and notice hew Jane shomed both multiplicetion farts for whe pary of factors (5. 5).

$4 \times 5=$ \qquad $\frac{5}{1}=\frac{20}{4}$
$5 \times 4=$ \qquad $\frac{4}{1}=\frac{20}{5}$
3. Write the pairs of facts Jane discovered using the pair of factors given below. The first is done for you. The next sheet contains some coordinate systems for you to use if you desire to check your answers.
a. (3,7)
$3 \times 7=21$
$7 \times 3=21$
b. $(3,8)$

c. $(4,6)$

d. $(5,1)$

$3 \times 8=24$

$8 \times 3=24$$\quad$ c.	$4 \times 6=24$
$6 \times 4=24$	\quad
:---	
$1 \times 5=5$	

4. In all of the exercises that Jane did, the product for both multiplication facts was the same (i.e., $4 \times 5=20$ and $5 \times 4=20$ \% This shows that multiplication of whole numbers is commutative" An operation is commutative if the order of the factors may be changed without changing the results.

Jane could change the order of the factore in the maltiplication fact $3 \times 8=24$ to $8 \times 3=24$. The result was not ohanged. Multiplication of whele numbere is ${ }^{6}$

5" Do the following fiacts show that multiplication of whole numbers is commutative?

a. yes bo yes o. no

Worksheet

Use for b. (3, 8)

Use for c. $(4,6)$
9
8
9
8
7

Use for d. $(5,1)$

6. Multiplication of whole numbers is c._b___ because the order of the factors may be changed without changing the result*。
conmutative

RATIO TO ONE

Lesson 6:

1. John said, "I think the product in a multiplication example is aiways larger than either of the factors." He drew these coordinate systems to illustrate his multiplication fact for each.

x \qquad $=$ \qquad

$-\quad \times$ \qquad $=$ \qquad
$1 \times 5=5$

$$
\frac{5}{1}=\frac{5}{1}
$$

$$
1234567
$$

$$
\frac{1}{1}=\frac{6}{6}
$$

\qquad x \qquad $=$ \qquad $+$
-

2. The product for a multiplication fact
 larger than both.

3．When dohn multiplied 5×1 ，he got the product \qquad －

4．The answer for 5×1 was 5．This is one of the factors，too． So when John multiplied 5×1 ，the answer was the same as one of the factors．It was the same as the factor \qquad。
\qquad
5．When John multiplied 1×6 ，the answer was \qquad －Six is one of the factors．The other factor was 1．

6．If John multiplied 9×1 ，he would have got the answer \qquad － Nine is one of the factors．The other factor is \qquad 9——

7．Everytime John multiplied when one of the factor was 1，the product was the same as the other \qquad ．
factor
8．Work these examples．Check to see if what jou have written in $\# 7$ is true。
a． $2 \times 1=$ b． $3 \times 1=\ldots$
$1 \times 2=$
$1 \times 3=\square$
$1 \times 4=$ \qquad
d． $5 \times 1=$
e． $6 \times 1=$ f． $7 \times 1=$ \qquad
$1 \times 5=$
$126=$
$1 \times 7=$ \qquad
g． $8 \times 1=$ \qquad h。 $9 \times 1=\square$
$1 \times 8=$ \qquad $1 \times 9=$

a． \begin{tabular}{lllllllllllllll}
2

2

 b．

3 \& c． \& 4 \& d． \& 5 \& e． \& 6 \& f．

\hline
\end{tabular}

9. Both John and you have discovered the multiplicative identity. One is the multiplicative identity for whole numbers. In other words when a number is multiplied by one, the answer is always the same as the other number. (i.e., $5 \times 1=5$)
10. The numeral. represents the multiplicative identity.

RATIO TO ONE

Lesson 7:

1. Ben was not sure that his answer to this multiplication fact was correct. $\quad 4 \times 8=32$

He drew these diagrams to check his work
2\% $\begin{gathered}4 \\ 3 \\ 2 \\ 1\end{gathered}$
$4 \times 4=$ \qquad

b. 16
2. Each of the diagrars shows that \qquad x \qquad $=16$.
4×4
3. Ben added the product from the first diagram to the product from the seeond diagram. He said, "16 + \qquad $=32{ }^{\circ}$
4. Alice seid, II know that $4 x 3=12$ and $4 x 5=20$. If I add 12 and 20, I get 32. I will draw the diagrams to illustrate
4. continued
my work. I renamed the factor 8."
a.

$4 \times 5=$ \qquad
5. Both Ben and Alice renamed the factor 8. Ben renamed the factor 8 to $(4+\ldots)$.
\qquad
6. Alice renamed the factor 8 to ($3+\ldots$).
\qquad
7. Imagine that each of the numerals below represent the second factor in a multiplication fact. Can you rename each of the factors. The first one is done for you"

8. Terry said, "I didn't rename 8 like either Ben or Alice. I renamed 8 as $(2+6)$. Ben"s example will look like this."
a.

