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PREFACE 

The basic problem of this thesis is the study of the relationships 

that exist in a star=shaped set S between the extremal structure of S 

and the convex kernel of Se· The extremal structure considered not only 

includes the familiar extreme point~ but also involves a generalization 

of extreme point, an a=extreme point 9 and relative extreme pointe The 

results give additional information on the characterization of star= 

shaped setse Most of the topics discussed are illustrated by examples 

and counterexamplese 

Chapter I gives the back.ground associated with the problem and in-

troduces the notation and terminology that is used throughout the studye 

Chapter II deals with the topic of a=extreme points of star-shaped setsa 

It is shown that the convex kernel of a compact star=shaped subset S of 

a locally convex space Lis completely determined by the a-extreme points 

of Se The cardinality of the set of a-extreme points is determined for 

a compact star=sha.ped set in a locally convex space of dimension greater 

than twoo Also given is the result that any compact star-shaped subset 

Sofa normed linear space L c0ntains a countable set of a-extreme points 

which determines the convex kernel of Se 

In a sta.r=shaped set S the points which are extreme relative to the 

cenvex: kernel of S are used in Chapter III to give a· result· e;imilarto the 

Krein~Milman theoreme This result shows th.at a compact star=shaped set 
•< 

Sin a locally convex space Lis completely determined by the convex · 

• kernel of Sand the subset of points of S that are extreme relative to 

i:i:-i 



the convex kernel of So Chapter IV introduces the polyhedral star-shaped 

set~ the star=shaped set analogous to the convex polytope in the setting 

of convex sets.. , The polyhedral star-shaped set is discussed because of 

the simplicity of its extremal structure .. Sufficient conditions are 

·given for a set to be a polyhedral star-shaped set in the linear space 

The setting for Chapter Vis the metric space of compact subsets of 
I 

a normed linear space 1 .. It is shown that any compact star-shaped sub-

set Sofa normed linear space L can be approximated by a polyhedral star-

sh.aped set .. This approximation makes some of the advantages of the sim-

ple extremal structure of polyhedral star=shaped sets available for the 

study of more general star-shaped sets .. Sufficient conditions are given 

for the sequence of convex kernels (ck(A.)} to converge to the convex 
J. 

kernel of A if the sequence (A.} converges to A. It is shown that for 
l. 

any compact star-shaped subset Sofa normed linear space L there exists 

a sequence of polyhedral star-shaped sets which converges to S such that 

the associated sequence of convex kernels converges to the c0nvex kernel 

of So A constructive procedure is given for finding a polyhedral star-

shaped set which approximates a compact star-shaped subset of Ln .. 

Recognition is due numerous individuals for their assistance in the 

graduate work that preceded this studyo Pr.ofessor E .. K. McLachlan merits 

special recogfiition for his valuable guidance and encouragement through-

out the preparation of this thesis .. Indebtedness is expressed to the 

National Science Foundation for its financial support through a Cooper-

ative Graduate Fellowship and a Summer Research Assistantship .. 
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CHAPTER I 

INTRODUCTION 

This study is primarily concerned with the combination of two basic 

topics which are part of the area of study known as convexity. The first 

of these topics is centered around the discussion of extremal elements 

of convex sets; for some time this particular subject has been a fruit

ful area of research which has produced findings by Klee [7], Price [11], 

Krein and Milman [10], and numerous others. The second.of these topics 

deals with the study of star-shaped sets. Although star-shaped sets 

have been of considerable interest for some time, only recently has work 

in this area been very widespread. Among those investigators in this 

area are Valentine [14], Hare and Kenelly [6]. 

Valentine provided much of the motivation for this study when in 

[13] he suggested that the convex kernel might be a basis for character

izing star-shaped sets. The observation of numerous examples led to the 

finding of various relationships that exist between the convex kernel of 

a star-shaped set Sand the extremal structure of s. Thus, the study 

of the extremal structure of star-shaped sets is used to investigate the 

convex kernel of star-shaped sets. 

The setting for each discussion throughout this study is some real 

linear space. In some cases a topology on the linear space is needed; 

in such cases the space will be a linear topological space, which will 

always have a Hausdorff topology. 
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Much of the notation that will be used throughout the discussion 

comes from [13]. The convex kernel of a star-shaped set Swill be de-

noted by ckS, the line segment {ooc + (1-a)y: a e [0,1]) will be denoted 

QY xy, the ray [Sy+ (1-S)x: S ~ 1) will be denoted by xy= and L(x,y) 

will denote the line containing x and y, x I y. The convex hull of a 

set Swill be denoted by conv S. The notation intv Swill denote the 

interior of S relative to the minimal flat that contains S. Euclidean 

n-space will be denoted by E and 1 will denote an n-dimensional Min-n n 

kowski spaceo The set of real numbers will be denoted by R. The set 

{x: f(x) = a], where f is a linear functional, will be denoted by [f:a]. 

The set A\B is the collection of points that belong to A and do not be-

long to B. The interior of Swill be denoted by int S, Swill be the 

closure of Sand bd Swill denote the boundary of S. 



CHAPTER II 

GENERALIZED EXTREME POINTS 

In studying sets of points, quite often it is possible to find 

classes of sets such that the structure of a set in the class is dictat

ed to a great extent by that of some proper subset of the set. Convex 

sets are an example. In particular, if a convex set Sin a linear topo

logical space Lis compact, the collection of extreme points of such a 

set are of considerable assistance in describing that set. A number of 

authors, among them Price, Klee, Krein and Milman, have examined the ex

tremal structure of convex sets. Perhaps the most notable result is the 

Krein-Milman theorem [10]. 

The purpose of this chapter is to examine the relationships that 

exist in a compact star-shaped set between the extremal structure of 

that set and its conve.x kerneL Even if it is known that a given set in 

a linear space Lis star-shaped, it is no small task in many cases to 

determine the convex kernel of S. The extremal structure of star-shaped 

sets will first be used to assist in determining the convex kernel of a 

star-shaped set of a somewhat general nature. 

The definition of extreme point of a convex set is readily adapted 

to the setting of star-shaped sets; hence 1 one can use that concept for 

a study of these setsa 

Definition 2.1: If Sis a star-shaped set in a linear space L, 

then a point x e Sis an extreme point of S if there is no nondegenerate 
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line segment in S which contains x in its relative interior. 

Asplund [2 J has generalized the idea of extreme point of a convex 

set and has extended some of the results of Klee which deal with extreme 

points. The following definition extends the class of sets on which 

such points are defined to include all star-shaped sets. 

Definition 2.2: If Sis a star-shaped set in a linear topological 

space L, then a point x e Sis an a-extreme point of S if there does not 

exist an a-dimensional flat F and a neighborhood U of x such that x e F 

n U C:Se The collection of a-extreme points of Swill be denoted by 

Unless.stated otherwise in the discussion of extaS in some linear 

space L, it will be assumed that a is the dimension of the hyperplanes 

in the space L. If a and S are cardinals, a s:: S, then ext S c extQS .. 
a "" 

The above definition can be made completely algebraic in nature, partic-

ularly for finite-dimensional sets, by using an n-simplex instead of an 

n-flat and neighborhoods. However, the given definition is more conven-

ient if no distinction is to be made on the dimension of the sets in-

volved. 

The following example illustrates the two previous definitions .. 

Example 2al: Consider the linear space E3 and its natural.basis 

(~1 , e2 , e3 }. Let S = conv (o, e1 , e2 , e3 } (cf. Fig. 2 .. 1). Then ext S 

= (o, e1 , e2 , e3 }, and ext2s is made up of the following line segments: 

e1e2 , e1e3 , e2e3, Oe1 , Oe2 , oe3• 

Krasnosel'skii has made use of the concept of an x-star of a set in 

the proof of his now famous theorem on sufficiency conditions for a set 
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to be star-shaped [9]. For completeness, the definition of this set is 

.given below. 

Definition 2.3: Let x be a point of S, a subset of a linear space 

L; the set of all points y such that xy c Sis the x-star of S, and will 

be denoted by S. x 

The following lemmas reveal properties of x-stars which will be of 

considerable value in subsequent proofs. 

Lemma 2.1: If Sis a closed subset of a linear topological space 

L, then for any x e S, S is a closed set. x 

Proof: Let x e S, and let q be a limit point of S. For an arbi
x 

trary ot e (O,l) consider any neighborhood U of Ct'q_ + (1-ot)x. Then 

is a neighborhood of qo 

pointy which belongs to 

which implies that 

-1 U ot-1 +-x 
ot ot 

Since q is a limit point of S there exists a x 

s n cl u + E::1 x) 
x ot ot ' 

for some·u e Uo But cty + (1-ot)x e S since ye S, and x 

cty + (1-ot)x = ot(~ u + °'~1 x) + (1-ot)x = u, 

which belongs to S n Ua Thus, every neighborhood of Ct'q_ + (1-ot)x con-

tains a point of S, which implies that otq + (1-ot)x is a limit point of 



S. The fact that Sis closed implies that aq + (1-a)x e S. Clearly, 

q e S, and since a was arbitrary, qx c:s. This yields the fact that 

q e S, so that the set S is closed. x x 

Lemma 2.2: If Sis a compact subset of a linear topological space 

L, then for any x e S, Sx is a compact set. 

