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PREFACE

The basic problem of this thesis is the study of the relationships
that exist in a star-shaped set S betweesn the extremal structure of S
and the convex kernel of S. The extremal structure considered not only
includes the familiar extreme point, but also involves a generalizstion
of extreme point, an o-extreme point, and relative extreme point. The
results give additional informstion on the characterization of star-
shaped sets. Most of the topics discussed are illustrated by examples
and counterexamples.

Chapter I gives the baékgr@und assocliated with the problem and in-
troduces the notation and terminelogy that is used throughout the study.
Chapter II deals with the topic of o~extreme points of star-shaped sets.
It is shown that the convex kernel of a cempact star-shaped subset S of
a locally convex space L is completely determined by the a-extreme points
of 5. The cardinslity of the set of o~extreme points is determined for
a compact star-shaped set in a locally convex space of dimension greater
than two. Also given is the result that any compact star-shaped subset

S of a. nermed linear space L contains a countable set of o~extreme points
which determines the convex kernmel of S.

In a star-shaped set § the points which are extreme relative to the
counvex kernel of S are used in Chapter III to give a result similarto the
Krein=Miiman theorem. This result shows that a compact star-shaped set
S in a locally convex space L is @@Mﬁietely determined by the convex .- |

» kernel of S and the subset of points of 5 that are extreme relative to

ind



the convex kernel of S. Chapter IV introduces the polyhedral star-shaped
set, the star-shaped set amalogous to the convex polytope in the setting
of cenvex sets. ' The polyhedral star-shaped set 1s discussed because of
the simplicity of its extremal structure. Sufficient conditions are
‘given for a set to be a polyhédral star-shaped set in the linear space

EEO

The setting for Chapter V is the metric space of compact subsets of

a normed linear space L. It is sheown that any compact st;rmshaped sub=
set S of a normed linear space L can be approximated by a polyhedral star-
shaped set. This approximation makes some of the advantages of the sim-
ple extremal structure of polyhedral star=shaped sets available for the
study of more general star-shaped sets. Sufficient conditions are given
for the sequence of convex kernels {@k(Ai)} to converge to the cenvex
kernel of A if the sequence fAi] converges to A, It is shown that for

any compact star-shaped subset S of a normed linear space L there exists
a sequence of pelyhedral star-shaped sets which counverges te S such that
the associabed sequence of convex kernels converges to the coenvex kernel
of So. A comnstructive procedure is given for finding a polyhedral star-

shaped set which approximates a compact star-shaped subset of Lpo

Recognition is due numerous individuals for their assistance in the
graduate work that preceded this study. Professor E. K. McLachlan‘merits
-special recognition for his valuasble guidance and encouragement through-
out the prepafaﬁion of this thesis. Indebtedness is expressed to the
Natioral Sclence Foundation for its finamcial support through a Cooper-

‘ative Graduate Fellowship and a Summer Research Assistamtship.
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CHAPTER I
INTRODUCTION

This'study is primarily concerned with the combination of two basic
topics which are part of the area of study knowﬁ as convexity. The first
of these topics 1s centered around the discussion of extremal elements
of convex sets; for some time this particular subject has been a fruit-
ful area of research which has produced findings by Klee [7], Price [11],
Krein and Milman [10], and numerous others. The second of these topics
deals with the study of star-shaped sets.v Although star-shaped sets
have been of considerable interest for some time, only recently has work
in this area been very widespread. Among those investigators in this
area are Valentine [14], Hare and Kenelly [6].

Valentine provided much of the motivation for this study when in
[13] he suggested that the convex kernel might be a basis for character-
izing star-shaped sets. The observation of numerous examples led to the
finding of various relationships that exist between the convex\kernel of
a star-shaped set S and the extremal structure of S. Thus, the study
of the extremal structure of star-shaped sets is used to investigate the
convex kernel of star-shaped sets.

The setting for each discussion throughout this study i1s some real
linear space. In some cases.a topology on the linear space is needed;
in such cases the space will be a linear topological space, which will

always have a Hausdorff topology.



Much of the notation that will be used throughout the discussion
comes from [13]. The convex kernel of a star-shaped set S will be de-
noted by ckS, the line segment {ox + (Q-a)y: @ e [0,1]) will be denoted
oy xy, the ray {By + (1~B)x: B 2 1} will be denoted by xy® and L(x,y)
will denote the line containing x and y, x # y. The convex hull of a
set S will be denoted by conv S. The notation intv S will denote the
interior of S relative to the minimal flat that contains S. ZFuclidean
n-space will be denoted by En and Ln will denote an n-dimensional Min-
kowski space. The set of real numbers will be denoted by R. The set
{x: £(x) = o}, where f is a linear functional, will be denoted by [f:a].
The set A\B is the collection of points that belong to A and do not be-
long to B. The interior of S will be denoted by int S, S will be the

closure of S and bd S will denote the boundary of S.



CHAPTER II
GENERALIZED EXTREME POINTS

In studying sets of points, quite often it is possible to find
classes of sets Such that the structure of a set in the class is dictat-
-ed to a great extent by that of some proper subset of the set. Convex
sets are an example. In particular, if a convex set S in a linear topo-
logical space L is compact, the collection of extreme points of such a
set are of considerable assistance in describing that set. A number of
authors, among them Price, Klee, Krein and Milman, have examined the ex-
tremal structure of convex sets. Perhaps the most notable result is the
Krein-Milman theorem [10].

The purpose of this chapter is to examine the relationships that
exist in a compact star-shaped set between the extremal structure of
that set and its convex kernel, E;;n if it is known that a given set in
a linear space L is star-shaped, it is no small task in many cases to
determine the convex kernel of S. The extremal structure of star-shaped
- sets will first be used to assist in determining the convex kernel of a
star~-shaped set of a somewhat general nature.

The definition of extreme point of a convex set 1s readily adapted
to the setting of star-shaped sets; hence, one can use that concept for

a study of these sets.

Definition 2.1: If S is a star-shaped set in a linear space L,

then a point x ¢ S is an extreme point of § if there is no nondegenerate

3



line segment in S which contains x in its relative interior.

Asplund [2] has generalized the idea of extreme point of a convex
set and has extended some of the results of Klee which deal with extreme
points. The following definition extends the class of sets on which

such points are defined to include all star-shaped sets.

Definition 2.2: If S is a star-shaped set in a linear topological

space L, then a point x ¢ S is an o~extreme point of S if there does not
exist an o~-dimensional flat F and a neighborhood U of x such that x ¢ F
NU €S, The collection of o-extreme points of S will be denoted by

extQ,S°

Unless stated otherwise in the discussion of ext0§ in some linear
space L, it will be assumed that « is the dimension of the hyperplanes

in the space L. If o and B are cardinals, o < B, then extQ§ < ext .S,

B

The above definition can be made completely algebraic in nature, partic-
ularly for finite-dimensional sets, by using an n-simplex instead of an
n-flat and neighborhoods. However, the given definition is more conven-
dent if no distinction is to be made on the dimension of the sets in-
volved. |

The following example illustrates the two previous definitions.

Ixample 2.1: Consider the linear space E, and its natural basis

3

. e3} (cfo Fige 2.1). Then ext S

{el, €5 63}° Let S = conv {O, ey ©

= {O, el, €., eB}, and extzs is made up of the following line segments:

2

e85y ©

1 Oe2, Oe

le3, e2e3, Oel, 3

Krasnosel'skii has made use of the concept of an x-star of a set in

the proof of his now famous theorem on sufficlency conditions for a set



Figure 2.1

Figure 2.2



to be star-shaped [9]. For completeness, the definition of this set is

given below.

Definition 2.3: Let x be a point of S, a subset of a linear space

L; the set of all points y such that xy © S is the x-star of S, and will

be denoted by SX.

The following lemmas reveal properties of x-stars which will be of

considerable value in subsequent proofs.

Lemma 2.1: If S is a closed subset of a linear topological space

L, then for any x ¢ S, SX is a closed set.

Proof: Let x ¢ S, and let g be a limit point of SX. For an arbi-

trary @ ¢ (0,1) consider any neighborhood U of og + (l-o)x. Then

1 -1
P

is a neighborhood of gq. Since g is-a limit point of SX there exists.a

point y which belongs to
5. N Qi U + ol x),
x o o

which implies that

o [
c
+
N

y:

for some u ¢ Us But ay + (1-a)x ¢ S since y e S,» and

ay + (1-a)x = a@% u + 3%% x) + (1-a)x = u,

which belongs to S N1 U. Thus, every neighborhood of og + (1-a)x con-

tains a point of S, which implies that oq + (1-a)x is a limit point of



S. The fact that S is . closed implies that og + (l-a)x ¢ S. .Clearly,
q € S, and since « was arbitrary, gqx ©€S. This yields the fact that

q € Sx’ so that the set SX is closed.