$4 \times 2=$ \qquad

$4 \times 6=$ \qquad
a. 8 b. 24
9. Peggy said, "First, Terry multiplied $4 \times 2=8$ and then he multiplied $4 \times 6=24$. Then he added 8 and 24.1

Terry's work looked like this:

$$
\begin{aligned}
& 4 \times 2=8 \text { and } 4 \times 6=24 \\
& 8+24=32
\end{aligned}
$$

Yes, Terry can get the right answer by renaming

\qquad
as
$(2+6)$.
10. John said, "Let's try another example and see how we can rename the second factor. Let's try 4×7. I will draw the diagram that shows 4×7.1

It looked like this:
8
7
6
5
4
3
2
11. Andy said, "I'm going to rename 7 as ($4+3$). Now the example should say this."

$$
4 \times 7=28
$$

$4 \times(4+\ldots)=28$

My work looks like this

$$
\begin{gathered}
\text { a. } \begin{array}{c}
5 \\
4 \\
3 \\
2 \\
1 \\
\frac{1}{01234567891011121314151617} \\
4 \times 4=
\end{array} \\
4 \frac{4}{1}=\frac{16}{4}
\end{gathered}
$$

11. continued

$$
\text { b. } \begin{gathered}
5 \\
\frac{1}{4}-\cdots \frac{3}{1}=\frac{12}{4} \\
4 \times 3=
\end{gathered}
$$

c. $16+12=$ \qquad
a. 16 b. 12 c. 28
12. Andy continued by saying, "First, I multiplied $4 \times 4=$ \qquad \therefore Then I multiplied $4 \times 3=\ldots$ Then I added the two products."
13. Can you complete the following exercise to show Andy's work?
$4 \times 7=4 \times(4+\square)$
$=(4 \times 4)+(4 \times 3)$
$=$ \qquad $+12$

316
14. Jerry looked at Andy's work and said, "You renamed 7 as
$(4+3)$. I am going to rename 7 as $(5+2)$. My work will look like this."
$4 \times 7=4 \times(5+\square)$
$=(4 \times 5)+(4 \times 2)$
$=$ \qquad $+8$
$=28$
15. John Iaughed. "Both Jerry and Andy are right. But I see another way the factor 7 can be renamed. We can rename 7 like this."
$4 \times 7=4 \times(1+6)$

$$
\begin{aligned}
& =(4 \times 1)+(4 \times \ldots) \\
& =2 \\
& =28
\end{aligned}
$$

16. The children had discovered something new about multiplication of whole numbers. By the time you have the next lesson will you have discovered what it is?

RATIO TO ONE

Lesson 8:

1. Did you discover what the new property of multiplication of whole numbers is? If not, let's see if Alic's work will help you.
2. Alice illustrated the multiplication fact 3×9 by this illustration. She said that she could do it two ways. First, she would illustrate 3×9. Then she would rename the factor 9 as $(5+4)$ and illustrate her work。

3. Here is Alice's work when she renamed the factor 9 as $(5+4)$. a。

$$
3 \times 5=
$$

\qquad
3. continued.

a. 15 b. 12
4. When Alice multiplied 3×5, the product was \qquad When Alice multiplied 3×4, the product was \qquad
To find the answer for 3×9, Alice needed to add \qquad $+12$ When she added $15+12$, she got the answer \qquad
1512
5. Alice showed that the multiplication fact $3 \times 9=$ \qquad -

In 散3 and 胜 Alice showed that she could rename the factor 9 as $(5+4)$. She said that $3 \times(5+4)=(3 \times 5)+(3 \times 4)$

12
Alice got the same result when she added first $(5+4)$ to get the factor 9 and then multiplied as she did when she multiplied 3×5 and 3×4 first and then added the products.
6. Alice had discovered the important property. It is known as the distributive property. We say that multiplication distributes over addition when it doesn't make any difference whether you add to get the factor first or you multiply each part first and then add.
7. Mary used the distributive property to show that her answers were correct.
2. $5 \times 5=25$
$5 \times(3+2)=(5 \times 3)+(5 \times \ldots)$

$=-\quad+10$
7. continued.
b. $5 \times 6=$ \qquad
$\begin{aligned} 5 \times(4+2) & =(5 \times \ldots)+(5 \times 2) \\ & =20 \\ & =30\end{aligned}$
2. 2, 15, 25 b. 30,4.10
8. Paul used the distributive property to do this exercise.
$\begin{aligned} 7 \times 4 & =(-7 \times 1)+(7 \times 3) \\ & =728 \\ & =(\end{aligned}$

728
9. Mary said, "If I can say that 8 x 4 can be renamed as 8 x $(2+2)$, then I can say that $8 \times(2+2)$ can be renamed as 8 $\times 4$.

