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CHAPTER I 

lN'tRODUCTION 

The immediate problem confronting the designers of the Supersonic 

Transport is the structural damage caused by the sonic booms. The 

booms created by these planes will usually have an overpressure of 

2.5 psf and a period of 0.4 seconds, but during some maneuvers these 

can be as high as 4 psf and 0.5 seconds respectively. Several 

controlled and uncontrolled flight tests conducted in the United States 

and Canada prove the capability of the sonic boom in causing structural 

damage either due to a too large an overpressure or to the repeated 

exposure to booms. 

In the flights over Washington, Ohio, Cedar City, Utah, and Ottawa, 

Canada the sonic boom caused by pilots' errors shattered several 

windows. The damage to the unfinished Ottawa terminal was estimated as 

300,000 dollars. In the tests conducted in Oklahoma City one of the 

showcase windows of the Kinney Shoe Store broke. There were reports of 

nail popping, paint and plaster cracking due to the repeated applica~ 

tion of loads by the sonic boom. In the recent experiments by NASA at 

the Edwards Air Force Base a controlled flight shattered a glass window 

in the U.S. Post Office and created cracks and broke another window in 

the same building. From the data obtained from these tests it is clear 

that the overpressure as a static load was not responsible for the 

failure of glass as it was only lOi'o of the wind load for which it is 

1 
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designed. The building enclosures behave as Helmholtz resonators and 

drive the flexible members such as the window to high amplitudes, 

especially when the natural period of the window is equal to the 

natural period of excitation. It is therefore necessary to study the 

response characteristics of acoustical networks for transient loads to 

find the maximax response. In addition to sonic boom loads, this study 

will be useful in the response analysis of building structures subject 

to other transient loads such as explosions, rocket launchings, gusts, 

and blast loads. 

A building structure, because it is composed of several rooms, 

inter-connecting hallways, doors and windows, is complicated to analyze 

mathematically. It has to be reduced to an equivalent system which 

adequately represents the behavior of the original system. The 

response of a dynamical system depends on the damping ratio of the 

system. Every physical system possesses some energy dissipating 

mechanisms. From the data obtained from the Oklahoma City tests it is 

known that the pressure oscillations are not sustained for a long time. 

Even though the damping ratio does not affect the response due to 

transient loads as much as it does the response to steady state, its 

effect is pronounced in the former also. A damping ratio of 5'Ya could 

reduce the maximax response by as much as 25%. Therefore in order to 

find the transient response of acoustical networks the types of damping 

present in them should be identified. The response is easily obtained 

once the equivalent viscous damping ratio is known. 

The maximax response of any system depends on its components. By 

suitably modifying them any desired response can be obtained. The 

components of an acoustical system are to be changed within practical 
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limits and the critical system has to be found. The maximax of this 

system is the maximum that can be expected for a given sonic boom type 

input. Thus an upper bound for the response can be obtained. This is 

very useful in the design of the components of the acoustical networks, 

especially the glass windows. 

If the deflection of the panel to the transient excitation is much 

greater than the thickness, some refined theories have to be used to 

find the dynamic response. 

In general the main objectives of this work can be summarized as: 

1. To represent the building structures which are mechano

acoustical systems by equivalent mechanical systems which 

preserve the characteristics of the original system adequately. 

2, To identify the types of damping present in representative 

buildings and thus to estimate a lower bound for the net 

equivalent viscous damping ratio, 

3, To find the maximax response of multi-degree of freedom 

systems as a function of its parameters. 

4, To find the most critical multi-degree of freedom system and 

thus to find a worst practical acoustical system. 

5, To get an upper bound for the stresses in the glass windows 

for a given sonic boom type input using both linear and non

linear theory, and 

6, To compare the maximax response calculated with the experi

mental data obtained from tests conducted at the Edwards Air 

Force Base, 



CHAPTER II 

LITERATURE REVIEW 

Several authors have discussed in general the damping ratio of 

Helmholtz resonators, the transient response of linear systems, resona

tors and some specific non-linear systems. But no literature is 

available on the general design of acoustical systems subject to sonic 

booms. 

Rayleigh (29) has described the various loss mechanisms associated 

with ,a resonator such as radiation, viscous and heat conduction. He 

concluded for low frequency the heat conduction losses are negligible. 

Samulon (31) has analytically found the losses due to the viscosity of 

the air in the neck of the resonator. He found that the viscous losses 

were the main loss mechanisms for very narrow necks. He assumed the 

flow of air in the neck was similar to the flow in a pipe. lngard (13) 

investigated the near field of a resonator exposed to a plane wave 

using the acoustic equation and concluded that the damping due to heat 

conduction was negligible. Mangiarotty (20) has derived expressions 

for the acoustic radiation damping of a panel vibrating in its funda

mental mode. He assumed the panel to be a piston vibrating in an 

infin;ite baffle. For a uniform damping pressure he found the damping 

was dependent only on the density of the surrounding medium and the 

aspect ratio of the panel for a given material. The assumption of 

non .. uniform damping pressure does not change the results very much 

4 
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espeoially for panels very small compared to the wave-length. 

Fitzgerald (11) has discussed the internal damping of ceramics and 

glass using the hysteresis curves. He concluded that the internal 

damping of them was comparable to that of the metals. Marin and 

Rindone (21) have given experimental results for the hysteresis damping 

of glass rods. The damping was given in terms of the quality factor Q. 

Several authors (36, 12) have studied the transient response of 

simple oscillators. There is little literature on the transient 

response of multi-degree of freedom systems. The work so far done has 

been confined, due to mathematical difficulty, to particular cases only. 

Hence, there is great need to solve this problem in general. Many 

investigators studied the transient response of continuous systems such 

as beams and plates. Cheng (5) has discussed the dynamic amplification 

factor developed due to an N-wave excitation on beams and plates. He 

used the Fourier series to solve the partial differential equations and 

concluded that for the deflection, the contribution by higher modes 

could be neglected. Crocker (8) has found analytically and experimen

tally the transient response of panels to several forms of excitation 

pulses. He has arrived at the same conclusion that the fundamental 

mode contribution adequately represented the total response for 

displacement. 

The work on the general transient response of a non-linear system 

is also limited. Fung and Barton (12) have discussed the effect of 

non-linearity in a single degree of freedom system. They solved the 

problem in terms of the loading ratio, that is the ratio of the loads 

in the linear and the non-linear system to produce the same deflection. 

Ergin (10) found the response of a simple non-linear oscillator by a 



bi-linear approximation method. The load-deflection curve was assumed 

to be made up of two straight lines $;.\i\·C..h that the mean error squared 

was a minimum. Thomson (36) has found the shock spectra of an elasto

plaseic non-linear system and has concluded that the response of this 

system was less than the corresponding linear system. 

In order to determine whether a sonic boom will cause failure of 

glass windows the failure mechanisms of glass should be known. 

Kernhauser ( 16) has discussed the impact sensitivi.ty method to predict 

the structural failure due to elastic and plastic deformation. Parrot 

(26) in his experimental study on the failure of glass due to sonic 

booms has shown that the failure depended on many variables. such as 

the shape, size, edge restraints, age and imperfections. It is diffi

cult to evaluate the effects of all these variables separately. The 

fatigue of glass was experimentally studied by Baker and Preston (1). 

They concluded that there was considerable difference between metal 

fatigue and glass fatigue. In fact, according to them the endurance 

limit of glass was only a little less than the normal breaking stress. 

When the panel si•e and the load increase, the deflection is much 

greater than the thickness and the linear theory is no longer valid. 

6 

So a static and dynamic analysis of plates with large deflections have 

to be made, l<aiser (15) has discussed the reduction of the non-linear 

differential equations to a system of linear equations. He solved only 

for a particular case of a parameter and did not discuss in great detail 

the ~onvergence of the solution. Wans (39) continued the work of 

Kais$r and solved the system o.f linear equations using the relaxatic;,n 

and successive approximation methods. Herrmann and Chu (6) have 

studied the steady state vibration of large plates. They found that 
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the period decreased very rapidly with the amplitude of oscillation. 

Risley (9) has discussed the free and steady state forced vibrations of 

thin plates. He used the Galerkin procedure to solve the Von-Karman 

equations assuming a single mode representation" The response was 

similar to that of a simple oscillator with hard springs. 

The literature on the transient response of buildings subject to 

sonic boom input for general cases is scarce. The work done so far is 

mostly experimental. The theoretical work done on Helmholtz resonators 

explains the resonance effects in building enclosures but does not deal 

with the stresses in the flexible structures such as windows. Simpson 

(32) analyzed a simple Helmholtz resonator for transient loads and 

concluded that for dimensions smaller than the wave-length, the resona~ 

tor ¢ould be assumed as a lumped system. Reddy (30) analyzed the 

transient response of a coupled resonator. He was mainly interested in 

the p:i:-essure magnification. For a favorable. combination he obtained a 

magnification as high as 20. Whitehouse (40) found the response of a 

panel coupled to a resonator experimentally. He concluded that the 

total response could be represented by the fundamental mode contribu

tion. In all the above work only some particular acoustical systems 

were analyzed. They do not necessarily represent the critical cases, 

Further, the damping ratios used were arbitrary. Even though the 

deflection was much greater than the thickness, linear theory was used. 

It i$ therefore necessary to find the maximum upper bound for the 

stre$ses that can be attained by a window subject to a given sonic boom 

taking into account the damping, number of degrees of freedom, the 

non-linear and membrane effects. 



CHAPTER III 

MODELING 

The initial task in the analysis of a structure for static or 

dyna~ic loads is to reduce it to a form in which the desired results 

can be obtained with a reasonable amount of analytical work. This is 

necessary because the physical systems are too complicated (such as the 
' 

acoustical system with many rooms, interconnecting hallways and windows) 

to analyze mathematically. The complexity increases if the dynamic 

respcmse is required because it is a function of both time and space. 

Usually the mass, flexibility and energy dissipation of a physical 

system are distributed. Certain simplifications have to be made before 

a mathematical analysis is possible. The simplifications should not be 

such as to completely alter the characteristics of the system. The 

model should adequately represent the dynamic response of the structure 

for the particular load and at the same time the mathematical analysis 

should not be strenuous. rhis is the basic principle involved in 

modeling • 

. A vibrating panel has infinite degrees of freedom and its equation 

of mqtion is represented by a partial differential equation. The 

resulting resp.onse of the panel for any load is the sum of the contri-

butign of all the modes. In order to represent the panel as a discrete 

system the contribution of each mode to the particular problem should 

be known. Whitehouse (40) has shown that, for a simply supported panel 

8 
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subjscted to an N- wave excitation, the fundamental mode contributes to 

99.7'7~ of the displacement and 97% of the stress. This justifies, for 

engineering accuracy, that a panel can be adequately represented by its 

fundamental mode response. The equivalent mass, stiffness and damping 

ratio are found by equating the kinetic, potential and damping ener-

gies. The equivalent area df the model can be found assuming the same 

static deflection. 