Proof: Since L.is a Hausdorff space, Sis closed. For any x e S 

the above lemmagives the fact that S is closed. Then S is compact, x x 

since any closed subset of a compact set is compact. 

If Sin a linear space 1 is a star-shaped set, then it is clearly 

true that 

ckS = n S. 
xeS x 

That is, a point p belongs to the convex kernel of S if, and only if, 

xp is contained in S for·all x e S. The latter statement is true if, 

7 

and only if, p belongs to S for all x es. The previous identity sug
x 

gests the following definition. 

Definition 2.4: In a linear space 1 a subset T of a star-shaped 

set is said to star-generate the convex kernel of S if 

ckS = n S • 
xeT x 

Such a subset Tis said to be a star-generating set for ckS. 

As noted above, a star-shaped set S star-generates its convex ker-

nel, or equivalently, is itself a star-generating set of its convex 

kernel.. A question of inter.est now is the possibility of finding proper 

subsets of a star-shaped set that star-generate the convex kernel, and 
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indeed, the possibility of finding such sets that are minimal. It is at 

this point that use is made of the extremal structure in the determina-

tion of the convex kernel of a star-shaped set. 

Theorem 2ol: Let L be a locally convex space and Sa compact star-

shaped subset of L. Then 

where A = ext ci. 

ckS = n S , 
x xeA 

Proof: It may be assumed without loss of generality that O e ckSe 

Let p e S\ck.So Then there exists a point y e S such that py ¢ So Since 

Sis compact, y may be chosen such that if u = AY + (1-A)p, A> 1, then 

u I So Since py ¢. S, there exists a point z e intv py such that z / Ss 

Consider the convex cone C = [ cty + (S-a+l)z: a, S ~ O}, which has ver

tex z a.'l'J.d is contained in the subspace L' with basis (p,y} (cf. Figs 

2o2)o If ye A then since p JS, 
y 

P t n s o x xeA 

If y t A, then there exists a hyperplane H' and a neighborhood U of y 

such that y e H' n U cs. Since S n intv py 00 = ¢, H1 must intersect L' 

in some line other than L(p,y). Thus, H' n L' is a line which contains 

a segment that is contained in (intv C) n S, which implies that (intv C) 

n SI¢. Since Lis locally convex there exists a continuous linear 

functional f defined on L such that f(q) = 1 for every q e L(p,y); 

clearly, 0 j L(p,y) since py ¢sand O e ckSo The cone C is closed and 

Sis compact; hence, C n Sis compacto Then the continuous linear func-

tional f', the restriction off to L', attains a maximum at some point 



w e. c n S; since s n Oz 00 = ¢ and f' (q) = 1 for q e L(q,y), then f' (w) 

> 1 and w e·intv c. Let H = [f:f(w)J. Since H n C n Sis a compact 

subset of the 1-dimensional set H n L', there exists a minimal closed 

line segment in intv C which contains H n C n s. This segment is con-

tained in intv C since Oz 00 n S = ¢ and (H n c) n pz co = ¢. Each end-

point of this line segment, which may be degenerate, must be a point of 

A. For, if not, the argument used above to show that (intv C) n SJ¢ 

when y j A can be used to show that f' does not attain its maximum on 

C n Sat w. Let v be one of these end pointsa The points p, y, z and 

v are all contained in L'. If pv cs, then the fact that O e ckS im

plies that conv (o, p, v} c S; since z e conv (o, p, v }, z e s, a con-

tradictiona Hence, pv ¢.Sand 

It then follows that 

and that 

S\ckS c S\ n S 
xeA x 

n S c ckS .. x xeA 

This conclusion, along with obvious set inclusion 

implies that 

ckS c n S , 
xeA x 

ckS = n S .. 
xeA x 

9 

A valid question that might be asked about the above theorem is the 
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following: Is it necessary to use the larger set extaS rather than the 

set ext S? Since ext S = ext S for Sin a 2-dimensional space, this 
a 

question is of interest in linear spaces of dimension greater than two. 

The following example shows that it is not always sufficient to consider 

only ext Sas a star-generating set for the convex kernel of a compact 

star-shaped set S if the dimension of the set is greater than two~ 

Example 2.2: Let the linear space L be in E3 , and let [e1 , e2 , e3} 

be its natural basis. Let 

S = U conv (o, e., e.}, 
i;j 1 J 

i, j e (1, 2, 3} (cf. Figa 2.1). Clearly, ckS = {O}, ext S = [O, e1 , 

e2 , e3}, but 

n s 
t S x xeex 

3 
= U Oe., 

i=l 1 

which is not ckSo The set of 2-extreme points for the above set is the 

same as for Example 2.1. 

It can be readily verified in the above example that the 2-extreme 

points actually do star-generate the convex kernel of S. A close exam-

ination of that example reveals several questions concerning the exist-

ence of proper subsets of ext S that star-generate the convex kernel of 
a 

So First 9 does there always exist a proper subset? Second, can a.n.y-

thing be said about the cardinality of these star-generating subsets? 

It may be noted in Example 2.2 that a finite subset of ext2s exists 

which star-generates ckS; one such subset is (%Ce1 + e2 ), %(e1 + e3), 

%Ce2 + e3 )}. 

The following example provides an answer for the first questionj in 
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some cases the collection of a-extreme points is a minimal star-generat-

ing set for the convex kernel of a star-shaped set. 

Example 2.3: In E2 let S = conv ((1,1), (1,-1), (-1,-1), (-1,1)} U 

conv ((O,O), (-2,2), (2,2)} U conv ((O,O), (2,-2), (-2,-2)} (cf. Fig. 

2.3). It can be shown with little difficulty that for any proper sub-

set T of ext S = ((2,2), (2,-2), (-2,-2), (-2,2)} that 

[ ( 0, 0) J = ckS c;.: n S • x xeT 

The next example is in response to the second question posed ear-

lier. It was noted in Example 2.2 that for a particular set Sin E3 

there exists a finite subset of ext2s which star-generates the convex 

kernel of S. A compact star-shaped set Sin E3 will now be given such 

that any star-generating subset of ext2s must be infinite. 

Example 2.4: In the linear space E3 consider the points pn = (1-

-n -n ) ( -n) 2 , 2 ,o, a = 2p and r = _ 0,0,2 , where n = O, 1, 2, •••• If 
"n n n 

q = (2,0,0) and o = (o,o,o), then let S' = conv (q, r 0 , oJ, sn-= conv 

(~, ro, oJ, where n = o, 1, 2, ••e, and let T = conv (p 1 , p, r, O}, n . n- n n 

for n = 1, 2, 3, • 00 (cf. Fig. 2~4). Each T is a tetrahedron; each pair 
n 

T and T 1 is separated by the 2-simplex S, n = 1, 2, n n+ n 
G GO Then let 

S = S' U (US )-U (UT). 
n=O n n=l n 

For this set S, ext2s is made up of the following line segments: Or0 , 

Oq, o~, ro~' rOql, roq2, ···; Po~' plql; p2q2, •••; PoP, where 2p = q. 

If T is any nonempty subset of (ext2s) n (S' U s0 u s1 U 00 •), then 

ckS = ( 0 J q: Or O c n S • 
xsT x 
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Figure 2.3 
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If T' is a finite subset of (ext2S) n (T1 U T2 U ... 0 ), then there ·exists 

a maximum positive integer k such that T' n (Tk\Or0 ) f ¢. Thus, 

ckS = {O} Ci- Ork C n . Sx. 
xeT' 

Hence, any subset of ext2s which star-generates ckS must be infinite. 

It may be noted in the three examples given.above from E3 that in 

each case ext2s is uncountable. The next theorem shows that this is in

·dicative of the general situation.in linear spaces of sufficiently large 

dimension. 

Theorem.2.2: If Sis a compact star-shaped set in a locally convex 

space L, and dim(S);;? 3, then exti is uncountable. 

Proof: Without loss of generality it can be assumed that O e ckS. 

Since dim(S);;? 3 there exists some point x e S, x f O. If 13 x e ext S 
Ot 

for every~ e (0,1), then extOtS is uncountable. If there are only a 

countable number of points of Ox that belong to,ext S, consider some 
Ot 

w = ~ x such that w ¢ exto,:8,, 13 e (0,1).. Then there exists a hyperplane 

H and a.neighborhood U of w such that w e H n U c S.. Since dim(H) ;;? 2, 

H n U n S contains a nondegenerate line segment zw such that z f TX for 

any '1" e Ro The fact that Lis locally·convex implies that there exists 

a continuous linear functional f defined on L such that f(w) = f(z) = 1 .. 

There exists a point z' e [f:l] such that (z, z', w} is an affinely in

dependent set. Since O ~ [f:1], {o, z, z',, w} is an affinely independ-

ent set, which implies that, (z, z', w} is linearly independent, as is 

the set (y, w, z}, where y·i= z' - w. Clearly, y e [f:OJ. For any A e 

[0,1] consider the subspace LA of L with basis (y, AZ+ (1-A)wJ. Let 

f A be the restriction of f to: LX. The set LA n S is compact; hence, f A 



14 

attains a maximum on LA n Sat some point u, fA(u) ~ 1. Since dim(LA n 

[f:f(u) ]) = 1 and LA n S n [f :f(u) J is compact, there exists a minimal 

closed line segment in LA which contains LA n [f:f(u) J n S. This line 

segment must have at least one end point; each end point that exists 

must belong to extOtS (cf. Fig. 2.5). 