Was layy right?
yes no
10. Can you fill in the answers to this exercise?
a. $9 \times 3=$ \qquad
b. $(9 \times 1)+(9 \times 2)=9+$ \qquad $=27$
c. $8 x(2+2)=(8 x 2)+(8 x-)=16+16=32$
d. $8 \times 4=$ \qquad
a. 27 b. 18 o. 27 d. 32
11. The distributive property holds for the multiplication of whole \qquad

RATIO TO ONE

Lesson 9:

1. Did you notice that sometimes when you counted you counted by 2's instead of by ones. This means that you say 2, 4,6 , \qquad 10 , and on and on. If you count by two's, you don't need to say or write as many numerals.
2. I can count by other groups besides by groups of 2^{1} s. Look at each row of numerals. See if you can tell how large each group is.
a. 2, 4, 6, 8, ... (the 3 dots mean that I can keep going on and on)

I was counting by groups of \qquad
b. $3,6,9,12,15, \ldots$

This time I counted by groups of \qquad .
c. $5,10,15,20,25, \ldots$.

I counted by groups of \qquad -
a. 2 b. 3 e. 5

Sometimes you will see the horizontal line marked off in $2 " s$ 3^{\prime} s. or $5^{\circ} \mathrm{s}$. (It is necessary to use these groups so that the illustration will fit on the page).
3. Jane said, "Now that we have learned about the distributive property for multiplication of whole numbers, we won ${ }^{1} t$ have any trouble finding out how much four 9's will be. We know that we can rename the factor 9. I am going to rename 9 as $(5+4)$. I know that $4 \times 5=20$. I also know that $4 \times 4=16$.
3. continued.

Then, if I add 20 and 16, I get 36." Jane's answer is right.
yes no

Check the work with these illustrations. Remember that I am going to count by groups for the horizontal lines.

$$
4 \times 5=
$$

20

$$
4 x \ldots=16
$$

4. When Jane added 20 and 16, she got 36. Her answer was
right wrong
5. Mary said, "If $4 \times 9=36$, then ___ $\times 4=36$ because multiplication of whole numbers is cummutative.
\qquad
6. If Jane had used the multiplication fact 9×4, she could have renamed the factor 4 as $(1+3)$ or as $(2+$ \qquad).
7. Peter asked, "Who can look at these illustrations and tell me the multiplication fact?"
7. continued.

$5 \times 1=$ \qquad

$5 \times 6=$ \qquad

$$
5
$$

8. "That's easy. All of us can do it。" remarked Gary.
a. $(5 \times 1)+(5 \times 6)=\ldots+30$.
$=35$
or
$(5 \times 1)+(5 \times 6)=5 \times(1+\ldots)$.

$$
=5 \times(1+6)=5 \times 7
$$

9. "Gary, did you notice that we used the multiplicative identity?" asked Peter.
"Yes," answered Garyo "The multiplicative identity was one in the multiplication fact 5×1 m \qquad \longrightarrow S
10. Mary reminded the class that multiplication of whole numbers we.s 9 \qquad because $5 \times 7=7 \times 5$ 。
commutative
11. "Today, we have one more now multiplication fact to learn." commented Miss Brown. "The multiplication factors are 6×6. Does anyone think that he knows the answer?"
12. Henry said, "I think that $6 \times 6=36$. We learned that 6×2 $=12$. We learned that $6 \times 4=24$. So if I^{12} and 24 . I get $36{ }^{\circ}$ "
13. Helen said, "I can prove that Henry is right by renaming the factor 6 as $(1+5)$. I know that $6 \times 1=\ldots$ I know that $6 \times 5=30$. When I add 6 and 30 , I get the same answer as Henry. The answer is 36. "

14. Can you fill in the blanks for these multiplication facts?
a. $6 \times 6=$ \qquad bo $5 x$ \qquad $=35$ \qquad x $9=36$

RATIO TO ONE

Lesson 10:

1. Henry said, "I have learned to check the product to a multiplication fact by renaming one of the factors. I will do it like this."
a. Multiplication fact
$4 \times 9=$
b. Renane one factor
$4 \times(4+\ldots)$
c. Multiply each numeral of the factor by the other factor
(4×4) and (4×5)
d. Add the two product $16+20=$ \qquad
e. This wey of working the example could be called "multiplying twice and adding。"
2. 36 b. 5 C. 36
3. Henwy has leamed that multiplication distributes over

addition
4. Henry \qquad check the product of a multiplication fact by making use of his knowledge about the distributive property. can
5. Miss Brew said. "We have some new multiplication facts to learn today" Iet"s use Henry"s method to check the answers."
6. Peggy drew this illustration on the board.