Elements of the Model of a Panel 

Equivalent Mass 

For a simply supported panel which is uniformly loaded and 

vibrarting harmonically the deflection in the fundamental mode is given 

by (37), 

w(x,y) = w0 Sinrrx/a Sinny/b • f(t) 

where w0 is the deflection at the center. 

'The kinetic energy of the pane 1 is 

.2 2 
\ffiw = \ pw0 h 

• 2 
= \ m Wo 

4 

Sin2 I:!. Sin2 ~ dx dy 
a b 

(3-1) 

(3-2) 

(3-3) 

where ;(x,y) = the velocity at any point on the surface of the panel, 

and 

p = mass density of the panel 

ln order to have the same kinetic energy the model should have a 

mass 1meq which is one-fourth the mass of the panel. 



Equivalent Stiffness 

The equivalent stiffness is obtained from the potential energy. 

For a panel vibrating in its fundamental mode, 

Wo,, R r 
I I T'x ~ dx P.E. = JOJO JO q Sin - Sin dy dw (3-4) 

a b 

where q is the gradually applied pressure load. The load-deflection 

relation is linear for small deflections and w the deflection to a 

pressure q can be represented by 

q "'"kw ( 3-5) 

where k is the stiffness of the panel expressed as 

( 3-6) 

On substitution of this in the integral and integration between the 

prescribed limits yields, 

(3-7) 

The equivalent spring constant keq is obtained by equating the 

potential energies. This gives 

k eq 
(3-8) 

10 

With this k and m the natural frequency of the model is the same as eq eq 

the fundamental frequency of the panel. 

Equivalent Damping Ratio 

The incremental damping energy is given by 

dE = C w dw (3-9) 
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where C = damping factor . 
w = velocity and 

w = displacement 

For a simply-supported panel vibrating in its fundamental mode 

• 2 
E = C w0 T /4 (3-10) 

where T = period. 

The damping energies of the model and the panel are equated which 

yields 

ceq = C/4 (3-11) 

Equivalent Area 

It is assumed that the force in the single degree of freedom model 

is in the form of a uniform pressure acting on a certain area. This 

assumption is valid as far as sonic boom pressure loadings on the 

windows is concerned. The area can be found by preserving the static 

deflection. 

16 pa 4 b4 p • Aeq 4 a3 b3 

r-6 D (a2 -t b2)2 = ...,.4 D (a2 + b2)2 ( 3-12) 

A =~·A 
eq n2 

( 3-13) 

The panel has thus been replaced by a single degree of freedom system 

which has the same static deflection, natural frequency, kinetic, 

potential and damping energies as the fundamental mode of the panel. 

It is to be seen whether this model adequately represents the funda-

mental mode dynamic response of the panel for all loading conditions 
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espe¢ially the transient. 

The equation of motion for the single degree of freedom model is 

(3-14) 

Since the natural frequency is preserved, the equation (3-14) can be 

written as, 

• • 2 16 ( ) x +w :x;• -·pt •A 
'1""2m 

( 3-15) 

wher¢ A and m correspond to the panel. 

Comparison of Response of Panel and the Model 

The impulse response h(t) of a simply supported panel is given by 

1 
h( t) = Mrs Wrs Sin Wrst 

where Mrs= the generalized ma,ss in the rsth mode and 

wrs = the rsth natural frequency. 

(3-16) 

For any other input the response can be found from the convolution 

integral 

x (t) - h (t) * f (t) 
·F 

= j~ h (t - l) f (f) df 

or in terms of generalized displacements 

t b a 

qrs (t) = ~~~ f (W) hrs (t-W) ~rs (x,y) dx dy df 

(3-17) 

(3-18) 

wher~ ~ is the modal function. For a simply supporl:ed plate, the mode 

function is sinusoidal and q11 represents the center deflection. 



a. Panel. 

If the load consiats of a suddenly applied ~~,s~:.e 

f (t) • p0 t ~ 0 } 
""'0 t < 0 

The response in the fundamental mode is given by 

t b a 

qll(t) == 11jr Po ab. Sin wll (t-lf) 
o o o Muc.ou 

Sin~ Sin.!:!! dxdydW 
a b '!i' 

= 

b. Model. 

The equation of motion of the model for a step input is 

.. + 2 x w 16F x~-
mTT2 

The solution of this, obtained using Laplace Transform is 

16F ~ x (t) ~ ~ 1 - Cos 
TT m<.U 

which is exactly the same as that obtained for the plate. 

Impul.se 

The force is represented by 

F(t) = 5(t) • F 

The response of the plate from (3-18) is 

16F q11 ( t) • - 2- Sin wt 
mrr w 

(3 19) 

( 3-20) 

(3 .. 21) 

(3-22) 

(3-23) 

(3-24) 

(3-25) 

The solution of the equation of motion of the model for an impulse 
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input yields an identical result. 

It can be shown similarly that for a steady state sinusoidal load 

of F Sin ~t the solution for both the panel and the model is 

: Sin w~ ( 3-26) 

The response for a cycle of sine pulse can be found by superposing on 

the above result the response due to a negative force fort> T. 

Hence the model exactly represents the fundamental mode response 

of the panel for steady state or transient loads. The elements of the 

model are surmnarized in Table I. 

TABLE I 

ELEMENTS OF THE PANEL AND ITS MODEL 

Element 

Mass 

Stiffness 

Damping factor 

Damping ratio 

Area 

Natural frequency 

Panel 

m 

~60 (a2 "t b2)2 

16 a3 b3 

c 

ab 

Model 

m/4 

.,..,.40 (a2 "t b2)2 

4 a3 b3 

C/4 

T'"4D ( a z -r b 2 / 

m a3 b3 
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The Helmholtz Resonator 

Since it has been proved from several sonic boom tests that 

ordinary building structures behave as Helmholtz resonators, it is 

therefore possible to predict the response of mechano-acoustical 

networks to sonic boom type inputs, In general the sound field of a 

resonator can be represented only by the acoustic equation. This is a 

partial differential equation similar to the equation of motion of a 

continuous system. When the dimensions of the structure are small 

compared to the wave length the behavior of pressure pulse can be 

described by a lumped parameter approach. For small neck areas the 

compressibility of air can be neglected. Since in the case of sonic 

boom excitation the wave length is of the order of 300 to 400 feet, 

most of the rooms have dimensions much less than the wave length. The 

lumped parameter approach is valid in those cases. Essentially, the 

air in the neck behaves as a mass and air in the cavity as a spring. 

Mass 

The mass in the simple model will have the same mass as that of 

the air moving back and forth near the neck. To account for an addi

tional inertance in the neck, a correction factor has to be added to 

the length. 

Le = L -r l • 45 J A/rr 

where A is the area of the neck. 

Stiffness 

( 3-27) 

The stiffness of the model is the same as the stiffness of the 



A v 

p (t) 

j j 

Ce q 

Figure 1, Lumped Model of 
the Panel 

A eq 

m 

Figure 2. Helmholtz Resonator and lts Model 
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cavity. Since the changes take place suddenly, adiabatic expansion 

and compression are assumed. From the adiabatic pressure-volume 

relation 

(3-28) 

The spring constant which is defined as force per unit displacement 

is therefore given by, 

( 3-29) 

where c = speed of sound. 

The equation of motion of such a model will be 

p c2 A2 
p A Le 0x0 + x = p( t) • A (3-30) 

v 

where c J A represents the natural frequency of the system. 
VLe 

The pressure change inside the cavity is also maintained because 

the change in pressure is a linear function of the change in volume or, 

if the area is constant, change in displacement. 

Usually it is necessary to study the case of a panel coupled to a 

Helmholtz resonator because this represents a room with a window. The 

mathematical model will be a two degree of freedom system as shown in 

Figure 3. The elements of the model can be easily calculated from the 

foregoing analysis. 

From the adiabatic relation the pressure change in the cavity is 

proportional to the change in volume. 

Change in volume for the system is given by, 
b a 
n n 

dV = A1 X1 I I w0 Sin Tix S, TTy dx dy (3-31) - in -
Jo 0 o a b 
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Figure J. A Resonator with a Panel and Its Model 
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= Al xl - WO• 4 ab/rr2 

For the model, 

dV = At x1 - WO· 4 ab/rr2 

19 

( 3-32) 

(3-33) 

The pressure in the cavity is the same both in the system and the 

model because the volume changes are the same. 



CHAPTER IV 

DAMPING MECHANISMS IN MECHANO-ACOUSTICAL NETWORKS 

Every physical system possesses some forms of damping. The 

maximax response of such a system depends on the damping ratio. In the 

preceding chapter continuous systems were replaced by discrete systems 

but without the knowledge of the actual damping ratios the modeling is 

incomplete. 

Losses in a Helmholtz Resonator 

The loss mechanisms in a Helmholtz resonator can be classified as 

a. viscous losses 

b. radiation losses 

c. heat conduction losses and 

d. other losses such as mechanical wall vibrations and gaseous 

absorption due to thermal relaxation. 

Viscous Losses 

The viscous loss is due to the friction to the air flow in the 

neck. The flow of air in the neck can be assumed to be similar to the 

flow of fluids in a pipe. If the neck is not circular there will be 

additional losses due to the sharp corners. In order to calculate the 

viscous losses the velocity of air in the neck should be known. 

To find the damping ratio due to the boundary layer losses the 

20 
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flow over a plane surface is studied. Let the fluid above the plane 

(y = 0) be made to oscillate by a force F Coswt per unit vertical area. 

Because of the friction between the flJ;i,d and the surface the velocity 

at the surfaoe is zero and there is a thin boundary layer. (Figure 5) 

·- The equation of motion is obtained c·onsidering the fluid between 

the two layers y and y + dy. 

OU -,........ at ( 4-1) 

where f is the force per unit mass. This equation can be solved by 

assuming the velocity to be a harmonic function of time. The general 

solution is 

u ( y, t) • u 0 E i~ wt - e - J ~u • y Sin ( wt -V ~u • y J ( 4-2) 

where u0 is equal to f/w. 

For values of .!!!..... y >> 1, u(y,t) is very nearly equal to u0 Sinwt. 
2u 

Therefore when w D 
~ - >> 1 where Dis the diameter of the tube consid-
2u 2 

ered, it can be assumed that the plate is bent in the form of a tube 

with little error. 