For each pair of distinct real numbers A,µ in [O,l], LA n Lµ = 

[p: p = -ry, -r e R} c [f:O]. As was shown above, for each A e [0,1] there 

exists a point pA e LA n extJ3, where f(pA) ~ l; hence, for any two dis

tinct real numbers A,µ e [0,1] the associated points pA and pµ must be 

distinct~ This then implies that the set ext Sis uncountable. 
0( 

It has now been shown that in some cases subsets of ext S which 
0( 

star-generate the convex kernel of a compact star-shaped set S must be 

infinite. The question of cardinality of such subsets can be·approached 

by considering conditions sufficient to yield countable subsets of the 

Ot-extreme points which star-generate the convex kernel of .a compact star-

shaped set .. Such conditions are now of considerable interest since it 

is known that extOtS is uncountable for compact star-shaped sets of di-

mension greater than two in locally convex spaces. The next theorem is 

a step toward finding such sufficient conditions. 

Theorem 2.3: Let S be a closed subset of a linear topological 

space Land let T be a subset of S that star-generates ckS, which may be 

emptya Then if Mis a 1 subset of T such that T cM, M star-generates ckSs 

Proof: Since M cT then clearly 

ckS n s ·x 
xsT 

c n s . 
x xeM 
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Figure 2.5 
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Suppose-that Mis a proper subset of T and ckS is a proper subset of 

n s • x 
xeM 

Then there exists a point q which belongs to 

But 

thus, 

n s x xeT 

ns\ ns. x x xeM xeT 

= c n s) n c n s ); 
xeM x xeT\M x 

qi n s • 
xeT\M x 

This implies that qt S for some x0 e T\M. Since 
. XO 

16 

M c S , which is closed as a result of Lemma 2 .1. Hence, x0 e T c M c 
qi 

Sq' which yields the fact that x0q cs. But if x0q cs, then q e Sxo' a 

contradictiono Therefore, 

ckS = n So x xeM 

In the above theorem the set Mis dense in To The concept of dense 

subsets leads to the idea of separable spaces, which is the basis for 

the next theorem and the desired countable star-generating sets. 

Theorem 2.4: If Sis a compact star-shaped subset of a normed 

linear space L, then any subset T of S which star-generates the convex 

kernel of S contains a countable subset M wh;i.ch also star-generates the 

convex kernel of S. 
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Proof: The norm of L induces a metric on L. Hence, the compact set 

Scan be considered as a compact metric space, where space is now used in. 

the topological sense. The compact metric space Sis separable, which 

implies that Sis second countable [5]. Any nonempty subset T of Sis a 

second countable topological space with the relative topology, which im-

plies that T is separable. Therefore, there exists. a countable subset M · 

of T such that T CM. Theorem 2.3 implies that M star-generates ckS and 

the theorem is proved. 

Although the preceding result states the existence of a countable 

star-generating set for each set in a class of compact star-shaped sets, 

it seems unlikely that such a countable subset could be described fur-

ther in general to any great extent. A close examination of the set 

from E2 given in Example 2.5 indicates that any countable star-generating 

set for the convex kernel must be chosen with considerable care. 

Example 2.5: In E2 let B (1) = (p: JJp II ~ 1 J and let Bu (1) = B (1) n 

(Cxl'x2): x2 ;;::oJ, B/1) =B(l) n [Cx1 ,x): x2 ~oJ, B1 (1) =B(l) n ((~, 

x2): x1 ~ OJ and Br(l) = B(l) n (Cx1,x): x1 ;;::: OJ. Then S = conv ((-2,8), 

(o, 8), (2,-8), (0,-8)} U conv ( (-8,-2), (-8,o), (8,2), (8,o) J U (B1/1) + 

(-1,8)) U (Br(l) + (8,1)) U (Bd(l) + (1,-8)) U (B1 (1) + (-8,-1)) (cf .. 

Fig. 2.6) •. The set ext Sis made up of the four circular arcs .in.bd, S. 

It is not difficult to show that ckS = ((O,O)J. Any subset T of ext S 

that star-generates . ckS must. cc;mtain . an infinite number· of points from 

each of the circular arcs; in fact, each arc A must contain an infinite 

sequence from ext S which converges to. A.n ((0,8), (8,0), (0,-8), (-8._,0)J .. 
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Figure 2 .. 6 



CHAPTER·III 

.RELATIVE EXTREME POINTS 

Klee [8] introduced the concept of relative extreme point. The 

following definition is a result of the paper mentioned above. 

Definition 3.1: If Sand Tare subsets of a linear space L then x 

e Sis said to be extreme in S relative to T if there do not exist points 

ye S, z e T such that x e intv yz. 

The relative extreme points of star-shaped sets that will be of 

particular interest are the points of a star-shaped set S that are ex-

treme relative to ckS. The collection of such relative extreme points 

in Swill be denoted by exk S. The set of points in exk S which are not 

in ckS will be denoted by ES. The following example points out some of 

the relationships that exist between exk Sand ext S, as well as with 

Example 3ol: In E2 let S = conv {(O,O), (-3,6), (0,3)} U conv 

[(o,o), (0,3), · (3,6)} (cf. Fig. 3.1).. Then ckS = conv ((o,o), (-1,2), 

(0,3), (1,2)}, exk s = ext s = [(o,o), (-3,6), (3,6)} and Es = ((-3,6), 

(3,6)J. 

Let S' = conv ((1,2), (1,-2), (-1,-2), (-1,2)} Uconv ((2,1), (2,-1), 

(-2,-1), (-2,1)} (cf. Fig. 3.2). Then ckS' = conv [(1,1),. (1,-1), 

(-1,-1), (-1,1)}, ext S' = ((1,2), (1,-2), (-1,-2), (-1,2), (2,1), 

(2,-1), (-2,-1), (-2,1)} and exk S' = ES' = conv ((2,1), (2,-1)} U conv 

19 
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(-3,6) (3,6) 

(O,O) 

Figure 3al 

Figure 3e2 
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{(l,-2), (-1,-2)} U conv {(.,,2, ..... 1), (,-,2,1)} U comv {{..-1,2), (1,2) L 

The following lemma is includedfor.eompleteness; its proof is omit-

ted since, the res.ult ... is qaite .. iwe.11. known [3], 

Lemma 3, l: If L is., a linear ... tepologi.ea.l space. and C is a compact 

convex subset o,fL.s.uch-tha.t.O t C,,then C* .,,_ {lx: x £ c, 11.2:0J is a 

.closed convex cone with .vertex the origin, 

Theorerl): J .. 'J_,,;~ives. a decemposition of -a compact star-shaped set 

.by the use of.relative extreme pc0ints, Any such set.can be represented 

in·terms of its convex kernel and the extreme points relative to the-

convex kerneL The. eonve:x kernel of a. compact star-shaped set S is -a 

c0mpact . convex set,. •- If .sueh. a set S is a subset of a locally convex 

space; theKrein~Milmantheioretil.gives the fact thatckS is the closed 

convex hull of its/extreme points ii ext, (ckS), Fo:r example, if ext (ickS) 

is finite and p 1::,ckS,.there exists a subset {x1 , x2 , ,o,, xk} of ext 

(ckS) such that 
k k 

To further illustrate ... in this. speda.l .case, Theorem 3, 1 implie.s that 

if p t S, a compact. star..,,,shaped subset,.of.,.a .locally. c.onve~ space; there. 

exists a subset {yl' y2' ,o,, y0 } of ext (ckS) and a point q it E8 _such 

that 
n 

p ~ aq + (1-a) E B1y1, 
i=l 

n 
E Bi= 1, s1 2:, O, O .:::_a.:::_ 1, 

i=l 

These. results a.re· .now .give.a in.:.Thel:lt:t'.em 3, L 

Theore,m 3.1: Let S be a compact nonic:onvex.star-shaped set in a 

locally convex space L, Then 



S = U conv (ckS U (y}) •, 
yeEs 
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Proof: Since ES cs, conv (ckS U (y )) c S for every y e E8• Thus, 

U conv.(ckSU(y})cs.· 
yeE8 

Consider any z e S; if z e ckS U exk S '. th·!t1'}.$,:i,;t1;¢e'.' ~s)' 0, as _shown below, 

z e U conv (ckS U (yJ). 
·yeE8 

1et c ~ ckS.. Suppose z e S\(ckS U exk S) and'. .without ·lQss of gener~lity 

suppose that z = o. Since C is compact and convex, the above lemma 

yields the result that C* and -C* are closed convex cones with z, the 

origin, as the vertex of each .. Since z ! exk S there exist points x e: C 

and w e S such that O e ·intv xw. Clearly, w e -C*\O, S n (-C*\O) /, ¢ 

and Sn (-C*) is compact .. Let u be an arbitrary point in -C*\0; since 

Lis locally convex and C* is closed and convex, there exists a closed 

hyperplane H = [f:f(u)] such that us Hand H.n C* = ¢, where-f is a 

continuous linear functional.. It can 'be ass.umed that f (C*) s: O, which 

implies that f (u) > O. The function f then attains a maximum on Sn (-C*) 

at some point v0 e Sn (-C*) .. Suppose that v0 j.·exk s. Then there ex

ist points p e:, ckS, q e S such that v0 e intv pq. Since v0 e -c*, v0 = 
-AP', p' e ckS, A > o, and v0 . :a:: aip + (1-o.i)q, O < 0/ < 1. Therefore, 

v0 = -AP' = aip + (1-0/)q and 

where T < 0 and q I s ckS. Thus, q e -C*, so that q e S n (.:.c*). But 



f(q) = f(l=a vo - l~a p) 

- _L f (v ) - ~ f (p) 
- 1-a O 1-a 

1 
> ~ f(v0) - -2.. fCv ) 

1-a O 

= f(v0). 