Lemma 2.2: If S is a compact subset of a linear topolegical space

L, then for any x ¢ S, SX is a compact set.

Proof: Since L is a Hausdorff space, S is closed. For any x ¢ S
the above lemma gives the fact that SX is closed. Then SX is compact,

since any closed subset of a compact set is compact.

If S in a linear space L is a star-shaped set, then it is clearly
true that
ckS = NS,
xeS *
That is, a point p belongs to the convex kernel of S if, and only if,
xp is contained in S for all x ¢ S. The latter statement is true if,
and only if, p belongs to SX for all x ¢ S, The previous identity sug-

-gests the following definition.

Definition 2.4: In a linear space L a subset T of a star-shaped

set is said to star-generate the convex kernel of S if
ckS = N Sxu
xeT

Such a subset T is said to be a star-generating set for ckS.

As noted above, a star-shaped set S star-generates its convex ker-
nel, or equivalently, is itself a star~-generating set of its convex
kernel. A question of interest now is the possibility of finding proper

subsets of a star-shaped set that star-generate the convex kérnel, and



indeed, the possibility of finding such sets that are minimal. It is at
this point that use is made of the extremal structure in the determina-

tion of the convex kernel of a star~shaped set.

Theorem 2.1: Let L be a locally convex space and S a compact star-
shaped subset of L. Then
cks = N S 1
xeh

where A = extaﬁ.

EEQQE’ It may be assumed without ioss of generality that O e ckS.
Let p ¢ S\ckS. Then there exists a point y € S such that py & S. Since
S is compact, y may be chosen such that if u = Ay + (1-\)p, A > 1, then
u ¢ S. Since py &S, there exists a point z ¢ intv py such that z f’S,
Consider the convex cone C = { oy + (B-a#l)z: @, B 2 0}, which has ver-
tex z and is contained in the subspace L' with basis {p,y} (cf. Fig.
252‘), If y e A then since p £ sy,

P ﬁ(»xrlASXQ

If y £ A, then there exists a hyperplane H' and a neighborhood U of y
"such that y e H* N U < 8., Since S N intv py® = @, H' must intersect L'
in some line other than L(p,y). Thus, H' N L' is a line which contains
‘a segment that is contained in (intv C) N S, which implies that (iatv C)
NS # @, Since L is locally convex there exists a continuous linear
fﬁnctional f defined on L .such that f(q) = 1 for every q ¢ L(p,y);
clearly, O fﬁL(p,y) since py Z S.and O ¢ ckS., The cone C is closed and
S is cqmpact; hence, C N S is compact. Then the continuous linear func-

tional f', the restriction of f to L', attains a maximum at some point



w eC N S; since SNOz® =g and £'(q) =1 for q ¢ L(q,y), then £'(w)
>1 and w ¢ intv C. Let H = [f:f(w)J]. Since HNC N S is a compact
subset of the 1~-dimensional set H N L', there exists a minimal closed‘
line segment in intv C which contains H N C N S, This segment is con-
tained in intv C since 0z® N S =@ and (HNC) Npz® =g, Fach end-
point of this line segment, which may be degenerate, must be a point of
A. For, if not, the argument used above to show that (intv C) NS £ g
when 'y ﬂ.A can be used to show that f' does not attain its maximum on

C NS at wo Let v be one of these end points. The points p, ¥, é and
v are all contained in L'. If pv < 8, then the fact that O ¢ ckS im-
plies that conv {O, P, v} c 83 since z ¢ conv {0, P,y v}, z ¢ S, a con~
tradiction., Hence, pv ¢ S and

. : P ﬂ xQASXo

It then follows that

S\ckS c:S\ N SX
X el

and that

N Sx < ckS.
xeh

This conclusion, along with obvious set inclusion

ckS € NS,
X
xel
implies that
ckS = N Sio
xeh

A valid question that might be asked about the above theorem is the
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foilowing; Is it necessary to use the larger set extaﬁ.rather'than the
set ext S? Since ext S = extQ§ for 8 in a 2-dimensional space, this
question is of interest in linear spaces of dimension greater than two.
The following example shows that it is not always sufficient to consider
only ext S as a star-generating set for the convex kernel of a compact

star-shaped set S if the dimension of the set is greater than two.

Example 2.2: Let the linear space L be in E,, and let {el, €5 e3}

be its natural basis. Let

S = U conv {0, e., €.},
iy i’ 73
i#3
i, j ¢ {1, 2, 3} (cf. Fig. 2.1). Clearly, ckS = {0}, ext S = {0, e

€5 63}’ but

)
N S, = U Oe,,
xgext S i=

which is not ckS. The set of 2-extreme points for the above set is the

same as for Example 2.1.

It can be readily verified in the above example that the 2-extreme
points actually do star~generate the convex kernel of S. A close exam-
ination of that example reveals several questions concerning the exist-
-ence of proper subsets of extaﬁ that star~generate the convex kernel of
S. First, does there always exist a proper subset? Second, can any-
thing be said about the cardinality of these star-generating subsets?
It may be noted in Example 2.2 that a finite subset of ext. S exists

2

which star-generates ckS; one such subset is f%(el +»e2), Vz(el + e

3)’

te(e, +»e3)}.

The following example provides an answer for the first question; in
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some cases the collection of o~extreme points is a minimal star-generat-

ing set for the convex kernel of a star-shaped set.

Example 2.3: In E, let § = conv {(1,1), ,-1), (-1,-1), (-1,1)} U
conv {(0,0), (-2,2), (2,2)} U conv {(0,0), (2,-2), (-2,-2)} (cf. Fig.
2.3). It can be shown with little difficulty that for any proper sub-
set T of ext § = {(2,2), (2,-2), (-é,-z), (-2,2)} that
{(0,00} =cks & N s_.
xel

The next example is in response to the second question posed ear-

lier. It was noted in Example 2.2 that for a particular set S in E

5
there exists a finite subset of ext2$ which star-generates the convex
kernel of S. A compact star-shaped set S in E3 will now be given such
that any star-generating subset of extES must be infinite.

Example 2.4: In the linear space E, consider the points P, = (1-

3
2™ 2R 0) =2p and r. = (0,0,277), where n = 0, 1, 2, *se. If
’ 19qn n n 3V g WI 2 y 13 < o

q = (2,0,0) and O = (0,0,0), then let S' = conv {q, Ty 0}, s, = conv
{qn, o 0}, where n = 0, 1, 2, *°+, and let T, = conv {pn—l’ P,y Ty 0},
forn =1, 2, 3, *=> (cf..Figs.2.4). Each T, is & tetrahedron; each pair
T and T

n n

41 is separated by the 2-simplex Sn’ n=1, 2, °°°, Then let

S =8 U(uUus)yu(um)y,
n=0 o n=1 o

For this set S, ext_ S is made up of the following line segments: Oro,

2
Ogs Ogqs Tpdgs Todys Tolos °°°F Polgs P13y Poldss °°°5 PP, where 2p = qo

If T is any nonempty subset of (extas) n (s* o J S, Uooe), then

ckS = {0} GOry c NS .
xeT
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(1

Figure 2.3

Figure 2.4
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If T' is a finite subset of (extzS) N (Tl U T, U ees), then there exists
a maximum positive integer k such that T' N (Tk\pro) # @. Thus,
cks = {0} gor, & N 'sx.,
xel

Hence, any subset of ext.S which star-generates ckS must be infinite.

2

It may be noted in the three examples given above from E, that in

3

each case ext25 is uncountable. The next theorem shows that this is in-
‘dicative of the general situation.in linear spaces of sufficiently large

dimension.

Theorem 2.2: If S is a compact star-shaped set in a locally convex

space L, and dim(S) = 3, then ext § is uncountable.