The expression for the velocity can be obtained by replacing y by 

(R-y) in (4-2). Since u(y,t) is very nearly equal to u0 Sinwt every-

where, the root mean squared velocity u 
m 

is uo 
v2· 

Consider the shear force between two concentric cylinders 

(Figu:re 6), 

F=2TiyL'f 

where 'f is the shear stress. 

( 4-3) 
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The power with which the two adjacent layers move relative to each 

other is given by 

P = J 2 L y du du TTµ dy ( 4-4) 

The average power over a period of vibration is 

t R 
~ 1 ° r du 2 
P = T Jo dt Jo 2 n y µ L ( dy ) dy ( 4-5) 

It can be shown (31) that for the fluid making sinusoidal oscilla-

tions the damping factor C is given by, 

where 

c = P I 

The use of this relation after integrating (4-5) yields 

~ = ~. 
\} 2u 

When~ R >> 1 which is true for practical cases this reduces to 

C=2rrµ_LpR 

The corresponding damping ratio C is given by 

where f = natural frequency of the resonator 

A= area of the neck. 

Radiation Losses 

( 4-6) 

(4-7) 

( 4-8) 

( 4-9) 

Another source of loss near the neck is due to the energy lost by 

radiation to the atmosphere. This dissipative energy can be found by 

assuming the mass of air in the neck of the resonator to be a piston 
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vibrating in an infinite baffle. 'l'he acoustic impedance of such a 

piston is (2), 

£ = P0 c ~ _ J1(2ka)J + jTTpoc K (2ka) ( 4-10) u na2 ka 2k2n2a4 1 

where U = volume velQcity 

a= radius of the piston and 

k = the wave numbe.r w/ c 

The resistive com.ponent of the impedance which is responsible for 

the ~nergy loss is given by 

E. = ~ [i- Jt(2ka) J 
U ~a2 ka 

2ka 8 k3a3 32 k5a 5 
where J 1 ( 2lqi) = -· .- - --- -r ---

2 16 384 

( 4-11) 

+ -... - ( 4-12) 

Since k, the wave number, is less than 1 for low frequencies (as 

is the case for excitation by sonic boom) k5a5 and higher powers can 

be neglected. Then, 

( 4-13) 

Since the damping force is proportional to the velocity the 

resulting damping is of the viscous type. The damping force is given 

by 
2 

F = Pock A • U = Cdu 
2T'" 

where1 Cd is the damping factor. 

'rhis results in, 

f A 
Crad = ---2cL 

where Crad is the radiation damping ratio. 

( 4-14) 

( 4-15) 
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Heat Conduction Losses 

.According to Rayleigh (29), the heat conduction losses can be 

included in the expression for viscous losses by using a modified 

coefficient of viscosity. For air, this results in a damping ratio for 

heat conduction losses as 

Che= Q•265{u 
Af 

(4-16) 

The theoretical damping ratio of a Helmholtz resonator is there-

fore given by 

fA I~ m= 
'1iet = 2cL -t 0·5v Af + 0•265 v Af ( 4-17) 

Figure 7 shows the damping ratio of resonators as a function of 

frequency for different necks. 

Experimental Work on Helmholtz Resonators 

From (4-17) and Figure 7 it is clear that for small necks the 

viscous and heat conduction losses are important and for wide necks 

the radiation losses predominate. For a medium size neck both losses 

contribute almost equally. In order to have all these three types of 

necks, neck diameters of 1.22 11 , 2.9n and 6.5" were chosen. The resona-

tor had an internal diameter of 13\'1 and had a cylindrica 1 shape. Its 

height, hence the volume, could be changed by moving the wooden plugs 

which formed the bottom 0£ the resonator. The bottom was sealed well 

by placing an aluminum plate with Q ... ring between the wooden plugs. The 

resonator was excited by a few pulses of sine wave using a tone burst 

generator. This was used bec;ause the natural frequency and damping 

ratio were calculated using visual observation and thus the repetition 
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of the trace was necessary. The pressure oscillations inside the 

cav:i,ty were measured by a crystal microphone. The damping ratio was 

calculated using the standard log decrement technique. The block 

diagram of instrumentation is illustrated in Figure 8. 

Experimental Results 

27 

The logarithmic decrements of resonators with necks of diameter 

1.22" and 2.9" agree very well with the theoretical values for all 

lengths and volumes tested as indicated in Figures 9 and 10. The 

slight discrepancy can be attributed to the lack of accurate experimen

tal technique to measure the damping. An error of even 10% could be 

made in counting the number of cycles. The 1/d ratio of these necks 

were greater than or nearly equal to unity. 

The experimental data for a 6.5 11 diameter neck differ considerably 

from the theoretical values (Figure 11). The measured damping ratios 

are much less than the calculated values. The 1/d ratio of the necks 

tested were less than one. This means the end effects should have to 

be taken into account in the calculation of the damping ratio. Further 

the diameter of the neck was comparable to that of the resonator, the 

whole system behaved more like a pipe with a change in cross-section 

than a resonator with an orifice. 

The measured natural frequencies for all combinations of neck 

areas, neck lengths and cavity volumes agree very well with the calcu

lated values as shown in Figure 12. In general, the measured 

frequencies were less than the calculated undamped frequencies. 
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Othet Observations 

It was found that the damping was not linear whenever the input 

signal exceeded a certain limit. This limit was different for differ

ent combination of necks. The reason for this is when the input signal 

is increased the velocity of air in the neck is increased producing 

turbulence and jet effe~ts (34). The net result is an increase in the 

viscous damping ratio and hence the total damping ratio. The reason 

could be either that there is a critical velocity or a critical 

Reynold's number above which the damping becomes non-linear. 

From the response of the resonator for the pulse, the force at the 

neck can be found. The maximum velocity of air in the neck is F/mw 

where, 

F = Force 

m = Mass of air in the neck 

w = Natural frequency in rps 

A careful experiment was made on one combination of neck area, 

length, and cavity volume and the output signal above which the damping 

became non-linear was measured in terms of voltage. Assuming this 

value is theoretically correct, the critical voltage for all the other 

combinations of necks and cavities were calculated assuming (a) a 

constant critical Reynold's number and (b) a constant critical veloc

ity. The results are as shown in Figures 13 and 14. Even though the 

results are not highly conclusive it can be said that the non-linearity 

in the damping is due to the fact that the velocity of the air in the 

neck exceeding a certain critical velocity rather than the Reynold's 

number exceeding a critical value. Hence it is possible to find the 

damping ratio for a larger pressure input by using a non-linear damping 
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ratio which is a function of the velocity of the air in the neck. 

(4-18) 

o 1 ~ (v - v )n n. • er ( 4-19) 

The constant of proportionality and the index n can be found by a 

few accurate experimental results. But these values may differ consid-

erably from resonator to resonator. 

When the natural frequency of the resonator was about 130 cps a 

peculiar phenomena was observed. The trace in the oscilloscope clearly 

indicat;:ed pronounced beating. This beating was not due to the noise 

level in the room which is concentrated around 120 cps, because when 

the experiment was conducted outside the room which had the same noise 

level, no beats were observed. Further, in the same room the beats 

were found to depend upon the position of the resonator being predomi-

nate at quarter points and almost absent at the center of the room. 

This indicates that the standing waves in the room might have caused 

those beats. The frequency of the 202 mode for the room was 136 cps. 

Since the room was nearly square (16 1xl5 1 x9') it is quite likely that 

several modes have the frequency near 130 cps and the room responds 

strongly to the impressed sounds which are in the immediate vicinity 

of 130 cps. The continuous vortex shedding which causes the natural 

modes to break cannot be attributed to the beats because no pipe-tone 

was a:udib le (34). The experiment has therefore to be conducted in a 

room with a different size or in an anechoic chamber to determine 

whether the standing waves are really the cause of the beats. 
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Damping Mechanisms in the Panel 

The losses in the panel are due to 

1. acoustic radiatiQn damping 

2. structural damping 

3. other losses such as joint friction damping and support 

damping. 

Acoustic Radiation Damping 

'The acoustic damping results fro~ the reaction forces of the 

surrounding fluid on the radiating surfaces of a structure as energy is 

transferred from the radiator into the fluid. (20) 

From (4-13) the resistive component of the acoustic impedance of a 

vibrating piston in an infinite baffle is 

For a uniform damping pressure, 

b a 

u (x,y) dx dy 

( 4-20) 

(4-21) 

The velocity can be expressed in terms of the generalized coordinate q 

. 
q IP (x,y) dx dy ( 4-22) 

where: Ii is the panel mode function. 

The damping force c.an t;,e obtained by integrating over the area of the 

panel which results in a damping factor 

2 
p0 ck 

c =---
2n ~~~ 0 (x,y) dx dy~ 

2 

(4-23) 
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'The c.orresponding damping ratio is, 

b a 2 

{ r .r 
Jo Jo 

I (~,y) dx dy } 
PoW 

C=-4Ticm b a 
( 4-24) 

,... n 
gi2 (x,y) dx dy J ;I 

Jo Jo 

where mis the mass of the panel per unit area. 

Once the modal function is known the contribution of the various 

modes to the damping ratio can be obtained from (4-24). For a simply 

supported panel vibrating in its fundamental mode C is given by, 

where p0 = density (mass/volume) of surrounding fluid and 

Pm= density (mass/volume) of the panel material. 

For glass panels vibrating in air this reduces to 

1 
'• 0•004618 (N "t' N) 

where N is the panel aspect ratio. 

( 4-25) 

( 4-26) 

This theory predicts that for a given panel the damping ratio is a 

function only of the density of the panel and of the surrounding medium 

and not of the thickness. The damping ratio of glass panels for 

various a/b ratios is plotted in Figure 15. The square panel has the 

least. damping, 

Structural Damping 

The behavior of elastic bodies subjected to stress is generally 

assumed to be ideal. The deflection of the panel is proportional to 
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the ~pplied load and when the load is removed the panel returns to its 

original position. But in practical situations this is not true 

because of the internal friction of the material. If the material is 

loaded over a cycle, the resulting load-deflection diagram will be as 

shown in Figure 16 instead of the linear relation for an ideal case. 

The area of the hysteresis loop represents the amount of internal fric

tion or energy dissipated over a cycle of loading. For a vibrating 

body this represents the energy dissipated per cycle. The shape of the 

hysteresis loop depends on the loading and the material. In general 

the dissipated energy can be written as 

D = k a n ( 4-27) 

where k = constant of proportionality 

cr = the stress. 