This contradicts the fact that f(v0 ) ~ f(x) forall x e Sn (-C*). 

Hence, v0 e (exk. S) n (-C*) and 

Therefore, 

O e conv (ckS U (v0}) c U conv (ckS U (y}). 
yeES 

S = U conv (ckS U (y}). 
yeES 
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Earlier it was discovered that in the case of Theorem 2.1 there will 

often exist proper subsets T of ext S which star-generate the convex . a 

kernel of S. The following result shows that the set Eis minimal in 

its use in Theorem 3.1. 

Theorem 3a2: Let S be a compact star-shaped set in a locally con-

vex space Lo If Tis a proper subset of ES then 

is a proper subset of S. 

U conv (ckS U (y}) 
yeT 

Proof: Consider any proper subset T of ES; then there exists some 

point XO e Es\T. If 

x0 e U conv (ckS U {y}) 
·yeT 

there · exists some y O e · T such, that x0 e conv (ckS U (y O}). Hence; x0 = 
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AX+ (l-A)y0, where A e [O,~J, x e ckS; but A e (O,l) since x0 J ckS UT. 

This expression for x0 implies that x0 ,iexk S, a contradiction. Thus, 

x0 does not belong to 

U conv (ckS U (y}), 
yeT 

which must be a proper subset of s. 

If Sis a compact star-shaped set in a locally convex space L, then 

the procedure employed in the proof of Theorem 3.1 can be used to locate 

points of S\ckS which are extreme relative to ckS. For any such set S 

consider an arbitrary point y e · bd. S. If y f exk S and y I ckS, then 

consider tlle closed convex cone C = (AX: x e y - ckS, A :11!: O} + y, which 

has vertex y. Since y I exk S, C n SF¢; hence, there exists a point 

z e C n Sand a continuous linear functional defined on L.such that 

f(w) < f(z) for every we - C + 2y •. The functional f will attain a max-

imum on C n Sat some point u, which must belong to exk S. 



CHAPTER IV 

POLYHEDRAL STAR-SHAPED·SETS 

Convex polytopes are of considerable interest in several areas of 

study" Certain systems of linear ·inequalities have so.lution sets which 

a.re convex polytopes .. For example, consider the following system of in

equalities in two variables: 

x + y :;;; l 

-2x + y s: 2 

x - y :;;; l 

The solution set in the (x~y)-plane will be conv ((1,0), (-1/3,4/3), 

(-3,-4)}, a convex polytope (cf., Fig .. 4 .. 1) .. 

Locating optimal values for a real function f with the constraints 

of such a system of linear inequalities involves examining the collec

tion of extreme points of the convex polytope which is the solution set 

for that .system .. This process is aided by the fact that there are only 

a finite number of extreme points in a convex polytope .. Since the 

structure of a convex polytope is simple to describe analytically, con

vex polytopes have been used to approximate mere general convex sets .. 

It seems quite natural to extend the idea of convex·polytope to a simi

lar set in the class of star-shaped sets .. The analogous entity, a poly

hedral star-shaped set, will bear much the same relationships to,star

shaped sets as do convex:pelytepes to cenvex sets .. 

Because the extremal structure of cenvex polytopes and polyhedral 
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Figure 4 .. 1 
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star-shaped sets is simpler than that of convex sets and star-shaped 

sets in general, the results of the previous chapters will be particular-

ly applicable to such sets. In the next chapter the relative ease of 

applying such results to polyhedral star-shaped sets will be made avail-

able to sets in a more general class through a process of approximation 

similar to that of convex polytopes for convex sets. 

The former of the two definitions that follow is not new [4]; it is 

included to complement the latter definition. To the knowledge of the 

writer the latter definition is new. 

Definition 4.1: A subset C of a linear space Sis a convex poly-

tape if C is the convex hull of a finite number of points. 

Definition 4.2: A subset Sofa linear space Lis a polyhedral 

star-shaped set if 
n 

s = u c.' 
i=l ]. 

where each C. is a convex polytope and 
]. 

n 
n c. ; ¢. 

i=l ]. 

The first consideration of polyhedral star-shaped sets will be 

focused upon the linear space E2• Part of the reason for this is the 

fact that sharper results can be obtained here than in more general 

spaces. Too, polyhedral star-shaped sets have several applications in 

this space. Since a set in E2 can be described in complex notation, the 

study of star-shaped sets in E2 is of interest in complex analysis and 

other areas of mathematics. For example, if one is studying boundary 

value problems in the plane associated with some partial differential 
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equation, the setting lends itself to seeking a s0lution by use of con-

formal mappings. Any special class of domains for which a c0nformal 

map to some more familiar set is readily found for each of its member 

sets is of considerable value. The class of polyhedral star-shaped sets 

in E2 with convex kernels which are c0nvex bodies form a class of sets 

f0r which the Schwarz-Christoffel transformation can be used to find a 

conformal map. 

The following sequence of results gives sufficient conditions for a 

set to be a polyhedral star-shaped set in E2 • 

Lemma 4.1: Let S be a compact star-shaped subset of E2 with a fi

nite number of extreme points. If for x, ye S, xy n ckS = (x}, then 

there exists a point p e ext S such that S n xy = (x}. 
p 

Proof: Consider any such pair x, y e S and the sequence (x }, 
n 

where xn = 2-n(y-x) + x, which converges to x. Since x I ckS for each 
n 

n > O, Theorem 2.1 implies that there exists a point p e ext S such 
n 

that x p ¢:. s. If x. p cs, then x p c conv (x, p , x. } c S for 1 s: m nn Kn mn n K 

s: k since x e ckS and xm e ~x. Thus if xnpn ¢:. S, then ~Pn ¢ S for 

1 s: ks: n. Since ext Sis a finite set, some p e ext S must appear as 

a Pn an infinite number of times; that is, for every N > 0 there exists 

an. m > N such that p = pm, which implies that p~ ¢: S for· any k such 

that 1 s: ks: m. Hence, p~ ¢.s fork= 1, 2, If there exists some 

z e xy\(x} such that pz c S, then for any w e :icz, pw c conv {x, z, p} c 

S. Since there exists a point xn e xz for any such z, pz ¢.s. This im

plies thats n xy = {x}. 
p 

The following lemma defines a correspondence between ext Sand a 

subset of ext (ckS) which aids in determining the cardinality of ext (ckS). 
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Lemma 4.2: Let S be a compact star-shaped subset of E2 which has 

a finite number of extreme points.. If dim(ckS) = 2, then for every;;']>Oint 

x e ext (ckS)\ext S there exists a.point p e ext S such that L(x,p) sup-

ports ckS at x .. 

Proof~ Without loss of generality suppose that O e int (ckS). If 

x e ext (ckS)\ext S then there exists a closed hyperplane of support to 

ckS at x since ckS is a convex body and x e bd(ckS). Let 

C = n HQ', 
<l'el\. 

where (HQ'}Cl'el\. is the collection of all closed halfspaces which contain 

ckS and have x as a boundary point .. Then C is a c.losed convex cone with 

vertex at x and with two closed rays emanating from x forming the bound-

ary of C .. If there is only one such halfspace, say H1 ,' then it may hap

pen that Sc H1 .. Since x ¢ ext S there exists points y, z e S such that 

x e intv yz. Since we are assuming that S c H1 ,. yz c H', the hyperplane 

which determines the halfspace ~~ There exists a minimal closed line 

segment in H' which contains Sn H1 ; each endpoint of this segment must 

be in ext S. Such a point p and the line H' give the desired conclusion .. 

If there is.only one such halfspace H1 and S ¢~, then there exists a 

point w e (E2 \H1 ) n S.. There exists linear functional f and a,.,r.eaL:num~ 

ber A> 0 such that [f:A] = H', where H1 is the hyperplane which deter-

mines~· Since O e ~' f(w) > A. The functional f attains a maximum 

T > A at.some point u e (E2\H1 ) n s .. The compact set Sn [f:T] must be 

contained in some minimal closed line segment, each end point of which 

must belong to ext S.. Thus, ext S n (E2 \H1 ) I¢. Thepo·int x,:·e:~xt,:-,(~ks), 

wliiah implies that ckS n intv Ox00 = ¢ since O e ckS.. Lemma 4.1 implies . 

that there exists some point p e ext S such that S n intv Ox00 = ¢. If 
p . 