$$
\frac{5}{1}=\frac{40}{8}
$$

She said, "I have shown thet $8 \times$ \qquad $=40$.
6. Paul checked Peggy"s work" He sud, "According to Henry, I can rename a factori I will do it like this or
a. Multiplication fact
$8 \times 5=40$
b. Rename the factor 5
$8 \times(3+2)$
co. Multiply
$(8 \times 3)+(8 x$ \qquad
d. Add
$+16$
e". The answer is
Poggy ${ }^{\prime}$ s answex was wight。
Q. 2 do 24 0. 40
7. If $8 \times 5=40$, then $5 \times 8=40$ bscause multaplication of whale numbers is s .
8. Sone of the children were not sure that Peter had written the correct answer on the board for this maltipiladion fact $6 \times 7=42$. They decided to oheck Petex's wark by renaming the fatetor 7 as (2+5) and then working the example.
8. continued.
a. $6 \times 7=$ \qquad
b. $6 \times 7=6 \times(2+5)$
o. $\quad=(6 \times \longrightarrow)+(6 \times 5)$
d. $=12+$
e. $=$

9. Write the answers to this exercise.
a. $6 \times 7=$ \qquad
b. $7 \times 6=$ \qquad
c. $5 \times 8=$ \qquad
d. $8 \times 5=$

RATIO TO ONE

Lesson 11:

1

1. Look at these multiplication facts. What do you see that is alike in all of them?
a. $4 \times 4=16$
b. $6 \times 6=36$
c. $5 \times 5=25$

In each example both fa_were represented by the same numeral.
factors
When both factors are the same number, we only need to learn one multiplication combinations.i.e.. $6 \times 6=36$
2. Look at this illustration. Both factors are \qquad。

b. The horizontal line was numbered as groups of \qquad。
a. 7 . 7 b. 7^{7}
3. The illustration in \#2 shows that $7 \times 7=$ \qquad
4. Jim wes absent from school nine weeks. The children wanted to know how many days JIm was absent. Bob knew that there were five school days each week. So they decided to draw this illustration.

a. Bob said that $\frac{5}{1}$ as $\frac{\square}{9}$
b. so $9 \times 5=$ \qquad
$2 \cdot \frac{5}{1}$ as $\frac{45}{9}$
b. $9 \times 5=45$

The horizontal line in 4 was numbered in groups of 5° s.
5. In order to play a card gme, each player needed eight (8) cards. Tom said, "We need to have ___ cards if six (6) of us are going to play."

Tom sed that he knem $5 \times 8=40$ therefore 6×8 must be just 8 more. The answer just had to be 48 .
$6 \times 8=$ \qquad
$8 \times 6=$ \qquad

484848

RATIO TO ONE

Lesson 12:

1. Mary said, "We have 9 girls in each Girl Scout troup. There are six troups in this school. I wonder how many girls are Girl Scouts. If I draw an illustration showing 9 girls for every troup, it will look like this."

2. $\frac{2}{1}=\frac{\square}{6}$
b. $9 \times 6=$ \qquad
a. 54 b. 54
3. Jane said, "If we had 6 girls in each Girl Scout troup and had 9 troups, we would have had__Girl Scouts."
\qquad
4. Miss Brown said, "The other day we learned that $6 \times 8=$ \qquad。 Today, we want to know how much 7×8 equals. Does anyone know how we can find the answer?
5. Tom said, "All we need to do is add one more 8."
a. $6 \times 8=$ \qquad
b. $7 \times 8=$ \qquad
6. 48 b. 56
7. What multiplication fact does this illustration show?

8. Complete this exercise.
9. $6 \times 8=$
a. 48 b. 6 e. 8 do 56
b. $8 x \ldots=48$
c. $\quad x 7=56$
d. $7 \times 8=$

RATIO TO ONE

Lesson 13:

1. Miss Brown began the arithmetic class by saying, "There is one more property of multiplication of whole numbers that we can discover with our multiplication facts. Do you remember that we do the operation indicated within the parenthesis before we do the other operation? ioe., $4 \times(2+5)=4 \times 7$. The symbol of t within the parenthesis () indicated that we add before we maltiply by 40°
2. In the example $4+(2 \times 3)$, the symbol within the parenthesis tells us to $\frac{\text { add multiply }}{}$ before we add the 4.
multipiy
3. Before we try to discover the new multiplication of whole numbers property, we had better check to see if we can get the correct answers for this exercise.