Only for the ca!;ie of n = 2, is the damping linear and the response 

equations are therefore linear. For other values of n, to reduce the 

non-linear equations to linear equations, an equivalent viscous damping 

ratio has to be found keeping the damping energies the same, 

It is rather difficult to measure the material damping of plate 

glass. Orloski (25) measured the decay rate of a vibrating Pyrex rod 

and arrived at a material damping ratio of 0.026. This can be taken 

as the representative figure for the plate glass as the damping 

mechanism is the same in both the cases. 

System DarnpinS 

This involves the energy dissipated in various types of joints, 

interfaces or fasteners. The complexity of these increases due to the 

fact that the operating mechanism is coulomb friction. Therefore for 
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the damping ratio of plate glass panels it is necessary to rely on the 

experimental values. 

Orloski (25) measured the damping ratios of several plate glass 

windows in the downtown stores of Stillwater. The panel was excited 

manually and the oscillations were picked up by a sensitive microphone 

and recorded using a pen~recorder. The damping ratio was obtained 

using the logarithmic decrement. He obtained a range of values from 

0.01-0.05 for the damping ratio. The contribution to the damping by 

radiation damping is only a fraction of the total damping. The main 

damping mechanisms are the structural and joint friction damping. 

A representative figure of 0.03 can be taken for the regular size plate 

glas$ windows. 

~nowing the damping ratios at the neck and in the panel the 

acoustic system is completely represented by its mathematical analog. 



The transient response of such mathematical models is studied in the 

following chapters. 
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CHAPTER V 

TRANSIENT RESPONSE OF MULTI-DEGREE OF FREEDOM SYSTEMS 

The methods outlined in Chapter III on 11 Modeling1' can be used to 

reduce any complicated physical system to an appropriate discrete 

system depending on the nature of the problem. The discrete system is 

represented by a number of second order ordinary simultaneous differ~ 

ential equations usually equal to the number of degrees of freedom. 

The response of the physical systems can be predicted from the results 

of the response analysis of single and multi-degree of freedom systems. 

Undamped cases are initially studied so as not to lose the impor·

tance of various parameters in the total response. It is well known 

that for a single degree of freedom system for a steady sinusoidal load 

the amplitude approaches infinity when the frequency of excitation 

equals the natural frequency. But it can be shown that the maximax 

response for a cycle of sine pulse is finite and is equal ton. In 

fact this maximax response is a function of the number of cycles of 

loading and approaches infinity for the steady sinusoidal load. But 

for a sonic boom type of loading only one cycle of sine pulse need be 

analyzed. For an N-wave (Figure 17) excitation this maximax response 

can be shown to be less than TI and equal to 2.16. (32) This is because 

an N-wave contains less impulse than the sine pulse of the same 

maximum amplitude. 
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Some acoustical systems can be represented as single degree of 

freedom systems, In all these cases the maximax response never exceeds 

2.16 for sonic boom input. In fact the response will be less because 

of the inherent damping in the system as indicated in Chapter IV. 

Most of the acoustical networks are not that simple. Even a room 

with a window and open door constitutes a two degree of freedom system. 

The hallways and various rooms in a structure give rise to additional 

degrees of freedom. 

Transient Response of a Two Degree of Freedom System 

In the case of a single degree of freedom system it is rather 

simple to express the maximax response as there is only one variable, 

the displacement, once the system natural frequency is fixed. But with 

two degrees of freedom the method is not as simple since the number of 

factors involved is greater, such as the uncoupled frequencies, 

coupled frequencies and coupling frequency. A general analysis is 

therefore not possible. The response can be found only for some par

ticular cases. Further the response analysis has to be carried out for 

different loading conditions because the masses can be loaded accord

ing to the mode shapes or a combination of them. 

Semi-Definite System 

Figure 18 represents a two degree of freedom semi-definite 

system. A room with two opposite doors open corresponds to this sys

tem. The first mode gives zero change in volume and hence zero 

pressure magnification. It can be shown that for equal and opposite 

sinusoidal pulses on the masses the maximax response is always less 
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The equations of motion cf tne >ll't-O"J'te i:ty3tam "~~n be ;o ~ 1e1 1.n..i.""S .. he 

Laplace transform. The solution in the complell' jw plane for fcrces 

F 1(t) and Flt) on the masses is given by, 

F1(s) [s2 + p 22 (1 + F2/F1~ 

ml (s2 + P+2> (s2 + P~2> 

F2( s) [s·2 + P2/ (1 + F1/F2) ·+Pl~ 

m2 (s2 + P+2) (s2 + p_2) 

where F1(s) and F2(s) • the corresponding transfo~ms 

Pl 

P+ 

and P2 

and p_ 

• uncoupled natu~al frequencies 

• coupled natural frequencies and 

• coupling frequency 

(5-2) 

Once F1(s) and F2(s) are known the expressions for x1(s) and x2(s) 

can be reduced to partial fractions and retransfo-rmed to give a closed 

form solution. The response at any value of time is obtained using 

the computer. Table II gives the maximax response of a two degree of 

freedom cantilever system with identical masses and springs for an 

impulse and a step input. XXl and XX2 are the non-dimensionalized 

responses, that is 

(5-3) 



Figure 19. A Two Degree of Freedom Cantilever 
System 

TABLE II 

MAXIMAX RESPONSE OF A TWO DEGREE OF FREEDOM 
SYSTEM FOR lMPULSE AND STEP INPUT 

Loads Accord- Pulse Shape XXl 
ing to 

First mode Impulse 2.20 

Second mode Impulse 0.95 

First mode Step input 3.95 

Second mode Step input 1.62 

XX2 

1.54 

o.so 

3.06 

0.97 

The maximax response for a sinusoidal pulse as analyzed by the 
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Laplace transformation method is not included in Table II. The reason 

for this is the sinusoidal pulse has a frequency term associated with 

it. When the forcing function frequency equals one of the two natural 



exprassior. for maxim.ax response go t'l zerc,, '!!:"e:, thougl'l .:he :n::.ut.i..;n 

obt,ained by Laplace transfor~t:ioh is in cloSied fa1,"m~ -:c ,ev,,:•.•.&':.e the 

expreuion, increments of time have to be taken and thus the use of a 

computer is necessary. Due to the rounding oft errorR in ':he neighbcr-

hood of the crit:l.ca1 frequency, maxiroax r·esponse as high as 100 were 

obtained which was definitely incorrect. The limit of the .expression 

for the maximax response when the excitation frequency and the natural 

frequency aJ:"e the same is found by using L1Hospital•s rule. The 

response for sinusoidal loads can be found from (5-1) by substituting 

the corresponding values for F1(s) and F2(s). 

XXl(t) • p12[A Sinwt +~Sin P+t + Cw Sin p_t:J for t<T 
. P+ p_ 

(5-5) 

XXl( b) • P/[A { Sinwt "' Sinw(t-T) } + !!! { Siri P+t - Sin P+ ( t-1')} 
P+ 

+;: { Sin p_t - Sin p_ (t-,t] for t>T -
where 'I"= the period of the pulse 

A• .. 

- P22 (1 + F2/Fl)} { (1 + F2/Fl)p22 

+ 
_ p./) {P+2 _ p_ 2) (w2 _ p_ 2) (P+2 

C • P22 (1 + F2/Fl) - p_2 

<P+2 _ P_2) (w2 .. P_2) 

(5-6) 

From the resul~s on the two degree of freedom system for rectangu-

lar pulse the maximum occurs at the end of the forced era or in the 
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residual era. The maximum of {5-6) will occur whe~ the forcing function 

frequency equals one of the two natural frequenciesp say P-o Under this 

condition the re$ponse can be written a~ 

(5-7) 

because the contribution by the first term in (5-6) is zero. The con-

tribution by the third term is found by substituting the value for the 

constant C and letting w ~ p_. This results in, 

(XXl) = J:.t 
· Cmax ex -t 1 

2 [c1 + F2) P+2 .. P12J a Sin 'It Cl · Fl . · · -- (5-8) 

(1 - ci) (p+ 2 - P..2) 

[ · F2 2 2] = TT ( l + Fl ) P+· .. Pt 
(5-9) 

Cp+2 _ p_2) 

The contribution to the respc;mse by the second term is very small 

compared to (5-9) and hence can be ignored. Similarly, if the e:>ccita-

tion frequency w equals P+ the maximax response wiU be 

XX:1 = TT G12 - p_ 2 ( 1 + F2/Flij -max .. 
(p+2 _ p_2) 

,·~·· (5-10) 

Table r1t gives the maximax response of a two degree of freedom 

cantilever system with identical sprin,gs and maues for sinusoidal 

pulse. 

the above method of taking the limit as the excitation frequency 

equaL:s one of the natural frequencies gives only the maximax response. 

To get the response a~ a function of time the two differential equa-

tions of motion were integrated numerically using Runge~Kutta-Adams-

Moulton method. The response curves for the two different loading 
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case$ are plotted in Figures 20 and 21. It is seen that the maxim.ax 

response obtained using L1Hospital 1 s rule agrees very well with the 

values calculated using numerical integration. 

Fl F2 

1 1 

1 -1 

1 0 

0 1 

TABLE III 

MAXIMAX RESPONSE OF A TWO DEGREE OF FREEDOM 
SYSTEM FOR SINUSOIDAL PULSE 

Theoretical Maximax Theoret ica 1 
XXl XX2 

111=p_ w = P+ w = p_ 

6.05 0.31 4.80 

1.59 1.40 1.20 

3.54 0.87 1.84 

3.67 o.s2 2.84 

Maxim.ax 

w .. P+ 

0.10 

0.45 

0.27 

0.70 

From these results it is clear that the maximax response of a two 

degree of freedom system is essentially a function of the difference in 

the natural frequencies of the system. The maxim.ax approaches infinity 

as pT approaches p_. Since in no physical system can this happen the 

maxi®lx transient response of a two degree of freedom system is 

bounded. This again can be expected because the transient response of 

a single degree of freedom system is bounded. It can also be seen that 

the response is most severe when the loads are acting according to the 

first mode configuration. This is true for all pulse shapes. 
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Two Mass Three Springs System 

.A two degree of freedom synunetrical system in shown in Figure 22. 

Using identically the same method outlined in the previous section 

the expression for the maximax response for sinusoidal pulse is found 

as, 

where 

s11 = k2 + k3 + k2 k3/k1 

k2 'T k3 

(5-11) 

The maximax response for a system with identical masses and springs 

will be 5.14 when the loads are acting according to the first mode 

configuration which agrees with the value calculated using numerical 

integration. The response is less than that of a two degree of freedom 

cantilever system. 