30 

thi~ point p belongs to H', the desired conclusion follows. Consider 

any point q e (E2\H1 ) next s .. If O e L(q,x), then clearly Sq n intv 

Ox00 / ¢ .. Suppose that O /L(q,x). The line L(q,x) does not bound ckS 

since H' is the only such line in the case·under consideration. Hence, 

there exists a peint ye ckS n H-, where H- is.the closed halfspace de

termined by L(q,x) which does not contain Oo Thus, x e int (conv (o, q, 

y}) c conv (O,q,y} c S, which implies that S n intv Ox00 I¢ . . The point 
q 

p sought to give the result of Lemma 4.1 cannot belong to E2\H1• 

Now c0nsider any point q' e ext Sn int H1 .. If O e L(q',x), then 

sq; n intv Ox00 / ¢ since O e ckS .. If Of L(q',x), then since L(q',x) 

does not bound ckS, there exiets a pointy' e ckS n H*, where H* is the 

closed halfspace determined by L(q',x) which does not contain O (cf. Fig. 

4 .. 2).. Since (o, x, y 1 } c ckS and q' e S, conv (o, , x, y:,: q'} c S. For a 

point q e (E2 \!S_) n ext S it has been shown that x e int (conv (o, .,q,. 

x' }) c So It can then be· easily shown that S, n intv Ox00 / ¢. Thus, 
q 

the desired point p-cannot belong to int H1 , which implies that p e H'. 

The point p gives the desired conclusion .. 

If there exist more than one halfspace Ha' let H1 and H2 be the two 

halfspaces containing ckS which.are determined by the two hyperplanes 

H1 1 and H2 1 which contain x and the boundary of C. The two lines H1 1 

and H2 1 determine four convex cones, each with vertex x. Let~ and H; 

be the complementary closed halfspaces of H1 and H2 , respectively (cf. 

Fig .. 4 .. 3).. If there exists a paint p e ext S n [ (H1 n H;) U (~ n H2) ], 

then this paint gives·. the desired conclusion.. On the other hand,. s~~ _. . 

pose that no such point p exists .. The fact that x ¢ ext S implies that 

Sn (E2\(Hl n H2)) f ¢ since Hl / H2 .. Then Sn (E2\~) f ¢ or Sn 

(E \H ) / 0 ¢.. Withc;mt loss. of generality· suppose that the former is true .. 2 2 

I 
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L(q,x) 

L(q',x) 

Figure 4.3 
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There exists a linear fuctional g and a real number S > 0 such that 
.·. 

H1 1 = [g:S]. The linear functional g attains a maximum a> Son S n ~ 

at some point v e S n (E2 \H1).. The compact set S n [g:a'] is contained 

in a minimal closed line segment, each end point of which must belong to 

ext So Since it has been assumed that ext Sn (H~ n H2 ) =¢,these end 

points must belong to int <IS:: n H;).. Therefore, ext s n int (H~ n H; i' ,i 
¢.. Consider any point q e ext S n int (H~ n H;).. If O · e L(q,x), then 

S n intv Ox00 ,i ¢ since O e ckS .. Suppose that O tL(q,x). The fact 
q 

that q e int (H~ n H;) implies that L(q,x) does not bound ckS. There 

exists a point z e ckS n ~' where H3 is the closed halfspace determined 

by L(q,x) which does not ·contain O.. Then: x e int (c0nv (q, z, O}) c 

conv {q, z, O} c S, which implies that Sq n intv Ox00 ,i ¢ .. 

If q I e ext S n int (Hl n H2) and O e L(q' ,x), then S I n intv Ox00 
q 

,i ¢. Suppose that O /L(q',x) .. Since q 9 e int (H1 n H2), L(q',x) does 

not bound ckS .. There then exists a point z' e ckS n H4, where H4 is the 

closed halfspace determined by L(q',x) which does not contain O .. Since 

{O, x, z'] c ckS and q' e S, conv to, x, z', q'} c S, and as before, it 

can be readily shown that S I n intv Dx00 ,i ¢. The point p needed to 
q 

give the conclusion of Lemma 4 .. 1 cannot belong to int (H1 n H2) U int 

(H~ · n H;).. Hence, ext S n [ (H1 n H;) U (H~ n H) J ,i ¢ and the conclu-

· sion follows .. 

The next lemma shows that the convex kernel of a compact star-

shaped subset of E2 with a finite number of extreme points is a convex 

polytope .. 

Lemma 4 .. 3: If Sis a compact star-shaped subset of E2 with a fi

nite number of extreme points, then the convex kernel of S has a finite 
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number of extreme points. 

Proof: The conclusion follows immediately if dim(ckS) < 2. Suppose 

that dim(ckS) = 2. For any x e ext (ckS)\ext S there exists a point p e 

ext S such that L(x,p) supports ckS at x, a result of Lemma 4.2. If p e 

ext S,. then /P I ckS or p e bd S. In either case, consider the intersec

tion of all closed halfspaces which contain ckS and contain p.in the 

bounding hyperplane. This intersection of halfspaces is a closed convex 

cone with vertex p. The boundary of this cone is the union of two 

closed rays emanating from p. Each such ray is contained in exactly 

cme line through p. These lines are the only hyperplanes which contain 

p and support ckS. Each such hyperplane intersects ckS in a closed line 

segment, which contains at most two points from ext (ckS)a Thus, for any 

p e ext S there exists at most four points in ext (ckS)\ext S with which· 

p might be associated as above. This implies that ext (ckS)\ext Sis a 

finite set, as is ext S n ext (ckS), which implies that the convex ker

nel of S has a finite number of extreme points .. 

The theorem that follows is the principal result.of this chapter .. 

Theorem 4.1: Let S be a compact star-shaped subset of E2 which has 

a finite number of extreme points. If for every x e ES there exists 

points y, z e ext S such that x e yz e: S, then Sis a polyhedralstar

shaped set. 

Proof: Consider the set T of all pairs of points y, z e ext S such 

that yz c S .. Clearly there exist a finite number of such pairs, and for 

every x e ES there exists a pair y, z e ext S such that x e yz c S. 'Also, 

for any such pair y, z, conv (ckS U (y, z }) c S; with the aid of Lemma 4 .. 3 



it can· be readily shown that conv (ckS U (y,z}) is a convex polytope. 

But 

S = U conv (ckS U {x}), 
xeES 

and for each x e ES' conv (ckS U (x}) c conv (ckS U (y,z}) for·some pair 

y, z e ext S. Thus, 

S = U co:riv (ckS U {y,z}), 
y,ztr 

· and Sis a polyhedral star-shaped set. 

Lemma 4.3 and Theorem 4.1 are not necessarily true in linear spaces 

.of dimension greater than two. The example that follows will bear this 

out. 

Example 4.1: ··In the linear space E3 let 

S = conv (DU ((o,o,4}) U conv {(2,2,0), (2,-2,0), (-2,-2,0), (-2,2,0)}. 

Then ext s = f(o,o, 4), (2 ,2 ,o), (2,-2,0), .· (-2, -2, o) (...;2, 2,0)}, which is 

a finite set (cf. Fig .. 4.4) •. 

The hypothesis of Lemma .4.3 is satisfied, but ckS = D and ext (ckS) 

is an uncountable set. Similarly, the hypothesis of Theorem 4.1 is sat-

isfied, but Sis not a polyhedral star-shaped set. 

By strengthening the hypothesis of Theorem 4.1, an extension to·more 

general spaces can be obtained;. This extension is given in Theorem 4.2. 

Theorem 4.2: Let S be a compact star-shaped subset of L, a locally 

convex space; suppose that S has a finite number of extreme points. If 
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(0,0 1 4) 

', . ...__ 
----. 

(2,2,0) 
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ckS has a finite , number Gif extreine points. and if far · every x e ES there 

exists : a subset · T 0f ext S such that x e conv T c S, then S is a poly-

. · h~dral star~shaped set. ·_. 

· Proof : ·· Let e be the c0llecti0n of all subsets A ef ext S such that 

cenv A c S •.. Since ext S is a finite set, there are a finite number of 
. · .. . :· .. :,'·. · .. ·. . . .. . . 

sets in e. For ·each A e e, et;>nv (eonv A U ckS) c S and since conv A and· 

ckS are c0nvex.polytopes, so is cenv (cenv·J\ U ckS). Hence, 

U oonv · (conv.'\A U -ckS) 
Ace 

,is a, polyhedral star..;shaped subset of s. Theorem 3.1 implies that_ 

S = ,u c0nv (c_kS U (y)). yeE···. 
s 

The hypothesis states that. for every y e- E8 there exists. a set AY e. e 
such_ that. y e conv A cs. Therefore, . 

. :Y ••· .· __ · . . ·.-_ •.•. ·.·.··· ... _-_··· .· .·· ___ ·. ·-····• ... -····.· __ ·. .•• . ·.· 
S = U conv {ckS U (y}) c U conv (ckS U conv A), 

yeE8 . Aee 

which . leads to the . ccmclusion that S is a polyhedral star-shaped set •. 

Earlier it was . meri.ti<:>ned . that •· cenvex poJ,ytepes often eccur. as. selu-
. '· ., 

tion .sets to systems of linear ·equalitie.s. .S-u.ch a set is the soluti0n 

set : c0mme:n to · each of the inequalities in a .. given system. . On the : other 

hand, suppese that several systems of linear inequal.iti~~-are given, and 

a soluti0n is seughtfor any one ef thesystems. Then the soluti@nset 

may ·then .be··a. pelyhedral star~shaped se~ •. • The f_ollo,W'i~g:e~Jil~e:-:i.l}us

trates two-such systems. 

. . . 