$$
\begin{aligned}
& \text { a. } 12+(3+4)=12+\ldots=19 \\
& \text { bo } 6+(2+5)=6+\ldots=13 \\
& \text { e. } 3 \times(1+2)=3 \times=18 \\
& \text { d. } 3 \times(3 \times 2)=3 \times=32 \\
& \text { e. } 4 \times(4 \times 2)=4 \times \ldots \\
& \text { f. }(2 \times 3)+6=
\end{aligned}
$$

a. 7 bo 7 c. 3 do 6 co 8 f. 6

The choldren played a game a.t Mary ${ }^{1}$ s birthday party. For each game Mary put 4 plates with 2 cups on each plate on the table. In each cup she put 3 peanuts. How many peanuts did she need for the game?
4. John said, "We need to \qquad the easiest way."
5. "How can we multiply three numbers?" asked Jane. "We learned that multiplication was a binary operation so we can only moltiply \qquad factors at one time"
6. John said, Wwatch me. This is what I will do. I will multiply just two factors at one time. I will use the factors 4,2 , and 3. First I will multiply $4 \times 2=8$. Then I will use 8 as a factor. I will multiply $8 \times 3=24$. See, I just multiplied 2 factors at one time."

Mary needs. \qquad peanuts.
7. Here is how we can write John's example so that we know which two factors to multiply. $(4 \times 2) \times 3=24$

$$
\begin{array}{ll}
\frac{2}{1}=\frac{8}{4} & \frac{3}{1}=\frac{24}{8} \\
4 \times 2=8 & 8 \times 3=24
\end{array}
$$

First $4 \times 2=8$ Then $8 \times 3=24$
8. To work these examples in \#5 we needed two illustrations because multiplication is a binaxy operation and that means that we can only multiply \qquad factors at one time.
9. "I think that we should have found the number of peanuts in the two cups on each plate first. After we find the number of peanuts on each plate, we can find how many are needed for the 4 plates." commented Peggy.

Peggy needed to pat the parenthesis () around the 2 and 3 like this.
$4 \times(2 \times 3)=1$. Firset Peggy did this.
$4 \times \square=24$

$4 \times 6=$ \qquad

6 $4 \times 6=24$
10. Did you notice thet although John's and Peggy's groups were dufferent they got the swme result. Both Peggy and John got
\qquad f"er the answer.

Do you thixk that this alwaye hopens when we mutiply whole numbers?
11. Miss Brown asked the chilwon to wewk the fouloning exerosse to see if they cavld discerer the new property.
2. $3 x(2 x 4)=3 x=24$
$(3 \times 2) \times 4=\quad \times 4=24$
b. $(5 \times 1) \times 2=$ \qquad $x 2=10$
$5 x(1 \times 2)=5 x$ \qquad $=10$
c. $3 \times(3 \times 2)=3 x=18$
$(3 \times 3) \times 2=$ \qquad $x 2=18$

$$
\text { d. } 4 \times(2 \times 3)=4 \times==24
$$

$$
(4 \times 2) \times 3=\ldots \times 3=24
$$

a. 8	b. 5	e. 6	d. 6
6	9	9	8

12. Bill said, "I know what the new property is. The factors were kept in the same order. The parenthesis was around two of the . One time it was around the first two factors. The next time it was around the last two factors. We multiplied the numerals within the parenthesis first. The order of the factors $\frac{\text { change." }}{}$
did did not

factors

did net
The groups did change.
a. $(4 \times 2) \times 3=\ldots \times 3=24$
b. $4 x(2 \times 3)=4 x$ \qquad $=24$
a. 8 b. 6
13. Bill had discovered the associative property for the multiplication of whole numbers.

If one has three factors, the associative property for the multiplication of whole numbers means that the order of the factors will remain the same but that the groups will change. The result is the \qquad when the associative property is true. same dafferent
\qquad
same
14. When using only the associative property, I the order of the foctors.
\qquad
15. When using only the associative property, I \qquad change the grouping.
do do not change do not
15. the prouping the associative property. I

Lesson 14:

1. Chuck bought seven (7) arrows at nine cents (9ф) an arrow. How much did he heve to pay for the arrows:
2. Chuck said, "It costs $9 \notin$ for one arrow, so it will cost
 for 7 arrows.
bo $\frac{9 x}{1}=\frac{\square}{7} d$
c. $7 \times 9=$ \qquad

2.630 b. 63
c. 63
3. If $9 \times 7=63$, then $7 \times 9=$ \qquad
4. Maxy bought 9 balloons for her party. Fach ballon cost $8 \notin$. How nuch diid the balloons cost?
a. $\frac{8 d}{1}=\frac{\square}{9}$
b. $9 \times 8=$ \qquad

2.726 b.72
5. Because the commutative property is true for the multiplim cation of whele numbere, if $9 \times 8=72$ then $8 \times 9=$ \qquad
6. In lessons 7, 8, and 9 we learned that the distributive property was very useful. This property was true for the multiplication of whole numbers. This means that if I don't know a multiplication fact such as 6×9, I could rename one of the factors, multiply each part of the renamed factor, and then add the two products together"