Three Degree of Freedom System 

As mentioned earlier the complexity of analysis increases consid-

erably with the number of degrees of freedom because of the many 

variables involved. An identical technique is used to find the maximax 

response for sinusoidal pulse. 

The maximax response for sinusoidal pulse is given by, 

r 2 2 F2 F3 2 2 2 2 2] 
TT LPb Pc ( 1 + Fl "t F 1) - s 1 P 1 - Pa P 1 7 Pc P 1 . 

}0¢1 = max 

(5-12) 

where F1 , F2 , F3 • maximum amplitude of the loads 
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P1' P2, P3 = uncoupled natural frequencies 

Pa, Pb, Pc = coupled frequencies 

=pi 
2 F2 2 

sl ,- P2 ( l ,- Fl) + P32 

- p 2 P/ 
F2 F3 

s2 (l+-1--) 
2 Fl Fl 

P32, P31 = coupling frequencies 

As in the two degree of freedom system it is found that the 

transient maximax response of a three degree of freedom system is 

limited only by the differences of the squares of the natural frequen-

cies taken two at a time, Since in general the three natural frequen-

cies are different the maximax response is limited. Figures 24 and 25 

give the response curves for two different loading conditions. The 

values of maxima~ response 8.85 and 2.34 agree well with the values 

calculated using L•Hospital•s rule. Once again the response is most 

severe when the loads are act:i,.ng according to the first mode configura-

tion. 

Infinite Degrees of Freedom System 

As seen before, the complexity of the problem increases with the 

number of degrees of freedom. But when the number of masses is really 

large, the system can be considered to be an infinite degree of freedom 

syst~m. The system therefore approaches the longitudinal vibrations of 

a rod which can be represented by a 1;1ingle linear partial differential 

equation, 

The equation of motion for the longitudinal vibrations of a rod is 
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Figure 26. Infinite Degree of Freedom System 

2 o2u E o u 1 
- = - - - f (x,t) 
ot2 µ ox2 Aµ 

whereµ= mass density of the material of the bar. 
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( 5-13) 

The natural frequencies can be obtained by letting f(x,t) = 0 and 

solving the corresponding linear equation. For a bar of length 1 

built-in at one end and free at the other, the natural frequencies are 

given by, 

where QI= IT 
ij}l 

The solution to the equation of motion can be written as (37), 

ex> mr-x 
u (x,t) = E qm(t) Sin-

m=l,3,5--- 21 

where~= the generalized co-ordinate. 

( 5-14) 

( 5-15) 

The expression for~ can be obtained using the principle of virtual 

work., 

(m-1)/2 
~ = (-1) 

t 
r F(~) Sin IIrOI (t-T)dT 

j~ I 21 

where F(T) is the forcing function applied at the free end. 

( 5-16) 
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Respqnse for a Step Input at x = L 

For a step input 

F(~) = F0 fort> 0 < 5 .. 17) 

The solution for u(x,t) is obtained by substituting (5-17) in 

(5-16) and performing the indicatl!d integration. 

00 
u(x,t) = E 

m=l,3,5---

(m-1)/2 
(-1) 

The maximum displacement occurs at x = L. 

oo (m-1)/2 
u(L,t) = E (-1) 

IJF"l,3,5---

When t • 2ai, 

( L t) = 16F0 L r 1 = 2F0 L 
\1 ' max · :i' 

AErr2 1,3 ,5--m AE 

C mna,J os-
21 

Sin mrrx 
21 

(5 .. 18) 

(5-20) 

The maximax response for a step input is therefore 2 .o which is the 

same as for a single degree of freedom system. 

Sinusoidal Load at x = L 

The non .. dimensional maximax response at x = L for a sinusoidal 

load can be found similarly. The expression for the response is, 

(·. t) co BU%n ~(.I)') inWm.t .. Ums inw~· 
UL, = E - . 

IF1,3,5--n2m2 . (w2 -Wrn2> 
(5-21) 

The response for a cycle of sinusoidal pulse qm be obtained by the 

principle of superposition as, 



U(L,t) ~{s1n<l\nt - SiT1Wm(t-,l} -

Wm{Sinwt - Sinw(t-T) }] 

This reduces to the form given in (5-23) because W'l" = 2TI. 
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(5 ... 22) 

(5-23) 

The maximum of (5-23) will occur when each of the terms in the series 

is a maximum. It is evident that a 11 the terms cannot satisfy this 

condition because in no physical system can all the natural frequencies 

be the same. The upper bound of response can be found by assuming that 

all the natural frequencies have the same value. The response for this 

hypothetical case is 

umax<L,t) • TT ( 5-24) 

Therefore the response of an infinite degree of freedom system for 

a cycle of sinusoidal pulse at the free end can never exceed~ which is 

also the maximax for a single degree of freedom system. 

The above analysis was carried out for a load at the free end only. 

If there are additional load points which are not too close to the 

fixed end the maximax can be found by using the influence coefficients. 

The response for a number of load points is, 

r, n-1 n-2 J 
U •TT~ T---;-- +--;-- T "'"'"' 

where n is the number of degrees of freedom. 

(5-25) 

For example, the maximax response for a simultaneous sinusoidal pulse 

at the free end and at x = L/2 will be 3TT/2. 
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Single Degree of Freedom Non-Linear System 

In the previous analysis the springs were assumed to be perfectly 

elastic and the response was obtained analytically and numerically. 

In actual systems the springs may exhibit a non-linear hard spring type 

load - deflection relationship. The equation of motion of a single 

degree of freedom hard spring system is 

• • 2 
x T Wn x + ex3 = F(t) ( 5-26) 

where e is the non-linearity coefficient. 

This equation was solved for an N-wave for zero initial conditions. 

Figure 27 shows the maximax response for different values of e. 

It is seen that the maximax response reduces with increase in the 

non-linearity coefficient. 
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CHAPTER VI 

RESPONSE OF MECHANQ.ACOUSTICAL NETWORKS 

TO TRANSIENT EXCITATION 

In Chapter V, the transient: response of several mechanical systems 

were discussed. In this chapter the response of acoustical networks 

represented by those models will be studied. Damping will be included 

because the systems to be treated here are realistic. The pressure 

magnifications in the cavities and the stress magnifications in the 

panels will be found for various types of buildings. 

Stress and Strain in the Panel in Terms of Displacement 

The panel is assumed to vibrate in its fundamental mode. Then, 

w = w0 Sin nx/a Sin ny/b (6-1) 

If a> b, the maximum stresses at the center of the panel is (37), 

where D = flexural rigidity of the panel 

h = thickness and 

u = Poisson's ratio 

The corresponding maximum strain will be 

e max 
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( 6-2) 

( 6-3) 
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It was found in Chapter V that the response for a single degree of 

freedom system for a sonic boom load never exceeded 2.16. Hence 

mechano-acoustical systems which can be represented as single degree of 

freedom systems (Figure 28) are not critical to sonic boom. 

Systems Having Two Degrees of Freedom 

In the single degree of freedom system the maximum transient 

response is bounded. In a two degree of freedom system the maximax 

response is controlled by the natural frequencies of the system. 

Consequently higher pressure and stress magnifications can be expected 

in acoustical networks which are represented as multi degree of freedom 

systems. Figure 29 shows such types of systems. When a supersonic 

aircraft passes over the types of buildings represented in Figure 29 

three different loading conditions are possible (Figure 30). 

The expression for the maximax response of a two degree of freedom 

cantilever system for equal and opposite sinusoidal pulse on the masses 

is (5-10), 

np/ 
XX.l =------

(p· 2 _ p 2) 
-r -

( 6-4) 

For a given neck area, neck length, panel size the ma~imax response is 

plotted as a function of the cavity volume as shown in Figure 31. It 

has s maximum value of 10.23. 

The expression for the maximax response of a two mass three spring 

system from (5-11) is, 

XX.l = TI(pl2 - P12P22/P-i-2) 

( p:.,-2 - p - 2) 

( 6-5) 



A v v 

Figure 28. Networks Which Can Be Represented as Single 
Degree of Freedom Mechanical Systems 

A 

Figures 32 and 33 indicate this response as a function of the cavity 

volume for two different loading conditions. It is seen that the 

maximax response for a sonic boom type loading is always less than II 
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and approaches this value when the volume is very large. Therefore for 

a large cavity volume the stiffness of the center spring is almost z~ro 

and the system degenerates into two separate single degree of freedom 

systems whose maximax response is rr. (Figure 34) 

From (6-4) and (6-5) it can be repeated again that closer the 

natural frequencies are, greater is the response. The frequencies will 

be closer if the mass ratio is large. Of the systems shown in 

Figute 29, (a), (b) and (d) have mass ratios unity or not much differ-

ent from unity. Their natural frequencies are therefore farther apart. 

Systems (c) and (e) can have a large mass ratio because the density of 

air is much smaller compared to the density of the glass and hence the 
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Figure 29. Networks Which Can Be Represented as '.['wo 
Degree of Freedom Mechanical Systems 
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maximum response will occur in these. A room with an opening and a 

window is used to study the critical configuration of an acoustical 

network later in this chapter. 

A Representative Analysis 

So far only sinusoidal loads were considered. This was because it 

was rather easier to analyze for a very general case. For an N-wave 

excitation an actual system is analyzed using numerical integration. 

The system and its model are shown in Figure 35. 

The equations of motton for the model are, 

. 
m1x1 ~ C1x1 + k 1x1 ~ k2(~1 - x2) = F1(t) 

where m2 m mass of air in the neck 

m1 = equivalent mass of the window 

k2 , 1 = stiffnesses of cavity and panel respectively 

Cz = damping constant at neck 

Cl= damping constant of the panel 

Le= the equivalent length 

Damping Constants 

( 6-6) 

( 6-7) 

The damping constants c1 and C2 will be found from the theory 

developed in Chapter IV. c2 corresponds to the losses in the neck. 

The effective radius of the neck is 3.16'. The neck is so wide that 

the viscous losses are very small and hence can be neglected. The 

radiation damping ratio is found to be 0.02. c1 corresponds to the 

loss mechanisms in the panel. A representative figure of 0.05 is taken 
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for the damping ratio. 

The two equations are solved by numerical integration for equal 

and opposite N-wave on the masses. The maximum stress in the panel can 

be calculated from the center deflection. When the period of the 

N-wave was close to the highest natural period of the system a maximum 

stress of 841 psi for 1 psf boom is obtained for the undamped case. 

The corresponding stress for the damped system is 460 psi. An over-

pressure of 2.5 is expected for the commercial supersonic transport. 