Example 4.2: Censider the fellowing tw.o systems 0.f inequalities in 

two variables: 



x + y :s: 1 

x :s: 1 

-4x --y :s: -1 

x + y :s: 1 

-2x + y :s: 1 

x - 2y :s: 1 
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Then the set of points in the (x,y)-plane that satisfy one system 

or the other will be the set S = conv ((1,0), (O,l), (1,-3)} U conv 

((1,0), (0,1), (-1,..:1)}, a polyhedral star-shaped set (cf. Fig. 4.5). 



(0,1) 

(1,.-3) 

Figure 4.5 



CHAPTER V 

APPROXIMATION OF COMPACT STAR-SHAPED-SETS 

The·setting for this approximation will be a normed linear space L. 

The compact sets of such a space can be considered as the elements-of a 

metric space by defining a distance function A on the collection of such 

sets. If II II is the norm on L, then for any compact set Sin L.let S = e 

S + (x: llxll < e}. For any two compact sets A and B in L the distance 

between A and B will be defined to be inf (e: A cB and B cA} and will 
e e 

be denoted by 6(A,B). If (A.} is a sequence of compact sets in L then 
J. 

if, and only if, 

lim A. = A 
J. . i~CX) 

. lim (A.,A) = O. 
• J. 
J. ... CX) 

The collection of subsets of L that will be of interest to this 

study is the collection of compact star-shaped sets, which will be de-· 

noted by .}, • The first result . shows· that the collection (P bf all poly-

hedral star-shaped sets in L is . dense in J .. 

Theorem 5.1: Let S be a compact star-shaped set in a normed linear 

space L. · Then for any e > 0 there exists a polyhedral star-shaped set 

P such that P c S c P • 
e 

Proof: The set ckS is compact. Consider the collection~ of all 

39 
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e-balls•with centers in ckS •. There exists.a finite subcollection ~, of 

Ja1 which covers. ckS. Let T = (x1 , x2 , •••, xm} be the associated collec

tion of centers, which will be a subset of ckS. Now consider the callee-

tion ~2 of all e-balls with centers in S\ckS. Since~, U ~2 covers S, 

which is compact, there exists a finite subcollection e2 1 of ~2 such 

· that ~' U ia2 ' covers· s. Let T' = (y1 , y2 , • • •; yn} b~ the set of cen..;. 

ters associated with thee-balls in·IB2 1 • Let e be the collection of sub

sets A of T' such that conv Ac: S. Since T' is a finite set there is at 

most · a finite number of sets in e. Since ckS is convex., conv T c: ckS 

cs. For any A e e 

conv (conv TU conv A)= (ax+ (1-a)y: a e [0,1], x e conv T, ye conv A}, 

and since conv T c ckS, conv A c: S, then 

Thus, if 

conv (conv T U conv A) c: S. 

P = U conv (conv TU conv A), 
Aee 

then P cs. Since, for each A e e, conv A and conv T is e.ach a convex 

polytope, then so · is . conv ( conv T U coriv A) • Then· P is the union of a 

finite number of convex polytopes; clearly conv Tis a subset of each 

convex polytope of this union. The set Pis then by definition a poly-

hedral star-shaped set. 

Let yes. Then there exists an e-ball Bin IB' U ia2 1 such that 
. 1 . 

y e B. There exists some x. e T or some y. e T' which is the center of 
1. J 

B.. In either case lly-x.11 < e or lly-y. II < e, and since x. e P, yJ. e P, 
l J 1. 

it follows that y e P • Hence, P c S c P • 
e e 
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Theorem 5.1 provides the basic step needed to obtain for every com-

pact star-shaped subset Sofa normed linear space La sequence of poly-

hedral star-shaped sets which converges to S. 

Corollary 5.1: If Sis a qompact star-shaped set in a normed lin

ear space L,then there exists a sequence (P.} of polyhedral star-shaped 
1 

sets which converges to S. 

Proof: For each positive integer n there exists a polyhedral star

-1 
shaped set P such that 6(S,P) < n • Let e > O; there exists a posi-

n n 
· -1 · -1 -1 

tive integer N such that N < e. If n > N then.n < N < e, which 

implies that if n > N, l6(S,P ) - 0 I = 6(S,P ) < e, so that 
n n 

lim 6(S,P) = O. 
n,..co n . 

This implies that. the sequence (P.} converges to S. 
. 1 

Since the convex kernel of a star-shaped set Sis of fundamental 

importance to the study of S, it would be of considerable value to know 

that there is a relationship between the convex kernel of the star-shaped 

sets of a sequence (A.} and the convex kernel of A, where (A.} converges 
1 1 

to the star-shaped set A. The following examples show that restrictions 

must be placed upon the star-shaped sets of the sequence (Ai} if the as

sociated sequence of convex kernels (ckA.} is to converge to·ckA .. 
1 

The first such example shows that there exists in E2 a sequence (A.} 
1 

of compact star-shaped sets which converges to a star-shaped set A, but 

the sequence (ckAi} does not converge. 

Example 5.1: For each odd positive integer n let A = conv ((1,1), 
n 

(1,-1), (-1, -1), (-1,1) }. For each even positive integer n let A = 
n 
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A1 U c0nv ((o,o), Cl+n-1 ,l+n-1 ), (-(l+n-1 ),l+n-1)) U c0nv ((o,o), Cl+n-1 , 

-(l+n-1 )), (-(l+n-1 ),-(l+n-1))} (cf.Fig •. 5.1). 

Each A is c0nvex when.n is odd; thus ckA = A in that-case. If 
n n n 

n is even, then ckAn = ((0,0)). The sequence (ck(~i)} obviously does 

not converge. It can be readily sh0wn that the sequence (A.} converges 
J. 

The problem now·at hand is to determine sufficient conditi0ns.for 

·the-limit.of the·sequence 0f convex kernels to be the convex kernel of 

the limit of the sequence •. The first restriction to be ·considered is 

monotonicity of the sequence (ck(A.)}. The oscillation of the terms of 
J. 

the sequence of convex kernels in the previous example prevented its con-

vergence to any set. The next examples show that monotonicity alone f0r 

the sequence (ck(Ai)} is not enough to assure that this sequence con

verges to ckA. 

First, there exists in E2 a sequence of compact star-shaped sets 

(A.} such that (A.} and (ck(A.)} both converge, and (ck(A.)} is monotone 
J. J. .J. J. . 

decreasing, but 

lim (ckA.); ck(lim A.). 
i-+oo J. i-+oo J. 

Example 5.o2: For each positive integer n let 

A = conv [Co,-1), (O,l), (2-Cn+l),l), (2-Cn+l),-1)} U 
n 

For·each·such n 

ck(A) = conv 
:n 

( (o z;-Il)· ' . .. ' Co :..;.2- -n) .-_,2:-:(n+l) .;..2 .. .;:{:ri+l) ).- (2-Cn+l) 2-Cn+l) )-} 
, . , ' \ \t' ' ·, ' "' ' ·, , ' • 
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The sequence (A.} converges to the convex set A= conv ((0,1), (0,-1)} = 
. J. 

ckA, but the sequence {ck(A.)} converges to the set ((o,o)} f ckA (cf. 
J. 

Fig. 5.2). 

Also, in E2 there exists a sequence of compact star-shaped sets (Ai} 

such that (A.} and [ck(A.)} both c0nverge, and (ck(A.)} is monotone in-
J. J. J. 

creasing, but 

lim (ck(A.)) f ck(lim A.). 
i-+co J. i-tco J. 

The following example indicates such a case. 

Example 5e3: For each positive integer k let 

Bk = rco,o), (3,0)} u 

( -1 )-1 -1) )-1 -1) -1 conv (l+(k+2) ,o), (l+(k+2 ,k , (2-(k+2 ,k , (2-(k+2) ,o) }. 

For each positive integer n let 

For each such integer n 

A = n 

co 

The sequence (A.} converges to the convex set A= conv ((o,o), (3,0)} = 
J. 

ckA, but the sequence (ck(A.)} converges to the set conv ((1,0), (2,0)} 
J. 

f ckA (cf. Fig. 5.3). 

It may be noted in Example 5o3 that for each n > O, ck(A) c ckAe 
n 

The next theorem shows that if the condition that 

ck(lim A.) c ck(A ) 
. J. n 
i-+co 



Figure 5.2 

(o,o) (1,0) , 

Figure 5.3 

. (2,0) 

A 
n 
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(3,0) 
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for each n is imposed upon the sequence (A.} then the desired convergence 
1 

of the associated sequence of convex kernels can be obtained. 

Theorem 5.2: Let tA.} be a sequence of compact star-shaped sets in 
1 

a normed linear 

If the sequence 

space L such that {A.} converges to a star-shaped set A. 
1 

(ck(A.)} converges and ckA c ck(A.) for each i > O, then 
1 1 

i-tco 

lim (ck(A.)) = 
1 

ckA. 