Proof: Without loss of generality it can be assumed that O e ckS.
Since dim(S) 2 3 there exists some poiﬁt x eSS, x#£#0. If Bx ¢ extaﬁ
for every B ¢ (0,1), then extaﬁ is uncountable. If there are only a
countable number of poin%s of Ox -that belong to extaﬁ, consider some
w = B x such that w ¢>éxtaﬁd B ¢ (0,1). Then there exists a hyperplane
H and a.neighborhood U of w such that w ¢ HN U © 8. Since dim(H) = 2,
HN'UN S contains a nondegenerate line segment zw such that z # Tx for
any T € Re The fact that L is locally'convex implies that there exists
a continuous linear functional f defined on L. such that f(w) = f(z) = 1.
There exists a point z' e [f:17] such that {z, Z', w} is an affinely in-
‘dependent set. Since 0 ¢ [f:1], {0, z, z', w} is an affinely independ-
-ent set, which implies that‘fz, z', w} is linearly independent, as is
the set {y, w, z}, where y;= z' -~ w. Clearly, y ¢ [f:0]. For any \ ¢

[0,1] consider the subspace L, of L with basis [y, \z + (I-Mw}. Let

A

f, be the restriction of f tOILX. The set Lk.ﬂ S is compacts; hence, f

A A



14

attains a maximum on LX N S at some point u, fx(u) > 1. Since dim(LX N

[(f:f(w)]) =1 and L, NS N {f:£(u)] is compact, there exists a minimal

A
closed line segment in L, which contains L, N [f:f(w)] N S. This line

A A
segment must have at least one end point; each end point that exists
must belong to ext S (cf. Fig. 2.5).
For -each pair éf distinct real numbers A,y in (0,11, LX N Lu =
{p: p=1y, T e R} c[f:0]). 4s was‘shown above, for each \ ¢ [0,1] there

‘exists a point Py eL. N extaﬁ, where f(px) 2 1; hence, for any two dis-

A
tinct real numbers A,y € [O,l] the associated points px and p“ must be

distincts This then implies that the set extaﬁ is ‘uncountable.

It has now been shown that in some cases subsets of extaﬁ which
star-generate the convex kernel of a compact star-shaped set S must be
infinite. The question of cardinality of such subsets can be approached
by considering conditions sufficient to yield countable subsets of the
a-extreme points which star-generate the convex kernel of a compact star-
shaped set. Such conditions are ﬁow of considerable interest since it
is known that extQS is uncountable for compact star-shaped sets of di-
‘mension greater than two in locally convex spaces. The next theorem is

a step toward finding such sufficient conditions.

Theorem 2.3: Let S be a closed subset of a linear topological
space L and let T be a subset of S that star-generates ckS, which may be

empty. Then if M is a, subset of T such that T Cfﬁ, M star—genératesckS°
Proof: Since M < T then clearly

ckS = ﬂ_Sx < N Sxo
xeT xeM
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Suppose -that M is a proper subset of T and ckS is a proper subset of
mSX.
xeM
Then there exists a point ¢ which belongs to
NS\ NSs..
xeM x xeT x
But
N SX =(nN Sx) nan SX);
xeT xeM xeT\M
thus,
xeT\M *

This implies that g g SX for some x., ¢ T\M. Since

0 0

qge N S_,
‘xeM x

MC S , which is closed as a result of Lemma 2,1. Hence, x. € T cMc

, 0

Sq, which yields the fact that %54 c 8. But if ! c S, then q ¢ SX , &
0
contradiction. Therefore,

Cks = n Sxa
xegM
In the above theorem the set M is dense in T. The concept of dense
subsets leads to the idea of separable spaces, which is the basis for

the next theorem and the desired countable star-generating sets.

Theorem 2.4: If S is a compact star-shaped subset of a normed
linear space L, then any subset T of S which star-generates the convex
kernel of S contains a countable subset M which also star-generates the

-convex kernel of S.
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Proof: The norm of L induces a metric on L., Hence, the compact set
S can be considered as a compact metric space, where space is now used in -
the topological sense. The compact metric sbace S is separable, which
| implies that S is second countable [5]. Any nonempty subset T of S is a
second countable topological space with the relative topology, which im-
plies that T is separable. Therefore, there exists a countable subset M-
of T such that T C;M. Theorem 2.3 implies that M star-generates ckS and

the theorem is proved,

Although the preceding result states the existence of a countable
star-generating set for each set in a class of compact star-shaped sets,
it seems :unlikely that such a countable subset could be described fur-
ther in general to any great extent. A close examination of the set
from E, given in Example 2.5 indicates that any countable star-generating

2

set for the convex kernel must be chosen with considerable care.

Example 2.5: In E, let B(1) = {p: [[p|| < 1} and let B_(1) = B(1) N

f(xl,xz)z x, = 0}, Bd(l) = B(1) N {(Xl,xz): < 0}, Bl(l) B(1) n {(xl;

%

> 0} Then S = conv {(-2,8),

)0 % 1
(0,8), (2,-8), (0,-8)} U conv {(-8,-2), (-8,0), (8,2), (8,00} U (B,(1) +

(-1,8)) U (Bf(l) + (8,1)) U (Bd(l) + (1,-8)) U (Bl(l) + (=8,-1)) (ef.

< 0} and Br(l) =B(1) N f(xl,xz): X

Fig. 2.6).  The set ext S is made up of the four circular arcs in béd: S.
Tt is not difficult to show that ckS = {(0,0)}. Any subset T of ext §
that star-generates;cks’mustvcontain an infinite number of points from
each of the circular arcs; in fact, each arc A must contain an infinite

sequence from ext S which converges to A N {(0;8), (8,0), (0,-8), (-8,0)1}.



/"‘\
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(0,-8)

Figure 2.6




CHAPTER ITIT

RELATTVE EXTREME POINTS

Klee [8] introduced the cbncept of relative extreme point. The

following definition is a result of the paper mentioned above.

Definition 3.1: If S and T are subsets of a linear space L then x

¢ S is said to be extreme in S relative to T if there do not exist points

y ¢ S, z ¢ T such that x ¢ intv yz.

The relative extreme points of star-shaped sets that will be of
particular interest are the points of a star-shaped set S that are ex-
treme relative to ckS. The collection of such relative extreme points
in S will be denoted by exk S. The set of points in exk S which are not
in ckS will be denoted by ES' The following example points out some of
the relationships that exist between exk S and ext S, as well as with

ESO

Example 3.1: In E, let § = conv {(0,0), (-3,6), (0,3)} U conv
{(0,00, (0,3), (3,6)} (cf. Fig. 3.1). Then ckS = conv {(0,0), (-1,2),
(0,3), (1,2)}, exk 8 = ext 8 = {(0,0), (-3,6), (3,6)} and By = {(-3,6),
(3,6} . |

Let S' = conv {(1,2), (1,-2), (-1,-2), (-1,2)}Uconv {(2,1), (2,-1),
(-2,-1), (-2,1)} (cf. Fig. 3.2). Then ckS' = conv {(1,1), (1,-1),
(-1,-1), (-1,1)}, ext s' = {(1,2), (1,-2), (-1,-2), (-1,2), (2,1),

(2,-1), (-2,-1), (-2,1)} and exk S' = B, = conv {(2,1), (2,-1)} U conv

Sl.
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{(1,-2), (-1,-2)} U conv. {(=2,=1), (~2,1)} |J conv {(~1,2}, (1,2)}.

The following lemma is included.feor. completeness; its.proof is omit-

ted since.the result is guite.well known [3].

Lemma 3:1: If L is.a-linear.teopolegical space and C is a compact
convex subset of.L.sueh.that .0 # C,. then C* = {ix: x £.C, A > 0} is a

.closed convex cene with .vertex the origin.

‘ Tﬁédremf'jgggives,a decomposition of a compact‘star@shaped set
by the use of relative extreme peoints. Any such set can be represented
in terms of its,@onvex»kernelzand:thé:égtreme points relative to the.
convex kernel. The. convex kernel of a compact star-shaped set S is a
compact .cenvex set..: If such-a set.S is a subset of a locally cenvex
space;‘the.KreinvMilman:themrem‘gives~the fact that ckS is the clesed
convex ‘hull of itd extreme p@ints; ext: (ckS). TFor example, if ext:(ckS)
is finite and p ®:ckS§,. there exists a subset {xl, Koy ooos xk} of ext
(ckS) such that

k ok

P= I Ajxg, . I Ay.=.1, ki.iuov

i=1 i=1

To further illustrate.in this special .case, Theorem 3.1 implies that

if p € S, a compact:star-shaped. subset. of.a locally.convex space, there.

exists a subset {yl,myz, ugf,‘,yn} of ext (cks) and a point q e Eg such

that
n n
pe=oag+ (I~a) £ B,y,, ZLB,=1,8, »0,0=2<acx<l,
4=l ivi =1 i i

These results are:now .givea in.Theorem 3.1.-

Theorem 3.1¢ Let § be a compact nenconvex star-shaped set in a

locally convex space L. Then
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S = U conv (ckS U {y]P.
yeby

Proof: Since E, ©8, conv (ckS U {y}) =8 for every y ¢ E Thus,

S h

U conv (ckS U {y}) 8.

yebg
Consider any z e S; if z e ckS U exk S{'ﬁhéﬁﬂéinCQTES%‘ﬁ, as shown below,

z e U conv (cks U {y}).