This will develop a stress of 2102 psi in the window. Taking a factor 

of safety of 2.5 (p. 80), the maximum stress in the panel is 5255 psi. 

This configuration is not critical because the nominal breaking stress 

of plate glass is 6000 psi. 

Comparison of the Experimental Results Obtained 
from NASA with Theory 

Several sonic boom tests were conducted by NASA during the summer 

of 1966, over two test houses E-1 and E-2 (35) at Edwards Air Force 

Base. The pressure loadings on the window in the garage of test house 

E-1, for three different flights, F-104, XB-70, and B-58 are available. 

The plan of the garage and the corresponding mathematical model are 

shown in Figure 36. 

The door in the garage is assumed to be closed because throughout 

the discussion in the report by the NASA only single degree of freedom 

system is mentioned. The equation of motion will be, 

. 
mx +(Cl+ C2)x T (kl+ k2)x = F(t) (6-8) 

c1 and c2 are obtained from the representative analysis. The pressure 

loadings and their straight line approximations are given in Figure 37. 
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The equation of motion is solved numerically and the corresponding ex 

calculated for each case. Table IV gives the estimated and measured 

strains for the three different flights. 

Flight 

XB-70 

B-58 

F-104 

TABLE IV 

MEASURED AND CALCULATED STRAINS 
FOR THE NASA GARAGE WINDOW 

Measured Strain Calculated Strain 
µin/in µin/in 

16.0 24.3 

23.0 26.1 

16.0 28.0 
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It i~ seen that even though th~ calculate..i st:::-;i.::..ns are slightly in 

excess of the measured strains, tn no case the strains exceed even~ 

fraction of the damage limi!: for glass. Sinr_e ::-he ove::.;~>:essure was 

rather sma!.l in these three c~ses (only 1.2 psf), the ftrair. leve1s are 

insignificant, probably equiv1uent to a $light tapping of the 

window. 

The discrepancy between the measured and calculated strains can be 

explained. Although there will be $Orne error due to the straight line 

approximation, the main source of error mu!,it be in the damping ratio. 

The window is mounted in a flexible support which moved with the window 

when it vibrated. This contributes considerably to the damping for 

which no account is made. Also the flexible ceiling and various tiny 

leaks in the garage might add up to the total loss. The actual damping 

ratio could not be measured from the response trace of the strain gage 

because it is available only for a couple of cycles. In any case 

theoretical values are not far from the measured ones and can be 

considered to be an upper limit of response. 

The strain gage readings for hundreds of other flights for the 

windows in test houses E-1 and E-2 are recorded by NASA. But the 

corresponding pressure loadings are not known. The strains calculated 

using the pressure readings from the cruciform microphone array (35) 

are almost twice as great as the measured $trains. This is because 

the windows are located on the sides of the buildings and therefore are 

not directly under the flight path. A suitable fact.or has to be used 

to find the pressure signature near the windows. The maximum strain 

measured is 37.06 µ in/in which corresponds to 600 psi thus emphasizing 

that the stress level reached is much lower than the working stress of 
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glass. If the door was open, slightly higher strains would have been 

recorded because the system then becomes a two-degree of freedom system 

whose response is generally greater than 2.16 depending on the system 

natural frequencies. As explained before the maximax response for a 

two degree of freedom system will be greater when the two natural 

frequencies are closer. This means that the mass ratio should be very 

large. In the following section several two degree of freedom systems 

where the panel stress exceeds the working stress of glass are found. 

Critical Acoustical Systems 

In a single degree of freedom system the maximax response to 

N-wave excitation is limited to 2.16. This corresponds to an equiva

lent design static load of (2.16x2.5x2.5) 13.50 psf for a 2.5 psf boom. 

This is much less than the design wind load (30 psf). Therefore fail

ure of the glass panels cannot be expected in such acoustical systems 

which can be represented as single degree of freedom mechanical 

systems. In a multi-degree of freedom system the response can take 

any value depending on the natural frequencies. In Chapter V it was 

shown that the ma.ximax response of a multi-degree of freedom system is 

not a function of the number of degrees of freedom but only of the 

natural frequencies. In order to find a representative system which 

has the worst response any multi-degree of freedom system with at 

least two of its natural frequencies nearly the same can be studied. 

Since a system having two degrees of freedom is the easiest one to 

analyze for a general case, the critical two degree of freedom practi· 

cal system will be found. 

Again, even in two degree of freedom system it is difficult to 



78 

analyze for N-wave in general. The practical acoustical systems which 

have the greatest response for sinusoidal pulse can be found from the 

expressions developed in Chapter V. Once a critical system for 

sinusoidal pulse is obtained, the system for N-wave is obtained by 

slightly modifying the parameters. 

In a two degree of freedom system with a cycle of equal and 

opposite sinusoidal pulse on the masses the expression for the maximax 

response is, 

(p,..2 - p_2) 

This will be large if IP,-2 - p_ 2 1 is small and p 2 . 1 large. 

( 6-9) 

Table V gives the critical configurations of several mechano-

acoustical systems and the damped and undamped stresses in the window 

for a sonic boom load of 1 psf. It is found that for a window of 

size 10 'x8 r x\11 the damped stress is 1400 psi for a 1 psf boom. This 

corresponds to a magnification factor of 7 .O and the equivalent desi.gn 

static load on the window will be (7.0 x 2.5 x 2.5) 43.8 psf. So a 

window designed for a design wind load of 30 psf is likely to fail to 

a sonic boom of 2.5 psf if the components are properly tuned. Greater 

magnification ratio than 7.0 can be obtained by reducing the neck area 

and increasing the window size but these will be only of theoretical 

interest because all the practical sizes have been considered in 

Table V. 

It is thus found that a properly tuned acoustical system which 

consists of a door opening and a window is critical for a 2.5 psf boom. 

The equivalent design static load in this case can be as large as 

44 psf. For a room with two windows (identical windows or not) the 
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TABLE V 

MAXIMUM STRESSES IN PANELS 
FOR A 1 PSF BOOM 

Neck Neck Volume Maximum Stress psi 
nf Panel Size Length Area T 

Ft. Ft. 2 C.Ft. Undamped Damped* 

3.07 15•xl5•xl/2" 1.0 10 10000 892 642 0.28 

3.74 15 1 xl0 1 x3/8" 1.0 10 8000 1150 842 0.24 

3.52 14 1 xl4 1 xl/2" 1.0 10 8000 855 608 0 26 

4.08 13 'xl3 'xl/2" 1.0 10 6000 789 569 0.22 

3.60 12•xl2•x3/8" 1.0 10 8000 1170 869 0.24 

4.38 12 'xlO 'x3 /8 1' 1.0 10 4000 775 570 0.20 

4.87 12 1x8 x5/16 11 1.0 10 4000 1210 912 0. 18 

4.31 10 'xlO 'x5/16" 1.0 10 6000 1250 1000 0 .. 20 

3.50 10 , x 1 o , x 1 I 4" 1.0 10 8000 1540 1200 0.24 

5.52 10,x8 1 x5/16" 1.0 10 4000 1200 980 0,16 

4.4 10•x8·xl/4" 1.0 14 9000 1720 1400 0.20 

5.4 8 'x8 'xl/4" 1 0 10 4000 U30 1130 0 16 

6.2 8 1 x7 1 xl/411 1.0 18 9000 1380 lb5 0.14 

7.18 6'x6'x3/16" 1.0 10 2000 1310 1150 0.12 

10.4 5•x5 1 x3/1.6" 1.0 10 2000 1140 1050 0 .10 

*2"/o at the door opening, 4% at the pane 1. 
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equivalent design static load never exceeds 30 psf for a 2.5 psf boom. 

It does not necessarily mean that no failure will occur in such systems 

because the fatigue effect on glass has not been taken into account. 

Failure of Glass 

Glass is a brittle material and failure occurs abruptly without 

yield or permanent deformation. Failure is usually due to the tensile 

component of the stress exceeding the ultimate strength of the glass. 

Glass is much stronger in compression than in tension. The variation 

of breaking stresses in specimens of glass is much greater than for 

metals. It is because the fractures of glass generally originate in 

small imperfections or flaws the large majority of which are found on 

the surface, Any bruise or accidental contact with any hard body will 

produce on the surface of glass very small cracks which may be invisi

ble even under a microscope. But these micro-cracks act as stress 

raisers and the stress concentration factor can be as high as 100. In 

the case of metals because of their ductility the material near these 

point of concentration yields, thus alleviating the increased stress. 

But in glass there is no such re lief in stress. This is the reason 

why there is so much variation in the breaking stress of glass. A 

factor of safety has to be included in estimating the design load. 

A factor of 2.5 is reconnnended for all window glasses (26) and this 

reduces the probability of failure to less than li •• 

Little work has been done on the fatigue of glass. This effect 

will be more important when a supersonic aircraft flies over an area 

every half hour, which might happen in a few years. The preliminary 

work available on the fatigue of glass indicates that it is entirely 
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different from that of the metals. There is little difference in the 

stress-time curves of glass under static loading and cyclic loading 

with complete stress reversal, if the maximum stress and time duration 

are the same (1). This might indicate that for a short period loading 

such as the sonic boom, fatigue effect is not much pronounced. But 

further work is necessary to precisely determine the effect of fatigue. 



CHAPTER VII 

NON-LINEAR IARGE DEFLECTION THEORY OF PIATES 

In the preceding chapters the deflections and the stresses of the 

panel were found using the linear small deflection theory. This theory 

is valid strictly for deflections in the range (37), 

0 < w/h ~ 0.6 

where w = deflection at the center and 

h = thickness of the panel 

For example, a simply supported panel of size 5'x5'xk" has a 

central deflection of 0.105" for a 4 psf static load. This corresponds 

to a w/h ratio of 0.42 and is within the above mentioned limits. Hence 

linear theory is valid for this case. But now consider a dynamic load, 

say an N-wave. The maximax response of the model of the panel will be 

2.16 and the center deflection for a 4 psf boom will be 0.227". This 

corresponds to a w/h ratio of 0.90 and hence non~linear theory has to 

be used. Even the non-linear theory has certain restrictions. For 

w/h >> 1, membrane theory has to be used. Table VI shows the stress 

conditions in plates with small, large and very large deflections. 