Suppose that you did not know that $6 x 9=54$. Would you get the same answer if you renamed the factor 6 as $(4+2)$? Check to see.
a. $(4+2) \times 9=$
b. $(4 \times 9)+(2 \times \ldots)=$
c. $+18=54$
b. 9
0.36
6. We didn't need to rename the factor 6 as $(4+2)$. We could have renamed it as $(3+3)$. Then:
a. $(3+3) \times 9=$
b. $(3 \times 9) \div(\ldots 9)=$
0. \qquad $+27=54$

b. 3

 0.27It didn't make any difference what we renamed the six. We just had to be sure that the two parcs could be added together to be six.
7. Today we also learmed that $8 \times 9=72$. Rename one of the factors to see if the distributive properiy works for this multrplication fact. Fint: You might decide to rename $8 \mathrm{as}(7+1)$, $(6+2),(5+3)$ or $(4+4)$. Letrs use one of the suggestions.
a. $(5+$ \qquad) $\times 9=$
b. C $x 9) \div(3 \times 9)=$
c. $-27=72$

Did our choice work?
$\overline{\text { yes no }}$
2.3 b. 5 c. 45 yes
8. Of course, you could have decided to rename the factor 9
instead of the factor 8. You might have renamed 9 as $(8+1)$, $(7+2),(6+3)$, or $(5+4)$. Would you have found the same products of 72 I Let's try one of the choices.
a. $8 \times(8+1)=$
b. $(8 \times \ldots)+(8 \times 1)=$
b. 8 C. 64
9. In lessons 4 and 5, we learned about the commatative propertyo The commutative property says that the order of the factors is a multipication fact will not change the product.
a. If $6 \times 9 \phi=54 \phi$, then $9 \phi \times 6=$ \qquad
b. If $8 \times 9=72$, then $9 x=72$
2. 544
10. When we learned about the associative property, we learned that the order of the factors remained the same but the groups changed. This means that if I have three factors, $3 \times 2 \times 4$. I can say:
2. $(3 \times 2) \times 4=$
b. $3 \times(2 \times 4)=$
or I can say

$$
\text { — } \times 4=24 \quad 3 \times \text { _ }=24
$$

The product was the same for both ways of grouping the factors.
2. 6
b. 8
11. Does the associative property work for these factors?
$2 \times 3 \times 3=$
a. I can group like this: $(2 \times 3) \times 3=$

$$
\ldots \times 3=18
$$

or
b. I can group like this: $2 \times(3 \times 3)=$

$$
2 x==18
$$

12. Do you remember about the closure property? If both factors are whole numbers, the product must be a whole number if the closure property is true for multiplication of whole numbers.

Both of the factors in the multiplication fact $8 \times 9=72$ are whole numbers. The product is 72. We know that 72 is a whole number, The closure property holds for multiplication of whole numbers.
a. $6 \times 9=$ \qquad
b. Six (6) is a whole number.
c. Nine (9) is a w number.
d. The produet seventy two (72) is a y number.
e. Therefore, the c I property is true for the multiplieation of whole numbers.
2. 54 8. whole do whole e. closure

RATIO TO ONE

Lesson 15

1. "There are just two matiplication facts left to learm" said Miss Brown. "Look at the two diagrams". See if you can write the fact for each。"

b. $8 \times 8=$ \qquad
2. $\frac{8}{1}=\frac{64}{8} \quad$ b. 64
3.

$20 \frac{9}{1}=$

3. The following orexelse contains some of the more difficrilt
fact: thet you heve stucjed. Check to see jif you know all of these fasts.
a. $7 \times 6=$ \qquad
b. $7 \times 9=$ \qquad
\% $8 x ?=$ \qquad
3. continued

a. 42 b. 63 c. 56 d. 64 e. 54

Duxing the lessons we have learned that certain things are true about the multiplication of whole numbers. As this is the last lesson, see if you can choose the word that names the property I am illustrating.
4. One of the multiplication facts in today? lesson was $8 \times 8=64$. All of the numbers used in this multiplication fact were whole numbers. The example $8 \times 8=64$ shows the
closure associative
property for the multiplication of whole mumbers.

Closure
5. The fact that $6 \times 9=54$ makes us sure that $9 \times 6=54$, 21so. This is an example to show the \qquad
associative commutative
for the multiplication of whole numbers.
commutative
6. Do you remember something about the number one (1)? It acts very different from other multiplication factors. Whenever one is a factor in a multiplication fact, the product is the same as the other factor. For exmple, $6 \times 1=6$. In this case the number one is called the
closure multiplicative identity
meltiplicative identity
7. Sometimes wher we don't know the product for a combingtion, we use one of the prepereties wo have stadied. If I dontt know that $9 \times 9=81$, I could use this property. I would renme one of the factors, multiply each part, and add the producte.