Vel |

Let C = ckS. Suppose z e S\(ckS U exk S) snd without loss of generality
suppose that z = O. Since C is compact and convex; the above lemma
yields the result that C* and -C* are closed conve# cones with z, the
origin, as the vertex of each. Since z g exk S there exist points x ¢ C
and w ¢ S such that O e intv xw. Clearly, w ¢ -C*\0, S N (=C*\0) # &
and § N (~C*) is compact. Let u be an arbitrary point in -C*\O; since
L is locally convex and C* is closed and convex, there exists a closed
hyperplane H = [f:f(u)] such that u ¢ H and H N C* = @, where f is a
continuous linear functionals Tt can be assumed that £(C*) € 0, which
implies that £(u) > 0. The function f then attains a méximum on 8N (=C*)

at some point v, ¢ S N (=C*). Suppose that vy £ exk S. Then there ex-

0

ist points p ¢ ckS; g ¢ S such that Vo € intv pg. Since v, & ~C*, v, =
~Ap'y p' e kS, A >0, and vy = & + (1=-a)g, 0 € & € 1. Therefore,

Vo = =Ap' = op + (L=a)g and

1.
q = 3= (Ap' + ap)

e M A e

= gty

where v < O and g' € ckS. Thus, q ¢ ~C*, so that g ¢ SN (<C*). But
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fg) = f@f%a Vo " i%é p)
1 o
=T f(vo) -1 f(p)

1 o .
>m f(VO> - i:‘a f(VO>

i

f(vo).

This contradicts the fact that f(vo) 2 f(x) for all x ¢ S N (-C*),

Hence, v~ & (exk S) N (~C*) and

0]

O ¢ conv (ckS U {vo}) c U conv (cks VU {y]}.
yekq

Therefore,

S = U conv (cks U {y]).
yekq

Earlier it was discovered that in the case of Theorem 2.1 there will
often exist proper subsets T of exta§ which star-generate the  convex
kernel of S. The following result shows that the set E is minimal in

its use in Theorem %.1.

Theorem 3.2: Let S be a compact star-shaped set in a locally con-

vex space L. If T is a proper subset of ES then

U conv (cks U {y})
yeT

is a proper subset of S.

Proof: Consider any proper subset T .of ES; then there exists some

point x. e ES\IQ If

0]

X

5 € Y conv (ckS U {y]

y&T

there exists some y, ¢ T such that x, e conv (cks U {yo}), Hence, x, =
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AX + (l—)\)yo, where A ¢ [0,1], x e ckS; but A ¢ (0,1) since Xy # ckS U .
This expression for X5 implies that X, p‘exk S, a contradiction. Thus,

x. does not belong to

0

U conv (ckS U {y}),
yel

which must be a proper subset of S.

If S is a compact star-shaped set in a locally convex space L, then
the procedure employed in the proof of Theorem 3.1 can be used to locate
points of S\ckS which are extreme relative to ckS. For any such set S
consider an arbitrary point y e bd S. If y g exk S and y £ ckS, then
consider the closed convex cone C = {Ax: x ¢y - ckS, A 2 0} + vy, which
has vertex y. Since y gexk S, CN S # &; hence, there exists a point
z ¢ CN S and a continuous linear functional defined on L.such that
f(w) < £(z) for every w ¢ - C + 2y. The functional f will attain a max-

imum on C N S at some point u, which must belong to exk S.



CHAPTER TV
POLYHEDRAL STAR-SHAPED SETS

Convex polytopes are of considerable interest in several areas of
study. Certain systems of linear inequalities have sdblution sets which
are convex polytopes. For example, consider the following system of in=-.
-equalities in two variables:

x+y<s1l
=2% +§y £ 2
x -y <1

The solution set im the (x,y)-plane will be conv {(1,0), (-1/3,4/3),
(=3,-4)}, a convex polytope (cf. Fig. 4.1).

Locating optimal values for a real function f with the constraints
of such a system of linear inegqualities involves examining the collec~
tion of extreme points of the convex polytope which is the selutien set
for that system. This process is aided by the fact that there are only
‘& finite number of extreme points in a convex pelytepe. Since the
structure of a convex polytope ils simple to describe analytically, con-
vex polytopes Have been used teo approximate mere general convex sets.

It seems quite natural to extena the idea of convex polytepe to a simi-
lar set in the class of star-shaped sets. The analogous entity, a poly-
hedral star-shaped set, will.bear'much the same relationships to star-
shaped sets as do convex poelytopes te convex sets.

Because the extremal structure of convex polytopes and polyhedral

2>
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star-shaped sets is simpler than that of convex sets and star-shaped
sets in general, the results of the previous chapters will be particular-
ly applicable to such sets. In the next chapter the relative ease of
applying such results to polyhedral star-shaped sets will be made avail-
able to sets in a more general class through a process of approximation
similar to that of convex polytopes for convex sets,

The former of the two definitions that follow is not new [4]; it is
included to complement the latter definition. To the knowledge of the

‘writer the latter definition is new.

Definition 4.1: A subset C of a linear space S is a convex poly~

tope if C is the convex hull of a finite number of points.

Definition 4.2: A subset S of a linear space L.is a polyhedral

star-shaped set if

n
S:UCi,
i=1

where each Ci 1s a convex polytope and

n
NC, # @
i=1 *

The first consideration of polyhedral star-shaped sets will be

focused upon the linear space E Part of the reason for this is the

20
fact that sharper results can be obtained here than in more general

spaces. Too, polyhedral star-shaped sets have several applications in

this space. Since a set in E2 can be described in complex notation, the

study of star-shaped sets in E. is of interest in complex analysis and

2

other areas of mathematics. ¥or example, if one is studying boundary

value problems in the plane associated with some partial differential
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equation, the setting lends itself to seeking a solution by use of con-
formal mappings. Any specialvclass of domains for which a conformal

map to some more familiar set is readily found for each of its member
sets is of considerable value. The class of polyhedral star-shaped sets
in E2 with convex kernels which are convex bodies form a class of sets
for which the Schwarz-Christoffel transformation can be used to find a
conformal map.

The following sequence of results gives sufficient conditions for a

set to be a polyhedral star-shaped set in EZ'

Lemma 4.1: Let S be a compact star-shaped subset of E, with a fi-

nite number of extreme points. If for x, y ¢ S, xy N ckS = {x}, then

there exists a point p € ext S such that Sp N xy = {x}.

Proof: Consider any such pair x, y ¢ S and the sequence {xn},
where x = 27 (y-x) + x, which converges to x. Since x, f ck8 for each
n > 0, Theorem 2.1 implies that there exists a point P, € ext S such
that x p_ £S. If xp C8, then x p C conv {x, P, xk} cS forl<nm
< k since x ¢ ckS and X € ¥XX. Thus if X P Z S, then P & S for
1l <k <n. Since ext S is a finite set, some p e ext S must appear as
a p, an infinite number of times; that is, for every N > O there exists
an.m > N such that p = P which implies that 2 £ S for any k such
that 1 < k € m. Hence, 2 &S for k =1, 2, °*>, If there exists some
z ¢ xy\(x} such that pz © S, then for any w ¢ xz, pw  conv {x, z, p} C
S. Since there exists a. point X, € Xz for any such z, pz £ S. This im-

plies that Sp N xy = {x}.

The following lemma defines a correspondence between ext S and a

subset of ext (ckS) which aids in determining the cardinality of ext (ckS).
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Lemma 4.2: Let S be a compact star-shaped subset of E2 which has

a finite number of extreme points. If dim(ckS) = 2, then for every:point
x € ext (ckS)\ext S there exists a point p e ext S such that L(x,p) sup-

ports ckS at x.

Proof: Without loss of generality suppose that O e int (ckS). If
x ¢ ext (ckS)\ext S then there exists a closed hyperplane of support to

ckS at x since ckS is a convex body and x e bd(ckS). Let

cC= N Ha’
ael

where iHa}aeA is the collection of all closed halfspaces which centain
ckS and have x as a boundary peint. Then C is a closed convex cone with
vertex at x and with two clesed rays emanating from x forming the bound-

ary of Co If there is only one such halfspace, say H,, then it may hap-

l’
pen that S C Hlo Since x ¢ ext S there exists points y, z € S such that

x € intv yz. Since we are assuming that S C Hl, yz C H'; the hyperplane

which determines the halfspace H There exists a minimal closed line

10
segment in H' which contains S N H': each endpoint of this segment must

be in ext S. Such a peint p and the line H' give the desired conclusion.