In the first section of this chapter static analysis of plates 

with large delection is carried out. In the second section an approxi

mate dynamic analysis is made using only the fundamental mode contribu-

tion. 
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TABLE VI 

LATERAL STRESSES IN PLATES 

Small Deflection Large Deflection Membrane 
Theory Theory Theory 

Stress condition Bending Bending and Membrane 
membrane 

Va lid range O<w/h~ 0.6 0.6<w/h< 4 w/h >> 1 

Static Analysis of Plates with Large Deflections 

The equations of bending of a plate when stretching of the middle 

plane is taken into account can be found in any advanced text on Theory 

of Elasticity (37). These are the so-called Von Karman large deflec-

tion plate equations and consist of a system of two fourth order non-

linear partial differential equations. (7-1 and 7-2) 

( 7-1) 

h ~ a2• 
o2w o2F o2w o2F a2w J 94w = - T --2 • -- -t 2--

• oxoy D h oy ox2 ox2 oy2 oxoy 
(7-2) 

04 04 o4 
where v4 = ( 

ox4 
T 

ox2ay2 
'T 

oy4 
) 

p = lateral loading 

h = thickness of the panel 

F = stress function such that 
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Nx, Ny' Nxy = normal and tangential loads given by 

= ho2F , Ny = h02F and N = -~ • 
oy2 ax2 xy oxoy 

The solution of (7-1) and (7-2) for a general case is unknown. 

Some approximate solutions are available for a few simplified cases. 

The two non-linear equations are solved here using the method developed 

by Kaiser (15). Even though this method can be extended to rectangular 

plates, for simplicity only square plates are considered. Equations 

(7-1) and (7-2) can be reduced to four second order linear partial 

differential equations and a non-linear differential expression by 

introducing the following non-dimensional quantities. 

u = x/a 

v = y/a 

p* = p/E•(a/h) 4 

~ = F/h2E 

, a w/h 

The reduced equations are, 

a2, 
= ( -) 

oudv 

a2gi a2, 
2--. 

ouov ouov 

a2~ a2, a2~ a2, * 
-----=pc 
ou2 ov2 ov2 ou2 

T 

' ( 7-3) 

The equations are to be solved one after another in the order in 

which they appear. A deflection surface has to be assumed initially 
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Figure 38. Dimensions of the 
Plate Used in 
Deflection 
Analysis 

and this is compared with the result obtained from the last of the 

equations (7-3). If the difference is considerable a new deflection 

surface is assumed and the procedure repeated until the results con-

verge to a solution. 

Results of the Analysis 
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Equations (7-3) are solved using the finite differences technique. 

Table VII gives the stresses and deflections in panels calculated 

using linear and non-linear theories. Figures 39 and 40 show the 

variation of load and stress as a function of deflection for a panel of 

size 1001• x 100" x \1•. It can be cone luded from the figures that the 

load-deflection curve of the panels has a non-linear hard spring 

characteristic. The stresses and the deflections obtained from the 

non-linear theory are less than the corresponding values from the 
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TABLE VII 

COMPARISON OF THE STATIC DEFLECTIONS AND STRESSES 
OF PLATES USING LINEAR AND NON-LINEAR THEORY 

I Linear Non-Linea1 Linear Non-Linear Theory N I Center Center Max. BendinE Membrane:Total 
Load Deflection Deflectior Stress (psi) ( psi) 

( inches) (inches) ( psi) 

1 psf .000323 .000307 14.3 12.3 - 12.3 

2 psf .000646 .000615 28.7 24.6 - 24.6 

3 psf .000969 .000923 43 .o 37.0 - 37.0 

4 psf .001292 .001230 57.4 49.3 - 49.3 

I 1 psf .00516 .00492 57.4 49.3 .7 49.4 

2 psf .01032 .00984 114.8 98.5 .6 99.1 I 

3 psf .01550 .01475 172.2 147.7 1.3 149.6 

4 psf .02064 .01967 229.6 196.8 2.4 199.2 

l psf .02615 .02486 129.1 110.6 1. 7 112.3 

2 psf .05230 .04942 258.3 219.3 6.7 226.0 

3 psf .07845 .07347 387.4 324.6 14.7 339.3 
ff 

4 psf .10460 .09662 516.6 425.2 25.4 I 450 o 6 

1 psf .0826 .07719 229.6 191.9 I 9.2 201.1 

2 psf .1652 .14691 459.2 358.5 I 32.7 391.2 

3 psf .2479 .2070 688.8 493.2 63.7 556.9 

4 psf .3304 .25884 918 .3 601.0 97.4 698.4 

1 psf .2018 .1746 358.7 269.9 29.3 299.2 

2 psf .4036 .29904 707.5 434.6 81. 7 516 .3 
100"xlOOnx\" 

psf I 3 .6054 .3915 l076.2 537.4 133.5 670.9 

4 psf I .8072 .4658 1434.9 608.2 181. 7 789.9 
'j 
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linear theory. 

Membrane Theory 

When the deflection of the panel is much greater than the thick-

ness the bending rigidity approaches zero and all the load is resisted 

by membrane stresses. The theory developed in the previous section can 

be used by setting D = O. Since iteration process is involved again, 

the simplified membrane bending theory developed by Timoshenko (37) 

will be used here. From (37), the center deflection of the membrane 

and the maximum membrane stresses for a simply supported square mem-

brane are given by, 

WO = 0•802 a 3~ Eh 
0-4) 

l. 

er = 0·396 3~ q2Ea2 
h2 

( 7-5) 

where q = lateral pressure loading 

2a • side of the membrane 

The load-deflection and stress-deflection curves are plotted 

(Figures 41 and 42) for a membrane of size 180" x 1801' x \'1 • As in 

the case of the non-linear the,ory, the load-deflection curve exhibits 

a non-linear hard spring characteristic. Further, the membrane stress-

es are less than the bending stresses calculated using the linear 

theory. 

Transient Response of Panels with Large Deflection 

An approximate analysis of the transient response of panels with 

large deflection is made by deriving an equivalent single degree of 
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free.dam model. Herrmann and Chu (6) in their analysis on steady state 

response of panels with large deflections find that the mode shapes can 

still be taken sinusoidal if the edges are simply supported. The fun-

damental mode is therefore given by, 

w0 Sin Tix/a Sin ~Y/b ( 7-6) 

The equivalent mass can be obtained by equating the kinetic energies 

as, 

meq = m/4 ( 7- 7) 

The equivalent stiffness is found by equating the potential 

energies. The load-deflection curve for thin panels and membranes is 

non-linear and can be represented generally as, 

F = p•ab = kw T µw3 (7-8) 

where k = stiffness (in general different from the corresponding value 

for linear theory) 

µ=non-linearity coefficient 

The potential energy is given by, 

P.E. = 
w0 b a 

,... ,.... r J p Sin 1x/a Sin Tiy/b dx dy dw 
OJOJO 

( 7-9) 

0-10) 

Under the assumption that there exists a keq and a J.leq, the potential 

energy of a single degree of freedom non-linear (hard spring) system 

is 
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(7-11) 

This results in, 

µ == 4µ/TI 2 
eq 

( 7-12) 

0-13) 

The equivalent area obtained by preserving the static deflection is, 

A = 4A/TI2 eq 

The equation of motion for the model for an N-wave load is, 

• • 16 ~kx ux3j 4 2t x -r - - -r c___ = -ab( 1 - -)p 0 

n2 m m m""T2 T 

( 7-14) 

0-15) 

The stiffness k and the non-linearity coefficient µ can be 

obtained for different panels from their load deflection curves. 

(Figures 39 and 41). The corresponding stress is obtained from the 

stress-deflection curves (Figures 40 and 42). Table VIII gives 

the results of the dynamic analysis for small panels (large deflection 

theory) and Table IX gives the results for large panels (membrane 

theory.) 

The stresses predicted by the non-linear theories are much less 

than the stresses obtained from the linear theory. Hence it can be 

concluded that the dynamic analysis carried out using the linear 

theory gives an upper bound for the stresses. 



Load 

1 psf 

Load 

1 psf 

TABLE VIII 

STRESSES IN PANELS USING LINEAR AND NON-LINEAR 
THEORIES FOR N-WAVE LOADING 

Panel Size 
Deflection (in.) Total Stress (psi) 

Linear Non-Linear Linear Non-Linear 

20"x20"xt" 134xl0-5 128xlo-5 59 47 

60 11 x60 11 xt" 91.5xl0-3 85. 7x10-3 475 375 

l00 11 xl0011 x\ 1' 0.433 0.350 760 570 

TABLE IX 

STRESSES IN PANELS USING LINEAR AND MEMBRANE 
THEORIES FOR N-WAVE LOADING 

Panel Size Deflection (in.) Total Stress (Esi) 
Linear Membrane Linear Membrane 

100"x100"xt'' 0.433 0.356 760 310 

120"x12011 xt" 0.917 0.446 1000 345 

180"xl80"xt'' 5.300 0.783 1925 455 

94 

w/h 

5xl0-5 

0.34 

1.4 

w/h 

1.4 

1.8 

3.3 



CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

The following conclusions are made from this study· 

1. The mathematical model with a mass m/4, stiffness (r2/4)k, 

damping ratio,, and area (4 /rr2)A represents exactly the 

fundamental mode response of a panel of mass m, stiffness k, 

damping ratio, and area A. The natural frequency (of the 

fundamental mode) and the static deflection are preserved in 

the above mode 1. 

2. The radiation losses predominate in a wide-mouth resonator and 

the viscous losses predominate in a narrow-mouth resonator. 

Hence, in buildings the main damping mechanism at an open door 

is radiation losses if there are no leaks. 

3. The acoustic radiation damping of a simply supported panel 

is independent of the thickness for a uniform damping pressure 

and is a function only of the panel aspect ratio. The damping 

ratio is a minimum for a square panel. The representative 

acoustic radiation damping ratio of a panel can be taken as 

0.001. But, the joint-friction and structural damping of a 

window are much greater than the acoustic dampingo 

4. The representative damping ratios for a room with an open door 

and a window will be 2% at the door and 3% at the window. 

This forms the lower bound for the damping ratios. 
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5. The maxirnax response of mechanical systems is not unbounded 

when the excitation frequency equals one of the natural 

frequencies. This maximum is a function of the product of the 

differences of the squares of the natural frequencies of the 

system. 

6. The severest response in mechanical systems occurs when the 

loads are acting in a configuration corresponding to the first 

mode. This means, identical loading conditions on the masses 

for a symmetrical system. Since the sonic boom loading corre

sponds to equal and opposite loads on the masses, the response 

is less severe. 

7. The response of a symmetrical two mass three spring system is 

always less than 2.16 for sonic boom loading. It approaches 

this value when the stiffness of the center spring is very 

small. The network which corresponds to the two mass three 

spring system will be a room with two windows. The maximum 

response of the windows (if they are identical) for a sonic 

boom loading is 2.16 which corresponds to ar. equivalent design 

static load of 13.5 psf for a 2.~ psf boom. 51nce windows are 

generally designed for a 30 psf wind load this configuration 

is not critical for sonic boom excitation. 