Proof: Let ck(A.) = K. and let x e K, where 
1 1 

K = lim K .• 
i-+co 1 

Then there exists a smallest integer N1 such that if n::?; N1 , Kn n s1 (x) 

f. ¢, where s1 Cx) is given by S /x) = (y: Jly-xJJ < e} with e = 1. Choose 

a.point 

for i < N1 , choose yi from Ki. There exists a smallest integer N2 > N1 

such that if n::?; N2 , Kn n s112 Cx) f. ¢. Choose a point 

for any i such that N1 < i < N2 , choose yi from Kin s1 (x), which is 

nonempty since i > N1 • Suppose that for some m > 1 the smallest N > 
m 

Nm-l has been found such that if n::?; Nm' Kn n Sl/m(x) f. ¢. Furthermore, 

suppose that for·all i::;; N, y. has been chosen as follows: if i = N m 1 j 

for some J. such that 1 ::;; J. ::;; m, then y e K n s11 . (x); if N. < i < N. 1 i i J J J+ 

for some j such that 1 ::;;.j ::;; m-1.~ then yi e Ki n s11/x). For i < N1 ,:y1 

is defined as described above. Then there exists a smallest N 1 > N 
m+ m 

such that if n::?; Nm+l' then Kn n Sl/(m+l)(x) f. ¢. Choose a point 
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for a:ny i such that N < i < N 1 choose y. from K. n S / Cx), which is m m+ i i 1 m 

nonempty since i > N. A sequence of points (y.} has now been defined m i 

inductively such that for a:ny i > O, y. e K .• 
i i 

-1 
Consider a:ny e > O; there exists a:n integer r > 0 such that r < e. 

Let n > N, where N is defined as in the above procedure& Then n = N 
r r p 

for some p > r or N < n < N 1 q q+ 
for some q > r. If n = N, then y e 

p n 

Kn n Sl/p(x) c Sl/r (x) c Se (x). If N < n < N l' then y e K n Sl/ (x) q q+ · n n q 

c Sl/r (x) c S /x). In either case, y n e S /x), which implies that 

IIY -xii < e for any n > N • Thus, n r 

lim y = x. 
. n 
1-+ 0:, 

Theorem 40 of Allen [1 J implies that x e ckA; hence, K c ckA. 

Suppose that there exists a pointy e ckA\K. If y fl K then there 

exists a real number S > 0 such that for a:ny N > 0 there exists some n > 

N such that Li(Kn ,KU[y}) ~ S, which implies that Kn ¢:. (KU(y}) S/2 or that 

KU ty} ¢:. (Kn)S/2 ~ But the fact that (Ki} converges to K implies that 

there exists a:n integer Nf3 > 0 such that if n > N13 , then D.(Kn,K) < f3/2, 

that is, Kn cKS/2 and Kc (Kn)f3/2 Q Since KS/2 c (KU(y})S/2 , there 

must exist some n > NS such that K U (y} ¢ (Kn)S/2 , and since K c (Kn)S/2 ' 

y I (Kn)S/2 ; thus, .y I Kn. But ye ckA CKn for a:ny n > Oe This con

tradiction implies that ckA cK, and the above result yields the fact 

lim K. = K = ckAo 
i-+co 1 

There are several questions that might be raised concerning the hy-

pothesis of Theorem 5.2. First, if CA.} is a convergent sequence of 
i 

compact star-shaped sets in a normed linear space L, then under what 
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c0nditions will (A.} c0nvergete·a star-shaped set A7 The next theorem 
J. . 

. gives a sufficient-condition fer·this set A-to·be star-shaped. 

'·•Theerem 5. 3: Let . (Ai} be a sequence of compact · star-shaped sets in 

the linear space L. If ,n 

lim Ai = A, 
i,.co . 

then A is a star..-shaped set~ •.· 

Proof: Consider any c > o. There exists an integer N > 0 such that 

if m > N then A(A ,A) < 1, which implies that A c: A and A c (A ) • 
. m .m • m • 

Since Am is compact for each m, it is bounded, as is (A) • The set A m c 
c (A ) for ·m > N; thus, A is bounded, as is A,.. The fact that A c: A 

.m c ... .m • 

for all but a finite number of integers m > 0 implies that (Ai} is uni

formly.bounded, since each Ai is bounded. Choose a sequence of points 

(yi} such that yi e ck.(Ai) for .each i. The set of points (yi} is 

b0unded; the ref ore, there exists a subsequence (y '. } which converges to 
J . 

. s0me point y e L • But The0rem 40 of Allen [l J gives the result that 
n 

I I 
where y. e A . • But 

J J 

and 

y e ck (lim A~ ) , 
j-tco J 

I 
lim t::.(A. ;A) = O, 
j-too J 

lim A~= A= lim A., 
. J . J. J-too J.-tCXI 

so that ye ckA, which implies that A is star-shaped. 

This result·shows that part of the hypothesis of Theorem 5.2 is 



redundant in the linear space L. 
n 
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Another point of interest in the hypothesis of Theorem 5.2 is the 

existence of the limit of the sequence (ck(A.)}o The theorem that fol
l 

lows shows that in the linear space Ln this limit exists. 

Theorem 5.4: Let (A.} be a sequence of compact star-shaped sets in 
l 

L. If the sequence (A.} converges to A and ckA c ck(A.) for any i > O, 
n 1 1 

then 

lim (ck (A. ) ) 
i-+c:o 

l 

exists. 

Proof: The previous proof shows that (ck(A.)} is uniformly bounded. 
l 

Consider any subsequence of lck(A.)}; if this subsequence contains only 
l 

a finite number of distinct sets then there will exist a constant sub-

sequence that converges. If the number of distinct sets is infinite, 

then the Blaschke selection theorem gives the convergence of some sub-

sequence. In either case,Theorem 5.2 implies that the convergent sub-

sequence converges to the convex kernel of A. If the sequence (ck(A.)} 
l 

does not converge, then it does not converge to the set ckA, which is 

nonempty as a result.of Theorem 5.3. There exists a real number e0 > 0 

such that for any N > 0 there exists some m > N such that 6Cck(Am),ckA) 

:..:: e0 • However, the subsequence of (ck(Ai)} so obtained must contain a 

subsequence which converges to ckA, a contradiction since no such sub-

sequence can exist. Thus, 

lim (ck(A.)) 
i-+ co 

l 

must exist. 
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The ultimate aim is to show that for a:ny compact star-shaped set S 

in a normed linear space L there exists a sequence of polyhedral star-

shaped sets (Pi} which converges to S such that 

lim (ck(P.)) = ckS. 
J. 

Theorem 5.5 gives the·. basic ·step. needed to show the existence of such a 

sequence. However, before considering that theorem we first need to 

prove the following lemma. 

Lemma;5.1: Let C be a compact convex set in a normed linear space 

L. For any e > o, if x; c then s1(x) ¢ c8 • 

Eroof: Without loss of ge~erality suppose that x = o. Since O ~ c, 

which is closed, there exists a real number 0/ >Osuch that S°'(O) n C = 
¢. Since C is compact and II II, a particular norm on L, is continuous, 

there exists a point p e C such that IIPII = inf {IIYII: Y • C} and IIPII > O •. 

For any X > O consider the point -Xp. Suppose that there exists a point 

x1 e C such that llx1 + Xpll < IIP + APII· The scalar X(l+X)-l e ~0,1) 

) -1 . )-1 since X > O. Thus, X(l+X p + (l+X x1 e c, and 

II 1~x P + 1:x ~II = -~x llxP + ~II 

< i!x IIP + Xpll 

= 1:x C1+x> IIP II 

a contradiction. Therefore, IIP + XPII ~ IIY + lPII for a:ny y e C. 

Consider a:ny e > o. If IIPII :t e, then O ~ Ce a:nd s_co) ¢ Ce. Sup

pose that IIPII < e. Then e(llpll)...;1 > OJ and eCIIPII)-~- ~ > O, se that 



which implies that 

But 

IICfil - ~)PII = ctrr - ~) IIPII 

= e - JlEll 
2 

< e, 

(-2
1 - ~)p e s (O). 

· i!Pii e 

IIP + ctrr - ~)p\l = c11; 11 + ~) IIPII 

and since 

for any ye C, 

Therefore, S (O) ¢. C. 
e e 

= e + JlE.ll 
2 

> e, 
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Theorem 5~5: Let S be a compact star-shaped set in L. Then for 
n 

any e > 0 there exists a polyhedral star-shaped set P such that ckS c 

ckP and 6(S,P) < e. 

:P.i;:,Q.QJ:.;. For any e > O, B(e) = (x: \\x\l ·:s;; e} c Ln is compacL Thus, 

S + B(e) is compact and star-shaped. Furthermore, ckS + B(e) c ck(S + 

B(e)) .. For, let y e ckS + B(e). Then y = x + z, where x e ckS and z e 

B(e), which implies that \IY - x\\ = \\z\\ :s: E:m Let w e S + B(e), that is, 

w = u + v, where u e S, v e B(e); as before, \lw - u\\ = \\v\l :s: E:o For 

any a e [0,1] consider oty + (1-a)w. Clearly ax+ (1-a)u e S, and 
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!lay + (1-a)w - (ox + (1-a)u) II s; a\\y - x\l + (1-a) \lw - u\\ s; ee Therefore 9 

ay + (1-a)w - ( ox + (1-a)u) e B ( e), which implies that ay + (1-a)w e 

S + B(e). Since a was arbitrary, ye ck(S + B(e)); hence, ckS + B(e) 

c ck (S + B ( e)) e 

Consider the collection 181 of all e/2-balls with centers in ckS + 

B(e/2)0 Since ckS + B(e/2) is compact there exists a finite subcollec~ 

tion ~1 1 of ia1 which covers ckS + B(e/2); denote the collection of cen

ters by T = {y1 , y2 , •a•, ym}e Consider the collection ~2 of all e/2-

balls with centers in (S + B(e/2))\ckS + B(e/2)6 There exists a finite 

subcollecti.on of ~2 1 of 182 such that ~ 1 U !82 1 covers S + B(e/2); denote 

the collection of centers associated with ~2 1 by T1 = (x1 , x2 , • 09 1 xn}. 