If there is only one such halfspace H, and S ¢ZHl, then there exists a

1
point w € (EE\Hl) N S. There exists linear functional f and a.real-num-
ber \ > O such that [f:\] = H', where H' is the hyperplane which deter=-

mines Hle Since O ¢ Hl’
T > \ at some point u e (EE\HI) N S. The compact set S N [f:7] must ke

f(w) > \e The functional f attains a maximum

contained in some minimal closed line segment, each end point of which
must belong to ext S. Thus, ext S N (EZ\HI) # @. Thepoint xeext (cks),
which implies that ckS N intv Ox® = @ since O ¢ ckS. Lemma 4.1 implies .

that there exists some point p € ext S such that Sp N intv Ox* = @. If



30

this point p belongs to H; the desired conclusionrfollowsa Consider
any point q e (EZ\Hl) Next Se If O ¢ L(gyx), then clearly sq N intv
Ox® # @, Suppose that O ¢ L(g,x). The line L(g,x) does not bound ckS
since H' is the only such line in the tase under consideration. Hence,
there exists a point y € ckS N H , where H is the closed halfspace de~
termined by L(gq,x) which dees not contain O. Thus, x ¢ int (conv {0, q,
v} < conv {0,q9,y} © 8, which implies that S, N intv 0x® # @#. The point
p sought to give the result of Lemma 4.1 cannot belong to E2\Hl°

Now consider any point q' ¢ ext § Nint Hj. If O ¢ L(g',x), then
Sq; N intv Oi“’% @ since O € ckS. If O ¢ L(qg',x), then since L(g',x)
does not bound ckS, there exists a point y' e ckS N H*, where H* is the
closed halfspace determined by L(q',x) which does not contain O (¢cf. Fig.
ho.2). Since {0, x, y'} ©ckS and g' e S, conv fong, vy '} ©8. For a
point g € (EZ\EI) N ext S it has been shown that x e int (conv {0, g,
x'}) © 8. It can then be easily shown that Sq" N intv 0x® # @. Thus,
the desired point p canunot beleng te int Hl’ which implies that p ¢ H'.
The point p gives the desired cenclusion.

If there existvmore»than one halfspace H,, let H, and H2 be the twe
ﬁalfspaces containing ckS which are determined by the two hyperplanes
H.' and H,' which contain x and the boundary of C. The two lines H.'

1 2 1
and H2v determine four convex cones, each with vertex x. Let H;-and H;
be the complementary closed halfspaces. of Hl and H2, respectively (cf.
Fige 4.3)o If there exists a point p € ext S N [(Hl n HE) U (HI n H2)],
t#en this peint gives the desired conclusion. On the other hand, sup= -
pose that no such point p exists. The fact that x ﬁ ext S implies that
s N (E2\(Hl n Ha)) # @ since H # Hy» Then 8 N (E2\Hl) A @ orsn

(E2\H2) #P. Without less of generality suppose that the former is true.



Figure 4.3
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There exists a linear fucticnal g and a real number B > O such that

H ' o= (g:B8Je The linear functional g attains a maximum @ > B on § N HZ
at some point v € $ N (EE\H1)° The compact set S N [g:e] is contained
in a minimal cleosed line segment, each end point of which must belong to
ext S. Since it has been assumed that ext S N (H; N H2> = @, these end
points must belong to int (HI-H H;)a Therefore, ext S N int (Hz n H;)%#
@. Consider any point q e ext 8 N int (HI N H;)@ If 0 ¢ L(g,x), then
Sq N inty 0x® # @ since O ¢ ckS. Suppose that O £ L(q,x). The fact
that q e int (H; N H;) implies that L(q,x) does not bound ckS. There

exists a peint z e ckS N Hg, where H is.the closed halfspace determined

3
by L(g,x) which does not contain O. Then x ¢ int (conv {g, z, 0}) <
conv {q, z, 0} © 8, which implies that Sq N intv Ox>® £ @.

If 9" eext 8 Nint (H; NH,) and O ¢ L(qf,k)s then Sq" N intv Ox®
# #. Suppose that O ¢ L(g',x). Since ¢' ¢ int (Hl n H2>’ L(g',x) does
not bound ckS. There then exists a point z' e ckS N HZ, where H;-is the
closed halfspace determined by L(q',x) which does not contain O. Since
fO, x, z'} CckS and gq' ¢ S, conv fo, %, 2', q'} €8, and as before, it
can be readily shown that qu N intv Ox= £ @, The poinf P peeded to
‘give the conclusion of Lemma 4.1 cannot belong to int (H; n H2) U int

(H;-ﬂ H;)o Hence, ext S N [(H1 N H;) U (Hz N H2>] % @ and the conclu-

-sglon follows.

The next lemma shows that the cenvex kernel of a compact star-

shaped subset of E

5 with a finite number of extreme points is a convex

polytope.

Lemma 4.2: If 8 is a compact star-shaped subset of E2 with a fi-

‘nite number of extreme points, then the convex kernel of S has a finite



33
number of extreme points.

Proof: The conclusion follows immediately if dim(ckS) < 2.  Suppose
that dim(cksS) - 2. TFor any x ¢ ext (ckS)\ext S there exists a point p ¢
ext S such that L(x,p) supports ckS at x, a result of Lemma 4.2.> Ifpe

ext S,fﬁhén;p £ ckS or p ¢ bd S. In either case, consider the intersec-
tion of>all closed halfspaces which contain ckS and contain p.in the
bounding hyperplane. This intersection of halfspages is a closed convex
cone with vertex p. The boundary of this cone is the.unipn of two
closed raysvemanéting from p. Each such ray is contained in exactly .-
one line through p. These lines are the only hyperplanes which contain
p and support ckS. Fach such hyperplané intersects ckS.in a closed line
segment, which containé'at most two points from ext (ckS). Thus, for any
p € ext S there exists at most four points in ext (ckS)\ext S with which
p might be éssociated as above. This-implies that ext (ckS)\ext S is a
finite set, as is. ext S N ext (ckS), which implies that the convex ker-

nel of S has a finite number of extreme points..
The theorem that follows is the principal result.of this chapter.

Theorem 4.1: TLet S be a compact star-~shaped subset of E2 which has

-a finite number of extreme points. If for every x e'ES there_exists"
points y, z € ext S such that x ¢ yz & Sy then 5 is a polyhedral star-

shaped set.

Proof: Consider the set T of all pairs of points y, z € ext.S such
that yz < 8. Clearly there exist a finite number of such pairs, and for
every x ¢ E, there exists a pair y, z ¢ ext S such that x e yz < S.  Also,

S
for any such pair y, z, conv (ckS U {y,z}) C S; with the aid of Lemma 4.3
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it can be readily shown that conv (ckS U {y,z}) is a convex polytope.
But
S = U conv (cks U {x}),
XeES |

and for each x e Eg, conv (ckS U {x}) c conv (ckS U {y,z}) for some pair
y, z ¢ ext S, ‘Thus,

$= U conv (ck8 U {y,z}),

v,zel

and S is.a polyhedral .star-shaped set.

Lemma 4.3 and Theorem 4.1 are not necessarily true in linear spaces
of dimension .greater than two. The example that follows will bear this

out.

Example 4,1: In the linear space E3 let

D= {(x,5,0): ¥ +y° <1},
S = conv (D U {(o,o,u})lu conv {(2,2,0), (2,-2,0), (=24=-2,0), (-2,2,0)}1.

Then ext S : {(o,o,u); (2,2,0), (2,-2,0); (-2,-2,0) (-2,2,0)}, which is
a finite set (cf. Fig. b.k). | o

The hypothesis of Lemma 4.3 is satisfied, but ckS ='D and ext (ckS)
is an uncountable set. ‘Similarly, the hypothesis of Theorem 4,1 is éat—

isfied, but' S is not-a polyhedral star-shaped set.

By strengthening the hypothesis of Theorem 4.1, an extension to more

general spaces can be obtained. This extension is given in Theorem 4.2.

Theorem 4.2: Let S be a compact star-shaped subset of L, a locally

convex spacej suppose that S has a finite number of extreme points. If
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(2,-2,0)

Figure b.b
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¢kS has a finite number of extreme:pointsvand if for every x e-ES there
exists a subset T of ext S such that x € conv T € S, then S is a poly=-

- -hedral star-shaped set.

Proof: Let € be the collection of all subsets A of ext S such that
conv A < 8. Since ext S is a finite set, there are a finite number of
- gets in €. For each A ¢ e, conv (conv A U ckS) <8 ahd‘since,conv A and
ckS are convex polytopes, so is conv (conV'A U ckS). Hende,

U conv (convid U ckS)
Ael
“is a polyhedral star-shaped'subsetvof S. Theorem 3.1 implies that
S = U conv (cks U [y].
yebg '
The hypothésis states that for eﬁery N e~Es thefe exists a set Ay e &
such that y e conv Ay C 8.  Therefore,
s = U ‘conﬁ_(ckS Uy} < Uconv (ckS U conv A),
yeES ‘ R Aef , .

which leads to the conclusion that § is a polyhedral star-shaped set.