Example: $\quad 9 \times(5+4)=$

$$
\begin{aligned}
(9 \times 5)+(9 \times 4) & = \\
45 \div 36 & =81
\end{aligned}
$$

In this example the \qquad property associative distributive
iilustrated.
8. We studied just one more property. We had to be careful to keep the factors in the same order when we used this property. We changed the groups though.

Example: $4 \times 2 \times 3=\quad 4 \times 2 \times 3=$
$(4 \times 2) \times 3=0 R \quad 4 \times(2 \times 3)=$
$8 \times 3=24 \quad 4 \times 6=24$
This example illustrates the property. associative distributive
associative
How did you do in neming the properties? Just think-meven if you had only one right, that was one more than you knew when you started the lessanso

APPENDIX D

Approach \qquad

MULTIPLICATION

Name \qquad Date \qquad
Write the Missing Eactor or Product

1. $2 \times 9=$ 9. 8 twos are__ $17.5 x \ldots=20$
2. $5 \times 6=\ldots$ 10. 8 ones are_18. $7 \times \ldots=28$
3. $4 \times 0=$ 11. 6 sevens are_19. $6 \times 2=(3 \times 2) \times 2=$
4. $9 \times 6=1208 \times 0=$ 20\% $7 \times 1 \times=56$
5. $6 \times 1=\ldots$ 13. $1 \times 5=$
6. $(3 \times 2) \times 2=$
7. $7 \times 3=\ldots$ 14. $\times 9=0$
8. $4 \times 6=\ldots \times 4$
9. $8 \times 7=$ 15. $9 \times \ldots=0 \quad$ 23. $4 \times 4=(2 \times \ldots) \times 4$
10. $1 \times 9=\ldots$ 16. $9 x \ldots=72$ 24. $\operatorname{since} 4 \times 6=24$, we know that $6 \times 4=$

For each statement you have four possible answers. Circle the letter that you find before the correct answer.
25. If \square and \triangle are whold numbers the product of \square and \triangle is
2. a whole number
b. one more than either \square or \triangle
c. any number
d. all of the above are comrect
26. Which of the following could be used to show that $4 \times 3=3 \times 4$?

$$
\begin{aligned}
& \text { a. } 3+3+3+3=4+4+4 \\
& \text { bo } 3 \times 3 \times 3 \times 3=4 \times 4 \times 4 \\
& \text { o. } 4 \times 4 \times 4 \times 4=3 \times 3 \times 3 \\
& \text { d. } 4+4+4+4=3+3+3
\end{aligned}
$$

27. Nancy had 8 bags of jacks with 6 jacks in each bag. She gave all of these jacks to Mary". Mary took 6 bags in which to put the jacks. She put the same number of jacks in each of the six bags. Mary put \qquad jacks into each bag.
$\begin{array}{lr}\text { a. } & 6 \\ \text { b. } & 8 \\ \text { c. } & 42 \\ \text { d. } & 48\end{array}$
28. The product of a specific whole number and one is
a. that whole number
b. always one
c. never one
d. it is impossible to say without knowing the number
29. Suppose that your teacher read the following example for you to do mentally. She said, "Four times one, (pause) times three, (pause) times zero." Your answer would have been.
a. zero
b. four
c. eight
d. twelve
30. Miss White has 24 boxes of pencils. There are 15 pencils in each box. This is a total of 360 pencils. Without doing any multiplying can you answer this question? If Miss white had 15 boxes with 24 pencils in each box, she would have \qquad pencils.
a. 320
b. 340
c. 360
d. 380
31. Mary saw 4 sets of 2 cups each on the table. She noticed that each cup had 3 walnuts in it. Mary decided that there were 24 walnuts in all. Which of the following shows that when