Let e = (A:A c T' and conv A c S + B(e/2) }. Since T c ck + B(e/2) c ck 

(S + B(e/2)), conv Tc ck(S + B(e/2)) .. If 

P = U conv (conv T U conv A), 
Aee 

then P c S + B ( e/2) C P e/2 and P is a polyhedral star-shaped set$ Clear

ly 9 Pc S + B(e/2) c s3e/4 an~. S c S + B(e/2) c P e/2., which implies that 

t.(P,S) < e. 

Let C = conv T; it can be readily shown that C c ckS + B ( e/2) c C e/2 e 

Suppose that there exists a point x e ckS\Ce Since x t C, and since C 

is a compact convex set in Ln' Lemma 5.1 implies that Se/2 (x) ¢, Ce/2• 

But \:;2 Cx) ex+ B(e/2) cckS +B(e:/2) cCe/2 , a contradiction© Thus, 

ckS c C c ckP. 

Theorem 5 .. 6: Let S be a compact star-shaped set in L. Then there 
n 

exists a sequence [P.} of polyhedral star-shaped sets which converges to 
]. 

S such that 
lim (ck(P.) = ckS. 
i-+o:i 

]. 
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Proof: Theorem 5.5 implies that for every n > 0 there exists a 

( ) < n-l and ckS c ck (P ) • polyhedral star-shaped set Pn such that!:::. S,Pn ·n 

Since O ~ t:.(S,P) < n-l for each n > 0 and 
n 

then 

-1 lim n = O, 
n-too 

lim t:.Cs ,P ) = o, 
n n-+oo 

which implies that [P} converges to S. Theorem 5.4 gives the result 
n 

that (ck(P.)} converges and Theorem 5.2 implies that 
1 

lim (ck(P.)) = ckS. 
. 1 
1"'oo 

For any compact star-shaped set Sin a normed linear space L, and 

for any e > O, Theorem 5.1 gives the existence of a polyhedral star-

shaped set P which approximates S such that t:.(S,P) < e. A constructive 

procedure will now be given for finding such a polyhedral star-shaped 

set in the linear space L. 
n 

Let S be a compact star-shaped subset of L and let e > O. Let II II 
n 

be any norm on Ln. Then there exists a basis (b1 , b2 , 

such that I lb . 11 = 1 for i = 1, 2 , 
1 

ne Consider the set 

n 
T(e) = 2:(x: x = ~ A.b., 0 ~ A. ~ 1, i = 

. 1 1 1 1 1= 
1, 2, •• 0 

If x, ye T(e), then 

n n 

b } of L 
n n 

n }. 

x= 2en ~ Lb., y= 2e _~1 µ,1.,b,.·1.,,0~A. ~l, O~u.. ~l, l~i~n; 
i:::::l 1. 1 n 1= . 1 · 1 

hence, 
n n n 

llx- YII = 2e II !: CA. - µ,. )b. II ~ 2e !: IA. - µ,. I lib. II ~ 2e !: lib, II = e/2 < e, 
n i=l 1 1 1 n i=l 1 1 1 n i=l 1 



since IA. - µ.I~ 1. Consider the set M of all n-tuples of integers 
]. ]. 

(m1 , m2 , •••, mn). Let 

and let~ = (x + T(e): x e G}. If ye L, then e n 

y = 
n 
E S.b .• 

i=l].]. 

There exists an n-tuple·of integers (k1 , k2 , 

which implies that 

Thus, 

2e k. ~ S. ~ 2e (k. + 1), 
n J. J. n J. 

o ~ ~s. -.k1• ~ 1. e i 

k) e M such that 
n 

n 2 n n 
-2e. E (...!!.s. -k.)b. = .ES.b. - -2e E k.b. 

n:i=l e 1 1 1 i=l 1 1 n i=l 1 1 

belongs to T(e), so that ye x + iJt(e) e ~ for e 

e n 
x =2 Ek.b. e G. 

n i=l 1 1 

Therefore, !.Ulcovers L and the set S~ 
.n 

For any A> 0 the set 

n 
XA = (p: p = E O!. b. ' IO!. I < A} 

i=l].]. J. 
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is open in L. Any such X~ intersects at most a finite number of sets 
·n II. 

in lne. Since Sis compact, Sis bounded, so that S cXA for some A> O. 

Hence, there are only a finite number of sets A in~ such that An Sf 
e 

¢. Let (A1 , A2 , 

ckS. Let (A l' r+ 

···,A} be the collection of sets in !ffl that inte~sect 
r e 

Ar+2 ' ···,~}be the collection of sets in !.Ule that 
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intersect S but do not intersect ckSe For each i such that 1 s: is: r 

choose y. e A. n ckS; for each i such that r + 1 s: is: k, choose y. e A. 
1 1 1 1 

n s. Since (y1 , y2 , ••• yn} = D c ckS, conv D c ckS. If D' = (yr+l' 

Yr+2 ' yk} let e = (E: E c D', conv E c SJ. Then let 

It)<,, 

P = U conv (conv DU conv E); 
Eee 

P cs and Pis a polyhedral star-shaped set. If ye S there exists.some 

i, 1 s: i s: k, such that y e A.. Then IIY - Y-11 < e since y, y. e A. = 
1 1 1 1 

x + T(e) for some x e G, and the fact that y. e P implies that ye P; 
1 e 

thus, P c S c P • e 

The constructive procedure given above provides a method of finding 

a polyhedral star-shaped set P which is known to·exist by Theorem 5.1. 

A similar procedure may be applied to obtain a polyhedral star-shaped 

set P which will satisfy the demands of Theorem 5e5• 

The following example is given to illustrate the previously defined 

procedure .. 

Example 5a4: Consider the linear space E2 with its natural basis .. 

Let B(l) = (p: IIPII s: 1}, where II II is the Euclidean norm.. Then let S = 

B(l) + ((1,3/4), (1,-3/4)} (cf •. Fig .. 5 .. 4)s Fore= 1, the parallelepipeds 

in~ are squares with sides of length 1/4 .. It can be shown analytically 

that ckS = conv ((1 +Y?/4,o), (1 -\17/4,0), (1,7/12), (1,-7/12)} .. The 

points of D and D', as well as the polyhedral star-shaped set P, are 

shown in Figure 5 .. 4 .. The points of D·are denoted by tne symbol "o" .. 
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CHAPTER VI 

SUMMARY .AND CONCLUSIONS 

The basic purpose of this study has been to examine the extremal 

structure of star .. shaped sets and to determine the relationships that 

exist between this structure and the convex kernel .. The first approach 

was made by considering Obextreme points of compact star-shaped sets .. 

It was found that such points can be used to actually determine the con

vex kernel of a compact star-shaped set in a locally convex space. Fur

ther investigation revealed properties concerning the cardinality of the 

set of Obextreme points ina compact star-shaped set of dimension greater 

than two .. It was discovered that in a normed linear space any compact 

star-shaped set has a countable subset which star-generates its .convex 

kernel .. The next topic to be examined was relative extreme points of 

star-shaped sets .. It was shown that in a locally convex space any com= 

pact star-shaped set is completely determined by its convex kernel and 

the subset of points that are extreme points relative to the convex 

kernel.. This representation of a compact star-shaped set resembles:. that 

of the Krein-Milman Theorem for compact convex sets. A class of compact 

star-shaped sets, called polyhedral star-shaped sets, was defined since 

the extremal structure of each set in this class is simpler than that of 

star-shaped sets in.generalo Sufficient conditions were given for a 

subset of E2 ·to be a polyhedral star-shaped set .. A metric was defined 

en the collection of compact star-shaped sets in a normed linear space 
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and it was shown that any such set can be approximated by a polyhedral 

star-shaped set. Sufficient conditions were given for the sequence of 

convex kernels of the sets in a convergent sequence of compact star-

shaped sets to converge to the convex kernel of the limit set. It was 

shown that for any compact star-shaped set Sin a normed linear space, 

a sequence of compact star-shaped sets can be found which converges to 

S such that the associated sequence of convex kernels converges to the 

convex kernel of S. A constructive procedure was given for finding a 

polyhedral star-shaped set which approximates a compact star-shaped sub-

set of L. 
n 

There are several problems which have been raised by this study 

which would be of interest for further consideration. 

One such problem is the characterization of compact star-shaped sets 

according to the cardinality of minimal star-generating subsets, partic-

ularly those sets with finite star-generating subsets. 

Sufficient conditions were given for a set to be a polyhedral star-

shaped set, but necessary conditions were not found. 

Theorem 5 .. 2 would be of more value in applications if the sufficient 

conditions were independent of the convex kernel of Ao 

It would be desirable to extend Theorem 5.3 and Theorem 5.4 to in-

finite dimensional linear spaces or give a counterexample to show that 

it is not possible. 
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