Earliér-if was mentionedithatfconvex polytopes‘foen:occurias-solu-
‘tion sets to systems of:lihear1equalities. Buch ‘a set is.iﬁe.solutign :
Uset~common‘fo~each ofvﬁhe:ineéualities inAamgivén:system..:On the:other
‘hand, suppose that Severél'systemé of linear-inequalitieé éfé-given, and
a solﬁtion.isZSOughf for-aﬁy éneiof the  systems. »Then'the s6luti®n.sét
-may -then bera‘polyhédral star-shaped set. jThe following examéiefillus- »

trates two such systems{

Example 4.2: Consider the following two systems of inequalities in

two variables:
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x+y <1l x+y <1
X =1 -2x +y <1
_Ll.x -y < <] X - 2y <1

Then the set of points in the (x,y)-plane that satisfy one system
or the other will be the set S = conv {(1,0), (0,1), (1,-3)} U conv

{(1,0), (0,1), (-1,-1)}, a polyhedral star~shaped set (cf. Fig. 4.5).



(0,1)

(1,00

\

(-1,-1)

Figure 4.5
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CHAPTER V
APPROXIMATION OF COMPACT STAR-SHAPED SETS

The - setting for this approximation will be a normed linear space L.
The compact sets of such a space can be cqnsidered as ‘the elements of a
metric space by defining a distance function A on the collection of such
sets. If H H is the norm on L, then for any compact set S in L let Se =
S + {x: Hx” < ¢}. For any two compact sets A and B in L the distance
between A and B will be defined to be inf {e: A C::Be and B C:Ae} and will
be denoted by A(4,B). If {Ai} is a sequence of compact sets in L then
lim A, = A
i1=e0 * .
if, and only if,
lim (Ai,A) = Q.
1400
The collection of subsets of L that will be of interest to this
study is the collection of compact star—shaped éets, which will be.de-
noted by‘ﬁ. The first result shows that the collection (P of ali poly-

hedral star-shaped sets in L is dense in,go

Theorem 5.1: Let S be a compact star-shaped set in a nermed linear
space L. Then for any e¢ > O there exists a polyhedral star-shaped set

P such that P ¢ 8 C:P€°

Proof: The set ckS is compact. Consider the collection %l of all

39
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e-balls with centers in ckS. There exists a finite subcollection ml' of

ﬁl which covers ckS., Let T = {Xl’ X cee, xm} be the associated collec-

o1
tion of centers, which will be a subset of ckS. Now consider the collec-
tion %2 of all e-balls with centers in S\ckS.  Since El' U %2 covers S,
which is compact, there exists a finite subcollection %2' of %2 such
that'%l' U %2' covers S. Let T' = {yi,-ya, ses, yn} be the set of cen-
-ters associated with the e-balls inlﬁa'. Let € be the collection of sub-
sets A of T' such that conv A € S. Since T' is.a finite set there is at

most a finite number of sets in €. Since ckS is convex, conv T & ckS

8, Forany A ¢ &
conv (conv T U.conv A) = {ox + (1-a)y: @ ¢ [0,1], x e conv T, y e conv A},
and since conv T < ckS, conv A € S, then
conv (conv T U conv A) < S,
Thus, if
P = Uconv (conv T U conv A),
Aef
then P € S. Since, for each A ¢ €, conv A and conv T is each a convex
polytope, then so is conv (conv T U conv A)» Then P is the union of a
finite number of convex polytopes; clearly bonv T is a subset of each
convex polytope of this union. The set P is then by definition a poly-
hedral star-~shaped set.‘
Let y ¢ S. Then there exists an e-ball B in Qﬁ' U %2' such that
y ¢ Bo There exists some X, € T or some yj e T' which is the center of

B. In elther case Hy-xiH < g or Hy-yjH < ¢, and since X, € P, yj e P,

it follows that y e Pe. Hence, P C S C:Peo
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Theorem 5.1 provides the basic step needed to obtain for -every com-
pact star-shaped subset S of a normed linear space L a sequence of poly-

hedral star-shaped sets which converges to S.

Corollary 5.1: If S is a compact star-shaped set in a normed lin-

ear space L,then there exists a sequence [Pi} of polyhedral star-shaped

sets which converges to S.

Proof: TFor each positive integer n there exists a polyhedral star-
-1

shaped set Pn such that A(S,Pn) <n ., Let ¢ > 0; there exists a posi-
tive integer N such that N-l < e Ifn>N then n_l < N-:L < ¢, which
implies that if n > N, IA(S,Pn) - 0| = A(S,P ) < e so that

lim A(S,P ) = O.

n
n=a® '

This implies that the sequence {Pi} converges to S.

Since the convex kernel of a star-shaped set S is of fundamental
importénce to the study of S, it would be of considerable value to know
that there is a relationship between the convex kernel of thebstar—shaped
sets of a sequence {Ai} and the convex kernel of A, where [Ai} converges
to‘the star-shaped set A. The following examples show that restrictions
must be placed upon the star-shaped sets of the sequence [Ai} if the as-
soclated sequence of convex kernels [ckAi} is to converge to cki,

The first suéh example shows that there exists in E. a sequence {Ai}

2
of compact star-shaped sets which converges to a star-shaped set A, but

the sequence {ckAi} does not converge.

Example 5.1: For each odd positive integer n let A = conv {(1,1)s
n

(1,-1), (-1,—1), (-1,1)}. TFor each even positive integer n let An =



ko

1 -l)

Ay U.conv {(0,0), (1+n ",1+4n L

k)

, (-(l+n—l),l+n—l)} U conv {(0,0), (1+n~
™), @™ ,-@m™) ) (ef. Fig. 5.1).

Each An is convex when n is odd; thus ckAn = An in that case. If
n is even, then ckA = {(0,0)}. The sequence fck(Ai)} obviously does
not converge. It can be readily shown that the sequence {Ai} converges

to Al.

The problem now at hand is to determine sufficient conditions for
‘the 1limit.of the:sequence of convex kernels to be the convex kernel of
the 1imit of the sequence. The first restriction to be considered is
monotonicity of the sequence {ck(Ai)}. The oscillation of the terms of
the sequence of convex kernels in the previous example prevented its con-
vergence to any set. The next examples show that monotonicity alone for
the sequence [ck(Ai)} is not enough to assure that this sequence con-
verges to cki,

First, there exists in E, a sequence of compact star-shaped sets

2
{Ai} such that {Ai} and {ck(Ai)} both converge, and {ck(Ai)} is monotone

decreasing, but

lim (ckA.) # ck(lim A ).
. 1 . 1

1= 1=
Ixample 5.2: For each positive integer n let
a_ = conv {(0,-1), (0,1), ™) 1y, ) 3 u
conv {(27%,0), (o,2'n§, 0,-2"M1.
For each such n

ck(An) _ coﬁvu{(0,2_y), (O’,_Qz--n)’L:(;a—k(lrl-kl??\»‘_,2.%(1ri+1?),9 (2—(n+l)’ 2-(n+l))}s
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The sequence {Ai] converges to the convex set A = conv {(0,1), (0,-1)} =
ckA, but the sequence {ck(Ai)] converges to the set {(0,0)} # ckA (cf.

Fig. 5.2).

Also, in E, there exists a sequence of compact star-shaped sets [Ai]

2
such that [Ai] and {ck(Ai)]—both converge, and [ck(Ai)] is monotone in-
creasing, but

Lim (ck(A;)) # ck(lim A, ).

1= 1~

The following example indicates such a case.
Example 5.3: For each positive integer k let

B, = {(0,0), (3,0} U

conv {(1+k+2)71,0), (L+k2)™L, kD), (2-+2) 7L kh), (2-k+2)71,0)1.

For -each positive integer'n let

For each such integer n

ckién) ='ck(Bn) = conv {(l+(n+2)_l,0), (2—(n+2)_l,0)} CIck(An+l>.

The - sequence fAi] converges to the convex set A = conv {(0,0), (3,0)} =
ckh, but the sequence [ck(Ai)} converges to the set conv {(1,0), (2,0)}

# ckA (cf. Fig. 5.3).
1t may be noted in Example 5,3 that for each n > 0, ck(An) C ckA,
The next theorem shows that if the condition that

ck(lim A,) < ck(A)
R 1 n

ise
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for each n is imposed upon the sequence fAi} then the desired convergence

of the assoclated sequence of convex kernels can be obtained.

Theorem 5.2: Let [Ai} be a sequence of compact star-shaped sets in
a normed linear space L. such that {Ai} converges to a star-shaped set A.

If the sequence fck(Ai)} converges and ckA C ck(Ai) for each i >0, then

lim (ck(Ai)) = ckA.