Mary worked the problem she found the number of cups first?
a. $(4 \times 2) \times 3=24$
b. $4 \times(2 \times 3)=24$
c. $3 \times 4 \times 2=24$
d. $4 \times 2 \times 3=24$
32. Without doing any multiplying which of the following shows a correct solution for 16×8 ?
a. $(9 \times 8)+(7 \times 8)=16 \times 8$
b. $(9 \times 8) \times(7 \times 8)=16 \times 8$
e. $(9 \times 4)+(7 \times 4)=16 \times 8$
d. $(9 \times 4) \times(7 \times 4)=16 \times 8$
33. Multiplication of whole numbers is
a. a binary operation
b. a mathematical propexty
co an array
d. a number system
34. Which of the following is a whole number?
a. 4,648
b. $46 / 48$
c. 4.468
d. -4648
35. If \square and \triangle are whole numbers and $\square \mathrm{x} \Delta=0$, the number that Orepresents must be in which set?
a.0 $\{1 / 2,1 / 4,2 / 4,1 / 3,2 / 3, \ldots 0\}$
b. $\{0,1,2,3,4,5,6,7, \ldots 0\}$
co $\{-1,-2,-3,-4,-5,-6, \ldots 0\}$
d. any of the above sets
36. If in a multipication fact one (1) is a factor, then the product Is
a. never 1
bo always larger than 1
c. alrweys the other factor
d. all of the above are correct
37. Multiplying five by seven can be thought of as
2. increase five by seven
bo add fiave sevens
c. Increase Iive by twelve
d. add seven fires
38. Which of the following addition examples could you have worked by multiplying?
a. $42+14+23=$
bo $42+42+42=$
c. $42+42+42+59=$
d. noxe of the above
39. Zero tines any number is
a. almays zero
bo never sera
o. larger than zero
do the other factor
40 Look at these number lines. Think about the arrows and write the multiplication fact for each number line.

2。

41. In front of each statement write t (always true). s (sometimes true), or f (never true).
_ a. The product of a whole number times I is I_{0}
_ bo If a, b, c, are whole numbers, the product of these numbers may be obtained by grouping any two of the whole numbers together, multiplying, and then multiplying the answer by the remaining whole number.
—_C. Zero times any whole number is zero.
_ do To multiply seven times three means to add three sevens.
42. Look at this card of buttons. We want to find the total number of holes in the buttons. Put parentheses () in the following examples to show two different ways to get the answer.
a. $2 \times 3 \times 3=18$
b. $2 \times 3 \times 3=18$

0	0
0	0
0	0
0	(0)

43. Draw a picture or diagram to show that $4 \times 6=(4 \times 4)+(4 \times 2)$.
44. Mres. Brown packed 5 boxes of cupcakes to give to her froiends. Each box contained 2 chocolate cupcakes and 4 vanilla cupcakes. How many cupcakes did Mrs. Brown pack for her friends? Which of the following shows how Mirs. Brown could find out how many cupcakes she needed to pack?
45. $(5 \times 2)+(5 \times 4)=30$
b. $(5 \times 2) \times(5 \times 4)=30$
c. $(2 \times 4)+(4 \times 5)=30$
d. $(2 \times 4) \times(4 \times 5)=30$
46. What number is represented by \square so that each of these statements is true?
a. If $7 x$ \square 8×7, then \square is \qquad。
b. If $8 \times(10+\square 1)=(8 \times 10)+(8 \times 9)$, then \square is \qquad .
c. If $6 \times(3 \times 7)=(6 \times 3) \times \square$, then \square is
47. Study this chart. Write the numerals in the blanks that make the statements true.

Boys	3	6	-	12	-	18	21	-	27
Tents	1	2	3	-	5	-	-	8	-

a. There are \qquad boys for 3 tents.
b. There are \qquad boys for 8 tents.
c. There are \qquad boys for 5 tents.
47. Without doing the multiplying indicate the mathematical property the is being illustrated in each example. Write the correct numeral that you find in front of the name of the property in the left-hand column. A property may be used more than one time.

1. The commutative property
2. The associative property
3. The distributive property
4. The multiplicative identity
5. Closure for multiplication of whole numbers

Property
Equation
a. $12 \times(6 \times 9)=(12 \times 6) \times 9$
b. $376 \times 892=892 \times 376$
c. $65932 \times 1=65932$
do $8 \times(9 \times 7)=(9 \times 7) \times 8$
e. $43 \times 20=860$
f. $57 \times(10+6)=(57 \times 10)+$ (57x6)

VITA
Naunda Meier Tietz
Candidate for the Degree of
Doctor of Education

Thesis: COMPARISON OF TWO METHODS OF TEACHING MULTIPLICATTON: REPEATED-ADDITION AND RATIO-TOMONE

Major Field; Higher Education

Biographical:

Personal Data: Borm in Eau Claire, Wisconsin, August 1,1918
Education: Graduated from Eau Claire High School. Eau Claire, Wisconsin, in 1935; received the Bachelor of Science in Education degree from Wisconsin State University of Eau Claire, Wisconsin with a major in elementary education, in July, 1952; received the Master of Art degree from the University of Minnesota, Minneapolis, Minnesota, with a major in oducation, curriculum, and instruction, August. 1958; completed requirements fur the Doctor of Eatucation degree in May. 1968.

Professional Experience: Elementary teacher in Wisconsin from September, 1939 through Jwne, 1958; faculty member in the J. Ho Ames Laboratory School at Wisconsin State UniveroltyRiver Falls, Wiscoasin from September, 1958 through May, 1966; and faculty member in the Department of Education. Wisconsin State UniversitymRiver Falls since June, 1966.