8. The maximax response of a two degree of freedom cantilever 

system can be much greater than 2.16. The exact value is a 

function of the uncoupled natural frequencies and the mass 

ratio. This system will correspond to a room with an opening 

and a window. A magnification factor of 6 10 is obtained for 

a window in practical acoustical systems. For a panel of size 



10'x8•x\•• a stress level of 1400 psi is obtained for a 1 psf 

boom. This will correspond to an equivalent design static 

load of 38 psf for a 2,5 psf boom. Hence windows in such 

systems which are properly tuned yield greater stresses than 

windows in any other system. 

9. The non-linear theory for the panels predicts a hard spring 

type load-deflection characteristic and the maximax stresses 

are less than the corresponding values obtained from the 

linear theory. Hence the stresses obtained from the linear 

theory represent an upper bound of response, 

Recommendations 

The following recommendations are made for further study. 

1. Since the variation of the breaking stress in several glass 

panels of the same type is considerable the failure of a 

plate glass window has to be analyzed statistically. 

2. Experimental results for the response to sonic boom can be 

obtained by simulating sonic booms in b~ildings of different 

size and shape. 

3. The non-linear transient response of multi-degree of freedom 

systems needs to be studied. 

97 

4. Though the stresses in the window do not exceed the working 

stress for the glass the possiblity of failure d~e to fatigue 

has to be studied. A study of the number of cycles that could 

exceed the endurance limit for a given sonic boom type can be 

made. 

5. The glass may fail at a much lower stress than the working 
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stress because of microcracks and other metallurgical flaws 

which act as stress-raisers. The flow and fracture of glass 

needs to be studied to understand the failure of glass panels. 

6. It has been found in literature on glass that it is possible 

to increase the working load on glass by pre-compressing it. 

Pre-compression technique has advanced to such an extent that 

glass which can resist a stress of 100,000 psi are being made. 

A study of the suitability of using such glasses in apartment 

and supermarket windows will be interesting and worthwhile. 

7. The transient response of a panel coupled to~ cavity has 

defied exact analysis so far. This can be investigated and 

the validity of the single degree of freedom assumption for 

the panel can be verified. 

8. The transient response of a panel taking into account addi

tional symmetrical modes is worthwhile because the contribu

tion by the symmetrical modes can be considerable for stress. 

9. The stability of the non-linear equations used in the large 

deflection theory should be studied on a parameter basis so 

that those equations can be modified suitably to arrive at 

quick results. 

10. In addition to glass breakage, the failure due to sonic booms 

may be in the form of nail popping and plaster cracking. The 

exact nature of these is difficult to analyze but approximate 

predictions can be made. 

11. The transient response of a row of panels needs to be studied 

because most of the supermarket windows are of this type. The 

one which failed in the sonic boom test in Oklahoma City had 
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eight windows in a row. 

12. It was assumed that the wave length is very long compared to 

the dimensions of the building. Supermarkets and modern air 

terminals are almost the same size as the wave length. Exact 

analysis using the acoustic equation needs to be carried out. 
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APPENDIX A 

NUMERICAL INTEGRATION 

Almost all the ordinary differential equations appearing in this 

thesis were solved using numerical integration. The numerical integra

tion has a great advantage (which compensates for its being a little 

less accurate) over the conventional Laplace transform method. In 

the latter method when the excitation frequency equalled one of the 

natura 1 fre-quencies of the system erroneous results were obtained for 

undamped cases. Analytically it was shown that this could not happen 

and the maximax approached a definite value for a particular system. 

This value agreed very well with the result obtained from numerical 

integration. 

Numerical integration was performed using the Runge-Kutta and 

Adams-Moulton methods. The Adams-Moulton method has a better accuracy 

because it is a predictor corrector method and the solution can be 

iterated. Since it is not a self-starting method Runge-Kutta method 

is used to calculate the necessary values for the Adams-Moulton method. 

Rung~-Kutta Method 

There are several orders of Runge-Kutta method depending on the 

accur.acy needed. The error for even the first order method is O(h3) 

which is less than the O(t2) for the Euler method. The method gener

ally used is the fourth-order Runge-Kut ta method. 
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The Runge-Kutta method is derived by assuming a particular form 

of the solution and equating it to a corresponding Taylor's series 

solution. The number of terms taken in the Taylor's series depends on 

the order of the method to be derived. The coefficients of the assumed 

solution are then obtained by comparing the coefficients of like powers 

in both solutions. 

For an equation of the type, 

f = f(x,y) 

with y(x0 ) = x0 the fourth-order Runge-Kutta method gives 

Yn;-t = Yn ;- f; rl ;- 2Kz + 2K3 ;- K~ 

where K1 = hf(xn,Yn) 

K2 = hf(xn ,... h/2, Yn -i- K1/2) 

K3 = hf(xn ,... h/2, Yn ,- K2/2) 

K4 = hf(xn ,... h, Yn + K3) 

h = step size 

(A-1) 

(A-2) 

The total truncation error of the Runge-Kutta method is O(hs). 

Adams-Moulton Method 

In the Runge-Kutta method every time the derivatives at four 

different points have to be calculated. The multi-step formulas 

require only one derivative at each step. This results not only in 

saving computer time but more accuracy because the solution can be 

iterated. But the multi-step methods are not self-starting and Runge

Kutta method has to be used to start the process. 

The predicted value from the Adams-Moulton method is given by, 



Then f 0 can be computed because 
n-i--1 

The corrected value is given by 
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(A-3) 

(A-4) 

The procedure can be repeated and the kth corrected value will be 

-f ,-f-, 
n-1 n-U (A-6) 

The four starting values needed for this method are supplied by 

the Runge~Kutta method. 

If the equations are of higher order or simultaneous, they can be 

reduced to a number of first order equations and the above procedure 

can then be used. This method will solve any ordinary differential 

equation linear or non-linear. A computer program is available with 

the computer center of Oklahoma State University. 

Example 

Let the two equations required to be solved be, 

(A-7) 

(A-8) 

These are written in the form 

(A-9) 
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. 
Czxz xz = .,. __ .. 

(A-10) 
m2 m2 

This is a system of two second-order equations and can be reduced to 

four first-order equations using state variables. 

Let 

Then the four first-order equations are, 

Y1 = Y2 

Yz - - C1Y2 - kl(yl - y3) + F1(t) 
m1 m1 m1 

. 
Y3 = Y4 

Y4 = - C2Y4 
mz 

kt, ) 
--..y3 - Yl 
mz 

Fz(t) 
"T" --=--

m2 

(A-11) 

These four first-order equations can then be solved if the four 

initial conditions are known. 



APPENDIX B 

FINITE DIFFERENCES TECHNIQL~ FOR 

PANELS FOR STATIC LOADS 

The solutions of the plate bending equations for small and large 

deflection theories using the finite differences technique are dis-

cussed here. 

Small Deflection Theory 

The equation of bending of a plate using small deflection theory 

is, 

(B-1) 

If a square plate is divided into a mesh of size 8 x 8, only ten 

points have to be considered because of diagonal and rectangular 

symmetries. 

Equation (B-1) can be reduced to two second-order Poisson equa-

tions. 

(B-2) 

(B-3) 

The finite difference form of (B-2) ( taking the forward differ-

ences) is 

F 
iTl, j 

4 Fi . 1"' F. l .. ,t- F. . l 1"' F. . l = q/D ,J 1- ,J 1,J"t' 1,J-
(B-4) 

The equations for the ten points in the mesh yield a system of equa-

tions the solution of which yields the value of Fat all points. 
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Once. Fs are known (B-3) is s.olved in an identical fashion except for 

the fact that the right-hand side is replaced by F. Usually it is very 

easy to solve a linear Poisson equation by the finite differences 

technique. This is one of the reasons for reducing the non-linear 

partial differential equations of the plate with large deflection into 

four Poisson equations and one non-linear differential expression. 

1---1----+--tg I _ -~ d 
I 

--~t-----.ot--~i----;'c 

1 2 4 7 

------ -- I 
Figure 43. Finite Difference Mesh 

for a Square Plate 

Large Deflection Theory 

The finite differences form (taking forward differences) of 

equations 7-3 is 
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62 I &2s'. 2 2 2 2 (B-5) s. 'T = ( 6uvCi,j) - 6 , .. 6vC· . u ]. 'j v ]. ' j u ]. 'J ]. 'J 

2 2 I 
(B-6) ou~ .. 'T CV~ •• = s. . 

]. ' J ]. ' J ]. 'J 

2 62 ~ 2 2 2 2 2 * 4 6 , .. cu~ .. &vC· . ov~ .. 6 , .. = Pc .. /n 
UV i,j v ]. 'J ]. 'J ]. ' J ]. 'J u ]. 'J ]. ' J 

(B-7) 

o2M'. . o2M'. 
12( 1-u2) 

(p * * . . ) 'T = n4 - Pc u ]. 'J v ]. ' j ]. 'J 
(B-8) 

2 2 ' 0 , .. + 0vC· · = M, • 
u ]. 'J ]. 'J ]. 'J (B-9) 

wheres' m s/n2 

M 1 • M/n2 

Initially the values of C at the ten station points have to be 

assumed (for n = 4). As an initial guess the values given by the 

linear theory can be taken. Once the deflection surface is known 

(B-5) becomes a Poisson equation. But it cannot be solved explicitly 

for s~ , s; etc., because of the boundary terms. s's are obtained in 

terms of the values at the boundary. These values of s' are 

substituted in (B-6) and using the boundary conditions 

(i'i'"l is a boundary point) (B-6) can be reduced to a linear Poisson 

equation of the type discussed in the linear theory. The solution of 

this yields~. From the non-linear algebraic expression (B-7), p~ 

can be calculated because C and ~ are known. (B-8) and (B-9) are then 

reduced to the linear Poisson equation. The solution of (B-9) yields 

the deflection surface C· This is compared with the assumed C and 

suitable modifications are made and the procedure repeated until 

desired accuracy is obtained. 
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Conv.ergence of the Solution 

It is found that the method of successive approxima,t!on always 

gave results which were diverging. For example, a simple problem was 

tried to solve using this method. Let 

gi = w2 

w = 1/gi (B-11) 

The method of successive approximation yielded results which were 

oscillating about the exact solution, the oscillations diverging very 

rapidly. 

A method of average successive approximation is therefore used in 

solving the plate problem. For the second guess 

(B-12) 

was used. The rate of convergence of this method is fairly rapid. 
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