1=

Proof: Let ck(Ai) = Ki and let x e K, where

K = lim K.o
. 1

1=

Then there exists a smallest integer Nl such that if n 2 Nl’ Kn N Sl(x)

£ @, where Sl(x) is given by Se(x) = {y: |ly-x|| < e} with e = 1. Choose

a point

LI (A

for i < Nl’ choose vs from Ki.’ There exists a smallest integer N2 > Nl

such that if n 2 N

51 Kn N sl/Z(X) # @. Choose a point

y. ek NS, (x);
N2 N2 1/2

for any i such that Nl <ic< NZ’ choose s from Ki n Sl(x), which is

nonempty since 1 > N Suppose that for some m > 1 the smallest N >

1° m
i 2 S » F
Nm—l has been found such that if n Nm’ Kn N 1/m(X) F ) urthermore,

suppose that for-all i < Nm’ s has been chosen as follows: if i = N,

A

for some j such that 1 < j <m, then y, ¢ X, N Sl/j(X); if Nj <i <N,

J+1

A

for some j such that 1 < j < m-1; then v, € K, N Sl/j(x). For i < N2y

is defined as described above. Then there exists a smallest Nm > Nm

+1
. > . .
such that if n Nm+1’ then Kn N Sl/(m+l)(X) # @. Choose a point



Ly
Voo c K ns (x)3
N N1 1/ (m+1)

for any i such that N < i <N choose y. from K, N 8 (x), which is
m m+ i i 1/m

1
nonempty since 1 > Nm. A Sequence of points {yi} has now been defined

inductively such that for any i > O, y; € Ki'

Consider any € > 0; there exists an integer r > Q such that r—l < €.
Let n > Nr’ where Nr is defined as in the above procedure. Then n=N
for some p > r or Nq <n< Nq+l
K, N Sl/p(x) Csl/r(X) cse(x). If Nq <n< Nq+l,, then y e K N Sl/q(x)

for some q >r. Ifn = Np, then v, €

cS., (x) €8 (x). In either case, y_ € S _(x), which implies that
1/r € n €
Hyn—xH < ¢ for any n > Nr. Thus,
}im Y, = Xe
ide
Theorem 40 of Allen [1] implies that x e ckA; hence, K C ckA.
Suppose that there exists a point y e ckANK. If y £ K then there
exists a real number B > 0 such that for any N > O there exists some n >

N such that A(Kn,KU{y}i) 2 B, which implies that K Z ®U{yD or that

B/2
K Uf{y} g (Kn)B Vor But the fact that {Ki} converges to K implies that
there exists an integer NB > 0 such that if n > NB’ then A(KnsK) < B/2,
; - . ] »»
that is, K_ C:KB/2 egd K (Kn)B/E Since KB/2 C:(KU{y})B/z, there
. S , . .
must exist some n NB such that K U {y} ¢1(Kn 8/2° and since K c:(Kn)B/2,
. . c > 0, i -
y £ (Kn)B/2’ thus, y #K . But y e ckA CK for any n > 0. This con
tradiction implies that ckA C K, and the above result yields the fact
lim K, = K = ckA.
L ide 1
There are several questions that might be raised concerning the hy-

pothesis of Theorem 5.2. First, if {Ai} is a convergent sequence of

compact star-shaped sets in a normed linear space L, then under what
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conditions will fAi} converge to a star-shaped set A7 The next theorem

glves a sufficient condition for this set A to be star-shaped.

. "Theorem 5.3: Let [Ai} be a sequence of compéct-star—shaped sets in

the linear space Ln. If

~then A is & star-shaped set.

Proof: Consider any e¢ > 0, There exists an integer N > 0 such that
if m > N then A(Am,A) < ¢, vhich implies that A CA_and A C:(Am)e'
Since Am is compact for each m, it is bounded, as is (Am)e' The set A

c (Am)efor‘m > N; thue, A is bounded, as is Ae' The fect that Am c:Ae

for all but a finite number of integers m > 0 implies that [Ai] is uni-
formly‘bounded, since each Ai is bounded. Choose a sequence of points
(7.} such that y, e ck(a,) for each.i. The set of points {y,} is

bounded; therefore, there exists a subsequence fyé] which converges to

-some point ¥y e Ln. But Theorem 40 of Allen [1] gives the result that

. ]
vy € ck(lim A.),

Joe

!
where y. € A'. But
' J J

1im A(AS,A) - 0,

J-Nn
and
lim A, = A = lim A,
Joo ide

so that y e ckhA, which implies that A is star-shaped.

This result shows that part of the hypothesis of Theorem 5.2 is
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redundant -in the linear space Ln.
Another point of interest in the hypothesis of Theorem 5.2 is the
existence of the limit of the sequence {ck(Ai>}. The theorem that fol-

lows shows that in the linear space Ln this 1limit exists.

Theorem 5.4: TLet {Ai} be a sequence of compact star-shaped sets in
L - If the sequence [Ai} converges to A and ckA C:ck(Ai) for any i > 0,
then
lim (ck(Ai))
i-)oo

exists.

Proof: The previous proof shows that {ck(Ai)} is uniformly bounded.
Consider any subsequénce of fck(Ai)}; if this subsequence contains only
a finite .number of distinct sets then there will exist a constant sub-
sequence that converges. If the number of distinct sets is infinite,
then the Blaschke selection theorem gives the conﬁergence of some sub-
sequence. In either case, Theorem 5.2 implies that the convergent sub-
sequence converges to the convex kernel of A. If the sequence fck(Ai)}
does not converge, then it does not converge to the set ckA, which is
nonempty as.a result of Theorem 5.3, There exists a real number € >0
such that for any N > O there exists some m > N such that A(ck(Am),ckA)
2 ¢,. However, the subsequence of [ck(Ai)} so obtained must contain a
subsequence -which converges to ckA, a contradiction since no such sub-
sequence can exist. Thus,

Lim (ck(Ai))
129

must -exist.
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The ultimate aim is to show that fér any compact star-shaped set S
in a normed linear space L there exists a sequence of polyhedral star-
shaped sets [Pi} which converges to S such that |

lim (ck(P,)) = ckS.

i-e
Theorem 5.5 gives the basic step needed to show the existence of such a
sequence. However, before considering that theorem we first need to

prove the following lemma.

Lemmﬁ.i.l: Let C be a compact convex set in a normed linear space

L. For any ¢ >0, if x 4 C then Sc(x) ¢ZCe.

Proof: Without loss of generality suppose that x = O, Since O g C,
which is closed, there exists a real number o > O such that sa(o) Ne =
#. Since C is compact and “ “, & particular norm on L, is continuous,
there exists a point p e C such that |jp|| = inf {|lyl|: y € C} ana |lp|| > 0.
For any A > O consider the point =~Ap. Suppose that there exists a point

. The scalar A(1+0)™F ¢ €0,1) ‘

x, ¢ C such that [, + dpll < [p + W

since A > 0. Thus, X(1+X)-lp + (1+X)-lxl e C, and

I o+ 25l = 225 e + x|
<735 o + 2ol

(140 o]

llefls

a contradiction. Therefore, ”p +apll s ly + Xp“ for any y e C.
Consider any € > 0. If fjp|| 2 e, then O ¢ C_and §_(0) £C_. Sup-

pose that “p” < ¢. Then e(”p“)_l > I and e(“p“j_}- %-> O, so that
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I
—~
o
1
(VYT
-
=2

”(Th%ﬂ - Dp|| =

which implies that

(22'- - TI-S-”)p € Se(O)'

But N
1 1
I + (ﬂ-g-” - 3ol = G+ 3 ol
> €y
and since

€ 1 € 1
ly + G - el 2l + e - el > e
for any y € C,
1 €
95 - ﬂ;ﬂ)p £ Ce'
-Therefore, Se(O) ¢ICe.

Theorem 5.5: Let S be a compact star-shaped set in Ln' Then for
‘any € > 0 there exists a polyhedral star-shaped set P such that ckS C

ckP and A(S,P) < e.

Progf: For any e >0, B(e) = {x: [jx|| < e} CL, is compact. Thus,
- 8 + B(e) is compact and star-shaped. Furthermore, ckS + B(e) < ck(S +
B(e))s» TFor, let y ¢ ckS + B(e)s Then y = X + z, where x e ckS and z ¢
B(e), which implies that |y - x|| = ||z]| < e Let w ¢ S + B(e), that is,
w=u-+v, where u ¢ S, v ¢ B(e); as before, Hw - u” = HvH < ¢, For

any @ ¢ [0,1] consider ay + (1-o)w. Clearly ox + (1~-®)u e S, and
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oy + (1-dw - (o + (1-)w|| < ofly - x|| + (1-)|jw - u|| < e Therefore,
ay + (1-0)w = (ox + (1-o)u) e B(e), which implies that oy + (l-a)w e

S + B(e).. Since @ was arbitrary, y e ck(S + B(e)); hence, ckS + B(e)
cck(8 + B(e)).

Consider the collection %1 of all ¢/2-balls with centers in ckS +
B(e/2). Since ckS + B(e/2) is compact there exists a finite subcollec-
tion ﬁl' of %l which covers ckS + B(e/2): denote the collection of cen-
ters by T = {yl, Yor °°%s ym}, Consider the collection %é of all e¢/2-
balls with centers in (S + B(e¢/2))\ckS + B(e/2). There exists a finite
subcollection of %2"of %2 such that %l' U $2' covers S + B(e/2): denote
the collection of centers associated with %2' by T' = {xl, x2.J son, xn}a
Let € = {A:A © T' and conv ACS + B(e/2)}. Since T Cck + B(e/2) € ck
(S + B(e/2)), conv T < ck(S + B(e/2)). If

P = Uconv (conv T U conv 4),
Ae€

then P © S + B(e/2) CIPe/ and P is a polyhedral star-shaped set. Clear-

2
c c P . i i i
1y, P €8 + B(e/2) 536/4 and 8 C 8§ + B(e/a) CP /o which implies that
A(P,S) < g
Let C = conv T; it can be readily showa that C C ckS + B(e/2) CZC€/2a
Suppose that there exists a point x € ¢kS\C.. Since x £ C, and since C
is a compact convex set in L , Lemma 5.1 implies that S€/2(X) ¢;C€/2e

But 86/2(x) < x + B(e/2) < ckS + B(e/2) CZCe/29 a contradiction. Thus,

ckS c C C ckP.

Theorem 5.6: Let S be a compact star-shaped set in Lﬁg Then there

exists a sequence fPi] of polyhedral star-shaped sets which converges to

S such that
lim (ck(Pi) = ckS.

ioes
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Proof: Theorem 5.5 implieé that for every n > O there exists:a
polyhedral star-shaped set P such that A(S,Pn) <1t and cks CIck(Pn)-
Since 0O < A(S,Pn) <n™t for each n > O and

lima ™t = 0,
N=
then
lim A(S,Pn) = 0,
N+
which implies that {Pn] converges to S. Theorem 5.4 gives the result
thatv{ck(Pi)} converges and Theorem 5.2 implies that
lim (ck(Pi)) = ckS.
1=

For any compact star-shaped set S in a normed linear space L, and
for any ¢ > O, Theorem 5.1 gives the existence of a polyhedral star-
shaped set P which approximates S such that A(S,P) < e. A constructive
procedure will now be given for finding such a polyhedral star-shaped
set in the linear space Ln.

Let S be a compact star-shaped subset of Ln and let ¢ > 0. Let || ||

21
such that “bi” =1fori=1, 2, °»+, n. Consider the set

be any norm on.Ln. Then there exists a basis (bl, b coe, bn] of Ln

€ .
T(e) = §H{x: X = _Z Abs s 0= <1, 1=1, 2, o0, n}.
i=1
If x,.y € T(e), then
€ a e n
T —— = e—— b < 4 .
x = o B MNP ¥ Eon T, 0=y =1, 0y, <1, 121 <n;
i=1 i=1
hence,

n n n
e - v ='2in”§ ()\i_u'i)bi” S'agn' E" I)‘i'%_' Hblll Sa_en >E ”bl“ = ¢/2 < e,
i=1 i=1 i=1
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since [Xi - Mil <= 1l. Consider the set M of all n-tuples of integers

(ml, My, oo, mn). Let

n
¢ € . ces
G = {?ﬂ..zlmibi. (ml, m2, 9 mn) € M}
=

and let M = {x + T(e): x eG). Ifye L, then

There exists an n-tuple of integers (kl, K., °oe, kn) e M such that

21

€ €
—— < ——
nky <8 S5y Uy + 1),

which implies that

Thus,
c oo n ¢ B
= T (=B, -k.,)b,= TB.b, - == L k.b,
2n“j_=l € 1 1771 1l on -1 1%

belongs to T(e), so that y ¢ x + T(e) ¢ W, for

Therefore, M covers Ln and the set S,
For any A > O the set

n
X, = {p:p= T b, , Ia&l < A}

i=1
is open . in Lno Any such XK intersects at most a finite number of sets
in mg. Since S is compact, S is bounded, so that S CZXK for seme A >0,

Hence, there are only a finite number of sets A in Mg such that A N 8 #
#. Let {A, A, °°*, A} be the collection of sets in M that intersect
1 r €

ckS. Let {A A soe Ak} be the collection of sets in M that

r+l® “r+2°
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intersect S but do not intersect ckS. . For each i such that 1 <i <r
choose s € Ai N ckS; for each i such that r + 1 €1 <k, choose 5 € Ai
N S. Since [yl, Vo1 oo, yﬁ} =D CckS, conv D < ckS. If D' = {yr+l’

v cos, yk} let € = {E: EcCD', conv E = S}. Then let

r+2’

P = Uconv (conv D U conv E);
Eef

P CS and P is a polyhedral star-shaped set. If y ¢ S there exists. some
i, 1 i <k, such that y ¢ Ai. Then Hy - yiH < ¢ since y, y; € Ai =
x + T(e) for some x ¢ G, and the fact thatvyi ¢ P implies that y € Pe;
thus, P C § CPes

The constructive procedure given abeove provides a method of finding
a polyhedral star-shaped set P which is known to exist by Theorem 5.1.
A similar procedure may be applied to obtain a polyhedral star-shaped
set P which will satisfy the demands of Theorem 5.5«

The following example is given to illustrate the previously defined

procedure,

Example 5.4: Consider the linear space E2 with its natural bésisc
Let B(1) = {p: |jp|]| < 1}, where || || is the Fuclidean norm. Then let S =
B(1) + {(1,3/4), (1,-3/4)} (cf. Fig. 5.4). For e = 1, the parallelepipeds
in m& are squares with sides of length 1/4. It can be shown analytically
that ckS = conv {(1 +V7/4,0), (1 -V7/4,0), (1,7/12), (1,-7/12)}. The
points of D and D', as well as the polyhedral star-shaped set P, are

shown in Figure 5.4. The points of D are denoted by the symbol "o".
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CHAPTER VI
SUMMARY AND CONCLUSIONS

The basic purpose of this study has been to examine‘the»extreﬁal'
structure of star-shaped sets and to determine the relationships that
exist between fhis‘structure and the convex kernel. The first approach
.was made by considering o-extreme pointsvof compact.staréshaped setse.

It was féund that such points can be used to actually determiﬁe the con-
vex kernel of a compact starmshaﬁed set in a locally convex space, Fur-
ther investigation revealed pr@perties-concérning the cardinality of the
set of a-extreme points in a compact star-shaped set of dimension greater
‘than twe. It was discevered that in a normed linear space any compact
star-shaped set has a countable subset which star-generates itsfcénvex
kernela The next topic to be examined was relative extreme peints of
star-shaped sets. It was shown that in a locally convex space any com-
-pact star-shaped set is completely determined by its convex kernel and
the subset of points that are extreme points relative to the convex
kernel., This representation of a compact star-shaped set fesembles that
of the Krein-Milman Theorem for compact convex sets. A class of compact
star-shaped seis, called polyhedral star-shaped sets; was defined since
the extremal structure of each set in this claés is simpler than that of
séar=shaped sets invgenerélo Sufficient conditions were‘given for a
subset of E, to be a polyhedral star-shaped set. A metric was defined

2

on the collection of compact star-shaped sets in a normed linear space

57
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and it was shown that any such set can be approximated by a polyhedral
star-shaped set. Sufficient conditions were given for the sequence of
convex kernels of the sets in a convergent sequence of compact star-
shaped sets to converge to the convex kernel of the limit set. It was
shown that for any compact star-shaped set S in a normed linear space,

a sequence of compact star-shaped sets can be found which counverges to

S such that the associated sequence of convex kernels converges to the
convex kernel of S. A constructive procedure was given for finding a
polyhedral star-shaped set which approximates a compact star-shaped sub-
set of Ln.

There are several problems which have been raised by this study
which would be of interest for further consideration.

Cne such problem is the characterization of compact star-shaped sets
accoréing to the cardinality of minimal star-generating subsets, partic-
ularly those sets with finite star—génerating subsets.

Sufficilent conditions were given for a set to be a polyhedral star-
shaped set, but necessary conditiens were not found.

Theorem 5.2 would be of more value in applications if the sufficient
conditions were independent of the convex kernel of A.

It would be desirable to extend Theorem 5.3 and Theorem 5.4 to in-
finite dimensional linear spaces or give a counterexample to show that

it is not possible.
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